

Improving the Presentation of Matlab Plots

P. Kabal

Department of Electrical & Computer Engineering

McGill University

Version 1: 2006-01-30

Version 1.1: 2006-06-05

Improving the Presentation of Matlab Plots i

Table of Contents

1 Introduction..2
2 Matlab Parameters and Matlab Plot Files ..2
3 Plot Size and Plot Fonts ...2

3.1 Plot Size and Plot Fonts in Matlab ...3
4 Plot Axes and Tick Labels..4

4.1 Plot Axes and Label Modification..5
5 Distinguishing Plot Lines...5

5.1 Modifying the Line Styles ..6
6 Sample Plots ..6

6.1 Example: Plot of Four Curves ..6
6.2 Example: Plot of a Large Number of Points ..9

References ...12
Appendix A Matlab Routines ..13

A.1 SetPlotSize ...14
A.2 SetPlotFont ...16
A.3 SetPlotColors..17
A.4 DashLine ..19
A.5 MidTick ..23
A.6 SetXTickLabel and SetYTickLabel..29
A.7 Xaxis and Yaxis ..34
A.8 XYclip ..37
A.9 XYmerge ..39
A.10 WritePlot ..44
A.11 Core Routines...46

Improving the Presentation of Matlab Plots 2

Improving the Presentation of Matlab Plots

1 Introduction

This document describes a number of strategies which go towards the goal of producing

publication quality plots from Matlab. One finds much to criticize in the quality of plots that are

reproduced in today’s journals. This is due to the fact that the authors supply the plots without

having a clear view of how they will be processed to produce the final plot on the printed page.

We give some guidelines and supply Matlab routines that streamline the application of these

guidelines.

The focus of this report is on 2-D plots. Three groups of routines are described. The first

group sets up the default plot size, default fonts and provides for saving the figure to a file. The

second group of routines is used to customize the axis ticks and labels. The third group can be

used to customize the appearance of the plot lines.

2 Matlab Parameters and Matlab Plot Files

Matlab provides a user control of the plot parameters directly from menus on the figure.

However, it is suggested that the setting of the plot parameters plotting be encapsulated in a Mat-

lab script. The script can be rerun if the plot data is updated and/or the plot parameters need

tweaking.

A companion document [1] shows that PostScript figures are the format of choice for high

quality reproduction on the page. To ensure that the PostScript figures are reproduced on all types

of printers, it is strongly recommended that the document be distributed in PDF format.

3 Plot Size and Plot Fonts

The first group of routines set the plot size and plot font. Some points to consider are:

• The aspect ratio of the plot should be chosen based on the relative “importance” of the x

and y data. For instance, it is traditional to plot a probability of error versus signal-to-

noise ratio on a graph which is taller than it is wide. This allows for easier reading of the

logarithmically spaced y values on the plot. Plots of waveforms are often presented as

“strip” charts: the graph is shorter than it is wide: the “envelope” of the waveform is more

Improving the Presentation of Matlab Plots 3

important than the exact amplitude values. Notwithstanding special cases, a good starting

point is to choose a 5:4 ratio of width to height.

• The plot should be able to fit into the available space. For a two-column journal page this

means that the overall plot width should less than about 9 cm. The axes of the graph

should then be 8 cm or less in width. For a technical report (such as this one), the width

can be somewhat larger.

• The font size of the plot should be compatible with the font size of the text. It is common

to see the figure fonts being one size smaller than the text font. This report is set in 11

point font and the figure text fonts for the examples are set in 10 pt size. Journal papers

are often set in 10 points (full papers) or 9 points (correspondence papers). The text font

should be reduced accordingly.

• The font type of the plot should be compatible with the font in the main text. If any of the

annotations includes mathematics, the font type in the figure should be the same as the

main text. In this report, the text typeface is Times New Roman (a serif font); the Matlab

figure fonts will be chosen to be the closely related Times font (a serif font).

• The plot should be inserted at full scale into the final document. Any scaling in the

document will affect both the plot and the text on the plot. Even worse, if different scal-

ing is applied to the x and y dimensions, the text will be distorted.

Given the desire to match the font size and the figure size to the document, it seems clear

that the figure must be created in its final size and inserted into the final document without further

scaling.1 For a plot which has been created in Matlab with the proper fonts and figure size, it is

then important that these properties not change on exporting the file.

3.1 Plot Size and Plot Fonts in Matlab

We introduce three Matlab routines: SetPlotSize, SetPlotFont, and WritePlot. These imple-

ment the suggestions on setting the plot size and plot fonts. The Matlab code for these routines is

given in the Appendix. The full set of calling options is given there.

1 As noted later, to decrease the size of dashes in dashed lines for small plots (as in a journal publica-
tion), it may be desirable to create a plot at a larger scale and import the plot into the document at a reduced
magnification. The result of scaling and reduction should be chosen so that the final size of the plot and the
size of the font are as desired..

Improving the Presentation of Matlab Plots 4

SetPlotSize: Sets the default axes size of the plot using whatever units are appropriate. A typical

call is of the form SetPlotSize([7.5 6], ‘centimeters’).

SetPlotFont: Sets the default font type and the default font size. A typical call is of the form Set-

PlotFont(‘Times’,10). This routine also scales the default plot symbols to have a size which

is a fixed fraction of the font size.

WritePlot: Writes the plot to a file. A typical call is of the form WritePlot(‘Myplot.eps’). This rou-

tine freezes the axes scaling and annotations and sets a number of plotting parameters to

ensure that the plot axes are the same as appear on the screen. It also modifies some set-

tings to ensure good resolution for bitmap output.2

4 Plot Axes and Tick Labels

For publication quality plots, the plot scale and labelled ticks must be chosen carefully.

Some considerations are:

• Matlab chooses a scale for the plotted data. The default mode is to choose a scale which en-

compasses the data but extends to a “nice” number on either side. In many cases, a “tight”

axis is preferred. The suggestion here is that the axis scale should be set by the user using

the Matlab axis routine.3

• With small plots (such as will fit into the column of a journal page), one must avoid a plot

that has overly “busy” axis annotations. This means that there should probably be a maxi-

mum of 6 labelled ticks on each axis. Since Matlab generally generates more than this num-

ber of labelled ticks, the tick values should be set manually with the XTick and/or YTick op-

tions.

• Matlab allows for text labels to be associated with the tick marks. Matlab provides a TeX in-

terpreter to allow mathematical symbols to be placed in text strings. However, the TeX in-

terpreter is not enabled for tick labels. Two routines (SetXTickLabel and SetYTickLabel) are

described below which allow symbols to appear in tick labels.

2 Matlab normally uses a vector format (renderer property set to painter) for PostScript files. It
switches to a bitmap format (renderer property set to zbuffer) for “complicated” plots.

3 Several of the routines (DashLine and XYmerge) need to know the axis scaling and so it is prudent
to set the scaling before actually plotting the data. In practice, one would plot the data first letting Matlab
choose the scaling and then refine this setting and fix it using the Matlab axis command.

Improving the Presentation of Matlab Plots 5

• Minor ticks are shorter ticks lying between the labelled ticks. These can provide additional

scaling information for the reader. Matlab provides a MinorTick option, but this option cre-

ates a lot of intermediate ticks. Instead, a routine is described below which adds a single

“minor” tick between each labelled tick for linear plots.

• Matlab only provides for axes around the plot. In certain cases, it is useful to have an axis

placed at the origin of the plot. Routines (Xaxis and Yaxis) to do this are described below.

4.1 Plot Axes and Label Modification

The suggestions above involve using existing mechanisms to customize the plot axes. The

additional routines that are sometimes useful are:

MidTick: This routine creates a minor tick between each normal tick. This minor tick is 75% of

the length of the normal tick. This routine should be called after plotting the data.

SetXTickLabel / SetYTickLabel: These routines allow symbols to be included in the tick labels.

They work by turning off Matlab’s tick labels and then positioning a text string beside the

ticks.

Xaxis / Yaxis: These routines provide for additional axes to be positioned on the graph. By de-

fault, these axes pass through the origin of the graph. These axes are created by superimpos-

ing a scrunched Matlab axes on top of the existing axes.

5 Distinguishing Plot Lines

The third group of Matlab routines are used to distinguish lines on a plot. Colour is a useful

way to differentiate curves. However, for the sake of non-colour reproduction, multiple lines in a

plot have to be distinguishable in other ways than just colour.4 One can change the colour, line

width, line style, or line marker. Here we consider colour and line style changes. Some considera-

tions:

• For multiple curves in the same plot, Matlab cycles through a set of 6 colours (blue, mid-

green, red, cyan, magenta, and yellow). The last three colours are too light to reproduce well

in non-colour printouts. A routine (SetPlotColors) which modifies the default colours is de-

scribed below.

4 One can (and perhaps should) use both colour and line style to distinguish lines on a plot. The reader
of an electronic version of the document with colour gets both; the reader of a black and white printout sees
only the line style differences.

Improving the Presentation of Matlab Plots 6

• Different line styles (dashed, etc.) are useful to distinguish lines on a plot. Matlab has four

line styles, solid, dashed, dotted, and dash-dot. The dotted line appears much fainter than the

others and so does not mix well with the other line styles. For fewer than 3 lines on a plot,

the built in Matlab line styles solid, dashed, and dash-dot work well. A routine (DashLine)

which can create arbitrary line styles is described below.

• Note that the line segments in the different line styles available in Matlab do not scale with

plot size. For instance a dashed line in a small plot has dashes which are proportionally too

long. This can cause problems in displaying a legend. The sample line styles in the legend

may have too short a length to properly identify the type of line. One solution to this prob-

lem is to draw the plot at, say, 2 times the final size. The plot size and the plot font sizes

should be scaled by this factor. When the plot is included into a document, it should be

scaled by the inverse factor. This way the “pitch” of the dashes and dots on the lines is modi-

fied to give an improved look to small plots.

5.1 Modifying the Line Styles

Additional customizations of the line styles are possible with the following routines.

SetPlotColors: This Matlab routine modifies the default colours for plots. The last three colours

of the set of line colours are set to a darker cyan, a darker magenta, and a darker yellow.

DashLine: This Matlab routine creates arbitrary dashed line patterns. This is accomplished by

actually creating short line segments which can then be plotted. It should be noted that in or-

der to determine the lengths of the line segments, the axis scaling must be specified before

this routine is called.

6 Sample Plots

This section shows sample plots using some of the suggestions given earlier.

6.1 Example: Plot of Four Curves

The first Matlab plotting script is shown below. Comments on the code are given below. The

resulting plot is shown in Fig. 1.

• The plotting commands are surrounded by the “boiler-plate” routines SetPlotSize and

SetPlotFont at the beginning, and WritePlot at the end

Improving the Presentation of Matlab Plots 7

• The plot has four lines that will be distinguished both by colour and line style. SetPlot-

Colour darkens the colour of the fourth line to a darker cyan.

• The routine DashLine is used to set up 4 different dash patterns. Each pattern consists of a

sequence of alternating positive and negative values. The positive values represent line

segment lengths in points and the negative values represent line gap lengths in points. The

Matlab function axis is called before calling DashLine. We will have to restore the axis

scaling after plotting.

• The plot itself uses the Matlab plot command. The axis scaling is reset to the value before

plotting.

• The axis ticks are set manually. The routine SetXTickLabel is used to label the x axis tick

marks in terms of fractions of π . There are 5 labelled x ticks and 5 labelled y ticks.

• A legend is added to the plot. A special routine SetLegendProp reaches inside the legend

axes and redraws the lines therein with the patterns used for the plots. It also “freezes” the

legend so that the customization of the plot lines is not overwritten later.

• The routine MidTick adds minor ticks between the labelled ticks for both the x and y axes.

• The routines Xaxis and Yaxis overlay additional axes passing the origin of the plot.

function TestPlot1
% Test plot functions

% Set the plot size and default font
figure;
SetPlotSize ([1.5 1.5 12, 8], 'centimeters');
SetPlotFont ('Times', 10);

% Set the plot colours (darker colours)
SetPlotColors;

% Generate some offset sinusoids
Ngraph = 4;
for (i = 1:Ngraph)
 w(:,i) = (linspace (-pi, pi, 201))';
 Theta = (i - 1) * pi / Ngraph;
 s(:,i) = sin(w(:,i) + Theta);
end

% Set the axis limits prior to calling DashLine
axis ([-pi pi -1.1 1.1]);
axdata = axis;

% Make dash/dot line styles

Improving the Presentation of Matlab Plots 8

Pattern{1} = [5 -5]; % Long dash
Pattern{2} = []; % Line
Pattern{3} = [2 -2]; % Short dash
Pattern{4} = [5 -2 2 -2]; % Long dash - short dash

% Create the dashed lines
for (i = 1:Ngraph)
 [wd{i} sd{i}] = DashLine (w(:,i), s(:,i), Pattern{i});
end

% Plot the data
plot (wd{1}, sd{1}, wd{2}, sd{2}, wd{3}, sd{3}, wd{4}, sd{4});

% Restore the axis limits
axis (axdata);

% Set the tick marks
set (gca, 'XTick', [-pi, -pi/2, 0, pi/2, pi]);
SetXTickLabel ({'-\pi' '-\pi/2' '0' '\pi/2' '\pi'});
set (gca, 'YTick', [-1 -0.5 0 0.5 1]);

% Labels
xlabel ('angle (radians)');
ylabel ('amplitude');

% Add a legend
h = legend ('\theta = 0', '\theta = \pi/4', ...
 '\theta = \pi/2', '\theta = 3\pi/2');
LemonChiffon = [1 0.9725 0.7805];
set (h, 'Color', LemonChiffon);
SetLegendProp (h, 'Pattern', Pattern);

% Add a minor tick between each existing tick
MidTick ('XY');

% Add axes going through the origin
Xaxis;
Yaxis;

% Write the plot to a file
WritePlot ('TestPlot1.eps');

return

Improving the Presentation of Matlab Plots 9

−1

−0.5

0

0.5

1

−π −π/2 0 π/2 π
angle (radians)

am
pl

itu
de

θ = 0

θ = π/4
θ = π/2

θ = 3π/2

Fig. 1 Sample plot

6.2 Example: Plot of a Large Number of Points

A second sample plot is generated by the Matlab script shown below. This plot uses much of

the same setup as the earlier plot. The frequency response that is to be plotted is sampled at a

large number of points. This ensures that some of the sampled points land in the deep nulls in the

response. However, with such a large number of sample points, the plot size would be excessively

large. The data points are passed though the routine XYmerge which merges nearly co-linear

segments. In smooth parts of the curve, the number of plot points is dramatically reduced. The

original 8193 points in the function are reduced to 413 plot points with no noticeable change in

the appearance of the plot. The plot itself is shown in Fig. 2.

function TestPlot2
% Test plot functions

% Set the plot size and default font
figure;
SetPlotSize ([1.5 1.5 12, 6], 'centimeters');
SetPlotFont ('Times', 10);

% Generate a Hamming window and its frequency response
alpha = 0.08;
N = 48;
b = (1+alpha)/2 - (1-alpha)/2 * cos (pi * (2*(0:N-1)+1)/N);

Improving the Presentation of Matlab Plots 10

w = linspace (0, pi, 8193);
hdB = 20 * log10(abs (freqz (b, 1, w)));
hdB = hdB - hdB(1);

% Set the axis limits prior to calling XYmerge
axis ([w(1) w(end) -80 5]);
axdata = axis;

% Merge nearly co-linear vectors
[wm, hdBm] = XYmerge (w, hdB);

% Plot the frequency response
plot (wm, hdBm);

% Restore the axis limits
axis (axdata);

% Set the tick marks
set (gca, 'XTick', [0, pi/4, pi/2, 3*pi/4, pi]);
SetXTickLabel ({'0' '\pi/4' '\pi/2' '3\pi/4', '\pi'});
set (gca, 'YTick', -80:20:0);

% Labels
xlabel ('frequency (radians)');
ylabel ('amplitude (dB)');

% Add a minor tick between each existing tick
MidTick ('XY');

% Write the plot to a file
WritePlot ('TestPlot2.eps');

return

Improving the Presentation of Matlab Plots 11

−80

−60

−40

−20

0

0 π/4 π/2 3π/4 π
frequency (radians)

am
pl

itu
de

 (
dB

)

Fig. 2 Frequency response plot for a Hamming window

Improving the Presentation of Matlab Plots 12

References

1. P. Kabal, Matlab Plot in Microsoft Word, Technical Report, Electrical & Computer Engineer-
ing, McGill University, Jan. 2006 (on-line at www-MMSP.ECE.McGill.ca/Documents).

http://www-mmsp.ece.mcgill.ca/Documents

Improving the Presentation of Matlab Plots 13

Appendix A Matlab Routines

This appendix give the listings of the Matlab routines used to in the sample plots in the main

text.. Downloadable versions of the latest revisions are available on-line at www-MMSP.ECE.

McGill.ca/Documents.

http://www-mmsp.ece.mcgill.ca/Documents
http://www-mmsp.ece.mcgill.ca/Documents

Improving the Presentation of Matlab Plots 14

A.1 SetPlotSize

This routine sets the size of the plot in the units specified. The size of the axes box can be

specified as 2 values or 4 values. In the first case, the 2 values are the x dimension and the y di-

mension of the axes box. In the second case, the first two values are the x offset and y offset of

the axes box within the figure box, and the second two values are the axes box dimensions. The

figure box is resized to accommodate the specified axes box.

function SetPlotSize (pos, units, varargin)
% SetPlotSize Set the size of the current plot
% SetPlotSize(pos,units,figurecolor)
% SetPlotSize(pos,units,options)
% SetPlotSize(pos) % default units "inches" assumed
%
% pos - axes position [xsize, ysize] or
% [xleft, ybottom, xsize, ysize]
% units - units for the dimensions, default 'inches'. The
% choices are 'centimeters', 'pixels', 'inches',
% 'points', and 'normalized'.
% figurecolor - Figure and axes background color.
% Use 'none' to get transparent axes.
% options - Paired options, e.g. to set the figure color to
% transparent, and the axes color to white, use
% 'Color', 'none', 'DefaultAxesColor', 'w'
%
% Note: The 'Units' for the current axes are set to the units
% specified. If the units are absolute measurements
% (i.e. not 'normalized'), then figure can be resized on
% the screen using the mouse. This feature can be used to
% "crop" white space above and to the left of the axes.

% $Id: SetPlotSize.m,v 1.17 2006/01/27 22:32:38 pkabal Exp $

% Notes:
% - The default axes position for Matlab is given in normalized
% units as [0.130 0.110 0.775 0.815]. These values are used
% to determine the space around the axes.

if (nargin <= 1)
 units = 'inches';
end

Np = length(pos);
if (Np ~= 2 & Np ~= 4)
 error ('SetPlotSize: pos must have 2 or 4 elements');
end

posnorm = [0.130 0.110 0.775 0.815];
if (Np == 2)
 figsize = pos ./ posnorm(3:4);
 axespos = [(posnorm(1:2) .* figsize) pos];
else
 figsize = (pos(1:2) + pos(3:4)) ./ (posnorm(1:2) +
posnorm(3:4));

Improving the Presentation of Matlab Plots 15

 axespos = pos;
end

% Set the figure
saveunits = get (gcf, 'Units');
set (gcf, 'Units', units);
figpos = get (gcf, 'Position');
set (gcf, 'Position', [figpos(1:2) figsize]);
set (gcf, 'Units', saveunits);

% Set the axes
set (gca, 'Units', units);
set (gca, 'Position', axespos);

Nv = length (varargin);
if (Nv == 1)
 set (gcf, 'Color', varargin{1}, 'DefaultAxesColor',
varargin{1});
elseif (Nv > 1)
 set (gcf, varargin{:});
end

disp (sprintf ('SetPlotSize: Figure size: %g x %g', figsize));

return

Improving the Presentation of Matlab Plots 16

A.2 SetPlotFont

This routine sets the default font typeface and the default font size for both the text strings

and axis labels. The line MarkerSize parameter is also reset to be a fixed fraction of the font size.

function SetPlotFont (FontName, FontSize)
% SetPlotFont - Set font name and size for plots
% SetPlotFont(FontName,FontSize)
% SetPlotFont(FontName) % Default 10 pt font size
% SetPlotFont % Default 10 pt Times

% $Id: SetPlotFont.m,v 1.3 2006/06/05 19:01:37 pkabal Exp $
if (nargin < 2)
 FontSize = 10;
end
if (nargin < 1)
 FontName = 'Times';
end

% For figure children, not yet created
set (gcf, ...
 'DefaultTextFontName', FontName, 'DefaultTextFontSize',
FontSize, ...
 'DefaultAxesFontName', FontName, 'DefaultAxesFontSize',
FontSize, ...
 'DefaultLineMarkerSize', 0.5*FontSize);
% For axes already set up in the figure
set (gca, ...
 'FontName', FontName, 'FontSize', FontSize);

return

Improving the Presentation of Matlab Plots 17

A.3 SetPlotColors

This routine sets the default ColorOrder colours for plot lines. Plot lines are cycled through

6 colours in this matrix. The last three colours are made somewhat darker as otherwise they do

not reproduce well on a black and white printer.

function CO = SetPlotColors (Colors)
% CO = SetPlotColors (Colors)
% This routine sets the default colors for plot lines. The
% default settings override the lighter standard Matlab colors.
% These darker colors are rendered better on a black and white
% printer.
%
% The input cell array can be used to override the default
% colors set by this routine. Any empty cells in the input leave
% the corresponding colors unchanged.
% SetPlotColors({[]; [0 0.2 0]}); % Darker green
%
% N.B. Call this routine before plotting

% $Id: SetPlotColors.m,v 1.3 2006/01/27 22:36:51 pkabal Exp $

% Original colors
Blue = [0 0 1];
Green = [0 0.5 0]; % Mid-green
Red = [1 0 0];
Cyan = [0 0.75 0.75];
Magenta = [0.75 0 0.75];
Yellow = [0.75 0.75 0];
Gray = [0.25 0.25 0.25];

% Darker colors
DarkCyan = [0 0.6 0.6];
DarkMagenta = [0.5 0 0.5];
DarkYellow = [0.6 0.6 0];

if (nargin < 1)
 Colors = {[]; []; []; []; []; [];};
end

CO = get (gcf, 'DefaultAxesColorOrder');
% Matlab cycles through the first six of these colors
CO(4:6,:) = [DarkCyan; DarkMagenta; DarkYellow];

% Insert the user defined colors
NC = length (Colors);
for (i = 1:NC)
 if (~ isempty (Colors{i}))
 CO(i,:) = Colors{i};
 end
end

% Set the color order
set (gcf, 'DefaultAxesColorOrder', CO);

Improving the Presentation of Matlab Plots 18

return

Improving the Presentation of Matlab Plots 19

A.4 DashLine

This routine takes a pattern of on-off lengths and applies these to vectors of x and y values. It

creates line segments for plotting. The resulting plot vector consists of plot segments separated by

NaN values. The NaN values interrupt plotting. The next pair of x and y values become the be-

ginning of the next line segment. The pattern is specified in units of points (1 inch is equal to 72

points). The axis scaling (Matlab axis command) and plot size (SetPlotSize) must be set before

calling DashLine. It uses the axis limits and the plot size to determine the mapping between data

units and points.

function [xd, yd] = DashLine (x, y, pattern, DataPt)
% [xd, yd] = DashLine (x, y, pattern [, DataPt])
% Generate data with general dash/dot line styles
% - x: vector of X-values
% - y: vector of Y-values
% - pattern: vector of pattern lengths. These are alternating
% on (positive) / off (negative) values. The absolute value
% of each element is the length in points. The pattern is
% repeated as needed.
% - PtData: Optional two element conversion factor. If this
% parameter is not supplied, this routine calculates this
% value based on the current axis limits and axis sizes.
% - PtData(1): X data units per point (1/72 inch)
% - PtData(2): Y data units per point (1/72 inch)
% If the data is to be plotted on a log scale (as indicated
% by the XScale and YScale properties of the current plot),
% the conversion correponding factor is log10(units) per pt.
%
% [xd yd]: output data points consisting of visible segments
% separated by NaN values
%
% Notes:
% - To determine the proper lengths of the segments, the size
% of the plot and the data ranges to be plotted have to be
% known.
% SetPlotSize([xdim, ydim], 'centimeters');
% axis ([Xmin Xmax Ymin Ymax]);
% - For log plots, this routine needs to know if a plot is
% log or not.
% set (gca, 'XScale', 'log') % Use log X

% $Id: DashLine.m,v 1.8 2006/01/27 22:26:22 pkabal Exp $

N = length (x);
if (N ~= length(y))
 error ('DashLine: x and y vectors not the same length');
end

XScale = 'linear';
YScale = 'linear';
if (nargin < 4)
 [DataPt, XScale, YScale] = SFdataXpt;
end

Improving the Presentation of Matlab Plots 20

LogX = strcmp (XScale, 'log');
LogY = strcmp (YScale, 'log');
if (LogX)
 x = log10 (x);
end
if (LogY)
 y = log10 (y);
end

% Flag for long lines (could generate huge number of dashes)
Wlong = 0;
Winf = 0;
if (length (pattern) == 0)
 Maxdp = Inf; % No pattern
else
 LenPat = sum (abs (pattern));
 Maxdp = 1000 * LenPat;
end

[vis, remain, m] = RemPat (pattern, 0);

k = 0;
xp = x(1);
yp = y(1);

for (i = (1:N))
 dx = x(i) - xp;
 dy = y(i) - yp;
 dp = sqrt ((dx / DataPt(1))^2 + (dy / DataPt(2))^2);

 if (~ isfinite (dp))
 % NaN end point or infinite line segment
 if (isinf (dp))
 if (~ Winf)
 fprintf ('>>> DashLine - Infinite line segment(s)
omitted\n ; ')
 end
 Winf = Winf + 1;
 end
 xp = x(i);
 yp = y(i);
 [vis, remain, m] = RemPat (pattern, 0); % Reset the pattern
 continue; % Get the next point
 end

 if (dp >= Maxdp)
 if (~ Wlong)
 fprintf ('>>> DashLine - Long line segment, dashes turned
off\n');
 end
 Wlong = Wlong + 1;
 xp = x(i);
 yp = y(i);
 k = k + 1;
 xd(k) = xp;
 yd(k) = yp;
 continue; % Get the next point
 end

Improving the Presentation of Matlab Plots 21

 while (dp >= remain)
 % Finished a pattern segment
 % Update the position if the visibility changes
 [visN, remainN, m] = RemPat (pattern, m);
 if (vis ~= visN)
 fract = remain / dp;
 xp = xp + fract * dx;
 yp = yp + fract * dy;
 if (vis)
 k = k + 1;
 xd(k) = xp; % End a visible segment
 yd(k) = yp;
 else
 k = k + 1;
 xd(k) = NaN; % End an invisible segment
 yd(k) = NaN;
 k = k + 1;
 xd(k) = xp; % Start a visible segment
 yd(k) = yp;
 end
 remain = remainN; % Switched visibility
 else
 remain = remain + remainN; % Same visibility
 end
 vis = visN;
 dx = x(i) - xp;
 dy = y(i) - yp;
 dp = sqrt ((dx / DataPt(1))^2 + (dy / DataPt(2))^2);
 end

 % Reached a data point without finishing a pattern segment
 xp = x(i);
 yp = y(i);
 if (vis)
 k = k + 1;
 xd(k) = xp;
 yd(k) = yp;
 end
 remain = remain - dp;
end

if (LogX)
 xd = 10^xd;
end
if (LogY)
 yd = 10^yd;
end

return

%===========
function [vis, remain, m] = RemPat (pattern, m)
% Get the next pattern element (increment m, modulo the number
% of pattern elements)

Lp = length (pattern);
if (Lp <= 0)
 m = 1;

Improving the Presentation of Matlab Plots 22

 remain = Inf;
 vis = 1;
else
 m = mod (m, Lp) + 1;
 remain = abs (pattern(m));
 vis = (pattern(m) > 0);
end

return

Improving the Presentation of Matlab Plots 23

A.5 SetLegendProp

This routine sets properties for a plot legend. The additional pseudo-property 'Pattern' is rec-

ognized (see DashLine). Some of the customizations done by this routine are “fragile”. Normally,

Matlab will redraw the legend when the plot is printed. This redrawing will undo customizations

such as the pattern lines. To prevent this, the legend tag is nulled out so that the axes box contain-

ing the legend is no longer recognized as a legend and will not be redrawn.

function h = SetLegendProp (varargin)
% h = SetLegendProp ([h], 'Property1', Value, ...)
% This routine sets properties for a plot legend. The additional
% pseudo-property 'Pattern' is recognized (see DashLine). The
% legend is also "frozen". Normally, Matlab will redraw the
% legend when the plot is printed. This redrawing may undo
% customizations such as the Pattern lines. The legend Tag is
% nulled out so that the axes box containing the legend is no
% longer recognized as a legend and will not be redrawn.
%
% $Id: SetLegendProp.m,v 1.4 2006/06/02 11:59:14 pkabal Exp $

% Find the legend handle
if (ishandle (varargin{1}))
 h = varargin{1};
 varargin(1) = [];
else
 fig = get (gca, 'Parent');
 h = findobj (fig, 'Type', 'axes', 'Tag', 'legend');
end

hsave = gca;

% Pick up the pattern
Pattern = [];
i = 1;
while (i <= length (varargin))
 if (strcmpi (varargin{i}, attern')) 'P
 Pattern = varargin{i+1};
 varargin(i) = [];
 varargin(i) = [];
 else
 i = i + 1;
 end
end

% Set the legend options
Nv = length (varargin);
Field = {varargin{1:2:end}};
Value = {varargin{2:2:end}};
set (h, Field, Value);

% Find lines in the legend axis
hl = findobj (h, 'Type', 'line');

Improving the Presentation of Matlab Plots 24

% Keep only sample lines

% The nes appear in reli verse order to the legend, i.e. most
% recently added first
i = 1;
while (i <= length(hl))
 XData = get (hl(i), 'XData');
 if (ngth (XDale ta) ~= 2)
 hl(i) = [];
 else
 = i i + 1;
 end
end
hl = flipud (hl);

% Set the patterns
Nl = length (hl);
Np = length (Pattern);
Ns = 0;
for (i = 1:min(Nl,Np))
 if (~ isempty (Pattern{i}))
 XData = get (hl(i), 'XData');
 YData = get (hl(i), 'YData');
 axes (h); % Bring the legend to the front so that DashLine
 % sees the correct scaling
 [XData, YData] = DashLine (XData, YData, Pattern{i});
 set (hl(i), Data', XData); 'X
 set (hl(i), 'YData', YData);
 s N = Ns + 1;
 end
end

% To avoid lines in the legend being redrawn when printing
% - Turn off the legend propery tag
% - Make the legend axes handle invisible
% Leave the legend on top so that it is not hidden by the plot
set (h, 'Tag', '');
set (h, 'HandleVisibility', 'off');

return

Improving the Presentation of Matlab Plots 25

A.6 MidTick

This routine overlays the current plot with a transparent axes box. For linear axes, the ticks

on that axes box are 75% of the default tick size and are placed midway between the ticks on the

current plot. For log axes, the ticks are 50% of the default tick size and are placed between decade

values. The argument of this function specified whether x, y and/or z axes are to receive the minor

ticks.

function h = MidTick (varargin)
% h = MidTick ([[ax,] Axes])
% h = MidTick ([ax,] <Tick locations>)
% Generate intermediate ticks on a plot axis.
% This function generates intermediate ticks between the
% existing X, Y, or Z axis ticks in a plot. For a linear axis,
% the intermediate ticks (0.75 of the normal length) lie midway
% between the existing ticks. For a log axis, the ticks (0.5 of
% the normal length) lie at 1, 2, ..., 9 times the decade
% points.
%
% There are two basic call sequences.
% (1) Specify the axes to have mid-ticks 'X', 'Y', or 'Y' or a
% combination.
% h = MidTick ('XY');
% (2) Specify mid-tick locations using 'XTick', 'YTick', and/or
% 'ZTick'.
% h = MidTick ('XTick', [x1, ..., xN],...);
% Any remaining arguments are used to set other plot options,
% such as 'TickLength'.
%
% Note that Matlab generates minor ticks for log axes. The only
% reason to have this routine do so for log axes is for those
% cases where some of the minor ticks are missing due to a bug
% in Matlab (for versions up to 7.2 at least).
%
% A new transparent axis is generated on top of the existing
% axis. Note that this new axis must remain on top for the
% newly generated ticks to be visible. The handle for this new
% axis is returned.
% *** Invoke this routine after all plotting and labelling is
% done ***
% *** It is suggested that the graph limits be set (using
% a call to 'axis', for instance) before invoking this
% routine ***

% $Id: MidTick.m,v 1.22 2006/06/01 23:25:13 pkabal Exp $

[ax, XA, YA, ZA, varg] = Proc_Args (varargin{:});

Freeze = [];
XTick = [];
YTick = [];
ZTick = [];
if (XA)

Improving the Presentation of Matlab Plots 26

 XTick = Gen_Tick (get (ax, Tick'), get (ax, 'XScale')); 'X
 if (~ isempty (XTick) & ...

 strcmpi (get (ax, 'X mLi Mode'), 'auto'))
 Lim = get (ax, 'XLim');
 set (ax, 'XLim', Lim);
 re F eze = [Freeze 'X'];
 end
end
if (YA)
 YTick = Gen_Tick (get (ax, 'YTick'), get (ax, 'YScale'));
 if (~ isempty (YTick) & ...
 strcmpi (get (ax, 'Y mLi Mode'), 'auto'))
 Lim = get (ax, 'YLim');
 set (ax, 'YLim', Lim);
 re F eze = [Freeze 'Y'];
 end
end
if (ZA)
 ZTick = Gen_Tick (get (ax, 'ZTick'), get (ax, 'ZScale'));
 if (~ isempty (ZTick) & ...
 strcmpi (get (ax, 'Z mLi Mode'), 'auto'))
 Lim = get (ax, 'ZLim');
 set (ax, 'ZLim', Lim);
 re F eze = [Freeze 'Z'];
 end
end

% Generate short ticks at the mid-points
% There is only one TickLength parameter for t whole plot he
% (not one per axis)
if (strcmpi (get (ax, 'XScale'), 'log') || ...
 strcmpi (get (ax, 'YScale'), 'log') || ...
 strcmpi (get (ax, 'ZScale'), 'log'))
 TickLength = 0.5 * get (ax, 'TickLength');
else
 TickLength = 0.75 * get (ax, 'TickLength');
end

h = BlankAxes;
set (h, 'TickLength', TickLength);
set (h, 'XTick', XTick);
set (h, 'XMinorTick', 'off');
if (length (XTick) > 1)
 set (ax, 'XMinorTick', 'off');
end
set (h, 'YTick', YTick);
set (h, 'YMinorTick', 'off');
if (length (YTick) > 1)
 set (h, 'YMinorTick', 'off');
end
set (h, 'ZTick', ZTick);
set (h, 'ZMinorTick', 'off');
if (length (ZTick) > 1)
 set (h, 'ZMinorTick', 'off');
end

% Appy the rest of the arguments
if (length (varg) > 1)

Improving the Presentation of Matlab Plots 27

 set (h, varg{1:2:end}, varg{2:2:end});
end

if (~ isempty (Freeze))
 disp (['>>> MidTick - Plot limits (', Freeze, ') frozen']);
end

return

%==========
% Process arguments, filling in defaults
function [ax, XA, YA, ZA, varg] = Proc_Args (varargin)

% Axis, default to gca
if (nargin > 0)
 i (if schar (varargin{1}))
 varargin = {gca, varargin{:}};
 end
end
ax = varargin{1};

% The plot options are p red. Iai f the current nu er of mb
% arguments is even, t Ahe xes tion is present: op
% ax, Axes, paired-arguments
% ax, aired-argumen p ts
N = length (varargin);

XA = 0;
YA = 0;
ZA = 0;
if (mod (N, 2) == 0)
 option = varargin{2};
 if (length (varargin) > 2)
 varargin = {varargin{1} varargin{3:end}}; % Remove the
 % argument
 end
 if (~ isempty (strfind (option, 'X')))
 XA = 1;
 end
 if (~ isempty (strfind (option, 'Y')))
 YA = 1;
 end
 i (~f ise ty(strfind (option, 'Z'))) mp
 ZA = 1;
 end
end

% Rest of the arguments
varg = {};
if (length (varargin) >= 2)
 varg {varargin{2:end}}; =
end

return

Improving the Presentation of Matlab Plots 28

%==========
% Generate ticks midway between existing ticks
function htick = Gen_Tick (Tick, Scale)

NTick = length (Tick);

htick = [];

if (NTick > 1)
 if (strcmpi (Scale, 'linear'))
 htick = 0.5 * (Tick(1:NTick- + Tick(2:NTick)); 1)

 else
 LTick = floor (log10(Tick));
 htick = [1 2 3 4 5 6 7 8 9]' * 10.^LTick;
 htick = (htick(:))';
 h ck = htick (htick >= Tick(1) & htick <= Tick(end)); ti
 end

end

return

Improving the Presentation of Matlab Plots 29

A.7 SetXTickLabel and SetYTickLabel

These routines turn off the default tick labels and put in their place specified text strings.

The text strings can contain TeX commands to create symbols in the new labels. For instance \pi

will specify the character pi.

function SetXTickLabel (ax, dyp, labels)
% h = SetXTickLabel(ax, [dyp], labels)
% Set X-tick labels.
% This function sets X-tick labels using text strings. The
% labels can include LaTeX-type strings. Each label is
% centered below the corresponding X-tick value.
% ax - axis handle (defaults to current axis)
% dyp - distance from the bottom of the graph to the top
% of the labels (in points), default 0.5 times the
% font size.
% labels - string, array of strings or cell array containing
% the labels
%
% Example: SetXTickLabel (gca, '0|\pi|2\pi');
% SetXTickLabel (['0 '; '\pi '; '2\pi']);
% SetXTickLabel ({'0'; '\pi'; '2\pi'});

% $Id: SetXTickLabel.m,v 1.12 2006/01/27 21:55:07 pkabal Exp $

if (nargin == 1)
 labels = ax;
 ax = gca;
 FontSizePt = Get_FontSize_Pt (ax);
 dyp = 0.5 * FontSizePt;
elseif (nargin == 2)
 labels = dyp;
 FontSizePt = Get_FontSize_Pt (ax);
 dyp = 0.5 * FontSizePt;
end

% Note:
% Invoking this routine a second time on a given axis does NOT
% erase the first set of tick labels.

%===========
% Create a cell array of strings for the labels
if (iscell (labels))
 lab = labels; % Cell array of strings

elseif (size (labels, 1) > 1)
 lab = cellstr (labels); % String array; convert to cell array

else
 rem = labels; % Single string; look for separators
 n = 0;
 lab = {};
 while (length (rem) > 0)
 n = n+1;
 [lab{n},rem] = strtok (rem, '|'); % Pick off pieces

Improving the Presentation of Matlab Plots 30

 if (length (rem) > 1)
 rem(1) = []; % Remove the '|' character
 end
 end

end

%==========
set (ax, 'XTickLabel', ' '); % Remove normal tick labels
 % But leave a blank, so xlabel
 % is positioned properly

% Find the conversion from points to data units
SF = SFdataXpt (ax);

% Put text strings below the tick marks at (x, y)
XTick = get (ax, 'XTick' % Tick positions);
XLim = get (ax, 'XLim');
YLim = get (ax, 'YLim');

if (strcmp (get (ax, 'YScale'), 'log'))
 yt = YLim(1) * 10^(-dyp * SF(2));
else
 yt = YLim(1) - dyp * SF(2);
end

NL = length (lab);

for i = 1:length(XTick)
 xt = XTick(i);
 if (xt >= XLim(1) & xt <= XLim(2))
 n = mod (i-1, NL) + 1;
 text (xt, yt, lab(n), ...
 'VerticalAlignment', 'cap', ...
 'HorizontalAlignment', 'center');
 end
end

return

% -----
function FontSizePt = Get_FontSize_Pt (h)
% Returns the font size in points

FUnits = get (h, 'FontUnits');

set (h, 'FontUnits', 'points');
FontSizePt = get (h, 'FontSize');

set (h, 'FontUnits', FUnits);

return

Improving the Presentation of Matlab Plots 31

function SetYTickLabel (ax, dxp, labels)
% h = SetYTickLabel(ax, [dxp], labels)
% Set Y-tick labels.
% This function sets Y-tick labels using text strings. The
% labels can include LaTeX-type strings. Each label is
% centered beside the corresponding Y-tick value.
% ax - axis handle (defaults to current axis)
% dxp - distance from the side of the graph to the edge
% of the labels (in points), default 0.5 times the
% font size.
% labels - string, array of strings or cell array containing
% the labels
%
% Example: SetYTickLabel (gca, '0|\pi|2\pi');
% SetYTickLabel (['0 '; '\pi '; '2\pi']);
% SetYTickLabel ({'0'; '\pi'; '2\pi'});

% $Id: SetYTickLabel.m,v 1.12 2006/03/03 16:28:46 pkabal Exp $

if (nargin == 1)
 labels = ax;
 ax = gca;
 FontSizePt = Get_FontSize_Pt (ax);
 dxp = 0.5 * FontSizePt;
elseif (nargin == 2)
 labels = dxp;
 FontSizePt = Get_FontSize_Pt (ax);
 dxp = 0.5 * FontSizePt;
end

% Note:
% Invoking this routine a second time on a given axis does NOT
% erase the first set of tick labels.

%===========
% Create a cell array of strings for the labels
if (iscell (labels))
 lab = labels; % Cell array of strings

elseif (size (labels, 1) > 1)
 lab = cellstr (labels); % String array; convert to cell array

else
 rem = labels; % Single string; look for separators
 n = 0;
 lab = {};
 while (length (rem) > 0)
 n = n+1;
 [lab{n},rem] = strtok (rem, '|'); % Pick off pieces
 if (length (rem) > 1)
 rem(1) = []; % Remove the '|' character
 end
 end

end

%==========

Improving the Presentation of Matlab Plots 32

% Find the conversion from points to data units
SF = SFdataXpt (ax);

YTick = get (ax, 'YTick'); % Tick positions
XLim = get (ax, 'XLim');
YLim = get (ax, 'YLim');
NL = length (lab);

% Y axis labels on the right-hand side
if (strcmp (get (ax, 'YAxisLocation'), 'right'))

% Put text strings to the right of t tickhe marks at (xt, yt)
 if (strcmp (get (ax, 'XScale'), 'log'))
 xt = XLim(2) * 10^(dxp * SF)); (1
 else
 xt = XLim(2) + dxp * SF(1);
 end

 W = 0;
 for i = 1:length(YTick)
 yt = YTick(i);
 if (yt >= YLim(1) & yt <= YLim()2)
 n = mod (i-1, NL) + 1;
 h = text (xt, yt, lab(n), ...
 'VerticalAlignment 'middle', ..', .
 'HorizontalAlignment', 'left');
 = W max (W, GetStrLen_Pt (h));
 end
 end

else

% Put text strings to the left of the ick t marks at (xt, yt)
 if (strcmp (get (ax, 'XScale'), 'log'))
 xt = XLim(1) * 10^(-dxp * SF(1));
 else
 xt = XLim(1) - dxp * SF(1);
 end

 W = 0;
 for i = 1:length(YTick)
 yt = YTick(i);
 if (yt >= YLim(1) & yt <= YLim(2))
 n = mod (i-1, NL) + 1;
 h = text (xt, yt, lab(n), ...
 'VerticalAlignment' 'middle', ...,
 'HorizontalAlignment', 'right');
 = W max (W, Get_StrLen_Pt (h));
 end
 end

 % Make a dummy YTickLabel filled with blanks
 % The goal is to fool ylabel into positioning itself to the
 % left of the Y-axis labels.
 % In 10pt Times, each blank is 3.15 pt wide.
 WBlank = 0.315; % Normalized width of a blank
 FontSizePt = Get_FontSize_Pt (ax);

Improving the Presentation of Matlab Plots 33

 NBlank = round (W / (WBlank * FontSizePt));
 set (ax, 'YTickLabel', repmat (' ', 1, NBlank));

 % If this doesn't work well
 % set (gca, 'YTickLabel', ' ') % Use blanks as needed

end

return

% -----
function [WPt, HPt] = Get_StrLen_Pt (h)
% Returns the width and height of the text object in points

Units = get (h, 'Units');

set (h, 'Units', 'points');
Extent = get (h, 'Extent');

set (h, 'Units', Units);

WPt = Extent(3);
HPt = Extent(4);

return

% -----
function FontSizePt = Get_FontSize_Pt (h)
% Returns the font size in points

FUnits = get (h, 'FontUnits');

set (h, 'FontUnits', 'points');
FontSizePt = get (h, 'FontSize');

set (h, 'FontUnits', FUnits);

return

Improving the Presentation of Matlab Plots 34

A.8 Xaxis and Yaxis

These routines overlay the current plot with a transparent axes box. For Xaxis the axes box

has essentially zero height; for Yaxis the axes box has essentially zero width. The overlaid axes

then appear as a line with (unlabelled) tick marks on the current plot. The default axes are drawn

through the origin of the current plot.

function h = Xaxis (y, varargin)
% h = Xaxis (y, <plot options>)
%
% Generate an X axis at the given y-value
% This function generates a new (nearly) zero height axis. The
% new axis is placed on top of the existing axis.
% - position: y-value from the input value
% x-range from the current axis
% - ticks: tick labels are turned off. The top and bottom
% X-axes overlap (appearing as a single axis) with the tick
% marks extending to either side of the axis.
%
% Additional axes property values for this axis can be specified
% in the variable length argument list.
% - 'Box': Set it to 'off' to get ticks only up or down
% - 'XAxisLocation: With 'Box' set to 'off', setting this to
% 'top' gives downward ticks, while 'bottom' gives upward
% ticks

% $Id: Xaxis.m,v 1.7 2006/05/31 01:47:11 pkabal Exp $

YLim = get (gca, 'YLim');
Pos = get (gca, 'Position');
XTick = get (gca, 'XTick');

if (nargin < 1)
 y = 0;
end

if (y < YLim(1) | y > YLim(2))
 disp ('Xaxis: position off scale');
 h = [];
 return;
end

Peps = 1e-6;
yn = (y - YLim(1)) / (YLim(2) - YLim(1));
ym = yn - 0.5 * Peps;
yp = yn + 0.5 * Peps;

Pos(2) = Pos(2) + ym * Pos(4);
Pos(4) = Peps * Pos(4);

DL = YLim(2) - YLim(1);
YS = YLim(1);
YLim(1) = YS + ym * DL;

Improving the Presentation of Matlab Plots 35

YLim(2) = YS + yp * DL;

h = BlankAxes;
set (h, 'Position', Pos, ...
 'Box', 'on', ...
 'XTick', XTick, ...
 'YLim', YLim, ...
 'YTick', [], . ..
 'XAxisLocation', 'bottom', ...
 va rgin{:});ra

return

function h = Yaxis (x, varargin)
% h = Yaxis (x, <plot options>)
%
% Generate a Y axis at the given x-value
% This function generates a new (nearly) zer widtho axes. The
% new axis is placed on top of the existing axis.
% - position: x-value from the input value
% y-range from the current axis
% - ticks: tick labels are turned off. The left and right
% Y-axes overlap (appearing as a single axis) w ith the tick
% marks extending to either side of the axis.
%
% Additional axes property values for this axis can be specified
% in the variable length argument list.
% - 'Box': Set to 'off' to get ticks only to the right or left
% - 'YAxisLocation: With 'Box' set to 'off', setting this to
% 'left' gives rightward ticks, while 'right' gives leftward
% ticks

% $Id: Yaxis.m,v 1.9 2006 5/31 01:47:18 pkabal Exp $/0

XLim = get (gca, 'XLim');
Pos = get (gca, 'Position');
YTick = get (gca, 'YTick');

if argin(n < 1)
 x = 0;
end

if (x < XLim(1) | x > XLim(2))
 disp ('Yaxis: position off scale');
 h = [];
 return;
end

Peps = 1e-6;
xn = (x - XLim(1)) / (XLim(2) - XLim(1));
xm = xn - 0.5 * Peps;
xp = xn + 0.5 * Peps;

Improving the Presentation of Matlab Plots 36

Pos(1) = Pos(1) + xm * Pos(3);
Pos(3) = Peps * Pos(3);

DL = XLim(2) - XLim(1);
XS = XLim(1);
XLim(1) = XS + m * DL; x
XLim(2) = XS + xp * DL;

h = BlankAxes;
set (h, 'Position', Pos, ...
 'Box', 'on', ...
 'XLim', XLim, ...
 'YTick', YTick, ...
 'XTick', [], ...
 'YAxisLocation', 'left', ...
 varargin{:});

return

Improving the Presentation of Matlab Plots 37

A.9 XYclip

This routine (not used in the examples in the main text) removes line segments that are en-

tirely outside of the plot region. Line segments that cross the boundary of the plot region are not

affected. The axis scaling (Matlab axis command) must be set before calling XYclip.

function [u,v] = XYclip (x, y, Axes)
% Clip plot vectors
% This routine clips an array of plot vectors so that vectors
% that are completely outside the clipping rectangle are
% eliminated.
% x - vector of X coordinates
% y - vector of Y coordinates
% Axes - 4 element vector specifying the clipping rectangle
% [xmin xmax ymin ymax]. If this argument is missing, the
% clipping rectangle is taken from the current axes
% limits (use the axis command to set this before calling
% this routine).

% $Id: XYclip.m,v 1.6 2006/01/31 03:08:32 pkabal Exp $

% Notes:
% - This is not a full clipping algorithm. Vectors straddling
% the clipping rectangle are left in place. Points between
% invisible segments are replaced by NaN.

N = length (x);
if (N ~= length(y))
 error ('XYclip: Unequal length vectors');
end

if (nargin <= 2)
 Figs = get (0, 'Children');
 if (isempty (Figs))
 fprintf ('>>> Warning, axis size and limits are
undefined\n');
 else
 XLimMode = get (gca, 'XLimMode');
 YLimMode = get (gca, 'YLimMode');
 if (strcmp (XLimMode, 'auto') | strcmp (YLimMode, 'auto'))
 fprintf ('>>> Warning, axis limits not explicitly set\n');
 end
 end
 Axes = axis;
end

% Set the location code for each point as the sum of
% 0 - The point is within the rectangle
% 1 - The point is to the Left of the rectangle
% 2 - The point is to the Right of the rectangle
% 4 - The point is Below the rectangle
% 8 - The point is Above the rectangle
% If the x is NaN, vpos is 0
vpos = (x < Axes(1)) + 2*(x > Axes(2)) + 4*(y < Axes(3)) + ...

Improving the Presentation of Matlab Plots 38

 8*(y > Axes(4));

% Determine the visibility of each segment
% Segment i is between points i and i+1
% 0 - inside or partly inside the rectangle
% 1 - completely outside the rectangle
segvis = (bitand(vpos(1:N-1), vpos(2:N)) ~= 0);

% For the visibility of each point
% 0 - left and right segments are at least partially visible
% 1 - one side is visible, the other at le t partially visible as
% 2 - both sides invisible
% First point: segment to left is invisible
% Last point: segment to right is invisible
ptvis = [segvis 1] + [1 segvis];

% Set the output values
u = x;
v = y;
ind = (ptvis >= 2); % Points with adjacent invisible segments
u(ind) = NaN;
v(ind) = NaN;

ind2 = ((ind + [1 ind(1:N-1)]) >= 2); % Redundant NaN's
u(ind2) = [];
v(ind2) = [];
Nu = length (u);
if (isnan(u(Nu)))
 u(Nu) = [];
 v(Nu) = [];
end

fprintf ('XYclip: No. points (in/out): %d/%d\n', N, ...\
 length (u));

return

Improving the Presentation of Matlab Plots 39

A.10 XYmerge

This routine takes vectors of x and y values and deletes some of the points in those vectors.

The algorithm determines whether a point can be omitted if the line without the point is suffi-

ciently close to the point to be omitted. This way, this routine merges nearly co-linear line seg-

ments. The default tolerance is 1/720 inches (1/10 point). The axis scaling (Matlab axis com-

mand) and plot size (SetPlotSize) must be set before calling XYmerge. It uses the axis limits and

the plot size to determine the mapping between data units and points for use in evaluating the er-

ror in omitting a point.

function [u,v] = XYmerge (x, y, EXY)
% Merge co-linear plot vectors
% This routine compresses an array of plot vectors by merging
% co-linear vectors.
% x - vector of X coordinates
% y - vector of Y coordinates
% EXY - two element vector with the allowable error in X and Y
% allowed when merging nearly co-linear segments. If
% this parameter is missing, an error of 1/10 of a point
% (maximum error 1/720 of an inch) is allowed. The
% corresponding error in data units is based on the
% current axis limits and axis sizes.
%
% Notes on Setting EXY:
% - The default axes size in Matlab is 434 by 342 pixels.
% Using a conversion factor of 96 pixels per inch, this is
% 4.52 inches by 3.56 inches. Call these dimensions
% Xsize and Ysize. The routine SetPlotSize can be used to
% set the axes size to other values.
% - We will assume that the graph is to be plotted will be
% imported into a document at full size.
% - Assume that the printout will occur on a printer with
% resolution DPI (dots per inch). For instance a standard
% laser printer resolution is 600 dpi.
% - The allowable error will be Edot (measured in printer
% dots).
% - Let the data range in the X and Y directions be
% [Xmin, Xmax] and [Ymin, Ymax]. Note that we may want to
% print only part of the data range to "zoom" in on details.
% If the whole data range is to be plotted, these values can
% be found using the min and max operations.
% - Lets focus on the X direction. The total extent of the
% plot in dots is Xsize * DPI. The allowable relative
% error is Edot / (Xsize * DPI). In data units this is
% (Xmax-Xmin) * Edot / (Xsize * DPI).
% - Assume an error of Edot=1 is acceptable and using the
% default Xsize=4.52 inches and DPI = 600. Then the
% X component of the error should be set to
% EXY(1) = (Xmax-Xmin) / 2712.
% - Even easier, let this routine determine a reasonable
% value for the acceptable error.
% (a) Set the plot size (SetPlotSize). Choose the plot size
% here so that it can be included in a document with no

Improving the Presentation of Matlab Plots 40

% further scaling.
% (b) Call axis(Xmin,Xmax,Ymin,YMax) to set the plot limits.

% (c) Call XYmerge to merge line segments (omitting the EXY
% argument.
% (d) Plot the data
% (e) Set the plot limits again (plot wiped out the settings).
% (f) Write the plot to a file (using WritePlot to ensure
% no scaling of the plot).
% (g) Include the plot into a document - don't scale the plot
% while including it.

% $Id: XYmerge.m,v 1.13 2006/03/03 16:29:07 pkabal Exp $

% Notes:
% - The error criterion (when EXY is specified) is absolute
% error. When used with data that is to be plotted on a
% log scale, the linear data should converted to log before
% being input to this routine. The returned data can then
% be taken back to the linear domain for plotting.
% - The algorithm works by processing 3 points at a time.
% Consider a line joining the end points of the triplet. The
% length of the perpendicular distance from the middle point
% to that line determines whether the middle point can be
% omitted or not. The perpendicular distance has components
% in the X and Y directions, and as such, even for equi-
% spaced data, some tolerance should be allowed on the
% X-error.
% - The algorithm is greedy but short-sighted. When it hits
% a point at which the error in the line exceeds the
% tolerance, it does not try to extend the line beyond
% that point, when in fact there may be a viable longer
% line.

N = length (x);
if (N ~= length(y))
 error ('XYmerge: Unequal length vectors');
end

if (nargin < 3)
 [DataPt, XScale, YScale] = SFdataXpt; % Data units per point
 ExA = 0.1 * DataPt(1);
 EyA = 0.1 * DataPt(2);
else
 XScale = 'linear';
 YScale = 'linear';
 ExA = EXY(1);
 EyA = EXY(2);
end

LogX = strcmp (XScale, 'log');
LogY = strcmp (YScale, 'log');
if (LogX)
 x = log10 (x);
end
if (LogY)
 y = log10 (y);
end

Improving the Presentation of Matlab Plots 41

B = 1;

k = 0;

k = k + 1;
kv(k) = B;
while (B <= N-1)

 % B - is a base point
 % G - is a known good point (the line from B to G can be
 % approximated by a single line)
 % T - is a test point beyond G - we will test the line from
 % B to T and reset G to T if we are successful.
 % Infinite or NaN values for B, G and/or T result in OK = 0

 G = B + 1;
 step = 1;
 straddle = 0;
 Lx = length (x);
 while (1)
 T = G + step;
 if (T > Lx) % Don't look beyond the array
 straddle = 1;
 OK = 0;
 else

 % Main test loop (loop over B+1:T-1, permuted)
 % The indices are arranged from the middle out to abort
 % the test as quickly as possible - Tests indicate a 25%
 % reduction in evaluations of Test3 over a sequential
 % search
 I = B+1:T-1;
 Ni = length (I);
 II = reshape ([I; fliplr(I)], 1, []);
 II = II(Ni+1:end); % Search from middle out
 for (i = II)
 OK = Test3 (x(B), y(B), x(i), y(i), x(T), y(T), ExA,
EyA);
 if (~ OK)
 straddle = 1;
 break
 end
 end

 end

 % (1) If we have found a T which does not work, we know
 % the end point is in the interval G:T-1. Use a
 % binary search (decreasing the step size) to find the
 % end point.
 % (2) If we have not found a T which does not work, keep
 % looking by increasing the step size.
 if (straddle)
 if (OK)
 G = T;
 end
 if (step == 1)

Improving the Presentation of Matlab Plots 42

 break
 end
 step = step / 2;
 continue
 else % ccess, bsu ut not straddling the end point

 G = T;

 step = 2 * step;
 continue
 end
 end

 B = G;
 k = k + 1;
 kv(k) = B;
end

if (LogX)
 u = 10.^x(kv);
else
 u = x(kv);
end
if (LogY)
 v = 10.^y(kv);
else
 v = y(kv);
end

fprintf ('XYMerge: No. points (in/out): %d/%d\n', N, k);

return

%==========
function OK = Test3 (x1, y1, x2, y2, x3, y3, ExA, EyA)

% Consider 3 points. Draw a straight line between the end
% points. The middle point will be skipped if the X and Y
% components of the perpendicular distance from the middle
% point to the straight line are smaller than given
% tolerances.
%
% The first step is to translate the axes so that (x(m),y(m))
% becomes (0,0).
%
% [x2,y2] [p1,q1]
% o o
% / \ / \
% / \ / \
% / o / o
% / [x3,y3] / [p2,q2]
% [x1,y1] o [0,0] o

% A rotation about the origin through an angle w (CCW)
% can be expressed as
% [r] = [cos(w) -sin(w)] [p]
% [s] [sin(w) cos(w)] [q].
% The perpendicular error at (p1,q1) can be determined by a

Improving the Presentation of Matlab Plots 43

% rotation about (0,0) such that the line from the (0,0) to
% (p2,q2) is horizontal. The rotation is through the angle -a,
% where
% cos(a) = p2 / D,
% sin(a) = q2 / D,
% and D = sqrt(p2^2 + q2^2). The perpendicular error is the
% ordinate value of (p1,q1) after rotation,

% errN = q1 cos(a) - p1 sin(a).

% The components of this error in the original X and Y
% directions can be found by projecting errN,
% errX = sin(a) errN,
% errY = -cos(a) errN.

% The test for the absolute X error is
% |errX| > ExA.
% Or,
% |sin(a) (q1 cos(a) - p1 sin(a))| > ExA
%
% q2 p2 q2
% |-- (q1 -- - p1 --)| > ExA
% D D D
% or
% |q2 (q1 p2 - p1 q2)| > D^2 ExA
% This rearrangement avoids possible divisions by zero.
%
% Similarly the check for the Y error is,
% |p2 (q1 p2 - p1 q2)| > D^2 EyA

% The error region is a rectangle. It would be easy to change
% the error region to be an ellipse with the given errors
% as the axes.

% Any NaN in these expressions will result in OK = 0
p1 = x2 - x1;
q1 = y2 - y1;
p2 = x3 - x1;
q2 = y3 - y1;

D2 = p2^2 + q2^2;
err = q1 * p2 - p1 * q2;
OK = (abs(q2 * err) <= D2 * ExA) & (abs(p2 * err) <= D2 * EyA);

return

Improving the Presentation of Matlab Plots 44

A.11 WritePlot

This routine writes a figure to a graphics file. Before writing the figure, plot parameters are

set to freeze the plot axes. If the figure background colour is the default gray value, the figure

background colour is set to transparent.

function WritePlot (h, filename, option)
% WritePlot ([FigureHandle,] filename[, option])
% Write a PostScript, PDF, or EMF file for a Matlab figure.
% FigureHandle - Optional figure handle. If not specified, the
% current figure is used.
% filename - If the file extension is '.eps' or '.ps', write
% an encapsulated PostScript file.
% - If the file extension is '.pdf', write a PDF file
% - If the file extension is '.emf', write a Windows
% Metafile.

% $Id: WritePlot.m,v 1.16 2006/01/27 21:05:23 pkabal Exp $

% Resolve the arguments
if (nargin == 0)
 h = gcf;
 filename = [];
 option = [];
elseif (nargin == 1)
 if (ishandle (h))
 filename = [];
 else
 filename = h;
 h = gcf;
 end
 option = [];
elseif (nargin == 2)
 if (ishandle (h))
 option = [];
 else
 option = filename;
 filename = h;
 h = gcf;
 end
end

% Return if no file name
if (strcmp (filename, ''))
 return;
end

% Check for the type of file (PS, PDF, or EMF)
[pathstr, name, ext, versn] = fileparts (filename);
PDF = strcmpi (ext, '.pdf'); % Ignore case
EMF = strcmpi (ext, .emf'); '
PS = (~PDF & ~EMF);

% Warning message if 'Renderer' is not 'painters' (might result
% in a big file)

Improving the Presentation of Matlab Plots 45

figure (h);
Renderer = get (h, 'Renderer');
if (~ strcmpi (Renderer, 'painters'))
 fprintf (' Warning - "Renderer" property: "%s"\n', Renderer);
end

% - Set the figure color to transparent if it is the default
% (gray) color
% - Set figure and axis options so that the saved plot is the
% same size
% as the plot on the screen
% - Set the resolution (in case 'Renderer' is not 'painter') to
% 300 dpi
FColor = get (gcf, 'Color');
FColor_Default = [0.8 0.8 0.8];
if (~ strcmpi (FColor, 'none'))
 if (FColor == FColor_Default)
 set (h, 'Color', 'none'); % Transparent figure
 end
end
set (h, 'PaperPositionMode', 'auto', 'InvertHardCopy', 'off ; ')
set (gca, 'XTickMode', 'manual', 'YTickMode', 'manual', ...
 'ZTickMode', 'manual');

% Print the plot
if (EMF)
 print ('-dmeta', '-r300', option, filename);
elseif (PS)
 print ('-depsc', '-r300', option, filename);
elseif (PDF)
 print ('-dpdf', '-r300', option, filename);
end

return

Improving the Presentation of Matlab Plots 46

A.12 Core Routines

A number of core routines are also listed. These are called by the Matlab routines listed

above.

function nax = BlankAxes ()
% Create a new set of blank axes at the same position as the
% existing ones

% $Id: BlankAxes.m,v 1.3 2006/01/27 21:04:48 pkabal Exp $

nax = copyobj (gca, gcf);
delete (get (nax, 'Children'));

% No titles, labels or grid for the new axes
axes (nax); New axes on top %
xlabel ('');
ylabel ('');
zlabel ('');
title ('');

% The new axes are on top, so we make the plot area transparent
% so the original plot shows through
% The new axes handle visibility is set to off so that gca finds
% the old axes
% N.B., The new axes must remain on top; issuing axes(gca)
% brings the old axes to the top.
set (nax, 'Color', 'none');
set (nax, 'HandleVisibility 'off'); ',
set (nax, 'Visible', 'on');

set (nax, 'XTick', []);
set (nax, 'YTick', []);
set (nax, 'ZTick', []);

set (nax, 'XTickLabel', []);
set (nax, 'YTickLabel', []);
set (nax, 'ZTickLabel', []);

return

function [SF, XScale, YScale] = SFdataXpt (ax)
% SFDataXPt - Return the conversion factor units/pt. The
% conversion factor is determined from the figure. If the
% an axis is in log units, the corresponding conversion
% factor is log10(units)/pt.
% SF - data units / points
% ax - Axes handle, defaults to gca

% This routine gets its information from a figure. A typical
% preamble before calling this routine is as follows.
% SetPlotSize([xdim, ydim], 'centimeters');

Improving the Presentation of Matlab Plots 47

% axis([xmin, xmax, ymin, ymax]);
% set (gca, 'XScale', 'log'); % For X log scale
% set (gca, 'YScale', 'log'); % For Y log scale

% $Id: SFdataXpt.m,v 1.6 2006/01/27 21:09:51 pkabal Exp $

if (nargin == 0)
 ax = gca;
end

Figs = get (0, 'Children');
if (isempty (Figs))
 fprintf ('>>> Warning, axis size and limits are undefined\n');
else
 XLimMode = get (ax, 'XLimMode');
 YLimMode = get (ax, 'YLimMode');
 if (strcmp (XLimMode, 'auto') | strcmp (YLimMode, 'auto'))
 fprintf ('>>> Warning, axis limits not explicitly set\n');
 end
end

% Get the axis size in points
Units = get (ax, 'Units');
set (ax, 'Units', 'points');
PosPt = get (ax, 'Position');
set (ax, 'Units', Units); % Restore the axes units

XLim = get (ax, 'XLim');
YLim = get (ax, 'YLim');

XScale = get (ax, 'XScale');
if (strcmp (XScale, 'log'))
 XLim = log10 (XLim);
end
YScale = get (ax, 'YScale');
if (strcmp (YScale, 'log'))
 YLim = log10 (YLim);
end

SF = [diff(XLim) diff(YLim)] ./ PosPt(3:4);

return

	1 Introduction
	2 Matlab Parameters and Matlab Plot Files
	3 Plot Size and Plot Fonts
	3.1 Plot Size and Plot Fonts in Matlab

	4 Plot Axes and Tick Labels
	4.1 Plot Axes and Label Modification

	5 Distinguishing Plot Lines
	5.1 Modifying the Line Styles

	6 Sample Plots
	6.1 Example: Plot of Four Curves
	6.2 Example: Plot of a Large Number of Points

	 References

