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Generating Gaussian Pseudo-Random Deviates 

1 Introduction 

This report examines low-complexity methods to generate pseudo-random Gaussian 

(normal) deviates.  We introduce a new method based on modelling the Gaussian probability 

density function using piecewise linear segments.  This approach is shown to be both effi-

cient and accurate.  It does not require the calculation of transcendental functions. 

All of the methods considered map one or more uniform distributions to create the 

Gaussian deviates.  This report investigates the effect of the use of discrete variates, particu-

larly in the tails of the Gaussian distribution.  In addition, we give a new interpretation of the 

method of aliases that suggests its application to non-uniform quantization. 

2 Uniform Deviates 

2.1 Continuous uniform distribution 

Consider uniform continuous-valued deviates [ ]ucx k  that lie in the range [0,1] .  The 

probability density function (pdf) of [ ]ucx k  is 

 
1 0 1,

( )
0 elsewhere.uc

x
p x

≤ ≤
= 


 (1) 

The mean and standard deviation for this distribution are 

 21 1, .
2 12uc ucm σ= =  (2) 
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2.2 Discrete uniform distribution 

A number of different schemes have been proposed to generate pseudo-random uniform 

deviates.  We describe one here, but many others exhibit similar behaviour, specifically that 

the returned values lie on a discrete grid. 

Consider the multiplicative congruential method for generating a uniform deviate 

[1,2,3].  The basic procedure takes the form 

 [ ] mod( [ 1], ),x k ax k M= −  (3) 

where a  is a carefully chosen multiplier, [ 1]x k −  is a previous (non-zero) deviate and M  is 

an appropriate modulus.  All values are integers.  The book Numerical Recipes [2], suggests 

16807a =  and 312 1M = − .  The generation of each variate requires a multiplication and a 

modulo operation.  An algorithm due to Schrage [2, p. 278] avoids overflow in the calcula-

tion and can be used to implement a portable random number generator.  The period of the 

generator is 1M −  for a non-zero initial value.  The output values are integers in the interval 

[1, 1]M − .  The value 0 does not appear in the output, since it would repeat for all future val-

ues.  An additional shuffling step can be used to break up low order correlations (see [2]). 

It is common for uniform random number generators to return uniform deviates as float-

ing point numbers between 0 and 1.  The routine given in [2] computes 

 [ ][ ] .ud
x kx k
M

=  (4) 

The value [ ]udx k satisfies 

 1 1[ ] .ud
Mx k

M M
−≤ ≤  (5) 

The value [ ]udx k  takes on discrete values.  Assuming that each value of [ ]udx k is equi-

probable, the mean and variance of [ ]udx k  are 
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 21 1 1, .
2 12 6ud udm

M
σ= = −  (6) 

3 Gaussian Deviates 

There are a number of techniques for generating Gaussian deviates from uniform devi-

ates [1].  We consider two approaches for which computer programs are widely available. 

3.1 Central Limit Theorem 

The Central Limit Theorem of probability says that an appropriately normalized sum of 

independent, identically-distributed random values has a cumulative distribution that ap-

proaches a Gaussian cumulative distribution in the limit of a large number of terms [4].  Here 

we are interested in a finite number of terms and wish to evaluate how close the distribution 

of the sum is to a Gaussian distribution. 

3.1.1 Sum of continuous uniform deviates 

Consider adding N  independent (continuous) uniform deviates, 

 
1

0
[ ].

N

c uc
k

x x k
−

=
= ∑  (7) 

The probability density function of the sum can be obtained by convolving the N  uniform 

densities, 

 ( , ) ( ) ( ).c uc ucp x N p x p x= ∗ ∗!  (8) 

We will use a generating function (here the Laplace transform) to express the result.  The 

Laplace transform of the probability density of the sum can be expressed as the N -fold 

product of the Laplace transform of the uniform density. 

The uniform pdf can be written as the difference between two unit step functions, 

 ( ) ( ) ( 1),ucp x u x u x= − −  (9) 
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where the unit step function is defined as 

 
1 0,

( )
0 elsewhere.

x
u x

≥
= 


 (10) 

Then the Laplace transform of ( , )cp x N  is 
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1( , )
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∑

 (11) 

The inverse transform of this expression gives the pdf of the sum, 

 1

0

1( , ) ( 1) ( ) ( ).
( 1)!

N
k N

c
k

N
p x N x k u x k

kN
−

=

 
= − − − −  

∑  (12) 

The pdf is formed from polynomial segments.  The function value and 2N −  derivatives are 

continuous between segments.  From basic considerations, ( , )cp x N  is non-zero only for 

0 x N≤ ≤  and is symmetric about / 2N  (i.e., ( , ) ( , )c cp x N p N x N= − ). 

The cumulative distribution function (cdf) can be calculated by integrating ( , )cp x N  (or 

as the inverse transform of ( , ) /cX s N s ), 

 
0

1( , ) ( 1) ( ) ( ).
!

N
k N

c
k

N
F x N x k u x k

kN =

 
= − − − 

 
∑  (13) 

The distribution of the sum has mean / 2cm N=  and variance 2 /12c Nσ = .  A zero-mean, 

unit-variance variate can be created by scaling and shifting the sum, 

 ( ).nc c c cx x mσ= −  (14) 

The resultant pdf and cdf are 
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( , ) ( , ),

( , ) ( , ).

nc c c c
c

nc c c
c

xp x N p m N

xF x N F m N

σ
σ

σ

= +

= +
 (15) 

The Berry-Esséen Theorem [4] gives us information about the rate of convergence as 

the number of terms in the sum, N , increases: the cdf of the normalized sum of uniform de-

viates can be bounded relative to the true Gaussian cdf (denoted as ( )xN ), 

 9| ( , ) ( ) | .
4ncF x N x

N
− <N  (16) 

This shows that the error decreases as 1/ N .  However, for practical values of N , the actual 

deviation for the sum of uniform variates is much smaller than this bound. 

Fig. 1 shows a plot of the pdf ( , )ncp x N  for 12N = , along with a Gaussian pdf.  The 

tails of ( , )ncp x N  extend from the mean out to 3N±  and are zero beyond that point.  For 

instance for 12N = , the tails extend out to 6±  standard deviations. 

−4 −3 −2 −1 0 1 2 3 4
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0.4
 Gaussian

 N = 12

 

Fig. 1  Probability density function for a sum of 12N =  uniform deviates. 
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Since the area under any pdf is fixed at unity, the pdf of the sum must oscillate about the 

pdf of the true Gaussian density.  The difference between the true Gaussian density and the 

pdf of the sum for different values of N  is plotted in Fig. 2. 
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Fig. 2  Difference between the Gaussian density and the sum of uniform deviates. 

Warping the output values 

Warping the output value can reduce the error in the pdf.  Consider a polynomial func-

tion applied to the sum variable cx , 

 
0

.
tN

i
nc i nc

i
y a x

=
=∑  (17) 

For 12N = , an anti-symmetric warping polynomial (with only odd-numbered coefficients) is 

follows [5], 

 

3
1 3

5 7
5 7

7
9

0.98746, 3.9439 10 ,

7.474 10 , 5.102 10 ,

1.141 10 .

a a

a a

a

−

− −

−

= = ×

= × = − ×

= ×

 (18) 
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This polynomial function deviates slightly from a straight line for small values and then 

stretches out the tail of the distribution.  As shown in Fig. 2, warping reduces the maximum 

error. 

Tail probabilities 

Fig. 3 shows a plot of the tail probability 1 ( , )ncF x N−  for several values of N .  The log 

scale shows the deviation of the tail probability from the true value.  For 12N = , the simple 

sum starts to deviate significantly from the true Gaussian probability above 4 standard devia-

tions.  The warped sum improves considerably on the simple sum. 
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Fig. 3  Tail probability for a sum of uniform deviates. 

3.1.2 Sum of discrete uniform deviates 

Given that the underlying [ ]udx k  is discrete, the sum has a multinomial distribution.  To 

simplify the notation, consider the sum, 

 
1

0
[ ],

N

k
s x k

−

=
= ∑  (19) 
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where [ ]x k  is the integer-valued uniform deviate that is used to calculate [ ]udx k .  The uni-

form probability function can be written in terms of the difference between two discrete unit 

step functions, 

 1[ ] ( [ 1] [ ]),udp n u n u n M
M

= − − −  (20) 

where the discrete unit step function is defined as, 

 
1 0,

[ ]
0 elsewhere.

n
u n

≥
= 


 (21) 

The generating function ( z -transform) for this density is 

 
1 ( 1)

1
1( ) .

1

M

ud
z zX z
M z

− − −

−
−=

−
 (22) 

The probability density of the sum corresponds to the following z -transform, 

 

( 1)
1

0

( 1)

0 0

( , ) ( 1)
(1 )

1
( 1)

N N
k k M

d N N
k

N N
l k k M

N
l k

NzX z N z
kM z

N l Nz z z
l kM

−
− −

−
=

− ∞
− − −

= =

 
= −  

−  

+ −   
= −   

   

∑

∑ ∑
 (23) 

The inverse transform then gives the probability distribution for the sum, 

 
0

11( , ) ( 1) [ ].
N

k
N

k

N n kM
P s n N u n kM N

k n kM NM =

− −   
= = − − −   − −   

∑  (24) 

The cumulative distribution function can be calculated by summing ( , )P s k N=  for k  run-

ning from −∞  to n , or as the inverse transform of 1( ) /(1 )dX z z−− , 

 
0

1( , ) ( 1) [ ].
N

k
N

k

N n kM
P s n N u n kM N

k n kM NM =

−   
≤ = − − −   − −   

∑  (25) 
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The cdf is a piecewise constant, non-decreasing function. 

The analysis above was done for the sum of integer-valued variates.  For the scaled 

variates (see Eq. (4)), the sum values are scaled and lie on a discrete grid (lattice).  A plot of 

the pdf or cdf is indistinguishable from that of the sum of continuous-valued uniform vari-

ates. 

3.2 Transformation of variables 

Consider a two dimensional Gaussian variable with independent identically-distributed 

components.  When plotted in two dimensions, the radial distance to the value has a 

Rayleigh distribution, and the angle is uniformly distributed between 0 and 2π .  In the polar 

transformation method for generating Gaussian deviates, one uniform deviate is transformed 

to a Rayleigh variate and a second uniform deviate is transformed to a uniform angle.  The 

final Gaussian deviates, 1y  and 2y  are then formed as 

 1 1 2

2 1 2

2 log( ) cos(2 ),

2 log( ) sin(2 ).

y x x

y x x

π

π

= −

= −
 (26) 

An accept-reject approach can be used to obviate the need for calculating the sinusoids [2]. 

3.2.1 Polar transformation of discrete uniform deviates 

Consider the discrete uniform variates with values between 1/ M  and ( 1) /M M− , see 

Eq.(5).  The number of distinct values for, say 1y , is 2( 1)M −  � the product of the number 

of different cosine values and the number of different Rayleigh values.  The cosine and sine 

terms in the transformation are always bounded by unity.  The Rayleigh term determines the 

range of the output variates.  The largest possible value for the Rayleigh term is 

2 log(1/ )M− .  This is also bounds the largest Gaussian variate.  For 312 1M = − , the larg-

est value corresponds to 6.56 standard deviations. 



Generating Gaussian Pseudo-Random Deviates 10 

A plot of the tail probability for the Rayleigh term (discrete values), Fig. 4, shows the 

deviation from the true distribution above 6 standard deviations. 
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Fig. 4  Tail probability for a transformation of discrete values (Rayleigh). 

3.3 CLT versus polar transformation 

The Central Limit Theorem approach and the polar transformation method provide 

Gaussian deviates in quite different ways.  In the basic CLT approach, the discrete output 

values are uniformly spaced, but the probability masses for the output points differ.  The cdf 

consists of steps, uniformly spaced in x , but with heights proportional to the probability 

masses.  In the transformation method, the discrete output values for the Rayleigh compo-

nent are non-uniformly spaced.  The pdf is discrete with equal masses (1/( 1)M − ) for the 

non-uniformly spaced values.  The cdf consists of steps, non-uniformly spaced in x , but all 

of the same height. 

The CLT approach is simple to program, but is approximate.  The most significant 

drawback for many applications is the poor approximation of the tails of the Gaussian distri-

bution.  The question of how well the tails have to be modelled is discussed in Appendix A.  

The polar transformation method matches the Gaussian distribution better in the tails, though 
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the maximum value is still limited.  It also requires the calculation of transcendental func-

tions. 

4 Gaussian Probability Density: Piecewise Linear Approximation 

Another approach to generating an arbitrary probability density function is based on the 

observation that any pdf can be written in the following form 

 
1

0
( ) ( ).

N

x i i
i

p x q p x
−

=
= ∑  (27) 

With this formulation, the overall pdf is expressed as the weighted sum of pdf�s.  The weight 

iq  represents the probability of choosing the pdf ( )ip x   

This approach can be used to approximate the Gaussian density.  The goal is to produce 

an algorithm that can be coded in a program that is regular and simple (like the basic CLT 

approach), that does not use transcendental functions, but that has a smaller approximation 

error than the CLT approach. 

4.1 Piecewise linear approximation using triangular distributions 

First we note that a triangular pdf can be easily generated as the sum of two uniform 

pdf�s.  By overlapping the triangular distributions, we can generate an overall pdf with 

piecewise linear segments.  Fig. 5 shows (a low resolution) triangular approximation to the 

Gaussian density. The steps in generating the (approximate) Gaussian deviate are as follows. 

1. Determine which triangular pdf to use.  We have to select ( )ip x  with probability iq . 

2. Generate a sample from ( )ip x .  This pdf is a shifted and scaled triangular pdf. 

For the first task, we want to randomly generate a discrete index, say i , where the index oc-

curs with probability, iq .  Starting from a uniform deviate, the straightforward approach is to 

set up thresholds that divide the unit interval into N  segments, each of length equal to one of 
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the given probabilities.  A binary search can be used to limit the number of comparisons to at 

most 2log ( )N   .  An alternate approach is the alias method.  In this procedure, the segments 

are rearranged in such a manner as to allow a correctly distributed index value to be deter-

mined with a few simple operations.  This method is reviewed and interpreted in Appendix 

B. 

0 1 2 3 4
0

0.1

0.2

0.3

0.4

 

Fig. 5  Triangular pdf's used to approximate a Gaussian density. 

Generalization of the triangular distribution 

The linear approximation described above uses equal width triangular sub-distributions.  

The deviates for the individual triangular sub-distributions can be generated a sum of two 

independent uniform deviates.  In our case, the triangular distributions are symmetric about 

their mean.  Consider a generalization of this procedure.  Let 1u  and 2u  be two uniform devi-

ates.  Form the sum,  

 1 2 1 2min( , ) (1 ) max( , ).v u u u uα α= + −  (28) 

For 1/ 2α = , this reverts to the scaled sum of 1u  and 2u and gives a symmetric triangular 

distribution.  For other values of α , we can form non-symmetric triangular sub-distributions 

that could then be stitched together to form the overall distribution.  For instance, the gener-
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alized procedure could be used to stretch the last triangular distribution to go further into the 

tail. 

Use of this more generalized formulation would require additional tables to describe the 

parameters (location and skew) of the sub-distributions.  In the sequel we consider just the 

simpler case of symmetric triangular distributions. 

4.2 Choosing the model parameters 

The modelling of the Gaussian pdf with linear segments involves choosing parameters 

for the model.  Consider only a piecewise linear approximation made from triangular sub-

distributions.  The sub-distributions are uniformly spaced.  For ease of argument, suppose the 

probabilities of the sub-distributions are chosen so that at the centre of each sub-distribution, 

the approximation equals the true Gaussian distribution.  (This cannot occur exactly, since 

we have to respect the constraint that the area under the approximating function must be 

unity.).  Each triangular distribution has a base width of w  and a centre at / 2ic iw= .  A unit 

area triangular pdf with width w  has a height 2 / w .  In the overall approximation, this is 

scaled by the probability iq .  Then to have the approximating pdf equal that of a Gaussian at 

ic , 

 ( ),
2i i
wq p c=  (29) 

where ( )p x  is the Gaussian density. 

As we have seen, a uniform variate is used to choose the index i  such that it occurs with 

probability iq .  The uniform deviate is actually discrete, with each value occurring with 

probability in the order of 10-10. for 312 1M = − .  Any sub-distributions with probability less 

than this value will never be chosen.  For large w , say equal to 1, this limits ic  to about 6.3 

standard deviations before iq  falls below the threshold value.  For small w , say equal to 

0.01, ic  is limited to about 5.5. 
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For our example implementation we have chosen to go out to ±6 standard deviations, 

with different numbers of approximating segments.  The Gaussian density is concave down-

ward for | | 1x <  and concave upward for | | 1x > .  For our implementation, the centres are 

chosen to be symmetrical about the mean of the distributions and have one of the centres fall 

at 1 standard deviation.  This means that that w  is of the form 2 / K , where K  is an integer. 

4.3 Optimizing the model parameters 

Consider approximating the Gaussian density with mixture probabilities.  We will 

minimize the sum of the squared deviations at a set of points.  Let the points be written in 

vector form as 

 0 1[ ] .
x

T
Nx x −=x …  (30) 

The overall pdf can be written as 

 ( ) ( ) ,=p x A x q  (31) 

where ( )A x  is an xN N×  matrix with elements ( )j ip x  and 0 1[ ]TNq q −=q …  is the vector 

of mixture probabilities.  The approximating error can then be written as 

 ( ) ( ) ( ) .g= −e x p x A x q  (32) 

We can formulate the sum of squared errors as ( ) ( )Te x e x  and minimize this with respect to 

the choice of q .  However, we also want to add the constraint that the probabilities sum to 

unity.  We add this to the squared error with a Lagrange multiplier λ .  Suppressing the de-

pendence on x , the function to minimized is 

 2 (1 ),T T T T T
g g g Nε λ= − + + −p p p Aq q A Aq 1 q  (33) 

where N1  is a vector of N  ones.  Taking a derivative with respect to q  and setting this to 

zero gives us a set of equations with 1N +  unknowns, 
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 .
2

T T
g N

λ= −A Aq A p 1  (34) 

The additional equation needed is the constraint equation 1T =1 q .  Now writing the com-

bined equations, 

 
/ 2

.
10

T T
N g

T
N λ

    
=    

       

A A 1 q A p

1
 (35) 

The constraints guarantee only that the sum of the probabilities be one, not that they all be 

positive.  However the form of the problem will assure that they are indeed positive. 

Because of the concavity of the Gaussian curve, the maximum error will occur near the 

middle of the segments.  The sampling vector x  was chosen to include the centres of the tri-

angles and points mid-way between them.  This leads to a solution that has nearly the mini-

mum peak error.  Adding more intermediate points actually increases the peak error.  Using a 

general-purpose (and computationally intensive) minimization routine to minimize the peak 

deviation does not result in much of a decrease in the peak distortion. 

4.4 Approximation error 

The approximation error for 0.4w = (61 sub-distributions) is shown in Fig. 6.  The peak 

error is smaller than for the central-limit theorem approach (even with warping, see Fig. 2).  

The peak error depends on the choice of w .  The peak error decreases rapidly with decreas-

ing w  as shown in Fig. 7. 

The tail probabilities for the approximation are shown in Fig. 8).  In this case, the 

approximation extends to 6±  with 0.4w = .  Below this value, the tail probabilities are much 

more accurate than the simple CLT approach (c.f. Fig. 3). 
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Fig. 6  Difference between the Gaussian density and the piecewise linear approximation for 0.4w = . 
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Fig. 7  Peak error in the pdf as a function of w . 
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Fig. 8  Tail probability for the piecewise linear approximation. 

4.5 Execution time 

The computer code for generating a piecewise linear approximation of any pdf is very 

simple.  The modelling of a particular pdf changes only the tabulated values.  The accuracy 

of the approximation depends on the number of sub-distributions used.  This affects only the 

table sizes and not the speed of execution.  C-language routines were implemented to assess 

the speed of execution.  Fig. 9 shows the code for the piecewise linear algorithm. 

#define Ns 61
#define Wh 0.2F

static double Qp[Ns] = {
0.0000000701, 1.0000002218, 2.0000006971, 3.0000021050,
4.0000061097, 5.0000170365, 6.0000456337, 7.0001174142,
8.0002901888, 9.0006889145, 10.0015709960, 11.0034412091,
12.0072405984, 13.0146341180, 14.0284111359, 15.0529836447,
16.0949133810, 17.1633227139, 18.2699605826, 19.4286371286,
20.6537562461, 21.9578101899, 22.9986541831, 23.9172244647,
24.9819145361, 25.9964118982, 26.8108406334, 28.0000000000,
28.9344349895, 29.9470410790, 30.9329056057, 31.9461591492,
32.9382339036, 33.9910814509, 34.8089704203, 35.9807579384,
36.9852901274, 37.9172244647, 38.9995628437, 39.9578101899,
40.6537562461, 41.4286371286, 42.2699605826, 43.1633227139,
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44.0949133810, 45.0529836447, 46.0284111359, 47.0146341180,
48.0072405984, 49.0034412091, 50.0015709960, 51.0006889145,
52.0002901888, 53.0001174142, 54.0000456337, 55.0000170365,
56.0000061097, 57.0000021050, 58.0000006971, 59.0000002218,
60.0000000701 };

static int It[Ns] = {
30, 32, 33, 30, 31, 34, 32, 27,
35, 30, 29, 26, 36, 27, 35, 25,
37, 31, 26, 28, 24, 33, 27, 22,
22, 22, 38, 27, 27, 24, 33, 22,
38, 25, 22, 27, 38, 38, 27, 36,
36, 32, 34, 29, 23, 30, 33, 24,
32, 28, 34, 31, 25, 33, 28, 26,
29, 27, 28, 31, 29 };

float
gTriang (long int *idum)

{
int j;
double uN;

/* Alias method to get mixture index */
uN = Ns * ran1(idum);
j = (int) uN;
if (uN > Qp[j])

j = It[j];

/* Generate a triangular density */
return (Wh * (ran1(idum) + ran1(idum) + (j - (Ns+1)/2)));

}

Fig. 9  C-language code for the piecewise linear approximation method. 

Experiments were run on a 600 MHz PC to measure the execution times.  The average 

execution times for generating one random deviate are shown in Table 1.  The first row is for 

the uniform random number generator rand1 (multiplicative congruential, with shuffle) 

from [2].  This is the basic uniform random generator used by all of the Gaussian generators.  

The first Gaussian random number generator is gasdev, the implementation of the polar 

transformation method from [2].  The next is the new piecewise linear approximation, and 

the last is the sum of 12 uniform deviates (CLT method). 
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Table 1  Execution times for random number generators 

Type Routine Execution Time 
µs 

Uniform rand1 0.07 

Gaussian Gasdev 0.38 

Gaussian Piecewise Linear 0.37 

Gaussian CLT ( 12N = ) 0.98 

The CLT method calls the uniform generator 12 times, and runs about 13 times slower 

than the uniform generator.  The piecewise linear approximation calls the uniform generator 

3 times and is about 5 times slower than the uniform generator.  The polar transformation 

method (gasdev) calls the uniform generator only once per output value on average.  

Somewhat surprisingly in spite of having to invoke a square root and a logarithm, it runs 

only about 5 times slower than the uniform generator.  This is perhaps a tribute to the effi-

cient implementation of the transcendental functions in the C-language library. 

4.6 Portability and fixed-point considerations 

A portable implementation in high-level language is portable if it assumes only minimal 

constraints on the underlying computer architecture.  The underlying discrete uniform ran-

dom number generator can easily be made portable [2].  The piecewise linear approximation 

step is table-driven, memoryless, and very portable. 

Even a portable routine will not necessarily be bit-exact between different compilers 

even on the same architecture.  For bit-exact implementations, we consider a fixed-point im-

plementation.  The core of the uniform generator is already implemented in fixed-point 

arithmetic.  The piecewise linear approach can also be implemented in fixed-point arithme-

tic, giving a scaled fixed-point output value.  Furthermore as noted in Appendix B, the table 

sizes can be inflated to become a power of 2, further simplifying the fixed-point implementa-

tion on binary computers. 
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4.7 Rectangle-wedge-tail method 

A related approach for generating Gaussian variates is the rectangle-wedge-tail method; 

see for instance [1].  In this approach, the area under the Gaussian pdf is partitioned into rec-

tangular regions, wedge-shaped regions and the tail.  The rectangular regions are generated 

by a scaled and shifted uniform variate.  The wedge-shaped regions are generated by an ac-

cept-reject approach.  However, since most of the area is covered with rectangular regions, 

the more complicated wedge shaped regions are needed only a small fraction of the time 

(about 8% of the time in the example given by Knuth [1]).  The rectangle-wedge-tail method 

is computationally efficient on the average.  The overall program is much more complicated 

than the other methods considered here. 

5 Summary and Conclusions 

The piecewise linear approximation method for generating Gaussian variates is simple 

in structure and does not need transcendental functions (problematic in fixed-point imple-

mentations).  The results show that it is a viable option for implementation: it is both effi-

cient and accurate.  There is a straightforward trade-off between memory (table sizes) and 

accuracy with no effect of execution time.  This method is an excellent candidate for a port-

able (and possibly fixed-point, bit-exact) implementation of a Gaussian pseudo-random 

number generator. 
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Appendix A. How Far Should the Tails Reach? 

The methods for generating Gaussian random variates necessarily generate distributions 

that are thin in the tails.  This by itself does not necessarily hinder their usefulness.  We will 

consider two scenarios. 

Audio Noise 

Consider generating white noise to add to an audio signal, for instance for testing noise 

reduction schemes or assessing the performance of speech or audio coding systems.  For 

such purposes, the absence of large (but small probability) noise samples is not a deficiency. 

As a concrete example, consider the Gaussian random number generated used in the 

Modulated Noise Reference Unit (MNRU) [6] to add multiplicative noise for speech quality 

assessments.  Major requirements for a reference implementation are that the random num-

ber generator be accurate and portable.  The Gaussian noise generator suggested in [7] is ta-

ble driven.  For each output noise sample, eight randomly chosen values from a fixed table of 

8192 Gaussian values are combined to generate each output noise sample.  This leads to a 

huge number of different possible output values, but the range of values is limited by the ini-

tial values used to populate the table.  This is an example of an application where tail accu-

racy is not of prime concern. 

Communications System Simulation 

In communication system simulation, the tail probabilities of the noise determine the er-

ror rates.  Consider a simulation system in which errors occur with the (true) probability p .  

Further consider evaluating n  symbols passing through the system, with the probability of 

error being independent from symbol to symbol.  The probability of k  errors in n  trials fol-

lows a binomial distribution [3], 

 ( ) (1 ) .k n kn
P k p p

k
− 

= − 
 

 (36) 
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The mean number of errors for n  trials is pn  and the variance is 

 2 (1 ) .p p
n

σ −=  (37) 

The ratio of the standard deviation relative to the mean value is 

 1 1 .p
p np np
σ −= #  (38) 

The latter approximation is for small probability of error.  To get an error estimate that has 

standard deviation that is 10% of the expected number of errors, the expected number of er-

rors ( np ) should be 100.  This means that to simulate a system with an error probability of 

610− , the number of trials should be on the order of 810 .  For a simulation of a complicated 

system, this number of trials may be unreasonably large.  This then limits the minimum 

probability of error that can be simulated. 

For binary transmission with additive Gaussian noise, the error rate is 

 ( ) ,eP Q ρ=  (39) 

where ( )Q x  is the tail probability for a Gaussian density and ρ  is the signal-to-noise ratio.  

In simulating this (admittedly simple) system operating at an error rate of 10-6, errors occur 

when the noise exceeds 4.7 standard deviations.  Simulation of this system operating at this 

error rate would require generation of Gaussian deviates that extend well beyond this value.  

This then sets the accuracy requirements for the tails.  The total probability of the tails is 10-

6.  To bring the neglected probabilities below 1% of this value requires that the tails be accu-

rate to about 5.6 standard deviations. 
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Appendix B. Method of Aliases for Generating Discrete Distributions 

Given a uniform random number generator (0 to 1), consider the generation of N  ran-

dom values with given probabilities, 0 1, , Nq q −… .  The alias method of A. J. Walker [8], 

trades off the non-uniform quantization problem for a uniform quantization problem and ad-

ditional comparison.  L. Devroye [9] has an interpretation of the problem in terms of parti-

tioning a unit square. 

Consider the unit square shown in Fig. 10.  The square is partitioned into vertical strips, 

each of area 1/ N .  Furthermore, each strip is divided into two parts, with the lower part of 

strip j  having area /jQ N .  The index associated with the lower part is j  itself.  The upper 

part of strip j  has an index jI  associated with it.  The generation of the discrete variable can 

then be done as follows.  Generate two uniform random deviates, u  and v ..  These define a 

point ( , )u v  in the unit square.  To locate the strip, uniformly quantize u , 

 j Nu=    . (40) 

... ...

0 1 j N-2 N-1... ...

0 1 j N-2 N-1

I0 I1 Ij IN-2 IN-1... ...

Q0 Q1 Qj QN-2 QN-1

1-Q0 1-Q1 1-Qj 1-QN-2 1-QN-1

1/N

1

 

Fig. 10  Unit square partitioned into vertical strips of area 1/N. 
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In strip k , we need to determine whether v  is below or above the dividing line.  This 

means that v  is compared to kQ , 

 .
j

j j

j v Q
l

I v Q

<=  ≥
 (41) 

When properly set-up, the index l  will take on the value i  with probability iq . 

The task is to construct the partitions of the table.  First note that some of the probabili-

ties iq  will be less than 1/ N , while others will be greater than or equal to 1/ N .  Group the 

probabilities into two groups, one with those probabilities that are less than 1/ N , the re-

mainder in the other group.  Choose one from the group of smaller probabilities, say jq .  In 

strip j , set j jQ q= .  Since jq  is smaller than 1/ N , it will take up only part of strip j .  The 

index of the lower part of strip j  is set to j  itself.  We are now finished with jq . 

Now select one of the probabilities that is larger than 1/ N , say mq .  The length of the 

upper part of strip j , is smaller than this value.  Nonetheless, we label the upper part of strip 

j  with index m , i.e., we set jI m= .  One strip is filled   We must now reduce mq  by the 

length of the upper part of strip j , 

 (1 )m m jq q q← − − . (42) 

Having done this, we place the new value of mq  into one of the two groups of probabilities: 

those smaller than 1/ N  and those larger than 1/ N . 

The process can now be repeated for the remaining strips.  When finished, each part of 

the unit square will be identified with an index.  A given index i  may occur in several differ-

ent parts of the square, but the fraction of the square labelled with index i  will be exactly iq . 

The procedure above was described in terms of generating two uniform random vari-

ables.  One can note, however, that k Nu=     is a discrete equiprobable value and that 
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v Nu k= −  is a uniform random value in [0,1) .  Then we can operate with just a single uni-

form random deviate. 

This single uniform deviate approach can be viewed in terms of a line from 0 to N  as 

shown in Fig. 11.  In this figure, the strips from the previous figure are lined up onto a line of 

length N .  The uniform deviate chooses a point on the line.  The integer part of the uniform 

deviate determines which unit segment the value lands in.  This segment number lets us 

choose the appropriate threshold value.  The threshold value for the unit segment starting at 

j  is jj Q+ . 

0 1 2 j j+1 N-1 NQ0 1+Q1 j+Qj N-1+QN-1

I00 IjjI11 IN-1N-1... ...

 

Fig. 11  Line segment divided into unit segments. 

The random variate generation algorithm can be expressed shown in Fig. 12.  The input is u, 

a uniform random variate.  Two tables of size N  are necessary.  The first contains the values 

ii NQ+ .  The second is the index array containing the indices for the second parts of the unit 

segments. 

n = floor(N*u);
if (u < Qp(n+1)

m = n;
else

m = I(n+1);
end

 

Fig. 12  Code fragment for calculating a discrete random index. 

The description above suggested an explicit method to generate the tables.  Knuth [1] 

gives a modified procedure for setting up the tables.  This method sorts the probabilities such 

that the indices of the smallest probability and largest probabilities are used to populate a 

strip at any step.  In this way, it attempts to maximize the probability that jv Q<  (no table 

lookup for the index aliases).  A procedure written in Matlab for generating the table values 
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is shown below in Fig. 13.  The input is a vector of probabilities.  The output is a table of 

thresholds ( ii NQ+ ) and a table of index aliases. 

function [Qp,It] = AliasTable(q)

Pn = q;
N = length(q);

Qp = zeros(1,N); % pre-allocate space
It = zeros(1,N);
for(i = 0:N-1)

[Ps, Is] = sort(Pn); % ascending order
Is = Is - 1; % [0,N-1]
j = Is(i+1); % index of smallest
k = Is(N-1+1); % index of largest

% Set table values
Qp(j+1) = j + N * Pn(j+1);
It(j+1) = k; % [0,N-1]

% Update probabilities
Pn(k+1) = Pn(k+1) - (1/N - Pn(j+1));
Pn(j+1) = -1;

end

 

Fig. 13  Matlab code for generating alias table values. 

Other considerations 

The alias method requires a multiplication by table size and the evaluation of a floor 

function (integer part of a positive number).  For computer architectures based on binary 

arithmetic, these operations can be simplified if the table size is a power of 2.  This is easily 

accommodated by introducing additional sub-distributions with zero probability. 

Application to quantization 

The alias method correctly generates indices with given probabilities.  It is an alternate 

to binary search.  The latter algorithm can be viewed as implementing a non-uniform quan-

tizer.  In generating random indices, it matters not which index some particular range of the 

uniform variate is associated with, only that the indices occur with the correct probability. 
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In the non-uniform quantization problem, we have to find the index corresponding to a 

particular input value.  Non-uniform quantizers can be implemented with a transformation to 

a domain in which a uniform quantizer can be used (a companding function � named for 

compression and expanding).  Or barring that, using a binary search process.  The one-

dimensional view of the alias method gives us an alternate viewpoint. 

Consider for simplicity, the problem of quantizing a value x  taking on values in the in-

terval [0,1] .  This interval is then partitioned into segments with labelled indices.  Suppose 

we choose N  such that the smallest segment corresponding to a given index is smaller than 

1/ N .  Now scale the input value by N .  No segment of unit length of the scaled variable 

will contain more than one decision boundary.  We can now use the processing of the alias 

method to set up tables.  Non-uniform quantization can then proceed by first identifying the 

unit segment and then comparing the value with the threshold for that segment. 

For non-uniform quantizers with a large spread in interval sizes, a non-linear function 

can be used to decrease the spread.  The function need not be exactly the companding func-

tion associated with the non-uniform quantizer.  It serves only to reduce the number of inter-

vals (table size). 
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Appendix C. Parameters for the Piecewise Linear Approximation 

The figure below shows Matlab code that can be used to calculate the mixture probabili-

ties for a piecewise linear approximation to a Gaussian pdf. 

function [q,pPar] = qms(Wh, Cmax)
% [q,pPar] = qms(Wh, Cmax)
% Wh - distance between centres
% Cmax - largest centre
% Solve for the mixture probabilities for a piecewise linear
% approximation to a Gaussian pdf. The sub-distributions are
% uniformly spaced.

Gpdf = inline('1/sqrt(2*pi) * exp(-x.^2 / 2)');

% Generate linearly spaced values
pPar.C = -Cmax:Wh:Cmax;
pPar.Wh = Wh;

N = length (pPar.C);
Nx = 2*N - 1;
x = linspace(-Cmax, Cmax, Nx)';

% Optimum q
q = qopt(Amat(x, pPar), Gpdf(x));

%=====
function q = qopt (A, p)
% Solve for the mixture probabilities that minimize the sum of
% the squared errors at given points.
% A, Nx by N pdf mixture matrix; contribution to the overall
% pdf at point i from sub-distribution j
% p, Nx column vector of target pdf values

% Solve for the q which minimizes the sum of squared errors.
% The error is
% e(x) = p(x) - A(x)*q.
% The sum of the squared errors is
% E = e'*e
% = p'*p - 2*p'*A*q + q'*A'*A*q.
% Setting the derivative with respect to q to zero, gives
% the minimum squared error solution,
% A'*A*qopt = A'*p.
% However, the value of q must be normalized such that the
% total probability is unity. We impose this constraint with
% a Lagrange multiplier,
% E = p'*p - 2*A'*p*q + q'*A'*A*q + u*(1 - S'*q),
% where S is a vector of ones. Setting the derivative with
% respect to q to zero,
% A'*A*q + u*S*q/2 = A'*p.
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% Also setting O'*q = 1, these can be combined into a single
% set of equations,
% [ A'*A | S/2 ] [ q ] [ A'*p ]
% [ -------- ] [ - ] = [ ---- ] .
% [ S' | 0 ] [ u ] [ 1 ]
N = size(A,2);
S = ones(N,1);
qu = [[(A'*A); S'], [0.5*S; 0]] \ [A'*p; 1];

q = qu(1:N);
if (any(q < 0))

error ('Invalid (negative) probability');
end
if (abs(sum(q)-1) > 1e-10)

error ('Invalid probability sum');
end

%=====
function A = Amat(x, pPar)
% A = Amat(x, pPar)
% Form the pdf mixture matrix A, where A(i,j) is the
% contribution of sub-distribution j to the overall pdf
% at frequency x(i)

% The overall pdf is
% pa(x) = A(x)*q,
% where q is a vector of mixture probabilities, with q(j)
% representing the probability of using sub-distribution ps(j).
% A(i,j) = ps(x(i),pPar)

N = length(pPar.C);
Nx = length(x);

A = zeros(Nx, N);
for (j = 1:N)

A(:,j) = ps(x, pPar.C(j), pPar.Wh);
end

%=====
function px = ps(x, C, Wh)
% x, vector of values
% C, Wh are scalars (center & half-width) of the triangular
% pdf

px = zeros(size(x));
Ind = (abs(x - C) < Wh);
px(Ind) = (1 - abs(x(Ind) - C) / Wh) / Wh;

 

Fig. 14  Matlab code to calculate the parameters of an approximation to a Gaussian pdf. 


