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Stable Symmetric Distributions and Their Role in the

Signal Separation Problem

1 Introduction

Stable distributions have a long history in the subject of probability. They form a subset of the
class of so-called “infinitely-divisible” distributions—a class of characteristic functions at the heart
of general central limit theory. Roughly speaking, the stable distributions are those which are
closed under the formation of linear combinations, or more generally, affine combinations. Thus
linear mixtures of stable distributions result in distributions of the same type.

The subject of blind source separation is of a more recent provenance. It is the problem of
determining source signals when only their mixtures are observed. There has recently been an
explosion of interest in the area with the emergence of relatively successful separation algorithms—
at least under artificial mixing conditions. The resulting paradigm has a distinctly probabilistic
flavor; the key concept amounts to equating separation with statistical independence of the sources.
So much so that the approach is often called Independent Component Analysis.

The usual method of solution is as follows: the mixtures are fed through a un-mixing system
T , as yet unknown. A cost function (also called a contrast), J , is chosen, measuring in some sense
the inter-component dependence of the outputs of T , and ideally achieving an extremum when
the outputs are independent. J is then extremised with respect to the unknown parameter T .
Alternatively, an off-line procedure obtains empirical measurements for the cost-function in terms
of block averages; one then solves algebraically for the mixing channel.

There are nearly as many proposed cost functions as researchers in the field. The most famous
contrast is the Kullback-Leibler metric for measuring the deviation between the joint distribution
of the outputs and some assumed source distribution. This metric is in some sense the “ideal”
cost function from the perspective of Maximum-Likelihood estimation, and is thus statistically
efficient in the Fisher sense. The drawback to the criterion is that source distributions must be
known a priori—though not necessarily perfectly. Generally speaking, the blind source separation
problem falls into the class of semiparametric statistical problems [1]. The main difficulty lies in
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the fact that one must estimate not only the unmixing matrix T , but also the source distributions
Fs—a parameter of infinite dimension.

Thus contrasts involving only statistics of the mixtures have been invoked. These functions are
usually heuristic and are not statistically efficient; but they suffice for many applications, offering
efficient implementations without requiring the accurate knowledge of source distributions. Often
these functions present some property of the marginal output distributions, as opposed to the
joint distributions. We list from this class a few of the more prominent proposals:

1. J =
∑N

i=1 D(p(ui)‖pG(ui))

2. J =
∑N

i=1 ki
2

3. J =
∑N

i=1 E[log(coshui))]

The first contrast is the sum of marginal output negentropies, suggested in [4], the second is the
sum of marginal output kurtoses, due to [3], and the third is an “approximation” to negentropy,
due to [5]. The telling characteristics of all three consist in the use of (1) marginal, as opposed
to joint statistics, and (2) the use of non-Gaussianity as a measure. Indeed, the identification
of non-Gaussian structure seems to be linked with the identification of higher-order (3rd and
above) structure necessary for blind estimation [6]. There is, moreover, the heuristic idea that the
mixing of independent sources drives the output distributions towards the Gaussian, and hence
maximizing non-Gaussianity should lead to separation.

It is the aim of this report to disabuse such a notion. In particular, we exhibit a class of
distributions which remain invariant under linear combinations—precisely the symmetric stable
distributions—and hence exhibit no move towards Gaussianity when mixed. More generally, we
show that any contrast which is a function of the marginal output distributions must be a constant
under the usual optimization spread constraint. Hence measures such as negentropy and kurtosis
cannot separate stable distributions. It will be of some comfort, however, to know that these
distributions are mildly peculiar in that they must either have infinite variance, or be Gaussian.
Thus marginal techniques are appropriate when the signals have finite energy.

The document is organized as follows: in Section 2 we develop the idea of stable symmetric
distributions and give some elementary properties. In Section 3 we discuss its application to the
blind source identification problem. A conclusion rounds the report.
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2 Stable Distributions

In this section we make formal the notion of mixing invariance. It will be most convenient to
work with characteristic functions, rather than probability distribution functions. The reader is
reminded of the following definition:

Definition 1 Let F (x) be a probability distribution function. The characteristic function of F is
defined as

Φ(t) =
∫ ∞

−∞
eitxdF (x) (1)

A characteristic function is always uniformly continuous and positive semi-definite—indeed these
may be taken as the defining properties of a characteristic function.

We would like to find the set of characteristic functions which are closed in the sense that
the linear combination aX1 + bX2 gives a random variable “distributed in the same way” as its
components. The following makes the quoted term precise:

Definition 2 Let Φ(t) be a characteristic function. We define the class CΦ to be

CΦ = {Φ(at) : a ∈ R} (2)

The definition sets up equivalence classes on the set of characteristic functions; two characteristic
functions belong to the same class if they possess the same “shape”. A few examples: the class
of zero-mean Gaussians, the class of Cauchy distributions, the class of Laplacian distributions.

Definition 3 Let C be a class of characteristic functions defined as above. Then C is multiplica-
tively invariant, if, for any Φ1(t), Φ2(t) ∈ C, we have that Φ1(t) · Φ2(t) ∈ C.

It is easy to see that C = CΦ(t) is multiplicatively invariant iff for every real a, b,

Φ(at) · Φ(bt) = Φ(ct) (3)

for some real number c. The number c, if it exists, must be unique up to sign or the character-
istic function trivial (Φ(t) = 1). It is also obvious that multiplicative invariance of characteristic
functions corresponds to convolutional invariance of the respective equivalence class of distribu-
tions. We now establish some elementary properties of multiplicatively invariant characteristic
functions:
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Theorem 1 Let CΦ be multiplicatively invariant. If Φ(t) ∈ CΦ, then

1. For any set of real numbers a1, . . . , an,

Φ(a1t) · Φ(a2t) · · · · · Φ(ant) = Φ(ct) (4)

for some real number c.

2. Φ(t) is real and even.

3. Φ(t) is infinitely divisible.

Proof: The first property is immediate by induction. To prove the second property, note that
Φ(t) · Φ(−t) = Φ(ct) for some c. Since Φ(−t) = Φ(t), it follows that |Φ(t)|2 = Φ(ct) and hence
Φ(t) is real. But then Φ(−t) = Φ(t) = Φ(t). The last property follows by setting ai = 1 in the
first property, hence obtaining Φ(t) = [Φ(t/cn)]n.

A corollary of property 2 is that convolutionally invariant distributions must be symmetric.
We also remark here that the converse to property 3 is not true. For example, the Poisson class
given by a fixed λ > 0, with CΦ = {e(λ(eiat−1)), a ∈ R}, is not convolutionally-invariant. However,
every function in this class is infinitely divisible since e( λ

n
(eiat−1)) is the characteristic function for

aX, where X is Poisson distributed with parameter λ
n . Thus the set of all (equivalence classes of)

convolutionally invariant distributions forms a proper subset of the set of all infinitely divisible
distributions.

In the probability literature, any characteristic function for which there exists constants b, c

satisfying Φ(a1t) · Φ(a2t) = eibtΦ(ct), for any constants a1, a2 is called a Lévy-stable distribution.
Comparison with (3) shows that our multiplicatively-invariant characteristic functions are a spe-
cial case of these stable distributions, with b = 0. In fact, the class of stable distributions could
be obtained if we enlarged our equivalence classes to contain affine forms of the type cX + b. We
restrict our attention to the special case because it is the form applicable to the noiseless source
separation problem. However, in recognition of its parenthood, and in light of property 2, we
term our class of multiplicatively-invariant distributions the stable symmetric distributions.

2.1 Stable Symmetric Distributions

Assume that Φ(t) is not trivial. Then the number c in (3) is a function of a, b, and the character-
izing functional equation becomes

Φ(at) · Φ(bt) = Φ(g(a, b) · t) (5)
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Since Φ is infinitely divisible, it never vanishes [2], and hence must be of the form Φ(t) = eϕ(t) for
a suitable function ϕ. Examination of the functional equation suggests solutions of the type

Φ(t) = e−α|t|k . (6)

For positive parameters α and k, each Φ(t) is Lebesgue-integrable, hence the Fourier transform
exists and is given by

f(x) =
1
2π

∫ ∞

−∞
e−itxe−α|t|kdt (7)

The question of whether Φ(t) defines a proper characteristic function can now be answered by
examining whether f(x) ≥ 0 for all real x. Lévy has shown that this is true only for 0 ≤ k ≤ 2. A
plot of the Fourier transform of Φ(t) for varying values of k, computed via numerical integration,
may be found in Fig. 1. Assuming the range k ∈ [0, 2], the normalisation 1 = Φ(0) =

∫ ∞
−∞ dF

verifies that f(x) is a probability density. One easily checks that (5) is also satisfied with g(a, b) =
(|a|k + |b|k)1/k.
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Fig. 1 Fourier transform of Φ(t) = e−|t|k
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The archetype of (6) is a generalisation of the Gaussian characteristic function. The next
theorem shows that nearly all of them have infinite energy.

Theorem 2 Let Φ(t) = e−α|t|k have finite variance. Then Φ(t) is of Gaussian class.

Proof: Assume k < 2 in (6) and suppose, for a contradiction, that Φ(t) has finite variance.
Then it has finite second moment and mean, and by a well-known theorem in probability [2], Φ(t)
is twice differentiable with Φ′′(0) = −E[X2], where X is a random variable with characteristic
function Φ. A simple computation gives

Φ′′(t) = −αke−α|t|k ·
[
(k − 1)|t|k−2 + sgn(t) · |t|2(k−1)

]
(8)

But since k < 2, Φ′′(0) is infinite and hence the variance is infinite, obtaining the contradiction.

Thus the only stable symmetric distribution where the variance exists is the Gaussian. This
property may seem somewhat pathological to the engineer; such distributions, however, have
proven very useful for the modelling of noise [7].

3 The Source Separation Problem

We are now in a position to see the special role that stable distributions play in the source
separation problem. Let us first give the formulation.

Let s = [s1, s2, . . . , sn]T be a vector of independent source random variables. Let A be an
n × n non-singular matrix. We define the mixture vector to be

x = As. (9)

The goal is to find a matrix W, such that y = Wx is a vector of independent variables, and to do so
only with knowledge of the mixtures x. For sources of which at most one is Gaussian distributed,
this is equivalent to determining a W such that WA = P, where P is a permuted and row-scaled
version of the identity matrix. As posed here, the solution is not unique; usually a constraint is
placed on the spreads (e.g. variances) of the outputs, which reduces the indeterminacy to that of
permutation.

Now suppose that s is drawn from a stable symmetric class CΦ. Writing xi =
∑n

j=1 aijsj , we
have the following formula for the characteristic functions:

Φxi(t) =
n∏

j=1

Φsj (aijt) (10)
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Since each sj has a stable symmetric distribution, from property 1 of the first theorem there exists
a function gi(a1, . . . , an) (inductively generalised from (5)), such that

Φxi(t) = Φ(gi(a1, . . . , an) · t) (11)

Thus the mixtures each are distributed from class CΦ. In light of Theorem 2, variances may not
exist, so some more general spread constraint must be used. The most natural measure of spread
is given by the function c = |g(a1, . . . , an)|. If variances exist, the criterion reduces to the variance
constraint c = a2

1 + · · · + a2
n. Under this restriction, g(·) is unique up to sign; this is irrelevant,

however, since multiplicatively invariant characteristic functions are even. The conclusion is that
the marginal distributions of the mixtures must be fixed over all matrices A satisfying the spread
constraint. This gives us our final theorem:

Theorem 3 Let s be a vector of n independent random variables drawn from a stable symmetric
class CΦ, with associated spread function g(a1, . . . , an). Let

x = As (12)

where A is a real matrix. Define K to be the set of all n×n real matrices [ai,j ] such that, for each
i, |g(ai,1, . . . , ai,n)| = constant. If J(x1, x2, . . . , xn) is a function of only the marginal distributions
of x, then J(x(A)) is a constant on the set K.

4 Conclusion

We have shown that any cost function extremising any property of the marginal distributions of
the mixtures is a constant for stable symmetric sources, and thus cannot solve the blind source
separation problem in full generality. These distributions are non-pathological, but have infinite
energy. The noticeable exception is the Gaussian distribution, for which the separation problem
is inherently undetermined. For finite variance signals, the use of marginal statistics is justified.
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