

ITU-T G.723.1 Speech Coder:
A Matlab Implementation

P. Kabal
Department of Electrical & Computer Engineering

McGill University

Version 2f: 2017-12-13

You are free:

To Share: to copy, distribute and transmit this work

To Remix: to adapt this work

Subject to conditions outlined in the license.

This work is licensed under the Creative Commons Attribution 3.0 Unported
License. To view a copy of this license, visit http://creativecommons.
org/by/3.0/ or send a letter to Creative Commons, 171 Second Street,
Suite 300, San Francisco, California, 94105, USA.

Revision History:

• 2017-12-13 v2f – Expanded Appendix B
• 2015-01-11 v2e – Corrected weighting filter response (21)
• 2012-03-20 v2d – Corrected typos
• 2011-08-03 v2c – Fixed missing dashed lines on plots
• 2011-06-28 v2b – Creative Commons licence, corrected typos
• 2009-10-29 v2a
• 2004-08-17 v2
• 2003-11-21 v1 – Initial version

An Implementation of ITU-T G.723.1 i

Table of Contents
1 Introduction .. 1
2 General Comments on the Matlab Implementation ... 2

2.1 Input / Output .. 2
2.2 Filters .. 2
2.3 Indexing .. 2

3 G.723.1 Coder .. 4
3.1 Frame Level Processing .. 4

3.1.1 Highpass Filter ... 5

3.1.2 LP Analysis .. 5

3.1.3 Sine Detector .. 9

3.1.4 LSF Quantization ... 9

3.1.5 Formant Weighting Filter ... 12

3.1.6 Open-Loop Pitch Estimation .. 13

3.1.7 Harmonic Noise Weighting .. 14

3.2 Analysis-by-Synthesis Target Signal .. 15
3.2.1 Weighted LP Synthesis Filter ... 17

3.3 Subframe Level Processing... 18
3.3.1 Adaptive Codebook.. 18

3.3.2 Fixed Codebook ... 22

3.3.3 Multipulse Coding.. 23

3.3.4 Combined Gain Coding ... 28

3.3.5 State Update ... 28

4 Bitstream .. 29
4.1 Multipulse Mode ... 29
4.2 ACELP Mode .. 30
4.3 SID Mode .. 30

5 G.723.1 Decoder .. 31
5.1 Excitation Generation ... 31

5.1.1 Adaptive Codebook Contribution .. 31

5.1.2 Multipulse Excitation ... 33

5.1.3 ACELP Excitation .. 33

5.1.4 SID Mode and Null Mode .. 34

5.1.5 Excitation Clipping .. 37

An Implementation of ITU-T G.723.1 ii

5.2 Pitch Postfilter ... 37
5.3 LP Parameters ... 40
5.4 Formant Postfilter ... 40

6 Packet Loss Concealment .. 43
6.1 Preparations for PLC .. 43

6.1.1 PLC Interaction with Modes .. 46

6.2 PLC Mode Excitation ... 46
6.3 PLC Mode LP Synthesis ... 47

7 Comments .. 48
References ... 49
Appendix A Sine Detector ... 50
Appendix B Combinatorial Coding ... 51

An Implementation of ITU-T G.723.1 1

ITU-T G.723.1 Speech Coder:
A Matlab Implementation

This report documents the details of the processing steps in the ITU-T G.723.1 Speech

Coder. This report accompanies an implementation of that coder/decoder in Matlab. The Matlab

implementation was designed to facilitate experimentation and research using a practical speech

coder as a base.

1 Introduction

This document describes the ITU-T G.723.1 speech coder [1] and a Matlab implementation

of that coder. The implementation is based on the ITU-T floating-point reference code [2].

G.723.1 is a Code-Excited Linear Prediction Coder. The Matlab version is a partial implementa-

tion of the coder and supports only the multipulse coding mode (operating at 6.3 kb/s). The

Matlab implementation of the decoder supports all modes (multipulse decoding, ACELP decod-

ing, comfort noise generation (silence compression mode [3]), and packet loss concealment). This

document gives details of the processing steps in the coder and decoder.

The implementation of the coder gives results that are close but not identical to those from

the reference code. Careful checking of several input files has shown that the differences in the

generated quantized values occur in isolated frames, but differences in one frame can propagate

for several frames. In all cases, the output coded speech is indistinguishable in quality from that

produced by the reference code.

The decoder implemented in Matlab generates exactly the same sample values as the refer-

ence code for all of the modes using all of the test files which accompany the reference code.

An Implementation of ITU-T G.723.1 2

2 General Comments on the Matlab Implementation

2.1 Input / Output

The input to the Matlab version of the coder is a speech file (8 kHz sampling rate) in one of

several file formats (WAVE, raw, AU, Sphere). The output of the coder is either a bitstream file

(compatible with the reference code) or a Matlab data file. The former contains codes and corre-

sponds to the compressed bitstream from the coder. The latter stores values, rather than codes,

and can be used to pass, for instance, unquantized values to the decoder.

The decoder takes as input either a bitstream file or a data file (from the Matlab implementa-

tion of the coder). Its output is a WAVE file. The decoder also accepts as input an auxiliary frame

error file (of the same format as used by the reference code) which specifies which frames are

lost.

2.2 Filters

Some of the filters are implemented using a custom Matlab routine, PZFilter. This rou-

tine is an interface to the Matlab routine filter, which uses a direct form II structure. If a filter

starts in zero-state and has constant coefficients, then the Matlab routine filter can be used di-

rectly. This is the case for the highpass filter used as a preprocessing step in the coder. However,

for other filtering operations in which the coefficients change from frame-to-frame, the structure

of the filter affects the results. The routine PZFilter does the extra operations (using the Matlab

routine filtic) necessary to use the past input data and past output data as state values, thereby

duplicating the results of the filtering as done in the reference code.

2.3 Indexing

In this document, we use zero-based indexing as in the C-language reference code, even

though Matlab itself uses 1-based indexing of arrays. For instance, the first subframe within a

frame is referred to as subframe 0.

The Matlab code has been written to have clear interfaces between functions (no global vari-

ables). There is also a clean separation between system parameters (fixed values that define the

behaviour of the coder or decoder) and system memory (values that keep the state of the coder or

decoder).

It is hoped that the Matlab code for the G.723.1 standard will be a useful vehicle for re-

search, making it much easier to test out changes to the coding strategy.

An Implementation of ITU-T G.723.1 3

Differences: Matlab / Reference Code

• This implementation uses the Matlab convention of audio data normalized to a full-scale

value of unity. This means that internal data values will be 1/32768 of the values in the refer-

ence code. This scaling is kept throughout the programs.

• There are a number of tables in the reference code. The Matlab code can read these tables,

but can also generate the data for some of the tables on the fly. For instance, the window for

LP analysis can either be read from a table (taken from the reference code and stored with 6

digits of accuracy) or generated at startup with full precision. In order to exactly match the

results of the reference code, the reduced precision values in the tables taken from the refer-

ence code must be used.

An Implementation of ITU-T G.723.1 4

3 G.723.1 Coder

3.1 Frame Level Processing

The coder operates on two time scales: a frame of 240 samples that is divided into sub-

frames of length 60. The frame level operations in the coder consist of the following steps.

• Highpass filter the input signal.

• Form an extended (highpass filtered) signal consisting of three parts: look-back samples, cur-

rent frame samples, and look-ahead samples. The samples in the current frame are divided

into 4 subframes.

• Linear prediction analysis is done on each subframe. This creates four sets of LP coefficients,

one for each subframe.

• The LP coefficients for the last subframe (subframe number 3) are quantized (in the LSF do-

main, as described below).

• The quantized LP coefficients are linearly interpolated (in the LSF domain) using the quan-

tized LP coefficients from the previous frame. This creates four sets of (quantized) LP coeffi-

cients, one for each subframe, the last of these being the quantized LP coefficients for sub-

frame 3. These quantized coefficients are used for the synthesis filter.

• The unquantized LP coefficients (4 sets) are used to form a formant perceptual weighting fil-

ter. This filter is used to weight the error signal during the search for the best excitation pa-

rameters, in effect allowing the search procedure to take into account psychoacoustic proper-

ties.

• The input signal (after highpass filtering) is processed with the formant perceptual weighting

filter.

• The output of formant weighting filter is used to form an initial estimate of the pitch lag.

This is termed the open-loop pitch estimate. This estimate is based on two subframes at a

time, giving two open-loop pitch estimates per frame: one for subframes 0 and 1, and another

for subframes 2 and 3.

• The open-loop pitch estimate is used to generate a second weighting filter, the harmonic

noise weighting filter, which tracks the harmonic peaks during voiced speech.

• The input signal, processed by the combination of highpass filter, formant weighting filter

and harmonic noise weighting filter forms the so-called target signal.

An Implementation of ITU-T G.723.1 5

The block diagram of these processing steps is shown in Fig. 1. This figure shows the ar-

rangement to generate the target signal.

3.1.1 Highpass Filter

The highpass filter used to remove the DC components is of the form

 HP

1

1
1() ,
1

zH z
az

−

−
−

=
−

 (1)

where 127 /128a = . The frequency response of this filter is plotted in Fig. 2. The input to this fil-

ter is []x n and the output of the filter is HP[]x n .

3.1.2 LP Analysis

The linear prediction analysis operates on the highpass filtered signal. LP analysis is carried

out for each subframe. A 180 sample Hamming window is applied for each subframe. The win-

dow is centred on a subframe and so extends on either side of the subframe (60 samples back, 60

samples over the subframe, and 60 samples ahead). The look-back for the frame is 60 samples to

accommodate the backwards extent of the window when processing the first subframe. The look-

ahead for the frame is 60 samples to accommodate the forward extent of the window when pro-

cessing the last subframe. The positions of the windows for the subframes are shown in Fig. 3.

The figure shows that the processing requires 120 samples of past signal. The new 240 samples

LP
analysis

Pitch
estimate

LP
quantizer

LP
inverse

quantizer

LP
interpolator

Highpass
filter

[]x n HP[]x n

Formant
Weighting Filter

()FW z

LP coefficients
4 sets / frame

4

Quantized LP
4 sets / frame

LP codes

Target
signal

Open loop
pitch estimates

[]Fx n
HNW ()W z

Harmonic noise
weighting filter

[]t nHP ()H z

Fig. 1 Target signal generation.

An Implementation of ITU-T G.723.1 6

for a frame are appended to give the full 360 samples needed. After LP analysis, the top 120 sam-

ples become the memory for the next frame.

Let the highpass filtered data for a subframe be HP[]x n . This is the data lying under the

analysis window for a subframe. The windowed data is

 HP[] [] [] 0 1.w wx n x n w n n N= ≤ ≤ − (2)

The prediction error is

1

[] [] [].
pN

w k w
k

e n x n c x n k
=

= − −∑ (3)

For this equation, we can let n take on all values if we define []wx n to be zero for 0n < and

wn N≥ . Then writing the error in vector-matrix form,

Fig. 2 Highpass filter frequency response.

Fig. 3 LP windows.

0 20 40 60 80 100
-50

-40

-30

-20

-10

0

10

Frequency Hz

A
m

pl
itu

de
 d

B

0 60 120 180 240

0 1 2 3
new dataold data

An Implementation of ITU-T G.723.1 7

(1)(0) (1)

(0) .

pN
w w w

w w

− = −   

= −

e x x x c

x X c



 (4)

where ()k
wx is a shifted version of the windowed data vector,

 (0) (1)

0 0
[0] 0
[1] [0]

, ,
[2] [3]
[1] [2]

0 [1]

w

w w

w w

w w w w

w w w w

w w

x
x x

x N x N
x N x N

x N

   
   
   
   
   
   
   = =
   

− −   
   − −   

−   
   
   

x x

 

 

 

 (5)

The vectors are shown as infinite in extent, but have only wN non-zero elements. LP analysis

chooses a set of predictor coefficients to minimize the squared-error,

 (0) (0) (0)2

[0] 2 ,

T

T T T
w w w w w w

T Tr

ε =

= − +

= − +

e e

x x x X c c X X c

c r c Rc

 (6)

where the correlation values are functions of time differences,

 () ()

[0] [1] [1][1]
[2] [1] [0] [2]

[] , , .

[] [1] [2] [0]

p

pn T n k
w w

p p p

r r r Nr
r r r r N

r k

r N r N r N r

−

−  
   −  = = =   
  
 − −    

x x r R







   



 (7)

In the LP analysis for G.723.1, the correlation values are lag windowed (see [4]),

 [] [] [].lr k r k w k′ = (8)

The lag window has a Gaussian shape. Multiplying the correlation values by the Gaussian win-

dow is equivalent to convolving the power spectrum of the windowed signal by another Gaussian

shape. The values of the lag window used in G.723.1 correspond approximately to a Gaussian fre-

quency response with a one-sided bandwidth BWf equal to 42.5 Hz,

 2
BW

1[] exp((2)).
2lw k f kπ= − (9)

The LP analysis also uses white noise compensation,

An Implementation of ITU-T G.723.1 8

 [] [](1 []),r k r k kµδ′′ ′= + (10)

where 1/1024µ = . The use of this white noise is equivalent to using a modified error criterion

 [0] 2 [0] .T T Tr rε µ′ = − + +c r c Rc c c (11)

In this form, we can see that the error criterion has been augmented with a Lagrange multiplier

that controls the sum of the squares of the coefficient vector.

The LP equations can be efficiently solved using the Durbin-Levinson recursion to give the

optimal predictor coefficients,

 opt .=Rc r (12)

Differences: Matlab / Reference Code

• The linear prediction analysis uses the built-in Matlab routine levinson. This causes small

differences in the resulting values compared to the reference code.

• The reference code (function Comp_Lpc) scales the autocorrelation values by 21/ fN , where

fN is the frame length (240). This is not done in the Matlab code since the LP analysis is

insensitive to scaling.

• In the reference code, the lag window is defined in a table. The documentation in the stand-

ard indicates that the lag window is based on binomial coefficients. The reference code de-

fines the lag window with 6 digits of precision (values near unity). The value of BWf (one-

sided 1-σ bandwidth) which best matches the tabulated values is 42.4869/8000 or about 42.5

Hz for an 8000 Hz sampling rate. The maximum error in window values is 75 10−× . An at-

tempt was made to find a true binomial window that matches the tabulated data. The closest

binomial window is a binomial window of length 4001N = . Normalizing the window with

respect to the middle coefficient and selecting the 11 coefficients starting with the middle co-

efficient gave an error of more than 0.001 with respect to the tabulated values.

• The reference code checks for zero energy, and if found, short-circuits the calculation of the

remaining correlation coefficients by setting them to zero. The Matlab implementation does

not do this check.

An Implementation of ITU-T G.723.1 9

• The reference code for the Levinson-Durbin recursion (function Durbin) checks for numer-

ical problems by checking for decreasing absolute error with order.1 If an increase in error is

found, the order recursion is aborted. The predictor coefficients have been initialized to zero,

so in effect, any higher order predictor coefficients are set to zero. In addition, the second re-

flection coefficient is set to 0.99. This value is used outside the routine as a sine detector

(used by the pitch prediction routine).

3.1.3 Sine Detector

After the Levinson recursion, a sine detector based on the second reflection coefficient is ap-

plied. The theory behind this scheme is described in Appendix A. The presence of a sine is sig-

nalled by a second reflection coefficient larger than 0.95. The sine detector shifts a one or a zero

into a 15-bit word. If 14 or more bits are set, a flag (the 16th bit) is set. In the Matlab code, an ar-

ray is used to store the binary values. The sine detector is used in the adaptive codebook search

and in the Voice Activity detector feature.

3.1.4 LSF Quantization

The quantization of the LP parameters is done in the line spectral frequency (LSF) domain.

One set of LP parameters per frame (corresponding to the last subframe in the frame) is quan-

tized. Before quantization, the LP parameters have an additional bandwidth expansion applied

 [] [],kc k c kγ′ = (13)

where 0.994γ = , corresponding to a two-sided 3-dB bandwidth expansion of 15 Hz.

The LP coefficients are converted to LSF parameters. In the reference code, this is done by

searching for roots between discrete values, and then using linear interpolation between those dis-

crete values. The Matlab code uses the routine poly2lsf which generally returns more accurate

values.

1 This check ignores small negative errors, which also signal numerical problems.

An Implementation of ITU-T G.723.1 10

Differential Coding of the LSFs

Let the LSF parameters be denoted by iω , 1 pi N≤ ≤ . The LSF parameters are an ordered

set of values between 0 and π . A vector of fixed average values ω is subtracted from the LSFs

to give a set of mean-removed LSFs,

 .′ = −ω ω ω (14)

The quantized LSFs from the previous frame ˆ Pω are used to predict the LSFs for the current

frame. The prediction error on the mean-removed LSFs is

 () ()ˆ ,Pb= − − −ω ω ω ω ω (15)

where 12 / 32b = . This formulation will give a zero error when the current and the previous quan-

tized LSFs are equal to the mean values. The prediction error vector ω is then quantized.

LSF Quantizer

The quantizer finds the best codebook entries in the sense of a weighted squared-error. The

weighting function is a diagonal matrix W with entries equal to inverse of the distance of a par-

ticular LSF to its closest neighbour. The entries of the diagonal of the weighting matrix are

2 1

3 2

1
1 21

1 , .

min ,
p pp

N NN

ω ω
ω ω

ω
ω ωπ ω − −−

− 
 − = ∆ =   ∆        −−   ∆       

w ω
ω

ω



 (16)

For a candidate quantized vector ω̂ , the weighted error is

 ˆ ˆ() ().Tε = − −ω ω W ω ω    (17)

The quantizer is a 3-split quantizer with subvectors of dimensions 3-3-4. The error computa-

tion is split by dimension, with independent quantization of each subvector. Each component is

coded as one of 256 values, determined by an exhaustive search of the corresponding codebook.

The codebook indices are transmitted and used locally to reconstruct quantized LSFs.

Quantized LSFs to Interpolated LP Coefficients

The quantized subvectors as determined by the quantizer indices are reassembled into the

vector ω̂ . The reconstructed LSF vector is given by

An Implementation of ITU-T G.723.1 11

ˆˆ ˆ()
ˆ ˆ (1) .

P

P

b

b b

= + − +

= + + −

ω ω ω ω ω

ω ω ω





 (18)

Since the subvectors are quantized independently, the final vector may have closely spaced or im-

properly ordered LSFs. Measures are taken to correct these cases. The minimum separation of

two LSFs is to be minω∆ . If difference between ˆiω and 1ˆiω + is less than this value, they are

forced apart,

 1 1min min
1; .

2 2 2 2
i i i i

i i
ω ω ω ωω ωω ω+ +

+
+ +∆ ∆′ ′= − = + (19)

Moving one pair apart may cause the spacing to one of the neighbours to become too small. The

process of moving pairs apart is repeated until no more violations occur or a maximum of number

of trials is exceeded.

After quantization and imposing a minimum separation, the quantized LSF values deter-

mined once per frame frame are linearly interpolated to give LSF values for each subframe,

 1ˆ ˆ ˆ(1) , , 0 1.k k k P k s
s

k k N
N

α α α +
= + − = ≤ ≤ −ω ω ω (20)

The conversion of the interpolated, quantized LSF values back to LP parameters is done us-

ing the Matlab routine lsf2poly. This was found to give small differences with respect to the

reference code. The reference code first transforms the LSFs to the cos()x ω= domain using lin-

ear interpolation into a table of cosine values. To compensate for the approximations in this trans-

formation, the Matlab code does the same transformation and then brings back the values (accu-

rately) to the LSF domain, before converting the LSF values with lsf2poly.

Differences: Matlab / Reference Code

• The conversion to LSFs is done using the Matlab routine poly2lsf. This difference occasion-

ally gives rise to different quantized values.

• The conversion from LSFs back to LP coefficients uses the Matlab routine lsf2poly together

with the cosine table compensation described above. This procedure is clearly effective,

since at the decoder, the same procedure results in outputs which are exactly the same as for

the reference code.

• If the reference code fails to find all of the LSFs (due to numerical problems), it reverts to

the previous set of quantized LSFs.

An Implementation of ITU-T G.723.1 12

• The LSF values in the reference code take on values from 0 to 256, corresponding to the ra-

dian frequencies 0 to π . The values in the Matlab implementation are directly in radians.

3.1.5 Formant Weighting Filter

As part of the process of forming a target signal, the highpass filtered speech is passed

through a formant perceptual weighting filter. This is a pole-zero filter with coefficients changing

every subframe. The coefficients are taken from the unquantized LP parameters after bandwidth

expansion. The filter is implemented using the Matlab routine PZFilter in order to mimic the

filtering operation in the reference code.

Let the unquantized LP parameters for a particular subframe be represented in terms of the

all-pole LP synthesis filter1/ ()A z . The formant weighting filter is

 1
1 2

2

(/)() , 0.9, 0.5.
(/)F

A zW z
A z

γ
γ γ

γ
= = = (21)

The input to this filter is HP[]x n and the output of the filter is []Fx n .

The effect of the formant weighting filter is to deemphasize those regions of the spectrum in

which the LP spectrum has peaks and to emphasize those regions in between peaks. The idea is

that the peaks of the LP spectrum will tend to mask the noise at those frequencies, while the noise

in the valleys is more audible. An example of the weighting filter response is shown in Fig. 4.

Fig. 4 Formant weighting filter response.

0 1000 2000 3000 4000
-20

-10

0

10

20

Frequency Hz

A
m

pl
itu

de
 d

B

LP spectrum

Weighting filter

An Implementation of ITU-T G.723.1 13

3.1.6 Open-Loop Pitch Estimation

The open loop pitch estimate finds the pitch lag and pitch gain values that minimize the

mean-square prediction error. The open-loop pitch is determined from the output of the perceptu-

ally weighting filter []Fx n . The prediction error is

 [] [] [].F Fe n x n g x n L= − − (22)

The squared prediction error for a frame can be written as

 2[0,0] 2 [0,] [,],L R gR L g R L Lε = − + (23)

where the correlation terms are defined as

1

0
[,] [] [].

N

F F
n

R i j x n i x n j
−

=
= − −∑ (24)

The open-loop pitch is determined for two subframes at a time. This means that the summation is

over 120 samples. The optimum value of gain for a given lag is

 opt
[0,] .
[,]

R Lg
R L L

= (25)

With this value of gain the squared error for a frame is

2

opt
[0,][0,0] .
[,]

R LR
R L L

ε = − (26)

The best lag value L is chosen by maximizing the reduction in error as given by the second

term in the equation above,

2[0,]max .

[,]o
L

R LL
R L L

= (27)

The denominator can be computed recursively,

 2 2[1, 1] [,] [1] [1].R l l R l l x i x N i+ + = + − − − − − (28)

The search is done from small lags to large lags. Only lags with positive values of [0,]R L

are pitch candidates. Given a current lag candidate oL , a close-by lag giving a reduced squared

error becomes the next lag candidate, i.e., the new lag is chosen if

22

min
[0,][0,] , .

[,] [,]
o

o
o o

R LR L L L dL
R L L R L L

> < + (29)

An Implementation of ITU-T G.723.1 14

However, if the search encounters a reduced squared error for a lag that is not close to the

current candidate, that new reduction in error must be substantially greater than that for the cur-

rent candidate,

22

min
[0,][0,] , ,

[,] [,]
o

o
o o

R LR L A L L dL
R L L R L L

> ≥ + (30)

where A is 4/3. This additional check is done to try to avoid choosing pitch multiples.

3.1.7 Harmonic Noise Weighting

Another component of the overall perceptual filtering to form the target signal is a harmonic

noise-weighting (HNW) filter. This is a single tap FIR filter of the form

 HNW[] [] [].y n x n g x n L= − − (31)

This is a gain reduced version of a pitch predictor. The response of the filter is

 HNW HNW() 1 .LW z g z−= − (32)

The input to this filter is []Fx n and the output is the target signal []t n . The magnitude-squared of

the frequency response of the filter is

 HNW HNW HNW
2 2() 1 2 cos() .W g L gω ω= − + (33)

This response oscillates between HNW
2(1)g− and HNW

2(1)g+ . For positive HNWg , the dips occur

at 2 /k Lω π= , or /sf kF L= , where sF is the sampling rate.

The lag L is chosen by searching around the open-loop pitch value. The HNW is found for

every subframe even though the open-loop pitch value is found for two subframes at a time. The

choice of lag is governed by the same equations as for the open-loop pitch search, but a separate

set of lags and coefficients is determined for each subframe. This means that the summation for

the determining the correlation values is over the subframe length of 60 samples.

As a final check, the HNW filter is only used if the prediction gain is sufficiently high. The

prediction gain is the ratio of the input energy to the output energy of the HNW filter,

opt

2

[0,0]

1 .
[0,]1

[0,0] [,]

G

o

o o

RP

R L
R R L L

ε
=

=
−

 (34)

An Implementation of ITU-T G.723.1 15

The prediction gain should be larger than a given minimum value, min 1.6GP = ,

min

2 min

min

1[0,] [0,0] [,].

G G

G

G

P P
PR L R R L L

P

>

−
>

 (35)

The HNW gain value is set to zero if the prediction gain condition is not satisfied.

The optimal predictor gain is

 opt
[0,] .
[,]

R Lg
R L L

= (36)

The HNW gain is limited to lie between 0 and a ,

 HNW

opt

opt, opt

opt

, 1 ,

0 1,

0, 0,

a g

g ag g

g

 <
= ≤ ≤
 <

 (37)

where a is a multiplicative factor (10/32) to reduce the peak/valley ratio of the frequency re-

sponse. An example of a HNW response is shown in Fig. 5. Note that the filter emphasizes the

regions between pitch harmonics.

3.2 Analysis-by-Synthesis Target Signal

The concept in analysis-by-synthesis (AbS) is to generate outputs corresponding to different

choices of excitation signal parameters. Each candidate excitation signal is passed through the LP

synthesis filter and compared to the input speech, see Fig. 6. The combination of parameters that

Fig. 5 Harmonic noise weighting filter response (HNW 0.2, 40g L= = (200 Hz)).

0 1000 2000 3000 4000
-10

-5

0

5

10

Frequency Hz

A
m

pl
itu

de
 d

B

An Implementation of ITU-T G.723.1 16

create the best reconstructed speech is chosen. A perceptually motivated weighting filter is used

to weight the error between the input signal and the reconstructed signal. The weighting filter is

the formant-weighting filter in cascade with the harmonic noise-weighting filter,

 HNW() () ().W FH z G z G z= (38)

With some manipulation of the block diagram, the weighting filter can be moved into the in-

put signal path and into the excitation signal path as shown in Fig. 7. This rearrangement has

computational advantages since the input signal only has to be filtered once for each subframe.

The input signal filtered by the weighting filter is termed the target signal.

The excitation signal has to be filtered many times in the AbS procedure. The output of the

excitation branch is the sum of two parts, a zero-state response and a zero-input response. The

zero-input response is the same for all candidate excitation signals for a particular subframe. As

Fixed
Codebook

Adaptive
Codebook

1
()A z

LP
synthesis filter

Input speech Weighted
error

-

+

Reconstructed
speech

Error
weighting filter

()WH z

Fig. 6 Analysis-by-synthesis coding.

Fixed
Codebook

Adaptive
Codebook

1
()A z

Weighted LP
synthesis filter

Input speech Weighted
error

-

+

Target signal

Excitation
()WH z

()WH z

Error
weighting filter

Fig. 7 Restructured Analysis-by-Synthesis Coding

An Implementation of ITU-T G.723.1 17

such, it can be calculated once. For convenience, this zero-input response can be subtracted from

the target signal. The zero-state output of the excitation branch is then compared with the modi-

fied target signal. Furthermore, the composite filter in the excitation signal path can be repre-

sented by the impulse response of a weighted synthesis filter.

The excitation consists of two components. The adaptive codebook contribution is taken

from a segment of the past excitation. This supplies the pitch-like components by placing repeti-

tions of past pitch pulses into the correct position in the excitation. The second excitation compo-

nent is the fixed codebook contribution. The search procedure for the best excitation is done se-

quentially. First an adaptive codebook contribution (pitch contribution) is determined assuming

the fixed codebook contribution is zero. Then, given the adaptive codebook contribution, the ap-

propriate fixed codebook contribution is found.

3.2.1 Weighted LP Synthesis Filter

The contribution to the reconstructed signal is determined by passing the excitation through

a weighted synthesis filter. This has an all-pole synthesis filter (as will be used in the decoder)

based on the quantized LP parameters, a formant weighting filter based on the unquantized LP pa-

rameters, and a harmonic noise-weighting filter

 HNW
1() () ().
() FH z G z G z

A z
= (39)

Let the weighted synthesis filter have impulse response []h n . This is a causal infinite length re-

sponse, but we will only need the first N values of the response, where N is the subframe

length.

For convenience, a custom routine WSyn is used to implement the weighted synthesis filter

(it uses PZFilter internally). It has as input the filter state and the input signal, and has as out-

put the output signal and the updated state. The routine WSyn is used in three ways:

• Before processing a subframe, WSyn is used to calculate the impulse response (zero-state, a

unit impulse sequence as input; impulse response as output, discard the updated state).

• Before processing a subframe, WSyn is used to calculate the zero-input response to be sub-

tracted from the target signal (previous state, an all-zero sequence as input; zero-state re-

sponse as output, discard the updated state).

• After generating the excitation for a subframe, WSyn is used to update the filter state (previ-

ous state, excitation as input; discard the filter output, save the updated filter state).

An Implementation of ITU-T G.723.1 18

3.3 Subframe Level Processing

The excitation signal is created subframe by subframe from the adaptive codebook contribu-

tion and the fixed codebook contribution.

3.3.1 Adaptive Codebook

The adaptive codebook (ACB) supplies the pitch contribution to the excitation signal. The

pitch filter is a multi-tap IIR filter of the form

 [] [], 0 1,
U

L

K

p k
k K

e n b e n k L n N
=

= − − ≤ ≤ −∑  (40)

where []e n is a pitch repeated version of the past excitation,

[], 0,

[]
[mod(,)], 0.

e n n
e n

e n L L n
<

=  − ≥
 (41)

The past excitation contains both the ACB and fixed codebook contributions. The ACB generates

only the pitch-like contribution to the current excitation. The pitch repetition is necessary for

short pitch lags since the full excitation for the current subframe (0n ≥) has not been generated

yet. With the large subframe size used in G.723.1 (60 samples), this repetition is called into play

quite often. The pitch filter uses 5 taps, with the reference tap being in the middle (2LK = − and

2UK =). However, contrary to one’s expectations, the tabulated vectors of ACB coefficients do

not always have the largest coefficients near the middle of the filter.

The pitch lag L takes on 128 values from 18 to 145 inclusive. In our notation, the lag L re-

fers to the delay to the reference coefficient. Of the 128 values, the last four values are “forbid-

den”, so the effective lag range is 18 to 141. Only these lag values are generated by the coder. If a

forbidden lag is detected by the decoder, that frame is flagged as received in error.

The ACB coefficients are taken from one of two codebooks. The first has 85 vector entries;

the second has 170 entries. The first codebook is used for short pitch lags, while the second is

used for larger pitch lags. When the first codebook is used, the bit saved in indexing the shorter

codebook is reserved for use by the multipulse coding procedure. It is to be noted that the switch

of codebooks depends on the lag chosen in the even-numbered subframes (0 and 2). Thus the

codebook used for subframes 0 and 1 depends on the lag chosen for subframe 0 and the codebook

used for subframes 2 and 3 depends on the lag chosen for subframe 2.

An Implementation of ITU-T G.723.1 19

The adaptive codebook has two modes. In the even-numbered subframes (0 and 2), the lag is

sent as an absolute value. The search for lags in the even-numbered subframes is done around the

open-loop lag (open-loop lag ±1) determined earlier. This limited search range reduces computa-

tions. In the odd-numbered subframes (1 and 3), the lag is coded relative to the previous sub-

frame. The lag offset is coded with 2 bits, allowing the lag for odd-numbered subframes to have

lags offset from –1 to +2 relative to the lag of the previous subframe.

In vector-matrix notation, the pitch contribution to the excitation is

 ,p L=e E b (42)

where pe is an 1N × vector of pitch contributions, LE is an bN N× matrix of repeated excitation

signals, and b is an 1bN × vector of pitch coefficients,

[] []

, .
[1] [1]

L

U

KL U

L

L U K

be L K e L K

e N L K e N L K b

 − − − − 
  = =   
  − − − − − −   

E b
 





   

 


 (43)

The contribution to the reconstructed signal is obtained by passing pe through the weighted

synthesis filter. One has to be careful here: we are interested in the zero-state response, so the past

excitation is implicitly zero. Filtering pe , we get

 ,p L=s S b (44)

where LS is an bN N× matrix formed by convolving the columns of LE with the convolution

matrix containing the impulse response coefficients of the weighted LP synthesis filter,

 1

1 2

0 0
0

.

o

o
L L

N N o

h
h h

h h h− −

 
 
 =
 
 
 

S E







   



 (45)

In the Matlab code, this operation is carried out column-by-column using the Matlab filtering rou-

tine.

Recursive Computation

In the reference code, a recursive approach is used to reduce computations. Since the col-

umns of LE are shifted versions of each other, column ke (columns numbered from LK to UK)

can be expressed as

An Implementation of ITU-T G.723.1 20

 1

0 0 0 0 []
1 0 0 0 0

.0 1 0 0 0

0 0 1 0 0

k k

e L k

−

− −   
   
   
   = +
   
   
      

e e






 



     



 (46)

The filtered version of this column can be expressed as

1

[]
0

,0

0

k k

k

e L k

−

=

− − 
 
 
 = +
 
 
  

s He

HPe H









 (47)

where P is the shift matrix and H is the impulse response matrix. The shift matrix when used as

a premultiplier, shifts the elements of a column down; when used as a postmultiplier, it shifts

rows to the left. Since H is Toeplitz, these operations are the same and =HP PH . Then the re-

cursive update to ks is

0

1
1

1

[] .k k

N

h
h

e L k

h

−

−

 
 
 = + − −
 
 
 

s Ps 



 (48)

Optimal Pitch Contribution

Give a target vector t , the squared error is

() ()

2

2 .

T
p p

T T T T
L L L

T T
Lts Lss

ε = − −

= − +

= − +

t s t s

t t t S b b S S b

t t R b b R b

 (49)

The cross-correlation matrix LtsR is 1 bN× ; the correlation matrix LssR is b bN N× . The search

for the best ACB is over lags and over coefficient vectors. The lag search range is limited as de-

scribed earlier. For a given lag, the search for the best coefficient vectors amounts to maximizing

the sum of the last two terms in the previous expression,

 opt max(2).T
Lts Lss= −

b
b R b b R b (50)

An Implementation of ITU-T G.723.1 21

This is the formulation used in the Matlab routine.

The figure below shows an example of the action of the adaptive codebook. In this case, the

two almost equal coefficients in the coefficient vector serve to interpolate between integer lag

values.

Streamlined Comparison

In the reference code, a streamlined version of this computation is used. The quadratic form
T

Lssb R b is symmetric and so nearly half of the computations can be avoided,

1

2

[,]

[,] 2 [,].

U U

L L

U U

L L L

K K
T

Lss k m Lss
k K m K

K K k

k Lss k m Lss
k K k K m K

b b R k m

b R k k b b R k m

= =

−

= = =

=

= +

∑ ∑

∑ ∑ ∑

b R b

 (51)

The product terms k mb b can be pre-computed.

The final step in the streamlining is to make two vectors of the components in the computa-

tion; one with correlation terms and one with coefficient terms. The correlation terms are the bN

cross-correlations LtsR , the bN diagonal terms [,]LssR k k , and the (1) / 2b bN N − off-diagonal

terms of [,]LssR k m . The coefficient terms are the bN coefficients 2b , the bN diagonal terms

Fig. 8 Adaptive codebook contribution, 90L = , [0.06 0.17 0.63 0.59 0.17]= − −b .

-120 -90 -60 -30 0 30 60

-0.1

-0.05

0

0.05

0.1
SubframePast Excitation

L

An Implementation of ITU-T G.723.1 22

2
kb− , and the (1) / 2b bN N − off-diagonal terms 2 k mb b− . The test for the best vector of coeffi-

cients in Eq. (50) uses the dot product of the vector of correlation terms and the pre-computed

vector of coefficient terms.

Target Signal Update

After determining the ACB contribution, this contribution is subtracted from the target sig-

nal to give a modified target signal that will be the target for the multipulse search,

 opt .L′ = −t t HE b (52)

Pitch Taming Procedure

The adaptive codebook search uses a “taming” procedure that is meant to help reduce distor-

tion in the case of frame loss. The adaptive codebook gain values are ordered from small to large.

The range of ACB gain indices to be searched is limited by the “taming” procedure to include

only the small gain values. The taming procedure uses the sine detector described earlier. Since

the taming has no effect during normal speech, the efficacy and correctness of this process is still

in question.

3.3.2 Fixed Codebook

The fixed codebook contribution is from a multipulse coding or an ACELP coding proce-

dure. These procedures are similar at a broad level, but differ in detail. Both coding options place

a limited number of pulses in a frame. Multipulse uses 6 or 5 pulses per subframe, while ACELP

uses 4 pulses per subframe. Both options consider two separate grids for placing the pulses. One

grid contains only odd-numbered positions and the other grid contains only even-numbered posi-

tions. Both options use the same amplitude for all pulses, but each pulse can take on an arbitrary

sign.

The multipulse coding procedure places the pulses sequentially in any of the possible posi-

tions on a particular grid (see Table 1). The sequential procedure is suboptimal in that it does not

check all possible combinations of positions. Consider a hypothetical case in which the best loca-

tion for a single pulse is at location 4. The multipulse search will never check the case of pulses at

locations 2 and 6 (without one at position 4).

Table 1 Multipulse pulse locations

Grid 0 Grid 1

0 2 4 6 8 10 12 14 16 18 1 3 5 7 9 11 13 15 17 19

20 22 24 26 28 30 32 34 36 38 21 23 25 27 29 31 33 35 37 39
40 42 44 46 48 50 52 54 56 58 41 43 45 47 49 51 53 55 57 59

An Implementation of ITU-T G.723.1 23

The ACELP procedure has 4 tracks in which to place one pulse each (see Table 2). The loca-

tions marked with a “–” indicate a missing pulse, thus providing for an opportunity to have fewer

than 4 pulses per subframe. The possible pulse locations are more restrictive than for multipulse

coding, since only a single location can be used from any track. It does take interaction of the

pulses into account more fully than multipulse. To reduce computational complexity, searches in-

volving unpromising combinations of pulse positions are aborted prematurely.

3.3.3 Multipulse Coding

The multipulse excitation uses 6 pulses per subframe in subframes 0 and 2 and 5 pulses per

subframe in subframes 1 and 3. All the pulses for a subframe must be placed on one of two grids:

even-numbered positions or odd-numbered positions. One bit is used to specify which of the grids

is to be used. There are then 30 pulse positions in which to place either 6 or 5 pulses. The pulses

for a subframe all have the same amplitude (one of 24 quantized values), but the signs are speci-

fied separately with 6 or 5 bits per subframe. The pulse contribution to the excitation is

1

[] [],
fN

f k k
k

e n g n mδ
=

= −∑ (53)

where the magnitudes of the pulses | |kg are the same, but the signs can differ. This contribution

is subject to pitch repetition as noted below.

Pitch Repetition

For short pitch lags, the multipulse excitation is subject to a pitch repetition. A single bit is

used to determine whether to use this pitch repetition or not. The option to use pitch repetition is

available for subframes 0 and 1 whenever the pitch lag for subframe 0 is less than 58. The option

to use pitch repetition is available for subframes 2 and 3 whenever the pitch lag for subframe 2 is

less than 58. The bit to indicate whether to use pitch repetition is available for short pitch lags be-

cause for these short pitch lags, the ACB gain table is smaller by a factor of 2 compared to longer

pitch lags.

Table 2 ACELP pulse locations

 Grid 0 Grid 1

Track 0 0 8 16 24 32 40 48 56 1 9 17 25 33 41 49 57

Track 1 2 10 18 26 34 42 50 58 3 11 19 27 35 43 51 59

Track 2 4 12 20 28 36 44 52 – 5 13 21 29 37 45 53 –
Track 3 6 14 22 30 38 46 54 – 7 15 23 31 39 47 55 –

An Implementation of ITU-T G.723.1 24

The multipulse repetition can be achieved in one of two ways: by repeating the pulses or by

repeating the impulse response. During the multipulse search, the second method is used. During

speech synthesis, the first method is used. The pulse repetition procedure can be considered as

processing by a causal IIR filter with zero initial state,

0

1() .
1

kL
R L

k
G z z

z

∞
−

−
=

= =
−

∑ (54)

The impulse response of this filter is

0

[] [].R
k

h n n kLδ
∞

=
= −∑ (55)

The pitch-repeated contribution to the weighted signal is

[] [] [] []

[] []

[] [].

f f R

f

f

s n e n h n h n

e n h n

e n h n

= ∗ ∗

= ∗

= ∗







 (56)

The second line of this equation uses the pitch-repeated excitation,

0

[] [], 0 1,
K

f f
k

e n e n kL n N
=

= − ≤ ≤ −∑ (57)

where the upper limit is (1) /K N L= −   . The third line of Eq. (56) uses the pitch-repeated im-

pulse response,

 []
0

[] , 0 1.
K

k
h n h n kL n N

=
= − ≤ ≤ −∑ (58)

Pulse Positions and Amplitudes

The search for the pulse positions and amplitudes is done in nested loops. The outermost

loop selects whether pitch repetition is used or not. The next loop is over the two possible grids.

The next loop is a search over pulse amplitudes. The innermost loop generates the pulse locations

sequentially.

The analysis for choosing the next best pulse position can be formulated as follows. Let the

target vector be []t n (the modified target vector, less the adaptive codebook contribution) and the

impulse response of the weighted synthesis filter be []h n (actual impulse response or the pitch

repeated impulse response). If we place a pulse of amplitude mg in position m , the error is

An Implementation of ITU-T G.723.1 25

 2[] 2 [] [0,0],t m th m hhE m E g R m g R= − + (59)

where

1

0
1

[] [] []

[] [],

N

th
n
N

n m

R m t n h n m

t n h n m

−

=
−

=

= −

= −

∑

∑
 (60)

and

1

0
1

[] [] []

[] [].

N

th
n
N

n m

R m h n h n m

h n h n m

−

=
−

=

= −

= −

∑

∑
 (61)

The value of gain which minimizes Eq. (59) is

 opt
[] .
[0,0]

th

hh

R mg
R

= (62)

We will choose mg from a fixed set of quantized amplitudes, but allowing mg to take on ei-

ther sign. To reduce complexity, we use a quantized estimate of the gain and search over quan-

tized gain amplitudes nearby the estimated gain. If the gain which minimizes Eq. (59) is optg , the

error in using another value of gain can be expressed as

 2
min opt[] [] () [0].m hhE m E m g g R= + − (63)

The quantized gain that minimizes the mean-square error is that value which is closest to optg .

Estimating the Pulse Amplitude

The same pulse amplitude is used for all pulses. The amplitude of the first pulse is used as

an initial estimate of the pulse amplitude to be used for all pulses. The position of the first pulse

that gives the biggest reduction in squared error is found as

()

2
opt opt opt

2

max(2 [] [0,0])

[]max
[0,0]

max [] .

th hh
m

th
m hh

rh
m

m g R m g R

R m
R

R m

= −

 
=   

 

=

 (64)

An Implementation of ITU-T G.723.1 26

Once the best position is found, optg for that pulse is given by Eq. (62). The quantized value of

gain ˆmg nearest optg is found. If the table of quantized amplitudes has elements []gA i , the index

of the quantized amplitude is found as

()
()

optmin | | ()

min () [0,0] [] .

g gi

g hh thi

i g A i

A i R R m

= −

= −
 (65)

The search for the gain that is used for all of the pulses is limited to quantized gain values near

[]gA i (relative indices –2 to +1). The best pulse positions will be found for each of these gain

values.

Pulse Positions

Given the trial quantized gain, the error for a trial position is (from Eq. (59)),

 2[] 2 () [] () [0,0],t g th g hhE m E A i R m A i R= + (66)

where the upper sign is used if the pulse is positive and the lower sign is used if the pulse is nega-

tive. The position that gives the lowest squared error is

 ()max [] .th
m

M R m= (67)

The sign of the pulse is determined by the sign of []thR M ,

 sign([]) ().M th gg R M A i= (68)

Once a pulse position and pulse gain has been found, the effect of that pulse can be sub-

tracted from the target signal,

[] [] [] []

[] [].
M

M

t n t n g n M h n
t n g h n M

δ′ = − − ∗
= − −

 (69)

Using this expression, the cross-correlation can be updated,

1

1

[] [] []

[] [] []

[] [].

N

t h
n m

N

th M
n m

th M hh

R n t n h n m

R n g h n m h n M

R n g R n M

−

′
=

−

=

′= −

= − − −

= − −

∑

∑ (70)

An Implementation of ITU-T G.723.1 27

With the updated cross-correlation, the next pulse can be placed. As each pulse is placed, the po-

sition it occupies is marked as occupied to prevent a subsequent pulse being placed in the same

position.

Coding the Multipulse Pulse Positions

The pulse positions are coded using the combinatorial coding procedure described in Appen-

dix B. The procedure generates a code for each subframe. The codes take on ()30 5937756 = val-

ues for even subframes and ()30 1425065 = values for odd subframes. The minimum number of

bits required to code the pulse positions is 73 bits per frame. This is accomplished by splitting the

coding as follows.

• Express the code for subframe i as i i i iC p M q= + , where /i i ip C M=    and

mod(,)i i iq C M= . The modulus value iM is 162 for even subframes and 142 for odd sub-

frames.

• The iq values are coded with 16 or 14 bits per subframe, for a total of 60 bits per frame.

• The ip values are coded as 3 2 1 09 90 810xC p p p p= + + + . This value can be represented

with 13 bits per frame.

Differences: Matlab / Reference Code

• The multipulse coding differs in small details from the reference code. If several pulse posi-

tions are equally good, the reference code uses the last of the equally good positions. The

Matlab implementation uses a max operation that returns the first of the equally good posi-

tions. For the Matlab search, the order of the grid positions is reversed to get the same behav-

iour as the reference code.

• The combinatorial coding procedure used in the Matlab code differs from that in the refer-

ence code. In the terms of the analysis of Appendix B, the reference code generates a code

that marks the positions of non-pulses. The Matlab code uses the more efficient process of

coding positions of the pulses and then “reverses” the code to the give exactly the same re-

sult as the reference code.

An Implementation of ITU-T G.723.1 28

3.3.4 Combined Gain Coding

The ACB coefficient code and the code for the pulse gain are combined into a single 12-bit

value. The ACB coefficient code can take on either 85 or 170 values. The former is used only for

the multipulse mode when short pitch lags occur. When the 85 element code table is used, one-bit

becomes available to specify whether pitch repetition is to be used or not. The combined code is

calculated as follows

 pulse ACB ACB
comb

pulse ACB , ACB

24 , if takes on 170 values,

24 2048 if takes on 85 values,pr

C C C
C

C C C C

+ ⋅=  + ⋅ + ⋅
 (71)

where pulseC is the code for the pulse gain (0, , 23), pitchC is the code for the ACB vector

(0, ,84 or 0, ,169) , and prC is a one-bit code (0,1) to control pitch repetition.

3.3.5 State Update

The combined excitation signal is the sum of the ACB contribution and the fixed codebook

(multipulse or ACELP) contribution,

 [] [] [].p fe n e n e n= + (72)

This signal is clipped to prevent overloads,

1 [] 1 3 / 2,

[] [] (1 / 2) [] 1 3 / 2,
1 [] (1 / 2),

e n
e n e n e n

e n

υ υ
υ υ

υ

− > −
′ = − − ≤ ≤ −
− < − −

 (73)

where 1/ 32768υ = . This slightly unorthodox clipping strategy leaves small “holes” of size / 2υ

near the limits. The clipping is done every subframe.

At the coder, this clipped excitation is used for the “past” excitation for the ACB contribu-

tion, but the unclipped excitation is used to update the state of the LP synthesis filter (see Section

3.2.1).

At the decoder, the clipping is done once per frame. As such, the past excitation consists of

some clipped values (from previous frames) and some unclipped values (from previous subframes

in the current frame). This results in a mistracking between the coder and decoder if the excitation

signal is large enough to require clipping.

An Implementation of ITU-T G.723.1 29

4 Bitstream

The coder generates a bitstream, stored as binary data in a file. Each frame of data is pre-

ceded by a two-bit code, indicating the type of frame. For the different types of frames, the num-

ber of data bits changes. The number of data in a frame of data is as follows (including the 2-bit

frame-type indicator).

• Multipulse mode: The multipulse mode uses 24 bytes (192 bits) per frame.

• ACELP mode: The ACELP mode uses 20 bytes (160 bits) per frame.

• SID mode: A Silence Insertion Descriptor frame uses 4 bytes (32 bits) per frame in the bit-

stream file.

• Null mode: A null frame uses 1 byte (of which 2 bits are used) per frame in the bitstream file.

The number of data bits (following the 2-bit frame-type indictor) is summarized in the table be-

low.

There are common threads for the modes. The first three modes use the same LP parameter

coding. Multipulse and ACELP use the same adaptive codebook lag coding and the same com-

bined gain coding.

4.1 Multipulse Mode

The data bits for the multipulse mode are as follows.

• LP parameters: codes for the split VQ LSF parameters, total 24 bits

• Adaptive codebook lags: coded with [7, 2, 7, 2] bits per subframe, total 18 bits.

• Combined gain codes: 12 bits per subframe, total 48 bits.

• Multipulse grid codes: 1 bit per subframe, 4 bits total.

• Reserved bit: One unused bit.

• Multipulse position codes: 73 bits total.

• Multipulse signs: [6, 5, 6, 5] bits per subframe, total 22 bits.

Table 3 Bitstream format

Frame Code Frame Type Number of Data Bits

00 Multipulse 190
01 ACELP 158
10 SID 30
11 Null 0

An Implementation of ITU-T G.723.1 30

4.2 ACELP Mode

The data bits for the ACELP mode are as follows.

• LP parameters: codes for the split VQ LSF parameters, total 24 bits.

• Adaptive codebook lags: coded with [7, 2, 7, 2] bits per subframe, total 18 bits.

• Combined gain codes: 12 bits per subframe, total 48 bits.

• ACELP grid codes: 1 bit per subframe, 4 bits total.

• ACELP pulse position codes: 12 bits (3 bits for each of 4 tracks) per subframe, 48 bits total.

• ACELP pulse signs: 4 bits (one bit per track) per subframe, total 16 bits.

4.3 SID Mode

The data bits for the SID mode are as follows.

• LP parameters: codes for the split VQ LSF parameters, total 24 bits.

• SID gain code: 6 bits per frame.

An Implementation of ITU-T G.723.1 31

5 G.723.1 Decoder

The decoder is shown in Fig. 9. The decoder does no searching, so is computationally much

less onerous than the coder.

The decoder handles five modes.

1. Multipulse mode

2. ACELP mode

3. SID (silence insertion descriptor) mode

4. Null (silence) frame mode

5. Packet loss mode

Consider the first four modes for now. Active speech is coded with either multipulse or ACELP.

SID frames always follow an active speech frame. An SID frame updates the LP parameters for a

“silence” frame and sets the comfort noise level for that frame. Null frames generate comfort

noise using the parameters sent during the previous SID frame. As such an SID frame must al-

ways precede null frames. The allowable mode sequences are shown in the state transition dia-

gram shown in Fig. 10.

5.1 Excitation Generation

The excitation has two components, one from the adaptive codebook and one from the fixed

codebook.

5.1.1 Adaptive Codebook Contribution

For the active speech modes (multipulse and ACELP), the processing of the adaptive code-

book lags and gains is the same. For the comfort noise modes, the ACB contribution is not trans-

mitted and is not used to generate a “pitch” contribution. Instead, it is used to add a random com-

ponent to enhance richness of the excitation.

Fixed
Codebook

Adaptive
Codebook

LP
synthesis filter

Reconstructed
speech

Formant
postfilterclip Pitch

postfilter
1
()A z

[]pe n

[]fe n

[]y n
[]Fy n

[]e n

Fig. 9 Decoder.

An Implementation of ITU-T G.723.1 32

For the active speech modes, the ACB contribution is decoded as follows.

• Decode the ACB lags. These are absolute lags for subframes 0 and 2 and relative lags for

subframes 1 and 3. Note that the 4 largest lags for subframes 0 and 2 are “forbidden” lag val-

ues. The presence of these values triggers the packet loss mode (more on this later).

• The 24 level pulse gain code is extracted from the combined gain code.

• For multipulse coding, the ACB coefficient code can take on either 85 or 170 values. The 85-

element codebook is used for short pitch lags (less than 58 samples). For these short pitch

lags, an extra bit is thus available to signal whether to use pitch lag repetition of the pulses or

not. The pitch lag specified for subframe 0 which triggers which codebook to use for sub-

frames 0 and 1. Likewise for subframes 2 and 3, it is the pitch lag for subframe 2 determines

which codebook to use. The combined gain coding leaves some combined gain codes un-

used. If these appear, a packet loss is declared.

• For ACELP coding, the ACB coefficient code is always taken from the 170-element table.

The combined gain coding leaves some combined gain codes unused. If these appear, a

packet loss is declared.

The ACB contribution is determined by taking the past excitation, repeating and shifting if

necessary, and filtering using the vector ACB filter coefficients. The pitch filter is a multi-tap IIR

filter of the form

 [] [],
U

L

K

p k
k K

e n b e n k L
=

= − −∑  (74)

Multipulse
or

ACELP

SID
Frame

Null
Frame

Fig. 10 Mode transitions.

An Implementation of ITU-T G.723.1 33

where []e n is a pitch repeated version of the past excitation (containing both the ACB and fixed

codebook contributions),

[], 0,

[]
[mod(,)], 0.

e n n
e n

e n L L n
<

=  − ≥
 (75)

The pitch filter uses 5 taps, with the reference tap being in the middle (2LK = − and 2UK =).

5.1.2 Multipulse Excitation

The multipulse contribution is determined as follows for each subframe.

• The pulse grid bit selects the pulse grid (odd or even samples in a subframe), see Table 1.

• The pulse position codes select the pulse positions (6 positions for subframes 0 and 2, and 5

positions for subframes 1 and 3).

• Set the pulse amplitudes together with the pulse signs in the pulse positions to form the exci-

tation.

• Pitch repetition is an option for subframes 0 and 1, if the pitch lag for subframe 0 is less than

58. Similarly, for subframes, 2 and 3, pitch repetition can be used if the pitch lag for sub-

frame 2 is less than 58. If pitch repetition is enabled and the pitch repetition bit is set, take

the pulse excitation and form the shifted and repeated excitation.

The multipulse contribution to the excitation is

1

[] [],
fN

f k k
k

e n g n mδ
=

= −∑ (76)

where the magnitudes of the pulses | |kg are the same, but the signs can differ. If the pitch repeti-

tion bit is to be applied, the pitch repeated excitation contribution is

0

[] [], 0 1,
K

f f
k

e n e n kL n N
=

= − ≤ ≤ −∑ (77)

where the upper limit is (1) /K N L= −   .

5.1.3 ACELP Excitation

The ACELP contribution is determined as follows, subframe by subframe.

• The pulse grid bit selects the pulse grid (odd or even samples in a subframe), see Table 2.

An Implementation of ITU-T G.723.1 34

• Place a pulse from each of the 4 tracks in the position determined by the ACELP position

codes.

• Set the pulse amplitudes,

• Set the sign of each pulse according to the ACELP sign bits.

• Repeat a scaled version of the pulse excitation. The repetition lag is determined from the

pitch lag for a subframe, together with an offset valued from a table addressed by the ACB

coefficient code. If the repetition lag is less than 58, the pulse excitation is shifted by that lag

and scaled by a gain determined from the ACB coefficient code.

The pulse contribution to the excitation is

1

[] [],
fN

f k k
k

e n g n mδ
=

= −∑ (78)

where the magnitudes of the pulses | |kg are the same, but the signs can differ. This contribution

is subject to pitch repetition The pitch repeated version of the ACELP excitation is

0

[] [], 0 1,
K

k
f r f

k
e n g e n kL n N

=

′= − ≤ ≤ −∑ (79)

where the upper limit is (1) /K N L′= −   . The pitch repetition uses a single coefficient rg based

on the current ACB gain vector index. The lag L′ is offset from the ACB lag (the offset is based

on the current ACB gain index), presumably to try to account for the fact that the maximum gain

in the ACB gain vector is not necessarily in the middle of the gain vector.

5.1.4 SID Mode and Null Mode

The SID and Null modes generate comfort noise. The SID mode sets up the LP parameters

and the gain to be used for the comfort noise generation (CNG). The parameters transmitted dur-

ing an SID frame are the LP parameters and a gain value. No information is transmitted during a

null frame. During a null frame, the information from the previous SID frame is used.

The level for the excitation is controlled by two state variables, the SID gain and the CNG

gain. For the first SID frame following an active frame, the comfort noise level is initialized to

the received SID gain value,

 CNG SID.g g= (80)

For each null frame and SID frame, the comfort noise gain is updated subframe-by-subframe,

An Implementation of ITU-T G.723.1 35

 CNG CNG SID(1) ,gg gα α−← + (81)

where α is 1/8. For the first group of comfort noise frames, since the SID gain and CNG gain

were initialized to the SID gain, the gain remains constant. When a subsequent SID frame follows

a non-active frame, the SID gain is updated, and the gain smoothing comes into play.

Comfort Noise Excitation

The excitation in both the SID and Null modes is generated randomly. The random excita-

tion is generated two subframes (120 samples) at a time. There are two parts to the excitation, an

adaptive codebook contribution and a multipulse contribution.

The ACB contribution to the excitation is generated with a random lag in the range 123 to

143. This lag is used for the first subframe of the two subframes. The lag for the second subframe

is offset by a fixed number from this value. The lag is larger than the number of samples in the

pair of subframes and thus guarantees that only previous excitation values are accessed — there is

no need for pitch repetition. The ACB coefficient vector is chosen randomly from a 50 element

(low amplitude) subset of the 170 element ACB table of ACB coefficient vectors. The ACB con-

tribution thus supplies a random component to the excitation for comfort noise.

The multipulse contribution is generated by randomly choosing a grid (odd or even posi-

tions), randomly choosing the pulse positions in the grid (6 pulses for the first of the two sub-

frames and 5 pulses for the second of the two subframes), and randomly choosing a sign for each

pulse. The common amplitude of the pulses for both subframes is initially set to unity.

Scaled Excitation

The excitation consists of the ACB contribution and a scaled multipulse contribution,

 [] [] [].p f fe n e n G e n= + (82)

The gain fG is chosen to match a target average energy for the frame. The target average energy

is the square of the CNG gain value,

 CNG
2 .TE g= (83)

In vector notation, the goal is to minimize the difference in average energies,

()2

2

1 1 2

2 .

T T T T
T T p p f p f f f f

f f

E E G G
N N

aG bG c

− = − − +

= + +

e e e e e e e e
 (84)

An Implementation of ITU-T G.723.1 36

We can solve the quadratic equation for the multipulse gain fG .

2
2

2

, if ,

, if .
f

b b ac b ac
aG

b b ac
a

− ± − >= 
− ≤

 (85)

The first case occurs if the energy of the ACB contribution is less than the target energy. The gain

is used to scale the multipulse contribution to bring the total energy to the target energy. In that

case, solving the quadratic above will give two real solutions. We take the solution of smaller ab-

solute value (or the positive one if they have equal magnitudes). The second case occurs if no real

value of gain will allow matching to the target energy. This can happen when the energy of the

ACB contribution is already too large. In that case, the gain sets the energy of the excitation as

close as possible to the target energy. The two cases are shown in Fig. 11.

Random Number Generator

The comfort noise is generated using a mixed congruential method,

 1 () mod ,k kx ax c m+ = + (86)

where the multiplier a is 521, the increment c is 259, and the modulus m is 162 . The modulus

is of the form 2b ; the increment c is relatively prime to the modulus; and mod 4a is 1. These

properties guarantee that the sequence of pseudo-random numbers has a period of m [6]. The ini-

tial value 0x (the seed) is 12345. This pseudo-random number generator is used to generate ran-

dom integer values. In the C reference code, a 16-bit variable is used to store the random number.

This value is masked to 15-bits and scaled to give random integer values. In the Matlab code, this

behaviour is achieved as follows,

fGb
a−

2b ac
a
−

TE

1 T
N

e e
1 T
N

e e

fGb
a−

TE

Fig. 11 Two cases for the pulse amplitude determination.

An Implementation of ITU-T G.723.1 37

 1(mod 32768) ,
32768k

Ni x +
 =   

 (87)

resulting in i taking on integer values [0,1, , 1]N − .

In some cases, the random integer is further dissected to give random bits. For instance, to

generate 13 random bits (2 grid values, 11 pulse signs for a pair of subframes), N is set to 132 .

The random number generator is reset back to the initial seed, whenever a non-comfort

noise frame is processed.

5.1.5 Excitation Clipping

The excitation is formed as the sum of the ACB contribution and the fixed codebook contri-

bution,

 [] [] [].p fe n e n e n= + (88)

As the excitation is formed subframe by subframe, the ACB uses past values to create the pitch

contribution to the excitation.

The excitation is clipped once per frame. This means that in the middle of processing a

frame, some samples of the past excitation are clipped and some are not. For instance when pro-

cessing the second subframe in a frame, the immediate past excitation of 60 samples (one sub-

frame) is unclipped, but samples further back are clipped. This affects the ACB calculations.

5.2 Pitch Postfilter

During active frames, the clipped excitation is processed through a pitch postfilter. However

it is the unclipped excitation that is used to determine the parameters for the pitch postfilter. The

pitch postfilter is not used for the comfort noise (or the frame loss) modes. The output of the pitch

postfilter drives the LP synthesis filter.2

If both the pitch postfilter and the LP synthesis filter were time-invariant, the order of the

filters would not matter. However, there seems to be an advantage to having the pitch filter ahead

of the LP synthesis filter when the parameters of the pitch filter (both the lag and the coefficient)

change — the LP synthesis filter tends to smooth out the transitions.

2 The reference code provides a flag to disable the pitch postfilter. If the pitch postfilter is disabled,

the unclipped excitation is passed through to synthesize the output signal. This behaviour has been retained
in the Matlab code.

An Implementation of ITU-T G.723.1 38

The pitch postfilter uses a formulation similar to that of the harmonic noise weighting filter

encountered in the coder (see Section 3.1.7). However, now we want dips between the pitch har-

monics — the HNW filter has dips at the pitch harmonics. This change is accomplished by chang-

ing the sign before the gain in the filter. The pitch postfilter is of the form,

 ppf[] ([] []),Ey n g x n g n L= + + (89)

where Eg is an overall gain chosen to make the energy of the output signal equal to the energy of

the input signal.

Pitch Postfilter Lag

The lag L can be negative (looking backward in time) or positive (looking forward time).

The pitch postfilter is applied after a whole frame of excitation signal has been formed. For the

first subframe in the frame, the pitch lag can look forward up to 3 subframes; for the last sub-

frame in the frame, no future samples are available, so the pitch lag can only look backward. The

search for pitch lags is done around the pitch lags transmitted for subframe 0 (used to find the

pitch for subframes 0 and 1) and subframe 2 (used for subframes 2 and 3). If the transmitted pitch

lag is oL , the search for pitch predictors is done for lags 3oL− − to 3oL− + (backwards) and

3oL − to 3oL + (forward). The lag is found as the lag which maximizes the correlation [0,]R L ,

 max [0,],p
L

L R L= (90)

The correlation is computed from

1

[,] [] [],
N

n
R i j e n i e n j

−
= − −∑ (91)

where N is the length of a subframe. Only positive correlations are considered in the search for

the maximum lag.

The lag which maximizes the correlation is used to compute the optimal predictor coeffi-

cient,

 opt
[0,]

.
[,]

p

p p

R L
g

R L L
= (92)

The pitch postfilter will be turned off unless the optimal predictor has a sufficiently large predic-

tion gain. The error with the optimal pitch coefficient is (compare with the development in Sec-

tion 3.1.6)

An Implementation of ITU-T G.723.1 39

2

opt
[0,]

[0,0] .
[,]

p

p p

R L
R

R L L
ε = − (93)

Pitch Postfilter Gain

The prediction gain is,

2

[0,0]

1 .
[0,]1

[0,0] [,]

G
opt

RP

R L
R R L L

ε
=

=
−

 (94)

The prediction gain should be larger than a given minimum value, min 4 / 3GP = ,

min

2 min

min

1[0,] [0,0] [,].

G G

G

G

P P
PR L R R L L

P

>

−
>

 (95)

The pitch postfilter gain value is set to zero if the prediction gain condition is not satisfied.

The pitch postfilter gain value is found from the predictor value as,

opt

ppf opt, opt

opt

, 1 ,

0 1,

0, 0,

a g

g ag g

g

 <
= ≤ ≤
 <

 (96)

where a is a multiplicative factor (0.1875 for the multipulse mode and 0.25 for the ACELP

mode). The energy of the output signal from the pitch postfilter for this value of gain (without fur-

ther scaling) can be calculated as

 2
ppf ppf[0,0] 2 [0,] [,].R g R L g R L Lε = + + (97)

The correlation values are already available from the calculation of the prediction gain. The en-

ergy of the output signal can be matched to the energy of the input signal by choosing the scaling

value,

 [0,0] .E
Rg
ε

= (98)

An Implementation of ITU-T G.723.1 40

An example of the frequency response of the pitch postfilter is shown in Fig. 12. The scaling

gain is not included in the response. Note that this filter has valleys between the harmonics (in

contrast to the harmonic noise weighting filter). This example uses the largest gain value for the

multipulse mode.

5.3 LP Parameters

For the active modes (multipulse and ACELP) and the SID mode, LP parameters are sent in

the bitstream. These are processed as follows.

• Decode the quantized LSF values from the bitstream.

• Correct for improperly ordered or closely spaced LSF values.

• Interpolate the quantized LSF values from the quantized LSF values from the last frame to

create a vector of quantized LSF values for each subframe.

• Convert the interpolated LSF values to the corresponding LP coefficient values.

The excitation signal is filtered with the all-pole filter specified by the LP parameters. The

coefficients are updated subframe by subframe.

5.4 Formant Postfilter

The formant postfilter is applied for all modes after the LP synthesis filter. The format post-

filter is updated each subframe and is of the form,

Fig. 12 Pitch postfilter (ppf 0.1875g = , 40L = (200 Hz)).

0 1000 2000 3000 4000
-10

-5

0

5

10

Frequency Hz

A
m

pl
itu

de
 d

B

An Implementation of ITU-T G.723.1 41

 1()() (1),
()

n
F y

d

A zF z ar z
A z
γ
γ

−= − (99)

where the bandwidth expansion factors are 0.65nγ = and 0.75dγ = . The second term in the fil-

ter is an adaptive “tilt” compensation which depends on the 1-lag correlation. The parameter a is

0.25. The one-lag correlation is a time-averaged value which is updated from subframe to sub-

frame as

 (1) [1],y yr r rβ β← − + (100)

where the parameter β is 0.25, and r[1] is the normalized autocorrelation at lag 1 for the current

subframe, where

0

[] [] [].
N k

l
r k y l y l k

−

=
= +∑ (101)

The first term in formant postfilter is the ratio of two terms. Each of the terms by themselves

gives a frequency response which gets less peaky as the gamma factor is decreased. However, if

the gamma factors are equal, the response is flat.

An example of the formant postfilter is shown in Fig. 13. The LP spectrum is the same as

used in the example of a formant weighting filter (see Fig. 4). For this plot, the 1-lag autocorrela-

tion was taken from the correlation values used to generate the LP coefficients. This example has

quite a peaky LP response, but the postfilter is quite flat. The dashed line in the figure shows the

postfilter without the tilt compensation.

Gain Scaling

The output of the formant postfilter is scaled to match the energy of its output to the energy

of its input. The scaling gain required to achieve this is

 ,
T

s T
F F

g =
y y

y y
 (102)

where y is the vector of outputs from the LP synthesis filter for a subframe, and Fy is the corre-

sponding vector of outputs from the formant postfilter. Rather than use a constant gain for the

subframe, the implementation changes the gain sample-by-sample,

 [] (1) [1] .A A sg n g n gα α= − − + (103)

An Implementation of ITU-T G.723.1 42

Fig. 13 Formant postfilter. The dashed line shows the postfilter filter response with no tilt compensation.

0 1000 2000 3000 4000
-20

-10

0

10

20

Frequency Hz

A
m

pl
itu

de
 d

B
LP spectrum

Formant postfilter

An Implementation of ITU-T G.723.1 43

6 Packet Loss Concealment

The G.723.1 decoder has provision to fill in missing frames of data. The basic strategy is to

generate an output based on past pitch lags and excitation energies. The regenerated excitation is

used as input to an LP synthesis filter based on past LP coefficients. The packet loss concealment

(PLC) strategy has tentacles in many parts of the decoder.

In the reference code and Matlab implementation, lost frames are signalled in a frame loss

file. Each word of that file is a 0 (no frame loss) or a 1 (frame loss). The presence of certain ille-

gal code values in the bitstream file are also used to signal a lost frame.

6.1 Preparations for PLC

During active speech frames, certain quantities are calculated in anticipation of subsequent

lost frames.

Pitch Lag

The unclipped excitation is used to choose a pitch value that will be used for packet loss

concealment in subsequent frames. That pitch lag is chosen over the last half frame (two sub-

frames). The lag is chosen based on the maximizing the correlation [0,]R L ,

 max [0,],p
L

L R L= (104)

The correlation is computed from

1

[,] [] [],
N

n
R i j e n i e n j

−
= − −∑ (105)

where N is the length of a two subframes. The search for lags is around (–3 to +3 relative to) the

pitch lag for subframe 2. Only positive correlations are considered in the search for the lag. The

lag is set to zero to disable a pitch contribution to the packet concealment excitation. There is also

a test on the prediction gain. If the prediction gain is less than min 8 / 7GP = , the pitch contribution

is turned off (compare with the analysis in Section 3.1.7),

min

2 min

min

1[0,] [0,0] [,].

G G

G
p p p

G

P P
PR L R R L L

P

>

−
>

 (106)

The value pL is saved lest the next frame is lost. In the Matlab code, value of NaN (not-a-num-

ber) signals that the pitch contribution should be turned off.

An Implementation of ITU-T G.723.1 44

Excitation Gain

A gain value for an “unvoiced” contribution for future lost frames is also saved. This value

is taken from the pulse amplitudes (multipulse or ACELP) for the last two subframes in a frame.

The gain value is determined by averaging the code indices of the pulse amplitudes for those two

frames. Let the table of gains be ()gA i (24 values). The gain values are ordered in amplitude.

Given the two indices 2i and 3i , the gain is calculated as,

 PLC
2 3 .

2g
i iA A  + =     

 (107)

In the Matlab code, the gain calculation uses a table indexed by 2i and 3i .

SID Gain

As the earlier mode switching diagram showed, an SID frame should precede null frames.

An SID gain is pre-calculated during an active speech frame as protection against the loss of an

SID frame. The average excitation energy in the last half frame of the last active frame is used to

calculate the SID gain,

 SID ,Tg = e e (108)

where e is the vector of excitation samples for the last half of the frame.

The gain is quantized using the same quantizer used to generate the gain indices for SID

frames. The quantizer uses a segmented compression function. The quantizer has 4 segments;

each segment has 16 uniformly spaced levels; the step sizes are in the ratios 1:2:4:4, i.e., the last

two segments have the same step size. In the Matlab code, the quantizer is specified by a table of

1qN − decision levels. Let the decision levels be ()Dq i , for 1, 1qi N= − . The decision levels

are in increasing order. For convenience, let (0)Dq = −∞ and ()D qq N = ∞ . The quantizer cells

are the intervals

 { }() (1) .i D DS q i g q i= ≤ < + (109)

The quantizer index is determined by which region g lies in,

 () if .Q ii g i g S= ∈ (110)

The inverse quantization step is a table lookup,

 ˆ (()).V Qg q i g= (111)

An Implementation of ITU-T G.723.1 45

The quantizer input/output characteristic is shown in Fig. 14. The thick lines indicate regions

in which both end points (in the reference code) are included in the region. Thin lines indicate re-

gions in which neither end point is in the region.

The quantized SID gain value will be used for null frames if the preceding (non-PLC) frame

was active speech. This indicates that an SID frame was lost. In that case, the CNG gain is reset

to the SID gain.

Differences: Matlab / Reference Code

• In the reference code, the SID gain quantizer is implemented as a search for the appropriate

segment and then a binary search within a segment. In the Matlab code, a binary search

based on a table of quantizer break-points is used.

• The quantizer as defined above (and used in the Matlab implementation) always has the

lower decision level included in the region. In the reference code the end-point behaviour is

not consistent from quantizer cell to quantizer cell. To be compatible, the Matlab code adds a

small value (the machine epsilon) ε to the decision boundaries as needed to be compatible

with the reference code.

Fig. 14 SID gain quantizer. Thick lines indicate quantizer regions in which both end

points are included in the region. Thin lines indicate quantizer regions in
which neither end point is included in the region.

0 0.002 0.004 0.006 0.008 0.01 0.012
0

0.002

0.004

0.006

0.008

0.01

0.012

Gain value

Q
ua

nt
iz

ed
 g

ai
n

An Implementation of ITU-T G.723.1 46

6.1.1 PLC Interaction with Modes

A PLC frame can occur at any point, knocking out active speech or comfort noise frames.

These cases are handled differently.

• If a PLC frame follows an active speech frame, a packet loss concealment strategy (PLC

Mode) is employed using the information saved from the last active frame.

• If a PLC frame follows an SID frame or a null frame, it is assumed that the lost frame can be

well-represented with comfort noise. In that case, the null frame mode is employed.

• If a PLC frame knocks out an SID frame, a following null frame picks up the saved value of

the SID gain (as outlined above).

6.2 PLC Mode Excitation

The PLC mode keeps a count of the number of successive frame losses. The excitation gain

is scaled down on each PLC frame (including the first one in a sequence),

 PLC PLC,A Aβ← (112)

where β is 3/4. On the third error frame, the output is muted. This is accomplished by setting the

excitation, including the past excitation memory, to zero.

Voiced Frames

If the PLC pitch lag (generated during the last active speech frame) indicates that the frame

should be considered to be voiced, the excitation is calculated as

 [] [],e n e nβ=  (113)

where β is 3/4 and []e n is the pitch repeated past excitation,

[], 0,

[]
[mod(,)], 0.p p

e n n
e n

e n L L n
<=  − ≥

 (114)

This contribution is calculated for the whole frame. There is no other component to the excitation

during voiced speech.

Unvoiced Frames

For unvoiced speech, the excitation consists of scaled uniform random values,

 PLC[] [],e n A nη= (115)

An Implementation of ITU-T G.723.1 47

where []nη is a random value in the range [–1,1). The random number generator is basically the

same as used for comfort noise, except that the resulting values are interpreted as signed values. A

separate seed (never reset) is kept for the PLC mode. The random number generated by the ran-

dom number generator is kx , taking on values between 0, ,65535 (see Eq. (86)). The random

excitation sample is calculated as

, 32768,

32768[]
65536 , 32768.

32768

k
k

k
k

x x
n

x x
η

 <=  − ≥


 (116)

The past excitation is set to zero for subsequent frames.

6.3 PLC Mode LP Synthesis

There are no LP parameters available during a PLC mode. Instead, a default LP code vector

is used. This code vector gives an all-zero difference LSF vector. The LSF vector is then (see

Eq. (18)),

 ˆ ˆ() ,Pb= − +ω ω ω ω (117)

where ˆ Pω is the quantized LSF vector from the last “good” frame and ω is the fixed average

LSF value. In addition, the prediction coefficient b used for the differential coding is increased

from the normal 12/32 to 23/32. The LSF vector moves from the previous quantized LSF vector

towards the mean LSF vector.

Before conversion from LSFs to LP coefficients, an increased minimum separation of the

LSF values is imposed.

An Implementation of ITU-T G.723.1 48

7 Comments

Through careful attention to detail, the Matlab implementation duplicates the results for the

decoder. The coder is only a partial implementation – only the multipulse mode has been pro-

grammed. In the process of implementing G.723.1 in Matlab, much has been learned. Some com-

ments on the implementation are given below.

• There are differences in the bitstream files produced by the Matlab implementation and the

reference code. In most cases, the differences are due to quantizing the LP parameters to a

different value. A difference in quantized LSF values for one frame will result in the next few

frames differing due to the memory implicit in the coder. In fact, the Matlab implementation

probably computes more accurate LP values. The conversion from quantized values back

again is not the culprit since the decoder uses the same procedure successfully. In the end,

the differences are insignificant in terms of the quality of the reproduced speech. A future en-

deavour would be to reproduce exactly the LP analysis and the LP coefficient to LSF conver-

sion as done in the reference code. This should reduce, if not eliminate, differences between

the Matlab and reference code for the coder results.

• The Matlab code has been written for enhanced modularity and not necessarily for fast com-

putation. Nonetheless, the coder runs relatively fast. The elapsed time for coding a speech

file of length t seconds is about 3.5t on a PC workstation (3 GHz). The elapsed time decod-

ing the t seconds of speech is about 0.8t , faster than real time.

• During the investigation of the ACB tables, it was noticed that some of the gain vectors do

not have the largest coefficients near the middle of the vector. A multi-element pitch gain

vector can serve to interpolate between integer lags, but also can supply a delay or advance

relative to the pitch lag. Some of the gain vectors have the largest element at one end or the

other. To wit, the 119th and 120th elements of the 170 element ACB gain vector table are

 117

120

[1.0342 0.0999 -0.0634 0.0139 -0.0170],

[-0.0065 -0.0368 0.0350 -0.0887 0.9630].

T

T

=

=

b

b
 (118)

These cases could be represented with a change in lag (by two samples) and a vector with the

largest value in the middle. It is my suspicion, that the ACB gain codebook could be more

effective if such changes were made.

An Implementation of ITU-T G.723.1 49

References

1. ITU-T Recommendation G.723.1, Dual Rate Speech Coder for Multimedia Communications
Transmitting at 5.3 and 6.3 kbit/s, March 1996.

2. ITU-T Recommendation G.723.1 Annex B, Dual Rate Speech Coder for Multimedia Commu-
nications Transmitting at 5.3 and 6.3 kbit/s: Silence compression scheme, Nov. 1996

3. ITU-T Recommendation G.723.1 Annex A, Dual Rate Speech Coder for Multimedia Commu-
nications Transmitting at 5.3 and 6.3 kbit/s: Alternate specification based on floating point
arithmetic, Nov. 1996.

4. P. Kabal, “Ill-Conditioning and Bandwidth Expansion in Linear Prediction of Speech”, Proc.
IEEE Int. Conf. Acoustics, Speech, Signal Processing (Hong Kong), pp. I-824–I-827, April
2003.
See also P. Kabal, “Ill-Conditioning and Bandwidth Expansion in Linear Prediction of
Speech”, Technical Report, Electrical & Computer Engineering, McGill University, Feb.
2003: http://www-mmsp.ECE.McGill.CA/Documents.

5. J. P. M. Schalkwijk, “An Algorithm for Source Coding”, IEEE Trans. Inform. Theory, vol. 18,
pp. 395–399, May 1972.

6. D. E. Knuth, The Art of Computer Programming, Vol. 2, Seminumerical Algorithms, 3rd edi-
tion, Addison-Wesley, 1997.

http://www-mmsp.ece.mcgill.ca/Documents

An Implementation of ITU-T G.723.1 50

Appendix A Sine Detector

Consider samples from a discrete-time sine wave. This signal has a spectrum with two poles

on the unit circle,

 1 2
1() .

1 2cos o
S z

z zω − −=
− +

 (119)

The optimal prediction error filter will generate zeros to cancel the poles,

 1 2() 1 2cos .oH z z zω − −= − + (120)

The corresponding predictor has coefficients 2cos oω and -1.

This analysis shows that a 2-tap predictor can exactly predict the next value of a sine from

the previous two samples. This can be written as

 [] 2cos [1] [2],os n s n s nω= − − − (121)

where [] cos()os n nω φ= + . This relation can also be verified using standard trigonometric identi-

ties. Note that for an optimal predictor, the last coefficient is equal to the negative of the last re-

flection coefficient. Thus a second reflection coefficient of 1 indicates a sine wave.

In a speech coder, the windowing of the signal will mean that the calculated correlations are

not exactly that for a sine wave and the predictor coefficients are not exactly those needed to pre-

dict a sine. However, for reasonable size frames, the second reflection coefficient will be near

unity and hence values near unity can be used to detect the presence of a sine.

An Implementation of ITU-T G.723.1 51

Appendix B Combinatorial Coding

The problem under consideration is how to code the pulse positions. Combinatorial coding

assigns a code for each combination of pulse positions. The procedure for doing this coding has

been reinvented many times, possibly described first in the engineering literature in [5].

Consider K pulses placed in N possible positions. Let the pulse positions be ordered and let

the positions be numbered from 1 to N . The minimum number of bits for coding the positions of

randomly placed pulses can be determined from a combinatorial argument. The total number of

different combinations of K pulses in N positions is ()N
K . If each possibility is equally likely,

the coding requires at least

 ()min 2log NN K= (122)

bits. This is the lower bound on the number of bits required to code unconstrained random pulse

positions. Direct coding of the pulse positions is much more expensive, requiring 2logK N bits.

For G.723.1, the number of positions is 30 and the number of pulses is either 6 (even subframes)

or 5 (odd subframes). For the even subframes, minN is 19.2 bits, while direct coding would re-

quire 29.4 bits.

The pulse positions for a block can be coded by directly tabulating the ()N
K possible combi-

nations of pulse positions. Consider a binary N -vector of weight K . Ones mark the positions of

the pulses, while zeros mark the empty positions. Index the vectors from 0 to () 1N
K − , with the

vectors arranged in lexicographic order. For this purpose, number the data positions from 1N −

for the most significant position to 0 for the least significant position.

The following algorithm can be used to determine the index for a given data vector. The vec-

tor is searched from the most significant (lexicographic) position to the least significant position,

n running from 1N − to 0. Whenever a one is encountered in position n , the index is increased

by ()1n
m
− where m is the number of ones yet to be found. The resulting value is the index to the

lexicographic ordering.

An Implementation of ITU-T G.723.1 52

Consider an N element binary vector ,a with elements ,na where 1, , .n N=  and where

ones mark the positions of pulses. Let nw represent the number of pulses at positions , , .n N

The combinatorial index corresponding to the position vector can be written as

 ()
1

() .
N

n
nn

N nI a wa
=

−=∑ (123)

The complementary problem of determining a data vector containing pulse positions can be

solved by comparing the index value with the same combinatorial values to determine if a one or

zero should be placed in a given position.

The pulse coding problem may be viewed as finding a path through the trellis shown in Fig.

15. Moving diagonally downward in the trellis decreases the number of pulses remaining. Mov-

ing across in the trellis decreases the number of positions remaining. Each node in the trellis is

labelled with a combinatorial term. If a pulse (a one) is encountered, the value at the node is

added to the index and the downward diagonal path is taken. Now solve the sub-problem with

one fewer position and one fewer pulse. If no pulse (a zero) is encountered, the index remains un-

changed and a horizontal path is taken. Now solve the sub-problem with one fewer position.

At a given horizontal level in the trellis, the values on the nodes decrease in moving to the

right,

 () () for 1.n n k km m
−> ≥ (124)

()1N
K
−

()2
1

N
K
−
−

()3
3

N
K
−
−

()0
1

()1
2

()2N
K
− ()3N

K
−

()3
2 ()2

2

()2
1 ()1

1()3
1

Fig. 15 Combinatorial coding trellis.

An Implementation of ITU-T G.723.1 53

The index determined as described will reflect a strict lexicographic ordering—moving a pulse

from a more significant position to a less significant position can only decrease the index value.

Furthermore, the index value corresponding to a pulse configuration is unique.

The largest index value results when the leftmost diagonals in the trellis are traversed,

()

()
max

1

1

1.

K

k

N K kI k

N
K

=

− + −=

= −

∑
 (125)

We will show by induction that the L term partial sum is

max

1

1
()

1.

L

k

N K k
I L

k

N K L
L

=

− + − 
=  

 
− + 

= − 
 

∑
 (126)

It can be shown that if this is true for L , it is also true for 1L + ,

max max(1) ()
1

1
1

1
1.

1

N K L
I L I L

L

N K L N K L
L L

N K L
L

− + 
+ = + + 

− + − +   
= + −   +   

− + + 
= − + 

 (127)

Since the result can directly be shown to be true for the one term partial sum (1L =), it is true for

all partial sums and the full sum (L K=).

The smallest index value results when the rightmost diagonals are traversed,

 min 0.I = (128)

Therefore, the index determined by the algorithm takes on all ()N
K integer values.

The decoding problem can also be viewed as traversing the trellis. This time the index value

is compared to the value at the node. If it is as large, a pulse is placed in that position.

The contribution to the index value of all subsequent pulses is strictly less than that for a sin-

gle pulse at the position under consideration. If a pulse is placed at that position, the index value

is then decreased by the value at that node and the algorithm can be repeated on a sub-problem

with one less position and one less pulse. The total number of comparisons to be made is 1n − .

An Implementation of ITU-T G.723.1 54

The combinatorial terms on the nodes of the trellis can be stored as a table of values. If the

table size is considered excessive, these terms can be computed recursively using a single multi-

ply and divide. This is possible since ()n
m , is followed by either ()1n

m
− or ()1

1
n
m
−
− on a path

through the trellis. A strategy that falls between a full table and full computation stores the combi-

natorial terms for the top row of nodes. When the path traversed descends from the top row, the

values for the next row of nodes can be determined from () () ()1 1 ,1
n n n
m m m
− −= −− avoiding multipli-

cations and divisions.

This coding procedure requires K additions and K references to combinatorial terms. The

decoding requires N references to the combinatorial terms, but still only K additions. The com-

binatorial terms can be stored in a table of less than K N values. Alternately several algorithms

are available to generate the required terms recursively.

	1 Introduction
	2 General Comments on the Matlab Implementation
	2.1 Input / Output
	2.2 Filters
	2.3 Indexing

	3 G.723.1 Coder
	3.1 Frame Level Processing
	3.1.1 Highpass Filter
	3.1.2 LP Analysis
	3.1.3 Sine Detector
	3.1.4 LSF Quantization
	Differential Coding of the LSFs
	LSF Quantizer
	Quantized LSFs to Interpolated LP Coefficients

	3.1.5 Formant Weighting Filter
	3.1.6 Open-Loop Pitch Estimation
	3.1.7 Harmonic Noise Weighting

	3.2 Analysis-by-Synthesis Target Signal
	3.2.1 Weighted LP Synthesis Filter

	3.3 Subframe Level Processing
	3.3.1 Adaptive Codebook
	Recursive Computation
	Optimal Pitch Contribution
	Streamlined Comparison
	Target Signal Update
	Pitch Taming Procedure

	3.3.2 Fixed Codebook
	3.3.3 Multipulse Coding
	Pitch Repetition
	Pulse Positions and Amplitudes
	Estimating the Pulse Amplitude
	Pulse Positions
	Coding the Multipulse Pulse Positions

	3.3.4 Combined Gain Coding
	3.3.5 State Update

	4 Bitstream
	4.1 Multipulse Mode
	4.2 ACELP Mode
	4.3 SID Mode

	5 G.723.1 Decoder
	5.1 Excitation Generation
	5.1.1 Adaptive Codebook Contribution
	5.1.2 Multipulse Excitation
	5.1.3 ACELP Excitation
	5.1.4 SID Mode and Null Mode
	Comfort Noise Excitation
	Scaled Excitation
	Random Number Generator

	5.1.5 Excitation Clipping

	5.2 Pitch Postfilter
	Pitch Postfilter Lag
	Pitch Postfilter Gain

	5.3 LP Parameters
	5.4 Formant Postfilter
	Gain Scaling

	6 Packet Loss Concealment
	6.1 Preparations for PLC
	Pitch Lag
	Excitation Gain
	SID Gain
	6.1.1 PLC Interaction with Modes

	6.2 PLC Mode Excitation
	Voiced Frames
	Unvoiced Frames

	6.3 PLC Mode LP Synthesis

	7 Comments
	References
	Appendix A Sine Detector
	Appendix B Combinatorial Coding

