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Abstract

This thesis introduces a novel receiver structure for the detection of data in the

presence of rapidly changing nuisance parameters. Underlying equations character-

izing the novel receiver are presented �rst. This is followed by a presentation and

explanation of the receiver implementation; the implementation uses a parallel struc-

ture to facilitate a real time processing.

A theoretical analysis of this receiver is provided. Here, we introduce an existence

condition; this condition suggests the broad applicability of our receiver. Next, we

present two algorithms, one based on rate distortion theory, and the other on the

Generalized Lloyd Algorithm (GLA). These two algorithms facilitate the creation of

the novel receiver's variables for many practical applications.

We apply our receiver to four communication environments of practical interest.

These environments can be described brie
y as follows: (1) an MPSK signal is sent

across a channel introducing noise and a phase o�set; here, the phase o�set is constant

over only N symbols, where N is small but greater than two (e.g., N = 3); (2) as

in (1), an MPSK signal is sent across a channel introducing noise and a phase o�set;

this time, the phase o�set is constant over only N = 2 symbols; (3) a coded MPSK

signal is sent across a channel adding noise and rapidly changing phase; and, �nally,

(4) independent data symbols are sent across a channel introducing timing o�set and

noise; here, the timing o�set changes in every received burst of data. We show that, in

these environments, our receiver is able to o�er gains when compared to the receivers

in the current literature; our receiver gains in terms of performance, complexity, or

both.

There exists a great potential for future research. The novel receiver introduced

in this thesis can be applied to many other communication environments of practical

interest.
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R�esum�e

Cette th�ese pr�esente un nouveau type de r�ecepteur pour la d�etection de donn�ees

en pr�esence de param�etres nuisibles variant de fa�con rapide. Les �equations char-

act�erisant le nouveau r�ecepteur sont pr�esent�ees d'abord, suivies par la pr�esentation et

l'explication de l' impl�ementation du r�ecepteur. L'impl�ementation utilise une struc-

ture en parall�ele a�n de faciliter le traitement en temps r�eel.

Une analyse th�eorique de ce r�ecepteur est fournie. Une condition d'existence

est introduite qui sugg�ere une large application du r�ecepteur. Par ailleurs, deux

algorithmes sont pr�esent�es, l'un bas�e sur la th�eorie de la distortion de d�ebit, l'autre

sur l'algorithme g�en�eralis�e de Lloyd. Ces deux algorithmes facilitent la cr�eation des

variables du nouveau r�ecepteur en vue d'applications pratiques.

Nous appliquons notre r�ecepteur �a quatre environements de communication d'int�erêt

pratique. Ces environements peuvent être d�ecrits sommairement comme suit : (1)

un signal MPSK est transmis sur un canal qui introduit du bruit et un changement

rapide de la phase; pour ce cas, on consid�erera la phase constante sur N > 2 symboles;

(2) comme dans le cas (1), un signal MPSK est transmis sur un canal introduisant

du bruit et un changement rapide de la phase; cette fois, on consid�erera la phase

constante sur N=2 symboles; (3) un signal MPSK cod�e est transmis sur un canal

ajoutant du bruit et des changements de phase rapides; et �nalement (4) des symboles

ind�ependants sont transmis sur un canal introduisant des �ecarts de synchronisation et

du bruit; ici, les �ecarts de synchronisation changent pour chaque `burst' de donn�ees.

Nous d�emontrons que, dans ces environements, notre r�ecepteur est capable d'o�rir

des gains en comparaison des r�ecepteur d�ecrits dans la litt�erature; notre r�ecepteur

gagne en terme de performance, complexit�e ou les deux.

Il existe un grand potentiel pour des recherches futures. Le nouveau r�ecepteur

introduit dans cette th�ese peut être appliqu�e �a plusieurs autres environements de

communication d'int�erêt pratique.
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Chapter 1

Introduction

This �rst chapter introduces the area of interest in this thesis, namely data detection

in the presence of nuisance parameters. This is followed by a summary of the original

contributions of this thesis.

1.1 Data Detection in the Presence of Nuisance

Parameters

In all communication environments, the signal that arrives at the receiver di�ers

from the information-bearing signal output by the transmitter. This is because the

transmission medium, also called the channel, introduces some impairments.

A primary impairment introduced by the channel is noise. Noise refers to an un-

wanted signal added, by the channel, to the transmitted signal. A common example of

noise is thermal noise, a noise caused by the thermal motion of electrons in electronic

equipment (e.g., wires and antennas). This noise is modeled as a zero-mean Gaussian

random process. Additionally, this noise is modeled as a white noise, meaning it has

a 
at power spectral density, 
at for all frequencies.

Receivers detect data in the presence of noise using well known methods such

as the commonly used Bayesian criteria. The Bayesian criteria can generate data

2



Chapter 1: Introduction 3

symbols that are most likely to match the originally transmitted data.

In addition to noise, channels also introduce other impairments, called nuisance

parameters. Nuisance parameters refer to a phase o�set, a frequency o�set, a timing

o�set, and a channel gain (or attenuation).

A �nal impairment, which can be viewed as a vector of nuisance parameters, is

intersymbol interference (ISI). ISI is described as follows. Channels act as linear �lters

having a limited bandwidth. This causes the spreading of pulse waveforms that pass

through it. Whenever the channel bandwidth is close to the pulse bandwidth, the

pulse spreading will exceed a pulse duration, and neighboring pulses will overlap.

This overlapping is called intersymbol interference (ISI).

Receivers that detect data in the presence of the nuisance parameters and noise

are the topic of this thesis.

1.1.1 Traditional Receivers for Data Detection in the Pres-

ence of Nuisance Parameters

Receivers capable of detecting data in the presence of the nuisance parameters and

noise have been around a long time. The traditional receivers, usually quite e�ective

for continuous communication, are based on a simple idea: track the nuisance param-

eters using some tracking circuitry, remove these parameters from the received signal,

and then use the optimal Bayesian methods to detect the data in the presence of the

noise.

In what follows, we present the traditional tracking circuitry used to follow the

nuisance parameters.

Phase Tracking

The circuitry used to track a phase o�set is called the Phase Locked Loop (PLL) [1].

The PLL is made up of three basic components, as shown in Figure 1.1.

The multiplier and loop �lter generate a di�erence signal, a signal indicating the
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LOOP FILTER

r(t) phase 
error signal

phase

estimate

Voltage Controlled Oscillator

V  C  O

Figure 1.1: A basic phase locked loop (PLL).

di�erence between the phase to be tracked and the PLL's current estimate of the

phase. The voltage controlled oscillator (VCO) updates the PLL's phase estimate

using this di�erence signal [1][2, chapter 8].

Tracking the Timing O�set

There are two traditional schemes for tracking a timing o�set.

The �rst method, deductive timing recovary, is shown in Figure 1.2. Here, a signal

compensating for the timing o�set (labeled the timing tone) is generated directly from

the incoming signal. In many cases, this signal has an unacceptable jitter, and the

jitter is reduced using a feedback loop [3, p.561].

The second traditional timing recovary method, inductive timing recovary, is based

on a feedback loop much like the PLL. It is shown in Figure 1.3. Several di�erent

implementations of this loop exist, including early-late gate timing recovary [3, p.577],

sample-derivative timing recovary [3, p.576], and Inphase/Midphase timing recovary

[4, p.437].
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r(t) Sampled 

Received

Signal
TIMING

TONE

DETECTOR

PHASE

DETECTOR

LOOP

FILTER
V  C  O

timing
tone

Figure 1.2: Deductive timing recovary.

LOOP FILTER

error signal

Voltage Controlled Oscillator

V  C  O

Estimate
Timing Error

timing 

timing  tone

r(t)

Sampled Recieved Signal

Figure 1.3: Inductive timing recovary.
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LOOP FILTER

error signal

Voltage Controlled Oscillator

V  C  O

Estimate

r(t)
Freq. Error

frequency 

Frequency 

Estimate

Figure 1.4: Automatic frequency control (AFC) loop.

Tracking the Frequency O�set

A frequency o�set is traditionally tracked in one of two ways. First, in cases of small

frequency o�sets, the PLL used for phase tracking can also follow a frequency o�-

set. Alternatively, in cases of large frequency o�sets, an automatic frequency control

(AFC) loop is used [5]. This loop, shown in Figure 1.4, demonstrates the same form

as the PLL.

Dealing with the ISI

The set of devices designed by communication engineers to remove the e�ects of

ISI in the received signal are collectively referred to as equalizers [6, chapter 6].

Traditionally, equalizers update a set of parameters, using a feedback loop. These

parameters allow the equalizer to follow the channel characteristics which cause ISI,

and undo their e�ects.
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1.1.2 Limitations of the Traditional Data Detection Methods

The traditional methods of data detection, which �rst track and then remove the

nuisance parameters, facilitate very good data detection in many communication

environments of practical interest. For instance, these techniques are used e�ectively

in modern day modems which receive data sent along telephone lines.

However, the rapid expansion of telecommunications has lead to a number of

communication environments in which the traditional tracking methods are inappro-

priate. The key stumbling block limiting the application of traditional methods is

easily explained. It sometimes happens that modern transmission environments pro-

vide a receiver with a signal containing nuisance parameters which change quickly. In

these cases, the traditional methods, which use a feedback loop to track the nuisance

parameters, are unable to follow the rapid changes in the nuisance parameters. These

schemes become ine�ective in such environments.

There are many modern-day examples of communication environments which pro-

vide a receiver with quickly changing nuisance parameters.

One example is a communication system employing burst transmission of digital

data, such as in time division multiple access (TDMA). TDMA refers to a method of

sharing the communication medium. Here, time is split into a number of narrow slots,

and each user sends his or her message in bursts of data, with one burst �t into one

slot. Only one user may transmit in each slot, and some system agreement is in place

to determine who transmits in each slot. TDMA is currently in use in many satellite

communication systems and mobile cellular communication systems worldwide.

The reason a TDMA system provides receivers with quickly changing nuisance

parameters is as follows. A receiver in a TDMA system, call it A, is only given

access to data in time slots addressed to A. As a result, a long interval of time

may elapse between the bursts of data which arrive at A. During this time, nuisance

parameters may drift, moving far away from their values in the earlier time slot. The

nuisance parameters are e�ectively a uniform random variable at the beginning of

each burst entering A. Hence, we have nuisance parameters which can be viewed as

quickly changing. One nuisance parameter which behaves in this way is phase |
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Figure 1.5: The received signal in a mobile communication environment.

small frequency o�sets present in TDMA systems result in large phase shifts between

received bursts. In this TDMA environment, traditional detection based on a tracking

is ine�cient.

Another communication system in which receivers experience rapidly changing

nuisance parameters is the mobile cellular system. Here, a tower transmitter sends an

electromagnetic wave, through the air, to a vehicle. Buildings and houses surrounding

the moving vehicle act as natural scatters, re
ecting the radio signal. The terrain also

re
ects the radio signal. Hence, the signal picked up by a receiver mounted on the

vehicle is the combination of many re
ected versions of the originally transmitted

signal, and possibly the original signal itself [7, chapter 1]. This is depicted in Figure

1.5.

The combining of the many re
ected signals leads to nuisance parameters in the

received signal. These include a phase o�set, a channel gain, and possibly ISI. As the

receiver moves, the houses and buildings that surround the receiver change, causing

the re
ected waves arriving at the receiver to demonstrate di�erent properties. They

now combine in a di�erent way, leading to a received signal with di�erent character-

istics. The nuisance parameters contained in the received signal, such as phase o�set,

gain, and ISI, are among the characteristics in the received signal that change. These
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changes can be very rapid, depending on the speed of the vehicle and the environ-

ment surrounding the vehicle. In this mobile environment, as in TDMA, traditional

detection based on a tracking is ine�ective.

1.1.3 Recent Data Detection Methods

The inability of traditional receivers to detect data when nuisance parameters change

rapidly has sparked an interest in �nding new receivers. To date, researchers have

developed a number of receivers better able to deal with nuisance parameters that

are rapidly changing.

In this thesis, data detection in the presence of a rapidly changing phase o�set, and

data detection in the presence of a rapidly changing timing o�set, are of particular

interest. In what follows, we brie
y introduce these cases of interest, and then survey

the recent receivers proposed to detect data in each case. We will see that many

of the recent receivers demonstrate a performance degradation relative to detection

with known nuisance parameters, or display a high complexity, limiting their practical

applicability.

Data Detection in the Presence of a Rapidly Changing Phase

We �rst consider cases of data detection in the presence of a rapidly changing phase

o�set. Our interest here can be divided into three important, practical cases, each of

which is detailed below.

Phase Constant Over Three (3) or More Symbol Intervals The �rst case of

interest is the detection of di�erentially encoded MPSK in the presence of additive

white Gaussian noise (AWGN) and a phase o�set. Here, the phase o�set is assumed

constant over N symbol intervals (N > 2), representing one of two physical possibil-

ities: (1) the phase changes slowly, so slowly that it can be modeled as constant over

N symbol intervals, but not necessarily as constant over a longer interval; or, (2) the

phase is constant over N symbol intervals, but there exist sudden phase jumps be-
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tween blocks of N symbols. Henceforth, we will simply use the phrase phase constant

over N symbol intervals to denote these two possibilities. The many receivers that

have recently been proposed for use in this environment are detailed below.

One of the �rst receivers proposed for this phase o�set environment was conven-

tional di�erential detection, also called di�erential PSK, or DPSK for short [8]. Here,

the phase reference for a symbol is simply the previously received symbol. Conse-

quently, DPSK can be used whenever the phase is constant over two or more symbols,

a very mild constraint. Unfortunately, DPSK experiences a substantial performance

degradation { up to 3 dB may be lost when compared to coherent detection. This per-

formance degradation comes about because the phase reference, namely the previous

received symbol, is noisy.

The performance degradation experienced by DPSK led researchers to search for

alternative receivers for the phase o�set environment. Researchers came up with

receivers which o�ered coherent-like performances, but only when the phase was con-

stant over a mid-sized block of symbols, e.g., 20 or more symbols.

The �rst researchers to develop such a receiver were A.J. Viterbi and A.M. Viterbi

[9]. They proposed a receiver wherein a feedforward carrier phase estimator tracked

the channel phase. Their receiver demonstrates a performance comparable to coherent

detection, as long as phase remains constant over a long enough duration, e.g. N > 20.

Another receiver, providing e�ective data detection only when phase is constant

over a long interval (e.g. N = 20), is based on the application of the Expectation

Maximization (EM) algorithm [10][11]. One drawback of this method is its iterative

nature, which may make it impractical in some communication environments. Also,

there exists a degenerate case which can only be avoided at a cost of doubling the

receiver complexity [12].

Finally, some additional receivers have recently been proposed, again for the de-

tection of data when phase is constant over a long block of symbols (e.g., [13]). Here,

coherent-like performances are demonstrated whenever channel phase remains con-

stant over 20 or more symbols.

The inability of the above receivers to o�er e�ective data detection when phase
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changes rapidly (N < 20), and DPSK's inability to achieve near-coherent perfor-

mances, lead to the development of still more receiver structures.

One receiver, intended to deal with phase jitter in telephone lines, was able to

detect data with a rapidly changing channel phase [14]. However, this receiver re-

quired a long preamble to get started, and, in addition, it employed a complexity that

rendered it impractical [15].

Other receivers that detect data when phase is constant over only a few symbols

were based on heuristic arguments [16]-[21]. They resulted in some performance gains

over DPSK, but their performance remained far from coherent.

Recently, four groups of researchers independently generated a receiver, for the

phase o�set communication environment, by extending the ideas of DPSK [22]-[25].

Their receiver is commonly referred to as Multiple Symbol Di�erential Detection

(MSDD). The performance of MSDD is far superior to that of DPSK, even with

phase constant over as few as three symbols. As the number of symbols with a

constant phase increases from three, the performance of their receiver tends rapidly

toward coherent. In fact, the researchers show that the performance achieved by

their receiver is optimal, optimal in the sense of minimizing symbol error rate given

an unknown channel phase over a block of N received symbols. However, a drawback

of this scheme is complexity. The complexity of their receiver increases exponentially

as N increases. Speci�cally, the complexity of MSDD, in terms of computation per

decoded symbol, is in the order ofMN �N [23]. This limits the applicability of MSDD.

The quality performance but high complexity of MSDD lead researchers to search

for a low complexity version of MSDD. In [26]-[28], a receiver was proposed that

reduced the complexity of MSDD by using symbol feedback. However, this receiver

experienced decision feedback errors, especially costly in fading channels during peri-

ods of deep fade (i.e., low SNR), because at these times the feedback error e�ect can

lead to a burst of errors.

Mackenthun [29] succeeded in �nding an implementation of MSDD which demon-

strates the same optimal performance, while maintaining a lower complexity { here,

the complexity increases linearly with block size N , rather than exponentially.
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The above receiver schemes describe the recent receivers available for the detection

of MPSK in the presence of a phase o�set constant over three or more symbols.

Phase Constant Over Two (2) Symbol Intervals The second case of particular

interest in this thesis is the detection of di�erentially encoded MPSK in the presence

of AWGN and a phase o�set that changes at the following rate: phase change over

two symbol intervals is negligible, but it is not necessarily negligible over a longer

interval. The recent receivers currently available to detect data in the presence of

this channel phase are described below.

The previous literature survey introduced the many receivers available for data

detection in the presence of a channel phase constant over N � 2 symbols. The

literature survey for the case at hand, then, can be achieved by simply re-introducing

some of these receivers; from among the previous list, we simply re-introduce those

receivers that are able to provide data detection when channel phase is constant over

N � 2 symbol intervals.

The �rst receiver, from among the receivers listed previously, that can detect data

with channel phase constant over only two symbol intervals, is DPSK [8]. However,

DPSK experiences a substantial performance degradation when compared to coherent

{ up to 3 dB may be lost.

The second receiver, listed in the previous literature survey, that can deal with a

phase constant over only two symbol intervals, is the receiver provided in [14]. How-

ever, as mentioned earlier, this receiver su�ers from two major drawbacks: it requires

a preamble of �fty symbols, and its implementation demonstrates a complexity that

renders it impractical [15].

Another receiver provided in the earlier literature survey, also of interest to us in

this case, is MSDD [22]-[25], or alternatively, a scheme performing as well as MSDD

without its high complexity (e.g., [29]). These receivers are of interest because they

easily outperform DPSK, and their assumption on phase (phase is constant over N ,

e.g, N = 3, symbols) is not too di�erent from a phase constant over only two symbols.

Unfortunately, in the case at hand, the performance of MSDD decreases rapidly as
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the rate of phase change increases.

The above three receivers represent the receivers currently available to detect

data in the presence of a phase o�set constant over only two symbol intervals. These

receivers are unable to provide near-coherent performances at a reasonable complexity.

Coded Modulation, Phase Constant over Three (3) or More Symbols The

third case of interest is the detection of coded MPSK (trellis coded modulation em-

ploying an MPSK modulation format) in the presence of AWGN and a phase o�set

constant over a short block of N symbols (N > 2). In what follows, we present the

recently-introduced receivers available to detect data in this environment.

One of the �rst receivers proposed to detect coded MPSK symbols, in the presence

of rapidly changing channel phase, was introduced in [30][31]. This receiver corre-

sponds to an extension of the ideas of DPSK, and, hence, we call it Coded DPSK.

The major drawback of Coded DPSK is its substantial performance degradation when

compared to coherent detection; all the performance gain achieved by coded MPSK

(when compared to uncoded MPSK) is lost.

A few years later, the same researchers introduced a receiver corresponding to

an improved version of Coded DPSK [32]. However, this receiver was only able to

achieve moderate gains over Coded DPSK, and these gains could only be achieved

with certain codes.

More recently, a group of researchers proposed a novel receiver, for coded MPSK

detection when a rapidly changing phase is present, based on an extension of MSDD

to coded PSK [33]. We will call this receiver Coded MSDD. The major drawback

of Coded MSDD is that it uses Multiple Trellis Coded Modulation (MTCM) [34] of

multiplicity k = N � 1, and, as a result, its complexity grows quickly with increasing

N . This high complexity limits the applicability of Coded MSDD.

Another group of researchers [35] introduced a receiver which applied MSDD to

coded MPSK in a unique fashion; their receiver avoided the high complexity found in

Coded MSDD. We will call their receiver low complexity Coded MSDD, or LC Coded

MSDD. LC Coded MSDD comes with some drawbacks. First, this receiver employs
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a detection algorithm that di�ers from the standard Viterbi Algorithm decoder, in-

creasing its implementation cost. Furthermore, considering a rate 2
3
Coded 8-PSK

scheme, LC Coded MSDD can only be employed for N � 30, and with N � 30, this

receiver experiences performance degradations of 1 dB or more.

Finally, many receivers have been proposed for data detection when N is large

(N > 500) [13][36][37]. These receivers are able to achieve near-coherent performances

for N > 500, but, unfortunately, their performances degrade rapidly at smaller N

values.

The above list of receivers represent the receivers available to date to detect coded

MPSK in the presence of a phase o�set constant over N symbol intervals. These re-

ceivers are unable to provide near-coherent performances, at a reasonable complexity,

for small N values (i.e., N values less than 30).

Data Detection in the Presence of a Rapidly Changing Timing O�set

This thesis also emphasizes cases of data detection in the presence of a rapidly chang-

ing timing o�set. In particular, we are interested in the detection of independent

data symbols in the presence of AWGN and a timing o�set constant over a burst of

N symbols. The following is a list of receivers recently introduced to detect data in

this case.

Most of the current receivers employed for data detection in the presence of noise

and a timing o�set (changing from burst to burst) are based on a simple approach.

First, feedforward tracking circuitry is used to remove the timing o�set; then, the data

is detected in the presence of the noise alone using well-known Bayesian methods.

Some of the analog tracking circuits that are currently available can be found in [3,

chapter 15][38].

One feedforward tracking circuit, presented by Oerder and Meyer [39], has recently

gained widespread popularity. The popularity of this circuit is due in large part to its

digital nature { the received signal is sampled by a free running oscillator and all the

timing o�set recovary is then done digitally. However, this tracking method has its

drawbacks. First, as the roll-o� factor � decreases, the performance of the tracking
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circuit diminishes; in fact, when � is close to 0, a receiver using this tracking circuit is

unable to achieve reliable data detection. Another drawback of this tracking circuit

is that its performance diminishes substantially as burst lengths decrease.

Recently, a group of researchers devised a tracking circuit [40] which o�ered per-

formance gains over the popular circuit described above. These gains are most notable

at small values of �. Despite these gains, their tracking scheme still su�ers from the

same drawbacks that plagued its predecessor.

Receivers employing the above tracking circuits represent the receivers available

to date to detect data in the presence of a timing o�set that changes over each burst

of N symbols. These receivers are unable to provide reliable data detection with roll

o� factors near 0, and at small burst lengths (i.e., small values of N).

1.2 The Contributions of this Thesis

The contributions of this thesis can be considered in two parts. First, this thesis in-

troduces a novel receiver structure for the detection of data in the presence of rapidly

changing nuisance parameters, a receiver that demonstrates widespread applicabil-

ity. Second, this thesis presents four important, practical applications of the receiver

structure, highlighting its gains when compared to the receivers in the current liter-

ature. In what follows, we provide more details regarding these contributions.

1.2.1 A Novel Receiver Structure

In 1963, Harman [41, p.271] noted in passing that a parallel receiver structure (specif-

ically, a receiver employing a bank of detectors in parallel) can be applied when

nuisance parameters are present in the received signal. However, at that time, Har-

man believed that the complexity of such a receiver would be extremely large; in

his words, `comparable to the complexity of a modern digital computer or telephone

exchange.'

Recently, the work of Madhow and Pursley [42]-[45] showed that a parallel receiver
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structure can act as a practical data detector for detection with unknown parameters.

However, their work considered only memoryless channels. As a result, their receiver

required the use of a bandwidth-expanding channel coding (a Reed-Solomon coding)

to select from among parallel demodulators.

More recently, parallel receiver structures were proposed for data detection in the

presence of nuisance parameters constant over a long sequence of symbols [46][47].

Here, each demodulator, in a bank of parallel demodulators, performs a sequence long

data detection, and a decision between demodulators is made based on the knowledge

that the nuisance parameters are constant.

This thesis introduces a novel, parallel receiver structure for the detection of data

in the presence of rapidly changing nuisance parameters. Here, unlike the work of

[46][47], the nuisance parameters are modeled as rapidly changing; in addition, un-

like [42]-[45], where memoryless parameters are assumed, the memory inherent in the

channel's quickly changing nuisance parameters is key to our receiver design. Specif-

ically, the channel memory is used in our structure to select from among parallel

demodulators { avoiding the need for a channel coding. We note that the works of

[46][47] can be viewed as special applications of our proposed receiver structure (with

some minor updates). These works correspond to two cases where the memory of the

nuisance parameters translates to constant nuisance parameters over a long sequence

of symbols.

Our novel parallel receiver structure is derived using Maximum A Posteriori

arguments, a form of Bayesian Inference long known to lead to optimal data detection.

The parallel nature of our receiver structure facilitates its rapid real-time processing.

The key theoretical contributions of this thesis are the two design algorithms

we introduce for our receiver structure. The �rst, based on rate distortion theory,

generates a bound on the minimum number of parallel demodulators required by

our receiver structure to achieve a stated performance. The second algorithm, based

on the Generalized Lloyd Algorithm, creates an optimal set of values for use in the

parallel demodulator structure.



Chapter 1: Introduction 17

1.2.2 Applications of the Novel Receiver Structure

We apply our novel receiver structure to four (4) communication environments of

practical interest, namely the four environments described in the literature surveys

of Subsection 1.1.3.

In the �rst application, we apply our receiver structure to detect di�erentially en-

coded MPSK in the presence of AWGN and a channel phase constant over N symbols,

N > 2 (e.g., N = 3). Here, our receiver demonstrates a performance matching theo-

retically optimal bounds, while maintaining a low complexity. Compared to receivers

in the current literature, only two receivers are capable of achieving a comparable

performance, namely MSDD and Mackenthun's low complexity version of MSDD;

however, our receiver is available at a lower complexity (substantially lower in the

case of MSDD).

Our second application is the detection of di�erentially encoded MPSK in the

presence of AWGN and a rapidly changing phase; here, the phase change over two

symbol intervals is negligible, but it is not necessarily negligible over a longer interval.

We show that the receiver we introduce in this application is very bene�cial. It is

preferable to DPSK because it outperforms DPSK by 1.5 dB; preferred to MSDD be-

cause, except under very slow phase change conditions, it easily outperforms MSDD;

and, �nally, it is preferred to the scheme of [14] because it demonstrates a realizable

complexity and avoids the need for a long preamble.

Our third application is the detection of coded MPSK in the presence of a phase

o�set constant over N symbols, N > 2. Here, our receiver structure demonstrates

many gains. Most notably, our receiver displays a near-coherent performance, and a

realizable complexity, when phase is constant over as few as 10 symbol intervals. No

other receiver, to date, is able to achieve this.

Finally, in our fourth application, data detection in the presence of a timing o�set

changing from burst to burst, our receiver structure again demonstrates many gains

when compared to the receivers in the current literature. Speci�cally, whenever the

roll-o� factor is close to zero (i.e., sinc-like pulse shapes are transmitted), or whenever

the burst length is short, our receiver easily outperforms those in recent literature.
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Furthermore, our receiver is easily realized.

1.3 Claims to Originality

This section summerizes, in point form, all the claims to originality of this thesis.

� Three novel data detection equations are derived starting from theoretically

optimal arguments (Chapter 3 of this thesis, or [48]-[50]).

� A novel, parallel receiver structure is introduced which can implement any of

the three new data detection equations (Chapter 3, [48]-[50]).

� It is proven that the novel receiver structure can be applied to most cases of

data detection in the presence of noise and nuisance parameters (Chapter 4,

[50]).

� A theoretical analysis, establishing the performance of our receiver versus the

number of parallel demodulators in its implementation, is provided (Chapter 4,

[50]).

� An algorithm is presented that generates a bound on the smallest number of

parallel demodulators that can be used in our receiver's implementation, when

it is required that our receiver structure achieve a stated performance (Chapter

4, [50]).

� An algorithm is introduced that generates the undetermined variables in the

receiver structure. This algorithm generates the variables in a manner that

optimizes the receiver's performance and complexity (Chapter 4, [50]).

� The novel receiver structure is applied to data detection in the presence of

a phase o�set constant over N symbols, N > 2. The receiver that results

demonstrates a theoretically optimal performance at a low complexity, and o�ers

gains compared to receivers in current literature (Chapter 5, [51][52]).
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� The novel receiver structure is applied to detect MPSK in the presence of a

phase o�set that changes quickly; the phase o�set's change over two symbol

intervals is negligible, but its change is not necessarily negligible over a longer

interval. Here, our receiver easily outperforms the many receivers proposed to

date; speci�cally, our receiver gains 1.5 dB when compared to DPSK, gaining

back half of the 3 dB degradation experienced by DPSK; furthermore, our

receiver outperforms MSDD (and its low complexity implementations) by a

signi�cant amount, with its gain over these schemes increasing as the rate of

phase change increases. Our receiver achieves these gains while maintaining a

low (easy-to-implement) complexity (Chapter 6, [49][53][54]).

� The novel receiver is applied to detect trellis coded modulation (in particular

coded MPSK) in the presence of a phase o�set constant over N symbols. The

receiver that results is able to outperform those introduced in the current liter-

ature. Speci�cally, for values of N as low as 10, our receiver is able to achieve

a near-coherent performance, while maintaining an easily-realized implementa-

tion; other receiver schemes, at N values between 10 and 30, either experience

a very signi�cant performance degradation relative to coherent, or demonstrate

an unmanageably high complexity (Chapter 7,[55][56]).

� Finally, the receiver structure is applied to detect data symbols in the pres-

ence of a timing o�set that changes from burst to burst. In the important,

practical cases of small roll-o� factors or short burst durations, our receiver

demonstrates performances close to coherent (within 0.5 dB); receivers in the

current literature, on the other hand, are unable to achieve reliable data de-

tection in these same cases. Additionally, our receiver is available at an easily

realizable complexity. (Chapter 8,[57][58]).

1.4 Thesis Outline

The remainder of this thesis is presented in the following order. Chapter 2 summer-

izes the necessary theoretical background. Here, we begin by presenting a general
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mathematical model of the communication environment under consideration. This is

followed by an explanation of the theory underlying data detection.

Part 2 of this thesis, containing Chapters 3 and 4, introduces the novel receiver

at the heart of this thesis. Chapter 3 gets things started with a derivation of our

novel receiver's underlying equations. Chapter 3 also introduces the implementation

of our novel receiver. Chapter 4 provides a theoretical analysis of the novel receiver,

and includes design algorithms which allow an engineer to apply this receiver to most

data detection scenarios involving nuisance parameters.

Part 3 of this thesis, consisting of Chapters 5 to 8, introduces some of the many

applications of our novel receiver structure. In each chapter, we present a di�erent

application of practical interest. These chapters follow a consistent (and uniform)

format. Speci�cally, each chapter provides a detailed modeling of the communication

environment of interest; presents the application of our receiver structure; and com-

pares our receiver with the receivers in the literature | here, we indicate the bene�ts

of our receiver.

Part 4 concludes the thesis. It begins with a summary of the work presented in

the thesis, highlighting its contributions, and ends with a discussion of possible work

for the future.



Chapter 2

Background

In this chapter, we present a model of the communication environment of interest in

this thesis. We also present the theory underlying receiver detection and estimation.

With this in hand, we can go on in future chapters to present our novel receiver.

2.1 The Communication Environment Model

This section introduces the communication environment for which our novel receiver

is intended. First, we introduce a model, and then we impose some conditions on this

model.

2.1.1 The Model

The communication environment model is shown in Figure 2.1.

The term source refers to both the physical source and the source encoder. The

physical source outputs a signal, y(t), which may represent a voice, video, or data

signal. This signal is characterized as a random process - that is, the source output

is a sample function from a random process ensemble.

The source encoder maps the physical source output, y(t), into a sequence (in

21
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Figure 2.1: The communication system model.
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time) of binary digits. This may be done by sampling the waveform y(t), quantizing

the samples, and then encoding the quantized samples using binary digits. The

waveform y(t) can not, in general, be precisely reconstructed from the binary digits.

The source encoder is usually designed to output the fewest binary digits per unit

time and still adequately represent the physical source's output. The sequence (in

time) of binary digits created by the source encoder is

b = (b1; b2; :::; bX); (2.1)

where bi 2 B = f0; 1g. Throughout this thesis, the subscript i will be used as a

discrete time index.

The channel encoder maps the input sequence of bits, b, into an output sequence

of bits, called b0. This mapping is carefully chosen; it adds redundancy to help the

receiver reconstruct the original bit sequence b. The channel encoder, unlike other

components, is an optional part of the communication system model. Its presence

has been introduced for completeness, and not out of necessity.

The symbol coder maps the input bit sequence into an output sequence of symbols.

It generates these symbols at a �xed rate of one symbol every T seconds. Each

symbol is a selection from the �xed alphabet A = faj; j = 1; 2; :::;Mg. (Throughout
this thesis, the superscript j will be used to indicate the jth selection in a discrete

set.) The sequence (in time) of output symbols generated by the symbol coder is

represented by

a = (a1; a2; :::; aL); (2.2)

where ai 2 A. This symbol coder mapping may represent, for instance, a one-to-one

mapping of each n bits into one of the M = 2n symbols fej 2�M ; ej
2�

M
�2; :::; ej

2�

M
�Mg.

The transmit �lter transforms each symbol from the symbol coder into a waveform

which is ready for transmission over the physical channel. The data modulator output,

in response to input ai, is labeled si(t). Whenever ai = aj, si(t) corresponds to the

jth waveform from the �xed set of waveforms S = fs1(t); s2(t); :::; sM(t)g, shifted by

iT seconds; that is si(t) = sj(t � iT ). The entire waveform output by the transmit
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�lter, in response to input a, is

s(t) =
LX
i=1

si(t): (2.3)

The physical channel maps the input waveform s(t) into a random process r(t).

The mapping function generating r(t) is described by

r(t) = w(s(t); c(t)) + �(t); (2.4)

here, c(t) is a set of random processes modeling the nuisance parameters introduced

by the channel; �(t) is a single random process representing the channel's noise; and

w(�; �) is a known mapping rule.

The receiver attempts to recreate the binary sequence b from the received signal

r(t). The receiver is usually subdivided into four parts: a receiver front end, a

data demodulator, a symbol decoder, and a channel decoder. (The source decoder

is included in the sink.)

The receiver front end maps the continuos-time random process r(t) into a dis-

crete time random process r = (r1; r2; :::; rL). Here, each ri is characterized by

ri = v(ai; ci) + �i; (2.5)

�i is a random value generated from the channel noise process �(t); ci is a set of random

values (ci;1; ci;2; :::; ci;I) generated from the nuisance parameter random processes c(t);

and, �nally, ai is a subsequence of a which includes ai. Oftentimes, ai equals ai.

The output sequence r is generated at a rate of one sample every T seconds. The

receiver front end is carefully designed to insure that the sequence r contains all the

information needed to make an optimal decision on the binary sequence b. As a result,

r is called a su�cient statistic for detection.

The data demodulator maps the receiver front end output, r, into an estimate of

the symbol sequence a. This estimate is labeled â. The symbol decoder takes the

estimate â and regenerates the transmitted binary data b0; this output is labeled b̂
0

.

Finally, the channel decoder maps b̂
0

into an estimate of the source bits, b̂. In some



Chapter 2: Background 25

communication environments, optimal receiver performance requires carrying out the

operations of the data demodulator, symbol decoder, and channel decoder in a single

block. In these cases, these devices will be put together in a single block, also called

a data demodulator. To avoid confusion, unless explicitly indicated otherwise, the

term data demodulator will refer to a device separate from the symbol decoder and

channel decoder.

2.1.2 Conditions Assumed to be in E�ect

This subsection introduces three conditions on the communication model which we

assume to be in e�ect. All the receivers we are aware of, that are intended for

data detection in the presence of nuisance parameters, are applicable only when the

�rst two of the three conditions introduced here are satis�ed. Our receiver structure

will require that, in addition, the third condition is satis�ed. We want to point

out here that the conditions we introduce are not very restrictive. In fact, in most

communication environments, with nuisance parameters of phase, timing, frequency,

and ISI, the conditions we introduce in this section are satis�ed.

The �rst restriction we impose on the communication model relates to the discrete-

time random sequence r, a su�cient statistic for detection. It must be possible to

generate this sequence r such that the component function v(ai; ci) is a one-to-one

function of ai. This condition insures that, in the absence of noise (�i), the symbol

sequence a can be resolved, and hence the binary source output regenerated.

Our second restriction on the communication environment is also on the discrete-

time random process r. This restriction states that, if a data demodulator receives r,

and carries out the optimal detection scheme to generate â, this scheme is not indepen-

dent of the nuisance parameter sequence c. The mathematical expression representing

this condition is provided in the next section, where optimal data detection meth-

ods are explained. This condition insures that the communication environment does

not simplify the detection problem at the receiver to the point where the unknown

parameters can, for purposes of optimal detection, be ignored.

Our �nal restriction on the communication environment again relates to the suf-
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�cient statistic r. We require either: (1) for cases of dependent noise samples, a

characterization of P (�jc; c0), the probability of error of a receiver, with input r,

that assumes c0 = (c01; c
0
2; :::; c

0
L
) is the nuisance parameter vector when in reality

c = (c1; c2; :::; cL) is in e�ect; or, (2) for cases of independent noise samples, a charac-

terization of P (�jci; c0i), the probability of error of a receiver, with inputs ri, assuming

c0
i
when in reality ci is in e�ect. Either function is required in later chapters to verify

the applicability of our proposed receiver structure, to establish complexity, and to

generate unknown variables. If a complete mathematical characterization of P (�jc; c0)
or P (�jci; c0i) is unattainable, it usually su�ces to characterize P (�jc; c0) = P (�jci; c0i)
using a function proportional to P (�jc; c0) = P (�jci; c0i) (e.g., Section 7.2), or using the

P (�jc; c0) = P (�jci; c0i) of a simpler, but closely related, communication environment

(e.g., Section 8.2).

2.2 Optimal Data Detection and Parameter Esti-

mation

This section introduces theoretically optimal methods for a receiver to detect data

and estimate nuisance parameter values.

2.2.1 Optimal Data Detection

In this subsection, we present an equation characterizing a receiver that carries out

optimal data detection.

We begin by explaining what we mean by optimal data detection. A receiver

carrying out optimal data detection refers to a receiver generating the data sequence

b̂ that is most likely to match b. Alternatively, we are referring to a receiver that

generates the sequence â most likely to match a. (We can re-express the b̂ matching

b as â matching a because, in all communication environments we are aware of, these

are directly proportional [2, p.180-181].) That is, a receiver implementing optimal
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data detection refers to one creating the sequence â that minimizes the risk

R =
X
a

X
â; â 6=a

P (a) � Pr(say â j a is true): (2.6)

A receiver that minimizes the risk R corresponds to, after some computation [59,

chapter 2], a receiver that implements

â = argmax
a

p(ajr): (2.7)

That is, a receiver that minimizes the probability of a di�erence between a and â

computes the a posteriori probabilities p(ajr) for each a, and outputs the â corre-

sponding to the a with the largest p(ajr). Receivers based on equation (2.7) are called
maximum a posteriori (MAP) receivers.

2.2.2 Optimal Parameter Estimation

This section introduces two equations characterizing a receiver that generates ĉ, an

estimate of the nuisance parameter sequence c = (c1; :::; cL), from the received r.

Oftentimes, we want a receiver to generate a ĉ that minimizes the average of the

squared error cost function, i.e., the cost function

C(c; ĉ) = (c� ĉ) � (c� ĉ)T : (2.8)

A receiver can achieve this by carrying out [59, chapter 2]

ĉ(r) =
Z
C

c � p(cjr)dc; (2.9)

that is, the receiver generates the conditional mean of c.

Other times, we want a receiver that generates ĉ minimizing the average of the

uniform cost function, a cost function described by: whenever the Euclidian distance

between c and ĉ is less than some small �, the cost is 0; otherwise, the cost is 1. In

this case, the receiver should be built to carry out [59, chapter 2]

ĉ(r) = argmax
c

p(cjr); (2.10)

that is, the receiver should generate the sequence which maximizes the a posteriori

density. This receiver's estimate is called the MAP estimate. In many instances [59,

chapter 2], the estimates generated by (2.9) and (2.10) are identical.
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2.2.3 Joint Data Detection and Parameter Estimation

In this subsection, we present an equation characterizing a receiver that jointly detects

the data sequence a and estimates the nuisance parameter sequence c, given the

received r. The goal of this receiver is to generate the data sequence â most likely to

match a, and create an estimate ĉ which minimizes the average of the uniform cost

function.

The equation characterizing a receiver that generates the above â and ĉ can be

achieved as follows. First, restate the data detection as a data estimation. Speci�cally,

it is easily shown that the data detection operation is equivalent to: estimate the value

â that minimizes the uniform cost function, where, here, the usually discrete a now

corresponds to a continuous random variable with distribution p(a) =
P

aj P (a
j)�(a�

aj); the term �(a � aj) refers to �(a1 � a
j

1) � ::: � �(aL � a
j

L
), where aj = (aj1; :::; a

j

L
)

is the jth possible data sequence, and �(x) is the delta function, a function of value

0 whenever x 6= 0 and displaying unit area. With data detection now restated as

the above data estimation, the joint detection of a and estimation of c corresponds

simply to �nding the joint estimate (â; ĉ) which minimizes the average of the uniform

cost function. Using the result of (2.10), the receiver should be built to carry out

â; ĉ = argmax
a;c

p(a; cjr): (2.11)

In (2.11), it is easily shown that a can again be interpreted as a discrete random

variable with distribution P (a). The detected data and estimated parameter sequence

generated by equation (2.11) maximize the joint a posteriori density. Consequently,

a receiver implementing (2.11) is called the joint MAP receiver.

2.2.4 Optimal Data Detection vs Joint Detection and Esti-

mation

The received sequence r in the model of Section 2.1 contains both a data sequence

a and nuisance parameter sequence c. Hence, a receiver which generates the data

symbols â can be constructed using one of two possible starting equations: the optimal

data detection of (2.7) or the joint data detection and parameter estimation of (2.11).
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First, the receiver can be constructed using the principles of optimal data detec-

tion; this receiver is built to implement the MAP equation

â = argmax
a

p(ajr): (2.12)

A receiver implementing (2.12) can be constructed in one of two ways. Unfortunately,

as we will now explain, it is very hard to achieve a reasonable complexity in the case

at hand.

First, we can try to build a receiver implementing (2.12) by expressing (2.12)

in a form containing p(rja; c), a known distribution, and hope that this suggests a

realizable receiver structure. This is done as follows: applying p(ajr) = p(rja)P (a)

p(r)
in

(2.12), and observing that the denominator is independent of a, leads to

â = argmax
a

p(rja) � P (a): (2.13)

Introducing the nuisance parameter sequence c, this receiver equation becomes

â = argmax
a

Z
C

p(rja; c) � p(c) � P (a)dc: (2.14)

The integral nature of this equation makes it hard to achieve a general receiver im-

plementation at a reasonable complexity. For instance, one way to attempt to build

a receiver using (2.14) is based on the use of numerical techniques to evaluate the

integral. However, this implementation requires the evaluation of a numerical integral

for each of the ML possible sequences a, an unreasonable complexity.

An alternative way to attempt to build a receiver based on (2.12) is the following.

It has been shown in [60] that a receiver employing an estimator-correlator structure

can almost always achieve optimal data detection, where optimality can be de�ned in

the sense of minimizing the likelihood of error. Hence, with (2.12) corresponding to an

equation that minimizes error likelihoods, we could consider the possibility of imple-

menting (2.12) using an estimator-correlator structure. Unfortunately, two problems

arise. First, the estimator-correlator structure requires generating an estimate that

is often hard to �nd [60]. This problem may be resolved by using a suboptimal esti-

mator (e.g. [61]), but no general form of such an estimator is available. Furthermore,

in our case, where sequence long detection is of interest, the number of estimators
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and correlators required increases exponentially as L increases, and is generally in the

order of ML. This is a prohibitive complexity.

A second starting point for a receiver detecting data in the presence of nuisance

parameters is the joint MAP equation of (2.11). A receiver built from this starting

point does not guarantee the optimal data sequence â as output; instead, it balances

optimal data detection with optimal estimation of the nuisance parameter sequence.

Because the goal of a receiver is to achieve optimal data detection, this receiver can

be considered suboptimal. However, the bene�t of such a receiver is that it is based

on a much easier to implement equation: the integral in (2.14) is replaced by the

largest term of the integral in the joint MAP equation (2.11).

Furthermore, as we now point out, in many cases of practical interest, the joint

MAP equation results in data detection which is indistinguishable from optimal

data detection. Consider the following special case of practical interest: the data

sequences a are equally likely; the nuisance parameters c = (c1; :::; cL) are mod-

eled as time invariant, i.e., ci = ck ; 8 i; k; the distribution of ci is uniform; and

the noise is Gaussian. In this case, the integral equation of (2.14) corresponds to

â = argmaxâ
R
C0
p(rja; c1) � p(c1)dc1. Now, with p(c1) corresponding to a uniform

distribution, and the noise distribution Gaussian, the dominant contribution to this

integral comes from the region in the parameter space C0 (c1 2 C0) that maximizes

the distribution p(rja; c1). It is therefore almost optimal data detection to base a de-

cision on equation (2.11), the joint MAP detection equation, which, in this case, can

be expressed as â = argmaxâ[maxc
1
p(rja; c1) � p(c1)]. A more detailed explanation,

as well as further evidence of the closeness of joint MAP and optimal detection, can

be found in [62, p.291].

2.2.5 A Mathematical Statement of the Second Condition in

E�ect

In subsection 2.1.2, we introduced three conditions on the communication system

model of interest in this thesis. The second condition stated: optimal data detection is

not independent of the nuisance parameter sequence c. With the equation for optimal
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data detection now in place, this section introduces the mathematical equivalent to

the second constraint.

Equation (2.14) is the equation for optimal data detection when the nuisance

parameter sequence c is present. The requirement, then, is that the right-hand side

(RHS) of (2.14) is not independent of c. In cases where the optimal data detection

equation is well approximated by the joint MAP equation, the requirement can be

expressed as : â = argmaxa p(a; cjr) is not independent of c.
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The Novel Parallel Receiver

Structure: Theory
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Chapter 3

The Parallel Receiver Structure:

Underlying Equations and

Implementation

In this chapter, we introduce a novel receiver structure. We do this in two parts. First,

we present equations which characterize the operation of a novel receiver structure.

Second, we present the corresponding implementation of the receiver structure.

3.1 The Underlying Equations

This section introduces three novel data detection equations, each characterizing a

data demodulator detecting data in the presence of nuisance parameters. The �rst

equation we present is a general detection equation, an equation which can be applied

to any communication environment modeled by Section 2.1. Next, we present an

equation useful for detection when the noise and data samples are both independent.

Finally, we present an equation for detection whenever noise samples are independent,

and data samples display state dependence.

33
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3.1.1 General Data Detection Equation

The �rst receiver equation we derive is called the general data detection equation. It

imposes no constraints on the communication system model of Section 2.1.

The derivation of this equation is as follows. A data demodulator tries to achieve

optimal data detection; that is, given r, it attempts to generate an â which is most

likely to match a. This is achieved by generating â from

â = argmax
a

p(ajr): (3.1)

With nuisance parameters present, this equation corresponds to integral equation

(2.14). This does not suggest a realizable implementation.

As pointed out in Chapter 2, a data demodulator can instead carry out jointly

optimal data detection and parameter estimation. Such a data demodulator is more

easily implemented. Furthermore, it oftentimes corresponds closely to optimal data

detection. For these reasons, we restart the derivation of our data detection equation

with the joint MAP equation

â; ĉ = argmax
a;c

p(a; cjr): (3.2)

We are merely interested in generating the data sequence â at the data demodulator;

the ĉ is a by-product. To emphasize this, we rewrite the equation for data detection

carried out by the demodulator as: choose the sequence â which results from the joint

maximization

max
a;c

p(a; cjr): (3.3)

We now work this maximization to a more convenient form using simple statistical

and mathematical arguments. This begins with the application of a statistical rule,

namely Bayes Rule, which allows the maximization to be rewritten according to

max
a;c

p(rja; c) � p(a; c): (3.4)

Next, we recognize that the sequence a, generated by the symbol coder, and the

sequence c, generated by the physical channel, are independent random processes.

This allows the maximization to be expressed according to

max
a;c

p(rja; c) � P (a) � p(c): (3.5)
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The distribution P (a) represents the a priori knowledge of the source and the channel

encoder. However, the statistics at the source are, in general, not known. This lack

of knowledge can be expressed statistically by assuming all messages a are equally

likely; that is, P (a) is a constant. Applying this to the maximization leads to

max
a;c

p(rja; c) � p(c): (3.6)

Because logarithms are monotonic functions, this maximization can be rewritten as

max
a;c
fln p(rja; c) + ln p(c)g: (3.7)

Reordering the maximizations leads to

max
c
f[max

a
ln p(rja; c)] + ln p(c)g: (3.8)

The �rst term in this equation, a joint maximization, corresponds to choosing the

sequences c and a that are most likely based on the received sequence and the distri-

bution of the noise; the second term, a maximization over c, corresponds to choosing

the c that is most likely given the known distribution p(c). The overall equation

corresponds to choosing an a and c that is a balance between these two choices.

The �nal equation, which sets up the novel parallel receiver implementation intro-

duced in this thesis, is achieved by introducing an approximation to equation (3.8).

The continuous nuisance parameter space, C (c 2 C), is approximated by a discrete

nuisance parameter space, ~C = fc1; c2; :::; cmg. This discrete nuisance parameter

space is a subset of the continuous nuisance parameter space, i.e., ~C � C.

The approximation of C by ~C in equation (3.8) is a very good one, provided we

can insure that the data detection achieved assuming ~C is very close to that achieved

using C. A more complete description of when the approximation of C by ~C is

valid, and algorithms for establishing the discrete space ~C, are the topic of the next

chapter. For the time being, we assume that this approximation is a good one, and

return to completing the derivation of the key equation. Applying the discrete space

approximation to equation (3.8) leads to: choose the sequence â which results from

the joint maximization

max
~c
f[max

a
ln p(rja; ~c)] + ln P (~c)g; (3.9)



Chapter 3: Underlying Equations and Implementation 36

where ~c refers to an element in the discrete parameter space ~C. Throughout this

thesis, the notation ~ will be used to refer to the discrete domain.

Equation (3.9) corresponds to the �rst of three equations on which the novel

receiver implementation is based.

3.1.2 Data Detection Equations for Cases of Independent

Noise Samples

In many practical communication environments, the noise samples (�i) contained in

the receiver front end output (r) are statistically independent; that is, p(�i; �j) =

p(�i) � p(�j) ; 8 i 6= j. This modeling is very common in a wide variety of modern day

communication environments. For instance, many satellite, mobile, and telephone

line communication systems model the received noise samples (�i) as independent.

The most common situation leading to independent �i's is the following. Whenever

the noise �(t) is white and Gaussian, the output of the matched �lter contained in the

receiver front end satis�es Nyquist criteria, and the optimal sampling times are known

to the receiver front end, the noise samples �i are independent. Other situations may

also lead to independent �i's, but these are less common. For example, the receiver

front end may employ a whitening �lter.

Whenever the noise samples �i are independent, equation (3.9) can be replaced by

simpler equations. The new equations are generated as follows. We begin here with

equation (3.8), which states that sequence â should be selected from the maximization

max
c
f[max

a
ln p(rja; c)] + ln p(c)g: (3.10)

The �rst probability in this equation, p(rja; c), corresponds to the distribution of the

noise sequence evaluated at the value r � v(a; c); that is,

p(rja; c) = p�(r � v(a; c)); (3.11)

where v(a; c) refers to the sequence (v(a1; c1); v(a2; c2); :::; v(aL; cL)). Substituting

equation (3.11) into (3.10) leads to

max
c
f[max

a
ln p�(r � v(a; c))] + ln p(c)g: (3.12)
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The noise samples are independent, that is, p(�) = p(�1) � p(�2) � ::: � p(�L). Applying
this to (3.12), we �nd

max
c
f[max

a
ln p�1(r1�v(a1; c1))+ln p�2(r2�v(a2; c2))+:::+ln p�L(rL�v(aL; cL))]+ln p(c)g;

(3.13)

or, in short hand notation,

max
c
f[max

a

LX
i=1

ln p�i(ri � v(ai; ci))] + ln p(c)g; (3.14)

or, equivalently,

max
c
f[max

a

LX
i=1

ln p(rijai; ci)] + ln p(c)g: (3.15)

The term p(c) can be expressed, by repetitive application of the statistical rule

p(A;B) = p(AjB)p(B), according to

p(c) =
LY
i=1

p(cijci�1; :::; c1): (3.16)

Furthermore, the statistical dependence of ci on cj diminishes as the time interval

between i and j increases. Consequently, equation (3.16) is well approximated by

p(c) =
LY
i=1

p(cijci�1; :::; ci�J); (3.17)

where J is the value beyond which the additional statistical dependence is negligible.

Substituting equation (3.17) into equation (3.15) leads to

max
c
f[max

a

LX
i=1

ln p(rijai; ci)] +
LX
i=1

ln p(cijci�1; :::; ci�J)g: (3.18)

We now make a key approximation. We approximate C0, the space of nuisance

parameter vectors (ci's), by a discrete space ~C0 = fc1; c2; :::; cmg; the notation cj

refers here to a vector in the space ~C0 (rather than in ~C). This approximation is

valid whenever the data detected assuming ~C0 is very close to the data detected

using the complete space C0. The conditions under which this is true, and methods

for generating ~C0, are the subject of the next chapter. For the time being, we assume

this approximation is valid and return to deriving the key equation. We apply the
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discrete space approximation to equation (3.18), which leads to: choose the â which

results from the joint maximization

max
~c2 ~CL

0

f[max
a

LX
i=1

ln p(rijai; ~ci)] +
LX
i=1

ln P (~cij~ci�1; :::; ~ci�J)g; (3.19)

where ~ci refers to an element in the discrete space ~C0. (In future chapters, we will

drop the subscript and refer to ~C0 as ~C.)

Equation (3.19) represents the general form of the data detection equation when

noise samples are independent. This general form usually takes on one of two simpler

forms, described next.

Case Independent Data Samples

In many practical situations, ri's dependence on the sequence ai corresponds to a

dependence on the single, independent value ai. In this case, the data detection

equation of (3.19) reduces to: choose the â from the joint maximization

max
~c2 ~CL

0

LX
i=1

f[max
ai

ln p(rijai; ~ci)] + ln P (~cij~ci�1; :::; ~ci�J)g: (3.20)

This equation suggests that part of the data detection can be carried out using symbol-

by-symbol detection. At each time i, for each ~ci 2 ~C0, we can carry out a symbol-

by-symbol detection | this leads to m possible symbols at each time. This resolves

the inner optimization of equation (3.20). We can then �nd the best data symbol at

each time by carrying out a sequence long maximization over ~c 2 ~CL

0 .

Case Data Symbols Have a State Dependance

In many practical situations, the data symbols ai demonstrate a state dependence.

By this, we mean that ri's dependence on ai can be expressed as a dependence on

two variables: ai, the transmitted symbol at time i, and Si 2 fS1; S2; :::; SV g, called
the state at time i. The Si summerizes the dependence of ri on ai's past and future.

Some examples of ri's containing such an ai are found in communication systems

using trellis coded modulation, or experiencing ISI.
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In this case, the data detection of equation (3.19) can be rewritten according to:

choose the â from the joint maximization

max
~c2 ~CL

0

max
S

LX
i=1

f[max
ai

ln p(rijai; ~ci)jSi] + ln P (~cij~ci�1; :::; ~ci�J)g; (3.21)

here, the notation S refers to a state sequence (S1; S2; :::; SL), and maxS refers to the

maximization over the set of permissible state sequences. Also, the dependence of ri

on Si is not explicitly indicated, i.e., we write p(rijai; ~ci) rather than p(rijai; Si; ~ci).
This equation states that the data detection can be carried out, in part, on a symbol-

by-symbol level, generating one symbol for each possible state and each possible

discrete nuisance parameter. This resolves the innermost maximization of (3.21).

The �nal symbols are achieved by sequence maximization over the possible state

sequences and over the nuisance parameter sequence.

3.2 Implementation

This section introduces a novel parallel receiver structure based on the three data

detection equations (3.9), (3.20), and (3.21). The receiver structure presented can

be used to implement any of these three key detection equations. The description

of the processing at each receiver component depends on which equation is being

implemented.

This section begins with a general presentation of the parallel receiver structure.

This is followed by two subsections which describe the receiver components in detail.

The �rst of these subsections explains the components when the receiver structure

is used to carry out the general data detection equation - equation (3.9). A second

subsection describes the components when the receiver implements the data detection

equations for cases of independent noise - equations (3.20) and (3.21).

3.2.1 General Receiver Structure

Figure 3.1 shows the general receiver structure. This receiver can be used to carry

out any one of the key data detection equations of Section 3.1.
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Figure 3.1: The general receiver structure.

The receiver consists of two basic parts: a bank of m demodulators which we call

the universal set of demodulators, and a processing unit called the computation and

decision unit (CDU). The universal set of demodulators carry out a maximization

over the data sequence a, the inner maximization in the joint optimization equations

(3.9), (3.20), and (3.21). The computation and decision unit (CDU) carries out the

optimizing over ~c (and possibly S), the outer maximization of these three equations.

3.2.2 The Components in the General Data Detection Equa-

tion

This section describes the components of the receiver structure in Figure 3.1, when

the equation being implemented corresponds to the general data detection equation

- equation (3.9).
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The Universal Set of Demodulators

The universal set of demodulators carry out the inner maximization in equation

(3.9); that is, they carry out maxa p(rja; ~c), outputting both the resulting maximum

value and the corresponding data sequence. Each demodulator performs this max-

imization using a di�erent ~c 2 ~C, for a total of m demodulators. A more detailed

description of the demodulators follows.

Each of the m demodulators receives, every T seconds, the sample ri from the

receiver front end. The jth demodulator assumes that the sequence of nuisance pa-

rameter values contained in r, namely c = (c1; :::; cL), is given by cj. The jth demod-

ulator waits until all the ri's arrive before generating its output. Upon their arrival,

the jth demodulator outputs its choice of a, based on r and the assumption that the

nuisance parameter values are cj. This output sequence is called âj; it is given by

âj = argmax
a

p(rja; cj): (3.22)

This sequence is sent to the CDU accompanied by a value which indicates its likeli-

hood:

lj = max
a

p(rja; cj) = p(rjâj; cj): (3.23)

In summary, it can be said that the jth demodulator carries out optimal, maximum

likelihood (ML) sequence detection assuming cj is the nuisance parameter sequence

in e�ect.

The CDU

The CDU carries out the outer maximization of equation (3.9); that is, it imple-

ments the maximization over the nuisance parameter sequence. Its operation can be

described, in terms of the demodulator outputs, as follows.

The CDU decides which one of the m demodulators is best, and selects its output

as the system output. The CDU's decision is based on both the likelihood of the

demodulators' decisions and the nuisance parameter statistics. The output of the

CDU is given by

â = âj
�

; j� = argmax
j

[ln(lj) + lnP (cj)]: (3.24)
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3.2.3 The Components in Cases of Independent Noise Sam-

ples

This section describes the components of the receiver in Figure 3.1 in the cases when

the noise samples �i are independent. In these cases, the receiver corresponds to an

implementation of either equation (3.20) or (3.21).

The Universal Set of Demodulators

The universal set of demodulators carry out the inner maximization of equation

(3.20) or (3.21), a maximization over ai. The operation of the demodulators, when

they implement (3.20), is slightly di�erent from their operation when they carry out

(3.21). In what follows, we �rst provide a paragraph describing the operation of

the demodulators that is common to both cases. We then provide two subsections

which detail the demodulators' operation: one corresponding to the implementation

of (3.20), the other for (3.21).

Regardless of whether the demodulators implement equation (3.20) or (3.21), each

of the m demodulators receive, every T seconds, the sample ri. The j
th demodulator

assumes that c1 = c2 = ::: = cL = cj, i.e., ci = cj. (The notation cj now refers to an

assumption on ci, rather than an assumption on the entire sequence c = (c1; :::; cL).)

The jth demodulator, using ri, and this claim of ci = cj, generates, every T seconds,

one or more decisions regarding ai, the transmitted symbol.

Case Independent Data Symbols Whenever ri's dependence on ai corresponds

to a dependence on the single, independent value ai, the demodulators implement the

inner maximization of equation (3.20). Here, the jth demodulator generates a single

decision on ai, using ri and the assumption ci = cj. This is called â
j

i
. It is generated

according to

â
j

i
= argmax

ai

p(rijcj; ai): (3.25)
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The jth demodulator also generates lj
i
, a value indicating the likelihood of âj

i
, accord-

ing to

l
j

i
= max

ai

p(rijcj; ai) = p(rijcj; âji ): (3.26)

Both â
j

i
and l

j

i
are sent to the CDU. The entire sequence of outputs generated

by the jth demodulator (and sent to the CDU) is, simply, âj = (âj1; :::; â
j

L
) and lj =

(lj1; :::; l
j

L
).

In summary, in the case when ai corresponds to an independent ai, the j
th demod-

ulator carries out optimal maximum likelihood (ML) symbol-by-symbol detection

assuming the nuisance parameters in e�ect, at any time i, correspond to cj.

Case Data Symbols Have a State Dependence Sometimes ri's dependence on

ai does not correspond simply to a dependence on an independent ai, but rather its

dependence can be expressed using two terms - the single value ai and the state value

Si. In these cases the demodulators implement the inner maximization of equation

(3.21). Here, the jth demodulator generates many decisions on ai, using ri and the

claim that ci = cj. It creates one decision for each of the V possible values of the

state Si. Let fâji;k; k = 1; 2; :::; V g denote the V demodulator decisions generated by

the jth demodulator at time i; here, the decision âj
i;k

corresponds to the decision when

Si = Sk. These decisions are generated according to

â
j

i;k
= argmax

ai

p(rijcj; ai)jSi=Sk: (3.27)

The dependence of ri on Si is not written explicitly in equation (3.27); instead,

this dependence is implicit. Corresponding values, indicating the likelihood of the

demodulator's decisions, are generated according to

l
j

i;k
= max

ai

p(rijcj; ai)jSi=Sk = p(rijcj; âji;k): (3.28)

These are sent, along with fâj
i;k
g, to the CDU. The entire sequence of outputs gen-

erated by the jth demodulator and sent to the CDU corresponds to âj = fâj
i;k
; i =

1; 2; :::; L; k = 1; 2; :::; V g and lj = flj
i;k
; i = 1; 2; :::; L; k = 1; 2; :::; V g.
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The CDU

The CDU implements the outer maximization of equation (3.20) or (3.21); that is,

the CDU implements the maximization over the discrete nuisance parameter sequence

~c (and possibly S). The CDU outputs the data sequence that results from performing

this maximization. With the values of the inner maximization, and the corresponding

data sequences, available from the universal set of demodulators, the CDU's operation

can be described as follows.

The CDU decides which of the demodulator decisions to output. At one sample

time, the CDU may decide to output a decision received from demodulator A, and at

the next time the CDU may choose a decision received from demodulator B. Overall,

the CDU's output data sequence is a mixing of the decisions from them demodulators.

The CDU generates its output only after a consideration of the likelihood of the

demodulators' decisions and the statistical characterization of the nuisance parameter

sequence.

Case Independent Data Symbols

Whenever ri's dependence on ai corresponds to a dependence on an independent ai,

the data sequence output by the CDU is selected based on the outer maximization

of equation (3.20). The CDU's output is expressed here in terms of the decisions

generated by the bank of demodulators.

The â generated by the CDU can be expressed according to

â = (â1; â2; :::; âL) where âi = â
j
�

i

i
; (3.29)

here, j�
i
2 f1; 2; :::; mg corresponds to the index of the demodulator whose output is

selected by the CDU at time i. These j�
i
values are generated according to

j� = (j�1 ; j
�
2 ; :::; j

�
L
) = argmax

j

LX
i=1

fln(lji
i
) + lnP (cjijcji�1; :::; cji�J )g: (3.30)

That is, the j�
i
's are chosen based on two considerations: the likelihood of the demod-

ulator outputs, and the probability that a demodulator is chosen given the channel

parameters assumed by the previously selected demodulators.
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Case Data Symbols Have a State Dependence When ri's dependence on ai

can be expressed as a dependence on ai and a state variable Si, the CDU's output

data sequence is based on the outer maximizations of equation (3.21). We express

the CDU's output here in terms of the inputs provided by the bank of demodulators.

The set of decisions fâj
i;k
; k = 1; :::; V g are received from each demodulator at

each time i, along with a corresponding set of likelihood values. The CDU output â

is chosen according to

â = (â1; â2; :::; âL) where âi = a
j
�

i

i;k
�

i

; (3.31)

here, j�
i
2 f1; 2; :::; mg again corresponds to the index of the demodulator whose

output is chosen by the CDU at time i; similarly, k�
i
2 f1; 2; :::; V g corresponds to

the index of the state whose output is selected by the CDU at time i. These k�
i
and

j�
i
values are selected according to

k�; j� = (k�1; :::; k
�
L
; j�1 ; :::; j

�
L
) = arg max

j;k2KP

LX
i=1

fln(lji
i;ki

) + lnP (cjijcji�1; :::; cji�J )g;
(3.32)

where KP represents the set of indices corresponding to all permissible state se-

quences. This equation in simply an alternative expression for the outer maximiza-

tions of equation (3.21).

3.2.4 The Components | Example

In this section we provide a description of the components in the general receiver

structure for an example which is of practical interest. In this example, the received

signal ri is described as

ri = v(ai; ci) + �i: (3.33)

Here, �i is assumed independent of its history and future; similarly, ai is independent

of aj 8 i 6= j; and, �nally, ci represents a single nuisance parameter value.

The receiver components here will correspond to a special case of the receiver

components which carry out equation (3.20) | the only di�erence is ci is replaced by

the single value ci.
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The universal set of demodulators operate, in this example, as follows. The jth

demodulator assumes that the sample ci, present in ri, has a value of c
j. It assumes

that this is the correct parameter value regardless of the time index i. This jth

demodulator generates, every T seconds, the decision

â
j

i
= argmax

ai

p(rijai; cj): (3.34)

This equation corresponds to the maximum likelihood decision on ai when ci is

assumed to be cj. The demodulator transmits its decision to the CDU, accompanied

by the likelihood value

l
j

i
= max

ai

p(rijai; cj) = p(rijâji ; cj); (3.35)

this indicates the likelihood of âj
i
.

The CDU determines which of the demodulator decisions to select as an output

at each time. The decisions it outputs are chosen according to

â = (â1; :::; âL) where âi = â
j
�

i

i
; (3.36)

here, the j�
i
are generated using

j� = (j�1 ; :::; j
�
L
) = argmax

j

LX
i=1

fln(lji
i
) + lnP (cjijcji�1 ; :::; cji�J )g: (3.37)

This completes the description of the receiver components.
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The Parallel Receiver Structure:

Analysis

In this chapter, we analyze the parallel receiver structure. We begin by introducing a

condition on the discrete parameter space ~C = fc1; c2; :::; cmg. Whenever ~C satis�es

this condition, it can be used in our receiver structure.

Next, we generate the existence condition for our receiver. When a communication

environment satis�es this existence condition, it is possible to �nd a ~C satisfying its

key condition, and hence it is possible to apply the proposed receiver structure to this

environment.

The chapter concludes with two algorithms: the �rst algorithm provides insight

into the number of parallel demodulators (m) required by the receiver structure; the

second algorithm, using the results of the �rst, establishes the discrete parameter

space ~C = fcj; j = 1; 2; :::; mg.

47
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4.1 Constraints on ~C for the Existence of the Re-

ceiver

In Chapter 3, we generated three key equations which served as the basis for the

general receiver structure. These three equations, (3.9), (3.20), and (3.21), were all

generated from joint detection and estimation equations using the discrete space ap-

proximation; here, the continuous parameter space, either C or C0, was approximated

by the discrete parameter space ~C. It was assumed at the time that the ~C was care-

fully chosen to insure that the approximation was a good one. That is, the ~C insured

that data detection achieved by the equations using C or C0 was very close to the

data detection achieved by the equations using ~C.

This section provides a mathematical description of the condition on the discrete

parameter space ~C. Whenever the ~C satis�es this new condition, the discrete param-

eter space approximation is valid, and the ~C can be used in building our receiver;

conversely, when ~C fails the condition, the discrete space approximation is invalid,

and the ~C should not be used in the receiver structure.

We want to formalize the statement regarding ~C: data detection using C (or C0)

is close to data detection using ~C. We begin by de�ning a performance measure, a

value which allows us to measure how well a receiver, implementing a data detection

equation, is doing. The measure of performance that has become a standard for

receivers is probability of error, denoted P (�). This value refers to the likelihood

of a di�erence between the receiver symbol âi and the transmitter symbol ai. This

probability re
ects the likelihood that binary symbols bi and b̂i are di�erent [2, p.180-

181]. A larger probability of error indicates a diminished performance. With this

well de�ned performance measure, we can now restate our starting condition on the

discrete parameter space ~C. We want ~C to insure that: (i) the P (�) achieved in

(3.8) (using C) is close to the P (�) achieved in (3.9) (using ~C); or, (ii) in cases of

independent noise samples, the P (�) achieved in (3.18) (using C0) is close to the

P (�) achieved in (3.20) or (3.21) (using ~C). We will consider the �rst of these two

conditions on ~C, as the second condition can be studied analogously.



Chapter 4: Analysis 49

Our requirement on ~C can be restated as

P ~C(�) � PC(�); (4.1)

where P ~C(�) refers to the probability of error that results from equation (3.9) (using

~C), and PC(�) refers to the probability of error generated by equation (3.8) (using

C). We can state our requirement on ~C more precisely using

P ~C(�)
>� PC(�); (4.2)

equation (4.2) indicates that P ~C(�) is greater than, but very close to, PC(�) (e.g.,

PC(�) < P ~C(�) < PC(�) + �, where � is some small positive value). The terms of

equation (4.2) are functions of the nuisance parameter vector in e�ect, c. Hence, we

state, more speci�cally, that we want the probabilities of error averaged over c to be

close, i.e.,

Ec[P ~C(�jc)] >� Ec[PC(�jc)]; (4.3)

here, Ec[�] refers to an averaging over c; P ~C(�jc) refers to the probability of error in

(3.9) (using ~C) when c is the parameter vector in e�ect; and PC(�jc) refers to the

error probability in (3.8) (using C) when c is in e�ect. Hence our requirement on ~C

corresponds to

Ec[P ~C(CORjc)] <� Ec[PC(CORjc)]; (4.4)

where P (CORjc) refers to the probability of a correct decision when c is in e�ect,

P ~C(CORjc) refers to the probability of correct decision in equation (3.9) (using ~C)

when c is in e�ect, and PC(CORjc) is the correct decision probability in (3.8) (using

C) with c in e�ect.

The �nal condition on ~C is generated from (4.4) using two assumptions, which

we now state. First, we assume that there exists a set Nc � C, de�ned by: given

c, Nc = fĉ 2 C : P (CORjc; ĉ) � P (CORjc; c) � �g; here, P (CORjc; ĉ) refers to
the probability of a correct decision when a demodulator assumes ĉ, but in reality

c is in e�ect; also, � is some small positive value. In words, this assumption states

that, for any given c, there exists a set of points, Nc, such that the performance of

a demodulator assuming ĉ 2 Nc is very close to coherent. Our second assumption

regards receivers implementing joint MAP detection. We assume that such receivers
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will output an estimate of c, ĉ, that satis�es P (ĉ 2 Nc) >> P (ĉ 62 Nc); that is, the

estimate of c that results from joint MAP detection, ĉ, is very likely to correspond

to near coherent data detection. This is simply the claim that joint MAP detection

achieves a good performance.

With the above two assumptions in hand, we begin to simplify the condition on

~C in (4.4) by working �rst with the RHS. We can restate the expectation on the RHS

according to Ec[PC(CORjc)] = Ec[
R
ĉ2Nc

PC(CORjc; ĉ) � p(ĉ)dĉ+
R
ĉ62Nc

PC(CORjc; ĉ) �
p(ĉ)dĉ]: Here, PC(CORjc; ĉ) refers to the probability of a correct decision in the joint

MAP equation of (3.8), when c is in e�ect, and ĉ is the estimate on c that results

in (3.8). Our assumption that joint MAP provides reliable data detection indicates

P (ĉ 2 Nc) >> P (ĉ 62 Nc); furthermore, by de�nition of Nc, PC(CORjc; ĉ 2 Nc) >

PC(CORjc; ĉ 62 Nc). Hence, we can rewrite the expectation on the RHS according to

Ec[PC(CORjc)] � Ec[
R
ĉ2Nc

PC(CORjc; ĉ) � p(ĉ)dĉ].
Finally, using PC(CORjc; ĉ 2 Nc) � PC(CORjc; ĉ = c)� �, where � is some small

value, we can rewrite the RHS according toEc[PC(CORjc)] � Ec[
R
ĉ2Nc

PC(CORjc; ĉ =
c) � p(ĉ)dĉ] = Ec[PC(CORjc; ĉ = c) � R

ĉ2Nc
p(ĉ)dĉ] = Ec[PC(CORjc; ĉ = c) �P (ĉ 2 Nc)].

Using this in equation (4.4) leads to the requirement on ~C:

Ec[P ~C(CORjc)] <� Ec[PC(CORjc; ĉ = c) � P (ĉ 2 Nc)]: (4.5)

We now rework the left hand side (LHS) of this equation. We �rst restate the

expectation on the LHS according to Ec[P ~C(CORjc)] = Ec[P ~C(CORjc; ĉ = Q(c)) �
P (ĉ = Q(c)) +

P
cj2 ~C;cj 6=Q(c) P ~C(CORjc; ĉ = cj) � P (ĉ = cj)]. Here, P ~C(CORjc; ĉ = c0)

refers to the probability of a correct decision in equation (3.9) (a joint MAP equation

using the discrete space ~C), when c is in e�ect and ĉ = c0 is the estimate that results

from (3.9). Also, Q(c) refers to the ~c 2 ~C closest to c, where the closeness of ~c and

c is measured by the size of the metric: probability of error when c is in e�ect and

~c is assumed. Now, assuming again that joint MAP provides reliable data detection,

P (ĉ = Q(c)) >> P (ĉ 6= Q(c) j ĉ 2 ~C); also, by de�nition of Q(c), P ~C(CORjc; ĉ =
Q(c)) > P ~C(CORjc; ĉ = cj) for all cj 2 ~C (cj 6= Q(c)). Hence, the expectation on the

LHS is bounded tightly by Ec[P ~C(CORjc)] >� Ec[P ~C(CORjc; ĉ = Q(c)) �P (ĉ = Q(c))].

We can update the LHS of (4.5) by using the above bound; this leads to the tighter
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bound on ~C:

Ec[P ~C(CORjc; ĉ = Q(c)) � P (ĉ = Q(c))]
<� Ec[PC(CORjc; ĉ = c) � P (ĉ 2 Nc)]: (4.6)

In general, P (ĉ 2 Nc) in (3.8) and P (ĉ = Q(c)) in (3.9) are close, and hence the above

bound is satis�ed when Ec[P ~C(CORjc; ĉ = Q(c))]
<� Ec[PC(CORjc; ĉ = c)]; that is,

Ec[P ~C(�jc; ĉ = Q(c))]
>� Ec[PC(�jc; ĉ = c)]: This requirement on ~C can be expressed

more precisely by the bound on ~C:

Ec[P ~C(�jc; ĉ = Q(c))] � hfEc[PC(�jc; ĉ = c)]g; (4.7)

here, hf�g represents h : [0; 1] ! [0; 1] which satis�es h(s) > s and h(s) � s (e.g.,

h(s) = s + � where � is small) { we call hf�g the degradation function [42]. Finally,

using a shorthand notation, we have the bound on ~C:

Ec[P (�jc; Q(c))] � hfEc[P (�jc; c)]g; (4.8)

here, P (�jc; Q(c)) represents the probability of error of an ML demodulator assuming

Q(c) (the ~c 2 ~C closest to c) when in reality c is in e�ect; and P (�jc; c) represents the
probability of error of an ML demodulator with complete information regarding the

c in e�ect. Equation (4.8) corresponds to the mathematical equation that we require

~C satisfy.

In the case of independent noise samples, in which case we want ~C to insure the

proximity of equation (3.18) to equation (3.20) and (3.21), the de�ning condition we

will require ~C satisfy can be shown to be the analogous

Ec
i
[P (�jci; Q(ci))] � hfEc

i
[P (�jci; ci)]g: (4.9)

In both equations (4.8) and (4.9), the degradation function h(s) is not explicitly

de�ned. This is because h(s) determines how close our receiver structure's perfor-

mance, using ~C, is to that of joint MAP detection and estimation; and there is no one

universally good choice for this. Rather, its choice depends on the intended applica-

tion of the receiver structure. For instance, if we want to apply our receiver structure

to an environment where probability of errors less than 10�5 are not required at the

receiver output, a good choice for h(s) may be h(s) = max(s+ 10�5; 2 � s).
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In terms of the receiver structure in Figure 3.1, the conditions on ~C = fc1; c2; :::; cmg
in (4.8) and (4.9) can be expressed as follows. The nuisance parameter values assumed

by each demodulator are carefully chosen. They insure that the performance of the

best demodulator (the demodulator assuming a cj closest to the channel parameters

in e�ect) is close to the performance of an omniscient, or coherent, demodulator (a

demodulator using the actual parameter values in e�ect).

The evaluation of an exact set ~C, satisfying either (4.8) or (4.9), is detailed later,

in Section 4.4. There, we provide an algorithm for generating ~C, an algorithm based

on quantization theory.

4.2 Existence Condition for the Proposed Receiver

In this section, we introduce an existence condition for our receiver structure. When-

ever a communication environment meets this existence condition, our proposed re-

ceiver structure can be used to carry out data detection in the environment.

In what follows, we present the existence condition as a condition which insures

that there exists a ~C to satisfy (4.8) or (4.9). We do this because, whenever a ~C can

be found that satis�es (4.8) or (4.9), then this means that a ~C can be found that can

be used in our receiver structure; this, in turn, implies that our receiver exists.

The existence condition can be described as follows. (1) For cases of depen-

dent noise samples, if the communication environment demonstrates a P (�jc; c0) such
that limc0!c P (�jc; c0) = P (�jc; c) (for every c0 2 C), then the receiver structure ex-

ists (i.e., then there exists an integer m and set ~C = fc1; :::; cmg satisfying (4.8));

similarly, (2) for cases of independent noise samples, if the communication environ-

ment demonstrates a P (�jci; c0i) such that limc
0

i
!c

i
P (�jci; c0i) = P (�jci; ci) (for every

c0
i
2 C0), then the receiver structure exists (i.e., then there exists an integer m and

set ~C = fc1; :::; cmg satisfying (4.9)).
We now provide a brief intuitive argument, explaining how the condition limc0!c P (�jc; c0) =

P (�jc; c) insures the existence of a ~C satisfying (4.8) (a complete proof is provided

later). We begin by assuming that the communication environment demonstrates
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c  =  c  -  Q(c)ε

ε  P(    |  c  )ε

Figure 4.1: P (�jc�), limc
�
!0 P (�jc�) 6= P (�j0).

P (�jc; c0) = P (�jc�c0) = P (�jc�), and that this probability does not satisfy limc0!c P (�jc; c0) =
P (�jc; c) (for every c0 2 C), i.e., it does not always satisfy limc

�
!0 P (�jc�) = P (�j0).

An example of this is shown in Figure 4.1. (We note here that this is not a practical

example, since it requires a receiver have exact knowledge of the continuous nuisance

parameters to achieve near-coherent performances; never-the-less, it serves to illus-

trate our point regarding existence.) In this example, for any c in e�ect, regardless of

the number of vectors we add to the discrete nuisance parameter space ~C, we can in

no way guarantee that the vector Q(c) 2 ~C achieves a P (�jc; Q(c)) = P (�jc� Q(c))

very close to P (�jc; c) = P (�j0); hence, we can not insure that (4.8) is satis�ed, i.e,

that Ec[P (�jc; Q(c))] � hfEc[P (�jc; c)]g.
Consider now the case when the communication environment demonstrates a

P (�jc; Q(c)) = P (�jc�Q(c)) = P (�jc�), and this time the probability satis�es limc0!c P (�jc; c0) =
P (�jc; c), i.e., limc

�
!0 P (�jc�) = P (�j0). An example of this is shown in Figure 4.2.

Here, by adding more and more uniformly spaced vectors cj into ~C, we can move the

value P (�jc; Q(c)) = P (�jc � Q(c)) arbitrarily close to P (�jc; c) = P (�jc� = 0). This

is because, as we increase the number of vectors in a uniform manner, we can insure

that there exists in ~C a vector which moves Q(c) very close to c, in turn moving the

performance P (�jc; Q(c)) = P (�jc� Q(c)) very close to P (�jc; c) = P (�jc� = 0). This

implies that equation (4.8) can be satis�ed.

We now provide a formal proof of the existence condition. Speci�cally, we prove

that the requirement on P (�jc; c0) is su�cient to insure the satisfaction of equation
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c  =  c  -  Q(c)ε

ε  P(    |  c  )ε

Figure 4.2: P (�jc�), limc
�
!0 P (�jc�) = P (�j0).

(4.8). Our proof demonstrates su�ciency, rather than both su�ciency and necessity.

This is adequate, because all communication environments we are aware of satisfy

this su�cient condition, insuring the applicability of our receiver to almost all com-

munication environments. (The proof for the part of the existence condition relating

to the satisfaction of (4.9) is carried out analogously.)

Proof:

We want to prove: if limc0!c P (�jc; c0) = P (�jc; c) (for every c0 2 C), then there exists

a set ~C with a �nite m satisfying

Ec[P (�jc; Q(c))] � hfEc[P (�jc; c)]g: (4.10)

An equivalent proof is: if limc0!c P (�jc; c0) = P (�jc; c), then

lim
m!1

Ec[P (�jc; Q(c))] = Ec[P (�jc; c)]: (4.11)

This is equivalent because (4.11) implies, for any � > 0, that there exists a ~C with

a large (but �nite) m such that jEc[P (�jc; Q(c))] � Ec[P (�jc; c)]j < �; this, in turn,

implies that, for a ~C with large but �nite m, (4.10) can be satis�ed.

We resolve the equivalent proof of (4.11) by reference to the Dominated Conver-

gence Principle [63, p.111]. This principle states, for the case at hand: if limQ(c)!c P (�jc; Q(c)) =
P (�jc; c), then limQ(c)!cEc[P (�jc; Q(c))] = Ec[P (�jc; c)]. It follows that, if

limQ(c)!c P (�jc; Q(c)) = P (�jc; c), then limm!1Ec[P (�jc; Q(c))] = Ec[P (�jc; c)] is
satis�ed. }
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4.3 Performance as a Function of m

In this section, we introduce an algorithm which generates m, the number of parallel

demodulators employed in the receiver structure, for a stated communication envi-

ronment. Speci�cally, given a particular communication environment and a stated

receiver performance, the algorithm provided here generates a bound on the smallest

value of m at which this performance may be achieved. This algorithm is developed

for cases of independent noise samples and independent data symbols.

Establishing m may be the single most important criteria in determining the

practical applicability of the proposed receiver. The previous section tells us whether

or not it is theoretically possible to apply the receiver to a particular communication

environment. However, the practical applicability of a receiver is determined by

the complexity of its implementation. The primary factor in the complexity of our

receiver is the number of parallel demodulators (m). If thousands are needed, it is

clear that our proposed receiver is inapplicable. Fortunately, using the results of this

section, we show, in later chapters (and in an example provided in this section) that,

in many cases of practical interest, only a few parallel demodulators (usually less than

10) are required to achieve performances indistinguishable from those attained with

m ! 1. As a result, our proposed receiver is not only theoretically applicable, but

also practical.

4.3.1 Performance Measure as a Function of m

In this subsection, we re-introduce the performance measure, and attempt to charac-

terize this measure in terms of m. We hope to derive a simple equation describing

the relationship between the performance measure and m.

As we pointed out earlier, the standard measure for evaluating the performance

of a receiver is the probability that ai and âi di�er, denoted P (�). For the proposed

parallel receiver, this probability can be expressed according to

P (�) = Ec
i
;cj [P (�jci; cj)]; (4.12)
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where P (�jci; cj) refers to the likelihood of an error at the jth demodulator when ci is

in e�ect. Restating this expectation leads to

P (�) =
mX
j=1

Z
C0

[P (�jci; cj)] � P (cjjci) � p(ci)dci; (4.13)

here, P (cjjci) denotes the probability that the CDU output corresponds to the jth

demodulator's decision, given that ci is in e�ect. It is di�cult to come up with a

simple expression for this probability. This is because the CDU decisions are based

on the statistics of the entire sequence of L symbols, and hence the likelihood of a

decision at a particular time i is hard to resolve.

As a result of the di�culty in simplifying P (cjjci), the evaluation of the m at

which a stated performance P (�) can be attained is not easily resolved by a brute

force evaluation of P (�) as a function of m.

4.3.2 A New Equation Relating Performance Measure to m

In this subsection, we introduce a realization regarding the P (�)�m relationship in

our receiver structure. This realization leads to a simpler equation describing the

P (�)�m relationship.

The realization, regarding the P (�) � m relationship of our receiver structure,

is generated as follows. It begins with the recognition that detection errors in our

proposed parallel receiver can be attributed to two sources of error { errors created

by the best demodulator, and errors introduced by the CDU.

The �rst source of errors, errors in the best demodulator, refer to the errors

created by the demodulator assuming a cj closest to ci. These errors are a result

of both additive noise and the demodulator's assumption of cj when in fact ci is in

e�ect. By increasing m, the cj of the best demodulator is likely to move closer to ci;

this reduces the errors made by the best demodulator.

The errors created by the CDU, the second source of errors, refer to the errors

made in addition to those at the best demodulator. That is, it refers to the additional

errors made when the CDU selects, as its output, the decisions of a demodulator with
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a cj which is not closest to ci. The CDU's method of choosing from among the m

demodulator decisions is une�ected by the value of m. In fact, regardless of m, the

CDU is usually able to select the demodulator with a cj closest to ci.

For the purposes of characterizing the P (�)�m relationship in our receiver struc-

ture, rather than the complete P (�), we can omit the contributions to error which

are independent of m. Hence, from the arguments presented in the above two para-

graphs, it su�ces to focus on the errors created by the best demodulator, and ignore

those of the CDU. That is, we can characterize the P (�) � m relationship of our

parallel receiver structure by characterizing the P (�)�m relationship of the receiver

in Figure 4.3. Here, the Genie Unit (or GU , for short) refers to an ideal processing

unit that always outputs the decisions generated by the best demodulator, i.e., by

the demodulator using an assumed cj closest to ci. This receiver only experiences the

errors created by the best demodulator.

With this key realization in hand, we now try to characterize the P (�) � m re-

lationship by a brute force computation of the P (�) of the receiver in Figure 4.3.
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We hope to be able to achieve an expression for this P (�) which clearly indicates its

dependence on m. The overall P (�) of the parallel receiver of Figure 4.3 is described

by

P (�) = Ec
i
[P (�jci; Q(ci))]; (4.14)

that is, it is the averaging, over ci, of the probability of error achieved by the demod-

ulator assuming Q(ci) (the c
j closest to the ci). Restating the expectation in integral

form leads to

P (�) =
Z
C

P (�jci; Q(ci))p(ci)dci; (4.15)

or, equivalently,

P (�) =
mX
j=1

Z
Rj

P (�jci; cj)p(ci)dci; (4.16)

where Rj = fci 2 C0 : Q(ci) = cjg, i.e., Rj corresponds to the subset of C0 made up

of the elements ci 2 C0 which are closer to cj than any other ck; k 6= j.

The P (�) of equation (4.16) could be used to establish the P (�)�m relationship.

This, however, would be a long process. For each value of m, we could generate a

set ~C = fc1; :::; cmg, using either intuitive arguments or the algorithm provided in

the next section (Section 4.4); using this ~C, and numerical integration methods, we

could solve for P (�) from equation (4.16). Repeated application of these two steps,

each time with a new value of m, establishes a P (�)�m relationship.

4.3.3 P (�)�m Evaluated Using Rate Distortion Theory

This subsection introduces a practical algorithm which establishes the P (�) vs m

relationship for the proposed parallel receiver structure. This algorithm is generated

starting from the key realization of the previous subsection, which explains that for

the sake of characterizing P (�)�m, our proposed receiver can be replaced by Figure

4.3. From this starting point, we show how rate distortion theory can be applied to

create an algorithm that establishes P (�) vs m.

The work that follows is subdivided into �ve parts. First, we describe the receiver

of Figure 4.3 in a form more appropriate for rate distortion theory analysis. Next, we

provide a brief introduction to rate distortion theory. Third, we apply the ideas of
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rate distortion theory to the new description of the receiver of Figure 4.3, resulting

in an algorithm which establishes the P (�) � m relationship. Two �nal subsections

provide some insights regarding this P (�)�m algorithm.

An Alternative Description of the Genie Receiver

The receiver of Figure 4.3, which we will now refer to as the genie receiver, serves

as our starting point in characterizing the P (�) � m relationship. We now express

the operation of the genie receiver in a form more suitable for the upcoming rate

distortion analysis.

An alternative implementation of the genie receiver is shown in Figure 4.4. Here,

we show the genie receiver with two inputs: the nuisance parameter vector ci, and

the received sample ri. The leftmost component of the genie receiver is an m-level

quantizer, which carries out the mapping Q : C0 ! ~C; that is, given ci, it generates

Q(ci) = cj, where cj is the element in ~C closest to ci. The ML receiver component

carries out ML data detection assumingQ(ci) is the correct nuisance parameter vector,

i.e., it outputs âi = argmaxai p(rijai; Q(ci)).
The quantizer is characterized (in part) by a rate R, which indicates the number

of bits needed to represent its output vectors; that is, R represents the number of bits

the quantizer uses in representing the input vector. In our case, R = logm, where all

logarithms in this subsection are base 2.

The overall performance of this receiver is P (�) = Ec
i
[P (�jci; Q(ci))]. We will now
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refer to this term as the average distortion, and label it D.

Using this characterization of the receiver of Figure 4.3, we can now express the

relationship between P (�) and m as a relationship between D and R.

Rate Distortion Theory

One branch of information theory, that can help in establishing the R�D relationship,

is rate distortion theory. The foundations for rate distortion theory (as well as the

whole of information theory) were established by Claude Shannon in 1948, in his

much-celebrated journal article `A Mathematical Theory of Communication' [64].

Following this introduction in Shannon's article, the literature on rate distortion

theory grew steadily. In 1972, Toby Berger's Rate Distortion Theory [65] pieced

together much of the diverse literature on this topic.

At the heart of rate distortion theory lies a function, called the rate distortion

function, and denoted R(D). This function de�nes the minimum rate R which can

be used, to represent an information-bearing signal, such that it produces an average

distortion of D. Whenever we are given the statistics of the information-bearing

signal, and a distortion measure, rate distortion theory explains how to generate this

R(D).

Applying Rate Distortion Theory

In this subsection, we apply rate distortion theory to the receiver of Figure 4.4, and

establish a rate distortion function, R(D), for the receiver. In this case, with R

corresponding to logm, and D to P (�), this R(D) function establishes the smallest m

at which we can achieve a performance of P (�). This serves as our characterization

of the P (�)�m relationship.

Before we can generate the rate distortion function, R(D), for our receiver, we

must introduce two characteristics: a distortion measure; and the statistics of the

random vector being represented at rate R.
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A distortion measure refers to a non-negative cost function; it indicates the cost

when an input, say x, is represented by the value y. The average distortion of a

system, D, is the average of the distortion measure over all possible inputs. In our

case, the input ci is quantized to Q(ci). We want to de�ne a distortion measure to

describe the cost of representing ci by Q(ci). We choose the distortion measure

�(ci; Q(ci)) = P (�jci; Q(ci)): (4.17)

This leads to an average distortion D which is consistent with the probability of error

measure introduced earlier, namely D = P (�) = Ec
i
[P (�jci; Q(ci))].

A second characteristic, which must be introduced before we can establish R(D),

is the statistical characterization of the random vector being quantized at a rate R.

In our case, the random vector being quantized is ci. The genie receiver, as described

in Figure 4.4, quantizes each ci independently of all other ck's, k 6= i; additionally, its

quantization operation is identical at each sample time i. Here, the receiver is acting

as if each ci is an independent, identically distributed (i.i.d.) random vector, fully

characterized by p(ci). Since we want the R(D) relationship for this receiver, we will

make these very same claims regarding the statistics of ci.

With these two characteristics in hand, we can now apply rate distortion theory

to generate R(D). Referring to [65, p.88], we �nd that, for our application, with the

two characteristics provided above, the function R(D) is given by

R(D) = inf
p2QD

I(ci; y) (4.18)

where

QD = fp(yjci) :
Z
C0

Z
C0

p(ci)p(yjci)�(ci; y)dcidy = Dg; (4.19)

I(ci; y) =
Z
C0

Z
C0

p(ci)p(yjci) log
p(yjci)
p(ci)

dcidy; (4.20)

here, y 2 C0. The units of R(D) are bits per vector ci.

This equation states that the minimum rate R at which a distortion D can be

achieved corresponds to: the smallest amount of average information that an output

y can convey about an input ci, and still attain an average distortion of D. This

equation, due in part to its integral nature, is not easy to compute.
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Fortunately, whenever we have a di�erence distortion measure, that is, the dis-

tortion measure �(ci; y) = P (�jci; y) = P (�jci � y) = P (�jc�), then this R(D) is lower

bounded by a Shannon bound. The good news here is that the Shannon bound is

both a tight bound and is easier to evaluate than the exact R(D). This tight bound,

which we call RL(D) (L for lower bound), can be generated in parametric form, for

our case of interest, as follows. For a given s 2 (�1; 0], compute D = D(s) according

to

D =
Z
gs(c�)P (�jc�)dc� (4.21)

where

gs(c�) =
esP (�jc�)R
esP (�jc�)dc�

: (4.22)

The corresponding R = R(D) is lower bounded (tightly) by

RL = RL(D) = RL(s) = h(ci)� h(gs); (4.23)

where h(ci) refers to the entropy of ci, that is, h(ci) = � R p(ci) log p(ci)dci; and
h(gs) = �

R
gs(c�) log gs(c�)dc�. In this way, the R � D relationship can be estab-

lished, one point at a time. (The s 2 (�1; 0] value, used to generate (D(s); RL(s)),

itself corresponds to the slope of the R � D curve at the point approximated by

(D(s); RL(s)).)

The terms D and RL (in equations (4.21) and (4.23) respectively), used to gener-

ate the Shannon lower bound, can only be evaluated numerically. In what follows, we

provide a detailed algorithm which explains how the Shannon lower bound is gener-

ated using numerical methods. Brie
y, the algorithm varies s over a range of values

between �1 and 0, and evaluates one point on the R �D curve at each s value by

numerical means. All logarithms in the algorithm that follows are base e.

Algorithm 1:

A1. (i) Evaluate an analytical expression for the distortion measure P (�jc�) for the
communication environment of interest.

(ii) Select a Signal-to-Noise (SNR) ratio at which we want to establish the P (�)�m

relationship. A good choice for this SNR value is the intended system operating point.

The reason we �x the SNR value is because P (�) is a function of SNR, and we are

not currently interested in this dependence.
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(iii) Choose a starting s, s0; e.g., s0 = �1:0.
(iv) Choose a rule for generating a new s value, si+1, from the previous s value, si;

e.g., si+1 = si � 2:
(v) Set a minimum (�nal) value for s, smin; e.g., smin = �4096:
(vi) Set n = 0.

B1. Compute I1 =
R
esnP (�jc�)dc� according to

I1 �
KX
i=1

e
snP (�jc�i

)
�c�: (4.24)

C1. Compute D = P (�) = 1
I1

R
esnP (�jc�)P (�jc�)dc� according to

D = P (�) � 1

I1

KX
i=1

e
snP (�jc�i

)
P (�jc�i)�c�: (4.25)

D1.(i) Compute h(gs) = �1:0 � 1
I1

R
esnP (�jc�)[snP (�jc�)� log(I1)]dc� according to

h(gs) � �1:0 � 1

I1

KX
i=1

e
snP (�jc�i

)[snP (�jc�i)� log(I1)]�c�: (4.26)

(ii) Compute

RL(D) =
h(ci)� h(gs)

log(2)
; (4.27)

the log(2) insures that R(D) is generated in units of bits per vector.

(iii) Compute

m = 2RL(D): (4.28)

E1. If sn 6= smin, let n n+ 1, and return to B1;

otherwise, stop { the set of points (m;P (�)), one point generated at each sn, can

now be used to plot a P (�)�m curve. }
Before proceeding, we pause here to emphasize that the P (�)�m curve generated

by the above algorithm provides a lower bound on the minimum m that achieves a

performance P (�) (and does not provide an actual minimum m that can achieve this
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performance). There are two reasons for this. First, our algorithm generates RL vs

D (i.e., mL vs P (�)), a lower bound on R vs D (i.e., on m vs P (�)). In addition,

the values of the R vs D (m vs P (�)) curve are only attainable in the limit of large

blocklength [65], i.e., in the limit as the number of ci's quantized simultaneously tends

toward the in�nite; however, in the receiver at hand (Figure 4.4), each ci is quantized

independently. As a result, R vs D (m vs P (�)) acts as a lower bound for our receiver.

In our experience, the m value required to achieve a stated performance P (�),

generated by the P (�) vs m algorithm, serves as a very good starting estimate for the

actual m value required. For instance, in the case of AWGN and phase o�set, when

the P (�)-m curve indicated that the m value required to achieve a stated P (�) was

m = 5, the actual m value that was found to achieve the P (�) was m = 8 (see Section

5.2 for details).

Application of the P (�)�m Algorithm

In this subsection, we apply the algorithm designed to characterize the P (�) � m

relationship to a particular example of practical interest. This serves to demonstrate

how to use this algorithm, the practical nature of the algorithm, and the practical

applicability of our receiver structure.

We consider the case of di�erentially encoded MPSK symbols, withM = 8, trans-

mitted over a channel which introduces both a carrier phase o�set and AWGN. In

this case, the received samples generated from the receiver front end correspond to

ri = die
j�i + �i; (4.29)

here di = ai � di�1, where d0 =
p
Es and ai corresponds to an information-bearing

MPSK symbol, that is, ai = ej
2�

M
li , where li 2 f1; :::;Mg; �i represents the unknown

phase o�set introduced by the channel at time sample i; and the �i's correspond to

complex random noise samples with real and imaginary parts that are i.i.d. Gaussian

random variables of zero mean and variance No

2
. We assume, for reasons which we

will explain in a later chapter, that the phase o�set is uniform on [0; 2�
M
), that is,

p(�i) =

8<
:

M

2�
; �i 2 [0; 2�

M
)

0; else.
(4.30)
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We are now ready to apply our Shannon bound algorithm to establish the P (�)�m
relationship for the case at hand. The �rst part of the algorithm, A1 (i), requires

that we achieve an analytic expression of the distortion measure. Using union bounds

and geometric arguments, we acquire

P (�j��) � 1

2
erfc(

s
Es

No

sin(
�

M
+ ��)) +

1

2
erfc(

s
Es

No

sin(
�

M
� ��)): (4.31)

We now choose parameter values as explained in the remainder of step A1. Specif-

ically, we select Es

No

, a representative of the SNR, to be 16dB; at this value, the

probability of error with perfect knowledge of the phase o�set �i is 6:3 � 10�4. We

also choose s0 = �500, si+1 = si � 2, and smin = �128000.
We next carry out steps B1 through E1, using MATLAB. This leads to the P (�)

vs m curve of Figure 4.5. This curve suggests that when a small, �nite number of

demodulators are used in our receiver structure, almost all the performance to be had

is achieved.

The P (�)�m Characteristics as a Function of SNR

The algorithm provided in an earlier subsection generates a P (�) � m relationship

for our receiver structure at a given SNR. In this �nal subsection, we examine how

this P (�)�m relationship changes as we vary SNR. To establish this, we consider a

particular example, namely the example of unknown phase described by (4.29).

We begin by presenting several P (�)�m relationships, each one generated using

the provided algorithm with a unique SNR value. Figure 4.6 shows the P (�) � m

curve that results when the SNR is 13dB; Figure 4.7 shows the P (�)�m curve that

results at an SNR of 18dB; and the earlier Figure 4.5 displays this P (�)�m curve at

an SNR of 16dB. In all these curves, the leveling-o� value of P (�) corresponds to the

coherent P (�).

We can draw the following conclusions from these curves. As SNR increases, the

P (�) �m relationship of our proposed receiver changes. Speci�cally, at larger SNR

values, a larger m value is required to achieve a P (�) close to that attained with

m!1. For instance, if we want a P (�) within 10% of that attained with m!1,
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we require the following: our receiver must be built with m � 7 demodulators if the

operating point of the system is 13dB; our receiver requires m � 13 demodulators if

the system operating point is 16dB; this value rises to m � 18 if the system operating

point is 18dB.

The reason our receiver requires a largerm at increased SNR's, to maintain a �xed

percentage from the performance attained with m!1, can be explained as follows.

In the receiver of Figure 4.4, the receiver characterizing the P (�) � m relationship,

there are two sources of error. First, there are errors due to noise; this refers to errors

that would be made even if the exact �i were known. Second, there are errors due

to phase quantization; these are errors that result, in addition to those due to noise

alone, because the phase value �i is approximated by Q(�i) at the receiver.

At low to mid SNR values, the errors due to noise are substantial. Hence, the

errors due to phase quantization are negligible, even when m is a small value. As SNR

values rise, the errors due to noise diminish. Hence, errors due to phase quantization

become more noticeable. In these large SNR cases, a bigger m value is needed to

diminish the errors due to phase quantization to the point where they are again

negligible compared to the errors due to noise.

We want to point out that, assuming the genie receiver's P (�) is a good approxi-

mation to that of our receiver (i.e., assuming the CDU usually selects the best demod-

ulator's output), then as SNR ! 1, our receiver structure demonstrates P (�) ! 0

regardless of m (m > 1) (for the example at hand). That is, there is no error 
oor

for our receiver as SNR ! 1 (regardless of m). Both coherent P (�) and the P (�)

of our receiver demonstrate waterfall-like shapes as a function of SNR; an increased

m simply moves our receiver's waterfall toward the coherent one. This is shown in

Figure 4.8.

4.4 Evaluating a Discrete Parameter Space ~C

In this section, we provide an algorithm that establishes a set of values ~C = fc1; :::; cmg
for use in our proposed receiver. We do this in two parts. First, we establish what set
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of values ~C would be best in our receiver structure. Next, we provide an algorithm

for generating this ~C. In the presentation that follows, we assume independent noise

samples.

4.4.1 The Best Set of Values for ~
C

In the �rst section (Section 4.1), we explain that the set ~C must insure that the

discrete space approximation used in Chapter 3 is valid. We go on to show that an

equivalent requirement on ~C is: ~C must meet the performance constraint

Ec
i
[P (�jci; Q(ci))] � hfEc

i
[P (�jci; ci)]g; (4.32)

where Q(ci) is the element in ~C = fc1; c2; :::; cmg that is closest to ci. Hence, a best

set of values for ~C will satisfy equation (4.32).

The complexity of our receiver increases as m, the size of ~C, increases. As a result,

the best set ~C = fc1; :::; cmg has a low value of m; speci�cally, the best set ~C uses

the smallest m possible while still satisfying equation (4.32).

We narrow this de�nition of the best set ~C. The terms of equation (4.32) are

functions of SNR. Hence, di�erent best sets ~C may result at di�erent SNR's. One

choice for the best set ~C is the set, with the smallest size (m), satisfying (4.32) at the

SNR corresponding to the operating point of the system.

Alternatively, we may want the best set ~C to demonstrate robustness to large

changes in SNR. Our work in Section 4.3 indicates that, as SNR decreases, a ~C with

fewer elements will satisfy (4.32); conversely, as SNR values rise, a ~C containing a

greater number of elements is required to meet (4.32). Hence, if our goal is a receiver

that will satisfy (4.32) for a wide range of SNR's, ~C should be chosen as the set, with

the smallest possiblem, satisfying (4.32) at an SNR corresponding to the largest value

in the range of anticipated SNR's.



Chapter 4: Analysis 71

4.4.2 Algorithm

This section introduces an algorithm which generates a set ~C having a small m and

satisfying equation (4.32) at a selected SNR; it approximates the best set ~C. This

algorithm is developed using quantization theory in general, and codebook design

algorithms in particular [66].

A brief description of the algorithm follows. The algorithm begins by providing

a good starting m value. It then works on the task of evaluating the vectors in ~C

such that they satisfy equation (4.32) at the selected SNR. There are two important

conditions that a ~C minimizing Ec
i
[P (�jci; Q(ci))], and hence satisfying (4.32), will

meet. These two conditions are applied, in our algorithm, in an iterative manner.

The details of the iterative algorithm for generating ~C, a modi�ed version of the

Generalized Lloyd Algorithm [66, chapter 11], are presented below.

Algorithm 2:

A2.(i) Select an SNR; a good choice for this value is the SNR at the operating point

of the system. This algorithm will insure that the set ~C satisfy equation (4.32) at the

selected SNR.

(ii) Select, as a starting value for m, the smallest m value that will satisfy equation

(4.32). This can be generated by: (1) create a P (�)�m curve using the rate distortion

analysis of the previous section; then, (2) using the P (�)�m curve, select the smallest

m such that the corresponding P (�) is less than hfEc
i
[P (�jci; ci)]g.

(iii) Select an initial set ~C(0) = fc1(0); :::; cm(0)g; a uniformly spaced set often serves

as a good starting point.

(iv) Set n = 0.

B2. Generate m sets, called nearest neighbor cells, according to

Rj = fci 2 C0 : P (�jci; cj(n)) < P (�jci; ck(n)) 8 k 6= jg: (4.33)

C2. Establish a new set of values for ~C according to the centroid condition

cj(n+1) = cent(Rj) = argmin
cj

Ec
i
[P (�jci; cj)jci 2 Rj] = argmin

cj

R
Rj
P (�jci; cj)p(ci)dciR

Rj
p(ci)dci

:

(4.34)
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D2. Compute the average distortion for the newly derived set ~C(n + 1) = fc1(n +

1); :::; cm(n+ 1)g according to

Dn+1 = Ec
i
[P (�jci; Q(ci))]; (4.35)

where Q(ci) is the element in ~C(n+1) closest to ci. This can be evaluated by restating

the expectation as an integral, and then using numerical techniques. If Dn+1 is within

some small predetermined neighborhood of Dn, go to E2; otherwise, set n n+1,

and go to B2.

E2. If Dn+1 < h(Ec
i
[P (�jci; ci)]), stop; otherwise, set m m + 1, set n  n + 1,

choose a value for cm+1(n), and go to B2.}
In practice, an alternative ending criteria for this algorithm, i.e., an alternative

step E2, might be: if the percent change between the distortion achieved using m

and the distortion achieved using m+ 1 is below a predetermined threshold, stop.

One of the key computational steps in this algorithm, namely step B2, can

be greatly simpli�ed in many cases of practical interest. In particular, whenever

P (�jci; cj) depends on ci only through jci � cjj, and P (�jci; cj) takes on a value pro-

portional to jci � cjj, this step can be simpli�ed as follows. The Rj computation of

step B2 can be evaluated using the simple rule

Rj = fci 2 C0 : jci � cj(n)j < jci � ck(n)j for all k 6= jg: (4.36)
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Chapter 5

Data Detection in a Rapidly

Changing Phase Environment,

N > 2

In this chapter, we apply our proposed receiver structure to a particular communica-

tion environment of practical interest. The communication environment is described

brie
y as follows. A di�erentially encoded MPSK signal is transmitted over a channel

introducing both an additive noise and a phase o�set. The phase o�set is constant

over only a few symbols, N , e.g., N = 3 (it is assumed that N > 2).

The communication system model of interest in this chapter can describe burst

mode communications with short burst lengths, mobile communications, and commu-

nication environments using frequency hopping. All of these environments are prac-

tical, modern-day environments, currently experiencing a rapid growth. As a result,

many receivers [8]-[29] have already been proposed for this important communication

environment. These receivers, surveyed in the introduction, act as a benchmark for

comparison.

We will show that our receiver structure is able to perform as well as the best

of the receivers in the literature, and is available at a lower complexity. Speci�cally,

our proposed receiver structure, when applied to the above environment, is able to

74
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achieve a performance matching theoretically optimal bounds, while maintaining a

low complexity.

This chapter proceeds in the following manner. We �rst provide a detailed de-

scription of the communication environment under consideration in this chapter. We

then introduce the application of our receiver structure to this communication envi-

ronment, describing in detail the receiver which results, and comparing it, in terms

of performance and complexity, to the previously proposed receiver schemes { it is

herein that we detail the bene�ts of our receiver.

5.1 The Communication System Model

This section provides a detailed modeling of the communication environment of in-

terest. The model is shown in Figure 5.1; it is simply a special case of the general

communication model shown in Figure 2.1.

The source outputs a sequence of binary digits b = (b1; b2; :::; bX). These digits

represent a voice, video, or data signal. It is assumed that binary digits 0 and 1 are

equally likely, i.e., P (bi = 0) = P (bi = 1) = 0:5.

The symbol coder, or MPSK encoder, maps the sequence of bits b into a se-

quence of letters a = (a1; a2; :::; aL). Speci�cally, this coder carries out a one-to-

one mapping of each set of n = log2M bits (bi�n�(n�1); :::; bi�n) into the symbol ai,

ai 2 A = fa1; :::; aMg. The kth term in the set A, ak, corresponds to a complex value

with unit magnitude and a unique phase 2� � k

M
; that is, ak corresponds to

ak = ej2��
k

M : (5.1)

The ai's are generated at a rate of one ai each T seconds.

The transmit filter consists of two parts: a di�erential encoder and a pulse

shaping �lter hs(t). The di�erential encoder carries out a one-to-one mapping of ai

to di according to

di = ai � di�1; (5.2)
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where d0 =
p
Es. It follows from this equation that each di has magnitude

p
Es and

a phase �i corresponding to the addition of �i�1 with the phase of ai. This operation

is carried out to avoid an M-fold phase ambiguity at the receiver side [2, p.160].

The pulse shape filter maps each letter di into a waveform ready for transmission

over the channel. Speci�cally, it carries out the one-to-one mapping of each di into

the waveform dihs(t� iT )ej!ct. The entire waveform output by the pulse shape �lter,

in response to d, is

s(t) =
LX
i=0

dihs(t� iT )ej!ct: (5.3)

(In practice, s(t) is simply the real component of equation (5.3). However, we use

complex notation here because it simpli�es the presentation without impacting the

receiver design.)

The physical channel introduces two forms of degradation. First, the channel

introduces a random phase �(t). Additionally, the channel adds an additive white

Gaussian noise to the transmitted signal. The resulting random process output by

the channel is

r(t) = s(t)ej�(t) + �(t): (5.4)

It is assumed that the phase �(t) is constant over a duration exceeding two symbol

intervals.

The receiver front end consists of a mixer, which returns the signal to baseband,

a matched �lter h�
s
(�t), and a sampler, which generates one sample per interval

T . Assuming ps(t) = hs(t) � h�s(t) (where `�' denotes convolution) satis�es Nyquist's
criteria, then the output of the receiver front end is the su�cient statistic for detection

described by [3, p.157]

ri = die
j�i + �i: (5.5)

Here, �i is an i.i.d. complex Gaussian noise, with variance No

2
. The phase �i is a

constant value over each block of N symbols, but its exact value is not known. This

�i can be characterized as a random variable with statistical characterization

p(�i) =

8<
:

1
2�
; �i 2 � = [0; 2�)

0; else
; (5.6)
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and, whenever �i and �i�1 are in the same block of N symbols,

p(�ij�i�1) = �(�i � �i�1); (5.7)

where �(x) is the delta function, a function of value 0 whenever x 6= 0, and displaying

unit area. Furthermore, if �i and �i�1 are not in the same block of symbols, they are

assumed independent.

The demodulator maps the received samples r = (r0; r1; :::; rL) into an estimate

of the MPSK sequence a. This estimate is labeled â.

The following realization allows us to simplify the demodulator operation. Be-

tween one block of N received samples and the next, the phases are independent,

as are the noise samples. Furthermore, the data symbols ai are independent of one

another, and hence the di values are also independent. This implies that the received

samples ri are independent from one block of N samples to the next. It follows,

then, that optimal demodulation can be achieved by carrying out demodulation over

each block of N received samples independently. The demodulator built for this com-

munication environment can therefore act as if the entire sequence of symbols is of

duration N ; it simply repeats this assumption for each new N symbols that arrive.

Hence, the demodulator operation can be described as a mapping of each N received

samples into an estimate of the corresponding MPSK symbols. For the remainder of

this chapter, r will refer to a block of N symbols, â will refer to the demodulator's

estimate on this block of N symbols, and, in general, vector notation will refer to a

vector of length N .

The demodulator is separated into two parts: a data detector and a di�erential

decoder. The data detector maps the received signal r into the data sequence d;

the di�erential decoder maps the symbols di into the corresponding ai's. The data

detector can be built using the general receiver structure introduced earlier in this

thesis. The di�erential decoder simply implements the inverse to the mapping of ai

to di in (5.2), namely

ai = di=di�1; (5.8)

this can be implemented as a subtraction of the phase of di�1 from that of di.
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Finally, a symbol decoder, consisting of a simple one-to-one mapping of each symbol

âi to the n = log2M bits (b̂i�n�(n�1); :::; b̂i�n), completes the receiver. This mapping is

simply the inverse of the mapping carried out at the symbol coder. The �nal output

sequence is denoted b̂.

5.2 Data Detector Based on General Receiver Struc-

ture

This section introduces a data detector which corresponds to the application of our

proposed receiver structure to the case at hand.

5.2.1 Existence

We begin by verifying that the phase o�set communication environment, presented in

the previous section, satis�es the existence condition of Section 4.2. If it does, then

our proposed receiver structure can be applied to this communication environment.

The general existence condition provided in Section 4.2 can be stated, for the

case of independent noise samples, according to: our proposed receiver exists in a

given communication environment whenever limc
0

i
!c

i
P (�jci; c0i) = P (�jci; ci) (for every

c0
i
2 C0).

We �rst restate this condition in terms of the current communication environ-

ment. The vector ci represents the nuisance parameters introduced by the channel

at time i. In the current environment, this term is simply the single phase value

�i. Hence, the existence condition is stated here as: our proposed receiver exists if

lim�
0

i
!�i

P (�j�i; �0i) = P (�j�i; �i).
We now use an important realization to simplify this existence condition. For

an MPSK constellation, the probability of error term P (�j�i; �0i) depends only on the

di�erence between �i and �0
i
, and not on the absolute values of �i and �0

i
. That is,
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P (�j�i; �0i) can be expressed according to

P (�j�i; �0i) = P (�j�i � �0
i
) = P (�j��i): (5.9)

Hence, the existence condition can be restated as: our proposed receiver exists if

lim��i
!0 P (�j��i) = P (�j0).

We now evaluate P (�j��i) to determine if it indeed satis�es our existence condition,
and hence if our proposed receiver exists. Using geometric arguments and union

bounds, we �nd that, for MPSK, P (�j��i) is given by: for M = 2

P (�j��i) =
1

2
erfc(

s
Es

No

cos(��i)); (5.10)

and, for M > 2,

P (�j��i) �
1

2
erfc(

s
Es

No

sin(
�

M
+ ��i)) +

1

2
erfc(

s
Es

No

sin(
�

M
� ��i)): (5.11)

The P (�j��i) functions, in (5.10) and (5.11), both satisfy lim��i
!0 P (�j��i) = P (�j0).

Consequently, the existence condition, which we restated in terms of P (�j��i), is sat-
is�ed, and, hence, our receiver structure can be applied to this communication envi-

ronment.

5.2.2 The Data Detector's Underlying Equation and Imple-

mentation

In this section, we introduce a novel equation characterizing the data detector, and

present a corresponding data detector implementation. The equation and implemen-

tation we present correspond to the application of our proposed receiver structure,

presented in Chapter 3, to the particular case at hand.

The Data Detector's Underlying Equation

This subsection introduces a novel equation characterizing the data detector. We

generate this equation by applying the general detection equations of Chapter 3 to

the case at hand.
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In Chapter 3, we derived three equations for data detection { (3.9), (3.20), and

(3.21). The appropriate detection equation depends on the particular application. In

the case at hand, we have independent noise samples and independent data symbols.

Consequently, the data detection equation which is appropriate to this case is equation

(3.20). This equation states that the data symbols â should correspond to the values

that result from the maximization

max
~c2 ~CL

LX
i=1

f[max
ai

ln p(rijai;~ci)] + ln P (~cij~ci�1; :::; ~ci�J)g: (5.12)

The variables in this equation can be expressed in terms of the phase-o�set case

at hand as follows. First, the data detector attempts to regenerate the sequence of

the di�erentially encoded symbols, di, and not the symbol coder symbols, ai (this

task is left for the di�erential decoder); hence, the ai term in (5.12) can be replaced

by di. Second, as noted earlier, the vector ci is the single value �i in the case at

hand; it follows that ~ci, a vector approximating ci, corresponds to the single value

~�i, a value approximating �i, in this case. Additionally, the continuous parameter

space C0 becomes the continuous phase space � = [0; 2�), and, correspondingly, the

discrete approximation to C0, called ~C, becomes a discrete approximation to �, which

we label ~� = f�1; :::; �mg. Finally, the sequence duration L can be replaced by the

block length N . These insights lead to the following data detection equation for the

case at hand: choose the sequence d̂ that results from the maximization

max
~�2~�N

[
NX
i=1

f[max
di

ln p(rijdi; ~�i)] + ln P (~�ij~�i�1; :::; ~�i�J)g]: (5.13)

Furthermore, for the case at hand, the statistics of the �i are provided in equations

(5.6) and (5.7). Applying this to the above equation leads to: choose d̂ from the

maximization

max
~�2~�

NX
i=1

[max
di

ln p(rijdi; ~�)]: (5.14)

This equation characterizes the data detector that results from the application of the

general data detection equations of Chapter 3.
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Figure 5.2: The data detector implementation.

Data Detector Implementation

In this subsection, we introduce an implementation for the data detector. This data

detector implementation corresponds to a parallel evaluation of equation (5.14).

The detector's implementation is shown in Figure 5.2. This implementation cor-

responds to the general structure provided in Chapter 3 (Figure 3.1), when applied

to the case at hand.

The components in the data detector of Figure 5.2 are now summerized. There

are two main components { the universal set of demodulators, and the CDU. The

universal set of demodulators carry out the inner maximization in data detection

equation (5.14), a maximization over the data symbols; meanwhile, the CDU performs

the outer maximization of detection equation (5.14), maximizing over channel phase.

The operation of the universal set of demodulators is now described in detail.

Each of the m demodulators in the universal set of demodulators acquires the sample

ri every T seconds. The jth demodulator assumes that the channel phase �i, present
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in ri, has a value �
j, regardless of sample time i. This jth demodulator, using ri and

�i = �j, generates an ML decision on di. This decision corresponds to

d̂
j

i
= argmax

di

p(rijdi; �j): (5.15)

The jth demodulator also generates the corresponding likelihood value

l
j

i
= max

di

p(rijdi; �j) = p(rijd̂ji ; �j): (5.16)

Each demodulator sends its output symbol, along with the corresponding likelihood

value, to the CDU.

The CDU generates its output from among the demodulators' decisions. It selects

an output sequence d̂ according to the outer maximization of equation (5.14). Using

equation (5.15) and (5.16), the operation of the CDU can be written in terms of the

demodulators' outputs according to: over each block of duration N , the CDU chooses

N di's according to

d̂ = (d̂J
�

1 ; :::; d̂J
�

N
) (5.17)

where the value J� 2 f1; 2; :::; mg is generated using

J� = argmax
J

NX
i=1

ln(lJ
i
): (5.18)

The CDU implements (5.17) and (5.18) as follows. The CDU outputs, over each block

of duration N , N symbols generated from a single demodulator { the demodulator

with the largest sum of log probabilities
P

N

i=1 ln(l
j

i
).

5.2.3 The Discrete Space ~�

The data detection equation and corresponding data detector implementation pro-

vided above are incomplete. We have not yet established a set of values ~� =

f�1; :::; �mg for use in the data detector. This section sets out to generate this ~�

by applying the algorithms provided in Chapter 4 to the case at hand.

In what follows, we establish the ~� in three parts. First, we rede�ne the continuous

phase space �, using a realization regarding di�erential decoding to reduce its size.
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Second, applying the algorithm introduced in Section 4.3, we examine the size of ~�,

m, and establish the range of m values that can lead to a near-optimal performance.

Finally, we apply the algorithm introduced in Section 4.4 and establish the set of

phase values for ~�.

Rede�ning the Continuous Phase Space �

The space ~� represents a discrete approximation to the continuous phase space �.

Before we establish ~�, we �rst rede�ne the continuous space �. The continuous phase

space was introduced in Section 5.1 as � = [0; 2�). However, in the case at hand, our

data detector is followed by a di�erential decoder. It is well known that a di�erential

decoder resolves an M-fold phase ambiguity; that is, it maps the information bearing

phase to the correct [2��i
M
;
2��(i+1)

M
) sector of space. Hence, it su�ces, for the purposes

of our data detector, to represent the continuous phase space by � = [0; 2�
M
), because:

the only e�ect of this assumption at the detector is an information bearing phase

in the wrong 2�
M

phase sector, and the di�erential decoder can correct for this (by

mapping the information bearing phase to the correct 2�
M

sector of space).

This rede�ning of the phase space � is very important in our receiver implementa-

tion: it allows us to use a set ~� (to approximate �) that has the same size regardless

of the constellation size, M . This is because increased phase sensitivity at larger M

values is now o�set by a decreased continuous phase space.

The Size of ~�

We now examine the size of the set ~� = f�1; :::; �mg; that is, we examine possible

values for m. Speci�cally, we provide P (�) � m curves, and, using these curves, we

establish m values that can achieve a quality P (�) performance.

The P (�)�m curves are generated by applying the algorithm provided in Section

4.3 to the case at hand. Fortunately, under the title `Application of the P (�) � m

Algorithm' in Subsection 4.3.3, we already applied the algorithm to the unknown

phase case of interest in this chapter. Curves indicating the P (�) vs m relationship,
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at SNR's of 13 dB, 16 dB, and 18 dB, and with M = 8, are provided in Figures 4.6,

4.5, and 4.7, respectively.

These curves clearly indicate that performances very close to that attained with

m!1 can be achieved with small, �nite values form, e.g., m = 8. This implies that

the proposed data detector can be implemented using only a few parallel demodulators

| our receiver implementation is realizable.

The Discrete Phase Space ~�

In this section, we establish the set ~� = f�1; �2; :::; �mg for use in our novel data

detector. We do this by applying the general algorithm provided in Section 4.4 to the

phase case at hand. In what follows, we assume M = 8.

The algorithm of Section 4.4 begins with an initialization step, A2, which requests

that we: (a) select an SNR; and (b) generate a starting m value, by (b1) deciding on

an h(s) for use in equation (4.32), and (b2) evaluating the smallest m at which it is

possible to satisfy equation (4.32). We begin by selecting an SNR of 18 dB. We then

decide that we want h(s) = 2 � s in (4.32). Using this h(s), the SNR of 18 dB, and

the P (�)�m curve of Figure 4.7, we �nd that the smallest possible m value that can

satisfy (4.32) is m = 5.

The algorithm then goes on to a two step iterative process, steps B2 and C2 with

stopping criteria D2. These steps generate a good set of m values for ~�.

Steps B2, C2, and D2 can be simpli�ed in the case at hand. This is because it

is a special case: the continuous space being approximated is a �nite space, namely

� = [0; 2�
M
); and, p(�i) is a uniform random variable. In this case (following the

example of [66, p.183]), the set of m phase values that results from B2, C2, and D2

are, simply, the set of phases uniformly spaced over the interval � = [0; 2�
M
). That is,

in the special case at hand, the two step iterative process B2 and C2, with stopping

criteria D2, results in

�j =
2�

M
� 2 � j � 1

2 �m ; (5.19)

i.e., for the starting m = 5 case, ~� = f�
4
1
10
; �
4
3
10
; :::; �

4
9
10
g.
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The algorithm then moves to step E2. Step E2 states that we should check the

performance achieved by the ~� of steps B2 to D2, and determine if it matches (or

exceeds) the performance criteria of (4.32). In the case at hand, we �nd that the

performance criteria of (4.32) is not satis�ed with m = 5. With this realization, step

E2 requires we increase m by one and return to redo the iterations of steps B2 to

D2, which in this case simpli�es to using equation (5.19).

After a few computations of equation (5.19) and distortion comparisons in step

E2, we �nd: m = 8, with the discrete space ~� = f�
4
1
16
; �
4
3
16
; :::; �

4
15
16
g; satis�es the

performance criteria. This ends the algorithm, and provides us with a good set of

values for ~�.

5.3 Performance and Complexity

In this section, we detail the performance and complexity of the data detector in-

troduced in the Section 5.2, a data detector corresponding to the application of our

general receiver structure. The performance is characterized in terms of probability

of error as a function of SNR, while complexity is measured in operations per symbol.

5.3.1 Performance

The performance of our receiver, in terms of P (�) � SNR plots, is generated by

simulation. By simulation, we are referring to Monte Carlo simulation carried out

on computer using C code. In cases of low error probability, importance sampling

[67]-[69] was used to reduce the simulation times.

Figure 5.3 contains our simulated performance results for an MPSK constellation

of size M=8. Each set of points in this �gure corresponds to the simulated performance

results with a di�erent value of block length N : the `+' set is for N = 2, the `x' set

for N = 3, the `*' set for N = 5, and the `o' set is for N = 10.

Figure 5.3 also contains a series of short solid lines, one line plotted alongside

each set of simulation points. These lines correspond to the theoretical bounds on
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performance, given a block of N received symbols with an unknown phase [22]. These

lines clearly highlight the fact that the performance of our receiver matches the the-

oretically attainable performance.

Figure 5.3 also contains a long solid line running just below all the simulation

points. This curve corresponds to the performance of a coherent receiver employing

a di�erential encoder-decoder. We see that as N increases, even slightly, from the

value 2, the performance results move rapidly toward coherent.

Figures 5.4, 5.5, and 5.6 show the simulated performance results for an MPSK

constellation of size M = 2, 4, and 16, respectively. These curves highlight the

fact that the performance of our data detector matches the theoretically attainable

performance regardless of constellation size.

5.3.2 Complexity

A key consideration in determining the usefulness of a receiver is its complexity.

A simple receiver with a performance matching optimal would be a very attractive
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package.

The data detector which we propose consists of two main computational compo-

nents. First, 8 demodulators carry out 8 MPSK symbol-by-symbol demodulations,

and compute 8 values for p(rijd̂ji ; �j), or, alternatively, 8 values for Refr�i ej�
j

d̂
j

i
g. Sec-

ond, the CDU carries out 8 additions per received symbol, and m � 1 comparisons

every N th symbol. Hence, for each received symbol, the data detector carries out 8

MPSK demodulations, 8*2 additions, 8*2 multiplies, and m�1
N

of a comparison. This

is a low complexity, and one which is essentially independent of N .

5.3.3 Comparison with Other Proposed Receivers

In this subsection, we compare the receiver introduced in this chapter to other re-

ceivers proposed to date. Our comparison is one of performance and complexity.

First, we consider performance. Our receiver is able to achieve a performance

matching theoretically optimal results for any N value. Hence, no scheme, consid-

ering a block of N symbols with an unknown phase, can outdo the performance of

our receiver. However, MSDD [22]-[25] and Mackenthun's low complexity version of

MSDD [29] also achieve a performance matching optimal for any N value.

The second point of comparison is complexity. The total number of computations

that our receiver must carry out, for each decoded symbol in a block of N symbols,

is essentially independent of N . The complexity of the MSDD scheme, on the other

hand, increases exponentially with increasing block size. Hence, our scheme is far

more attractive than MSDD.

Furthermore, Mackenthun's low complexity implementation of MSDD requires

more computations than our proposed receiver. Speci�cally, Mackenthun's receiver

and our proposed receiver demonstrate a comparable number of additions and com-

parisons, but our receiver avoids the magnitude operations required by Mackenthun's

receiver, operations that involve complex multiplications.



Chapter 6

Data Detection in a Rapidly

Changing Phase Environment,

N = 2

In this chapter, we again apply our proposed receiver structure to a particular com-

munication environment of practical interest; here, the communication environment

models mobile communications.

The communication environment under consideration in this chapter is closely

related to the environment introduced in Chapter 5. In Chapter 5, we presented an

environment where a di�erentially encoded MPSK signal was sent across a channel

introducing two disturbances, additive noise and channel phase. The channel phase

was modeled as constant over a block of N > 2 symbols. In this chapter, we again

consider the environment in which a di�erentially encoded MPSK symbol is sent

across a channel introducing noise and a phase. The key di�erence is the modeling

of the phase: here, the phase is constant over two symbols, and not necessarily any

more. That is, in this chapter, we are interested in the communication environment

presented in Chapter 5, with the one di�erence: the phase is assumed to change at

a faster rate, a rate such that phase change over two symbols is negligible, but it is

not necessarily negligible over a longer interval.
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Only a few receivers [8][14][22]-[25] are currently available to detect data in the

above environment. These receivers, summerized in the introduction, will act as a

benchmark for comparison. Speci�cally, we will show that our receiver structure,

applied to the case at hand, easily outperforms all the receivers currently available,

while maintaining a low complexity.

This chapter proceeds as follows. First, we provide a detailed modeling of the

communication environment. We then present the application of our proposed re-

ceiver structure to this environment: we detail the receiver that results, provide an

analysis of this receiver in terms of complexity and performance, and explain the

bene�ts of this receiver when compared to other receivers available to date.

6.1 The Communication Environment Model

In this subsection, we provide a detailed model of the communication environment

of interest. Figure 6.1 displays the communication environment model, and, in what

follows, we explain each component in this model.

The descriptions of the �rst few components in the communication model of Fig-

ure 6.1 match the descriptions provided in Section 5.1. The descriptions of the source,

MPSK encoder, and transmit �lter (consisting of a di�erential encoder and a pulse

shape �lter) are identical to those in Section 5.1, and, hence, for brevity, these de-

scriptions are not repeated here.

The di�erence between the communication model in Chapter 5 and that of this

chapter begins at the channel. Here, as in Chapter 5, the channel introduces two

forms of degradation, noise and channel phase, and the channel outputs

r(t) = s(t)ej�(t) + �(t): (6.1)

However, in a break from the modeling of Chapter 5, it is assumed here that �(t) is

constant over two symbol intervals, and not necessarily constant over a longer interval.

The receiver front end of Figure 6.1 generates the output

ri = die
j�i + �i; (6.2)



Chapter 6: Rapidly Changing Phase Environment, N = 2 93

R e c e i v e r

E n d

F r o n t

 

S o u r c e

S i n k

 

r

s(t) s(t)

r(t)

rD a t  a

Demodulator

S y m b o l

C o d e r

S y m b o l

D e c o d e r
a

a
F i l t e r

T r a n s m i t

b

b

e
j

n(t)

θ(  )t

Figure 6.1: The communication system model.
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identical in appearance to the ri in Chapter 5. However, a key di�erence exists in

the modeling of the phases �i. Here, the phases �i can only be assumed constant over

two symbols.

We want to generate a statistical characterization of the channel phases �i present

in ri. We proceed as follows. First, the phase value at any sample time i, �i, when con-

sidered in isolation, is an unknown value between [0; 2�). This �i can be characterized

as a random variable with a distribution given by

p(�i) =

8<
:

1
2�
; �i 2 � = [0; 2�)

0; otherwise
: (6.3)

Additionally, the phase change (�i � �i�1) is negligible; that is, mathematically, j�i �
�i�1j < �, where � is small. A good choice for � is the largest value at which DPSK

[8] still performs well; we have found that this � is 2�
8�M

. Hence, the phase change can

be described as j�i � �i�1j < � = 2�
8�M

. We represent this information statistically by

assuming that phase change is uniformly distributed in the range j�i� �i�1j < �, i.e.,

p(�ij�i�1) =
8<
:

1
2�
; j�i � �i�1j � � = 2�

8�M

0; otherwise
: (6.4)

Equations (6.3) and (6.4) characterize the channel phase �i in the received sample ri

of (6.2).

Continuing with the description of the components in Figure 6.1, the demodulator

maps the received samples r = (r0; r1; :::; rL) into an estimate of the MPSK sequence

a. This estimate is labeled â. This is done using two components: a data detector and

a di�erential decoder. The data detector maps r into an estimate of the data sequence

d. This detector can be built by applying our proposed receiver structure to the case

at hand. The di�erential decoder maps di's into ai's, carrying out the inverse of the

mapping at the di�erential encoder.

Finally, a symbol decoder, or MPSK decoder, recreates the binary sequence from

the received symbols â. It does this by implementing the inverse of the MPSK en-

coder's one-to-one mapping.
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6.2 Data Detector Based on our Proposed Receiver

Structure

This section introduces a data detector which corresponds to the application of our

proposed receiver structure to the case at hand.

6.2.1 Existence

We begin by determining if the communication environment in hand, presented in

Section 6.1, satis�es the existence condition introduced in Section 4.2. If it does, then

our proposed receiver can be applied to this communication environment.

The existence condition introduced in Section 4.2 states, for cases of indepen-

dent noise samples: in a given communication environment, our proposed receiver

exists if limc
0

i
!c

i
P (�jci; c0i) = P (�jci; ci): In the communication environment at hand,

ci corresponds to the single phase value �i; hence, the existence condition can be

restated here according to: in the environment at hand, our proposed receiver exists

if lim�
0

i
!�i

P (�j�i; �0i) = P (�j�i; �i):
We now want to determine whether P (�j�i; �0i) satis�es the above condition. For-

tunately, we can determine this without any computation; we simply look at the

results achieved in Chapter 5. There, in Subsection 5.2.1, we demonstrated that the

P (�j�i; �0i) indeed satis�es lim�
0

i
!�i

P (�j�i; �0i) = P (�j�i; �i): Hence, in the case at hand,
the existence condition is satis�ed; consequently, we can apply our receiver structure

to this communication environment.

6.2.2 The Data Detector's Underlying Equation { Part 1

In this subsection, we introduce an equation characterizing the operation of the data

detector. This equation is generated by applying the general detection equations of

Chapter 3, equations which lead to our proposed receiver structure, to the case at

hand.
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Chapter 3 introduced three equations for data detection, namely (3.9), (3.20), and

(3.21). In the case at hand, with independent noise samples and independent data

symbols, the detection equation which is applicable is equation (3.20). This equation

states: choose the data sequence â from the joint maximization

max
~c2 ~CL

LX
i=1

f[max
ai

ln p(rijai; ~ci)] + lnP (~cij~ci�1; :::;~ci�J)g: (6.5)

We now restate this equation using the terminology of the phase case at hand.

First, the nuisance parameter vector ci corresponds to the single phase value �i in

this case. This implies that the vector ~ci, an approximation to ci, corresponds to

the single value ~�i, an approximation to �i. Also, the nuisance parameter space C0

becomes the phase space � = [0; 2�) in the case at hand. Consequently, ~C, a discrete

space approximation to the continuous space C0, becomes ~� = f�1; :::; �mg, a discrete
phase space approximation to �. Finally, the data detector here generates an estimate

of di, rather than ai. Using the above realizations, we can rewrite (6.5) according to:

choose the data sequence d̂ from the joint maximization

max
~�2~�L

LX
i=0

f[max
di

ln p(rijdi; ~�i)] + lnP (~�ij~�i�1; :::; ~�i�J)g: (6.6)

It is possible to further simplify the detection equation in (6.6). This is done by in-

troducing equation (6.4) into detection equation (6.6), using the following two steps.

First, derive the discrete probability mass function P (~�ij~�i�1) from the probability

density function p(�ij�i�1) of equation (6.4). Second, replace the term P (~�ij~�i�1; :::; ~�i�J)
in the detection equation by this P (~�ij~�i�1); this can be done because the P (~�ij~�i�1)
term represents all the information available regarding the discrete phase.

We are currently unable to carry out the simpli�cation to the data detection

equation (6.6) described above. This is because we have not yet de�ned the discrete

space ~�, and hence we can not generate P (~�ij~�i�1) from p(�ij�i�1). So, we leave the
derivation of the data detection equation for the time being, and proceed as follows.

In the next subsection, we de�ne the discrete space ~�. We then return and complete

the derivation of the data detection equation, the equation underlying the operation

of our data detector.



Chapter 6: Rapidly Changing Phase Environment, N = 2 97

6.2.3 The Discrete Space ~�

In this subsection, we generate a discrete phase space ~� for use at the data detector.

We do this by �rst rede�ning the continuous phase space �, and then applying the

algorithms of Chapter 4 to the case at hand.

Rede�ning the Continuous Phase Space �

The discrete space ~� represents a discrete approximation to the continuous phase

space � = [0; 2�). We begin the process of generating ~� by rede�ning this continuous

phase space �.

In the communication model at hand, the data detector is followed by a di�erential

decoder. Hence, for reasons already explained in Chapter 5 (Subsection 5.2.3), it

su�ces, for the purposes of our data detector, to represent the continuous phase

space by � = [0; 2�
M
).

The Size of ~�

In this subsection, we evaluate sizes of the space ~� = f�1; :::; �mg, i.e., values for m.

Speci�cally, we generate the sizes of ~� (i.e., m values) that, when used at the data

detector, allow for a performance near that attained with m!1.

In what follows, we determine the m values in two steps. First, we apply the

algorithm of Section 4.3 to the phase case at hand; this leads to P (�) � m curves

indicating the smallest possible m that can achieve a stated P (�) performance. Sec-

ond, reading from these curves, we determine the range of m values that achieve a

performance near that attained with m!1.

The algorithm provided in Section 4.3 generates curves characterizing the P (�)�
m performance. This algorithm, which stems from rate distortion theory, has an

outcome dictated by two functions: the probability of error term P (�jc�i), and the

probability density p(ci). In the case at hand, the two functions that determine the

algorithm's outcome can be restated as P (�j��i) and p(�i).
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An important realization allows us to generate the P (�) � m curves from the

algorithm without any computation. We recognize that the functions P (�j��i) and
p(�i), in the communication model of this chapter, are identical to the corresponding

functions in the communication environment of Chapter 5. Hence, the algorithm

generates the same outcome (P (�)�m curves) in both the communication model of

Chapter 5 and that of this chapter. It follows that the P (�) � m curves shown in

Figures 4.5, 4.6 and 4.7 are also applicable to the communication model at hand.

The P (�) � m curves indicate that small values of m can be used at the data

detector to achieve performances very close to optimal. For instance, all these curves

indicate that m � 8 achieves a performance very close to that attained with m!1.

The Elements of ~�

In this subsection, we establish the exact size of, and the elements in, the discrete

set ~� = f�1; :::; �mg. We achieve this by applying the algorithm of Section 4.4 to the

case at hand.

The algorithm of Section 4.4, applied to the case at hand, will generate an out-

come ~� dictated by two distributions: P (�j��i) and p(�i). This realization allows us to
establish the ~� (from the algorithm of Section 4.4) without any computation. Specif-

ically, we simply recognize that the terms P (�j��i) and p(�i) in the communication

model of this chapter are the same as those in the communication model of Chapter

5. Hence, the ~� result achieved in Chapter 5 (by applying the algorithm of Section

4.4) is also applicable to the communication model of this chapter.

We now restate the ~� result achieved in Chapter 5 for convenience. From Chapter

5, we have: the discrete set of phases ~� = f�1; :::; �mg will always have the form

�j =
2�

M
� 2j � 1

2 �m ; (6.7)

where the exact value for m depends on the constellation size M, the SNR, and the

stopping criteria. Speci�cally, for M = 8, at an SNR of 18 dB, and with a stopping

criteria based on h(s) = 2 � s, we have, from Chapter 5, that m = 8, and hence ~� is

~� = f2�
16
� 1
16

;
2�

16
� 3
16

; :::;
2�

16
� 15
16
g: (6.8)
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We have also found that, for other constellation sizes, a good choice for ~� are the

m = 8 uniformly spaced phases

~� = f2�
M

1

16
;
2�

M

3

16
; :::;

2�

M

15

16
g; (6.9)

that is,

�j =
2�

M
� 2 � j � 1

16
: (6.10)

6.2.4 The Data Detector's Underlying Equation { Part 2

In this subsection, with the discrete phase space ~� in hand, we establish a �nal

equation to characterize the data detector.

We began creating a data detection equation in Subsection 6.2.2, and got as far

as: choose the d̂ that results from the joint maximization

max
~�2~�L

LX
i=0

f[max
di

ln p(rijdi; ~�i)] + lnP (~�ij~�i�1; :::; ~�i�J)g: (6.11)

We stopped here because we did not know the discrete space ~�. With ~� now at hand,

we simplify equation (6.11) and generate a �nal detection equation.

The �nal detection equation is generated by applying the phase statistics of equa-

tion (6.4) to equation (6.11). We begin this process by restating equation (6.4) here

for convenience:

p(�ij�i�1) =
8<
:

1
2�
; j�i � �i�1j � � = 2�

8�M

0; otherwise
: (6.12)

When the phases �i 2 � are approximated by the discrete phases ~�i 2 ~�, the corre-

sponding probability mass function describing ~�i is

P (~�ij~�i�1) =
8<
:

1
3
; ~�i � ~�i�1 2 f��~�; 0;�~�g

0; otherwise
; (6.13)

where �~� = 2�
8�M

, i.e., �~� is the di�erence between two neighboring phases in ~�.

This equation represents all the available information regarding the channel phase,

when it is approximated to the discrete phase space ~�. We can substitute (6.13) into
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detection equation (6.11), using (6.13) to replace the P (~�ij~�i�1; :::; ~�i�J) term. This

leads to: choose d̂ from the joint maximization

max
~�2~�L

LX
i=0

fmax
di

[ln p(rijdi; ~�i)]g subject to ~�i � ~�i�1 2 f��~�; 0;�~�g: (6.14)

This equation characterizes the operation of the data detector generated by applying

the general receiver equations of Chapter 3 to the case at hand.

6.2.5 The Data Detector Implementation

In this subsection, we introduce the implementation of the data detector. This imple-

mentation corresponds to a parallel evaluation of the data detection equation (6.14).

The implementation is shown in Figure 6.2. This implementation matches the

general receiver structure in Chapter 3 (Figure 3.1).
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The Components

We begin with a brief description of the components of the data detector implemen-

tation. The data detector implementation consists of two main components: the

universal set of demodulators and the CDU. The universal set of demodulators carry

out the inner maximization of equation (6.14), a maximization over the data symbols

di. Meanwhile, the CDU carries out the outer optimization, optimizing over the phase

sequence ~�.

We now describe the universal set of demodulators in detail. The jth demodulator

in the set of demodulators assumes that �i has a value of �j, regardless of the time

index i. This jth demodulator, using ri, and this claim of �i = �j, generates, at each

time i, the decision

d̂
j

i
= argmax

di

p(rijdi; �j): (6.15)

The jth demodulator also generates the corresponding likelihood value

l
j

i
= max

di

p(rijdi; �j) = p(rijd̂ji ; �j): (6.16)

These two values are sent to the CDU.

We want to point out that the universal set of demodulators described above

are identical to the universal set of demodulators introduced in the data detector of

Chapter 5. This is because the demodulators carry out the inner maximization of the

detection equation, and this inner maximization is identical in the case at hand and

in the environment of Chapter 5. The di�erence between the data detector for the

case at hand and that of Chapter 5 lies with the CDU's operation, which we examine

next.

The CDU selects its output symbols from among the many demodulator decisions.

It generates its output based on the outer maximization of equation (6.14). The

CDU's operation can be stated in terms of the demodulator outputs as follows. The

CDU generates the sequence

d̂ = (d̂0; :::; d̂L); d̂i = d̂
j
�

i

i
; (6.17)
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where j�
i
2 f1; 2; :::; mg is the index of the demodulator whose output is selected at

time i. This value is generated according to the sequence long maximization

j� = (j�0 ; :::; j
�
L
) = argmax

j

LX
i=0

ln(lji
i
) subject to (ji � ji�1) 2 f�1; 0; 1g: (6.18)

We now describe the CDU's operation in a way which suggests an easy construc-

tion. First, we explore the constraint (ji � ji�1) 2 f�1; 0; 1g. This states that if the
decision of demodulator k (the demodulator assuming �k) is selected by the CDU

at one time (i.e., j�
i
= k), then at the next time the CDU will select as its output

the decision generated by either demodulator k � 1 (assuming �k�1), demodulator

k (assuming �k), or demodulator k + 1 (assuming �k+1). That is, the CDU chooses

which demodulators' decisions to output under the restriction that the only discrete

phase transitions permitted are as indicated in Figure 6.3.

Equations (6.17) and (6.18) state that the CDU outputs the sequence of deci-

sions corresponding to the path through the trellis of Figure 6.3 which maximizesP
L

i=0 ln(l
ji

i
); here, lji

i
are the likelihood values generated by the m = 8 demodulators.

This can be implemented using a rather simple Viterbi Algorithm (VA).

A Slight Revision for Phase Movement from one 2�
M
Sector to Another

In this subsection, we introduce a shortcoming of the data detector implementation,

and then introduce an update to the implementation, namely an update to the CDU,

which allows us to overcome this shortcoming.

The Issue The underlying equation, and corresponding implementation, of our

data detector is based on the approximation of the continuous phase space � by the

discrete space ~�. In the underlying equation and implementation generated above,

the ~� we used assumed that � = [0; 2�
M
).

The equality � = [0; 2�
M
) was generated in Subsection 6.2.3; it was based on the

understanding that a di�erential decoder immediately follows our data detector, and

that this decoder is able to undo phase ambiguities of 2�
M
. This understanding allowed

us to use � = [0; 2�
M
) at the data detector rather than the usual � = [0; 2�).
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However, at sample times i when �i�1 and �i are in di�erent 2�
M

sectors of the

phase space [0; 2�) (e.g., �i�1 2 [0; 2�
M
) and �i 2 [2�

M
; 2��2

M
)), the di�erential decoder is

unable to undo phase ambiguities of 2�
M
. At these sample times i, the phase space

representation � = [0; 2�
M
) is not valid, and the usual � = [0; 2�) should be used at the

data detector. Unfortunately, the data detector we introduced assumes � = [0; 2�
M
)

at all sample times i. Hence, at times i, when �i�1 and �i are in di�erent 2�
M

sectors,

our data detector will introduce errors.

Resolution by Modi�ed CDU Implementation In this subsection, we intro-

duce a minor change in the implementation of the CDU. This allows the data detector

to avoid the errors that it would otherwise make at times i when �i�1 and �i move

between 2�
M

phase sectors.

In brief, we modify the CDU implementation as follows. The CDU is modi�ed

to insure that the data sequence d̂, arriving at the di�erential decoder, matches the

sequence that would arrive if no �i�1 to �i movements between
2�
M

sectors occurred.

Hence, the di�erential decoder is, at all times, able to undo phase ambiguities of 2�
M
,

and our data detector is always applicable.

In what follows, we detail the change we make to the CDU's implementation. We

begin by assuming that the best path through the CDU's trellis of Figure 6.3 tracks

phase correctly. Then, when the phase movement �i�1 ! �i is between
2�
M

phase

sectors, the phases of the CDU's trellis move either from �8 ! �1, or from �1 ! �8.

Knowing this, the CDU is able to update the data sequence d̂, sent to the di�erential

decoder, so that, as far as the di�erential decoder is concerned, all the channel phases

�i remain in the same 2�
M

sector of space.

6.3 Complexity and Performance

In this section, we present the complexity and performance of the data detector gen-

erated in Section 6.2 { the data detector representing the application of our proposed

receiver structure to the case at hand.
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6.3.1 Complexity

We begin by introducing the complexity of our data detector. Our measure of com-

plexity will be computations per decoded symbol.

The computations of our data detector can be divided into two parts. First, there

is the computation carried out by the bank of demodulators. Second, there are the

computations of the CDU.

In the bank of m = 8 demodulators, at each sample time i, each demodulator

generates d̂j
i
and l

j

i
. The d̂j

i
is evaluated using an MPSK symbol-by-symbol demodu-

lation. The lj
i
computation can be replaced by the evaluation of Refr�

i
d̂
j

i
ej�

jg, which
requires only 2 multiplications and 1 addition.

The CDU �nds the best path through a trellis made up of 8 nodes, one node for

each discrete phase �j 2 ~�. Three branches enter into each one of these nodes. When

using a VA to determine the best path through this trellis, one requires, at each time

i, 8 comparisons of 3 values each, and 8 additions.

Putting it all together, the overall computation required by our data detector, at

each sample time i, is: 8 MPSK symbol-by-symbol demodulations, 16 multiplies,

16 additions, and 8 comparisons of 3 values each. That is, at each time i, the

computational requirement of the data detector is in the order of 8 times that of

a symbol-by-symbol PSK decoder.

6.3.2 Performance

In this subsection, we present the performance of our data detector, achieved by

computer simulation. This performance is displayed using plots showing probability

of symbol error, P (�), versus Es

No

.

The computer-simulated performance results are presented in two parts. First,

we introduce the communication environment model we used in our computer sim-

ulations. Then, we describe the performance results generated by simulation, and

compare these results to the performances of DPSK [8] and MSDD [22]-[25].
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The Communication Environment used in Simulation

The communication model was shown in Figure 6.1, and was described in Section 6.1.

To generate simulation results, we made a few assumptions regarding the variables in

this model. This subsection details the assumptions that we made.

First, we selected a size for the MPSK constellation. We chose M = 8.

Next, we selected a channel phase model. We wanted to choose a model which

was practical, and one which allowed us to achieve a �i constant over two symbol

intervals, but not necessarily constant over a longer interval. We chose the channel

phase model described by

�i = �i�1 + wi; (6.19)

where wi represent samples from an AWGN process. This models channel phase, �i,

as a random walk on a circle.

This phase model is practical. Speci�cally, this rather general channel phase

model has been employed successfully in modeling slowly fading channels, as well as

heterodyne optical communications and telephone communications [70].

Additionally, this phase model can be used to achieve a �i constant over two

symbol intervals, but not necessarily constant over a longer interval. This is done by

the choice of the variance of wi, which we label �2
w
. Speci�cally, in our simulations,

we generate performance results at the following �2
w
. We �rst consider �2

w
= 0; in

this case, the channel phases �i are constant. We also consider �2
w
= 0:0009; 0:0025,

0:0049, and 0:0081 radians2; or, equivalently, a standard deviation of �w = 0:03;

0:05, 0:07, and 0:09 radians. In degrees, �w = 1:71; 2:88, 4:01, and 5:15 degrees. In

these cases, the phase movement from �i�1 to �i is within 1:71; 2:88, 4:01, and 5:15

degrees, respectively, 60% of the time, and within 6:84; 11:53, 16:04, and 20:6 degrees,

respectively, 98% of the time.

The implementation of our data detector, which we consider in this simulation,

assumes L = 100. If the data sequence is longer than L = 100, than the data

detector just runs over each new set of L = 100 symbols. This is a slightly suboptimal

approximation to our data detector, but it keeps the memory requirement of the VA
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fairly low, and, at L = 100, the end e�ects of the VA are negligible.

There exists an alternative way to implement the data detector, which would also

keep the memory requirement of the VA low. Here, we allow the data detector to run

over the entire sequence of length L, but we implement the VA at the CDU using a

lookback depth of 12 to 15. This implementation is also a slightly suboptimal version

of our proposed data detector.

The Performance: Curves and Analysis

In this subsection, we present the performance curves for our data detector. We

compare these curves to the performance curves of DPSK, a receiver using the pre-

vious symbol as a phase reference [8], and to the performance curves of MSDD, a

receiver extending the ideas of DPSK to blocks of N symbols [22]-[25]. Our perfor-

mance curves are generated using the communication system modeling described in

the previous subsection.

The performance curves for our data detector are presented in Figures 6.4 to 6.11.

In Figures 6.4 to 6.8, the performance of our data detector is plotted alongside the

performance curves for DPSK and coherent detection. In Figures 6.9 to 6.11, the

performance of our data detector is plotted alongside the curves for DPSK, coherent

detection, MSDD using N = 3, MSDD using N = 5, and MSDD using N = 10.

Figure 6.4 presents the performance curve of our data detector, along with the

curves for DPSK and coherent detection, when the channel phase �i is constant from

symbol to symbol. This curve indicates that, at a P (�) of 10�3 and 10�4, our detector

achieves gains of 1.41 and 1.43 dB respectively over DPSK.

Figures 6.5, 6.6, and 6.7 present the performance curves of our data detector, along

with DPSK and coherent detection curves, when the phase movement has variance

0:0009, 0:0025, and 0:0049. Here, our data detector again demonstrates gains over

DPSK: at a P (�) of 10�3, we gain 1.40 dB, 1.53 dB, and 1.46 dB, respectively; and

at a P (�) of 10�4, we gain 1.72 dB, 1.50 dB, and 1.32 dB.

Figure 6.8 presents the performance curves for our data detector, DPSK, and co-

herent detection, when the phase movement displays a variance of �2
w
= 0:0081. In
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this case, our scheme performs poorly, at times performing worse than DPSK. How-

ever, this is a case where phase change is so rapid that even DPSK is not applicable.

The results presented in Figures 6.4 to 6.8 can be summerized as follows. Overall,

over the range of phase changes where DPSK is applicable, our scheme is able to

outperform DPSK by about 1.5 dB at P (�)'s of 10�3 and 10�4.

Our data detector's improvement over DPSK can be explained as follows. The

detector we implement considers a longer phase history than DPSK. That is, DPSK

assumes a channel phase constant over two symbols ri and ri�1, but it ignores the

implied phase correlation that would then exist between ri and ri�2. Our detector

considers this phase correlation via the trellis of Figure 6.3, and thus gains over DPSK.

Figures 6.9, 6.10, and 6.11 present the performance of our data detector alongside

the performance of MSDD with N = 3, N = 5, and N = 10. Figure 6.9 displays

these performances when the phase �i is constant from symbol to symbol. It is seen

that, in this case, the performance of our detector is superior to that of MSDD with

N = 3, matches that of MSDD with N = 5, but is inferior to MSDD using N = 10.

Figure 6.10 displays the performance of our detector alongside that of MSDD

when the channel phase �i changes slowly (�2
w
= 0:0009). In this case, our detector

is again superior to MSDD with N = 3, and is again as good as MSDD with N = 5.

MSDD with N = 10 no longer outperforms our data detector. The performance of

MSDD with N = 10 deteriorates quite rapidly as phase variation increases, because

its assumption of constant phase over N = 10 symbols does not hold any longer.

Figure 6.11 presents the performance of our data detector along with that of

MSDD when channel phase changes rapidly (�2
w
= 0:0049). In this case, the perfor-

mance of our detector is always substantially better than MSDD. This is because the

constant phase assumptions of MSDD prove unrealistic, even at lower values of N .

The results presented in Figures 6.9 to 6.11 can be summerized as follows. These

results demonstrate that our data detector is at least as good as MSDD under slow

phase change conditions, and outperforms MSDD under rapid phase changes.

The gains of our detector over MSDD can be explained as follows. MSDD assumes

that channel phase is constant over N symbols, where typical values for N are values



Chapter 6: Rapidly Changing Phase Environment, N = 2 109

such as 3, 5, and 10. Hence, as phase change becomes more and more rapid, MSDD's

performance degrades quickly. Our scheme considers a block of L symbols, where L

is very large (e.g., L = 100), and, unlike MSDD, we do not assume a constant phase

over the block, but rather a correlated one. This leads to two e�ects. For a truly

constant phase (not a practical situation in many environments), MSDD with N = 10

will outperform our scheme because its assumption of constant phase is better than

our assumption of correlated phase. However, once there is a phase movement, even

a small one, we achieve a better performance, because our assumption of correlated

phase is superior, and, additionally, we consider a longer history of phase.

6.3.3 The Bene�ts of Our Data Detector { Complexity and

Performance

The application of our general receiver structure, to the communication environment

of Section 6.1, leads to the data detector described in Section 6.2. This data detector

is able to achieve substantial performance gains over MSDD and DPSK, as explained

above. The complexity of this data detector is in the order of 8 times that of a

coherent PSK receiver. Hence, in any environment in which a DPSK or MSDD

receiver is currently employed, this receiver can be replaced by our data detector,

resulting in substantial performance gains at a practical complexity.
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Chapter 7

Data Detection of Coded

Modulation in a Rapidly Changing

Phase Environment

This chapter presents the application of our proposed receiver structure to another

practical, modern-day communication environment.

The communication environment of interest in this chapter is similar to the en-

vironments presented in the previous two chapters. Speci�cally, in the earlier two

chapters, we considered a communication environment wherein an MPSK signal was

sent across a channel introducing both a noise and a channel phase. In this chapter,

we examine the communication environment wherein a coded MPSK signal is sent

across the same channel, adding noise and phase. Here, the channel phase is assumed

to be constant over a short block of N symbols, N > 2.

The communication environment of interest in this chapter is not yet well sum-

merized; what remains is a brief introduction to coded MPSK, which we provide here.

In 1982, Ungerboeck [71] introduced Trellis Coded Modulation (TCM), a joint chan-

nel coding and modulation scheme. This scheme o�ers a considerable performance

gain over uncoded modulations, a gain achieved without the cost of increased band-

width, but rather at a cost of increased complexity. CodedMPSK is a subset of TCM;

114
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speci�cally, coded MPSK refers to TCM when the modulation format used in TCM

corresponds to MPSK.

Several receivers [13][30]-[37] are currently available for data detection in the above

communication environment. These receivers, surveyed in the introduction, serve as

a benchmark for comparison. We show that in many important cases of practical

interest, our receiver structure is able to outperform the receivers in current literature,

gaining in performance or complexity.

This chapter proceeds as follows. We begin with a detailed description of the

communication environment. With this in hand, we present the application of our

receiver structure.

7.1 The Communication Environment Model

This section presents a detailed model of the communication environment of interest.

The model is shown in Figure 7.1; in what follows, we provide a description of each

component.

The source creates a sequence (in time) of binary digits. These are labeled b =

(b1; b2; :::; bX).

The channel encoder and symbol coder are closely linked, and together they map

the bit sequence b into the symbol sequence a = (a1; :::; aL). The symbol sequence a

is generated from b by following the two mapping rules [36]

ai = g(bi; &i) (7.1)

and

&i+1 = f(bi; &i): (7.2)

Here, bi refers to the bits used by the mapping at time i. Speci�cally, bi corresponds

to the set of n bits (bi�n�(n�1); :::; bi�n), where the value of n is usually between 1 and

4. Also in (7.1) and (7.2), &i refers to the state at time i, and ai refers to the MPSK

symbol ai =
p
Ese

j
2�

M
li, li 2 f1; 2; :::;Mg. The two mappings f(�; �) and g(�; �) insure
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Figure 7.1: The communication system model.
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that there is a one-to-one correspondence between the input binary sequence b and

the output symbol sequence a.

These two mappings represent a rate n

n+1
convolutional coder followed by a bit-to-

symbol mapping called mapping-by-set-partitioning. This can be well explained by

example, so we borrow an example from [71] to facilitate our explanation. Here, the

two mappings are represented by Figure 7.2. From this �gure, it is evident that there

are n = 2 bits input at each time i, i.e., bi = (b2i�1; b2i). The value of &i is an index

indicating the bits held in the two delay elements, e.g., &i = 2 �s2+s1, &i 2 f0; 1; 2; 3g.
Finally, the value ai is an 8-PSK value, i.e., ai =

p
Ese

j
2�

M
li , li 2 f1; 2; :::; 8g. This

value is generated by a one-to-one mapping of the three binary values (b2�i�1, b2�i, s1)

to an 8-PSK value.

The mapping of b to a can alternatively be described by a trellis. For example,

the mapping described by Figure 7.2 can also be represented by the trellis of Figure

7.3. Here, each node of the trellis represents a possible state at time i, i.e., a possible

&i value. Each branch, labeled with n = 2 bits, indicates the transition between states

that results when the n = 2 bits are the input. Additionally, each branch is labeled

with a symbol ai. This indicates the symbol that is output given the starting state
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Figure 7.3: Trellis representing the TCM encoding.

and input bits.

Every channel encoder and symbol coder can be described by a �nite state machine

similar to the one of Figure 7.2, or, alternatively, by a trellis diagram similar to that

of Figure 7.3.

We restrict the set of channel encoder/symbol coder mappings that we consider.

We only consider mappings which are able to resolve phase ambiguities of 2�
M
. Some

examples of these mappings, as well as general rules for creating them, are provided

in [72]-[75].

Continuing with the description of the components in the communication system

model, the transmit �lter maps the symbol sequence a into the waveform s(t) =
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P
L

i=1 aihs(t� iT )ej!ct. This waveform is ready for transmission over the channel.

The channel introduces two e�ects, an additive noise and a channel phase. The

waveform output by the channel is described by

r(t) = s(t)ej�(t) + �(t); (7.3)

here, �(t) represents an additive white Gaussian noise, and �(t) represents the channel

phase, assumed to be constant over N > 2 symbol intervals.

The receiver front end maps the continuous-time waveform r(t) into a sequence

of L symbols r = (r1; :::; rL), a su�cient statistic for detection. Here, each ri is

characterized by

ri = aie
j�i + �i: (7.4)

The �i represent i.i.d. Gaussian random variables with variance N0

2
, and �i corresponds

to an unknown phase value constant over N symbols, N > 2. This phase can be

modeled statistically according to

p(�i) =

8<
:

1
2�
; �i 2 � = [0; 2�)

0; otherwise
; (7.5)

also, whenever �i and �i�1 are in the same block of N symbols

p(�ij�i�1) = �(�i � �i�1); (7.6)

and, �nally, whenever �i and �i�1 are in di�erent blocks of N symbols, they are

assumed to be independent.

The data demodulator maps the received sequence r into b̂, an estimate of the

binary sequence b. In the case at hand, the channel decoder and symbol decoder are

included in the data demodulator. This component can be designed by applying our

proposed receiver structure.
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7.2 Application of our Proposed Receiver Struc-

ture

In this section, we introduce a novel data demodulator for the coded PSK/unknown

phase environment. We generate this receiver by applying our general receiver of

Chapter 3 to the case at hand.

We present the data demodulator as generating the output â, an estimate of a.

The true demodulator output, b̂, is easily generated from â by using the one-to-one

mapping between these two sequences.

Our novel demodulator is presented in three parts. First, we introduce an un-

derlying equation characterizing the operation of the data demodulator. Next, we

present a corresponding data demodulator implementation. Finally, we create the

discrete space ~� for use in the demodulator implementation.

7.2.1 The Data Demodulator's Underlying Equation

In this subsection, we present an underlying equation characterizing the data demod-

ulator. We generate this equation by applying the general data detection equations

provided in Chapter 3 to the case at hand.

In Chapter 3, we introduced three general data detection equations { (3.9), (3.20),

and (3.21). The equation best suited to the communication environment at hand is

equation (3.21). This states that data detection should be carried out according to:

choose the sequence a that results from the joint maximization

max
~c2 ~CL

max
S

LX
i=1

f[max
ai

ln p(rijai; ~ci)jSi] + lnP (~cij~ci�1; :::; ~ci�J)g: (7.7)

We �rst rewrite this equation by introducing the terminology used in the case at

hand. Here, the nuisance parameter vector ci corresponds to the single phase value

�i. Consequently, the vector ~ci, an approximation to ci, is replaced by the value

~�i, an approximation to the phase �i. Additionally, the nuisance parameter space
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C0 corresponds to the phase space � = [0; 2�) in this application. It follows, then,

that ~C, a discrete space approximation to C0, is replaced by ~�, a discrete space

approximating �. Finally, the state Si in (7.7) refers to a state summerizing the

dependence of ai on its past and future; in the case at hand, we have &i denoting

the impact of ai on its past, and &i+1 denoting the dependence of ai on its future;

hence, in the case at hand, the Si of (7.7) is replaced by the pair (&i; &i+1). Using

these realizations in equation (7.7) leads to: choose the sequence a that results from

the joint maximization

max
~�2~�L

max
&

LX
i=1

f[max
ai

ln p(rijai; ~�i)j&i;&i+1] + lnP (~�ij~�i�1; :::; ~�i�J)g: (7.8)

We can further simplify this equation. This is achieved by applying the available

phase statistics, namely equation (7.5) and (7.6), to equation (7.8). This leads to:

choose the data sequence a that results from the joint maximization

max
~�1;~�N+1;:::;

~��N+1

max
&
f
NX
i=1

[max
ai

ln p(rijai; ~�1)j&i;&i+1] +
2�NX

i=N+1

[max
ai

ln p(rijai; ~�N+1)j&i;&i+1] + :::

+
LX

i=�N+1

[max
ai

ln p(rijai; ~��N+1)j&i;&i+1]g;(7.9)

where ~�i 2 ~� = f�1; :::; �mg, and � is the integer closest to, but smaller than, L

N
.

7.2.2 Implementation

In this subsection, we introduce an implementation for the data demodulator. This

implementation corresponds to the parallel evaluation of equation (7.9).

The data detector implementation is shown in Figure 7.4. From this �gure, it is

apparent that this implementation demonstrates the same structure as the general

receiver in Figure 3.1.

There are two main components in the implementation, the universal set of de-

modulators and the CDU. The universal set of demodulators carry out the inner

maximization of equation (7.9), maximizing over the data symbols ai; the CDU
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carries out the two outer optimizations, optimizing over & and the discrete phases

~�1; ~�N ; :::; ~��N+1.

The Universal Set of Demodulators

The universal set of demodulators can be described in detail as follows.

At each time i, all m demodulators receive the input sample ri. The j
th demodu-

lator assumes that the channel phase �i corresponds to �
j, i.e., it assumes �i = �j; 8 i.

The jth demodulator outputs several data symbols at each time i. Speci�cally,

the jth demodulator generates one output symbol for each possible &i (starting state)

and &i+1 (ending state). That is, considering the trellis (e.g., Figure 7.3), the jth

demodulator generates one data symbol output for each possible start node and end

node. The data symbols generated at time i are created using the received ri, the

assumption �i = �j, and &i and &i+1. Speci�cally, the symbols correspond to

â
j

i;k
= argmax

ai

p(rijai; �j)jk; k = (1; 2; :::; V ); (7.10)



Chapter 7: Coded Modulation in a Rapidly Changing Phase 123

where k indicates that the kth possible (&i; &i+1) pair is in e�ect, and V denotes the

total number of (&i; &i+1) pairs.

In addition to the data symbol outputs, the jth demodulator also generates the

corresponding likelihood values

l
j

i;k
= max

ai

p(rijai; �j)jk = p(rijâji;k; �j); k = (1; 2; :::; V ): (7.11)

The two sets of values, data symbols and corresponding likelihoods, are sent to

the CDU at each time i.

The CDU

The CDU generates the output sequence â by choosing from among the many de-

modulator decisions. It does this according to the outer maximizations of equation

(7.9). The output generated by the CDU, based on the outer maximizations of (7.9),

can be written in terms of demodulator outputs according to

â = (â
j
�

1

1;k�
1
; â

j
�

1

2;k�
2
; :::; â

j
�

1

N;k
�

N

; â
j
�

N+1

N+1;k�
N+1

; â
j
�

N+1

N+2;k�
N+2

; :::; â
j
�

N+1

2N;k�
2N
; :::; â

j
�

�N+1

�N+1;k�
�N+1

; â
j
�

�N+1

�N+2;k�
�N+2

; :::â
j
�

�N+1

L;k
�

L

)

(7.12)

here, the k� and the j�
i�N+1 values are selected according to

k�; j�1 ; j
�
N+1; :::; j

�
�N+1 = argmax

k2KP ;j1;jN+1;:::;j�N+1

NX
i=1

ln lj1
ki
+

2�NX
i=N+1

ln l
jN+1

ki
+ :::

+
LX

i=�N+1

ln l
j�N+1

ki
:(7.13)

We now explain how to implement a CDU to carry out these two equations.

The CDU can be viewed as implementingm Viterbi Algorithms (VA's) in parallel,

with a brief interaction between the VA's after each block of N symbols. In what

follows, we describe this implementation in more detail using the illustrative trellis

diagram (e.g., Figure 7.3).

The jth VA �nds the best data sequence through the trellis assuming that the

phase �i = �j. This VA is aided by the jth demodulator, which provides it with

branch metrics, namely the best branch metric between each two nodes.
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The m parallel VA's pause after running through a block of N symbols. They

pause to allow the CDU to compare their end node metrics. First, the end node metric

associated with state 1 is considered. Here, m metrics are available, one from each

VA. The CDU �nds the largest end node metric, and replaces all the VA's current

end node metrics with this largest value. The CDU makes a point of remembering

from which VA they all got their end node metric. This is repeated for each possible

end node. When this process is complete, each VA sits with the same set of end node

metrics, each having the largest possible end node metrics.

Hence, we have m parallel VA's, the jth assuming �i = �j. After running through

each block of N symbols, the VA's pause, and the CDU replaces each end node metric

with the largest available end node metric. They then carry on.

When the VA's reach the end of the data sequence, they stop. At this point, the

CDU backtracks through the trellis, outputting the optimal sequence. This back-

tracking proceeds as a normal Viterbi backtracking through a trellis, with one di�er-

ence: after each N symbols, the backtracking pauses; the VA, whose output is being

selected, changes; it changes to the VA that generated the current end node metric.

The backtracking through the trellis may be followed by a di�erential decoding.

Speci�cally, a di�erential decoding is included if di�erential encoding is used to gen-

erate the ai's. The di�erential decoding, which may be in the CDU, was not included

in equations (7.12) and (7.13).

7.2.3 The Discrete Phase Space ~�

In this subsection, we generate the discrete phase space ~� = f�1; :::; �mg. This ~� is

used in the data detector's underlying equation and corresponding implementation.

Rede�ning the Continuous Phase Space �

We begin the evaluation of ~� by �rst rede�ning �, the continuous phase space which ~�

approximates. In previous sections, we identi�ed � as [0; 2�). However, in Section 7.1,

we explained that the channel encoder mapping is carefully chosen to insure invariance



Chapter 7: Coded Modulation in a Rapidly Changing Phase 125

to 2�
M

phase ambiguities. Consequently, at the data demodulator, it su�ces to assume

that the continuous channel phase space is � = [0; 2�
M
), rather than � = [0; 2�).

The Space ~�

We now evaluate the discrete space ~� = f�1; :::; �mg.

Overview Previously, in Chapters 5 and 6, we generated ~� in two parts. First, we

applied the algorithm of Section 4.3 to get a good starting value for m, the size of ~�.

Then we applied the algorithm of Section 4.4 to generate an exact value for m along

with the �j elements. However, in the case at hand, we can not establish ~� in this

manner.

First, consider the algorithm of Section 4.3. This algorithm is presented for cases

of independent noise samples and independent data symbols, and, in the case at

hand, the data symbols are not independent. Hence, in its current form, the algo-

rithm is not applicable. An analogous algorithm can be established for cases where

the data symbols demonstrate state dependence, but this algorithm requires the ana-

lytical evaluation of P (�j�i; �j) (the probability of a single symbol error) which is not

attainable.

Second, consider the algorithm of Section 4.4. This can not be carried out in the

case at hand, again because of the need to evaluate P (�j�i; �j).
Hence, we proceed as follows. First, we generate the elements f�1; :::; �mg (for

any m value) by using an approximation to the algorithm of Section 4.4. Next, we

generate m by heuristic means.

The Elements f�1; :::; �mg We now detail how we achieve f�1; :::; �mg by an ap-

proximation to the algorithm of Section 4.4.

At the heart of the algorithm of Section 4.4 lies an iterative two-step process,

namely steps B2 and C2, with stopping criteria D2. These steps establish the set ~�

at a given m value.
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Step B2 computes nearest neighbour cells, Rj. In the case at hand, this can be

carried out according to equation (4.36).

Step C2 computes values for �j using a centroid computation and Rj. Unfor-

tunately, the centroid computation uses P (�j�i; �j), a term which is not attainable.

Consequently, we use an approximate centroid condition. The probability P (�j�i; �j)
is proportional to j�i� �jj; hence, for the sake of facilitating a centroid computation,

we replace P (�j�i; �j) by another function, also proportional to j�i� �jj, which allows

for an easy centroid computation. Speci�cally, we replace P (�j�i; �j) by either j�i��jj
or j�i � �jj2 | in the case at hand, these both lead to the same centroid result.

The result of a two-step iterative process using the above B2 and C2, with stop-

ping criteriaD2, and with a p(�i) described by (7.5), can be evaluated analytically [66,

pg 183]. Speci�cally, this iterative process leads to ~� = f2�
M
� 1
2�m

; 2�
M
� 3
2�m

; :::; 2�
M
� 2�m�1

2�m
g,

i.e., ~� corresponds to f�j = 2�
M
� 2j�1

2�m
; j = 1; 2; :::; mg.

Establishing m We generate m by heuristic means as follows. First, we provide

some P (�) results for our data detector at di�erent m values. We do this using a

computer simulation that assumes the following conditions: SNR corresponds to the

value that yields a coherent P (�) of 10�4; phase is constant over 10 symbol intervals;

and the coded MPSK scheme corresponds to a typical rate 2
3
convolutional coder

with 4 states, followed by a careful mapping to 8-PSK. Next, using the simulation

results, we determine the value of m, where, increasing m beyond this point leads

to negligible performance gains. This value becomes our m value. Applying this

heuristic method leads to m = 4. Hence, the discrete set of phases corresponds to

~� = f2�
M
� 1
8
; 2�
M
� 3
8
; 2�
M
� 5
8
; 2�
M
� 7
8
g.

We brie
y explain why the m value is so small, half of the m value in Chapters 5

and 6. The explanation is based on the value of dfree, a value in trellis coded mod-

ulation that is key in determining performance; dfree refers to the shortest distance

between two paths (in the trellis) with the same start and end node.

Our data detector corresponds to m VA's running over each block of N symbols;

each VA assumes a di�erent discrete phase value in ~�. We choose from among the m
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VA's decision sequences after each block of N symbols. Hence, in our data detector,

dfree corresponds to: the smaller of d1 and d2; here, d1 is the shortest distance between

pathes with the same start and end node in a single VA; d2 is the shortest distance

between a path of N symbols in a VA using one discrete phase, and a di�erent N -

symbol-long path (with the same start and end node) in a VA assuming a second

discrete phase.

When m is kept small, d2 is large, and d1 is always smaller than d2; hence, the data

detector maintains the traditional value of dfree = d1. As m increases, d2 gets smaller,

and it becomes possible that dfree becomes d2, a value that diminishes as m increases.

For this reason, a small m value achieves a quality performance: an increased m,

o�ering a performance gain due to smaller phase error, has this performance gain

o�set by a reduced dfree.

7.3 Complexity and Performance

In this subsection, we present the complexity and performance of the data demodu-

lator introduced in Section 7.2, an application of our general receiver to the case at

hand.

7.3.1 Complexity

We begin by introducing the complexity of our data demodulator.

The data demodulator, shown in Figure 7.4, consists of two main computational

components: the set of m = 4 demodulators, and the CDU.

The jth demodulator in the set ofm = 4 demodulators generates, for each received

sample, several data symbols and corresponding likelihood values, creating one pair

for each possible start and end state. In terms of a Viterbi Algorithm (VA), the jth

demodulator computes the branch metrics for a VA, and it decides between parallel

transitions in the VA.
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The CDU computation can be separated into two parts. First, the CDU imple-

ments m = 4 Viterbi Algorithms, using the branch metrics and parallel transition

decisions already available from the m = 4 demodulators. Second, it carries out ad-

ditional computations at the end of each block of N symbols; here, comparisons of

m = 4 values are performed for each state.

Putting it all together, the computations of the data demodulator are: 4 tradi-

tional Viterbi Algorithms, each assuming a di�erent channel phase �j; and, once every

N symbols, a comparison of 4 values for each state. That is, the overall computation

is in the order of 4 traditional Viterbi Algorithms.

7.3.2 Performance

In this subsection, we introduce the performance of our data detector. This perfor-

mance is generated, by computer simulation, using a rate 2
3
4-state 8-PSK channel

encoder.

Figure 7.5 shows the probability of event error plotted against the signal to noise

ratio Es

No

. The points marked `x' provide the results at N = 500; these results match

coherent, and hence serve as a benchmark for comparison.

The points marked `o' present the performance of our data demodulator when

N = 50. These points indicate a performance that is very close to coherent (less than

0.1 dB degradation).

The points marked `*', representing the performance of our data demodulator

with N = 20, again indicate a performance very close to coherent. Only about 0.1

dB separates the performance of our demodulator (N = 20) from coherent.

Finally, the `+' set of points, generated using N = 10, indicate that our data

detector's performance remains close to coherent even at this small N value. About
1
2
of a dB separates the performance of our data detector from coherent.

Figure 7.6 presents another performance curve, one of greater practical interest.

This curve introduces the probability of bit error, denoted P (bit error), as a function

of Es

No

. Here, the `x' points once again serve as our benchmark, as they correspond to
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a performance matching coherent.

The `o' points, showing the performance of our data detector withN = 50, indicate

a performance very close to coherent (approximately a 0.1 dB degradation). The

`*' points present our detector's performance with N = 20; these points indicate

a performance about 1
4
of a dB away from coherent. Finally, the `+' points show

the performance when N = 10; this indicates that, at this low N value, our data

demodulator loses about 3
4
of a dB when compared to coherent.

7.3.3 Comparison to Other Receivers

We now compare our data demodulator to other receivers available to date.

Our data demodulator achieves performances close to coherent with N as low

as 10. Furthermore, its performance essentially matches coherent with N as small

as 20. To date, no other receiver (e.g., [13][30]-[37]) has demonstrated a comparable

performance with N values of 10 or 20 at a realizable complexity. Hence, our detector

o�ers substantial performance gains when compared to any receiver available to date,

when phase is constant over only a handful of symbols.

Furthermore, the implementation of our data detector is very close to the imple-

mentation of 4 parallel Viterbi Algorithms. The availability of (and ease of imple-

menting) Viterbi Algorithms makes this an easily realizable receiver.
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Chapter 8

Data Detection in a Changing

Timing O�set Environment

This chapter presents another application of our proposed receiver structure. Here,

we apply our receiver to the practical communication environment described brie
y

as follows. A transmitter outputs independent data symbols, and these symbols are

sent over a channel introducing two e�ects. The channel adds a noise and introduces

a timing o�set. The timing o�set is constant over a burst of N symbols (e.g., 100

symbols); this models the timing o�set of channels in burst mode communications.

For simplicity in presentation, we will henceforth use the term timing o�set to refer

speci�cally to a timing o�set constant over N symbols.

This chapter proceeds as follows. First, we provide a detailed description of the

timing o�set communication environment. This is followed by the application of our

proposed receiver structure; we show that the receiver which results demonstrates

many bene�ts when compared to the receivers in current literature ([38]-[40]), re-

ceivers summerized in Chapter 1.

132
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8.1 The Communication Environment Model

In this section, we introduce a detailed model for the timing-o�set communication

environment. This model is shown in Figure 8.1; in what follows, we describe each

component in this model.

First, the source creates a sequence of binary digits. This sequence is labeled

b = (b1; b2; :::; bX).

The symbol coder then maps these bits into the symbol sequence a = (a1; a2; :::; aL).

Here, each element ai corresponds to a value in A = fa1; :::; aMg; an example of an

ak 2 A is ak = ej
2�

M
k.

The transmit filter maps the symbol sequence a into the waveform s(t), a

waveform ready for transmission over the channel. This mapping is described as

follows. First, each data symbol ai is mapped to the continuous time waveform

aihs(t � iT )ej!ct, where hs(t) corresponds to a square-root raised-cosine waveform,

i.e.,

hs(t) � h�s(�t) = ps(t) =
sin(�t=T )

�t=T
� cos(��t=T )
1� (2�t=T )2

; (8.1)

here, `�' denotes convolution, and � is a value in [0; 1] called the roll-o� factor. The

waveform s(t) is then created by adding together all the aihs(t� iT )ej!ct terms, i.e.,

s(t) =
LX
i=1

aihs(t� iT )ej!ct: (8.2)

(In practice, s(t) is simply the real component of equation (8.2). However, we use

complex notation here because it simpli�es the presentation without impacting the

receiver design.)

The channel introduces two e�ects: it delays the signal, and it adds a noise. The

output of the channel is described by

r(t) = s(t� �(t)) + �(t): (8.3)

Here, �(t) represents the additive noise, modeled as AWGN. Additionally, �(t) repre-

sents the channel delay. This delay represents a portion of the symbol duration, i.e.,

0 � �(t) < T ; furthermore, this delay is constant over N symbol intervals.
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Figure 8.1: The communication system model.
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Figure 8.3: A digital receiver front end.

The receiver front end maps the waveform r(t) into the sequence r. It does this

using three components: a mixer, a matched �lter and a sampler, usually in that

order. The mixer translates the symbol to baseband; we assume that the mixer has

perfect knowledge of frequency and phase. The output of this mixer is

r0(t) =
LX
i=1

aihs(t� �i � iT ) + �0(t); (8.4)

where �0(t) represents the noise after the mixer operation, and �i = �(iT ). The

remainder of the receiver front end is shown in Figure 8.2. Here, the matched �lter

demonstrates an impulse response of h�
s
(�t), and the sampler generates one sample

every T second interval by sampling at time instants iT + �i.

In the case at hand, we employ a digital version of this receiver front end. Here,

dropping the mixer for simplicity in presentation, the receiver front end is shown in

Figure 8.3. A low pass �lter removes the noise components outside of the information-

bearing signal's bandwidth. This �ltered signal is sampled at time instants iT

2
+

�i, a rate greater than (or equal to) the Nyquist rate. The sampled signal is then

interpolated to achieve 2 �K samples per symbol interval T , where K is typically 2

or 3. This upsampled signal is �ltered by a digital implementation of the matched

�lter. Lastly, the �ltered signal is downsampled by a factor of 2K, leaving only the

samples at time instants iT + �i.

The receiver front end we employ corresponds to an alternative (equivalent) imple-
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Figure 8.4: A �nal receiver front end

mentation of the digital receiver front end described by Figure 8.3. This alternative

implementation is shown in Figure 8.4 (without the mixer). Here, the delay of �i has

moved from the sampling instant to the digital matched �lter.

We present the receiver front end of interest in the case at hand by making a

�nal realization. The value of �i is not available for the matched �lter of Figure 8.4.

Consequently, this matched �lter is not easily realized. We will include the design of

the matched �lter (along with the interpolator and decimator) in the demodulator.

Hence, the receiver front end we consider consists simply of a mixer, a low pass �lter,

and a sampler generating samples at time instants iT

2
.

Returning to describe the components in Figure 8.1, the demodulator implements

the discrete time matched �lter (along with the interpolator and decimator), out-

putting the sequence r; it then maps r into â, an estimate of the transmitted symbol

sequence. A simple symbol decoder follows, mapping the symbols â into bits b̂, an

estimate of the source's binary sequence.

8.2 Demodulator Based on Our Proposed Receiver

In this section, we present the design of the demodulator based on the general receiver

structure presented in Chapter 3.

8.2.1 Underlying Equation

We begin by presenting an underlying equation characterizing the demodulator op-

eration. This equation is generated by applying the general receiver equations of

Chapter 3 to the case at hand.
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In Chapter 3, we introduced three equations for data detection, namely equations

(3.9), (3.20), and (3.21). The equation best suited to the case at hand is equation

(3.20). According to this equation, data detection should be carried out as follows:

select the data sequence â from the joint maximization

max
~c2 ~CL

LX
i=1

f[max
ai

ln p(rijai; ~ci)] + lnP (~cij~ci�1; :::; ~ci�J)g: (8.5)

We now rewrite this equation using the terminology appropriate to the communi-

cation environment at hand. First, the nuisance parameter vector ci corresponds to

the single timing o�set value �i. This implies that ~ci corresponds to ~�i. Additionally,

the nuisance parameter space C0 is replaced by the timing o�set space � = [0; T ].

This suggests that ~C is replaced by ~� = f� 1; :::; �mg, a discrete space approximation
to �. Finally, in the case at hand, the su�cient statistic for detection, ri, is replaced

by the set of samples (samples at time instants iT

2
) required, at the demodulator, to

generate ri using interpolation, the digital matched �lter, and decimation; we will

label this set r(i). Using these realizations, equation (8.5) can be rewritten according

to

max
~�2~�L

LX
i=1

f[max
ai

ln p(r(i)jai; ~�i)] + lnP (~�ij~�i�1; :::; ~�i�J)g; (8.6)

here, p(r(i)jai; ~�i) refers to p(r~�ii jai; ~�i), where r~�ii is the su�cient statistic ri generated

by a digital matched �lter that is given r(i) and ~�i.

We can further simplify this equation by using the available information regarding

�i. This information is the following. The value �i corresponds to �(iT ), and it is

known that �(t) is constant over a block of N symbol intervals. This implies that

�i is a constant, unknown value over each N symbols. This �i can be characterized

statistically according to:

p(�i) =

8<
:

1
T
; �i 2 � = [0; T )

0; else
; (8.7)

additionally, if �i and �i�1 are in the same block of N symbols

p(�ij�i�1) = �(�i � �i�1); (8.8)
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Figure 8.5: The demodulator implementation.

and, �nally, if �i and �i�1 are in di�erent blocks of N symbols, they are assumed to

be independent. Applying this �i information to equation (8.6) leads to: choose the

â from the maximizations

fmax
~�12~�

NX
i=1

[max
ai

ln p(r(i)jai; ~�1)]g+ f max
~�N+12

~�

2NX
i=N+1

[max
ai

ln p(r(i)jai; ~�N+1)]g+ ::: (8.9)

The joint maximizations are independent of one another, and hence we can rewrite

this data detection equation according to: over each block of N symbols, choose the

N symbol long sequence â that results from the joint maximization

max
~�2~�

NX
i=1

[max
ai

ln p(r(i)jai; ~�)]: (8.10)

8.2.2 Implementation

In this subsection, we provide an implementation for the demodulator. This imple-

mentation corresponds to a parallel evaluation of equation (8.10).

The implementation is presented in Figure 8.5. This �gure shows that the receiver

implementation at hand matches the general receiver structure of Figure 3.1.
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The Universal Set of Demodulators

There are two main parts to the implementation. The �rst of the two is the universal

set of demodulators, consisting of m parallel branches. These implement the inner

maximization of equation (8.10), as described in the following.

In the ith symbol interval [iT; (i + 1)T ), the jth branch receives r(i), the samples

required to generate the matched �lter output ri. This jth branch assumes that

�i = � j, regardless of the time index i.

The jth branch's processing of r(i) is done in two parts: �rst, a matched �lter

(preceded by an interpolator and followed by a decimator) is applied to generate ri,

and then a decision device is used to create âi. The matched �lter demonstrates an

impulse response of h�
s
[� iT

2K
� �i] (see Figure 8.4). However, at the j

th branch, it is

assumed that �i = � j. Hence, the matched �lter at the jth branch demonstrates an

impulse response of h�
s
[� iT

2K
�� j ]. The output of this matched �lter (after decimation)

is labeled r
j

i
. This output is described by

r
j

i
' aips(�

j � �i) +
X
k 6=i

akps((i� k)T + (� j � �i)) + �i; (8.11)

where �i corresponds to an i.i.d. Gaussian random variable with variance No

2
, and

ps(�) is de�ned in equation (8.1). In cases where �i does in fact truly correspond to

� j, this output simpli�es to

r
j

i
' ai + �i: (8.12)

The decision device in the jth branch receives, at each time i, the symbol rj
i
. As

it also assumes that �i = � j, it believes that the received sample rj
i
corresponds to

the value in equation (8.12). Consequently, it generates the simple ML decision

â
j

i
= argmax

ai

p(rj
i
jai) = argmax

ai

p�i(r
j

i
� ai): (8.13)

It also generates the corresponding likelihood value

l
j

i
= max

ai

p(rj
i
jai) = max

ai

p�i(r
j

i
� ai) = p�i(r

j

i
� â

j

i
): (8.14)

The two processings at the jth branch correspond to an implementation of the

inner maximization of equation (8.10), namely maxai ln p(r(i)jai; ~�), when evaluated

at ~� = � j; the logarithm in the maximization has not been included for convenience.
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The CDU

The CDU generates the output â by selecting from among the many decisions of the

universal set of demodulators. Speci�cally, it generates its decision by implementing

the outer maximization of equation (8.10). This outer maximization, which the CDU

implements, can be expressed in terms of the universal set of demodulators' decisions

according to

â = (âj
�

1 ; â
j
�

2 ; :::; â
j
�

N
); j� 2 f1; 2; :::; mg; (8.15)

here, j� corresponds to the index of the branch (in the universal set of demodulators)

whose decisions are selected by the CDU; this value is generated according to

j� = argmax
j

NX
i=1

ln lj
i
: (8.16)

The CDU implementing the above two equations is described as follows: the CDU

sums the N likelihood values it receives from each of the m demodulators; it then

determines which sum is the largest; �nally, it outputs all the decisions of the demod-

ulator with the largest sum.

8.2.3 The Discrete Space ~�

In this subsection, we generate the discrete space ~� = f� 1; :::; �mg for use in the

underlying equation and corresponding implementation. This is carried out in two

parts. First, we generate a starting value for m, the size of ~�, by applying the rate

distortion algorithm of Section 4.3. We then generate an exact value for m as well as

values for � j by using the GLA-based algorithm of Section 4.4.

A Starting Value for m

We begin by creating a starting value for m.

The starting m value is generated by applying the algorithm of Section 4.3. This

algorithm creates a curve plotting P (�) on the y-axis, and the smallest m that can

achieve this P (�) on the x-axis. Using this plot, we can establish the value for (or
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range of) m required to achieve a performance near that attained with m!1. This

serves as our starting m value.

The algorithm of Section 4.3 is applied to the case at hand as follows. Step

A1 requires that we generate some starting values. The set of starting values we

choose are: ai is a BPSK signal with an energy Es creating
Es

No

= 9 dB; with this

starting choice, the coherent performance corresponds to 3:3� 10�5. We also choose

so = �1000, si+1 = 2 � si, and smin = �64000. The last starting value that step

A1 requests is P (�j��) = P (�j�i � Q(�i)). This value is not attainable for the pulse

shape hs(t) at hand. Hence, to facilitate the evaluation of this term, we approximate

the pulse shape hs(t) by a unit-energy rectangular pulse shape with a duration of T .

Using this approximation, we �nd

P (�j��) = 1

4
erfc(

s
Es

No

) +
1

4
erfc(

s
Es

No

(1� 2��) ) (8.17)

These starting values are then used in the remaining steps of the algorithm in

Section 4.3, namely B1 to E1. This leads to the P (�) � m curve of Figure 8.6.

This curve indicates that, with m � 4, nearly all the performance to be had can

be achieved. Speci�cally, this curve shows that, with m � 4, a probability of error

performance can be achieved that is less than twice the probability of error attained

with m!1.

We also generate starting values for m using a di�erent set of values in the al-

gorithm of Section 4.3. This time, in step A1, we choose: ai's are QPSK signals

with an energy Es creating
Es

No

= 12 dB; with this choice, coherent P (�) corresponds

to 3:4 � 10�5. We also choose s0 = �1000, si = 2 � si�1, and smin = �64000. The

�nal value that is requested in A1 is P (�j��). As in the earlier case, this value is

not attainable for the hs(t) of interest; hence, we approximate hs(t) by a rectangular

pulse shape, which leads to (for QPSK)

P (�j��) � 1

8
erfc(

s
Es

No

sin(
�

4
)) +

1

8
erfc(

s
Es

No

(1� 2��) sin(
�

4
))

+
1

4
erfc(

s
Es

No

(1� 2�� + 2� 2
�
) sin(

�

4
� �)); (8.18)
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Figure 8.6: P (�) vs R = log2m for BPSK, Es

No

= 9dB.

where � = cos�1( 1���p
(1�2��+2�2� )

).

We then apply these values to the remaining steps of the algorithm in Section 4.3,

namely steps B1 to E1. This leads to the P (�)�m curve of Figure 8.7. This curve

shows that, with m � 8, nearly all the performance to be had is attained.

The above two curves indicate the following. First, they point to the fact that

our receiver structure can be realized with only a few parallel branches. They also

indicate that, for MPSK, as constellation size grows, we require a larger number of

branches in our receiver.

The Space ~� = f� 1; :::; �mg

In this subsection, we use the algorithm of Section 4.4 and create the exact size and

elements of the discrete space ~� = f� 1; :::; �mg.
We begin by considering the steps at the heart of this algorithm, namely the
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Figure 8.7: P (�) vs R = log2m for QPSK, Es

No

= 12dB.

iterative steps B2 and C2, with stopping criteria D2. These steps establish the

values f� 1; :::; �mg at any m.

Step B2 generates the nearest neighbour cells Rj. In the case at hand, these can

be generated by the simple rule of equation (4.36).

Step C2 creates � j values by using the Rj of B2 and a centroid computation.

This centroid computation needs the value P (�j��). We use the BPSK and QPSK

approximate values for P (�j��), namely equations (8.17) and (8.18).

The algorithm applies the above B2 and C2 steps iteratively, with stopping crite-

ria D2, to create � j values. However, in the case at hand, the results of this iterative

process can be established analytically. Speci�cally, using arguments matching those

in [66, p.183], we �nd ~� = f 1
2m
T; 3

2m
T; :::; 2m�1

2m
Tg, i.e., � j = 2j�1

2m
T .

The remainder of the algorithm, steps A2 and E2, establish the exact value of m,

using, as the starting value for m, the m values generated in the previous subsection.

Applying steps A2 and E2, we found an exact value for m of m = 8 or m = 16,



Chapter 8: Changing Timing O�set Environment 144

depending on the SNR, hf�g function, and P (�j��) equation used in A2 and E2. For

m = 8, ~� corresponds to ~� = f 1
16
T; 3

16
T; :::; 15

16
Tg, i.e., � j = 2j�1

16
T . Similarly, for

m = 16, ~� corresponds to ~� = f 1
32
T; 3

32
T; :::; 31

32
Tg, i.e., � j = 2j�1

32
T .

8.3 Performance and Complexity

This section presents the performance and complexity of the receiver introduced in

Section 8.2, the application of our general receiver to the case at hand.

8.3.1 Performance

We begin by presenting performance. This performance is generated, by computer

simulation, using ai's corresponding to 8-PSK symbols.

Figures 8.8 to 8.13 present the performance of our proposed receiver using P (�) vs
Es

No

plots. Speci�cally, Figures 8.8 to 8.11 show the performance of our receiver plotted

against coherent performance. Figures 8.12 and 8.13 plot our receiver's performance

against both coherent performance and the performance of a receiver based on [39];

this latter receiver employs a widely-used digital-feedforward timing o�set tracking,

based on the DFT, and will henceforth be referred to as the DFT receiver.

Figures 8.8 and 8.9 show the performance of our receiver when the raised cosine

waveform hs(t) demonstrates a roll-o� of � = 0:4 (a practical value). These �gures

show that both m = 8 and m = 16 achieve performances very close to coherent,

regardless of whether N = 10 or N = 100.

Figures 8.10 and 8.11 show the performance of our receiver when the raised cosine

waveform hs(t) represents a sinc waveform, i.e., � = 0 (a bandwidth e�cient value).

In this case, we observe that, m = 8 is insu�cient to achieve a near coherent perfor-

mance; however, m = 16 is able to achieve a performance close to coherent regardless

of whether N = 10 or N = 100; only about a 0:5 dB degradation is experienced in

either case.
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Finally, Figures 8.12 and 8.13 demonstrate the performance of our receiver along

with the coherent performance and the performance of the DFT receiver. First, Figure

8.12 shows performance results for � = 0:4. Here, we see that the performance of

our receiver, with m = 8 or m = 16, and with N = 10, is very close to coherent;

meanwhile, the performance of the DFT receiver with N = 100 is close to coherent,

but, at N = 10, the performance of the DFT receiver has degraded to the point

where reliable data detection is not attainable. Figure 8.13 shows that, for � = 0,

our receiver is able to achieve a near coherent performance, while the DFT receiver

is not able to achieve reliable data detection.

8.3.2 Complexity

In this subsection, we present the complexity of our receiver. This complexity is

measured in terms of computations per decoded symbol.

The receiver we introduce consists of two main computational components: the

universal set of demodulators and the CDU. The universal set of demodulators carry

out, for each decoded symbol, m discrete time �lterings, as well as m symbol-by-

symbol demodulations. Meanwhile, the CDU carries out m additions and m�1
N

of a

comparison for each decoded symbol. Hence, the total complexity is more or less that

of m discrete time �lterings and m symbol-by-symbol demodulations.

This complexity can be reduced whenever N , the number of symbols experienc-

ing a constant �i, is large, e.g., N > 10. This reduced complexity is achieved by

introducing a slight modi�cation to the receiver implementation. We �rst describe

the modi�cation to the receiver implementation, and we then present the reduced

complexity of the modi�ed implementation.

Whenever �i is constant over N symbols, and N > 10, we can simplify our receiver

as follows. First, over the �rst K = 10 symbols in the block of N symbols, the

simpli�ed receiver implements the proposed receiver with N = K = 10. This results

in an output which consists of the K = 10 symbols, all selected from the jth branch,

where the value of j is determined by the CDU. Next, for the remaining N � K

symbols, the simpli�ed receiver simply applies the jth branch in the universal set of
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demodulators; it does not carry out the operation of the remaining m � 1 branches,

nor the operation of the CDU. This is because, when considering the �rst 10 symbols

of the block, the simpli�ed receiver has established which branch is best.

The complexity of the modi�ed receiver implementation, in operations per de-

coded symbol, is: the universal set of demodulators contribute m�K+1�(N�K)

N
discrete

time �lterings and an equal number of symbol-by-symbol demodulations per decoded

symbol; the CDU introduces m�K

N
additions and m�1

N
comparisons. Hence, the to-

tal complexity is in the order of m�K+1�(N�K)

N
discrete time �lterings and symbol-

by-symbol demodulations per decoded symbol. The value of m is either 8 or 16,

depending on the application. For example, with � = 0:4 (in which case we can use

m = 8) and N = 100, the total complexity is in the order of 1.7 discrete time �lterings

and demodulations per decoded symbol; with N = 500, this complexity drops to 1.14

discrete time �lterings and demodulations per decoded symbol.

8.3.3 Advantages of the Parallel Receiver

Our receiver demonstrates many bene�ts when compared to the popular receiver

scheme of [39], which we call the DFT receiver.

First, there are many gains to be had in terms of performance. Whenever the

block of symbols experiencing a constant �i is small (e.g. N = 10), our receiver easily

outperforms the DFT receiver. In fact, to the best of our knowledge, no receiver other

than our own is able to achieve reliable data detection when �i changes every small

burst duration. Furthermore, whenever the roll-o� factor � is small, our receiver easily

outperforms the DFT receiver. With smaller roll-o� factors becoming more and more

common in mobile communications (to achieve higher bandwidth e�ciency), this

performance gain is an important one.

We can also compare receivers in terms of complexity. The simpli�ed implemen-

tation of our receiver demonstrates a complexity matching that of coherent detection

over the last N � 10 symbols in each burst. It is only over the �rst K = 10 symbols

that our receiver demonstrates a slightly increased complexity. As a result, the com-

plexity of our scheme is very low, and, for large N , it can be notably lower than that
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of the DFT receiver.
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Chapter 9

Conclusions and Future Work

This chapter concludes the thesis with a brief discussion of the work to date, high-

lighting the contributions, and an exploration of possible research for the future.

9.1 Discussion and Contributions

This thesis presents three novel equations for the detection of data in the presence of

noise and nuisance parameters (which may be rapidly changing). These equations are

derived by using joint MAP data detection and parameter estimation (a theoretically

optimal starting point), and making one key approximation: the continuous nuisance

parameter space is replaced by a carefully chosen m-element discrete space.

This thesis then introduces a corresponding, novel receiver structure. This receiver

structure can implement any one of the three new data detection equations (equations

for the detection of data in the presence of nuisance parameters). The structure of our

receiver corresponds to implementing a set of demodulators in parallel, and following

this by a computation and decision unit, or CDU for short. The parallel nature of

this receiver structure facilitates its real time implementation.

Next, this thesis presents a proof showing that it is theoretically possible to apply

the novel receiver structure to almost any case of data detection in the presence

152
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of nuisance parameters. Speci�cally, the proof we provide shows that our receiver

structure can almost always be applied to achieve a performance arbitrarily close to

that of joint MAP detection and estimation (which, in turn, is usually very close to

the performance of optimal MAP data detection).

This thesis then tackles the issue of the number of parallel demodulators employed

by the receiver structure, an issue that may restrict the practical applicability of the

receiver. We introduce a study of the number of parallel demodulators the receiver

employs versus the performance of the receiver structure. This study is based on rate

distortion theory, a branch of information theory usually reserved for data compres-

sion. As a result of this study, we achieve an algorithm that can generate a bound

on the smallest number of parallel demodulators that can be used to attain a stated

performance of the receiver structure. Applying this algorithm, to cases wherein the

nuisance parameters correspond to a phase o�set or a timing o�set, we �nd that only

a few parallel demodulators (around 10) are required by our receiver structure to

achieve a performance very close to that attained with m ! 1 (i.e., very close to

that of joint MAP detection and estimation). Hence, our receiver is not only the-

oretically possible, but also practically realizable in many cases of current interest,

sometimes being realized at a low complexity.

This thesis then provides an algorithm establishing the nuisance parameter values

assumed at each of the demodulators in the parallel structure. This algorithm, based

on the Generalized Lloyd Algorithm, generates values that optimize the receiver's

performance while allowing it to maintain a low complexity.

This thesis next details several important, practical applications of our receiver

structure. These relate to data detection (of both coded and uncoded modulations) in

the presence AWGN and either a rapidly changing phase o�set or a rapidly changing

timing o�set. These examples relate to communication environments such as mobile

communications, burst-mode communications, and frequency-hopping communica-

tions.

The �rst application we examine is the detection of MPSK in the presence of

AWGN and a phase o�set constant over N symbols, where N is small (e.g., N = 3).

Here, we �nd that our receiver structure demonstrates a low complexity, and achieves
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a performance matching theoretically optimal bounds. Compared to the well-known

MSDD, our receiver's performance matches that of MSDD, while maintaining a far

lower complexity.

We next examine the application to data detection of MPSK in the presence of

AWGN and a phase o�set constant over 2 symbol intervals, but not necessarily con-

stant over a longer duration. In this case, our proposed receiver structure easily out-

performs DPSK (by about 1.5 dB) as well as MSDD (the performance gain increases

as phase change becomes more rapid). Furthermore, the complexity of our receiver is

in the order of eight (8) times that of a symbol-by-symbol PSK demodulator, a low

complexity.

We also consider data detection of coded MPSK in the presence of both noise

(AWGN) and a phase o�set constant over N symbols (N being small, e.g. N =

20). Here, we �nd that our receiver structure corresponds to implementing four (4)

coherent-like VA's in parallel, a moderate complexity. Furthermore, the performance

of our receiver is very close to coherent, even with phase constant over as few as 10

symbol intervals. When compared to receivers in recent literature, we �nd that no

receiver to date has demonstrated a performance even close to coherent, with a phase

this rapidly changing, while still maintaining a realizable complexity.

Finally, we consider data detection in the presence of noise and a timing o�set

constant over only a received burst of symbols. Here, our receiver structure demon-

strates a low to moderate complexity, and displays many performance gains. Specif-

ically, when compared to receivers in the current literature, our receiver structure

demonstrates substantial gains whenever the burst of received signals with constant

timing o�set is short, or whenever the roll-o� factor tends toward zero (i.e., whenever

the bandwidth-e�cient, sinc-like pulse shapes are transmitted).

9.2 Future Work

This section presents possible avenues for future research. This future work can be

divided into two categories: work on the novel receiver structure itself, and work on
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its applications.

9.2.1 The Novel Receiver Structure

There remains some work to be done regarding the complexity of our receiver struc-

ture. First, whenever noise samples are not independent (and a whitening �lter is

not applied), the complexity of our receiver structure, as presented in this thesis, is

very large, with the number of parallel demodulators corresponding to the number of

possible discrete nuisance parameter sequences. It is hoped that future work will show

that a more realizable complexity can be attained by our receiver structure in these

cases. Furthermore, in cases when several nuisance parameters are contained in the

received signal, it may sometimes happen that the number of parallel demodulators

required by our receiver structure will be prohibitively large. Herein lies another area

for future work.

Future research can also be carried out regarding the performance of the novel

receiver structure. We have determined that the performance of our receiver structure

can almost always be made arbitrarily close to that of joint MAP detection and

estimation. However, to better establish the performance of our receiver, we want

to compare it to that of theoretically optimal data detection (namely MAP data

detection). In Chapter 2, we provide an important practical example illustrating that

joint MAP detection and estimation (and hence our receiver) performs e�ectively the

same operation as optimal data detection. We point the reader to the results in [62,

p.291] for further evidence of the closeness of joint MAP detection and estimation

(and hence our receiver) and optimal data detection. However, the treatment in [62,

p.291] is not a complete treatment of this issue, and hence a further exploration is a

topic for future research.

9.2.2 Applications

Some further work can be carried out on the receiver structure applications we have

introduced to date. First, consider our second application, namely the detection of
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data in the presence of a phase o�set that is constant over as few as two symbol

intervals. Here, we can explore the use of di�erent phase models in the receiver

structure; i.e., we have assumed a rather general phase model to achieve a widely

applicable receiver, but, if the speci�c phase model for a particular application is

known, then using this may enhance performance.

Also, consider the third application, namely data detection of coded MPSK in the

presence of a phase o�set constant over N symbols. In the near future, we may try

to update our receiver structure such it achieves near coherent performances even in

cases of N < 10. We hope to achieve this by introducing di�erent phase models into

our receiver structure to account for a more rapidly changing phase.

In addition, in all four applications considered in the thesis, the nuisance pa-

rameters' �rst order statistics corresponded to uniform distributions; this resulted in

discrete nuisance parameter spaces ~C made up of uniformly distributed values. There

exist some closely related applications of practical interest (e.g., partially coherent de-

tection [76]) where the communication model is unchanged from its presentations in

Part III, with the exception of the �rst order statistics of the nuisance parameter

(which is non-uniform). Our receiver structure can be introduced to these applica-

tions, in which case we no longer expect uniformly-spaced values for ~C, but rather a

set of values clustering around areas of high probability.

The greatest potential for future research lies in the discovery of entirely new ap-

plications for our receiver structure. Our rate distortion theory algorithm suggests

that our receiver structure will demonstrate a reasonable number of parallel demod-

ulators in cases of one or two nuisance parameters and independent noise samples,

a situation of great practical interest in many communication environments. Fur-

thermore, we know that our receiver's performance will correspond very closely to

detection by joint MAP detection and estimation, which itself is usually very close

to optimal data detection. Our four examples have shown that, indeed, our receiver

structure can achieve both a low to moderate complexity and a near-coherent perfor-

mance in cases of practical interest. Of course, the applications we have considered

are far from complete. For instance, we have yet to consider data detection of a PSK

signal sent over a fading channel. It is our intention to apply our receiver structure



Chapter 9: Conclusions and Future Work 157

to this situation, as well as many other applications of great practical interest.



Appendix A

List of Acronyms

AFC automatic frequency control

AWGN additive white Gaussian noise

BPSK binary phase shift keying

CDU computation and decision unit

DFT discrete Fourier transform

DPSK di�erential phase shift keying

EM expectation maximization

GLA generalized Lloyd algorithm

GU genie unit

ISI intersymbol interference

LHS left hand side

MAP maximum a posteriori

ML maximum likelihood

MPSK M-ary phase shift keying

MSDD multiple symbol di�erential detection

MTCM multiple trellis coded modulation

PLL phase locked loop

PSK phase shift keying

QPSK quadrature phase shift keying

RHS right hand side

158



Appendix A 159

SNR signal-to-noise ratio

TCM trellis coded modulation

TDMA time division multiple access

VA Viterbi algorithm

VCO voltage controlled oscillator

8-PSK 8-ary phase shift keying
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