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1 Introduction

These notes examine the relationships between frequency domain representations of discrete-time

and wrapped signals derived from a continuous-time signal. The first part of these notes develops

the relationships for periodic signals which allow for the analysis of periodic signals within the

framework of the Fourier transform.

The second part examines the relationships between the Fourier series, the Discrete-Time

Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT).

Throughout this document, round brackets are used for functions of continuous variables (ex-

amples: v(t) and V(ω)); square brackets are used for functions of discrete variables (example:

v[n]). In the first part of this document, the equations shown within boxes are results that are used

in the developments leading to formulations for the Fourier transform of periodic signals. In the

second part of this document, the equations shown within boxes are results which appear on the

diagram relating the Fourier domain representations of sampled and wrapped signals.

2 Continuous-Time Fourier Transform

The Fourier transform of a continuous-time signal is given by

V(F) =
∫ ∞

−∞
v(t)e−j2πFt dt. (1)

This is well-defined (converges) if v(t) satisfies the Dirichlet conditions (absolute integrability,

finite number of finite discontinuities in a finite time interval, finite number of extrema in a finite

interval). The inverse transform is

v(t) =
∫ ∞

−∞
V(F)ej2πFt dF. (2)

Other functions which do not satisfy the Dirichlet conditions are admissible if we allow the use of

delta functions.

2.1 Dirac Delta Function

The Dirac delta (impulse function) can be defined in terms of its properties [1]. The sampling

property of the delta function (more properly a distribution) is

∫

t∈TA

v(t)δ(t) dt =







v(0) 0 ∈ TA

0 0 /∈ TA.
(3)
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From this characterization, the delta function can be shown to be zero everywhere except at the

origin, yet it has unit area,

δ(t) = 0 for t 6= 0,
∫ ∞

−∞
δ(t) dt = 1.

(4)

The formal operations involving the delta function in an integral give us

∫ ∞

−∞
v(t − to)δ(t) dt =

∫ ∞

−∞
v(t)δ(t + to) dt (5)

and
∫ ∞

−∞
v(at)δ(t) dt =

1

|a|

∫ ∞

−∞
v(t)δ(t/a) dt. (6)

2.1.1 Fourier Transforms of Delta Functions

Using the sampling property of the delta function, the Fourier transform of the delta function

evaluates to a constant,
∫ ∞

−∞
δ(t)e−j2πFt dt = 1. (7)

The inverse Fourier transform gives us

∫ ∞

−∞
ej2πFt dF = δ(t). (8)

This integral must be evaluated using the Cauchy principal value, i.e. as the limit

lim
T→∞

∫ T/2

−T/2
ej2πFt dF. (9)

Note that since δ(t) behaves like a symmetric function, the exponent in the integral can have either

sign.

The inverse transform giving a delta function gives us a relation for the integral of a complex

exponential. Here we restate the result using symbols which do not evoke time or frequency,

∫ ∞

−∞
e±j2πux du = δ(x). (10)

2.2 Fourier Series – Continuous-Time Signals

A periodic function (subject to conditions of absolutely integrability over a period, a finite number

of finite discontinuities in a finite interval, and a finite number of extrema in a finite interval) has
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a Fourier series expansion in complex exponentials [2]. Consider a periodic function ṽ(t) with

period T. The Fourier series expansion for ṽ(t) is

ṽ(t) =
∞

∑
m=−∞

vmej2πmt/T. (11)

The Fourier series coefficients are found from

vm =
1

T

∫ T/2

−T/2
ṽ(t)e−j2πmt/T dt. (12)

2.3 Fourier Transform of a Continuous-Time Periodic Signal

We can now plunge ahead and express the Fourier transform of ṽ(t) in terms of the Fourier series

coefficients,

Vp(F) =
∫ ∞

−∞
ṽ(t)e−j2πFt dt

=
∞

∑
m=−∞

vm

∫ ∞

−∞
e−j2πt(F−m/T) dt

=
∞

∑
m=−∞

vmδ

(

F −
m

T

)

.

(13)

We have used Eq. (10) to evaluate the integral of the complex exponential. Summarizing, the

Fourier transform of a periodic function is a sequence of delta functions in the frequency domain

(at the harmonics of the periodic signal repetition rate). The areas of the delta functions are given

by the Fourier series coefficients,

Vp(F) =
∞

∑
m=−∞

vmδ

(

F −
m

T

)

. (14)

2.4 Fourier Transform of a Periodic Impulse Train

Consider the periodic impulse train (period T),

ṽ(t) =
∞

∑
k=−∞

δ(t − kT). (15)

The Fourier series coefficients for this signal are given by

vm =
1

T

∫ T/2

−T/2

∞

∑
k=−∞

δ

(

t −
k

T

)

ej2πmt/T dt. (16)
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We see that the only delta function within the integration range is the one for k = 0. Using the

sampling property of the delta function, the integral evaluates to unity. Then the Fourier series

coefficients are constant (vm = 1/T) and the Fourier transform of the impulse train is

Vp(F) =
1

T

∞

∑
m=−∞

δ

(

F −
m

T

)

. (17)

Periodic functions have delta functions in their Fourier transforms and delta functions have peri-

odic functions in their Fourier transforms. Because of the duality between the forward and inverse

Fourier transforms (if v(t) ⇐⇒ V(F), then V(t) ⇐⇒ v(−F)), this gives us the result that an im-

pulse train (periodic and delta functions) must have as its Fourier transform another impulse train

(delta functions and periodic).

We have an alternate formulation for the Fourier transform (or inverse Fourier transform) of

an impulse train. The Fourier transform for a delayed delta function δ(t − kT) is e−j2πkTF. Then

the Fourier transform pair is

∞

∑
k=−∞

δ(t − kT) ⇐⇒
∞

∑
k=−∞

e−j2πkTF. (18)

An finally using the time-frequency duality of the Fourier transform, we get

∞

∑
k=−∞

δ(t − kT) =
1

T

∞

∑
m=−∞

ej2πmt/T ⇐⇒
∞

∑
k=−∞

e−j2πkFT =
1

T

∞

∑
m=−∞

δ

(

F −
m

T

)

. (19)

2.5 Periodic Wrapped Continuous-Time Signals

Consider forming a periodic signal ṽ(t) from a (non-periodic) signal v(t) as follows

ṽ(t) = v(t) ∗
∞

∑
k=−∞

δ(t − kT) =
∞

∑
k=−∞

v(t − kT). (20)

We refer to this process which forms a time-aliased periodic signal as wrapping.1 Using the fact that

a convolution in the time-domain corresponds to a product in the frequency domain, the Fourier

transform of ṽ(t) is

∞

∑
k=−∞

v(t − kT) ⇐⇒ V(F)
1

T

∞

∑
m=−∞

δ

(

F −
m

T

)

=
1

T

∞

∑
m=−∞

V
(m

T

)

δ

(

F −
m

T

)

. (21)

1The continuous-time signal can be considered to be wrapped onto a circle of circumference T with all the superim-
posed intervals being added.
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This shows that the Fourier series coefficients are just V(F)/T evaluated at the harmonic frequen-

cies. Here V(F) is the Fourier transform of v(t), where v(t) can be longer than T.

We can also get the Fourier series coefficients directly from Eq. (12). We note that this equation

is just a scaled version of the Fourier transform,

vm =
1

T
VT

(m

T

)

, (22)

where VT(F) is the Fourier transform of one period of ṽ(t).

Given a signal v(t) which is wrapped to become ṽ(t), there are two ways to get the coefficients

of the frequency response of ṽ(t). The first is to take the Fourier transform of v(t) (which can be

longer than T) and then sample the frequency response at F = m/T. The second is to take the

Fourier transform of one period of ṽ(t) and then sample the frequency response at F = m/T.

2.5.1 Poisson Sum Formula

From Eq. (21), one can take the term-by-term inverse Fourier transform of the extreme righthand

side expression and equate it to the lefthand side. This gives the Poisson sum formula,

∞

∑
k=−∞

v(t − kT) =
1

T

∞

∑
m=−∞

V
(m

T

)

ej2πtm/T. (23)

3 Discrete-Time Fourier Transform

The discrete-time Fourier transform (DTFT) is given by

V(ω) =
∞

∑
n=−∞

v[n]e−jωn . (24)

This sum converges if v[n] is absolutely summable. The frequency response is periodic, with

period 2π. This sum can be considered to be a Fourier series expansion of the periodic signal V(ω).

The inverse discrete-time Fourier transform is the computation of the Fourier series coefficients,

v[n] =
1

2π

∫

π

−π

V(ω)ejωn dω. (25)

3.1 Fourier Transform of a Discrete-Time Periodic Signal

Let ṽ[n] be periodic with period N,

ṽ[n + N] = ṽ[n]. (26)
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Let us evaluate the Fourier transform of this signal.

Vpω) =
∞

∑
n=−∞

ṽ[n]e−jωn

=
∞

∑
p=−∞

N−1

∑
q=0

ṽ[pN + q]e−jω(pN+q)

=
∞

∑
p=−∞

e−jωpN
N−1

∑
q=0

ṽ[q]e−jωq.

(27)

The second line of this equation is a result of substituting n = pN + q. The third line results from

exploiting the periodicity of ṽ[n]. The second factor of the result above is the DTFT of one period of

ṽ[n]. In the last line, the first factor (sum of complex exponentials) can be expressed in terms of an

impulse train. The form of the sum is a little different than that encountered earlier. Appendix A

recasts the earlier results in terms of radian frequency. Then from Eq. (63) with T = N,

∞

∑
p=−∞

e−jωpN =
2π

N

∞

∑
k=−∞

δ

(

ω −
2πk

N

)

. (28)

Finally we can write

Vp(ω) = 2π

∞

∑
k=−∞

Vkδ

(

ω −
2πk

N

)

, (29)

where

Vk =
1

N

N−1

∑
n=0

ṽ[n]e−j2πnk/N . (30)

The coefficients Vk are periodic with period N. They are obtained as the DTFT of one period of

ṽ[n], evaluated at ω = 2πk/N. As we will see later, these coefficients are the same as the discrete

Fourier transform, except for a scale factor.
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3.2 Fourier Series – Discrete-Time Signals

The Fourier series expansion for a discrete time signal can be obtained by taking the inverse trans-

form of Eq. (29),

ṽ[n] =
1

2π

∫

π

−π

V(ω)ejωn dω

=
∞

∑
k=−∞

Vk

∫ 2π−ǫ

−ǫ

δ

(

ω −
2πk

N

)

ejωn dω

=
N−1

∑
k=0

Vkej2πkn/N .

(31)

In the second line, the limits of the integration have been shifted so that the delta functions for

k = 0 to k = N − 1 fall within the limits. This is possible because the integrand is periodic with

period 2π. The result is a Fourier series expansion with Fourier series coefficients Vk,

ṽ[n] =
N−1

∑
k=0

Vkej2πkn/N . (32)

3.3 Fourier Transform of a Discrete-Time Pulse Train

Consider the discrete-time pulse train

ṽ[n] =
∞

∑
k=−∞

δ[n − kN]. (33)

Here the delta function with square brackets is the unit pulse, equal to one if its argument is zero,

and equal to zero otherwise. The Fourier series coefficients for this signal are constants at 1/N,

giving the Fourier series representation,

∞

∑
k=−∞

δ[n − kN] =
1

N

N−1

∑
k=0

ej2πnk/N . (34)

The DTFT of this pulse train can be found term-by-term for the left-hand side of the equation

above,

Vp(ω) =
∞

∑
k=−∞

e−jωkN . (35)
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We can find a impulse train representation for this expression from Eq. (63) in Appendix A. This

gives the following representations of a discrete-time pulse train.

∞

∑
k=−∞

δ[n − kN] =
1

N

N−1

∑
m=0

ej2πnm/N ⇐⇒
∞

∑
k=−∞

e−jωkN =
2π

N

∞

∑
m=−∞

δ

(

ω −
2πm

N

)

. (36)

This expression has discrete-time pulses on the left and delta functions on the right.

3.4 Periodic Wrapped Discrete-Time Signals

Consider forming a periodic signal ṽ[n] from v[n],

ṽ[n] = v[n] ∗
∞

∑
k=−∞

δ[n − kN] =
∞

∑
k=−∞

v[n − kN]. (37)

Using the fact that a convolution in the time-domain corresponds to a product in the frequency

domain, the DTFT of ṽ[n] is

∞

∑
k=−∞

v[n − kN] ⇐⇒ V(ω)
2π

N

∞

∑
m=−∞

δ

(

ω −
2πm

N

)

=
2π

N

∞

∑
m=−∞

V
(2πm

N

)

δ

(

ω −
2πm

N

)

. (38)

Given a signal v[n] which is wrapped to become ṽ[n], there are two ways to get the coefficients

of the frequency response. The first is to take the Fourier transform of v[n] and then sample the

frequency response at ω = 2πm/N. The second is to take the Fourier transform of one period of

ṽ[n] and then sample the frequency response at ω = 2πm/N.

3.5 Poisson Sum Formula

For discrete-time signals we can find a result similar to the Poisson sum formula for continuous-

time signals. In this case, taking the term-by-term inverse Fourier transform of the extreme right-

hand side of the equation above,

∞

∑
k=−∞

v[n − kN] =
1

N

∞

∑
m=−∞

V
(2πm

N

)

ej2πnm/N. (39)
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4 Discrete Fourier Transform

The discrete Fourier transform (DFT) for a finite length sequence x[n] is [3]

V[k] =
N−1

∑
n=0

v[n]e−j2πnk. (40)

The DFT coefficients V[k] are periodic with period N. The inverse discrete Fourier transform is

v[n] =
1

N

N−1

∑
k=0

V[k]ej2πnk . (41)

In this equation, v[n] becomes periodic with period N. With this view, we see that the DFT formula

Eq. (40) can be considered to operate on a finite length signal, or alternately, can be considered to

operate on one period of a periodic signal. In the latter interpretation, the DFT formula essentially

calculates the Fourier series coefficients of the periodic signal.

The DFT formula differs from the Fourier series formula in Eq. (31) only in scale factor. The

Fourier series coefficient Vk is related to the DFT coefficient as

V[k] = NVk. (42)

5 Relationships Between the Frequency-Domain Representations

The previous results put us in a good position to examine the relationships between the frequency

representations of continuous-time signals, sampled signals, and periodic signals. Figure 1 shows

a schematic form of the relationships. Consider the time-domain signals shown in that figure. On

the left side of the diagram, the signal x[n] is formed by sampling x(t) with sampling interval T.

The signal x̃[n] is formed by wrapping x[n] with period N. On the right side of the diagram, the

signal x̃(t) is formed by wrapping x(t) with period NT. Sampling x̃(t) with period T closes the

loop and gives us x̃[n]. Thus sampling then wrapping (on the left side) is the same as wrapping

and then sampling (on the right side – with the proviso that wrapping period is N times the

sampling interval T).

5.1 Sampling a Continuous-Time Signal: x(t) → x[n]

We can model the sampling of a continuous-time signal as the multiplication of the continuous-

time signal by a impulse train. The areas of the resulting impulses are the sample values,

xs(t) = x(t)
∞

∑
k=−∞

δ(t − kT) =
∞

∑
k=−∞

x(kT)δ(t − kT). (43)



Frequency Domain Representations of Sampled and Wrapped Signals 10

[
]

(
)

x
n

x
n
T

[
]

(
)

x
n

x
n
T

[
]

[

]

k

x
n

x
n

kN

DFT

DTFT FS

FT

(
)

(

)

k

x
t

x
t

kN
T

1

2

(
)

2
c

m

m

X

X

T

T

[
]

k

m
N

m

X
k

N

X

2

[
]

k

X
k

X

N

1
m

c m

X

X
N
T

N
T

sa
m
pl
e w

rap

sa
m
pl
ew

rap

w
ra
p

w
ra
p

sam
ple

sam
ple

( )X

[ ]X k

( )x t

[ ]x n

[ ]x n

( )
c
X F

( )x t
m
X
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The Fourier transform Xs(F) can be computed using the relationship that a product in the time

domain corresponds to a convolution in the frequency domain.

xs(t) = x(t)
∞

∑
k=−∞

δ(t− kT) ⇐⇒ Xs(F) = Xc(F) ∗
1

T

∞

∑
m=−∞

δ

(

F−
m

T

)

=
1

T

∞

∑
m=−∞

Xc

(

F−
m

T

)

. (44)

This frequency response is periodic with period 1/T. In this form we see that sampling in the time

domain corresponds to wrapping in the frequency domain. The resulting frequency response will

not have aliasing (overlapping responses) if the baseband signal Xc(F) is bandlimited to |F| <

1/(2T).

There is another expression for Xs(F). This time we take the Fourier transform term by term

of the second form of the time domain expression in Eq. (43),

xs(t) =
∞

∑
k=−∞

x(kT)δ(t − kT) ⇐⇒ Xs(F) =
∞

∑
k=−∞

x(kT)e−j2πkFT . (45)

In discrete-time,

x[n] = x(nT). (46)

The DTFT of x[n] is X(ω) which is periodic with period 2π. If we compare the definition for the

DTFT (Eq. (24)) with Eq. (45), we see that

X(ω) = Xx(F)
∣

∣

F=ω/(2πT)
=

∞

∑
k=−∞

x[k]e−jωk (47)

The mapping between F for the continuous-time Fourier transform and ω for the discrete-time

Fourier transform is ω = 2πFT. With this mapping, when F increases by 1/T, ω increases by 2π.

Returning to the wrapped form of the frequency response in Eq. (44), the DTFT can be written

as,

X(ω) =
1

T

∞

∑
m=−∞

Xc

(

ω − 2πm

2πT

)

. (48)

As pointed out earlier, the x[n] ⇐⇒ X(ω) relationship is that of Fourier series coefficients x[n]

corresponding to a periodic signal X(ω).
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5.2 Wrapping a Continuous-Time Signal: x(t) → x̃(t)

The frequency-domain consequences of wrapping a continuous-time signal have been explored

in Section 2.5. That result is reproduced here with the appropriate change of variables,

x̃(t) =
∞

∑
k=−∞

x(t − kNT) ⇐⇒
1

NT

∞

∑
m=−∞

Xc

( m

NT

)

δ

(

F −
m

NT

)

. (49)

In the diagram, the frequency domain representation of the wrapped sequence is given in terms

of its continuous-time Fourier series coefficients,

xm =
1

NT
Xc

( m

NT

)

. (50)

5.3 Wrapping a Discrete-Time Signal: x[n] → x̃[n]

The frequency-domain consequences of wrapping a discrete-time signal have been explored in

Section 3.4. That result is reproduced here with the appropriate change of variables,

x̃[n] =
∞

∑
k=−∞

x[n − kN] ⇐⇒
2π

N

∞

∑
m=−∞

X
(2πm

N

)

δ

(

ω −
2πm

N

)

. (51)

The discrete-time Fourier series coefficients for x̃[n] are

Xm =
1

N
X
(2πm

N

)

. (52)

We can substitute for X(ω) from Eq. (48) to get an expression for the Fourier series coefficients

directly in terms of wrapped samples of the continuous-time Fourier transform Xc(F),

Xk =
1

NT

∞

∑
m=−∞

Xc

( k − mN

NT

)

. (53)

In the figure, the corresponding relationship is expressed in terms of the discrete Fourier trans-

form coefficients (X[k] = NXk),

X[k] = X
(2πk

N

)

. (54)

These coefficients are the DFT for one period of x̃[n].
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5.4 Sampling a Continuous-Time Periodic Signal: x̃(t) → x̃[n]

The periodic signal x̃(t) is represented by its Fourier series coefficients xm in Eq. (50). The periodic

discrete-time signal x̃[n] is likewise represented by its Fourier series coefficients Xm in Eq. (53).

The relationship between these is

Xk =
∞

∑
m=−∞

xk−mN. (55)

Finally, the DFT coefficients expressed in terms of the Fourier series coefficients of x̃(t) are given

by

X[k] = N
∞

∑
m=−∞

xk−mN. (56)

5.5 Frequency Domain Relationships

5.5.1 Reversibility

The diagram showing the frequency domain relationships shows that sampling in one domain

corresponds to wrapping in the other domain. The diagram shows directed arrows for the sam-

pling and wrapping operations. Under some circumstances, one can “reverse” the operation. For

instance, sampling is reversible if a time signal is appropriately bandlimited. Similarly, wrapping

a time signal is reversible if the signal is time limited to less than the wrapping period. However

to reach the DFT from the Fourier transform involves both sampling and wrapping. The combi-

nation is not reversible since a signal cannot be simultaneously bandlimited and time limited.

5.5.2 Periodic x(t)

Consider a periodic continuous-time signal x(t). Sampling this signal is well-defined. However,

wrapping this signal can result in the sum becoming infinite. Since going from continuous-time

to the DFT input x̃[n] involves both sampling and wrapping, this is generally not possible for

periodic x(t).

Consider

x(t) = ej2πFot. (57)

This periodic signal a Fourier series with a single term and thus has a Fourier transform consisting

of a single delta function at F = Fo. Sampling x(t) at kT results in a DTFT which has a delta

functions at ω = 2πFoT + 2πm. There is a single delta function in any interval of length 2π.

Now consider a more general periodic signal which has an unbounded number of harmonics,

x(t) =
∞

∑
m=−∞

xmej2πmFot. (58)
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If we sample this signal at kT, there are two cases. If FoT = M/N where M and N are relatively

prime, then the discrete-time signal will be periodic with period N. Since the Fourier series ex-

pansion for a periodic signal with period N has at most N terms, the DTFT will contain at most N

delta functions in every interval of length 2π. If FoT is irrational, the DTFT can potentially contain

an infinite number of delta functions in every interval of length 2π.

The conclusion is that sampled periodic signals have a DTFT consisting of a finite number of

delta function per 2π interval if the sampled signal is itself periodic (requires the sampling inter-

val be synchronized with the period), or if the periodic signal has a finite number of harmonics

(Fourier series expansion with a finite number of terms).

6 Summary

These notes has shown that the Fourier transform can be applied to periodic continuous-time or

discrete-time signals. This allows for a unified analysis of signals containing both non-periodic

and periodic components. The second part of these notes have examined the frequency domain

relationships for signals derived by sampling and/or wrapping a continuous-time signal.
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Appendix A Continuous-Time Results Expressed in Radian Measure

In this appendix, we restate the results derived earlier for continuous-time signals using radian

frequency. Using radian frequency (Ω), the Fourier transform is

V(Ω) =
∫ ∞

−∞
v(t)e−jΩt dt. (59)

The inverse transform is

v(t) =
1

2π

∫ ∞

−∞
V(Ω)ejΩt dΩ. (60)

The integral representation for a delta function in Eq. (10) has a 2π factor in the exponent.

Absorbing this factor into the variable u, a modified integral representation is

∫ ∞

−∞
e±jux du = 2πδ(x). (61)

Using this result, the Fourier transform of a periodic sequence expressed in terms of Ω is (c.f.

Eq. (14))

Vp(Ω) = 2π

∞

∑
m=−∞

vmδ

(

Ω −
2πm

T

)

, (62)

where vm is given in Eq. (12). The Fourier transform of the periodic impulse train is (c.f. Eq. (19))

∞

∑
k=−∞

δ(t − kT) =
1

T

∞

∑
m=−∞

ej2πmt/T ⇐⇒
∞

∑
k=−∞

e−jkΩT =
2π

T

∞

∑
m=−∞

δ

(

Ω −
2πm

T

)

. (63)

The Poisson sum formula for the Fourier transform with radian argument is (c.f. Eq. (23))

∞

∑
k=−∞

v(t − kT) =
1

T

∞

∑
m=−∞

V
(2πm

T

)

ej2πtm/T. (64)
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