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ABSTRACT 

One of the fundamental problems in signal processing is to enhance a signal which has 

been corrupted by an additive noise. In this thesis, the problem of deviating the effects 

of camera noise corrupting the dialog of a film soundtrack is examined. Two methods of 

noise reduction are investigated: adaptive noise cancellation with a synthesized reference 

signal, and spectral subtraction. It is found that, due to the relatively low correlation be- 

tween successive camera noise pulses, the adaptive noise cancellation approach is not ef- 

fective at reducing camera noise. The spectral subtraction method is shown to reduce 

camera noise, but the process creates audible artifacts which can be very disturbing to the 

listener. To overcome this, new methods are proposed for reducing musical noise and 

time aliasing effects. The use of subbands and sub-frames is shown to sigmficantly im- 

prove the performance of the spectral subtraction algorithm by providing a better match 

of the noise reduction process to the noise. The performance is fuaher improved by in- 

corporating a perceptual model into the spectral subtraction algorithm. The use of sub- 

bands, sub-frames, and a perceptual model allows the amount of processing applied to the 

signal to be minimized which in turn reduces the level of any artifacts which may result 

from the noise reduction process. The results of a formal subjective test demonstrate the 

improved performance of the new noise reduction algorithm. 



De tous les problhnes rencontres en traitement de signal, un des plus fondamentaux est 

l'arn6lioration d'un signal deteriore par un bruit additif. Cette thkse considere ie problgme 

de reduction de bruits provenant d'une cine-camkra et se retrouvant dans la bande sonore 

d'un film et donc affectant le dialogue. Deux approches sont CtudiCes pour realiser cette 

rgduction de bruit, soit l'annulation adaptative du bruit par la mkthode des moindres 

carries et utilisant un signal de rEfErence synthktisi, ainsi que la soustraction spectrale. 

Les r6sultats demontrent que l'approche d'annulation adaptative du bruit utilisant un 

signal de rkfkrence synthttisti n'est pas efficace pour rkduire le bruit de camera, ceci &ant 

du 2 la correlation relativement faible entre les impulsions cons6cutives du bruit. 

L'approche de soustraction spectrale offie une rdduction consid6rable du bruit de cam6ray 

mais des artifices perceptibles et trks perturbant pour l'auditeur en resultent. Pour 6viter 

ceci, de nouvelles approches de rkduction de bruit musical et d'effets de repliernent 

(aliasing) temporel sont proposees. L'utilisation de sous-bandes et de sous-trames r6sulte 

en une amelioration importante de la performance de l'approche de soustraction spectrale 

en creant une meilleur correlation entre le bruit et the processus. Le rendement est 

d'autant plus am6li0r6 en instrant un model perceptuel dans l'algorithme de soustraction 

spectrale. L' utilization de sous-bandes, de sous-trames, et du model perceptuel permet de 

minimiser le degr6 de traitement du signal qui en plus minimise les artifacts provenant de 

la reduction de bruit. LRs r6sultats d'un test subjectif forrnel d6montrent l'amelioration 

de la performance de l'algorithme de reduction de bruit. 
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This thesis is dedicated to the memory of my brother 

who first got me interested in audio and electronics. 

In the time of my confession, in the hour of my deepest need. 
When the pool of tean beneath my feet flood every newborn seed. 
There's a dyin' voice within me reaching out somewhere, 
Toiling in the danger and the morals of despair. 
Don't have the inclination to look back on any mistake. 
Like Cain, I now behold the chain of events that I must break. 
In the fiuy of the moment I can see the Master's hand 
In every leaf that trembles, in every grain of sand. 

Oh, the flowers of indulgence and the weeds of yesteryear, 
Like criminals they have choked the breath of conscience and good cheer. 
The sun beat down upon the steps of time to light the way 
To ease the pain of idleness and the memory of decay. 
I gaze into the doorway of temptation's angry flame 
And every time I pass that way I always hear my name. 
Then onward in my journey I come to understand 
That every hair is numbered like every grain of sand. 

I have gone from rags to riches in the sorrow of the night 
In the violence of a summer's dream, in the chill of a wintry night. 
In the bitter dance of loneliness fading into space, 
In the broken mirror of innocence on each forgotten face. 
I hear the ancient footsteps like the motion of the sea 
Sometimes I turn, there's someone there, other times it's only me. 
I am hanging in the balance of the reality of man 
Like every sparrow fallen, like every grain of sand. 
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This thesis addresses one aspect of the general problem of enhancing a signal which has 

been cormpted by an additive noise. This problem arises in applications ranging from 

removing noise fiom speech signals in a telephone system, to detecting sonar signals 

amidst the ambient noise of the ocean, to enhancing fetal electrocardiograms. In this the- 

sis, we examine the problem of enhancing a speech signal which has been corrupted by a 

repetitive or cyclical noise source. That is, it is assumed that certain characteristics of the 

interfering noise repeat over time. 

W e  the research described in this thesis focuses on the specific application of re- 

moving camera noise &om ftlm soundtracks, the results are readily extendible to other 

applications which require that a signal be enhanced in the presence of a repetitive noise. 

For example, many mechanical devices (e.g. motors, generators, cooling fans, printing 

presses, propeller blades, etc.) produce repetitive acoustic noises which can corrupt a de- 

sired acoustic signal (e.g. speech, music, sonar). Also, there are many sources of cyclical 

electrical noise (e.g. car ignition noise, interference from electric motors, switching power 

supplies, etc.) which can corrupt other electrical signals. Therefore, any signal which has 

been corrupted by a repetitive noise source can potentially be enhanced using the methods 

described in this thesis. 

As a result of one of the noise reduction methods investigated in this thesis, a mathe- 

matical and subjective comparison of two auditory masking models was conducted, and 

new enhancements to the models were proposed. This work has implications for many 

applications beyond the field of noise reduction. 

1.1 Description of the Problem of Camera Noise in Film Soundtracks 

This thesis examines the problem of camera noise in film soundtracks and investi- 

gates potential schemes for reducing this noise. The soundtrack of a motion picture con- 

sists of a mix of audio recordings of music, sound effects, and speech. The music seg- 

ments of a soundtrack are invariably recorded in the highly controlled acoustic environ- 

ment of a recording studio. Similarly, sound effects are often taken from a pre-recorded 

library of sounds, or if they are not available fiom such a library, they are created and 

recorded on a foley stage. The foley stage is another acoustically controlled environment 



designed specifically for the task of creating sound effects for hlms. Since neither the 

music nor the sound effects are recorded at the time of f w n g ,  they are not affected by 

camera noise. The didogue however, is recorded at the time of filming and it is here 

where the problem of camera noise arises. 

I 

I 

Figure 1.1 IIlustration of a typical filming scenario. 

The problem of camera noise corrupting the dialogue recordings can be described 

with the help of Figure 1.1. The figure depicts a typical filming scenario with an actor 

standing before a camera reciting his dialogue. Above the camera is a microphone which 

is used to record the actor's voice and any other assorted sounds that the actor might 

make ( e g  coughing, rustling paper, typing, footsteps etc.). The microphone is typically 

placed as close to the actor as is possible without appearing within the view of the cam- 

era. 

Simply stated, the fundamental problem is that due to its mechanical workings, the 

camera produces an acoustical noise which is picked up by the microphone (as depicted 

by the arrows in Figure 1.1) along with the speech signal. The noise of the camera is su- 

perimposed onto the soundtrack along with the voice of the actor. The loudness of this 

noise relative to the level of the actor's voice can vary significantly due to: the type of 

camera; the type of microphone employed; the acoustic characteristics of the room; and 

the relative positions of the camera, the actor and the microphone. It is possible to limit 

the loudness of the camera noise to some extent by carefully controlling some or all of 

these variables. However, this reduction in the level of the noise may occur at the ex- 

pense of limiting some other technical or artistic aspect of the filming process. For ex- 



ample, unidirectional microphones which are more sensitive to sounds arriving fiom the 

kont of the microphone than from its rear, can be employed to record the dialogue. By 
placing the camera to the rear of a unidirectional microphone, it may be possible to re- 

duce the amount of camera noise picked up by the microphone. However, it should be 

noted that the camera noise reaches the microphone via many paths. That is, the camera 

radiates noise in all directions and the noise will reflect off of the various surfaces (e-g. 

floor, walls, furniture, etc.) within the room and will reach the microphone at different 

times, from various directions and with different amplitudes. Therefore, the reverberation 

of the room may Limit the effectiveness of this approach. T% the level of the camera noise 

is relatively low in comparison to the dialogue then, as an alternative to reducing the 

noise, it may be possible to mask it with background music or sound effects. 

Despite these means of limiting or masking the camera noise in the dialogue record- 

ings, it is still very common for the camera noise to be audible to some degree. This is 

particularly true for films* since the larger cameras used to make these films are 

inherently noisier. Even small amounts of camera noise may distract the viewer and de- 

stroy the Nm's illusion of reality, and therefore, any audible camera noise is generally 

considered to be unacceptable [I]. 

For those cases in which the level of the camera noise is sufficiently high so as to be 

detectable, the actor's dialogue must be re-recorded (dubbed) in an acoustically controlled 

environment after the filming has occurred. This process is known as automatic dialog 

replacement (ADR). In ADR, the actors recite their dialogue while watching an image of 

their (previously f h e d )  performance and listening to the noisy version of their dialogue. 

While ADR completely eliminates the problem of camera noise, it is an undesirable solu- 

tion since it adds significant costs to the production of a Wm and, because the actor must 

now w o q  about remaining synchronized with the image, it typically compromises his 

perf~rma&e [1,2]. ADR is used regularly during the making of most movies in order to 

overcome the problem of camera noise. Therefore, a method for removing camera noise 

without adversely affecting the underlying speech signal would be of si@cant benefit 

to the film making process [3,4]. A review of the pertinent scientific literature and dis- 

cussions with individuals in the film industry indicate that no such method presently ex- 

* The IMAX corporation produces a specialized type of motion picture using a very large screen format 
which encompasses the viewer's peripheral field of view. To retain resolution and picture quality, MAX 
cameras require a sophisticated transport mechanism. 



ists. However, the IMAX Corporation, whose cameras pose a greater noise problem due 

to their large size, did conduct some research on this topic [S]. 

It is reasonable to question the value of a system which could successfidly reduce 

camera noise. In the making of a fh, the cost of ADR is typically on the order of 

US$50,000. Given the hundreds of films made each year, one can see that Iiterally mil- 

lions of dollars are spent annually on ADR. This is despite the methods which currently 

exist for limiting camera noise (see Chapter 2). 

1.2 Description of Camera Noise 

I t  is useful to have in mind an idea of the sound of camera noise- To this end, it is in- 

structive to describe the mechanisms which combine to produce the acoustic noise in a 

motion picture camera. 

A motion picture camera is an intricate mechanical device composed of many moving 

parts. The film is transported fiom the supply reel, through the camera to the take-up reel 

by means of the sprocket holes which line the film. The sprocket system is used to ensure 

that the fdm is correctly aligned with the camera's shutters and lens. With a frame of the 

film correctly aligned, the shutters open and close to briefly expose the f h ,  and the film 

is then moved to the next frame. This process is repeated 24 times every second. The 

rate (film rate) of 24 frames per second was chosen to provide sufficient visibility of Lip 

movement when sound was introduced to motion pictures [6]. The camera noise is heard 

as a series of clicks or pulses (actually, noise bursts) occurring at a rate of 24 times per 

second. 

The reader is probably familiar with the sound of a motion picture projector. Given 

that the camera and projector have many similar components, the noise of the camera is 

quite similar to that produced by a projector. Examples of camera noise can be heard on 

the compact disc accompanying the thesis (see Chapter 8). 

1.3 Requirements of a Noise Reduction Scheme 

In order for any camera noise reduction scheme to be fully acceptable, there are several 

requirements which it must meet Of course, a successful noise suppression technique 

must reduce the camera noise such that any residual noise will not be perceptible to the 

audience. Also, the process must not adversely affect the quality of the underlying speech 



signal. This implies that the restored speech signal must be of very high quality and that 

no audible artifacts can be introduced as a result of the noise reduction process. 

Given the manner in which dialogue is traditionally recorded, it is highly desirable 

that the noise suppression technique be a single-input system. That is, the technique 

should be able to process the corrupted (noisy) signal without the benefit of an additional 

recording of the isolated camera noise. While this is a very severe reshiction in that it 

eliminates the use of certain approaches for noise suppression, it is unlikely that any 

scheme would gain widespread acceptance unless it meets this fundamental requirement 

[3,4,5]. Moreover, a successful single-input noise suppression scheme could also be used 

for the restoration of older films, thus greatly extending its usefulness. 

Since a successful noise reduction scheme would be used as part of an artistic process 

(i-e. the making of a soundtrack for a film), the key parameters which control the per- 

formance of the process must be identified and put under the user's control. Finally, 

while it is not absolutely necessary for the noise reduction to occur in real-time, from a 

practical point of view, the process must operate with reasonable speed. 

1.4 Noise Reduction Techniques 

In describing the problem of camera noise it was seen that the task of removing camera 

noise from a film soundtrack consists primarily of extracting a speech signal from noise. 

Separating a desired speech signal from an undesired signal is an important and common 

problem in signal processing. There has been a significant amount of research devoted to 

this topic, although primarily in the context of telephony, speech compression, speech 

recognition and military voice communications. In this section, methods of noise reduc- 

tion based on adaptive fdtering methods and spectral subtraction are considered briefly. 

Some of the benefits and limitations of each approach are also addressed. 

1.4.1 Adaptive Noise Cancellation Algorithms 

A commonly used method for reducing noise in speech signals is the adaptive noise can- 

cellation (ANC) technique. In its basic form, ANC uses two inputs: a primary input and a 

reference input. In the present application, the primary input corresponds to the noisy 

speech (recorded at the primary microphone), while the reference input would consist of a 

recording of the camera noise alone. In practice, the reference input would be obtained 

by placing a second receiver (reference microphone) next to the camera and recording the 

camera noise at the same time that the dialogue is being recorded. To understand how the 



adaptive noise cancellation method works, consider the propagation of the noise &om the 

camera to the (primary) microphone as depicted in Figure 1.1. The sound fiom the cam- 

era first reaches the microphone by the direct path between them. Due to the reverbera- 

tion of the room however, this is followed by a plethora of reflections arriving at different 

times and with different amplitudes. The ANC method works by estimating this complex 

acoustic response from the camera to the primary microphone. 

Given this estimate, the reference input (i.e. the camera noise) is processed to produce 

an approximation of the camera noise as it would appear at the primary microphone. This 

approximation of the camera noise is then subtracted fiom the primary input signal, thus 

reducing the noise and leaving a noise-reduced recording of the speech signal. The esti- 

mation of the acoustic path is often done by using the least-mean square (LMS) adaptive 

algorithm which adapts on an iterative basis. A comprehensive introduction to ANC and 

its many applications, as well as a derivation of the LMS algorithm can be found in the 

classic paper by Widrow et al. [7]. 

While ANC can be quite effective in many applications, there are certain basic limi- 

tations which must be considered. Since the LMS algorithm iteratively derives its esti- 

mate of the acoustic path, the rate at which the algorithm adapts to produce this estimate 

must be considered. Clearly, it is desirable for the algorithm to adapt as quickly as possi- 

ble. However, the speed with which the LMS algorithm can adapt is limited by the op- 

posing requirements for the algorithm to remain stable and the need for an accurate esti- 

mate. Performance of an ANC system can also be compromised if some of the desired 

speech signal leaks into the reference input signal (i.e. is recorded by the reference micro- 

phone). Variations to the basic LMS algorithm and an analysis of the factors which limit 

its performance (adaptation rate, accuracy of the estimate, stability, etc.) can be found in 

[8,9,10,11]. An important variant of the LMS algorithm is the normalized LMS algo- 

rithm, which can provide superior performance when dealing with impulse-type noise 

(such as camera noise). 

An area of research which is closely related to ANC is the problem of blind signal 

separation [75,81,88,89,91]. Blind signal separation can be viewed as a generalization of 

the ANC method which attempts to overcome many of the limitations inherent to ANC. 

It was originally believed when this research work began that LMS-based ANC was 

the obvious choice of methods for reducing camera noise. There are several factors how- 

ever which make the use of this method less appealing for this application. The most irn- 

portant factor is that ANC is a two-input, rather than a single-input scheme. A single- 



input scheme, of course, was one of the primary criteria for an acceptable noise reduction 

scheme. In some instances, when the noise is repetitive and somewhat predictable, it may 

be possible to synthesize the reference signal rather than record it directly. This effec- 

tively creates a single-input ANC system. For this approach to reduce camera noise re- 

quires that the individual pulses of the camera noise be sufficiently similar to each other 

so that a representative reference signal can be derived, Unfortunately as will be seen in 

Chapter 4, the individual pulses are not similar enough to yield a sufficient degree of 

noise reduction using this approach. 

1.4.2 Methods Based on Spectral Subtraction Techniques 

At about the same time that adaptive noise cancellation was first being developed, the 

technique of spectral subtraction was proposed by Weiss et al. [12] and by Boll [13,14]. 

The process was originally intended for military applications in an attempt to improve the 

intelligibility of speech under extreme noise conditions. For example, spectral subtrac- 

tion was used to try to improve voice communications in the cockpits of jet fighter air- 

craft and helicopters [ 13,151. Interestingly, tests showed that the spectral subtraction 

technique did not provide any improvement in intelligibility [I 3,16,17]. It did however 

provide a perceived improvement to the quality of the processed speech signal, and it is in 

this context that spectral subtraction is examined as a potential means of reducing camera 

noise. 

In a manner similar to ANC, spectral subtraction forms an approximation of the noise 

signal and then subtracts this estimate fiom the noisy speech signal. However, spectral 

subtraction uses a much less precise approximation of the noise signal than AN%. More 

precisely, an audio signal can be described in terms of its combined spectral magnitude 

and phase. The adaptive noise cancellation scheme described earlier requires an accurate 

determination of both of these parameters, whereas the spectral subtraction process only 

estimates the spectral magnitude and effectively ignores the phase. Ignoring the phase 

portion of the noise causes corresponding errors in the phase portion of the processed 

speech. However, these errors are usually unimportant since the ear has been found to be 

relatively insensitive to the phase portion of speech signals [18,19]. 

This simplified approximation of the noise signal provides several advantages. For 

example, unlike the ANC scheme, the spectral subtraction algorithm does not suffer from 

conflicts between stability and adaptation rate. More importantly however, the simplified 

approximation allows spectral subtraction to be a single-input process thus making it 



suitable for the task of reducing camera noise. Spectral subtraction relies on the assump- 

tion that the spectral magnitude of the noise during gaps in the speech is the same as 

during speech intervals. Therefore, the spectral subtraction scheme derives its noise es- 

timate directly from the recording of the noisy speech during the intervals where there is 

no speech activity. 

Due to its crude characterization of the noise source, the spectral subtraction process 

can produce many audible artifacts which are sometimes more disturbing to the listener 

than the original noise. The artifacts become more audible as more aggressive processing 

is applied to the noisy speech signal. As the level of the camera noise increases, more 

aggressive processing must be applied to sufficiently reduce this noise, and thus the re- 

sulting artifacts become more audible. 

Spectral subtraction is actually a name given to a family of algorithms which are 

variations of a fundamental technique. The various algorithms differ primarily in how 

they form their estimate of the noise signal. They effectively provide a trade-off between 

the amount of noise suppression achieved and the level of the resulting artifacts. Perhaps 

the most disturbing artifact, and certainly the one which has received the most attention, 

is musical noise. Musical noise can be described as a sequence of short-lived tones oc- 

curring at random times and frequencies. A significant portion of the research into spec- 

tral subtraction has been devoted to studying ways of limiting and suppressing musical 

noise. Vaseghi and Frayling-Cork [20] proposed a 'survival algorithm' for removing mu- 

sical noise which is based on examining the amplitude and duration of the tones that 

make up the musical noise. Capp6 [21] has shown how the variant of the spectral sub- 

traction algorithm proposed by Ephraim and Mahler [22] provides noise reduction with- 

out creating nlusical noise. However, this version of the spectral subtraction algorithm 

does not completely eliminate the interfering noise signal and is therefore not applicable 

to the camera noise problem. 

An interesting variation to the spectral subtraction algorithm was investigated by 

Tsoukalas et al. [120,130,23] wherein a model of the human auditory system is incorpo- 

rated into the system. The auditory model is used to determine which portion of the noise 

is audible and which is being masked by the desired signal. The spectral subtraction algo- 

rithm then removes only that portion of the noise which is audible. This approach is re- 

ported to significantly reduce artifacts such as musical noise [120,12 1,130,13 1,1321. 

Spectral subtraction has been applied mainly to reducing high level noise in voice 

communication systems and as a pre-processor to speech compression and speech recog- 



nition systems [24,25,26, 14,27,28,29]. In these applications, where noise conditions can 

be quite severe, artifacts resulting from the processing may be acceptable provided that 

communications (or recognition) are improved. Spectral subtraction has also been used 

to reduce the background noise (hiss) in old gramophone recordings prior to being trans- 

ferred to compact disc [20,30]. In this application spectral subtraction was found to work 

successfully if the level of the background noise is sufficiently far below (230d.B) the 

level of the music signal. This is a much less severe noise condition than found in some 

voice communication applications. Also, in the gramophone restoration application it is 

acceptable to merely reduce the level of the background noise without making it inaudi- 

ble. This is in contrast to the camera noise problem where the noise must be rendered 

inaudible. As with the removal of camera noise, audible artifacts are not acceptable when 

restoring gramophone recordings. 

The problem of removing camera noise shares features of both the voice communica- 

tion and gramophone restoration applications. While the level of the camera noise is ex- 

pected to be nearer to the noise levels found in communications systems, the processed 

speech signal must be of the same high quality demanded when restoring gramophone 

recordings. Therefore, removing camera noise makes for a unique and challenging noise 

reduction problem in that two opposing demands must be addressed. In this thesis it will 

be shown that spectral subtraction can be successfully used to remove camera noise in 

fiLm soundtracks. This is achieved primarily by taking advantage of specific characteris- 

tics of the camera noise which allow the amount of processing applied to the noisy signal 

to be time and frequency dependent. By matching the noise reduction algorithm to the 

noise, the amount of processing applied to the signal can be reduced which in turn re- 

duces the level of any residual artifacts. The use of a perceptual model in the spectral 

subtraction algorithm builds on this philosophy. By removing only those portions of the 

noise which are audible, the amount processing applied to the signal is reduced and thus 

the levels of the artifacts are also reduced. 

1.5 Original Conhibutions 

Based on a review of the pertinent literature and discussions with individuals in the film 

industry, this thesis appears to constitute the first comprehensive investigation into the 

use of adaptive signal processing methods for reducing camera noise in film soundtracks. 

The results of the thesis provide a successful single-input approach for removing camera 

noise while minimizing any audible effects on the underlying speech signal. As such, 



these results point the way towards a hardware andlor software implementation wMch 

could be used both in the making of new Nms and for the restoration of older films. 

An important aspect of the thesis work was the carehl measurement and charac~eri- 

zation of the acoustical and statistical properties of the camera noise. This was done for 

several cameras and the factors which cause variations in the camera noise were identi- 

fied. It was shown that the camera behaves as a distributed noise source. This has im- 
portant implications for the possible success of ANC-based noise reduction schemes- A 

mathematical model of camera noise was developed which differentiates between the pe- 

riodic and cyclical random components of camera noise. The model was extended t o  in- 

clude the inter-pulse jitter in the timing of the periodic component. The informati02 de- 

rived in this chapter was not available in the scientific literature and will serve as a useful 

foundation for other researchers who may wish to address the problem. Moreover, the 

recordings form a valuable database which can be used by researchers to develop and 

evaluate other potential schemes for reducing camera noise. 

Significant effort was given to investigating the use of ANC-based (and blind signal 

separation) techniques for reducing camera noise, and it was shown that this approach is 

not likely to yield a high degree of noise reduction due to the distributed nature of the 

camera noise. It was shown that the maximum amount of noise reduction is iimited to 

about 15 dB which is insufficient for this application. These findings provide an expla- 

nation of why other (IMAX) attempts at using ANC for reducing camera noise failed. 

A variation to ANC using a synthesized reference signal was proposed. Jitter in the 

timing of the camera noise was shown to limit the performance of this approach. A 

method for synchronizing the ANC to the camera noise was proposed and the resulting 

improvement in performance was demonstrated. 

While the ANC approach was not successful at adequately suppressing camera noise, 

these negative results provide valuable information to future studies regarding the limita- 

tions of ANC in similar applications. 

Several extensions and modifications to the traditional spectral subtraction algorithm 

were proposed which help to reduce some of the artifacts which can result from the proc- 

ess. These extensions are not restricted to the camera noise application and are usefui to 

the general noise reduction problem. 

The zero-phase fdter interpretation of the noise suppression equation was 

generalized and the effects of each of its parameters were analyzed. 



The various artifacts resulting from the noise reduction process were char- 

acterized and the cause of each artifact was related to one of two sources 

of error. 

The minimum spectral floor proposed by Berouti et at. [17] was extended 

to make the resulting noise floor more perceptually benign. 

The "survival algorithm'' proposed by Vaseghi and Frayling-Cork [20] 

was extended to provide improved suppression of the musical noise. 

A new noise-overestimation parameter, based on the variance of the noise 

measured during the derivation of the noise estimate, was proposed. 

The use of zero-padded F'FI"s with truncation was proposed to reduce pre- 

and post- echoes (temporal smearing artifacts). 

An analysis/synthesis windowing operation was added to remove the dis- 

continuities at the boundaries of the overlapping processing frames. 

A general mathematical framework for a subbandsub-frame based spectral subtraction 

algorithm was derived which includes quadrature mirror analysis and synthesis filter 

banks. The possibility of aliaskg when combining the subband signals (due to the spec- 

tral subtraction process) was highlighted and the implications for the fdter bank design 

were considered. The use of subbands and sub-frames was shown to allow the noise re- 

duction process to be matched to the characteristics of the noise, thus reducing the overalI 

amount of processing. This follows from the general philosophy adopted in the thesis of 

minimizing the amount of processing applied to the signal in order to minimize the re- 

sulting artifacts. The approach was further generalized by using non-uniform sub- 

framing and issues regarding the appropriate choice of windows were addressed. 

The need for frame synchronization when using spectral subtraction techniques in the 

presence of a cyclical interferer such as camera noise was identified. A simple means of 

obtaining fiame synchronization was also proposed. 

A significant amount of new work related to the topic of perceptual models was con- 

ducted in the research. The work provides direct benefit for camera noise reduction as 

well as general noise reduction applications. Moreover, the results are directly applicable 

to numerous other applications such as perceptual audio codecs which use a model of the 

human auditory system. 



A detailed mathematical comparison was made between the Zwicker and 

the Patterson-Moore models for simultaneous masking. This involved 

viewing the Zwicker model in a non-traditional manner (equivalent audi- 

tory filters in the linear fkquency domain) and deriving generalized ex- 

pressions for the Patterson-Moore auditory filters and excitation patterns. 

Significant differences were shown to exist between the two models, and 

these differences were shown to be both level and frequency dependent. 

The results of a psycho-physical study (in conjunction with Shlien) dem- 

onstrated that the ability of many listeners to discriminate variations in 

frequency is far superior to that predicted by the Zwicker model. This 

provides strong evidence of the need for a finer resoiution basilar domain 

scale than is provided by the critical band model. 

A new analytic expression describing the fdtering effects of the outer and 

middle ear was developed which recognizes the low frequency roll-off of 

the middIe ear. A new complementary analytic expression for the internal 

noise floor of the auditory system was also derived. 

A new analytic expression was derived which predicts the amount of for- 

ward masking as a function of both frequency and level. 

A compression model for the addition of masking (both simuitaneous and 

non-simultaneous) based on Humes and Jesteadt's modified power-law 

was integrated into the perceptual model to account for excess masking. 

The interaction (additional spreading in fiequency) between the transform 

window and the auditory fdters was demonstrated. The KBD window was 

shown to overcome many of the Limitations inherent in "traditional win- 

dows". It was shown that the auditory filter model requires modifications 

in order to account for the frequency domain effects of the window. 

It was shown that the effects of the synthesis window are not included in 

the signal used by the perceptual model and thus, there is an inherent error 

(bias) in the predicted masking threshold. A method for resolving this 

matter was proposed and a window function which is appropriate for use 

with the KlBD was derived. 



A new perceptual model was developed based on: the auditory filters of Patterson and 

Moore modified to account for the effects of the transform window; the newly proposed 

outer and middle ear transfer functions; the newly proposed internal noise floor; the 

newly derived expression for forward masking; and the modified power-law for the addi- 

tion of masking. The new perceptual model was incorporated into a subbandlsub-frame 

based spectral subtraction algorithm. The algorithm included the new window preceding 

the perceptual model to account for the synthesis window, as well as the new method for 

estimating the clean signal. 

Subjective tests demonstrate the differences in the masking thresholds 

predicted by the Zwicker perceptual model versus the Patterson-Moore 

model. The results indicate that the Patterson-Moore model developed in 

this thesis provides better performance for the noise reduction application. 

The differences in the two perceptual models demonstrated in the thesis 

strongly suggest the need to reevaluate the use of Zwicker based models in 

perceptual audio codecs. 

A formal subjective test was conducted using the most rigorous and sensi- 

tive methods available. The results clearly demonstrate a significant im- 

provement in the performance of the spectral subtraction algorithm due to 

the use of subbands and sub-frames, as well as the use of a perceptual 

model. The results also demonstrate that the methods developed in this 

thesis meet the requirements for a successful camera noise reduction sys- 

tem. 

1.6 Outline of the Thesis 

The thesis is divided into nine chapters. Chapter 2 provides a more detailed look at the 

problem of camera noise in fdm souadtracks and describes existing methods, and their 

limitations, for reducing its audibility. Also, previous (unsuccessful) research efforts to 

reduce camera noise are described. In Chapter 3, the properties of camera noise are char- 

acterized. Measurements of camera noise in both the time and frequency domains are 

described. These measurements provide valuable insights for investigating possible noise 

reduction schemes. Also, the distributed nature of camera noise is demonstrated and its 

implications on noise reduction are considered. A model of camera noise is proposed 

which allows it to be divided into two main (periodic and cyclical noise) components. 



The fourth chapter examines the potential for using adaptive noise cancellation tech- 

niques to reduce camera noise. The chapter provides a review of the theory behind the 

M S  algorithm and some of its variants. The dependence of ANC on the coherence be- 

tween the two input signals is demonstrated and its impact on the reduction of camera 

noise is discussed. The theory behind blind signal separation is reviewed and it perforrn- 

ance is compared to ANC. The maximum amount of noise reduction attainable for cam- 

era noise using these methods is predicted. An ANC algorithm using a synthesized refer- 

ence is proposed as a means of reducing one component of the camera noise. It is shown 

that, due to jitter in the camera noise, steps must be taken to keep the ANC process syn- 

chronized to the noise. The chapter ends with discussions and conclusions regarding the 

suitability of ANC methods for reducing camera noise. 

Chapter 5 begins with an overview of spectral subtraction using Boll's method. Vari- 

ous spectral magnitude estimation methods are then analyzed and compared, and the per- 

formance of these methods is evaluated in the context of reducing camera noise. The arti- 

facts resulting from spectral subtraction are described and several modifications and ex- 

tensions are proposed which can help to reduce the severity of these artifacts. In Chapter 

6, a spectral subtraction algorithm based on subbands and sub-fiames is proposed to de- 

compose the processing in the time-frequency plane. A mathematical framework is de- 

rived and it is shown that matching the noise reduction process to the camera noise can 

significantly improve the performance of the spectral subtraction algorithm. The use of a 

model of the auditory system to improve the performance of the spectral subtraction algo- 

rithm is considered in Chapter 7. Two well-known perceptual models are compared from 

a mathematical viewpoint, and several modifications are proposed. The new perceptual 

model is incorporated into the subband/sub-frame based spectral subtraction algorithm. 

The chapter concludes by examining how the transform window interacts with the per- 

ceptud model. 

In Chapter 8 the various noise reduction schemes described and developed in the the- 

sis are evaluated subjectively. The most promising schemes are evaluated in a formal 

subjective test. The results of the test provide a clear comparison of the performance of 

the various noise reduction schemes and demonstrate the improved performance due to 

the enhancements proposed in the thesis. Finally, Chapter 9 consists of a summary and 

discussion regarding the task of reducing camera noise in film soundtracks. 



2.1 Introduction 

The problem of camera noise was described in the previous chapter, where it was empha- 

sized that any audible camera noise is generally considered unacceptable since it may de- 

stroy the sense of reality desired by a filmmaker. However, when watching a f b ,  one is 

rarely aware of the sound of the camera and therefore, methods for preventing camera 

noise from corrupting the soundtrack must already exist. Indeed, there are several meth- 

ods which currently exist for reducing the audibility of camera noise in film soundtracks 

and in this chapter, they are explored and their potential limitations are highlighted. 

The methods outlined in Section 2.2-Microphone Techniques and Section 2.3- 

Acoustic Barriers and Blimps are employed at the time of filming and may by their nature 

impose limitations on creative aspects of the fdming process. Section 2.4 describes an 

electronic (analog) signal processing device which, though not intended for this purpose, 

can be used to reduce camera noise to some extent. The main benefit of this approach is 

that, since it is a post-processing approach, no limitations are imposed at the time of 

filming. Dubbing or automatic dialogue replacement is described in Section 2.5 as the 

method of last resort. Although ADR entirely eliminates the problem of camera noise, it 

can be a rather costly sohtion and can have an impact on the final artistic quality of the 

soundtrack. Section 2-6 discusses informal results of several attempts to use modern sig- 

nal processing methods to reduce camera noise. 

n(t )  

Figure 2.1 Simplified model of the camera noise problem. 



The problem of camera noise is reexamined in Figure 2.1. The figure shows the sig- 

nal y(t) received at a microphone which is a summation of m signals (si(t), i=1,2,. . .m) and 

the camera noise n(t). The rn signals represent the various actors as well as  any other 

sounds which are desired during the time of recording. Each of the m signals is con- 

volved with a corresponding acoustic impulse response, h,. Similarly, the camera noise is 

also convolved with an acoustic impulse response, h,. Each of the impulse responses rep- 

resents the acoustic path from a source to the microphone. The possibIe methods for re- 

ducing camera noise will be examined in the context of this simple model- 

2.2 Microphone Techniques 

Before discussing how microphone techniques might be used to reduce camera noise, 

consider some of the gods of the sound engineer when recording the dialogue for a film 

soundtrack. First, it must be recognized that the goals go far beyond merely making an 
intelligible recording of the dialogue. The recording must also capture the timbre, rever- 

beration, and spatial characteristics associated with the sound of the actors' voices in the 

given acoustic environment [I]. Furthermore, the recording must also capture other 

acoustic events not associated with the dialogue. That is, other sounds such as back- 

ground noises (e-g., passing cars, environmental sounds, etc.) and any incidental sounds 

made by the actors also need to be recorded at the time of f f i n g .  This implies that the 

use of highly directional microphones to focus-in on the actors' voices may be an inade- 

quate approach and that one or more less directional microphones may be required. 

When recording dialogue in a room, the microphone not only picks up the sound di- 

rectly fiom the actor, but also picks up the many reflections from the surfaces within the 

room. These reflections have a variety of amplitudes and delays with respect to the direct 

sound, and it is the relation between the direct sound and these reflections which deter- 

mines the acoustic character of the room. For example, in a small room (e.g. office, liv- 

ing room) where the reflecting surfaces are nearby, the reflections will come in quick suc- 

cession soon after the direct sound. Conversely, in a large room (e.g. gymnasium, concert 

hall) there is often a longer delay between the arrival of the direct sound and the first re- 

flections. Also, the time between reflections may be longer. The (acoustic) absorptive 

characteristics of the surfaces within the room will determine the strength of the reflec- 

tions relative to the direct sound and ultimately the reverberation time [3 11 of the room. A 

listener is sensitive to these various phenomena and uses them to derive an acoustic im- 

pression of the room [32]. 



There are two basic microphone parameters which can be manipulated to reduce the 

level of the camera noise recorded by a microphone: proximity and directivity. In the 

first, the relative proximity of the actor and the camera to the microphone is adjusted in 

order to minimize the level of the recorded camera noise. For example, a lavalier micro- 

phone can be placed in the actor's clothing. This helps to increase the signal-to-noise ra- 

tio of the recording. However, the timbre of the recording made in this manner is typi- 

cally very unnatural- 

Alternatively, a highly directional microphone can be used to focus-in on the voice of 

the actor while rejecting other sounds in the room (including the camera noise). The re- 

sulting recording will lack the reverberant and spatial information of the room and will 

have to be processed to try to simulate the lost information. Moreover in general one 

cannot expect to obtain more than 10 dB of broadband noise reduction using directional 

microphones in real rooms [33]. 

Both of the above methods are equivalent to reducing the amplitude of the acoustic 

path h, relative to the paths h, as shown in Figure 2.1. While these microphone tech- 

niques can help to substantially reduce the level of the camera noise, their effectiveness is 

limited and is offset by the conflicting needs of capturing room ambiance. 

2.3 Acoustic Barriers and Blimps 

An obvious solution to reducing camera noise in film soundtracks is to reduce the level of 

the mechanical noise produced by the camera. In fact, this has been done to a large extent 

over the past decades. However, the technological advances which have allowed for qui- 

eter camera operation have been offset by other advances which have reduced the noise 

and distortion in sound recordings. That is, although newer cameras may be quieter, the 

quality of fiLm soundtracks has improved such that the camera noise is still audible. This 

is particularly true for digitally recorded soundtracks which have a nominal dynamic 

range of about 96 dB. 

In the very early days of motion pictures with sound, camera noise was an extremely 

significant issue. To overcome the noise problem, cameras were often placed behind 

acoustic barriers or in acoustica,lJ.y isolated booths with a window through which the 

scene could be fdmed [6]. Refemng back to Figure 2.1, this is equivalent to reducing the 

path &. While this approach serves to reduce the camera noise in the soundtrack, it im- 

poses serious limitations on the visual aspects of film. Basically, the approach requires 



that the camera be in a fixed position throughout the scene. Ironically, the introduction of 

sound in motion pictures has been viewed by some as the main cause for the slow devel- 

opment of artistry in the visual aspect of Glms. 

The modem version of the acoustic barrier is called a "blimp" which is an enclosure 

which encases the camera. Unlike the acoustically isoiated booths described above, a 

bLimp allows the camera to be mobile while filming a scene. However, any acoustic bar- 

rier requires mass in order to be effective [34] and so a blimp can significantly increase 

the size and weight of the camera, thus limiting its mobility. Moreover, blimps do not 

entirely eliminate the audibility of camera noise [5]. 

While camera manufacturers continue to reduce the level of noise produced by their 

cameras, this is understandably not their first priority, and they do not want to compro- 

mise image quality or mobility for lower noise. Also, as with many mechanical devices, 

wear of the parts over time may increase the noise produced by the camera. The use of a 

blimp implies additional costs at the time of filming and may not be a viable option if 

filming of a scene demands significant camera mobility. While reducing the noise at its 

source seems like a logical solution, it is not always an option. 

2.4 Dolby 430 Series Background Noise Suppressor System 

The Dolby 430 Series Background Noise Suppressor System is an analog signal process- 

ing device which is sometimes used to combat the effects of camera noise [4]. The Dolby 

device is intended to reduce the audibility of broadband noises such as wind or traffic 

rumble and was not designed with the goal of reducing camera noise [35]. Nonetheless, 

it is sometimes used for this purpose since no alternative signal processing approaches are 

readily available. The Dolby noise suppressor is based on the Dolby SR noise reduction 

system [36] which is used to reduce the background noise in analog tape recordings. 

The Dolby system operates by dividing the input signal into two frequency bands each 

of which is followed by an expander circuit (i.e., a level dependent attenuator). In the 

lower frequency band the signal content below about 2 lcHz is determined relative to the 

nominal signal level. If the level of the signal in this low frequency band is within i 1 0  

dB of the nominal level, then nothing is done to the signal. However, if the level of the 

signal in the low frequency band is more than 10 dB below the nominal level, then a level 

dependent shelving filter [I] is applied to the signal. This low frequency shelving fdter is 

flat for frequencies above 2 kHz, but can attenuate low frequency signals by as much as 

18 dB. The depth of this shelving filter increases with decreasing low frequency input 



signal level. A similar process is done simultaneously for the frequencies between 200 

Hz and 8 kHz. 

The effectiveness of this system relies on the fact that perceptually, a high level signal 

will mask a relatively low level noise occupying the same frequency range. Therefore, 

under these conditions there is no need for any noise reduction. However, as the signal- 

to-noise ratio decreases, the interfering noise will become more audible. To reduce the 

audibility of this noise, the input signal is filtered in proportion to its signal-to-noise ratio. 

The Dolby noise suppressor is most effective at reducing low level broadband noise in the 

short gaps that occur in speech signals. It does not however, provide any noise reduction 

outside these gaps, where there is a simcant signal present. Also, for situations where 

the signal-to-noise ratio of the input signal is low, the Dolby system can create audible 

artifacts [3 51. 

One important functional advantage of the Dolby system is that it does not require a 

reference signal (i-e., a separate recording of the interfering noise). This dramatically in- 

creases the potential usefulness of the system since there is no need for an additional re- 

cording of the noise source at the time of filming. Also, given this, the system could in 

theory be used to reduce noise in the restoration of old films. Another feature of the 

Dolby system is that it allows the user to directly control the amount of processing ap- 

plied to the input signal. However, it does not have the ability to be self-adaptive to 

changes in the camera noise. 

2.5 Automatic Dialog Replacement - Dubbing 

There are situations where, despite the use of various microphone techniques, acoustic 

barriers, and post-processing, the level of the camera noise in a film soundtrack is still 

deemed to be unacceptable. In this situation the only recourse is dubbing or automatic 

dialog replacement (ADR). ADR is the procedure whereby the actors' dialogue is re- 

recorded in a quiet environment after the filming is completed [I]. 

Typically, ADR' is done in a dubbing theatre where the actors recite their dialogue 

while watching a projection of their previously filmed performance. Clearly this process 

completely eliminates any problem of camera noise. However, ADR can produce several 

undesirable side effects. In the ADR process the actors must carefully match their re- 

+ The "automatic" component of ADR appears to be the automatic synchronization of the newly recorded 
dialogue with the image, 



recorded dialogue to the image of them talking. Any mismatch between the sound of their 

voices and the image of their lips moving might be noticeable and annoying to the audi- 

ence. Also, dubbing the dialog for a given scene in a film requires that the actors recreate 

the emotional setting which was present at the time of filming. Although it may solve a 

technical problem, ADR can compromise the actor's performance. 

While ADR resolves one technical problem for the sound recording engineer, it does 

introduce another. One of the goals when recording dialogue for a film is to also capture 

the ambiance of the room (i.e. background noises, reverberant characteristics, relative lo- 

cations of the actors, etc.). Since ADR is done in a sound recording studio, rather than at 

the location where filming occurred, the engineer is faced with the task of trying to recre- 

ate the ambiance of the room. Done incorrectly, this results in a sudden change in the 

character of the soundtrack which occurs only for those portions of the dialogue which 

have been dubbed. Again, if this is noticeable to the audience, the illusion of reality cre- 

ated by the film may be destroyed. 

A final but not unimportant consideration in ADR is that of cost. The combination of 

salaries (especially those of the actors and director) and the rental of the necessary facili- 

ties implies that ADR can be rather costly. The cost of ADR for a typical film is on the 

order of US$50,000 [37]. With hundreds of f h  (and television programs) being made 

each year, it is evident that millions of dollars are spent annually on ADR. Furthermore, 

the time required for dubbing may delay the overall production of the Wm. As such, a 

more cost-effective and less time consuming solution is desirable. 

2.6 Other Signal Processing Attempts at Reducing Camera Noise 

In this thesis, various signal processing techniques are examined for reducing camera 

noise. In this section we briefly describe other signal processing methods which have 

been previously proposed for reducing camera noise. Each of these methods was found 

to be ineffective and was subsequently abandoned. 

2.6.1 Attempts by SAIC 

Several years ago (circa 1995), the IMAX corporation funded a research effort to study 

ways of reducing camera noise [S ] .  The research was conducted by the Science Applica- 

tions International Corporation (SAIC) in the U.S.A. SAIC explored the possibility of 

using active noise cancellation to reduce the acoustic noise output of the W - 3 D  cam- 
era. The system effectively consisted of an "electronic blimp". Unfortunately, the 



method did not provide a significant amount of noise reduction, and so work on this ap- 

proach was halted. The findings of Chapters 3 and 4 of this thesis suggest that a probable 

cause of the poor performance was the distributed nature of the camera noise. 

A second method was also examined by SAIC wherein they applied signal processing 

techniques directly to the film soundtrack. This is in keeping with the approach proposed 

in this thesis. SAIC proposed the use of adaptive noise cancellation to reduce the level of 

the camera noise. It was found that this method did not provide sufficient noise reduction 

and so it was rejected. This same approach is examined in this thesis (see Chapter 4) and 

is shown to be unsuccessful due to the low inter-channel coherence resulting from the 

distributed nature of the camera noise. It should be noted that the author w a  unaware of 

the work done at SAIC until after the work described in Chapter 4 was completed. 

A final method explored by SAIC involved a noise reduction scheme based on the use 

of neural networks. Like the methods proposed in this thesis, the scheme was a single 

input approach, thus making it more suitable for the camera noise application. This 

method was also abandoned because it did not provide a useful amount of noise reduction 

and it severely distorted the desired signal. 

Unfortunately, details regarding the approaches developed by S N C  are not available 

since all of the results are contained in proprietary reports which are not publicly avail- 

able. The collaboration between SAIC and IMAX was terminated with the conclusion 

that signal processing techniques examined by SAIC for reducing camera noise in film 

soundtracks are not viable. 

2.6.2 Commercially Available Broadband Noise Reduction Systems 

There are several commercially available noise reduction systems for restoring gramo- 

phone recordings. These systems perform several tasks including; click removal, correc- 

tion of pitch errors, removal of low frequency noise pulses due to breakages in the surface 

of the disc, and broadband noise reduction [20,30,38,39,40,41,42]. These systems can be 

very effective at removing noise from gramophone recordings. The broadband noise re- 

moval components of these systems are generally based on spectral subtraction (see 

Chapter 5),  but specific details of their operation are proprietary. These systems have 

been under development for many years and it is interesting to ask how these more ma- 

ture technologies might perform at removing camera noise. Unfortunately, these noise 

reduction systems are very expensive, and the author did not have direct access to them. 

However, staff at two film studios have experimented with these systems and subse- 



quently concluded that they were not suitable for the task of removing camera noise from 
film soundtracks [4,43]. In fairness to these noise reduction systems however, they were 

not designed for this application and do not take advantage of the repetitive nature of 

camera noise. 

2.7 Summary 

In this chapter it was seen that some options for reducing or eliminating camera noise cur- 

rently exist. However, these solutions may compromise certain artistic aspects of the 

fb, create other technical problems, or incur significant costs. Previous attempts at re- 

ducing camera noise have been unsuccessfd, and systems designed for restoring gramo- 

phone recordings are not effective for the camera noise application. 



3.1 Introduction 

Before exploring potential signal processing approaches for reducing the audibility of 

camera noise in film soundtracks, it is useful to characterize the underlying properties of 

the noise. To this end, a series of comprehensive acoustic measurements of a profes- 

sional film camera were made at the studios of the National Film Board of Canada (NFB) 
in Montreal. The results of the measurements provide valuable information regarding the 

fundamental properties inherent to camera noise, as well as a database of recordings for 

developing and evaluating noise reduction schemes. 

Prior to making the acoustic measurements, discussions were held with staff members 

of the NFB [3,4] from which it was determined that the following parameters were likely 

to have an effect on the level and quality* of the camera noise: make of camera, f h  size 

(i-e. 16 mm, 35 mm, etc.), type of lens, film stock, and location within a reel of film. 

Therefore, measurements were conducted to examine and evaluate any effect on the cam- 

era noise due to these parameters. 

Unfortunately, at the time the measurements were made, only one make of camera 

was available at the NFB and therefore, differences in camera noise due to the make of 

the camera or the film size could not be evaluated. It was believed however, that the re- 

sults of these measurements would be directly applicable to other makes and models of 

cameras. 

Since the time that the measurements were made at the NFB, the IMAXTM corpora- 

tion provided the author with recordings of the noise produced by several of their cam- 

eras. As well, IMAX allowed the author access to their 3-D camera in order to make 

measurements and recordings. Due to various constraints, measurements of the IMAX 
cameras were not as comprehensive as those conducted at the NFB. Nonetheless, the re- 

sults of the IMAX measurements support the assumption that the results of the NFB 

measurements are applicable to other cameras. 

* Here the term quality refers to the characteristics of the noise and not to any parameter which would influ- 
ence one's preference or dislike for the camera noise. 



3.2 Description of the NFB Measurement Set-Up 

The measurements of the camera noise were conducted in a large mix-down studio at the 

NFB in Montreal- The mix-down studio, which is used to mix the final soundtrack of a 

film, consisted of a very large room with high ceilings and a projection screen at one end 

of the room- The studio was acoustically treated to reduce the level of background noise 

and to minimize the reverberation within the room. Ideally, the measurements would 

have been conducted in an anechoic chamber so that only the sound emanating directly 

from the camera would be measured. Non-anechoic conditions imply that acoustic re- 

flections from nearby surfaces will inevitably be included in the measurements. Although 

measurements in an anechoic chamber were not possible, the effects of any acoustic re- 

flections were lessened by the large size of the room which made it possible to place the 

camera and measurement microphones such that the nearest surface (other than the floor 

of the room) was approximately 7 m away. Therefore, because of the large distance be- 

tween the microphones and the reflecting surfaces, and because these surfaces were 

acoustically treated, the reflected acoustic energy was greatly attenuated at the rnicro- 

phone. As such, it was felt that the studio provided very acceptable conditions for the 

acoustic measurements described here. 

The camera which was analyzed was an AATON - Regular 16 rnm camera with an 

AATON M3908 MAG-A housing the film. This camera operates at the typical film rate 

of 24 frames per second. Eastman EXR 7245 color negative fdm was used in all of the 

measurements of camera noise. 

Two Briiel and Kjsr Type 4165 measurement grade microphones were used to meas- 

ure the noise from the camera. The outputs of the microphones were connected to two 

microphone preamplifiers before going to a Sony PCM-7030 DAT recorder. The sam- 

pling rate,&, of the DAT recorder was set to 48 kHi for all of the measurements. This is 

the sampling rate which is typically used in the film industry since it is an integer multiple 

of the rate (24 framesfsec) at which the film in the camera operates. It will be seen later 

in the thesis that this relationship between the sampling rate of the audio recordings and 

the frame rate of the camera provides some useful benefits in the noise reduction process. 

Figure 3.1 provides an overview of the measurement setup. As can be seen from the 

figure the two microphones were placed at 90" to each other. This was done in order to 

measure the directivity of the camera noise as well as the distributed nature of the camera 

noise. The front of the camera (i.e., where the lens is pointing) was designated to be 0°, 

thus making the rear of the camera 180". The left side of the camera was designated to be 



90" while the right side of the camera was 270". Each microphone was located at a dis- 

tance of 1 m fiom the centre of the camera. 

Figure 3.1 Camera noise measurement setup 

3.3 Calibration of Microphones 

Prior to making any measurements, the two microphones as well as the two channels of 

the measurement system were calibrated using a Briiel and Kjax Type 4230 calibrator. 

The calibrator provides a 1 kHz acoustic sinusoidal signal of precisely 94 dBSPL (re: 20 

ppascal) thus making it possible to measure the absolute level of the camera noise. By 
adjusting the input gain on the DAT recorder, full-scale (16 bits PCM) on the recorder 

was set to correspond to 94 dBSPL. Using this as a reference, the absolute sound pres- 

sure level of all subsequent recordings could be determined. 

It was assumed beforehand (and later confirmed) that the !eve1 of the noise emitted by 

the camera would be well below 94 dBSPL and therefore using this level as full-scale 

would not maximize the potential dynamic range of the measurement system. Therefore, 

during the calibration process, a 20 dB attenuator was inserted into the signal path be- 

tween the preamplifier and the DAT recorder. During the subsequent measurements, the 

20 dB attenuator was removed. By inserting the attenuator into the signal path during the 

calibration process, the sound pressure level corresponding to full-scale on the DAT re- 

corder was reduced fiom 94 dBSPL to 74 dBSPL. The result was an effective 20 dB in- 

crease in the dynamic range of the measurement system thus ensuring that the subsequent 



acoustic measurements would not be limited by the noise floor of the measurement sys- 

tem. The calibration process was done separately for each microphone. 

3.4 Description of NFB Measurements 

As mentioned in Section 3.1, several variables were believed to contribute to the level 

and quality of the camera noise. However, given that only one camera was available, only 

a subset of these variables could be examined. A series of measurements was conducted 

to investigate these parameters. 

3.4.1 Background Noise of Measurement System 

As a first measurement, the level of the background noise of the measurement system was 

determined. Here the system consisted of the room as well as all of the electronic com- 

ponents (microphones, pre-amps, DAT recorder) used in the recordings. For this meas- 

urement, the camera was turned off and a 30 s recording was made of the ambient noise. 

This recording therefore included the noise due to the room as well as the noise floors of 

the various electronic components in the recording chain. The spectrum of the measured 

background noise is shown in Figure 3.2 with the vertical axis indicating the sound pres- 

sure level (re: 20 ppascal). The figure shows the level of the noise decreasing steadily for 

increasing frequencies. This is typical of the acoustic background noise found in this type 

of room [34]. 

frequency. Hz 

Figure 3.2 Spectrum of measurement system background noise. 



The background noise of a system is frequently expressed in terms of the overall A- 

weighted sound pressure level which was 34 dBA in this case. The background noise 

measurement of Figure 3.2 serves as baseline by which it may be determined whether a 

spectral component in a given measurement is due to the camera or the measurement 

sys tern. 

3.5 Typical Camera Noise 

3.5.1 Basic Characteristics of Camera Noise 

Figure 3.3 Time waveform of camera noise. 

In this section the results of the acoustic measurements are presented in order to pro- 

vide a general overview of some of the main characteristics of the camera noise. All of 

the results shown in this section pertain to measurements of the camera noise taken at 0" 

with the zoom lens mounted on the camera. Figure 3.3 shows an example of the time 

waveform of typical camera noise. It should be noted that the waveform represents only 

the camera noise. That is, there is no desired signal, such as speech in the waveform. 

However, there is a significant amount (relative to the level of the camera noise) of low 

frequency room noise in the waveform. Therefore, the signal depicted in Figure 3.3 was 



highpass filtered to reduce the level of the room noise and allow a better examination of 

the nature of the underlying camera noise. The resulting waveform is shown in Figure 

3.4. 

The highpass filter consisted of a 100 tap FIR (finite impulse response) fdter with a 

cut-off frequency of 70 Hz. The filter was designed to be linear phase thereby keeping 

the time domain waveform intact. That is, there is no "smearing" of the waveform due to 

the phase response of the filter which is an important consideration given the repetitive 

nature of the camera noise. 
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Figure 3.4 Highpass filtered time waveform of camera noise. 

As can be seen, the camera noise consists of a series of regularly spaced pulses. The 

time between the pulses is 1/24th of a second which corresponds to the film rate of the 

camera (i.e., 24 frames per second). Since the audio recordings were made at a sampling 

rate of 48 kHz the time between pulses is 2000 samples. This fact will be used to advan- 

tage in the noise reduction schemes described later. While the individual pulses are 

similar in their appearance, it is clear that each pulse is unique. Also, while each of the 

individual pulses appears to contain a large amount of the noise power, a signif~cant 

amount of noise is also present between the pulses. 



Figure 3.5 provides a close-up view of 5 pulses. From the figure one can more readily 

see the differences between individual pulses. Also, the portion of the camera noise 

which lies between the peaks of the pulses is seen more clearly in the figure. While there 

are some simiIarities in the structure of the sections of noise between the pulses, it can be 

seen that, again each of these sections is unique. The uniqueness of the individual pulses 

and the noise energy between the pulses will play an important role in determining the 

effectiveness of the noise reduction scheme described in Chapter 4. 
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Figure 3.5 Close-up view of highpass filtered camera noise. 

Figure 3.6 provides a close-up view of a single pulse. Interestingly, from this view, it 

is now clear that the 4cpulse" of the camera noise is actually made of several peaks. Fur- 

thermore, the section of noise following the peak of the pulse appears to be quite random 

in nature. 
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Figure 3.6 Close-up view of a single pulse of the camera noise. 

So far we have seen only time domain plots of typical camera noise waveforms. 

Figure 3.7 provides a view of the power spectrum of typical camera noise. The power 

spectrum was obtained by averaging over 170 pulses (about 7 s) of camera noise meas- 

ured at 0". The power spectrum was derived using Welch's method [44] based on modi- 

fied periodograms with a Hanning window and 50% overlapping of the time segments. 

The upper curve in the figure corresponds to the camera noise, while the lower curve is 

the system background noise described earlier. It can be seen that the camera noise has a 
broadband spectrum, although the level of the camera noise becomes insignificant 

(relative to the background noise) below about 100 Hz. 

The power spectrum of Figure 3.7 does not reveal any obvious harmonic structure to 

the camera noise which would be easy to detect and remove. While there appears to be a 

peak in the spectrum at about 3800 Hz, this is not consistent and is merely particular to 

this measurement. 

Given that the camera operates at a rate of 24 fiames per second, one might reason- 

able expect to find spectral lines in the power spectrum related to this rate. These spectral 

lines do occur, but only if the power spectrum is measured over many pulses, rather than 

over single pulses as was done in Figure 3.7. This matter is discussed in greater detail in 

Appendix A. 
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Figure 3.7 Typical power spectrum of camera noise (upper curve); system 
background noise (lower curve). 
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Figure 3.8 Spectrogram of camera noise. 



An alternative way to view the camera noise is in the form of a spectrogram. Figure 

3.8 shows the spectrogram over several camera pulses (a Hanning window was used with 

256 point FFT's). In this plot the horizontal axis represents time while the vertical axis 

represents frequency. The log amplitude of the signal is depicted by the shading of the 

figure. Lighter shades of gray represent lower amplitudes while darker shades represent 

higher amplitudes, with black being the highest amplitude. 

In the figure, it is easy to see where the peak energy of the pulses occur. The peaks 

create a broadband noise which extends over the entire audible spectrum. Following each 

peak is a region over which the level of the noise rapidly decays, while prior to each peak, 

the camera noise is low. This is particularly true in the higher frequencies. This structure 

of the camera noise will be exploited in some of the noise reduction algorithms to be de- 

scribed in the sequel. 

3.5.2 Directivity of the Camera Noise 

The purpose of the next set of measurements was to determine the directivity of the cam- 

era noise. The directivity of the camera noise is important since it directly afEects the 

amount of noise picked up by the microphone recording the actor's dialogue. If the cam- 

era noise is not omni-directional, then the noise picked up by the microphone will vary as 

the relative positions of the camera and the microphone change. That is, there may be 

directions for which the camera noise is stronger and so if the microphone is placed in 

that position, the level of the recorded noise will be higher than for other positions. Also, 

the directivity of the camera noise is particularly important when considering a noise re- 

duction scheme such as LMS (least-mean-square) based adaptive noise cancellation 

which requires that a recording of the interfering signal (i-e., the camera noise is this case) 

be available with little or none of the desired signal mixed with it. Therefore, when de- 

ciding where to place the transducer for this recording, it is useful to know where the 

camera noise is loudest. 

With the camera operating, the resulting noise was measured at 15' intervals using the 

setup depicted in Figure 3.1. By using two microphones, the time required to do these 

measurements was cut in half thus reducing the effect of any possible time varying pa- 

rameters. For these measurements the camera was fitted with the zoom lens and the 

height of the microphones was set to 51 inches which was equal to the height of the cen- 

tre of the camera lens. Recordings of 10 s duration were made at 24 angles in the hori- 

zontal plane. The recordings were fitered on an octave-band basis and polar plots de- 



picting directivity were generated for the octave bands extending from 125 Hz to 8000 

Hz. 

Figure 3.9 shows the directivity of the camera noise averaged over the octave band 

centered at 125 Hz. Again, 0° represents the front of the camera which is the direction 

where the lens is pointing. In this plot (and for all subsequent directivity plots) the 

shaded area represents the level of the noise created by the camera For a given angle, the 

distance from the centre of the plot to the edge of the shaded area indicates the level of 

the noise in decibels. For example, referring to Figure 3.9, the level of the noise at O0 is 

about 42 dB. As one might expect given the relatively small size of the camera, the noise 

is nearly omni-directional in the 125 Hz octave band. 

Figure 3.9 Directivity at 125 Hz 

Figure 3.10 Directivity at 250 Hz Figure 3.11 Directivity at 500 Hz 



Figure 3.10 shows the directivity of the camera noise in the 250 Hz octave band. 

Again the noise is omni-directional, although the level is somewhat attenuated relative to 

the 125 Hz octave band. 

The directivity of the camera noise in the 500 Hz octave band is given in Figure 3.1 1. 

The level of the noise in this octave is significantly lower than for the two previous oc- 

tave bands. Also, the noise has become somewhat directional, with higher levels of noise 

found towards the rear of the camera. 

Figure 3.12 shows the directivity of the noise in the 1000 Hz octave band. In a man- 

ner similar to the 500 Hz octave band, the noise in the 1000 Hz octave band is somewhat 

directional, with the higher noise levels at the rear of the camera. Interestingly, the over- 

all level of the noise has increased in this octave band reiative to the 500 Hz octave band. 

Figure 3.12 Directivity at 1000 Hz Figure 3.13 Directivity at 2000 Hz 

The noise in the 2000 Hz octave band shows a very different directivity pattern as 

compared to any of the other octave bands. From Figure 3.13 it can be seen that the level 

of the noise is greater towards the front-left and the rear-right of the camera. The level o f  

the noise is this octave band is greater than at 1000 Hz and is comparable to the level a t  

4000 Hz. 

The directivity patterns of the noise at 4000 Hz and 8000 Hz are similar. For b o b  

octave bands the noise is greater towards the rear and is particularly strong on the left side 

of the camera Figure 3.14 shows the directivity at 4000 Hz while the directivity at 8000, 

Hz is shown in Figure 3.15. 



Figure 3.14 Directivity at 4000 Hz Figure 3.15 Directivity at 8000 Bz 

From the polar plots shown in the above figures, it can be concluded that the directiv- 

ity of the camera noise varies signifkantly with frequency. At some frequencies, differ- 

ences of as much as 10 dB can be found for different angles as the relative positions of 

the camera and microphones change. This implies that any successful noise reduction 

algorithm must be capable of adapting to the resulting changes in the level and spectrum 

of the camera noise. Furthermore, the results of the measurements described in this sec- 

tion indicate that there does not appear to be any single best angle at which to place a mi- 
crophone in order to record the reference signal for an adaptive noise cancellation ap- 

proach to reducing the noise. More importantly, the relatively high directivity of the 

camera noise at some frequencies suggests that the camera noise is not behaving as a 

point source, but rather as a distributed source. This matter is further investigated Iater in 

this chapter. 

3.5.3 Effect of Camera Lens 

It was believed that the type of lens used during f W n g  could have an effect on the re- 

sulting noise emitted by the camera [3,4]. Therefore, measurements of camera noise were 

made with two types of lenses mounted on the camera: a prime lens and a zoom lens. 

The measurements were again made at 15" intervals around the camera as described in 

Section 3.2, and they were made on a single reel of film so that only the effect of the lens 

would be measured. That is, it was assumed beforehand that different film stocks could 

have an effect on the camera noise (see Section 3.5.4 Efect of Film Stock). 



Hz 

Figure 3.16 Effect of lens type on the spectrum of the camera noise. 

Figure 3.16 shows a typical example of the camera noise with a prime lens versus a 

zoom lens. It can be seen that there is no apparent change in the overall sound pressure 

level of the noise as a result of changing Ienses. There are however, differences in the 

fine structure of the power spectrum. The lower plot (centered on the -5 dB grid line for 

clarity of presentation) shows the difference between the two power spectra. Although 

the differences in the noise spectra are relatively small for the most part, there are points 

in the spectra which differ by as much as fi dB. These differences are large enough to be 

audible and so a noise reduction method that can adapt to these changes appears to be 

warranted. It is possible that the differences seen in Figure 3.16 may be due to the loca- 

tion in the film rather than due to the lens being used. This matter will be examined in 

Section 3.5.5. 

3.5.4 Effect of Film Stock 

Discussions with camera experts at the NFB revealed that si-rmificant differences in the 

camera noise could be expected with changes in the film stock used in the camera. 

Therefore, complete directivity measurements (as described in Section 3.5.2) were made 

for two different reels of film. Both reels consisted of the same type of film (Eastman 

EXR 7245 Color Negative Film). 

The power spectra for the two film stocks are shown in Figure 3.17 for an angle of 0". 

It is apparent that significant changes can occur to the spectrum of the camera noise as a 



result of changing the film stock. Both the overall sound pressure level of the noise and 

the structure of the spectrum have changed significantly. It should be noted that the fig- 

ure represents the difference in the camera noise at only one angle. Much larger differ- 

ences can occur at other angles as can be seen in Figure 3.18 which shows differences in 

camera noise at six different angles. 

Figure 3.17 Effect of f h  stock on the spectrum of the camera noise. 

Figure 3.18 Differences in the spectra of the camera noise for two f b  stocks at 
different angles. 



It can be seen that differences in the noise spectra of as much as 15 dB were measured 

as a result of changing film stocks. The changes to the power spectra are relatively small 

for frequencies below about 300 Hz. Above this point however, the changes tend to in- 

crease with increasing frequency. It is important to note that the change in the spectrum 

of the camera noise is different for each angle. That is, the directivity of the noise has 

also changed as a result of changing the £ilm stock. Also, it should be stated that it may 

be possible for even greater differences to occur for different cameras, different types of 

fh, or other reels of the same type of fh. These points were not explored in these 

measurements. 

Figure 3.17 and Figure 3.1 8 clearly demonstrate that changing film stocks can have a 

significant effect on the resulting camera noise. Therefore, any method developed for re- 

ducing camera noise in film soundtracks must be able to adapt to these changes. 

3.5.5 Effect of Location Within a Reel of Film 

The possibility that the power spectrum of the camera noise might change due to the lo- 

cation within the reel of film was also investigated. To do this, a recording of the camera 

noise was made over the length of an entire 122 rn reel of filn (about 5 rnin). For this 

recording the microphone was placed at 0" and the zoom lens was mounted on the cam- 

era. This recording was then analyzed to examine the degree to which the camera noise 

changes over short intervals of time, as well as for longer periods. 

Figure 
Hz 

3.19 Changes in the spectrum of the camera noise over 10 s intervals. 



Figure 3.19 shows four different power spectra of the camera noise measured for the 

same reel of film. The power spectra were measured at 10 s intervals and were averaged 

over 2 s. These power spectra were again derived using Welch's method 1441 using a 

2000 point Hanning window with 50% overlap. It can be seen that the power spectrum 

changes very little over this period (about 32 s) of time. Therefore, it appears that for a 

given set-up (camera, lens, film stock, etc.), the power spectrum of the camera noise is 

relatively constant over short periods of time. 

Figure 
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3.20 Changes in the spectrum of the camera noise over 1 min intervals. 

Figure 3.20 is similar to Figure 3.19 except that the power spectra were measured 

over 1 minute intervals rather than 10 s intervals. Therefore, in this case the four meas- 

urements were taken over a total period of about 3 minutes. Again, the variations in the 

power spectrum of the camera noise are rather small over this time period. As might be 

expected however, the variations are somewhat larger over these longer time intervals. 

The measurements described in this section reveal that, for a given reel of film, the 

power spectrum of the camera noise does not change very much over time. This feature of 

the camera noise will be exploited in the noise reduction method based on spectral mag- 

nitude estimation described in Chapter 5. 

3.5.6 Recordings of Dialogue 

At the time that the audio recordings were made to characterize the NFB camera noise, 

additional recordings were made to capture examples of dialogue corrupted by camera 



noise. These recordings of speech in the presence of camera noise were intended to be 

used as test sequences to evaluate the various noise reduction algorithms. During the re- 

cordings the taker stood directly in front of the camera at a distance that was deemed by 

the camera operator to be typical for a close-up. This corresponded to a distance of about 

1 meter from the camera to the taker. The microphone was placed as close as possible to 

the talker, but not so close that it would be visible in the camera's field of view. There- 

fore the recordings represented a realistic configuration for filming a close-up shot in a 

film. In addition, a second microphone was placed nearer to the camera in order to record 

a "worst case" condition of dialogue corrupted by camera noise. 

Twenty test sentences from the Revised Harvard Test Sequences [45] were used as 

dialogue for these recordings (see Appendix B). The Harvard Sentences are commonly 

used in subjective tests to determine speech intelligibility or to evaluate speech quality. 

The same 20 sentences were also recorded in the absence of any camera noise. These 

"noise free" recordings provided a reference of uncorrupted speech to be used in the 

evaluation of the various noise reduction schemes. 

From the recordings of speech corrupted by camera noise it is possible to estimate 

typical and worst case signal-to-noise ratios for the dialogue. To do this, the recordings 

were first highpass filtered at 70 Hz using an FIR filter. This was done to remove the 

room noise that was earlier seen to dominate the recordings at frequencies below about 

100 Hz. The levels of the speech signal and the camera noise were then determined from 

the highpass filtered waveforms. The broadband signal-to-noise ratio for the "typical" 

close-up recording was found to be 37 dB while the "worst case" signal-to-noise ratio 

was 22 dB. The value of a "typical" signal-to-noise ratio was derived fiom the recording 

using the microphone nearer to the talker, while the "worst case" value was measured 

fiom the recording using the microphone nearer to the camera. It is important to note that 

these represent average signal-to-noise ratios in that the level of the speech (dialogue) is 

expected to vary significantly within an actor's performance and therefore, parts of the 

soundtrack may have a signif~cantly poorer signal-to-noise ratio. Furthermore, it was 

seen earLier that the film stock has a significant effect on the level of the camera noise. 

Therefore, it is expected that the above values of signal-to-noise ratios do not represent 

the worst case. 

The signal-to-noise ratio values reported above do not take into account the frequency 

content of the speech and the camera noise. Figure 3.22 shows the average power spectra 

signal-to-noise ratios versus frequency as measured at the two microphones. The upper 



curve represents the "typical" signal-to-noise ratio versus kequency, while the lower 

curve is for the "worst case" signal-to-noise ratio. It can be seen from the figure that the 

values for the signal-to-noise ratios (37 dB and 22 dB) quoted earlier are dominated by 

the 100 Hz to 2 kHz frequency range. That is, the signal-to-noise ratios in this range are 

much greater than for higher kequencies. At higher frequencies, the average "typical" 

signal-to-noise ratio is about 20 dB while the "worst case" signal-to-noise ratio is about 5 

dB. 

Figure 3.21 Signal-to-noise ratio versus frequency for typical (upper curve) and 
worst case (lower curve) camera noise. 

The results shown in Figure 3.21 suggest that a single value description, such as sig- 

nal-to-noise ratio, does not adequately describe the relation between the speech and the 

interfering camera noise due to the time-varying nature of speech. It is important to note 

that these curves represent the signal-to-noise ratios at only one measurement angle and 

only one configuration of the camera. Also, these measurements are for the NFB camera 

which is significantly quieter than the IMAX cameras. 

3.6 Measurements of the IMAX Cameras 

In this section, measurements of the noise produced by a broad range of IMAX cameras 

are described. The IMAX corporation produces a specialized type of motion picture us- 

ing a large-screen format. IMAX films are projected onto very large screens (several sto- 



ries high) in order to fully encompass the viewer's peripheral field of view. In order to 

retain resolution and picture quality, IMAX uses a wide gauge f b  (70 mm), and requires 

a sophisticated transport mechanism to move the film at very high speeds. As a result, an 

IMAX camera has only 1.5 to 3 minutes of film on a reel, and so reel changes occur fie- 

quently during filming. Furthermore, MAX cameras are noisier than conventional cam- 

eras due to their complex mechanical workings. MAX cameras are also larger, heavier, 

and more expensive than conventional cameras. For example, the MAX-3D camera (of 

which there are only 2) costs US$2 million and requires 4 people to carry it. Therefore, a 

blimp which would add to the size and weight of the camera is a highly undesirable ap- 

proach to reducing it's noise level. 

IMAX frlms have consisted primarily of documentary style f '  based on topics such 

as; the N.A.S.A. space shuttle and Russian MIR space station missions, underwater foot- 

age of the Titanic, an expedition to the summit of Mount Everest, etc. The restriction in 

subject matter is due in part to the high cost of ADR associated with MAX f h s .  Due to 

the high noise levels produced by the cameras, a conventional movie (i-e., with actors and 

dialogue) filmed in the lMAX format requires that aLl diaIogue be dubbed. Therefore, 

IMAX films would benefit greatly from a successful camera noise reduction system, De- 

spite the somewhat restricted subject matter of IMAX films, they are viewed by more 

than 60 million people each year. 

3.6.1 Recordings Provided by IMAX 

The IMAX corporation provided the author with 2 sets of recordings. These included 

some of the recordings used by SAIC in their research collaboration with IMAX (see 

Chapter 2). The f ~ s t  recording consisted of a professional actor reciting dialogue while 

being filmed with a standard IMAX camera (model MSM 9801). This recording is use- 

ful in that it provides a recording of dialogue in a real-world setting with which to test the 

noise reduction algorithms. 

Using this recording, measurements were made to examine the changes in the spec- 

trum of this camera noise over time. The results are plotted in Figure 3.22 which shows 

the average power spectrum measured at 4 intervals in the recording. It can be seen that, 

like the NF'B camera, the power spectrum of the IMAX MSM 9801 camera is relatively 

constant within a reel of film. Somewhat larger variations in the measured power spectra 

are seen for frequencies above 2 kHz. 



frequency, Hz 
Figure 3.22 Changes in the spectrum of the IMAX MSM 9801 camera noise over 

time, 

The second set of recordings consisted of numerous sequences recorded during the 

docking of the N.A.S.A. space shuttle with the Russian MIR space station. The record- 

ings consist of 30 s sequences of the astronauts performing their duties during a space 

mission. These recordings contain high levels of background noise and exhibit strong 

multipath reflections. These recordings provide a good example of the need for a camera 

noise reduction system, since there is no possibility of ADR with the astronauts. The 

camera noise on these recordings is from the model MI(II MAX camera which is rela- 

tively small and lightweight. Due to the high level of the background noise and the fact 

that there is dialogue throughout the recordings, measurements of the power spectrum of 

the camera noise over time are not presented here. 

3.6.2 IMAX-3D Camera 

The author was given access to the MAX-3D camera to make recordings and measure- 

ments. Recordings were made at two indoor locations and one outdoor location in order 

to provide a variety of real-world environments. All recordings were made with 2 profes- 

sional quality microphones recording onto separate channels of a DAT recorder. One mi- 

crophone was placed at the talker's location, while the other was placed next to the cam- 



era. Recordings of the camera alone (i.e., no speech signal) and of camera with dialogue 

were made. This allowed some of the measurements conducted at the NFB to be repeated 

for the MAX-3D camera. 

Measurements were made to examine the changes in the spectrum of the IMAX3D 

camera noise over time. The results are plotted in Figure 3.23 which shows the average 

power spectrum measured at 5 intervals in the recording. Again, the power spectrum is 

relatively constant within a reel of tillm thus further supporting the frndings for the other 

cameras, as well as the model for camera noise proposed earlier. 

45 1 
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Figure 3.23 Changes in the spectrum of the IMAX-3D camera noise over time. 

3.7 The Camera as a Distributed Noise Source 

The varying directivity of the camera noise with frequency as seen in Section 3.5.2 sug- 

gests that the camera may be a distributed noise source. This observation is supported by 

the author's experience when making the recordings of both the NFB and the MAX-3D 

cameras. By moving a microphone to different positions around the cameras, it was pos- 

sible to hear different components of the noise being emphasized. 

In this section, the distributed nature of the camera noise is examined, That is, we 

seek to demonstrate that the camera noise n(k) is composed of P components distributed 



in space, 

where ni(k) represent the various noise components such as; the opening and closing of 

the shutters, the motion of the film through the camera, the motor(s) driving the mecha- 

nism. 

We begin by defining the magnitude-squared coherence Cyx(o) between the observed 

stationary signals x(k) and y(k) at the two microphones, 

SF(@) is the complex cross-power spectrum, 

is the cross-correlation. S,(o) and S,(o) are the power spectra of x(k) and y(k) respec- 

tively as defrned by, 

It can be shown that, given a point sound source (i-e., non-distributed) in a noise-free 

room, the magnitude-squared coherence CYX(m) between the signals measured at two lo- 

cations in the room will be equal to 1. If however, the sound source is distributed in 

space, then C,(o) will be equal to some value less than unity [46]. Therefore, C,(o) can 

be used as a measure of the degree of distribution of a sound source. 

The magnitude-squared coherence, Cyx(o) measured for the NFB camera is shown as 

the solid curve in Figure 3.24. This curve was obtained by calculating CYX(o) of the cam- 

era noise recorded at 2 microphones. One microphone was at 0" and the other micro- 

phone was at 90". It can be seen that, at most fiequencies, the magnitude-squared coher- 

ence is well below 1.0. In fact, for most fiequencies, Cyx(o) is below 0.6. Thus, it can be 



concluded that the camera is indeed a distributed noise source. The importance of this 

result will be seen in Chapter 4 where it will be shown that, due to the relatively low 

Cyx(m), the performance of noise reduction schemes based on adaptive noise cancellation 

or blind signal separation is severely limited. 

&(a) is sensitive to any misalignment of the signals y(k) and x(k). Therefore, in cal- 

culating the values for Cyx(m) in Figure 3.24, y(k) and x(k) were shifted in time relative to 

each other until the maximum value for Cyx(w) was obtained, thus eliminating any mis- 

alignment effects. This method was used for all measurements of C,,(w) reported in this 

thesis. 

I 
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Figure 3.24 Magnitude-squared coherence of NFB camera noise measured at 2 
microphones. 

One might ask whether Cyx(m) would increase if the microphones had been placed at 

different locations around the camera. To address this question, measurements were 

taken at 30 different locations around the camera. All of the measurements had C,(@ 

values similar to that plotted in Figure 3.24. The dotted line in Figure 3.24 represents the 

maximum value of CYAo) found at each frequency across all of the measurements. The 

results show that the low values of C,,(o) are not due to the Location of the measurement 

microphones, and so the conclusion that the camera is a distributed noise source is further 

strengthened. 



While recording the IMAX-3D camera, it seemed evident that, due to its large size 

and complex workings, it was acting as a distributed noise source. This observation was 

tested by measuring the magnitude-squared coherence Cyx(o) between the two channels 

of the recording of the camera noise done (i.e., without a speech signal). The result is 

plotted in Figure 3.25. It can be seen that C,(o) is quite low for most frequencies, and 

exceeds 0.5 for only a few individual frequencies. The result of this measurement con- 

£inns the observation that the MAX-3D camera is a distributed noise source. Therefore, 

noise reduction techniques based on adaptive noise cancellation or blind signal separation 

are not likely to perform adequately for this camera. This conclusion is confirmed in 
Chapter 4. 

frequency, Hz 

Figure 3.25 Magnitude-squared coherence of IMAX-3D camera noise measured at 2 
microphones. 

It is interesting to compare the results in Figure 3.25 to the results for the NFB camera 

shown in Figure 3.24. It can be seen that overall, Cyx(o) for the IMAX-3D camera tends 

to be significantly lower than for the NFB camera. This suggests that the IMAX-3D 

camera is the more distributed noise source. This conclusion is sensible given that the 

IMAX3D camera is much larger than the NFB camera, and it has more complex inner 

workings. Moreover, the MAX-3D camera uses two reels of frlm (one for each lens) and 

so it effectively consists of two cameras in one. 



3.8 A Model of Camera Noise 

In considering various schemes for reducing camera noise, it is helpful to have a model of 

the composition of the noise source. In this section, a simple model is developed which 

decomposes camera noise n(k) into two fundamental components: a periodic component 

and a cyclical random component. That is, the model is of the form 

n(k) = p(k) + c w ,  (3.6) 
where p(k) represents the periodic component and c(k) represents the cyclical random 

component. 

The time domain waveforms (see Figures 3.4 and 3-5) as well as the spectrogram of 

Figure 3.8 clearly indicate that camera noise is not a stationary random process. Rather, 

camera noise consists of regularly spaced pulses which are similar to each other. How- 

ever, differences between the pulses are also clearly visible. There is a random compo- 

nent to the camera noise which is most readily seen between the pulses. Figure 3.19, 

Figure 3.20, and Figure 3.22 show that the power spectrum of the camera noise (within a 

reel of film) remains relatively unchanged over time. That is, from frame to frame, the 

power spectrum of the camera noise does not change dramatically. However, the spec- 

trogram of Figure 3.8 clearly demonstrates that the camera noise varies significantly 

within a frame. Therefore, the model should reflect these two aspects of camera noise. 

In deriving a model of camera noise we begin by considering the periodic component 

p(k). Let Q(k) be the sum of all the camera noise components qi(k) which repeat from 
frame to frame 

lo ; elsewhere 

where T is the period. The periodic component p(k) of the camera noise n(k) is then de- 

fined as, 

The periodic component of the camera noise is likely due to the opening and closing 

of the shutters, the movement of the sprockets which guide the film through the camera, 

as well as the motor(s) driving the overall mechanism. 

The second component of the camera noise is the cyclical random component, c(k) 

which is modeled as a zero-mean stationary random process whose amplitude is modu- 



lated by a gating function G(k). This component is described as a cyclical random proc- 

ess since it consists of a random process whose statistics fluctuate within each fiame, but 

repeat from frame to frame. That is, the statistics of the noise are cyclical. The gating 

function is defined as, 

The parameter a(@ determines the level of c(k) during the peak (pulse) portion of the 

camera noise, while P(o) controls the level between the pulses. flm) is chosen to be equal 

to the duration of the pulse portion of the camera noise. The three parameters, a(@), 

Em), and 7(0) are all assumed to be a function of kequency to reflect the results of Fig- 

ure 3.8. Given this, the cyclical random component c(k) of the camera noise is defmed as, 

where v(k) is a zero-mean stationary random process. 

This component of the camera noise is composed of several sources including; the 

random movement of the film as it passes through the camera, the vibrations of the body 

of the camera, and aU noise sources which are not directly related to the film rate of the 

camera. 

The camera noise n(k) can now be defined in terms of the two components p(k) and 

c(k) 7 

Equation (3.1 1) provides a simple mathematical model of the camera noise. The 

limitations of this simple model will be seen in later chapters. In Chapter 4, methods 

which seek to exploit the periodic component p(k) are examined, while Chapter 6 ad- 

dresses the cyclical random component, c(k). 

3.9 Summary 

In this chapter a series of acoustic measurements designed to characterize camera noise 

were described. Measurements at the NFB showed that a significant component of the 

noise is related to the film rate of the camera. However, not all of the noise is directly 

related to the film rate. Based on these findings, a simple mathematical model of the 



camera noise was derived which includes a periodic component and a cyclical random 

component. 

It was found that the camera is a distributed noise source, and so the performance of 

noise reduction schemes based on adaptive noise cancellation or blind signal separation 

will be compromised. 

The type of lens used on the camera was found to have a small effect on the noise, 

whereas the film stock had a much larger effect. Somewhat surprisingly, the location 

within a reel of film had vhTually no effect on the camera noise. 

Measurements were also made from recordings of 3 models of lMAX cameras. 

While the level of the noise from the IMAX cameras is significantly higher than for the 

NFB camera, the main fmdings of the NFB measurements are supported. That is, the 

cameras act as distributed noise sources and the power spectrum of the noise is relatively 

constant for a given reel of fh. 

The measurements described in this chapter demonstrate that camera noise can be 

quite variable due to several factors. Therefore, a static processing approach can not ade- 

quately address the problem of camera noise, and a successfu1 noise reduction scheme 

must be adaptive. Also, the main characteristics of camera noise appear to be common to 

the 4 cameras which were examined. These represent a broad range of camera types. 



4.1 Introduction 

In this chapter adaptive filtering methods are examined as a potential means of reducing 

camera noise. Specifically, the adaptive noise cancellation (ANC) method and the more 

recently developed blind signal separation techniques are explored. In their basic forms 

both of these adaptive filtering techniques require at least two input signals and thus vio- 

late the single-input requirement for a practical scheme for reducing camera noise. 

Nonetheless, these techniques are worth exploring since they can provide valuable insight 

into the noise reduction problem. 

The chapter begins with a brief overview of Wiener filter theory and the concept of 

optimal filtering of stationary random processes. The ANC problem is described with an 

emphasis on the Widrow-Hoff LMS algorithm. Results of simulations to examine the use 

of the LMS-based ANC method for reducing camera noise are presented. The underlying 

principles of blind signal separation techniques are provided and methods based on sec- 

ond order statistics are described in some detail. 

The similarities between the noise cancellation problem and the blind signal separa- 

tion problem are highlighted. It will be seen that the signal separation problem can be 

viewed as the more general case of noise cancellation. Furthermore, the ANC method is 

shown to be a special case of some signal separation algorithms. Included in this chapter 

is a discussion of some of the factors which can limit the performance of these adaptive 

filtering methods for this application. 

It was originally believed at the start of this research work that an LMS-based ANC 

method was the obvious means of reducing camera noise. In an effort to overcome the 

two (or multi) input requirement of the adaptive filtering approach, a variation to the 

ANC method is proposed wherein the reference input signal is synthesized, thus effec- 

tively creating a single-input ANC system. However, in order to provide a useful degree 

of noise cancellation, the synthesized reference input approach requires a high correlation 

between the individual pulses of the camera noise. Unfortunately, it will be seen that the 

inter-pulse correlation is relatively low 



4.2 Wiener Filters 

In this section the discrete-time Wiener filter is examined for the case of a real-valued 

time series. We will restrict the discussion to the formulation of a finite-duration impulse 

response (FIR) fdter. Wiener theory provides the means to determine the coefficients of 

the filter which minimizes the mean-squared error between the filter output and some de- 

sired signal. 

Figure 4.1 Block diagram of Wiener filter. 

Consider the linear transversal filter w of order N-1 shown in Figure 4.1. The input 

x(k) to the filter is assumed to be wide-sense stationary with zero mean. The tap weights 

for the fdter are wi, i=1,2, ..-,A? The output of the fdter, 5 (k) represents an estimate of 

some desired signal y(k), and is obtained through the convolutional sum 

The goal is to determine the coefficients wi, i=1,2, . . . ,N such that the difference be- 

tween the desired signal y(k), and the estimate of the desired signal F(k), is minimized. 

That is, we want to somehow minimize the estimation error, e(k) which is defined as, 

4) = Y (k)-F(k). (4-2) 

Wiener theory uses the minimum mean-square error as the criteria for optimizing the 

filter. Specifcally, the filter coefficients are chosen so as to minimize the cost function 

J(w) defined as 

J(w) = ~ [ e ~  (k)] . 

= E[(Y(~) -XW2 I 
Thus, J(w) represents the mean-squared error. 

We now consider the cost function in terms of the desired signal, the input signaI, and 

the filter tap weights. Define the tap weight vector 



wT =bq (kbw2(k)9--.,wlv(k)1 (4.4) 

and the input vector 

xT(k)=[x(k),x(k-1), ..., x ( k - ~ + 1 ) ] .  (4-5) 

The convolutional sum of (4.1) can now be expressed as the inner product of the tap 

weight vector and the input vector 

j (k)  = wTx . 
The mean-squared error J(w) now becomes 

= ~[~(k)~]-2w*~[x(k)~(k)]+w~~[x(k)x~(k)]w. (4-7) 

Note that the error is a second order function and thus has a unique minimum. Our god 

is to find the value of w which gives this minimum value. 

Denoting the cross-correlation vector between the input and the desired signal as 

rq7 = E[x(k)y(k)l (4-8) 

and the correlation matrix of the input signal as 

R, = 

where 

The mean-squared error J(w) can now be written in terms of these new expressions to 

give 

T T J(w)=ryy(0)-2w rW+w Rnw. (4.1 1 )  

The gradient of the mean-squared error J(w) with respect to the tap weight vector is given 

by 



Setting this to zero, we obtain the discrete form of the Wiener-Hopf equation, or the 

so-called normal equation 

- 
wop, =R&,,. (4.13) 

Therefore, w+ represents the coefficients of the minimum mean-squared error Wiener 

filter. Substituting this optimal value for w into (4.1 1) we get 

T J(w)=r,(O)-w r, (4.14) 

=r-(0)-r5(0) 
which is the minimum mean-squared error obtained with the Wiener filter. 

4.3 Adaptive Noise Cancellation 

In this section, we describe the basic aspects of adaptive noise cancellation as applied to 

the problem of reducing camera noise. It should be noted that the acoustic nature of the 

signals introduces certain practical limitations which will be discussed later. We begin by 

considering the non-adaptive structure shown in Figure 4.2. 

Figure 4.2 Block diagram of non-adaptive noise cancellation system. 

The figure shows a desired signal s(k) which is corrupted by an additive noise n(k) 

and picked up at a receiver to form the primary input signal y(k). Both s(k) and n(k) are 

assumed to be wide-sense stationary. As a result of the paths through which they travel in 

the room, the signal s(k) is convolved with the acoustic impulse response hll and n(k) is 

convolved with hzl. That is, 



In the adaptive noise cancellation method, it is assumed that a second reference input 

x(k) is available which contains a signal which is in some way correlated with n(k)*hZl(k). 

From Figure 4.2, we  see that for the case considered here, 

The noise cancellation method now consists of filtering the reference signal x(k) 

through w to yield T(k) such that the subtraction of y(k) from y(k) gives the optimal es- 

timate of the desired signal s(k). In mathematical terms, we want to find w such that 

m i w ( w )  1 = minmf (~(k>-?(k)>l  1 (4.17) 

where JT ) is some function which is used as the criterion for minimizing J(w). If we 

choose to minimize J(w) in the mean-squared sense, then we obtain 

We note that this is the same cost function that was used in (4.3) to derive the optimal 

Wiener filter. Therefore, for our noise cancellation problem, the optimal estimate of the 

desired signal s(k) is obtained by setting w equal to the optimal value, w.,, found in the 

normal equation (4.13). Equivalently, we can say that w,,, is the value of w which mini- 

mizes (4.18). 

In general, we cannot assume that the filter w will be operating in a stationary envi- 

ronment and so, w,,, may be continuously changing. To account for the changing w,,,, an 

adaptive filter is used. The problem then becomes one of designing the adaptive filter so 

that it tracks the changes in the operating environment and remains as close as possible to 

w,,,. The basic Adaptive Koise Cancellation scheme is illustrated in Figure 4.3. 

The reference input x(k) is filtered by the adaptive fdter w(k) to yield the sequence 

F(k) which is an estimate of the primary signal y(k). j(k) is then subtracted from y(k) to 

give e(k) which is the error signal used by the adaptation algorithm to find the optimal 

fdter w(k) at time k. 



Figure 4.3 Block diagram of adaptive noise cancellation system. 

Widrow et al. [7] showed that minimizing e(k) is equivalent to frnding the best esti- 

mate of s(k). This is intuitively satisfying since x(k) is assumed to be correlated with only 

the undesired (i.e., noisy) portion of y(k). Therefore, by removing as much as possible of 

the portion of y(k) associated with x(k), (i.e., by minimizing e(k)) we are left with an op- 

timal estimate of s(k). As such, the error signal e(k) is in fact, the estimate of the desired 

signal. 

Solving the normal equation (4.13) directly in order to find wop, is a computation~y 

demanding process (especially for higher order fdters) since it includes inverting the cor- 

relation matrix R,. We therefore seek a simplified means of obtaining an estimate of 

w There are many adaptation algorithms which can be used to update the coefficients 

of the adaptive filter. The choice of adaptation algorithm will have a profound effect on 

the performance of the adaptive noise cancellation system. In practice, the choice of al- 

gorithm is determined by how quickly and accurately it tracks changes in the operating 

environment, its computational complexity, its robustness against instability, and the 

types of input signals expected. 

4.3.1 The Widrow-Hoff LMS Algorithm 

The most commonly used adaptation scheme is the Widrow-Hoff least-mean-square 

(LMS) algorithm which is based on the method of steepest descent [8,47,7]. One of the 

key features of the LMS algorithm is its low computational complexity. It does not re- 

quire explicit calculation of the correlation matrix Rn or the cross-correlation vector r,. 
Furthermore, it does not require matrix inversion. The LMS algorithm is derived below. 

We begin by examining the method of steepest descent. Assume that w(k) is a linear 

transversal filter of order N-1. To find the optimal value of w(k) using the method of 



steepest descent, we use the recursive relation 

where 

The estimate of w,,, at time k+l is determined by the estimate at time k and the gradi- 

ent. Substituting the solution for V derived in (4.12) into (4.20) we get 

w(k+l)=w(k)+p[rv -R,w(k)] . (4.22) 

In the LMS algorithm, instantaneous estimates of r, m d  R, are used. We define the in- 

stantaneous estimates as 

g, (k)  = x(k)xT (k) . (4.24) 

Replacing the correlation matrix Rn and the cross-correlation vector r, in (4.22) by their 

instantaneous estimates, we get 

The result of (4.25) can be written as 

w(k + 1) = w(k) + p(k)e(k) . (4.27) 

Equations (4.26) and (4.27) form the basis of the LMS algorithm. The variable p is 

the adaptation step size which determines the rate at which w(k) converges towards the 

optimal solution. Comprehensive discussions regarding the ANC method and the LMS 

algorithm can be found in [8,9,lO,48]. 

4.3.2 Limitations of the LMS Algorithm 

While the LMS algorithm provides a computationally efficient means of steering the 

adaptive fdter towards its optimal solution, it has several limitations due to its simplicity. 

In the ANC application the task of the LMS algorithm is to adapt the transversal filter 

w(k) so as to obtain the maximum amount of noise reduction. If we assume (as is often 

done) that hll=l and h22=1, then it can be seen fiom Figure 4.3 that optimal performance 



occurs when the taps of the filter are equal to the impulse response h2r (i.e., w , , ~  h2l). 

That is, the adaptive filter is attempting to predict the acoustic path traveled by the noise 

n(k) to the primary microphone. 

One of the main limitations of the LMS algorithm is its potentially slow rate of con- 

vergence. The rate of convergence determines the time required for w(k) to reach a suffi- 

ciently close approximation to hz1 and provide a sufficient degree of noise reduction. The 

rate of convergence also affects the ability of the adaptive filter to track changes in hzl. 

A key factor in determining the rate of convergence of the LMS algorithm is the ei- 

genvalue spread of the correlation manix R, [8,10,49]. The eigenvalue spread x(R) i s  

defined as 

L x(R) = - (4.28) 
A,, 

where & and are the largest and smallest eigenvalues of R,. In matrix terms, the 

eigenvalue spread is related to the condition number of the correlation matrix Rn [SO.]. 

When the eigenvalue spread is large, the LMS algorithm requires a greater number of it- 

erations (i.e., more time) in order to converge. 

The effect of the eigenvalue spread can be seen directly in the adaptation stepsize pa- 

rameter p of (4.27). A larger value of p allows the LMS algorithm to converge more 

quickly than a smaller value of p. However, if p is too large, the algorithm will not con- 

verge. The largest value of p which will still provide a convergent system, is determined 

by the maximum eigenvalue A,, of the correlation matrix R,. Specifically, a necessary 

condition for convergence in the mean is that p must lie within the interval [8,9,10,48,49] 

The relation between h,, and the rate of convergence is evident from (4.29). For a 

given value of p, the rate of convergence is determined by the mode corresponding to the 

smallest eigenvalue, h~,.,. A smaller &, implies a larger decay time of the mode, and 

hence a slower rate of convergence. 

While a large value for p implies a faster rate of convergence, it also implies a larger 

misadjustrnent M [8,9,10,49]. That is, a larger value of C( Limits the accuracy with which 

w(k) converges to w,,. The relation between the misadjustrnent M and the adaptive step- 

size p can be approximated by 



for a transversal filter of order N-1. Therefore, there is an inevitable tradeoff between the 

speed with which the adaptive filter converges and the amount of noise reduction that an 

LMS-based ANC system can achieve. Moreover, the performance of the LMS-based 

ANC system will be directly influenced by the statistics of the noise to be canceled. 

Other adaptive algorithms exist which do not suffer fiom the limitations of the LMS 

algorithm but are more (often dramatically) computationally demanding. One class of 

adaptive filters which can offer and improved rate of convergence while maintaining a 

reasonable level of computational complexity are the transform domain LMS algorithms. 

The concept of adaptive filtering in the frequency domain was proposed by Dentino et aL 

[Sl]. The theory behind transform domain adaptive mtering was further developed by 
Narayan et al. [52] and Lee and Un [53] including an improved understanding of the per- 

formance characteristics of this class of filters. Marshall et al. 1541 studied the perform- 

ance of the transform domain adaptive filter for a variety of orthogonal transforms. They 

found that considerably improved performance (i-e., rate of convergence) over LMS 

could be obtained for a broad class of input signals using the transform domain schemes. 

The ratio of the maximum to the minimum eigenvalues of the correlation matrix R, 
is bounded by the ratio of the maximum to the minimum magnitudes of the power spec- 

trum of x(k) [55]. That is, 

i" 12 a,,, .pa. lX(e 1 IS- - j" [2 ' i n  rninlX(e ) 

Given this, an approach to accelerate the rate of convergence of the adaptive algo- 

rithm is to somehow transform the input signal x(k) into another signal z(k) whose corre- 

sponding correlation matrix R, has a smaller eigenvahe spread. This can be achieved by 

performing the adaptive filtering in some orthogonal transform domain. 

A block diagram of the transform domain adaptive filter is given in Figure 4.4 where 

it can be seen that the input signal vector x(k) is transformed into another vector z(k) 

z(k) = Qx(k)  . 
The transform matrix Q is a unitary matrix of rank N and thus, 



QQ'=I. (4.34) 

The transformed input vector z(k) is multiplied b y  the transform domain tap weight 

vector v(k) 

v T ( k )  = b, ( k ) ,  v,(k),-. . ,  v,(k)l (4.3 5 )  

to form the adaptive output y ( k ) .  

y (k )  = zT ( k )  v ( k )  

The resulting error signal is 

4) = ~ ( k )  - 9 ( k )  

and the tap weight update equation is 

where 

is the adaptation stepsize parameter for the ith transform component and p is a positive 

constant that controls the rate of convergence. 

Figure 4.4 Block diagram of a transform domain LMS based ANC system. 

The purpose of the transform Q is to decorrelate the input signal x(k) thus minimizing 

the eigenvalue spread, and so the choice of an appropriate orthogonal transform is critical. 

It is well known that the Karhunen-Lo6ve transform (KLT) provides the optimal decor- 

relation of an input signal. The KLT is composed of the orthonormal eigenvectors of the 

input correlation matrix and is thus signal dependent. Because it is a signal dependent 

transform, the I<LT is generally not practical for most applications. 



Several researchers have studied the performance of transform domain LMS for a va- 

riety of time-invariant transforms. Lee and Un [53] evaluated the performance of trans- 

form domain LMS for a variety of orthogonal transforms assuming real-valued input data. 

The transforms that they investigated included; the discrete Fourier transform (Dm), the 

discrete cosine transform (DCT), the symmetric cosine transform (SCT), a fast KLT, and 

the discrete sine transform @ST). Marshall et al. [54] also studied the performance of 

several transforms including the DFT, the DCT, the WaIsh-Hadamard transform (WHT), 

the discrete Hartley transform (DHT), and the Power-Of-Two transform (P02) which was 

designed specifically for the transform domain LMS. They found that, in general, the 

DCT-LMS gave the best overall performance for speech signals. Narayan et al. [52] ex- 

amined the performance of transform domain LMS using the DFT and the DCT. They 

concluded that, for speech applications, use of the DCT-LMS will provide faster conver- 

gence than the DFT. 

The performance of the different algorithms depends on the orthogonalizing capabili- 

ties of the data-independent transform used to pre-whiten the input data. No general 

proof exists demonstrating the superiority of one transform over the others. However, 

Beaufays [56] recently proved that, for fnst-order Markov input signals, the eigenvalue 

spread after transformation by a DCT will always be less than for a DFT. 
In recent years, transform domain LMS using a wavelet transform has been proposed 

[57,58,59,61]. A wavelet-based approach offers potential advantages over Fourier-based 

methods for cases when the time varying modes of the input signal are not adequately 

represented by a weighted sum of sinusoids. Hosur and Tewfik [59,60] showed that the 

wavelet transform LMS could provide better convergence performance than DCT-LMS. 

Attallah and Najim [61] found that a wavelet decomposition based on a regular subband 

tree yielded better results than one based on a dyadic tree. A comprehensive review of 

transform domain adaptive filtering can be found in the review paper by Shynk 1621. 

In this section, we focus on the LMS algorithm and its transform domain variants. 

Our interest in the LMS based algorithms is prompted by their low computational com- 

plexity. Of course, other non-LMS based adaptive algorithms exist. For example, recur- 

sive least-square (RLS) algorithms are known to exhibit near optimal convergence be- 

havior, but suffer from high complexity and instability issues [49,8]. Fast least squares 

algorithms including those based on lattice structures do reduce the computational de- 

mand and provide stable performance. However due to the high computational demands 

of the camera noise problem, the use of these algorithms remains impractical. 



As stated earlier, the task of the adaptive filter in the ANC system depicted in Figure 

4.3 is to estimate the path h21. In the camera noise application, hzl is the acoustic path 

kom the camera to the microphone which is recording the actor's dialogue. Because it 

may be necessary in many instances for the ANC system to provide more than 20 or 30 

dB of noise reduction, it may be necessary for w(k) to be a very high order filter (i-e., 

many taps). For example, in a room having a reverberation time of about 1.5 s, it may be 

necessary to cancel the mdtipath reflections of the frrst 500 ms of the acoustic impulse 

response hzl in order to achieve 20 dB of noise reduction. At the sampling rate of 

&=48000 Hz, an adaptive filter length of 24000 taps would be required. Even if it were 

deemed acceptable to reduce the sampling rate to 24000 Hz, the order of the adaptive hl- 

ter would still exceed 10000 taps. Due to the large number of taps required, any practical 

implementation would likely necessitate using an LMS-based adaptation algorithm. Also, 

Boll and Pulsipher 1631 found that an audible echo may be created in the output of an 

ANC system when using long filter lengths. The echo becomes more prominent as p is 

increased since the accuracy with which w(k) converges is correspondingly reduced. That 

is, the individual taps of the filter wander about their optimal values, thus resulting in a 

large excess mean squared error. 

4.3.3 Limitations of the ANC system 

The ANC system depicted in Figure 4.3 represents and ideal case. In red-world applica- 

tions, regardless of which algorithm is employed to adapt the filter, there are certain 

limitations of the ANC system which can constrain its performance. A somewhat more 

realistic scenario is shown in Figure 4.5. 

Signal h,,  

Figure 4.5 Block diagram of an ANC system under realistic conditions. 

It can be seen that a new path h12 has been added. This path represents the leakage of 

the desired signal into the reference input x(k). This leakage places an upper bound on 



the amount of noise cancellation that can be achieved- The leakage also causes the noise- 

reduced signal at the ANC output to be somewhat distorted. In their seminal paper on 

adaptive noise cancellation, Widrow et nl. [7] showed that the maximum attainable sig- 

nal-to-noise ratio at the ANC output is equal to the reciprocal (at all frequencies) of the 

signal-to-noise ratio of the reference input, 

Therefore, as an example, if the level of the signal is 20 dB below the level of the noise in 

the reference input, then a maximum of 20 dB of noise reduction can be achieved by this 

ANC system. 

Widrow er al. also derived an expression to estimate the amount of signal distortion D 

at the ANC output, 

where y(k) is the primary signal and x(k) is the reference signal. 

Equation (4.41) shows that the signal distortion will be higher if the signal-to-noise ratio 

at the reference input is high and the signal-to-noise ratio at the primary input is low. Of 

course, if there is no signal leakage into the reference input, then the output signal will 

not be distorted. 

Referring back to Fi,pre 4.5, it is fkequently assumed that the path hZ from the noise 

source to the reference input is equal to 1. However, in some situations, this assumption 

is not valid. This is certainly the case for the camera noise problem, and thus the impli- 

cations of hz#l must be considered. To understand the potential impact of this, we ex- 

amine the operation of the ANC system in the z-domain. The error is 

Y(z) - 42) = S(z) (z) + N(z) H21 (z) - N(z) H22 (z)w(~(z) (4.42) 

The error is minimized if 

Therefore, in general W,,(z) must include the inverse of Hdz).  If Hu(z) is non- 

minimum phase, then H&Z) will be unstable and as a result, the adaptive fdter will not 

converge to the value given in (4.43). It is well established that acoustic impulse re- 

sponses in rooms are generally non-minimum phase 164,651 and thus, in the case of re- 

ducing camera noise, one may be faced with a non-minimum phase hu. It is therefore 



possible that the amount of noise reduction attainable in the camera noise application may 

be limited by this factor. 

The more realistic ANC scenario depicted in Figure 4.5 also introduces the existence 

of additional noise sources, ni; i=1,2,. . .L. To examhe the effect of these additional noise 

sources, we begin by d e f ~ n g  the coherence function between the primary signal y(k) and 

the reference signal x(k) as 

where w denotes the frequency of interest. S,,(w) is the complex cross-power spectrum 

where 

is the cross-correlation. Both y(k) and x(k) are assumed to be wide-sense stationary ran- 

dom processes. S,(w) and S,(o) are the power spectra of y(k) and x(k) respectively. For 

convenience, we define the magnitude-squared coherence, 

Consider the frequency-domain representation of the cost function as defined in (4.3) 

and (4.7). 

see(o)=f l l~(o)-F(w)  l2 1 (4.48a) 

= 41 ~ ( o ) -  ~ ( o ) ~ ( o ) i ~ ]  (4.48b) 

=s,,,m-- f l ( w y x ( w )  - w(o)s&W w(a2 ~ ~ ( 0 )  ( 4 . 4 8 ~ )  

Completing the squares and substituting the definition for magnitude-squared coherence 

in (4.47), gives 

The above equation is minimized when the filter W(o)  is equal to 



which is in agreement with the normal equation found in (4.13). Assuming this optimum 

solution, (4.49) reduces to 

Figure 4.6 Relation between magnitude-squared coherence and maximum noise 
reduction attainable. 

Therefore, the performance of the ANC system is dependent upon the coherence between 

y(k) and x(k). A high coherence (C,(o) a 1) implies a small residual error. The maxi- 

mum noise reduction attainable by the ANC system at frequency o is given by 

-10 loglo (1 - CY, (a)) and is plotted in Figure 4.6. It can be seen fiom the figure that a 

magnitude-squared coherence of at least 0.99 is required in order to obtain 20 dB of noise 

reduction. 

It can be shown that the magnitude-squared coherence CYx(o) is independent of the 

acoustic paths hll ,  hlz, hzl, and hu. The magnitude-squared coherence is lowered by the 

presence of additional independent noise sources in the ANC system as depicted by ni; 

i=1,2,. . .,L in Figure 4.5. The additional noise sources could be the result of the back- 

ground acoustic noise of the room, or electronic noise in the microphones and pre- 

amplifiers. Since the background noise of the room is often out of the control of the user, 

it may be a limiting factor in the amount of noise reduction attainable. 

The additional noise sources may also be the result of a distributed noise source. As 

described earlier, a camera is composed of many components each contributing to the 

overall noise output of the camera. Moreover, the various noise sources are physically 

distributed in space and they have separate acoustic paths to the reference microphone 



and thus reduce the magnitude-squared coherence. That is, the camera noise at the refer- 

ence microphone is 
P 

where ni represents the components of the distributed noise source, and hui represents the 

paths from the noise components to the reference input. The effects of a distributed noise 

source have been studied in other ANC applications. 

Early studies by Boll and Pulsipher [63,66] examining the potential performance of 

acoustic ANC systems predicted that 10 to 20 dB of noise reduction was achievable. In 

these studies, there was no leakage of the desired speech signal into the reference micro- 

phone and the two microphones were placed several meters apart. An LMS adaptive fil- 

ter having 1500 taps was used and took approximately 15 s to converge M y .  This rela- 

tively long adaptation time was the result of choosing a small enough value of p to not 

create an audible echo as described earlier. Following on these results, Harrison et al. 

[67,68] used ANC to reduce the noise level in the voice communications system imbed- 

ded in the oxygen facemasks worn by fighter aircraft pilots. Here, the primary micro- 

phone was placed inside the facemask while the reference microphone was placed about 6 

cm away on the outside of the mask. Harrison et al. reported an average reduction in the 

noise level of about 1 1 dB in their simulations. 

At about the same time, Darlington, Wheeler, and Powell [69,70] also examined the 

use of ANC for the cockpit noise problem. They found however, that the results reported 

by Harrison et al. were overly optimistic due to the simplified simulation used in that 

study. Darlington, Wheeler, and Powell found that, due to the distributed nature of the 

noise source(s) in a cockpit, acoustic ANC was only effective at frequencies below about 

1 kHz. Based on work by Piersol [46], they showed that the distributed noise source(s) in 

the cockpit lowered the coherence between the two input signals. Specifically, Piersol 

showed that in a diffuse (spherically isotropic) noise field, the magnitude-squared coher- 

ence between two omnidirectional receivers will be 

where d is the distance between the two receivers, and c is the speed of sound. A distrib- 

uted noise source in a reverberant environment will behave as a diffuse noise field. 



Figure 4.7 (a) Magnitude-squared coherence and @) maximum theoretical 
cancellation versus frequency as a function of distance between receivers in a diffuse 
noise field. 

As shown earlier, the coherence determines the maximum attainable degree of noise 

reduction. Equation (4.53) indicates that the coherence is inversely related to the distance 

between the receivers, and thus to obtain a high degree of noise cancellation at the higher 

fkequencies, the primary and reference microphones must be placed close together. This 

contradicts the typical ANC approach wherein the two receivers are spaced far apart to 

avoid leakage of the desired signal into the reference input. Equation (4.53) also hdi- 

cates that, for a given distance, the coherence will decrease with increasing frequency as 

shown in Figure 4.7a. 

A study by Rodriguez et al. [7 11 confi ied these findings and concluded that ANC is 

ineffective in the presence of a distributed noise source. More recently, Elko examined 

the possibility of using fust-order differential microphones to increase the coherence and 

thus improve the performance of an ANC system in a spherically isotropic noise field 

[33,72,73]. He found that the use of directional microphones did not significantly in- 

crease the coherence, and so no improvement in the amount of attainable noise reduction 

can be expected. In fact, depending on their orientation relative to the sources, directional 

microphones may reduce the coherence. 

Elko also points out that if the length of the adaptive filter is too short relative the re- 

verberation time of the room, the reverberant energy which is not accounted for by the 

adaptive FIR filter, will act like a spherically isotropic noise field. This result can also be 

predicted from Piersol' s work. 

In the present application, the camera acts as a distributed noise source and thus, in a 

reverberant environment, it will behave as a dif ise noise field. Furthermore, due to the 

relatively high sampling rate required, and the potentially long reverberation times, the 



length of the adaptive filter w(k) will necessarily account for only a portion of the acous- 

tic impulse response, hal. Therefore, the camera noise convolved with the remaining 

portion of the impulse response will appear as a spherically isotropic noise field. These 

two factors will conspire to lower the magnitude-squared coherence and thus severely 

limit the performance of the ANC system in the camera noise application. 

4.3.4 Summary of ANC methods 

In this section, noise cancellation methods were introduced in the context of the Wie- 

ner filter. An adaptive noise cancellation scheme was derived based on the well known 

LMS algorithm. While the LMS algorithm is attractive from the point of view of corn- 

put ational complexity, its rate of convergence is relatively slow. Transform domain vari- 

ants of the LMS algorithm can significantly improve the rate of convergence with only a 

small increase in computational complexity. 

The fundamental limitations of the ANC method were examined. It was shown that 

leakage of the desired signal into the reference input imposed a bound on the amount of 

noise reduction attainable, and also caused the output signal to be distorted. The per- 

formance of the ANC system could also be limited if the path & was non-minimum 

phase. Finally, the relation between the inter-channel coherence and the ANC7s perform- 

ance was derived. Several factors can reduce the coherence including a distributed noise 

source, and an insufficiently long adaptive FIR filter. 

Extensions to the basic ANC method have been proposed in the Literature to address 

many of its Limitations. However, in its basic form, ANC has inherent limitations which 

constrain its usefulness in many practical situations. Even under the best of conditions, 

acoustic ANC systems do not achieve more than about 20 dB of broadband noise reduc- 

tion. And, while this amount of noise reduction is impressive, it is not sufficient for re- 

ducing higher levels of camera noise. Therefore, we must consider other methods of re- 

solving the camera noise problem. 

4.4 Blind Signal Separation 

In recent years there has been a great deal of research into the problem of blind signal 

separation. Stated simply, blind signal separation consists of separating n signals which 

have been mixed together in some unknown manner. More specifically, given n sources 

which have been mixed together in some way and recorded at n receivers, the goal is to 

recover the n original signals. The problem is blind in the sense that it is assumed that 



nothing is known about the mixing parameters. The only assumption is that the n source 

signals are mutually independent. Given this assumption, the various blind signal sepa- 

ration techniques take the mixture of n signals and strive to generate n independent output 

signals. Blind signal separation is often likened to the so-called cocktail party effect 

wherein a listener is able to focus his attention on a given source signal in the presence of 

other interfering sources [74]. 

Clearly, if successful, blind signal separation techniques would be of great benefit in 

many applications. In the present application the blind signal separation problem can be 

viewed as a generalization of the ANC problem. In the blind signal separation approach 

both the desired and interfering source signals of the ANC system are viewed as desired 

output signals. By generalizing the problem, the blind signal separation methods can 

overcome some of the limitations of ANC described in the previous section. 

I separation I I 

I funct ion I 
(a) mixing (b) unmixing 

Figure 4.8 Illustration of signal separation problem for the 2 x 2 case: (a) the mixing 
paths, @) unrnirdng filters. 

Many researchers have limited their examination of the blind signal separation prob- 

lem to the 2 x 2 case as depicted in Figure 4.8. The mixing portion of the blind signal 

separation process is shown in Figure 4.8a. Here two signals (eg. 2 talkers, or a talker 

and a noise source) are mixed together to form the received signals xl(k) and x2(k). More 

specifically, the source signals sl(k), s2(k) are mixed according to the relations described 

by hl [, hI2, hZ1, and hn and are collected at two receivers to form xl(k) and x2(k). Some 

researchers assume the simple case where hG; j=1,2 are scalars, but in general we are 

more interested in the convolutive mixing problem. In this case, the paths hq; j=1,2 are 

assumed to be FIR fiiters. Figure 4.8b shows the unmixing or separation algorithm 

where, given the mixed inputs q ( k )  and x2(k), we attempt to estimate the original source 

signals sl(k) and s2(k). 



Figure 4.9 Herault- Jutten method for blind signal separation. 

While some notable early work was conducted on the problem of blind signal separa- 

tion, interest in this topic appears to have grown significantly with the publication of the 

work by Jutten and Herault [75] in 1991. They proposed a recurrent neural network ap- 

proach for separating scalar mixtures as shown for the 2 x 2 case in Figure 4.9. 

The approach can be described in matrix form, 

~ ( k )  = x(k) - W(k)y(k) 

x(k) = Hs(k) 

where H is the unknown mixing matrix. Hence, 

y(k) = [I + ~ ( k )  1-l x(k) 

where 

Based on the independence criteria, Jutten and Herault adapted the elements of W using 

the simple adaptive learning algorithm 

where p is the adaptation parameter and f(-) and g(-) are two different odd mn-linear 

functions such and g(y)=tanh(lOy). 

The Herault-Jutten algorithm has received much attention and work is ongoing to 

overcome its limitations and improve its performance. Nomura et al. [76] proposed an 

extension to the Herault-Jutten network to provide for delayed source signals. Cichocki 

et al. [77] found that the Herault-Jutten algorithm performed poorly when the input sig- 



nals were badly scaled (i.e., weak signals mixed with strong signals) and proposed a 

modification which addresses this issue. 

Blind signal separation using higher-order statistics (HOS) has also been studied. The 

appropriateness of using HOS Lies in the fact that statistical independence is a much 

stronger property than uncorrelatedness. By using higher-order moments to test for inde- 

pendence of the output signals, it is possible to estimate the elements of the mixing ma- 

trix H. 

Cordosa [78] proposed a blind identification scheme based on fourth-order normal- 

ized moments. Thi and Jutten [79] addressed the problem of separating convolutive 

mixtures of source signals using fourth-order cumulants, while recently Shamsunder and 

Giannakis [80] developed bispectrum and hispectrum based algorithms for the multi- 

channel blind signal separation problem. 

While the use of HOS for blind signal separation is attractive from a theoretical point 

of view, they suffer from several disadvantages which often make them impractical in 

real-world applications. First, calculation of higher-order curnulants and polyspectra is 

very computationally demanding and often requires large amounts of computer storage 

(memory). Secondly, reliable estimates of higher-order statistics require long data sam- 

ples, making their use very difficult in situations involving non-stationary signals or a 

he-varying mixing process. 

Bell and Sejnowski [81] proposed a technique for blind signal separation based on 

maximizing the entropy of non-linearly transformed output signals. The non-linearity 

was obtained through the squashing function tanh(-). They reported very good results in- 

cluding the "nearly perfect" separation of up to 10 digitally mixed speech signals. Bell 
and Sejnowski' s algorithm was also applied to the problem of blind deconvolution. 

Torkola [82,83] addressed two limitations of the Bell and Sejnowski algorithm. First, 

he extended the algorithm to the separation of delayed signals. Torkola then showed how 

the entropy maximization method could be used to address the problem of convolutive 

signal mixtures. Most recently, Lee et nl. [84] extended Torkola's work to account for 

non-minimum phase mixing of the source signals. They tested their algorithm by at- 

tempting to separate 2 talkers in a real room. They report very good performance and 

conclude that it should now be possible to apply the algorithm to real-world blind signal 

separation problems. 



Smaragdis proposed a frequency-domain extension to the work of Torkola and Lee et 

al His intent was to reduce the statistical dependence between the taps of the sepa- 

ration fdters while also reducing the computational complexity. This is akin to the use of 

transform domain variants of the LMS algorithm to increase the rate of convergence. 

Separation of artificially mixed signals was demonstrated to be quite good, however per- 

formance of the algorithm in a red-world situation remains unproven. 

The final approach to the blind signal separation problem which we will consider 

consists of adaptively decorrelating the output signals. These methods only exploit sec- 

ond-order statistics and do not take advantage of the information contained in the higher 

moments. Therefore, in theory they will not perform as well as when higher order statis- 

tics are considered. This potential reduction in performance is offset by the significant 

reduction in computational complexity and the improved reliability of estimating the re- 

quired signal statistics. Blind signal separation methods based on output decorrelation 

are of particular interest in the present study because of their direct relation to the ANC 

methods described earlier. 

Algorithms based on output decorrelation for separating two signals from a scalar 

mixture have been developed by Canagarajah [86] as well by Van Gerven and Van Corn- 

pernolle [87]. These methods however do not extend to the case of convolutive mixtures 

and hence, are of little interest in the present application. 

The basic 2 x 2 blind signal separation system based on output decorrelation is shown 

in Figure 4.10. The input signals xi; i=1,2 are assumed to be a result of the mixing proc- 

ess depicted in Figure 4.8a. En matrix form, in the frequency domain, we have 

X(W) = H(w)s(o) 

where 

To find s(w) from x(@) we require that W(o) be the inverse of El(#). That is, given 

or equivalently 



Therefore, if 

then we have 

Thus we require 

Typically, HI and Hz(@) are assumed to be equal to 1. The task is then to find W(m) 

using the decorrelation criteria, 

E[y, (k)Y#+OI=O W -  (4.67) 

Figure 4.10 Basic 2 x 2 signal separation system based on output decorrelation. 

In 1993, Weinstein et al. [88] proposed a method for blind signal separation of con- 

volutive signal mixtures. They derived a recursive algorithm using the crosssorrelations 

between the input and output signals of their system. Their cost function was related to 

the cross-correlation function [89] 

r ~ l ~ z  (k) = E[Y, ( k )  y, (k + 01 (4.68) 

= a n  ( k m ,  ( k  + 1) + w h  ( k  + [ ) ) I  (4.69) 

= ~ [ y ,  ( k b ,  ( k  + 01 + ~[w:,x, (k + 1)  y, ( k ) ~  . (4.70) 

Note that the d e f ~ t i o n  of r,,,,,(k) includes the output signal in its formulation. 

In computer simulations using low order FIR mixing filters, they obtained an increase 

in the signal-to-noise ratio of about 10 dB. An interesting aspect of the Weinstein et al. 



method is that both the LMS and recursive least squares ANC systems are special cases 

of their blind signal separation system. 

Yellin and Weinstein [go] extended the method of Weinstein et al. by incorporating 

higher-order curnulants into the criteria for determining the optimal separation filters. 

The higher-order statistics take advantage of the independence assumption of the two in- 

put signals. They tested their method by attempting to separate two source signals 

(speech and music) in a real room. Using second and forth-order statistics, they report 

very good results, and thus, like Lee et aL's entropy maximization scheme, this method 

appears promising for real-world applications. 

A blind signal separation algorithm was proposed by Chan et al. [89,91] which is 

similar in many ways to the method developed by Weinstein et al. Their method also 

uses an iterative time-domain algorithm and can be readily applied to the n x n case. 

Chan et al. used a different cost function than Weinstein et al. Their cost function 

was related to the cross-correlation function 

= E[(-% (k) + w:&x,(k))($ ( k  + 0 + ~ $ 1  (k + m1 (4.72) 

Note that this definition of rY,,,(k) only uses the input signals xi; i=1,2 and not the output 

signals. 

Chan et al. claim several advantages over the Weinstein algorithm. First, whereas the 

Weinstein method requires the number of lags used to calculate the cross-correlations to 

be equal to the length of the filters, wv, the Chan algorithm does not. Therefore, the Chan 

method offers a degree of flexibility which may be important when using low order sepa- 

ration filters. Secondly, in the Weinstein method, interim values of the cross-correlations 

between the input and output signals must be calculated when iterating towards the opti- 

mal solutions for w+ In Chan's method, the input signal correlations are used and only 

need to be calculated once. Therefore, the algorithm offers a significant reduction in 

computational complexity. A more complete comparison of these two algorithms can be 

found in [89]. Chan demonstrated very good performance of his algorithm for computer 

simulations as well as for simulations in an anechoic chamber. Unfortunately, tests of the 

algorithm in a real-world situation were not provided. 

Molgedey and Schuster [92] proposed a method for separating signals from a scalar 

mixture using time delayed correlations to reduce the task of determining the mixing co- 



efficients to an eigenvalue problem. More recently, Ehlers and Schuster [93] extended 

this work to the blind separation of convolutive mixtures and proposed a Monte Carlo 

approach for minimizing their cost function. They applied their algorithm to the problem 

of automatic speech recognition and report impressive improvements in the recognition 

error rate. 

4.5 Comparison of the performance of ANC and BSS systems 

As stated earlier, there are many similarities between blind signal separation and adaptive 

noise cancellation. This is particularly true for blind signal separation algorithms based 

on second-order statistics (i.e., output decorrelation). It was seen earlier that the leakage 

of the desired signal into the reference input of an ANC system will directly limit the 

amount of noise reduction possible. Blind signal separation systems overcome this 

problem by adding the separation fdter wzl (as shown in Figure 4.10) to account for the 

leakage path. Therefore, blind signal separation systems have a potential advantage over 

ANC systems in applications where Leakage is a problem. 

Chan compared blind signal separation and ANC petformance is the presence of sig- 

nal leakage and found that, as expected, the ANC system performed poorly when there 

was a significant amount of leakage. Conversely, the performance of the blind signal 

separation system was relatively independent of the level of leakage. Oddly, Chan's re- 

sults indicate that blind signal separation always performs better (by more than 10 dB) 

than ANC even in the absence of leakage. Moreover, his results indicate that, when the 

level of the signal leakage is below some value, both the ANC and blind signal separation 

systems actually reduce the signal-to-noise ratio from input to output. Chan's fmdings 

are counter-intuitive and contradict previous research, and should be explored further. 

Another limitation of ANC systems occurs when the path hu is non-minimum phase. 

This restricts the ability of the adaptive filter to converge. In the blind signal separation 

approach this problem is resolved by the filters w and wz. However, most blind signal 

separation algorithms simply set wll  and w u  equal to 1 since additional constraints are 

required in order to solve for the four filters wo; ij=1,2. Chan et al. offer several possible 

constraining conditions [89,9 1,941. 

It was shown earlier how the performance of an ANC system is dependent upon the 

magnitude-squared coherence of the input signals. One way in which the coherence can 

be lowered is by the presence of additional noise sources. The effect of additional 

sources (i.e., more sources than receivers) on the performance of blind signal separation 



systems does not appear to be fully addressed in the literature. It would seem that the ef- 

fect of additional sources on blind signal separation systems should be similar to the ef- 

fect on ANC systems, and so the blind signal separation approach should not offer any 

advantage in this regard. As noted earlier, a distributed noise source is equivalent to hav- 

ing additional noise sources. 

It was shown that one way to increase the coherence in a d f i s e  noise field is to place 

the receivers closer together. It is interesting to speculate whether this would improve the 

performance of a blind signal separation system. Recall, that the cost function of a 2 x 2 

blind signal separation system based on output decorrelation is related to 

In a diffuse sound field, the input cross-correlation terms will be affected by the distance 

between the receivers (see Figure 4.7). At one extreme, if the receivers are spaced very 

far apart, then the cross-correlation function will tend towards zero and the blind signal 

separation system will minimize the cost function by setting wz1=w 12=0 (i-e., W becomes 

the identity matrix). In this case, the blind signal separation system will do nothing, and 

the output signals will be equal to the input signals, 

At the other extreme, if the distance d  between the receivers is very small, the impulse 

responses from a given source to the two receivers will begin to look similar, 

{ 
41 =b1 

a s d a 0 ,  h22=h12 (4.75) 

x l w  = x 2 ( 4  

and as a result, in order to minimize the cost function, the blind signal separation system 

will tend towards 

[~2(k) 3 0  

Therefore, under these conditions, the output signals will go to zero and signal separation 

will not occur. This is particularly true at lower frequencies where the wavelength is sig- 

nificantly larger than the distance d. 



The above analysis, although somewhat heuristic, indicates that the performance of a 

blind signal separation system will be dependent on the spacing between the receivers for 

a given acoustic environment. It also suggests that, as for ANC, directional microphones 

may not be helpful in general for blind signal separation. Blind signal separation methods 

based on higher-order statistics may be less sensitive to this parameter. This matter needs 

further investigation including a mathematical h e w o r k  within which performance 

tradeoffs may be determined. 

Most simulations of blind signal separation systems use separation filter lengths that 

are at least as long as the mixing filters. It was noted earlier that the coherence between 

the input signals can be reduced if the separation filters are insu=ciently long relative to 

the reverberation time of the room. Therefore, the performance reported in many simula- 

tions may be overly optimistic as compared to what can be expected in real-world appli- 

cations. 

Blind signal separation can be viewed as a generalized ANC technique with its great- 

est inherent advantage being its relative insensitivity to signal leakage. However, in the 

absence of signal leakage, blind signal separation systems (particularly those based on 

second-order statistics) are not likely to offer significantly better performance. 

It should be noted that in some instances an ANC system is preferable to a blind sig- 

nal separation system. Consider the 2-input situation where there are several desired sig- 

nals and one interfering noise source. The goal of the noise reduction system in this 

situation is to produce a noise-fkee recording of the desired signals. This is possible with 

the ANC approach, because the user can "tell" the algorithm which signals are considered 

desirable and which signal is the noise, through appropriate placement of the receivers. If 

there is some leakage of one or more of the desired signals into the reference input, then it 

is not clear what the resulting output signals will be using blind signal separation since 

there are more signals than receivers. With ANC, the output will be the desired signals 

with some degree of noise reduction and signal distortion. 

4.6 Results of Tests of ANC to Reduce Camera Noise 

Sample recordings (see Chapter 3) of both the NFB camera and Imax-3D camera were 

processed using the ANC method to determine the amount of noise reduction that could 

be achieved. For these tests, a commonly employed variant of the LMS algorithm was 

used to adapt the filter. The Normalized LMS (NLMS) algorithm is often used in situa- 

tions where the power levels of the input signals are subject to wide fluctuations such as 



is found in speech signals corrupted by camera noise [9]. NLMS is described by the fol- 

lowing update equations, 

e(k) = y(k) - w(k)xT (k) 

and 

where c is a small positive constant which prevents division by zero if x(k) goes to zero. 

The primary input consisted of the camera noise recorded with a microphone placed 

where a talker (actor) would stand with respect to the camera. The reference signal was 

recorded using a second microphone positioned next to the camera. Steps were taken to 

ensure that the primary and reference signals were correctly aligned in time. It should be 

noted that, since the recordings did not contain speech, there was no leakage of a desired 

signal into the reference input. Therefore, in these tests, we would expect a blind signal 

separation system to perform similarly to the ANC system. 
I . 
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Figure 4.11 Maximum noise reduction attainable for the NFB camera. 

Due to the various factors described earlier in this chapter, the ANC system only pro- 

vided between about 6 and 10 dB of noise reduction for the NFB camera, and less than 6 

dB for the IMAX-3D camera. These results are in good agreement with the degree of 

noise reduction that would be predicted from the coherence measurements shown in 



Chapter 3 (see Figures 3.24 and 3.25) which showed the magnitude-squared coherence 

Cv(m), for some of the recordings used in the ANC tests. Recall that the magnitude- 

squared coherence was limited by the fact that the cameras are distributed noise sources. 

Using the relation described earlier in this chapter, the maximum cancellation that an 

ANC system can achieve can be determined from the magnitude-squared coherence. The 

maximum cancellation attainable for the NFB camera is plotted in Figure 4.1 1 and in 

Figure 4.12 for the IMAX-3D camera. It can be seen that, for both cameras, the cancella- 

tion is very frequency dependent, with reasonable cancellation at some frequencies, and 

virtually none at others. It should be recalled that the power spectrum of the camera noise 

is broadband and is not limited to specific frequencies (see Figures 3.19,3.20 and 3.22). 

frequency, Hz 

Figure 4.12 Maximum noise reduction attainable for the IMAX-3D camera. 

The results of the tests indicate that the use of ANC provides no more than 10 dB of 

noise reduction due to the distributed nature of the camera noise. This amount of noise 

reduction is not sufficient for the task of removing camera noise, since a clearly audible 

residual noise signal will remain. Since there was no leakage of a desired signal into the 

reference input, it is not expected that a blind signal separation system would provide 

better performance than the ANC system examined here. More importantly however, this 

was a two-input system and thus violated a fundamental requirement for a practical cam- 

era noise reduction system. 



4.7 Adaptive Noise Cancellation Using a Synthesized Reference 

In some ANC applications, such as reducing camera noise, it is not practical or desirable 

to obtain a separate reference measurement of the interfering noise. In these situations it 

may be possible to synthesize a reference signal if the interfering noise is periodic or re- 

petitive [9,48]. In this section, an ANC system using a synthesized reference signal for 

reducing the periodic component of camera noise is investigated. 

It was seen in the acoustic measurements described in Chapter 3 that camera noise 

consists of a series of noise bursts repeating at a rate of 24 times per second. The noise 

bursts are seen as sharp transient peaks foLlowed by intervals of lower level noise which 

extend between the peaks. A simple model of camera noise n(k) was derived consisting 

of a periodic component p(k) and a cyclical random component c(k), 

with 

where qi(k) are the components of the camera noise which repeat from frame to frame, 

and T is the period which is equd to the reciprocal of the film rate. 

Figure 4.13 ANC system with a synthesized reference input signal. 



A simple approximation to periodic component of camera noise would consist of a 

train of Dirac pulses occurring at a rate of 24 times per second. As shown in Figure 4.13 

this approximation to camera noise was used as the reference input to the ANC system 

described in the previous section. 

With this synthesized reference signal r(k), the taps of the adaptive filter w(k) will 

converge to the periodic or 'komrnon" component Q(k) of the camera noise pulses found 

in y(k). Therefore, this approach relies on there being a strong periodic component and 

thus a high degree of correlation between the successive pulses of the camera noise. The 

periodic component, Q(k) is then subtracted from the signal y(k) leaving the cyclical ran- 

dom component c(k) of the camera noise. 

As a fist step in evaluating the proposed technique, "ideal" camera noise was applied 

to the primary input of the ANC system. The ideal camera noise consisted of a single 

camera noise pulse (2000 samples) replicated 480 times over 20 s, and therefore n(k) was 

equal to p(k). This was done to verify that the ANC algorithm was functioning correctly, 

and to see whether a reduction in the periodic component of the camera noise could be 

achieved using a synthesized reference under best-case conditions. The results indicated 

that near-perfect cancellation could be achieved with this approach under these ideal con- 

ditions. 
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Figure 4.14 Correlation between successive camera noise pulses; open circles are 
non-synchronized; stars are synchronized. 



The ANC system using a synthesized reference input was then implemented using a 

recording of real camera noise as the primary input signal. The results showed only a 
modest reduction in the level of the camera noise at the output of the ANC system under 

these conditions. Certainly, the results were not adequate for the application of removing 

camera noise from film soundtracks. An analysis of the adaptation process of the filter 

w(k) revealed the somewhat unexpected fmding that the correlation between successive 

camera noise pulses was relatively low, thus suggesting that p(k) is a small component of 

n(k). This can be seen in Figure 4.14. 

The open circles in the figure show the normalized correlation Goyn(0) between the 

frrst (reference) pulse and each of the next 24 pulses of camera noise. As can be seen, the 

correlation between the reference pulse and the subsequent pulses varies significantly. 

Furthermore, all of the correlations are relatively low with none exceeding 0.7. These re- 

sults suggest that p(k) is only a small component of n(k). Similar measurements on other 

instances of camera noise showed similar low inter-pulse correlation. The nomaliied 

inter-pulse correlation, Go yn (0) is defined as, 

where 

and 

i=O 

The acoustic measurements of Chapter 3 suggested a more si@icant periodic com- 

ponent and showed that the spectral magnitude of the camera noise was relatively con- 

stant over the duration of a reel of film. Investigations were therefore conducted to deter- 

mine the cause of the low inter-pulse correiation. It was hypothesized that the low corre- 

lation could be due in part to some variation (drift or jitter) in the periodic component 

p(k) of the camera noise. Indeed, it was discovered that there are significant variations in 

the timings of the individud camera noise pulses. This is illustrated in Figure 4.15. 
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4.15 Example of jitter in the arrival times of the pulses of the camera noise. 

The figure shows the jitter in the relative times of arrival (in samples) of the individ- 

ual peaks of the camera noise for 40 pulses. A jitter value of 0 samples indicates that the 

time between noise pulses was exactly 2000 samples pulses (corresponding to the film 

rate of the camera at a sampling rate of 48 kHz). The points in the figure were derived by 

adjusting the relative time, z between the reference pulse and each of the subsequent 

pulses until the maximum correlation between that pulse and the reference pulse was ob- 

tained, 

z such that max {Goyn (z) } (4.86) 

where 

with 

and 



It can be seen fiom the figure that there is considerable jitter in the timings of the 

points of maximum correlation. This implies that there is some variability in the me- 
chanical workings of the camera which causes slight differences in the inter-pulse timing 

of the periodic component Q(k). The jitter described in Figure 4.15 limits the performance 

of an ANC system based on a synthesized reference input signal. 

To fiuther investigate this matter, the ANC system was modified so that the timings 

of the Dirac pulses in the reference input were adjusted to account for the jitter. Specifi- 

cally, the location of each individual Dirac pulse in the pulse train was synchronized to 

the pulses of the camera noise to obtain maximum correlation between noise pulses. Re- 

ferring back to Figure 4.14, the upper curve consisting of stars joined by a dotted line in- 

dicates the maximum correIation between each puke and the reference pulse using the 

ANC system with a synchronized reference input signal. It can be seen that the correla- 

tions are consistently higher for each pulse and thus this method is expected to provide 

better noise cancellation. However, the correlation is still relatively low for the purpose 

of ANC. 
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Wpre 4.16 Converged values of W for the non-synchronized (middle panel) and 

synchronized (lower panel) ANC systems versus typical pulse (upper panel). 

To compare the performance of the synchronized and non-synchronized ANC sys- 

tems, it is instructive to examine the value to which the adaptive fdter w(k) converged for 

each system. This comparison is provided in Figure 4.16. The upper plot shows one of 



the noise pulses used in the simulation and represents a typical noise pulse. The middle 

plot shows the value to which the adaptive filter w(k) converged for the non-synchronized 

ANC system. It can be seen that, while the basic features of the upper plot are seen in the 

middle plot, the details of the pulse are not represented. That is, the periodic component 

Q(k) obtained using the non-synchronized ANC system does not describe the detailed 

structure of each pulse sufficiently well. Therefore, when subtracted from the primary 

signal y(k), the periodic component does not significantly reduce the level of the individ- 

ual noise pulses. 

The lower plot in Figure 4.16 shows the value to which the adaptive filter w(k) con- 

verged for the synchronized ANC system. It can be seen that the details (the higher fre- 

quencies) are better represented using the synchronized ANC system. Indeed, it is sensi- 

ble to assume that the correlation between the high frequency components of the pulses is 

most affected by the jitter between noise pulses. 
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Figure 4.17 Input (upper panel) and output signals of the non-synchronized (middle 
panel) and synchronized (Iower panel) ANC systems. 

Figure 4.17 shows the input and output signals of both the synchronized and non- 

synchronized ANC systems. The upper plot is the input signal, the middle plot is the out- 

put of the non-synchronized ANC system, and the lower plot is the output of the synchro- 

nized ANC system. From the figure it can be seen that the non-synchronized ANC sys- 



tem output has reduced the level of the noise to some extent. Specifically, the low fie- 

quency ringing seen between pulses is noticeably reduced. However, the peaks of the 

pulses remain largely uncanceled. In the lower plot it can be seen that the synchronized 

ANC system reduces both the low fkequency ringing and substantially reduces the peak 

(transient) portion of each pulse. Therefore, by synchronizing the noise pulses for maxi- 

mum correlation, the ANC system using a synthesized reference signal is providing a 
greater degree of noise reduction. 
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Figure 4.18 Noise cancellation versus frequency for the (a) non-synchronized and (b) 
synchronized ANC systems using a synthesized reference input signal. 

In order to better compare the performance of the synchronized and non-synchronized 

ANC systems, it is instructive to examine the degree of noise reduction in the frequency 

domain. The upper curve in Figure 4.18 plots the noise reduction versus frequency for 

the non-synchronized ANC system. A reduction of about 5 dB is obtained at fkequencies 

between 100 Hz and 300 Hz. At frequencies near 1 icHz, the non-synchronized ANC 

system actually increases the level of the noise in the output signal by about 1 dB. Above 

I kHz the non-synchronized ANC system does nothing. 

The lower curve in Figure 4.18 plots the noise reduction obtained using the synchro- 

nized system. The performance at low frequencies is comparable to that obtained with 

the non-synchronized ANC system. At mid frequencies, near 1 kHz, the noise reduction 

is as much as 7 dB. Furthermore, the noise reduction at higher frequencies (above 2 kHz) 

ranges from 3 to 10 dB. Therefore, the synchronized ANC system performs significantly 

better than the non-synchronized ANC system. It should also be noted that the improve- 



ment in performance occurs primarily at higher frequencies and so, as expected, the jitter 

affects primarily the higher fiequencies. On average, the amount of noise reduction ob- 

tained here is about 5 dB less than the maximum attainable using traditional 2-input ANC 

(see Figure 4.1 1). 

The results suggest that the model of camera noise should be modified to include jit- 

ter, 

where &k) is a random variable which introduces jitter in the timing of Q(k) within p(k). 

The results described above were for the NFB camera. To determine whether the 

above results can be extended to other cameras, the same analysis was repeated for two 

IMAX cameras. 
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Figure 4.19 Noise cancellation versus frequency for the (a) non-synchronized and 
(b) synchronized ANC systems for the IMAX camera (MSM 9801). 

Figure 4.19 shows the amount of noise cancellation as a function of frequency which 

was achieved for the standard lMAX camera. The upper curve plots the noise reduction 

attained using the non-synchronized ANC system. For frequencies between 200 Hz and 

500 Hz a reduction of between 7 and 10 dB is obtained. About 5 dB of noise reduction is 

obtained for the range between 500 Hz and 1 IrHz. The performance of the ANC system 



falls off quickly above 1 kHi  and virtually no noise reduction is obtained The lower 

curve in Figure 4.19 shows the noise reduction obtained using the synchronized ANC 

system. Except for the very low frequency range, the synchronized ANC system consis- 

tently outperforms the non-synchronized system and more than 10 dB of noise reduction 

is obtained at some frequencies. 
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Figure 4.20 Noise cancellation versus frequency for the (a) non-synchronized and 
(b) synchronized ANC systems for the IMAX3D camera. 

Figure 4.20 shows the degree of noise cancellation as a function of frequency ob- 

tained for the MAX-3D camera, with the results for the non-synchronized ANC system 

in the upper plot and the results for the synchronized system in the lower plot. Here, the 

noise reduction is limited primarily to frequencies below 2 W. A comparison of the two 

plots indicates that, for this camera, synchronizing the synthesized reference signal to the 

camera noise pulses does not improve the performance of the ANC system. The poor 

performance at higher frequencies indicates that the noise pulses are not correlated at 

these frequencies. This may be due to the extremely complex mechanical workings in- 

side the MAX-3D camera, as well as the large physical size of the camera. Interestingly, 

for the IMAX -3D camera, the amount of noise reduction obtained using the synthesized 

reference input signal is equivalent to the maximum attainable using a traditional 2-input 

ANC system (see Figure 4.12). 

The results of this section indicate that the synthesized reference ANC system with 

pulse-synchronization provides almost as much noise reduction as the standard 2-input 

ANC system. The synthesized reference system is preferred since it is a single input ap- 



proach as required for a camera noise reduction system. It should be noted, however, that 

the system does not perform well enough to reduce the camera noise to an acceptabfe 

level. This is because the periodic component Q(k) is relatively weak, and thus the inter- 

pulse correlation is too low to obtain the necessary degree of noise reduction. Nonethe- 

less, the single-input system may be of some benefit if used in conjunction with other 

noise reduction schemes. 

4.8 Summary 

In this chapter, noise reduction methods using adaptive filtering were examined. 

Adaptive noise cancellation based on the well know LMS algorithm was described and its 

limitations were identified. Transform based variants of the algorithm were seen to pro- 

vide improved performance while keeping the computational complexity to a practical 

level. Factors which can limit the amount of noise reduction attainable with ANC were 

investigated including; signal leakage and low inter-channel coherence. Background 

noise, a distributed noise source, and the distance between microphones were all shown 

to contribute to low inter-channel coherence. 

Blind signal separation was introduced as a generalization of ANC. Blind signal 

separation overcomes the signal leakage problem of ANC but is still sensitive to back- 

ground noise, a distributed noise source, and microphone spacing. Tests of an ANC sys- 

tem to reduce camera noise achieved about 10 dB of noise reduction which is insuff~cient 

for the camera noise application. 

To take advantage of the repetitive nature of camera noise, an ANC system using a 

synthesized reference input was proposed. It was found that, due to low inter-pulse cor- 

relation, the noise reduction obtained using this system was limited. One factor which 

was shown to contribute to the low inter-pulse correlation was the jitter in the arrival time 

of the camera noise pulses. The performance of the ANC system was improved by syn- 

chronizing the reference signal to the input signal to maximize the inter-pulse correlation. 

With a synchronized reference signal, the level of noise reduction was comparable to that 

obtained with the standard 2-input ANC system. Since a key requirement of the camera 

noise reduction system was that it be a single-input scheme, the synchronized synthesized 

reference approach is preferred. Given this fmding, the mathematical model of camera 

noise was modified to include inter-pulse jitter. 

Camera noise is composed of many sources of noise such as: the opening and closing 

of the shutters, the movement of the film from the supply reel to the take-up reel, the 



movement of the sprockets which feed the fdm through the camera, the vibration of the 

camera enclosure, and the rotation of the motors which drive the entire mechanism. 

While some of these noise sources are directly related to the film rate, those which are not 

will tend to reduce the inter-pulse correlation and will thus limit the performance of the 

ANC system with a synthesized reference signal. Specifically, since the periodic compo- 

nent is only part of the overall camera noise, this method provides between 5 dB and 10 

dB of noise reduction under best case conditions. This is insufficient for the camera noise 

application and so, by itself, this approach is not viable. However, the method may be 

somewhat beneficiai if used in conjunction with other noise reduction schemes which ad- 

dress the non-periodic component of the camera noise. 



ESTIMATION OF THE SHORT-TIME SPECTRAL 
MAGNITUDE 

5.1 Introduction 

In this chapter frequency domain based techniques which have been developed to reduce 

the level of an interfering background noise source are examined. The underlying noise 

reduction algorithm is commonly referred to as "spectral subtraction" and is based on es- 

timating the short-time spectral magnitude of the signal. A key advantage of the spectral 

subtraction technique is that it can be applied when only the audio signal contaminated by 

camera noise is available. That is, unlike the adaptive noise cancellation techniques de- 

scribed in Chapter 4, spectral subtraction does not require direct access to the noise 

source in the form of a reference input. Therefore, the spectral subtraction approach is 

well suited to the problem of camera noise and allows the possibility of using the tech- 

nique for restoring the soundtracks of older films. 

In Chapter 3 it was seen that camera noise can be modeled as the sum of a periodic 

component and a cyclical random noise component. The adaptive noise cancellation 

method using a synthesized reference signal was shown in Chapter 4 to reduce the peri- 

odic component by about 10 dB. The spectral subtraction based methods examined in 

this chapter will be shown to successfully reduce the cyclical random component as well 

as the periodic component of the camera noise. 

Signal enhancement based on estimating the spectral magnitude of the signal was fust 

proposed by Weiss et al. in 1974 1121. A more comprehensive study of the technique was 

presented four years later by Boll [13,14] who appears to have discovered the technique 

independently of Weiss er al. Boll applied the spectral subtraction technique as a pre- 

processor to a speech compression algorithm in a communications system. The algorithm 

was intended to work with both narrowband periodic noise and broadband colored noise. 

The various spectral subtraction based noise reduction algorithms described in this 

chapter were initially developed for military applications in an effort to improve the in- 

telligibility of speech signals under extremely adverse noise conditions. For example, 

variations of the algorithm have been used to enhance speech communications in heli- 



copter and jet aircraft cockpits where the signal-to-noise ratio was in the range of -5 dB to 

+5 dB [l3,M, 151. In general it was found that under these extremely adverse conditions 

the various spectral subtraction algorithms did not tend to provide any improvement in 

speech intelligibility. In fact, in some instances, the algorithms have been found to re- 

duce the intelligibility of the speech [13,16]. The algorithms however, were used with 

some success as a pre-processor to datahandwid th compression systems [95]. The spec- 

tral subtraction technique was also shown to improve the performance of digital LPC vo- 

coders 11 5,271. While the various algorithms may not improve speech intelligibility, 

most have been found to provide a significant improvement in the perceived quality of 

the resulting speech signal. It is in this context that the spectral subtraction algorithms 

were considered as potential means of reducing camera noise in film soundtracks. 

In a film soundtrack, the signal-to-noise ratio (speech to camera noise) is expected to 

be significantly greater than the -5 dB to +5 dB described above (see Section 3.5.6). 

Furthermore, it is known that speech intelligibility is not a concern in environments hav- 

ing a signal-to-noise ratio greater than about +15 dB [96,97]. Therefore, the camera noise 

on a film soundtrack is not expected to have any effect on speech intelligibility. Rather, 

the camera noise may have a significant effect on the quality of the audio (usually speech) 

signal. Therefore, the algorithms examined in this chapter were explored solely as a 

means of enhancing the perceived quality of the audio signal on the f h  soundtrack. 

The noise reduction algorithms described in this chapter assume that a noise n(k) has 

been added to a stationary random signal s(k), and that n(k) and s(k) are independent of 

each other*. It is assumed that the noise floor which is present in the short-time spectrum 

can be reduced by subtracting an estimate of it from the spectral magnitude of the noisy 

speech. Spectral subtraction noise reduction algorithms attempt to estimate the short- 

time spectral magnitude of the clean signal and then use the phase from the noisy signal 

y(k), to recover an estimate g(k) of s(k). The various algorithms differ primarily in the 

way in which the spectral magnitude of s(k) is estimated. The class of noise reduction al- 

gorithms described in this chapter depend on the fact that the short-time spectral magni- 

tude of a speech signal is perceptually important whereas its phase is relatively unimpor- 

tant [I 3,18,19]. 

An exampIe of a non-independent noise is the quantization noise resulting when appropriate dithering has 
not been applied [S. P. Lipshitz, R. A, Wannamaker, and I. Vanderkooy, "Quantization and Dither: A 
Theoretical Survey," J. Audio Eng. Soc, vol. 40, no. 5, May 19921. 



This chapter provides a detailed description of the underlying concepts of the spectral 

subtraction technique for signal enhancement. This is done in the context of describing 

the method proposed by Boll. Variations and enhancements to this underlying technique 

which make it particularly effective at removing camera noise from film soundtracks are 

described in subsequent chapters. Specifically, by decomposing the spectral subtraction 

process into subbands and sub-frames, the noise reduction process can be matched to the 

characteristics of the camera noise. Also, by incorporating a perceptual model into the 

spectral subtraction algorithm, the noise reduction process removes only those compo- 

nents of the camera noise which are audible at each instant in time. Both of these refine- 

ments to the spectral subtraction algorithm share the philosophy of reducing the amount 

of processing applied to the noisy signal, thus reducing the residual artifacts which can 

result &om the noise reduction process. 

5.2 Spectrul Subtraction - Boll's Method 

In this section, the spectral subtraction algorithm developed by Boll [13,14] is de- 

scribed. Consider an input signal y(k) consisting of a stationary random signal s(k) which 

has been corrupted by an uncorrelated additive noise source n(k). If the power spectral 

density of the noise n(k) is known, then it is possible to determine the power spectral den- 

sity of the signal s(k). That is, given that noise has been added to a signal, 

y (k )  = s(k)  + n ( k )  9 

then the following relation applies, 

where Py(o) ,  P,(w), and P,(w) are the power spectral densities of y(k), s(k) and n(k) re- 

spectively. Therefore, an estimate of p,(~) can be obtained by subtracting P, (o )  fiom 

Py(o) .  However, because audio signals (including speech) are time-varying processes, 

the above reasoning must be modified somewhat. Specifically, the observed signal y(k) is 

windowed into short-time segments. The windowed segment of the observed input signal 

yw(k)  is obtained by multiplying a segment of y(k) by an appropriate windowing func- 

tion w(k). Similarly, sw(k)  and nw(k)  are windowed versions of s(k) and n(k) respec- 

tively. The reason for using windowed segments of the input signal yw(k)  is that speech 

can be considered to be locally stationary over periods of about 30 to 40 ms [14,95]. 

Therefore, by choosing an appropriate window length, s,(k) can be assumed to be sta- 

t i onq .  



Windowing the input signal implies a modified version of equation (5.1), reflecting 

the fact that the processing must be carried out on a short-time basis, 

y,(k) = sw(k) +%,m 
Taking the Discrete Time Fourier Transform ( D m  of (5.3) we get, 

yw (eio) = S, (eio) + N, (eio) 

where in general for any arbitrary signalflk) of length L, 

Similarly, for any F, (ejw ) , the inverse Discrete Time Fourier Transform is found by 

Equations (5.3), (5.4), ( 5 3 ,  and (5.6) therefore provide the following transform pairs: 

Y,W tt yw(ejm) (5.7a) 

s,,,(k) - ~ , ( e j ? ,  (5.7b) 

n,(k) - ~ , ( e j @ )  - (5.7~) 

In the spectral subtraction technique proposed by BoU it is assumed that the spectral 

magnitude of the noisy speech can be successfully approximated by the sum of the speech 

and noise spectral magnitudes. That is, Boll made the approximation, 

Iyw (ej" )I = IS, (ejw)l + I N ,  (ej")I (5-8) 

from which the spectral magnitude of the speech signal can be estimated as 

I&,,(eim)l = l ~ , ( e j @ ) l - I ~ ~ ( e j ~ ) I  , 

where l%(eja)J is the estimated spectral magnitude of the clean speech signal. 

Since it is assumed that only the degraded signal is available, the magnitude of the 

noise spectrum I ~ , ( e j ~ ) l  is not readily available. Therefore, IlV,(ejCu)l is approximated 

by E[IlVw(ejU)l], where E[.] denotes the expectation operator. Typically, n, (k) is as- 



sumed to be locally stationary in the sense that the spectral magnitude of the noise just 

prior to speech activity is the same as during speech activity. Furthermore, &(k) is as- 

sumed to be ergodic, and so that in practice E'[IlVW(ei")l] is obtained by averaging meas- 

urements of I~,(ejO)l during periods with no speech activity, where only the noise is prr- 

sent. As such, the estimated spectral magnitude of the clean speech signal is calculated 

by 

where lyW(ei@)l is obtained directly from the observed data. 

Equation (5.10) presents an interesting problem in that it can produce a negative esti- 

mate for 1% (eio)l. Boll suggested two ways of dealing with this problem. One approach 

is to set all negative values of l%(eio)l to zero. This is equivalent to half-wave rec-- 

cation. The second approach is to make all negative magnitudes positive, which is 

equivalent to fuil-wave rectification. Therefore, (5.10) can be modified to include half- 

wave rectification 

or full-wave rectification, 

To obtain the noise-reduced signal &(k), the magnitude l%(eio)l must be com- 

bined with an estimate of the phase of the signal aSw(e jo)  to form $,(ejo). How- 

ever, since ~ ~ , ( e j ~ )  is not available, it is replaced by ay,(eiU), the phase of the de- 

graded signal. This approximation is justified because it is well known that listeners tend 

to be quite insensitive to phase errors in speech over the short term [13,18,19]. The re- 

sults of subjective tests indicate that listeners do not detect random phase errors of less 

than about 7tY4 over short time intervals. Therefore, the approximation to s,,(k) can be 

constructed by combining the magnitude and phase estimates and performing an inverse 

DTFI' in the following manner, 



The above derivation of the spectral subtraction proce an als 

gramatically as shown in Figure 5.1. The observed signal y(k) is windowed into short time 

segments prior to being transformed via a Discrete Fourier Transform @FT). In practice 

this is done using a Fast Fourier Transform (FFT) algorithm. The resulting phase is 

stored for later use while the spectral magnitude is processed. During periods where there 

is no speech activity an estimate of the spectral magnitude of the noise is derived. This 

estimate of the magnitude of the noise is subtracted fYom the magnitude of the noisy input 

signal. Any negative values are rectified and combined with the stored phase prior to per- 

forming an inverse DFT. The output of the inverse-DFI' is an estimate of the clean 

speech signal. 

Figure 5.1 Block diagram of the spectral subtraction process. 

As stated earlier, the spectral subtraction technique assumes that the noise is locally 

stationary. If the spectral magnitude of the noise changes to some new locally stationary 

state, then it is assumed that there is enough time (about 300 ms without speech activity) 

to determine a new estimate of the noise spectral magnitude. Therefore, for a slowly 

varying non-stationary background noise source, the algorithm requires some form of 

speech activity detector in order to know when to update the estimate of the noise spectral 

magnitude. The estimate of the noise spectral magnitude is obtained by locally averaging 

the observed signaI during periods of non-speech activity. This averaging reduces the 

variance in the estimate of the noise floor. 

Another key assumption is that speech is stationary over short periods of time. Boll 

chose a window length of 32 ms which is approximately twice the maximum possible 



pitch period of the speech. The length of the window must be chosen carefuily. A shorter 

window length will guarantee stationarity of the speech signal but will result in poorer 

frequency resolution in the spectrum of the noise within a given window. Conversely, a 

longer window wiII provide better frequency resolution in the spectral magnitude of the 

noise but may cause audible artifacts in the reconstructed speech signal since the speech 

can no longer be assumed to be stationary within the processing frame. 

Boll's implementation used windows which were overlapped by 50%. The overlap- 

ping greatly reduces any discontinuities in the reconstructed signal that can occur at the 

boundaries of the windowed segments. Of course, the windows of the processed time 

data must be overlapped when reconstructing the output time signal. Boll used a Hanning 

window, while Lim [16] suggested a Bartlett (triangular) window. Lim and Oppenheim 

[95] suggest that the type of window is not critical to the performance of the algorithm 

provided that the sum of the overlapping windows is equal to unity as described by the 

following expression, 

The above discussion relates to the analysis window. There is, of course, a corresponding 

windowing operation which occurs in the synthesis process. While equation (5.16) im- 

plies the use of a rectangular synthesis window, it will be seen later that other analy- 

sisfsynthesis window combinations can provide improved performance. Moreover, when 

incorporating an auditory model into the spectral subtraction process, the choice of win- 

dow becomes important. 

Boll used a DFT size equal to the window size. However, Allen [98] points out that 

modifying the magnitude spectrum in the Fourier domain is equivalent to convolving the 

signal with a fdtering function. Since convolution generally results in a lengthening of 

the signal, a form of temporal aliasing can result. To eliminate this aliasing, zero padding 

of the time signal can be done prior to the DFT. In this way, any modifications to the 

spectrum magnitude will spill into the zero padding upon doing the inverse Dm. Boll 

found that for his work (voice communication systems), augmenting the signal with zeros 

did not result in a significant improvement in audio quality. 

To test the performance of his algorithm, Boll conducted a DRT (Diagnostic Rhyme 

Test) to measure the intelligibility of the reconstructed signal. He also conducted tests to 

evaluate the subjective quality of the processed waveform. The signal-to-noise ratio of 

the unprocessed speech was in the range of -5 dB to +5 dB, and the results indicated that 



the spectral subtraction algorithm had no positive effect on intelligibility. However, the 

perceived quality of the speech was significantly improved. 

Many variations to the spectral subtraction algorithm have been developed. The vari- 

ous algorithms differ primarily in the manner in which they estimate (e jo )I. Many 

alternate spectral subtraction algorithms can be derived through a generalization of (5.10) 

as shown below, 

where a > 0 and is the overestimation parameter. Setting both parameters, a and P 
equal to unity results in the magnitude subtraction algorithm proposed by Boll. Setting a 
equal to 2 resuIts in the power subtraction version of the spectral subtraction algorithm 

[99]. Lim [16] conducted a study in which he investigated the effect of a on speech in- 
telligibility. He performed intelligibility tests with 22 listeners on speech segments hav- 

ing signal-to-noise ratios of = , +5,0, and -5 dB, processed using the spectral subtraction 

algorithm described by (5.17) with values of 2.0, 1.0, 0.5 and 0.25 for a (P I ) .  Lim 

found that within the range from 0.5 to 2.0 the choice of a did not significantly affect the 

measured intelligibility of the processed speech. For a =0.25 the intelligibility scores de- 

creased substantially. Interestingly however, Lirn indicates that for values of a of 1.0 and 

0.5, the processed speech was perceived to be "less noisy". The overestimation parameter 

p allows for the possibility of subtracting more than the expected value of the noise and 

will be discussed in greater detail in later sections. 

5.3 Interpretation of Spectral Subtraction as a Zero-Phase Filter 

Lim and Oppenheim [95] showed that the spectral subtraction algorithm can be viewed as 

a zero-phase filter. That is, the spectral subtraction process can be described by the fol- 

lowing expression, 

S,(eio) = yw(eio) 4?(eio). (5.18) 

For example, substituting (5.17) into (5.18) and setting a equal to 2 provides the follow- 

ing expression for lY(eio) , 



Furthermore, by defining 

and substituting this into (5.19), the following expression for ~ ( e j ~ )  is obtained, 

The parameter x2(e iw)  as defined in (5.20) is the signal-plus-noise-to-noise ratio at 

each frequency a. The filter described by (5.21) can be described as a zero-phase filter 

since it uses only magnitudes and thus has no effect on the phase of the signal. Figure 5.2 

plots El(eio) as a function of x2 ( e j O )  for values of P of 0, 1 ,2  and 4. 
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Figure 5.2 Spectral subtraction suppression curves as a function of the 
overestimation parameter, f i  (-2). 



The figure reveals that the spectral subtraction process, at a frequency w, can be de- 

scribed as a family of attenuation (suppression) curves which are dependent upon the 

value of 8. The amount of attenuation applied to the noisy signal, and therefore the 

amount of noise suppression, varies with the local signal-plus-noise-to-noise ratio of the 

unprocessed signal. At higher values of x(eio) , (i.e. 2 20 dB ) very little processing is 

required and therefore almost no attenuation is applied to the noisy signal. As the signal- 

to-noise ratio decreases however, more noise suppression is required and so more at- 

tenuation is applied to the signal. It can also be seen from the figure that increasing the 

overestimation factor causes more attenuation to be applied to the noisy signal. More 

precisely, the suppression c w e s  are offset (horizontally) by 3 dB for every doubling of P- 
The zero-phase Nter interpretation of the spectral subtraction process can be general- 

ized beyond what Lim and Oppenheim described (see equation (5.29)). Specifically, by 

substituting (5.17) into (5.18) without assuming a specific value for a, the following 

equation is obtained, 

By now defining 

and substituting xa (ejo) into (5.22), the following expression for IY(ejm) is obtained, 

A further generalization can be made by allowing the exponent outside the parenthe- 

sis of (5.24) to be independent of the exponent inside the parenthesis. More precisely, a 

new variable yis defined and (5.24) is modified to give, 



In a study by Paul [100], this additional degree of fieedom was found to be helpful in al- 

lowing for a balance between the amount of noise suppression and the amount of signal 

distortion resulting from the processing. 

Expressed in the form of equation (5.17), this generalized version of spectral subtrac- 

tion is given as, 

It should be noted that, for values of a # 2 ,  xa(e io )  as defined in (5.23) is no 

longer equal to the signal-plus-noise-to-noise ratio. In order to plot ~ ( e @ )  as a function 

of the signal-plus-noise-to-noise ratio, the parameter xa(e iw)  must be described in 

2 jrn terms of X (e  ) as shown below, 

2 j@ 
The parameter X ( e  ) represents the signal-plus-noise-to-noise ratio of the unproc- 

essed signal. A parameter which is perhaps more convenient for understanding the prop- 

erties of the zero-phase spectral subtraction filter is the traditional signal-to-noise ratio 
2 jo 

denoted here as R ( eio ), and related to X ( e ) through the following, 

x2(eim) = IZ(eiw) +l.  (5.28) 

Given (5.25) and (5.28), it is possible to examine the suppression curves for the more 

generalized spectral subtraction algorithm. Examples of various suppression curves re- 

sulting from tradeoffs of the parameters a, p and yare given in Figures 5.3 to 5.6. 

Figure 5.3 shows a family of suppression curves which were obtained by varying a 

and ytogether, while keeping P equal to unity. Note that the horizontal axis represents 

the signal-to-noise ratio ~ ( e j @ ) .  It can be seen that more attenuation is applied to the 

noisy signal for lower values of a (and y ) and hence more noise reduction is obtained. 

The curve with a = y = 1 represents the magnitude subtraction algorithm proposed by 

Boil, while the curve with a = y= 2 is the suppression curve for the power subtraction 

algorithm. Clearly the magnitude subtraction algorithm represents a more aggressive 

noise reduction algorithm than the power subtraction approach. 



Figure 5.3 Suppression curves for four values of a, with y=a and El. 

Figure 5.4 Suppression curves for four values of q with py=l. 



The curves of Figure 5.4 show the effect of changing a while keeping y = 1. Again, 

p is held equal to unity for aU curves. For signal-to-noise ratios below 0 dB, the suppres- 

sion curves become linear and are parallel to each other. Furthermore, these linear por- 

tions of the suppression curves are offset vertically by 6 dB for every doubling (or halv- 

ing) of a, 

The curve corresponding to a = 2 (with y = 1) is the Wiener filter version of the 

spectral subtraction algorithm. That is, it approximates a Wiener filter and stems from an 

attempt to minimize the mean-squared error of the best time domain fit to the underlying 

speech signal. Similarly, the power subtraction algorithm described earlier corresponds 

to the best estimate of the spectrum of the speech [IS]. 

Figure 5.5 Suppression curves for four values of a and two values of y. Upper 
curves are for yc2. Lower curves are for w.5. 

The curves in Figure 5.5 represent two groups of suppression curves which are ob- 

tained for two values of y: The upper group of curves correspond to a value of y=2 

while the lower set of curves are for y= 0.5. Within each group the value of a is varied 

in four steps from 0.5 to 4. Lowering the value of yprovides a sharper knee in the at- 

tenuation curve and results in a steeper slope at lower signal-to-noise ratios. Note how- 

ever, that within the two groups the linear portions of the curves remain parallel. That is, 



the curves within a group have the same slope for signal-to-noise ratios below approxi- 

mately 0 dB. 

Figure 5.6 demonstrates the effect of varying y: For the suppression curves shown in 

this figure, a and are held constant at unity. Examination of the linear portions of the 

curves (i.e. ~ ( e @ )  5 0 dB ) shows that y controls the slope of the curves. Specifically, a 

halving of yresults in a doubling of the slope. 
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Figure 5.6 Suppression curves for four values of y, with =/?=I. 

Given the results of Figures 5.4 and 5.6, the combined effect of changing both a and y 

can be understood. Referring back to Figure 5.3, consider the linear portions of the 

curves for a = y= 1 and a = y= 2. Examination of these curves at ~ ( e j ~ )  = -10 dB, 

shows that the attenuation of the a = y= 1 curve can be derived by doubling the slope of 

the a = y= 2 curve (due to the halving of y) and subtracting 6 dB (due to the halving of 

a). 

The results plotted in Figures 5.2 to 5.6 demonstrate that considerable flexibility in 

controlling the suppression curves is possible through changes in the parameters a, and 

yof (5.25). Suitable values for these parameters depend on the signal-to-noise ratio of the 

unprocessed signal, the required amount of noise suppression and the acceptable level of 



distortion to the underlying signal. It has also been shown in Figures 5.2 to 5.6 that the 

slope of the linear portions of these curves is directly controlled by a, P and y. This is an 

important consideration since it has been shown by Paul [I001 that the points at which the 

various spectral subtraction algorithms create unpleasant artifacts tend to have the same 

slope on the noise suppression curves. That is, when the slope of the suppression curves 

exceed a critical value, perceptually disturbing artifacts appear. 

5.4 Limitations of the Spectral Magnitude Estimation Methods 

In the previous sections the fundamental principles of signal enhancement based on esti- 

mating the spectral magnitude were described. In this section, the performance of  this 

technique is discussed and its limitations are identified. 

It has already been noted that spectral subtraction does not tend to improve speech 

intelligibility, but does provide an improvement in the perceived quality of the signal. 

However, its performance is limited by the audible artifacts created by the process which 

can be more disturbing to some listeners than the original noise. These artifacts become 

increasingly disturbing as the signal-to-noise ratio of the corrupted input signal decreases. 

In order for the spectral subtraction technique to be useful for reducing camera noise, 

steps must be taken to reduce the audibility of these artifacts while providing a sufficient 

amount of noise suppression. 

The various types of artifacts created by the spectral subtraction process include: 

musical noise, 

incomplete or variable cancellation of the noise (modulation of the noise floor), 

timbral effects and/or loss of frequency components of the signal, 

missing sounds - loss of low level signal (speech) components, 

phase distortions, 

time aliasing, 

pre-echoes and post-echoes (temporal smearing). 

All of these artifacts are due to errors in two of the underlying assumptions upon . 
which spectral subtraction is based. Specifically, the artifacts can be shown to be due to 

errors in the assumption that the spectral magnitude of the noise (within a given process- 

ing frame) is equal to the expected value of the noise, 



as well as errors in approximating the phase of the underlying signal by the phase of the 

noisy signal, 

5.4.1 Musical Noise 

Musical noise is possibly the single most limiting factor when using the specual subtrac- 

tion process for removing camera noise. Musical noise consists of short spurious bursts 

of isolated fiequency components which appear seemingly at random across the spectrum 

of the processed signal. As noted earlier, because of the time-varying nature of speech, 

spectral subtraction must be done on a frame-by-fkme basis. Due to the random frame- 

to-frame fluctuations in the magnitude spectrum of the noise, the level of a given spectral 

component will sometimes be greater than the estimated value of the noise. Therefore, 

the spectral subtraction process will not entirely cancel these components and short tone 

bursts wiil exist for the duration of the frame. Because of its musicality (tonality), this 

residual noise is often very disturbing to the listener and for the purpose of removing 

camera noise, musical noise must be strictly avoided. An example of musical noise is 

provided in Figure 5.7 which shows the spectrogram of a signal with no speech activity 

processed by spectral subtraction (with a = P = y = 1). The musical noise is seen as the 

darker areas (rectangles) in the figure which represent short bursts of residual narrowband 

noise. 

It should be noted that musical noise occurs more when half-wave rectification is used 

in the spectral subtraction process. This is because with half-wave rectification, varia- 

tions in the level of a given spectral component can result in that component being ran- 

domly switched on and off on a frame-by-frame basis. Conversely, with full-wave recti- 

fication, negative spectral components become positive and no sudden switching occurs. 

However, full-wave rectification limits the amount of noise suppression that is possible, 

and can in fact increase the noise level in some instances [13]. Therefore, developers of 

spectral subtraction algorithms have used half-wave rectification exclusively. 
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Figure 5.7 Spectrogram of processed signal showing musical noise. 

5.4.2 Ephraim and Malah's Spectral Subtraction Algorithm 

Ephraim and Malah [22] proposed a version of spectral subtraction which uses a mini- 

mum mean-square error estimate of the magnitude spectrum of the noise. The main point 

of interest regarding this algorithm is that it produces colorless residual noise and does 

not create musical noise as a result of its processing. This is achieved by using the con- 

cept of an a priori signal-to-noise estimate SNRp,+o which is defined as, 

with 

where P[-] denotes half-wave rectification. S N R ~ , & , ~ ~  is the a posteriori estimate of 

the signal-to-noise ratio in the pth time interval, while l$(pl,ej0)12 is the estimate of the 

desired signal in the p-1 time interval. The parameter (p determines the amount of 

smoothing applied in the estimate of S N R , ~ o  and is typically set to about 0.98. 



In an effort to determine the mechanism within the algorithm which causes the resid- 

ual noise to be colorless, Cappe [21] conducted a comprehensive study of the Ephraim 

and MaIah noise suppressor and concluded that the nonlinear smoothing procedure limits 

the variation in the attenuation applied to the noisy signal over successive frames. By 

limiting the frame-to-frame variation in the attenuation, the on-and-off switching of 

spectral components responsible for musical noise is correspondingly limited. Cappk's 

findings tend to support the observations of Pad  El001 who noted that the onset of musi- 

cal noise occurs when the slope of the noise suppression curves exceeds a critical value. 

As the slope of the suppression curve increases, the variation in the level of a given 

spectral component increases relative to the average level. Paul speculated that musical 

noise becomes audible when a critical value of this ratio is exceeded. Stated more s i m  

ply, a steeper slope on the suppression curve tends to emphasize the on-and-off switching 

of low leveI spectral components. When the slope exceeds a certain value, the switching 

increases to the point that it becomes audible. Recently, Scalart and Vieira Filho [I011 

showed that the smoothed noise estimate technique can be used to significantly reduce 

musical noise in the various spectral subtraction algorithms (magnitude, power, Wiener, 

etc.) described earlier. 

The Ephraim and Malah noise suppressor is not directly applicable to the problem of 

camera noise since it provides only a reduction of the interfering noise and does not give 

complete cancellation of the noise. In some applications, such as the restoration of 

gramophone recordings, complete noise cancellation is not required and so the Ephraim 

and Malah noise suppresser can be applied [30]. For the problem of camera noise how- 

ever, other schemes must be investigated for reducing the musical noise. 

5.4.3 Signal Subspace Approach 

More recently, Ephraim and Van Trees [102,103] proposed a signal subspace approach to 

speech enhancement. They decomposed the vector space of the noisy signal into two 

subspaces; a signal plus noise subspace and a noise subspace. The noise reduction process 

then consists of nulling the noise subspace and estimating the signal from the remaining 

subspace. The main difference between the signal subspace approach and the spectral 

subtraction method is in the transform used to decompose the noisy signal. The Kar- 

hunen-loeve transform (KLT) was used for the decomposition in the signal subspace ap- 

proach. 



As in the Ephraim and Malah method described above, the main advantage claimed 

for the signal subspace approach is that it does not create musical noise. To evaluate the 

performance of the signal subspace approach, Ephraim and Van Trees conducted t a o  

subjective tests. In the first test they found that 84% of the listeners preferred the speech 

enhanced by the signal subspace method over the unprocessed noisy speech. The re- 

maining Listeners felt that the distortion of the speech signal due to the processing was 

more disturbing than the noise. In the second test, listeners compared the amount of dis- 

tortion to the speech signal resulting from the signal subspace approach and the spectral 

subtraction approach. The results indicate that the signal subspace approach causes more 

audible distortion of the speech sign& than the spectral subtraction method. 

Therefore, the signal subspace approach may not be appropriate for the camera noise 

application since distortion to the underlying speech signal must be strictly avoided. 

Moreover, while the main benefit of the signal subspace approach appears to be that it 

does not produce musical noise, we shall see later in this chapter that spectral subtraction 

methods based on auditory perception can also reduce musical noise while minimizing 

distortions to the speech signal. 

5.4.4 Wavelet Based Noise Reduction 

A noise reduction method which shares many similarities with the signal subspace 

method described above is the method based on wavelets [lO4,lOS]. 

In this approach, the noisy signal is expanded in an appropriate orthonormal basis. 

The choice of basis is made using some form of cost function such as the Shannon en- 

tropy. The coefficients of the expansion are ordered in terms of magnitude. Those coef- 

ficients which fall above some pre-determined threshold are assumed to be due the coher- 

ent (desired) portion of the input signal. The residua1 terms consist of the noisy part of the 

input signal and are treated as a new signal which is in turn expanded and divided into its 

coherent and noisy components. This iteration process continues and the coherent por- 

tions from each expansion are combined to produce an estimate of the clean signal. 

Berger et al. [lo41 used this approach to restore old musical recordings of piano and 

vocal arrangements. They report that while the wavelet based denoising algorithm was 

useful for removing noise £kom musical signals, it created several undesirable artifacts in 

the restored signal. Specifically, they report disturbing signal-dependent fluctuations in 

the level of the residual background noise (i.e., noise spurts). Among other artifacts, 



Berger et al. also indicate that the method creates annoying random clicks and whistles 

(tones) in the restored signal. 

It appears that while wavelet based noise reduction may offer an alternative method 

for noise reduction, it has several shortcomings which limit its performance. Therefore, 

in this thesis, we shall restrict our discussion to spectral subtraction based algorithms. 

Later in this chapter, the similarities between the concept of decomposing the spectral 

subtraction process into subbands and sub-frames, and wavelet decomposition will be 

highlighted. An advantage of the subband/sub-frame approach is that it can be easily ex- 

tended to include a model of the human auditory system which in turn can significantly 

reduce the audibility of unwanted artifacts and distortion to the speech signal. 

5.4.5 Overestimation with Minimum Spectral Floor 

Many schemes have been developed to try to avoid or eliminate musical noise. The earli- 

est attempts used the overestimation parameter defined earlier as f l  in (5.17) [17]. By 

setting B > 1, the level of the noise is overestimated and thus the amount of noise sup- 

pression is increased. This in turn, reduces the amount of musical noise in the processed 

signal by limiting the number of spectral components that go uncanceled. By progres- 

sively increasing P, one can reduce the musical noise to an arbitrary level. In practice, 

values in the range £iom 1.5 to 2.5 are used for Boll's version of spectral subtraction. 

Rather than multiplying the expected value of the noise magnitude by an overestima- 

tion parameter, Preuss [27] proposed using the maximum value of the spectrd magnitude 

of the noise measured during periods with no speech component. This is effectively a 

form of overestimation. More recently, Luckwood and Boudy [24] suggested that the 

overestimation parameter should be frequency dependent. 

The problem with any approach for reducing musical noise based on some form of 

overestimation is that one inevitably cancels a portion of the desired speech signal. This 

becomes increasingly true at lower signal-to-noise ratios where distortions to the under- 

lying speech signal become readily audible. This distortion is not acceptable when re- 

moving camera noise. At higher signal-to-noise ratios, a significant amount of overesti- 

mation is possible before any distortion to the speech signal becomes audible and there- 

fore, under these conditions, the musical noise can be effectively eliminated. At lower 

signal-to-noise ratios a modest overestimation is acceptable but must be combined with 

other techniques in order to remove the musical noise. 



As a means of providing a tradeoff between the amount of attainable noise suppres- 

sion, the audibility of musical noise, and the level of distortion to the underlying speech 

signal, Berouti et al. [I71 proposed the use of a minimum spectralfluor. In this scheme, 

any spectral component f&g below some threshold is set to a value referred to as the 

spectral floor- MathematicaIly, the process can be described by modifying (5.26) as fol- 

lows; 

where i%(eia)I is the estimate of the spectral magnitude of the desired speech signal. 

The parameter G I N ,  (ejU )la corresponds to the spectral floor. The parameter 6 h- 

its the amount of noise suppression by keeping the residual noise above some minimum 

level. This in turn limits the variance of the residual spectral components, thus Limiting 

the on-and-off switching of these components which causes the musical noise. Smaller 

values of 6provide a greater degree of noise suppression but result in more audible musi- 

cal noise. Experiments have shown that the optimal value for 6 is dependent on a, p, and 

y[17, 1001. 

As an extension to the minimum spectral floor method for the camera noise case, we 

propose the following. Due to the characteristics of the camera noise, specifically the pe- 

riodic component, there is some structure to the phase of the camera noise. Therefore, 

when implementing a minimum spectral floor, the structure in the phase is maintained 

and the residual noise is clearly audible as camera noise. To overcome this problem, the 

phases of the components which fall below the minimum spectral floor are set to some 

random value. The values for the phase are chosen fkom a uniformly distributed random 

process. As can be heard on the demonstration CD, this results in a more benign (hiss- 

Like) noise which may be more acceptable in the camera noise application. 

5.4.6 Survival Algorithm 

The approach of the methods presented so far for reducing musical noise has been to in- 

tegrate some scheme directly into the spectral subtraction process. A somewhat different 

approach was proposed by Vaseghi and Frayling-Cork [20] whereby the output of the 



spectral subtraction algorithm is processed in a separate algorithm designed specifically 

to reduce musical noise- 

The overestimation schemes discussed in the previous section considered only the 

magnitude of the spectral peaks which cause musical noise. The Vaseghi and Frayling- 

Cork algorithm takes into account the duration of the spectral peaks as well as their level. 

They found that a large proportion of the spectral peaks of the noise which result in musi- 

cal noise had a duration of less than 15 ms, whereas spectral components due to the 

speech signal tend to have a longer lifetime. Therefore, they reasoned that a means of 

reducing musical noise could be devised based on the lifetime of a given spectral peak. 

Vaseghi and Frayling-Cork proposed a survival algorithm which passes a "window" 

over the successive ti-ames of the spectra resulting from the output of the spectral sub- 

traction process for each of the frequency bins. The size of the window was chosen to 

accommodate 5 frames fiom the spectral subtraction process. The extreme end frames in 

the window are tested to determine if they are simultaneously zero. Having both end 

frames equal to zero indicates that the spectral components contained within the window 

are of short duration. If the two end frames of a given frequency bin are not simultane- 

ously zero, then this suggests that a desired signal component is contained within the 

window and no processing is done on these frames. If however, they are equal to zero, 

then a second test is performed to see if any of the kames within the window exceed a 

threshold level which would indicate the presence of a signal. If any of the frames ex- 

ceeds this threshold then no processing is done to the fiarnes. If none of the frames ex- 

ceed the threshold, then all of the frames within the window are set to zero. The window 

is then shifted to the next group of 5 frames and the process is repeated. 

While this method is somewhat heuristic in its approach, Vaseghi and Frayling-Cork 

reported that their survival algorithm removes the majority of musical noise and results in 

considerably lower residual noise energy and a substantial improvement in perceived 

quality. 

5.4.7 Modified Survival Algorithm 

The survival algorithm described above was implemented and evaluated as a means of 

reducing musical noise when suppressing camera noise. The size of the window used in 

the survival algorithm was varied to include fiom 5 to 10 frames. The threshold used to 

determine the presence of a signal component was fkequency dependent and based on the 



estimate of the noise. Specifically, the threshold T was a function of the noise estimate as 

described by, 

Using q, the threshold could be varied and it was found that the value of T giving the 

best performance varied with the signal-to-noise ratio of the input signal. As indlicated by 

Vaseghi and Frayling-Cork the algorithm provided a substantial reduction of the musical 

noise. However, it was found that with some modifications, the algorithm couldL be made 

to perform better. 

The Vaseghi and Frayling-Cork algorithm makes a binary decision as to whether or 

not the spectral components within the analysis window are due to musical noise. This 

decision is based largely on the presence of components at the boundaries of the analysis 

window. As such, the basic survival algorithm will not eliminate low level mus5cal noise 

which happens to fall on the boundaries of the analysis window. Similarly, the algorithm 

does not address musical noise which falls within the same analysis window as a signal 

component which exceeds the threshold. A modified survival algorithm was therefore 

devised which attempts to address these issues. The workings of the modified survival 

algorithm are seen in Figure 5.8. 
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Figure 5.8 Modifi~ed survival algorithm for removing musical noise- 

As before, an analysis window containing N frames from the output of t h e  spectral 

subtraction process is used in the proposed modified survival algorithm. The new algo- 

rithm uses two thresholds and a soft-decision rule for attenuating low level components. 

A gain factor, g is applied to each f rame~(d~)  as determined by the following d e ,  



where 

The rule works in the following manner. Any fiarnef;(e'a) within the analysis win- 

dow who's level exceeds the threshold, TI is left unaltered. Tl is chosen such that the 

probability of a noise spectrai peak exceeding this threshold is very low. That is, k m e s  

exceeding Tl are with a high probability due to the signal component. 

Those frames which fall below Tl are multiplied by the gain factor (actually attenua- 

tion) g. The gain factor g is determined for a given analysis frame by the percentage of 

frames which exceed the second threshold, T2. That is, the fewer the number of frames 

which exceed T2, the greater the attenuation applied to these frames. The exponent p is 

used to further control the attenuation applied to these frames. Larger values of p result 

in more aggressive attenuation of these low level £kames. Both thresholds Tl and Tz were 

made to be functions of the noise estimate in a manner similar to equation (5.31). This 

modified survival algorithm provides more degrees of freedom. 

It can be seen that, unlike the Vaseghi and Frayling-Cork algorithm, all  frames in the 

modified version influence the decision as to whether or not the content of the analysis 

window is musical noise. As a result, a noise spectral peak located in the same analysis 

window as a wanted signal component will now be attenuated. Also, short bursts of mu- 

sical noise will now also be attenuated. The number of frames in the analysis window of 

the Vaseghi and Frayling-Cork algorithm was determined by the expected duration of 

noise spectral peaks. The new algorithm allows for flexibility in choosing the size of the 

analysis window. 

To better understand the modified survival algorithm, consider the example depicted 

in Figure 5.8. In this example, frames fl andfs would pass unprocessed. All other frames 

would be attenuated by a factor g. Since half of the frames fall below T2, the gain factor g 

would be equal to some value g = 05P determined by the parameter p. In the Vaseghi 

and Frayling-Cork algorithm, none of the frames in this example would be processed 

(attenuated). 



5.4.8 Incomplete noise cancellation 

The basic spectral subtraction algorithm described in Section 5.2 does not provide com- 

plete cancellation of the noise. That is, a residual noise will remain after processing. The 

incomplete cancellation of the interfering noise is due to the variations in the spectral 

magnitude of the noise. Specifically, the spectral magnitude of the noise varies about 

some mean value ficm fiame to h e .  This is in evidence in Figure 5.9 which shows the 

average value (dotted curve) of the noise for each spectral component as well as the 

maximum value (solid curve) over 20 fiames. It can be seen that in this example, the 

maximum value of the noise can exceed the average value by as much as 5 dB. Other 

examples may demonstrate a larger variation. 

In Boll's basic algorithm the expected value of the noise is used in the subtraction 

process, and so, for those frames where the noise exceeds the expected value, a portion of 

the noise will not be canceled- 

frequency, Hz 

Figure 5.9 Maximum and mean values of noise spectral magnitudes. 

One method for overcoming the problem of incomplete noise cancellation employs 

the overestimation parameter p first proposed by Berouti et al. [17]. Although overesti- 

mation was originally intended as a means of reducing musical noise, it is also useful for 

obtaining more complete cancellation of the interfering noise. As its name suggests, this 

parameter provides an overestimation of the noise in the spectral subtraction process thus 

ensuring that a greater portion of the noise is canceled. Higher values of /? provide a 



greater degree of noise suppression and, given a sufficiently high value, the interfering 

noise can be compIetely eliminated, A key advantage of the overestimation parameter is 

its simplicity and several variations to the basic concept have been proposed. 

5.4.9 Overestimation based on the expected value and variance of the noise spectraI 

magnitude 

While the use of an overestimation parameter effectively reduces the amount of uncan- 

celed noise, the methods proposed to date are limited in that they do not account for the 

variations of each spectral magnitude component. That is, they are based solely on the 

mean (or maximum) of the spectral magnitude of the noise. Therefore, a new variant to 

the overestimation parameter is proposed which makes use of both the mean and variance 

of the spectral magnitude of the noise. The following variation to the spectral subtraction 

equation is proposed, 

where STDC.1 represents the standard deviation. Both the mean and standard deviation of 

the spectral magnitude of the noise are estimated during the time interval just prior to 

speech activity. This new method for overestimating the noise spectral magnitude pro- 

vides additional flexibility and informal Listening tests indicate that it tends to give better 

noise cancellation performance. This appears to be due to the fact that it more accurately 

reflects the variations in the interfering noise. 

5.4.10 Timbral Effects and Loss of Signal Components 

Due to the same mechanism which can cause some of the noise to go uncanceled, spectral 

subtraction can also cause part of the desired signal to be removed. When the level of a 

spectral component of the noise within a given processing frame is lower than the noise 

estimate, a portion of the signal at that frequency will be canceled. The results of this can 

be heard as either a change in the timbre of the desired signal or a loss of low level signal 

components. 

One way to limit the amount of desired signal which is canceled in the spectral sub- 

traction process is to underestimate the level of the noise. Of course, this will result in 

incomplete noise cancellation. Therefore, a balance must be found in order to obtain a 

sufficient degree of noise cancellation without overly distorting the underlying speech 

signal. Informal listening tests indicated that the new overestimation method proposed in 



the previous section tends to provide a good compromise between these two con£licting 

requirements. 

5.4.11 Phase Distortions 

One of the hndamental assumptions of the spectral subtraction process was that the 

phasz of the desired signal could be successfully approximated by the phase of the noisy 

input signal. This approximation means that there will be some error in the processed 

signal. Even if one could somehow know the exact spectrai magnitude of the noise, 

spectral subtraction does not offer any mechanism to determine the phase of the noise. 

There are two main types of audible artifacts which occur as a result of this phase error: 

roughness and temporal smearing. Roughness is primarily heard during sustained sounds 

such as vowels in speech. Conversely, temporal smearing is more readily heard as pre- 

echoes and post-echoes occurring near a transient signal. 

Vary 1191 showed that there is a direct relation between the expected maximum phase 

error and the signal-to-noise ratio for complex gaussian noise. Vary derived the follow- 

ing relation 

where A@,, is the maximum phase deviation, ZV(eio) is the noise power, and s(ejo) is 

the signal power at frequency o. This expression is plotted in Figure 5.10 as a function 

of the signal-to-noise ratio. 

There is one point on the curve shown in Figure 5.10 which is of particular interest. 

For a signal-to-noise ratio of about 6 dB, the resulting expected maximum phase error is 

4 This point is of interest because it has been shown that while the ear is relatively in- 

sensitive to phase, the threshold at which a random phase error becomes audible is about 

d 4  radians [19]. For larger phase errors the speech takes on a rough quality. Therefore, 

it can be concluded that roughness due to phase error will not be audible provided that the 

signal-to-noise ratio is above 6 dB. 



Figure 5.10 Maximum expected phase error due to the addition of gaussian noise as 
a function of the signal-to-noise ratio. 

5.4.12 Time Aliasing and Temporal Smearing 

The effects of phase errors of less than M4 radians in the spectral subtraction process can 

also be heard as temporal smearing due to time aliasing. M e n  [98] noted that in an analy- 

sis-synthesis system, such as the FFT-IFFT process in the spectral subtraction algorithm, 

any modification to the signal in the spectral domain is equivalent to filtering in the time 

domain. Since time domain filtering typically results in an increase in the length of a sig- 

nal, the spectral subtraction process can distort the time waveform due to time aliasing. 

The temporal aliasing is a result of the circular convolution of the signal with the time 

domain response (impulse response) of the modification [106]. 

Time aliasing is illustrated in Figure 5.11. The upper plot shows a 64 sample refer- 

ence signal which has been augmented to 128 samples through zero padding. The lower 

plot shows the signal after it has been transformed to the spectral domain, modified, and 

inverse transformed back to the time domain. It can be seen that due to the spectral modi- 

fication, samples 65 to 128 in the lower plot are no longer equal to zero. Rather, the 



spectral subtraction process caused some leakage of the signal into the zero padded sam- 

ples. 
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Figure 5.11 Time aliasing due to modifying a signal in the frequency domain. 

Another way of viewing time aliasing is as a mismatch between the phase and mag- 

nitude of the reconstructed signal. In the spectral subtraction process, an estimate of the 

spectral magnitude of the noise E [ I N , ( ~ ~ ~ ) I ]  is subtracted from the magnitude of the 

noisy signal l~,(ej~)l.  However, in constructing the estimate of the clean signal, the 

phase of the noisy signal ay w (eio) is combined with the magnitude of the estimate of 

the clean signal l&,(eia)l. This is not the correct phase for the estimated magnitude of 

the clean signal and so temporal aliasing will occur. In order to avoid temporal aliasing, 

it would be necessary to have the phase a- (e jo)  corresponding to the estimate of the 
sw 

clean signal. It should be noted that this is not the same as the phase of the actual clean 

signal. Since this phase information is not available, temporal aliasing results. 

In the traditional spectral subtraction process the time samples are not typically zero 

padded prior to performing the FFT. In this case, the samples which are seen as leakage 

in the lower plot would be aliased (superimposed) onto the first 64 samples. This results 



in a temporal smearing of the signal which can be heard as pre-echoes or post-echoes. If 

a transient (signal onset) occurs in the middle or latter portion of the analysis window, 

temporal smearing will occur before the transient thus creating a pre-echo. An example 

of a pre-echo due to time aliasing is shown in Figure 5.12. where the upper plot shows the 

reference time waveform without a pre-echo, and the lower plot shows a pre-echo due to 

time aliasing. The pre-echo begins just before sample 2000 and lasts for about 1500 

samples. Note that the pre-echo appears just prior to a sharp transient in the signal. A 

second pre-echo can be seen near sample 8000 and lasting for just over 1000 samples. 
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Figure 5.12 Pre-echoes resulting from time aliasing. 

Pre-echoes as shown in Figure 5.12 are commonly produced by transform based per- 

ceptual audio coders. Subjective tests by Shlien and Soulodre [lo71 have shown that 

these pre-echoes can be easily detected by certain groups of listeners and so an effort 

should be made to minimize them in the spectral subtraction process 

5.4.13 Zero Padding with Truncation 

One means of addressing the issue of time aliasing is to use zero padding when perform- 

ing the FFT. However, placing the zero samples at the end of the data samples will create 

post-echoes which may be audible since there is now a delay between the signal and the 



leakage. Placing the zeros before the data samples will result in an exaggerated form of 

pre-echo. In order to resolve this matter, the following scheme was devised. A frame of 

M data samples is zero padded prior to performing an FFT of size N (M<N). The zeroes 

are placed after the data samples. Following the spectral subtraction operation, the data is 

transformed back to the time domain. As seen earlier, this will result in leakage of non- 

zero samples into the zero padded portion of the time waveform. The length of the time 

waveform is then truncated and only the first M samples are used to construct the noise 

reduced signal. The N-M samples which contain the leakage are discarded since they 

tend to be detrimental to the quality of the processed signal. In the example of Figure 

5.1 1, samples 65 to 128 of the lower plot would be discarded. Informal listening tests in- 

dicate that with N=2M, this scheme effectively eliminates temporal smearing artifacts 

(pre-echoes and post-echoes) and provides a distinct improvement in the perceived qual- 

ity of processed signals containing transients. 

5.5 Summary 

In this chapter signal enhancement schemes based on estimating the short-time spec- 

tral magnitude of the signal were described. This approach is useful for reducing both the 

periodic component and the cyclical random component of the camera noise. It was seen 

that the spectral subtraction process can be interpreted as a zero-phase filter, and a gener- 

alized form of this zero-phase filter provides a high degree of flexibility and control in the 

noise suppression process. 

The artifacts which are created as a result of the spectral subtraction process were 

identified and a variety of schemes for limiting their audibility were introduced. A care- 

ful balance of these schemes can provide an acceptable degree of noise reduction for 

moderate levels of camera noise. For higher levels of camera noise however, the tradi- 

tional spectral subtraction process yields unacceptable levels of distortion and artifacts in 

the reconstructed signal. 



6. SPECTRAL SUBTRACTION USING SUB-FRA~\IING AND 

In the previous chapter it was seen that the spectral subtraction process can provide a de- 

gree of noise reduction but may cause audible artifacts as a result. These artifacts become 

more pronounced (audible) as the signal-to-noise ratio of the corrupted signal decreases. 

Informal listening tests have shown that when removing low level camera noise a proper 

balance between the choice of an appropriate suppression curve, a moderate overestima- 

tion factor based on first and second order statistics, and a modified survival algorithm 

with carefully chosen thresholds may be employed to reduce the artifacts to an acceptable 

level. However, as the level of the camera noise increases, either the artifacts produced 

by spectral subtraction cannot be entirely suppressed, or the quality of the underlying 

speech becomes unacceptably distorted. Therefore, in its present incarnation, spectral 

subtraction can not be used for removing camera noise when the level of the noise ex- 

ceeds some value. In this chapter, a new scheme is described which takes advantage of 

the repetitive nature of camera noise and allows spectral subtraction to be successfuLly 

employed under more severe levels of camera noise. 

6.1 Spectral Subtraction using Sub-frames 

The results of the acoustic measurements described in Chapter 3 showed that camera 

noise n(k) can be modeled as the sum of a periodic component p(k) and a cyclical random 

component c(k) in the form, 

n(k) = p(k) + c(k) . (6.1) 

Both p(k) and c(k) are related to the film rate of the camera (i-e., 24 frames per second). 

The methods developed in Chapter 4 were intended to address p(k) and did nothing to 

reduce c(k) . 

Another way to view the camera noise is as a series of noise bursts which coincide 

with the film rate. The noise bursts consist of an initial peak pulse containing a large 

portion of the noise energy followed by an interval of lower level noise. That is, 

n(k) = npeak(k) + nnulL (k) (6-2) 

p(k) and c(k) each contribute to both the peak and null portions of the noise, so that 



n(k) = ~ p a k  (k) +  null (k) + cp& (k) +cnufi (k) (6-3) 

The reason for viewing the noise in this manner is that the level of the noise is greater 

during the "peak" than during the "null" portions of each noise burst. As such, for a 

given level of speech, the signal-to-noise ratio during the peaks of the noise will be lower 

than during the nulls. Since the performance of spectral subtraction is directly dependent 

on the signal-to-noise ratio of the corrupted speech, this method of viewing the noise can 

be exploited to improve the noise reduction by &owing the processing to be directed by 

the peak-and-null property of the camera noise. To do this, the spectral subtraction proc- 

ess is divided into sub-frames. 

The concept of sub-framing is best understood with the help of Figure 6.1 which 

shows a series of camera noise pulses with overlapping (50%) Hanning windows super- 

imposed. The lengths of the windows, and hence the processing fiarnes, are chosen to 

exactly coincide with the period T of the camera noise. Furthermore, the windows are 

aligned such that they are centered on either the peak or null portion of a noise pulse. In 

other words, the windows are aligned to alternately provide a higher noise level followed 

by a lower level of noise. 

0 2000 4000 6000 8000 10000 12000 14000 16000 
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Figure 6.1 Division of the spectral subtraction process into two sub-frames. 



In sub-fiaming we operate two interleaved spectral subtraction processes. One proc- 

ess operates on the peak portions of the noise (solid curve) while the other process oper- 

ates on the null portions (dotted curve). Let Y ~ ~ ( C O , )  and ~ ~ ~ ~ ~ ( o , )  be the zero-phase 

spectrd subtraction filters operating on the peak and null portions of the camera noise. 

The two spectral subtraction processes use separate noise estimates: one based on the 

level of the noise during the peaks ql ~ ~ , ~ ( e j ~ ) l ~  ] and one based on an estimate of the 

noise during the nulls Because of the difference in the level of the 

noise between the peak and the null portions of the noise pulses, the spectral subtraction 

process operating on the null portions is operating at a significantly higher signal-to-noise 

ratio. As a result, more moderate processing can be used and thus the resulting artifacts 

are far less audible. During the peak portions, the signal-to-noise ratio is lower and more 

aggressive processing must be applied to the signal. However, this more aggressive proc- 

essing is done over a shorter length of time and thus the resulting artifacts are relatively 

short-lived and are consequently less audible. The reduced audibility of the short-lived 

artifacts is due in part to the masking that occurs in the ear. This will be described fuaher 

in Chapter 7. 

It should be noted that the two interleaved spectral subtraction processes are inde- 

pendent of each other, and thus the parameters of the processes can be individually opti- 

mized to provide the best performance. For example, the interleaved processes can use 

different noise suppression curves, different overestimation factors, and different thresh- 

olds for their survival algorithms. The use of sub-frames provides a greater degree of 

freedom in the spectral subtraction process and inherently reduces all types of audible ar- 

tifac ts. 

The above sub-framing process can be described mathematically as follows. Let 

Y(p:h(an) and $$(on) be the DFTYs of the r th peak and null frames respectively, 

where rand n are integers such that -= < r < = , 0 S n $ N-1, and N 2  L 2 B. N is the 

number of points in the DFT, L is the length of the window w(k), and B is number of 



samples by which the window is shifted from frame to frame. Typically, the window 

w(k) will not be rectangular and there will be some overlapping of the frames. 

Given $z&mn) and l $ ~ { ~ ( o , ) ,  the estimates of the desired signal during these sub- 

frames is found using 

and 

The corresponding time-domain versions of the enhanced signal can be found using the 

inverse Dm, 

N-1 2lr j-nk N 

and 

N-1 27r j-nk N 

The sub-frame based spectral subtraction process is shown in Figure 6.2 
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Fipre  6.2 Sub-frame based spectral subtraction. 

The sub-frame based spectral subtraction process assumes that there is a significant 

difference in the level of the noise during the peak and null portions of the noise. Figure 

6.3 shows an example of the peak and null noise estimates derived from one of the 

acoustic measurements described in Chapter 3. The upper curve represents the estimate 

of the peak portion of the camera noise, while the lower curve represents the estimate of 

the null portion. It can be seen that at some frequencies the difference between the two 

curves is as much as LO to 15 dB. This means that, by matching the noise reduction proc- 

ess to the characteristics of the noise, (i.e., using sub-framing) the signal-to-noise ratio 



during the null portions is 10 to 15 dB higher at these frequencies than during the peak 

portions. Therefore, the artifacts created by the spectral subtraction process will be 

greatly reduced for these sub-frames. 

frequency, Hz x lo4 

Figure 6.3 Peak and null sub-frame noise estimates. 

While the use of sub-frame based spectral subtraction has been proposed in the con- 

text of reducing camera noise, one can recognize that this scheme could be used to im- 

prove the performance of spectral subtraction algorithms when dealing with other cyclical 

or repetitive noise sources. 

6.1.1 Window Alignment and Frame Synchronization 

To avoid modulation of the noise floor of the output signal, the sub-frames of the spectral 

subtraction process must be synchronized to the fdm rate (24 frames per second). As 

noted in Chapter 3, the digital audio recordings of the camera noise were made with a 

sampling rate, Fs=48000 Hz which is an integer multiple of the film rate. For a sampling 

rate of 48000 Hz and assuming for the moment that there is no jitter, the pulses of the 

camera noise occur every 2000 samples. In order to be synchronized to the pulses of the 

camera noise, the length of the window w(k) used in the sub-framing scheme must also be 

2000 samples. That is, we require L=T and B=TR in equation (6.4). In practice, while 



the spectral subtraction algorithm operates on blocks of 2000 data samples, these blocks 

are zero padded to augment them to a power of 2 to enable the use of a radix-:! FFT 

[106]- 

In conjunction with the frame synchronization, it is also necessary to ensure that the 

windows are properly aligned with the pukes of the camera noise. That is, steps must be 

taken to align the "peak" window to the peaks of the noise pulses. Improper window 

alignment will limit the effectiveness of the sub-fiarning scheme since the difference in 

the peak and null noise estimates will not be maximized. To examine the importance of 

frame synchronization and window alignment, it is instructive to consider Figure 6.4 and 

Figure 6.5 
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Figure 6.4 Process synchronized to the film rate and windows correctly aligned to 
the noise pulses. 

Figure 6.4 shows the sub-frames correctly synchronized to the film rate (kT) and the 

windows properly centered on the peaks of the noise pulses. It can be seen that alignment 

and synchronization are maintained over all of the noise pulses. Conversely, Figure 6.5 

represents a system which is not synchronized to the film rate (L>T). Here, it can be seen 

that, while the first window is correctly aligned to the noise pulse, subsequent windows 

quickly drift out of alignment with the noise pulses. In this example, the size of the sub- 



frame was 2048 samples which was chosen to represent an appropriate selection for the 

FFT and inverse-FFI' operations. 

0 2000 4000 6000 8000 10000 12000 14000 16000 
samples 

Figure 6.5 Process not synchronized to the fdm rate. 

The effects of non-synchronized sub-frames and improper window alignment can be 

seen more readily in Figure 6.6 and Figure 6.7. Figure 6.6 shows a spectrogram for the 

case where the sub-frames are synchronized to the f h  rate and the windows are properly 

aligned. The spectrogram consists of an alternating sequence of dark and light vertical 

bands. These correspond respectively to the peaks and nulls of the camera noise. The 

vertical bands remain consistent and well defined over the entire spectrogram. Figure 6.7 

shows a spectrogram of the camera noise with a sub-frame size of 2048 samples, and thus 

the process is not synchronized to the film rate. At the start of the process, the light and 

dark vertical bands representing the nulls and peaks are well defined. However, the 

pulses of the noise soon begin to drift with respect to the windows and at about 500 ms 

the distinction between noise peaks and nulls is lost. The benefits of sub-framing are de- 

feated during this segment of the signal and very poor noise reduction wouId occur. The 

pulses continue to drift until they are once again temporarily aligned with the processing 

at about 800 ms. Thus it can be seen that the performance of the spectral subtraction 

process would modulate over time. 
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Figure 6.6 Spectrogram of camera noise with process synchronized and aligned to 
the camera noise. 

" 0 0.2 0.4 0.6 0.8 1 1.2 
time. s 

Figure 6.7 Spectrogram with process not synchronized to camera noise. 



The above discussion assumed that there was no jitter in the periodic component p(k) 

of the camera noise. In Chapter 4 it was seen that a significant amount of jitter can occur 

and so its impact on the performance of the sub-frame spectral subtraction process must 

be considered. First it should be realized that the jitter caused the timing of p(k) to vary 

in both the positive and negative directions. To reflect this, the model for the periodic 

component of the camera noise was modified to include the zero-mean random variable 

5(k) 7 

Therefore, even with the jitter, the noise reduction process will remain synchronized 

on average over time assuming L=T and B=Tn. Moreover, the spectral subtraction only 

processes the magnitude of the input signal and does not alter the phase. Since a slight 

s M  (due to jitter) between the signal and the processing window will have only a minor 

effect on the spectral magnitude of the signal, we can conclude that explicit compensation 

for the jitter is not necessary. 

6.1.2 A Simple Method for Frame Synchronization and Window Alignment 

It was seen in the previous section that, in order for sub-framing to operate successfi~y, 

the sub-frames must be synchronized to the film rate and the windows must be aligned to 

the noise pulses. In this section a simple method is described for ensuring h e  syn- 

chronization and window alignment. 

Because the camera noise is mixed with the desired speech signal, the pulses of the 

noise may not be easily detected directly from the time waveform. Similarly, a spectro- 

gram of the corrupted signal may not be sufficient for determining the precise locations of 

the camera noise pulses. This is particularly true for high signal-to-noise ratios where the 

level of the noise is low relative to the speech signal. However, by taking an approxima- 

tion to the second derivative of the corrupted signal, the peak pulses of the camera noise 

become readily apparent. This is due to the steep slopes associated with the onset of each 

noise pulse. This method was proposed by Kasparis and Lane 11081 as a means of de- 

tecting scratches on vinyl records. The process is shown in Figure 6.8 and can be de- 

scribed by the following equation, 



Figure 6.8 Circuit used to detect peaks of the noise pulses. 

The result of this process can be seen in Figure 6.9. The upper plot shows the time 

waveform of the noisy input signal y(k). The camera noise can be seen as a series of 

pulses between samples 30000 and 50000, but is hidden at other points in the waveform 

by the speech signal. The lower plot of the figure shows the output u(k) of the circuit 

when the waveform shown in the upper plot is presented at the input. The location of 

each noise pulse is easily seen in this plot. With this simple method, the sub-frames of 

the two spectral subtraction processes can be easily synchronized to the film rate of the 

camera, and the processing windows can be aligned to the noise pulses. 

x 104 input waveform 
2 1 I I I I I 1 

-2 I I I I I 1 1 I 
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x 10' 
output of peak detection circuit 

samples x lo4 
Figure 6.9 Input and output of noise peak detector. 



6.1.3 Multi Sub-Framed Spectral Subtraction 

The concept of s u b - b e d  spectral subtraction was introduced using 2 sub-frames. It may 
be desirable in some instances to divide the signal into multiple sub-frames. Equations 

(6.4) and (6.5) can be readily modified to accommodate multiple sub-frames, 

where L is the length of the windows, d=O,l,. ..,G-1 is the index for the various sub- 

frames, G is the number of sub-frames, and B is the number of samples by which the 

windows overlap. The sum of the lengths of the sub-frames must equal the period T of 

the camera noise in order to obtain the benefit of sub-fiamed spectral subtraction. 

G(L- B) =T (6.13) 

The concept of sub-framing can be further generalized by allowing sub-frames to be of 

different lengths. Again, the sum of the lengths of the sub-frames must be equal to the 

period T of the camera noise. The benefit of non-uniform sub-frames will be seen in a 

later section when they are used in conjunction with subband filtering. 

A logical question to consider is whether or not fuaher benefit can be gained by using 

more than 2 sub-frames. This matter was considered and spectral subtraction algorithms 

were implemented using 2, 4, and 8 sub-frames. Thus the sizes of the sub-frames were 

2000, 1000, and 500 samples respectively. 

An analysis of the performance of spectral subtraction using these various numbers of 

sub-frames revealed that increasing the number of sub-frames does not necessarily result 

in improved perfommce. This is because as the number of sub-frames increases there 

are fewer data samples within each sub-frame and consequently there is greater variation 

in the average magnitude spectrum of the noise fiom frame to frame. This is particularly 

true at low frequencies. Furthermore, it is not evident that the makeup of the camera 

noise at lower frequencies warrants more than 2 sub-frames. On the other hand, using 

more (i.e., shorter) sub-frames may provide better performance at higher frequencies 

where the duration of the camera noise is shorter. That is, at lower frequencies a spectral 

subtraction process based on 2 sub-frames is well suited to the characteristics of the 

noise, while higher frequencies are better matched to a 4 or 8 sub-frame process. 



6.2 Spectral Subtraction using Subband Filtering 

In this section a method based on decomposing the signal into frequency subbands is 

described. Noise reduction on the individual frequency subbands is then achieved using 

separate spectral subtraction processes. The full benefit of the subband processing wiU be 

realized in the next section when it is combined with sub-framing. 

Figure 6.10 Noise reduction based on a 2-subband QMF anaIysis/synthesis filter 
bank. 

To divide the noisy signal y(k) into frequency bands, a quadrature rnirror filter (QMF) 

bank is employed [109,111,112]. The basic QMF structure is depicted in Figure 6.10. As 

shown in the figure, y(k) is filtered by a lowpass filter Ho(z) and a highpass frlter Hl(z). 

where Y(z) is the z-transform of y(k). 

The cutoff frequencies of the two filters are both set to ld2. As a result, the subband 

signals yo(k) and yl(k) are each roughly limited to a bandwidth of 7~72. These signals are 

subsequently decimated by a factor of 2 yielding the critically sampled signals vo(k) and 

vl(k). Using the following relation, 

where M is the decimation factor and WM=exp(-j21r/~), we can derive an expression for 

the critically sampled subband signals Vl(z) Z=0,1 



V,(Z)=~[~(Z'/~)+~;(-Z~~)I (6.16) 

= [y(zV2) ~ ~ ( 8 ~ )  + Y ( - Z ~ ~ ) H ~ ( - Z ~ ~ ) ]  . (6.17) 

The second term in (6.17) represents the aliasing that occurs as a result of the decimation. 

The signals vo(k) and vl(k) are then processed by two separate noise reduction algo- 

rithms YI 1=0,1. Since the processes are separate, they can operate using different num- 

bers of sub-£kames. The enhanced subband signals Fo(k) and &(k) are expanded 

(upsampled) by a factor of 2 to give go(k) and gl(k) which are filtered through F&) and 

Fl (z) respectively and summed to produce g(k) 

Rz) = 6 (z)&(z) + fi(& (2)  - (6.18) 

The filters Ho(z) and Hl(z) constitute the analysis filter bank while F&) and Fl(z) 
form the synthesis or reconstruction bank. The analysis/synthesis process can be ex- 

pressed in matrix-vector form. For the analysis bank we have, 

and for the synthesis bank, 

By combining (6.19) and (6.20) we get, 

Let 

Equation (6.21) can therefore be expressed as 

&z) = G&)Y(z) + q(z)Y(-z)  (6.24) 

where the function Go(z) describes the transfer characteristics of the filter bank and Gl(z) 

represents the aliasing. In the absence of any noise reduction processing, it is desirable to 

design H&), Hl(z),  F&), and FI(z) such that i(k)=y(k). However, due to aliasing, am- 



plitude distortion, and phase distortion, g(k) may not be identical to y(k). In designing the 

analysis and synthesis filter banks, tradeoffs must be made between the accuracy with 

which ?(k) approximates y(k) and the quality (transition bandwidth, stopband attenuation, 

fiiter order, etc.) of the filters- 

It is possible to design perfect reconstruction filter banks in which the output signal 

$(k) is identical to the input y(k). That is, ?(k) is merely a delayed version of y(k), 

i(k) = ~ - ~ ~ ( k )  . (6.25) 

To examine the design of a perfect reconstruction filter bank, we begin by deriving an 

expression for s(-z) based on equation (6.21) 

Equations (6.21) and (6.26) can be combined as 

or equivalently a s  

Perfect reconstruction requires that 

or equivalently 

which gives 

where n is an odd integer. Given that the analysis filter bank has been determined, the 

synthesis bank which will yield perfect reconstruction is derived fiom (6.32). 



While the above design method is certainly valid, it imposes significant limitations on 

the possible choice of filter transfer functions. Therefore, we often relax the perfect re- 

construction requirement of the filter bank in order to obtain better quality (transition 

bandwidth, stopband attenuation, etc.) filters. Typically the requirement is relaxed by al- 

lowing some (inaudible) amplitude distortion while requiring an alias-canceling filter 

bank with linear phase response. 

To examine the requirements for an alias-canceling filter bank, recall that Gl(z) of 

equation (6.24) represents the aliased component of the reconstructed signal i ( k ) .  To 

eliminate any aliasing, we require q ( z )  = 0, or 

This can be easily achieved by applying the following constraints, 

and 

Therefore, given &(z) and H&), the filter bank will be alias-canceling if F&) and FI (z) 

are specified according to (6.34) and (6.35). In many QMF banks, the design is further 

simplified by having the analysis filters be mirror images of each other. That is, 

4 (z) = Ho(-Z) . (6.36) 

Given the constraints defined by equations (6.34), (6.35), and (6.36), it can be seen 

that only one prototype filter needs to be designed since the remaining filters are com- 

pletely specified in terms of H&). To eliminate phase distortions &(z) is chosen to be a 

Linear phase FIR filter. 

Based on the above, Johnston proposed a design optimization technique which mini- 

mizes the amplitude distortion while simultaneously maximizing the stopband attenuation 

of an alias-canceling linear phase filter bank. Johnston provided a family of Nter designs 

with varying characteristics [110,109]. An important feature of these filters is that they 

provide better filter characteristics (i-e., stopband attenuation, transition bandwidth) than 

a perfect reconstruction filter bank of the same order while maintaining the ampIitude 

distortion below an audible level [I 1 11. 

The filter banks described so far divide the input signal y(k) into two subbands. In the 

present application it is desirable to filter y(k) into more subbands to allow greater flexi- 

bility in selecting the size of the sub-frames across frequencies. It is a straightforward 

process to extend a two channel QMF design into a filter bank with rn channels. Figure 



6.1 1 shows a non-uniform analysis filter bank which divides the input signal into 4 sub- 

bands as well as the resulting octave spaced filter responses. It is of course, possible to 

design a uniform filter bank, but the non-uniform design is better suited to the character- 

istics of the camera noise. 

Figure 6.11 Non-uniform QMF analysis bank based on a 3-level binary tree. 

The 4-channel filter bank is based on a 3-level binary tree structure wherein the two 

filters, Ho(z) and Hl(z)  are used repeatedly. Therefore, a wide range of filter banks can be 

devised which are based on the design of a single prototype filter Ho(z). For example, 

some or all of the subband signals vr(k) 1=0,1,2,3 could be further decomposed using m- 

channel uniform filter banks based on Ho(z) and HI (2). 

To examine mathematically how the subband signals are derived as a result of the tree 

structure, consider the subband signal vz(k) which is derived from v,(k). As seen earlier, 

V,(z)  = i [ Y ( Z ' / ~ ) H ~  (z'l2) + Y ( - Z ' / ~ ) H ~  (-zV2)] (6-37) 

b(t) = 3 [v, (tV2) H~ (z'I2) + V , ( - Z ' / ~ ) H ~  (-z1I2)] . (6.38) 

Substituting (6.37) into (6.38), 

(z) = [ Y ( Z I / ~ )  H~ (z1I2) + Y ( - Z ~ / ~ ) H ~  ( - z ~ / ~ ) ] H ~  (zV2) 

+ i [ Y ( Z ' / ~ ) H ~  ( z  ' I 2 )  + Y(-zUZ) H ~ ( - ~ * ~ ~ ) ] H ~ ( - Z ' / ~ )  ' 

Or equivalently, in matrix-vector form, 



The other subband signals can be obtained in a similar fashion. 

The corresponding 4-channel synthesis filter bank is shown in Figure 6.12. It can be 

seen that it consists of a complementary tree structure based on the two fdters Fo(z) and 

Fl(z).  It should be noted that, in order for the QMF analysis/synthesis banks to work 

properly with causal filters, appropriate delays need to be added to the paths of those sub- 

bands which are not M y  decomposed. 

Figure 6.12 Non-uniform QMF synthesis bank based on a 3-level binary tree. 

6.2.1 Effect of Processing 

The design of the prototype fiiter is very important to the pe~ormance of the subband 

based noise reduction scheme. As stated earlier, the filter banks used in the present study 

were alias-canceling and Linear phase, However, the aliascanceling property of the de- 

sign assumes that no processing is done to the subband signals between the analysis and 

synthesis banks, That is, it is assumed that 

(k) = ~ ( k )  VI (6.42) 

where F(k) Z=O,l,. . .,m-1 are the rn enhanced subband signals. With the noise reduction 

processing defined as, 

G(6-M = 'Y,(%)V,(%), 
this is equivalent to assuming that 



where Y@,) is the zero-phase spectral subtraction filter operating on the lth subband. 

Whenever the noise reduction algorithm is being applied, we must expect a certain 

amount of aliasing to occur in the reconstructed signal s^(k). 

To examine how aliasing is affected by the spectral subtraction process, recall the ex- 

pression for the reconstructed signal 

where it was assumed that q(k)  = vl(k). Using (6.43) the effect of the spectral subtraction 

process Y,&) can be included, 

Recalling (6.24) 

Go(z) and Gl (z) are now defined as 

and 

where equation (6.51) represents the aliasing component of &). Substituting the con- 

straints defined in (6.33) and (6.34) 

From (6.53) it can be seen that the amount of aliasing that occurs is related to the dif- 

ference in the processing Yb(z) and Yl(z) applied to the subbands in the region of over- 

lap. One way of reducing the amount of aliasing is by limiting the difference in the proc- 

essing applied to the subbands. The amount of aliasing is also related to the transfer 



functions of the filters &(z) and H&), and so it can also be reduced by careful. selection 

of the filter characteristics. For example, a prototype filter with a narrow transition band 

and a Iarge stopband attenuation can be used. 

Due to the spectral subtraction process, which deliberately alters the input signal, it is 

highly likely that residual aliasing will occur (i-e. aliased components will not be fully 

canceled in the QMF synthesis bank). This is particularly true when the input signal y(k) 

has a low signal-to-noise ratio and more aggressive noise suppression must be applied. In 

order for the subband processing to be useful, steps must be taken to reduce the aliasing. 

Therefore, the choice of filters becomes quite important when trying to minimize the 

creation of any audible artifacts due to aliasing. Comprehensive discussions regarding 

quadrature mirror filters may be found in [log, 1 1 1,1121. 

normalized frequency 

Figure 6.13 Frequency responses of the 32 and 64 tap quadrature mirror filters. 

Two of Johnston's filters [I101 were implemented and tested. The 32 tap prototype 

filter had a transition bandwidth of 0.02 ISx,  a minimum stopband attenuation of 38 dB, 

and an amplitude reconstruction error of 0.025 dB (dotted line in Figure 6.13). Informal 

listening tests revealed that aliasing was audible under typical noise reduction conditions. 

The aliasing was perceived as a form of distortion superimposed onto the signal. Further 

tests using a 64 tap prototype filter indicated that the aliasing was reduced to an accept- 

able level with this design. The 64 tap fdter had a transition bandwidth of 0.01 15x, a 



minimum stopband attenuation of 40 dB, and an amplitude reconstruction error of 0.025 

dB (solid line in Figure 6.13). While the 64 tap filter has greater computational require- 

ments than the 32 tap filter, the increase is very modest in comparison to the requirements 

of the overall noise reduction process. 

By itself, subband based spectral subtraction offers Little benefit over traditional spec- 

tral subtraction. However, when combined with sub-framing, a significant improvement 

can be obtained in the camera noise reduction process. 

6.3 Spectral Subtraction using Sub-Framing and Subband Filteting 

In the two previous sections the concepts of sub-earned and subband filtered spectral 

subtraction were introduced. The benefit of these approaches is that they offer an addi- 

tional degree of flexibility in the noise reduction process which can improve its perfonn- 

ance. More specifically, they allow the spectral subtraction process to be better matched 

to the cyclical characteristics of the noise. In this section sub-framing and subband fil- 

tering are combined in such a way that the spectral subtraction process can be matched to 

the time-frequency distribution of the camera noise. As a result, the noise reduction can 

be directed so that the noisier parts of the observed signal receive more aggressive proc- 

essing while those portions of the signaI with less noise receive less processing. As such, 

the underlying philosophy behind the subband/sub-frame approach is to minimize the 

processing which is applied to the input signal. This helps to minimize the artifacts 

which occur as a result of the processing. 

In the subband/sub-frame approach the noisy signal is first divided into m subbands 

using a non-uniform quadrature mirror analysis filter bank as described in the previous 

section. Each subband signal vi(k) i=O, 1,. . . ,m-1 is then processed using the appropriate 

number of sub-frames for that band as described in Section 6.1. In this way, a different 

number of sub-frames can be applied to each frequency subband so that a good match can 

be obtained between the time-fiequency decomposition of the spectral subtraction process 

and the time-frequency distribution of the camera noise. Typically, fewer sub-frames 

would be used at lower frequencies and more would be used at higher frequencies to co- 

incide with the spectrogram of the camera noise seen in Figure 3.8. Each of the sub- 

bandsub-frame or time-frequency cells vij(k) i=O, 1,. . . ,m- 1 ; ji=O, 1,. . . ,gi- 1 is processed by 

a separate spectral subtraction process Y&). It is important to note that, as part of the 

spectral subtraction process, each time-frequency cell in decomposed further using a high 

resolution DFT. This can be viewed as applying a muki-channel uniform analysis bank to 



each cell. The enhanced subband signals Zi(k) are then recombined via a synthesis filter 

bank to produce the output signal i (k ) .  The subbandsub-fiame method is shown in 

Figure 6.14. 
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Figure 6.14 Spectral subtraction based on a subbandlsub-frame decomposition. 

Figure 6.15 Example decomposition of the time-frequency plane. 



Given the flexibility of the subband/sub-frame approach, the task is to determine the 

decomposition of the time-fkequency plane which best matches the characteristics of the 

camera noise. One possibility which was explored is shown in Figure 6.15. 

In this example, the input signal is decomposed into 4 octave-spaced subbands (i-e., 

m=4). The lowest frequency subband is then divided into 2 sub-£kames (i.e., g ~ 2 ) .  The 

next subband (from d8 to lc14) is divided into 4 sub-frames (i-e., gl=4). The remaining 

two subbands are divided into 8 sub-fiames (i-e., gm3=8). This time-frequency decom- 

position provides a reasonable match to the characteristics of the camera noise. 

To evaluate the suitability of a given time-frequency decomposition, it is instructive 

to examine the noise estimates @lN'(o,)l] i=O,L,. . .,m-1; ji =O,l, ...,gi - 1 for each cell. 

These are shown in Figure 6.16 and Figure 6.17 for the above time-frequency decompo- 

sition. 
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frequency, Hz 
Figure 6.16 Noise estimates for a 4 sub-frame decomposition. Upper curve: peak 
sub-frame, middle curve: intermediate sub-frame, Iower curves: null sub-frames. 

Figure 6.16 shows the camera noise estimates for subband vl (k) 1d8 to z /4 (or 3 to 6 

kJ3z for a sampling rate off,=48k&). The subband is divided into 4 sub-frames. The top 

curve in the figure is the noise estimate a N l  o(wn)l] for the sub-frame centered on the 

peak for the noise pulse. The dotted curve is the noise estimate 41N1 l(o,)l] for the fol- 



lowing sub-frame, and the bottom two curves are the noise estimates alN12(o,)l] and 

a1 Nl 3(0,)1] for the two remaining sub-fiames. Across this fkequency range, the differ- 

ence in the level of the noise in the peak sub-frame and the following sub-frame is about 

7 dB. However, the noise estimates for the two remaining sub-fiames are about 10 to 15 

dB lower than the peak sub-frame. Therefore, the spectral subtraction processes YIV2(k) 

and YlV3(k)  working on these sub-frames operate at a signal-to-noise ratio which is 10 to 

15 dB higher than during the peak sub-frame. As a result, the artifacts which can occur 

due to the spectral subtraction process will be dramatically reduced for these sub-frames. 

frequency, Hz x lo4 

Figure 6.17 Noise estimates for an 8 sub-frame decomposition. Upper curve: peak 
sub-frame, dotted curves: intermediate sub-frame, lower curves: null sub-frames. 

Figure 6.17 shows the noise estimates for the two subbands v2(k) and v3(k) ranging 

from lr/4 to 7V2 and 7d2 to z (or 6 to 12 kHi and 12 to 24 kHz for a sampling rate of 

f,=48kHz). These subbands are divided into 8 sub-frames. The top curve represents the 

noise estimate for the sub-frame which is centered on the peak of the noise pulse. The 

two dotted curves represent the noise estimates for the sub-frames which immediately 

follow the peak. The five lower curves are the noise estimates for the 5 remaining sub- 

frames. It can be seen that, for these two subbands, the noise estimate corresponding to 

the peak of the noise pulse (top curve) is about 10 dB higher than for the two following 

sub-fkames, and about 20 dB higher than for the 5 remaining sub-frames. Therefore, 



more aggressive processing can be concentrated on the peak sub-fkame, and for the 7 re- 

maining sub-fkames, a dramatic reduction (10 to 20 dB) in the amount of processing ap- 

plied to the signal can be achieved. As a result, the level of the artifacts produced by the 

spectral subtraction process is significantly reduced in these frequency sub-frames. 

In the decomposition of the time-fiequency plane shown in Figure 6.15, all of the sub- 

fkames in a given subband were the same size. However, a subband can be divided using 

non-uniform sub-frames. In the noise estimates shown in Figure 6.16 (4 sub-frame case) 

the two lower curves are very similar and so there is no benefit in having separate sub- 

fiames for this portion of the camera noise pulse. Therefore, it is sensible to combine 

these two sub-frames to form a single (larger) sub-£kame. The resulting sub-fiame has 

now doubled in length thereby doubling the frequency resolution of the noise estimate in 

this interval. Similarly, the noise estimates shown in the five lower curves of Figure 6.17 

are very similar and so it is sensible to merge these sub-frames into a single sub-kame. 

Figure 6.18 Decomposition of the time-frequency plane using non-uniform sub- 
frames. 

This new decomposition of the time-frequency plane using non-uniform sub-frames is 

shown pictorially in Figure 6.18. The dark (black) portion of the figure represents those 

time-frequency cells which correspond to the peak portion of the camera noise pulse. The 

lighter gray portion represents the cells operating on the intermediate portion of the cam- 

era noise pulse (i.e., the dotted curves in Figure 6-16 and Figure 6.17). The white portion 

of the figure corresponds to the cells operating on the part of the input signal where the 



level of the camera noise is the lowest (i-e., the lower curves in Figure 6.16 and Figure 

6.17). 

Given the use of non-uniform sub-frames, some consideration must be given to the 

choice of windows used prior to performing the Dm for the spectral subtraction process. 

As seen earlier in equation (5.16), in order to reconstruct an estimate of the clean signal 

s(k) we require that the sum of the windowing functions be equal to 1. Recall that (5.16) 

implies the use of a rectangular synthesis window. When windowing sub-fiarnes of dif- 

ferent lengths, care must be taken to ensure that this basic requirement is met. 
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Figure 6.19 Uniform and non-uniform windowing based on 4 sub-frames. 

The most straightforward approach for dealing with this problem is to use a form of 

hybrid window as shown in the lower plot of Figure 6.19. The upper plot shows one pe- 

riod of the camera noise divided into 4 sub-frames of equal length. The first window 

(sub-frame) is centered on the peak of the noise pulse, and is followed by three more 

windows before the next peak arrives. The windows are overlapped by 50%. In the 

lower plot, the third and fourth windows (sub-frames) are combined using a hybrid win- 

dow. The rising slope on the left-hand side of the window is the first half of a Hanning 

window. The falling slope on the right-hand side of the window is the second haIf of the 

Hanning window. Between the two halves of the Hanning window is a flat region. 
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Figure 6.20 Uniform and non-uniform windowing based on 8 sub-frames 

Figure 6.20 shows a similar non-uniform windowing strategy for an 8 sub-frame de- 

composition. The upper plot shows the camera noise decomposed using 8 equal length 

windows. Again the windows overlap by 50%. In the lower plot, two different hybrid 

windows can be seen. The two windows differ in the length of the flat region of the win- 

dow. 

The hybrid windows can be described mathematically as follows, 

05-05~0~(luG/%), O S k $ K l - 1  

wl(k) = 1, Kl l k 1 2 K l - 1  
0.5-0 .5~0~(~k/K~) ,  2K11k13KI-1 

where K1=T/4 and 
I 

0 5 k 5 K2 - 1 

K2 l k 5 K 2  -1 (6.55) 

5K21k$6K2-1 

where &=T/8. Of course, window types other than the Hanning may be used in conjunc- 

tion with the rectangular window. While the hybrid windows have the desired time char- 

acteristics (i.e., sum of the overlaps is equal to I), they may not have appropriate fre- 



quency characteristics when a perceptual model of the human auditory system is included 

in the processing. This matter will be considered in greater detail in the next chapter. 

The underlying philosophy behind the subbandkub-frame spectral subtraction ap- 

proach is to match the time-frequency decomposition of the signal to the characteristics of 

the noise. This allows the overall amount of processing which is applied to the input sig- 

nal to be minimized, This, in turn, tends to minimize the artifacts which occur as a result 

of the noise reduction process. This philosophy will be extended further in the next 

chapter where a model of the ear is used to direct the noise reduction process such that the 

minimum processing necessary f?om a perceptual point of view is applied. 

6.4 Interpretation of Subbands and Sub-Frames in Terms of Wavelets 

In the preceding section it was seen that the performance of the spectral subtraction based 

noise reduction could be improved by matching the processing to the time-frequency dis- 

tribution of the noise. This was accomplished by filtering the input signal using a non- 

uniform QMF anaLysis bank and then sub-framing the resulting subband signals. This 

time-frequency decomposition of the signal shares many similarities to a decomposition 

using wavelets or wavelet packets. 

In this section, some fundamental aspects of wavelets will be described and the simi- 

larities to the time-frequency decomposition outlined in the previous section will be 

highlighted. As there are numerous articles and textbooks devoted to the topic of 

wavelets, we shall not endeavor to provide a thorough treatment of the topic. Rather, the 

discussion will be limited to a level wherein the reader can appreciate the relation be- 

tween wavelets and the time-frequency decomposition developed earlier in this chapter. 

Comprehensive discussions on the topic of wavelets can be found in 

[113,114,115,116,111]. 

The scalar product of two signals y(t) and tp(t) in the L2(R) space of continuous-time 

energy functions is defined as, 

The scalar product allows a signal y(t) to be mapped from its current domain to a 

transform domain defined by ~ ( t ) .  Setting cp(t)=exp(jwt), results in the well known 

Fourier transform, 



In order to allow the transform to have some form of time 

function w(t-z) can be added thus giving the short-time Fourier 

dependency, a windowing 

transform (S ' IW?),  

The STFT maps the input signal y(t) onto the time-frequency plane in a uniform manner. 

That is, the time-frequency resolution is fixed over the entire time-frequency plane. 

However, non-uniform mappings (see Figure 6.15) may be desired in order to obtain a 

multi-resolution analysis of the signal. This is provided for directly by the waveiet trans- 

form which is defined as, 

m * t-b <~(O,a,b> = h j - Y ( t ) v  dt 9 

where the parameter Mt) is called the mother wavelet which has a bandpass characteris- 

tic, b is the time shift parameter, and a is the scaling parameter. The parameter a provides 

a trade-off between resoIution in time and resolution in frequency. 

Another way to view these transforms is in terms of filter banks. It is well known that 

the STFT can be viewed as a filter bank having uniformly spaced filters [111]. That is, as 

can be seen in Figure 6.21, they are constant bandwidth filters. 

Figure 6.21 Uniformly spaced filters of the STFT. 

The filters of the STFT filter bank are obtained by modulating (frequency shifting) a 

prototype lowpass filter ~ ~ ( e ' o ) ,  

H'(J~) = ~ ~ ( e  j(o-(2mlN))) (6.60) 

The filters ZY.(e'O) n=O, 1,. . . SJ- 1 are a series of bandpass fiters. Flexibility in the S m  is 

obtained in the design of the prototype filter @asis function) which is determined by the 

choice of the window function. 



The discrete wavelet transform (DWT) can also be viewed as a filter bank, However, 

the filters of the DWT are non-uniformly spaced. More specifically, they are constant Q 

filters, 

centre frequency 
Q= band,,*h 

The DWT filter bank is shown in Figure 6.22. This type of non-uniform fdter bank 

was seen earlier in this chapter in the discussion of QMF banks (see Figure 6.1 1). Recall 

that for the QMF bank, the filtering was achieved using a binary tree structure based on 

iterations of a highpass and a lowpass filter. 

Figure 6.22 Non-uniform spaced filters of the DWT. 

The filters of the DWT fdter bank are obtained by first performing a frequency seal- 

ing of a prototype highpass filter ~ ( 2 7 ,  

EZn(d0) = ~ ( d ~ ~ ~ )  . (6.6 1) 

The resulting filters are multiband rather than bandpass filters as was found with the 

STFT. In order to obtain a bandpass structure, the filters H , ( B ~  are cascaded with ap- 

propriate lowpass filters ~ ~ ( 2 9 .  The resulting filter response for the nth fdter bank 

channel is then 

~ ( e j ~ ~ & ) ~ ( e j @ )  n=O, I, -. . ,m- 1 

where rn is the number of channels in the filter bank. 

This fdter bank response can be obtained using the binary tree structure shown in 

Figure 6.23. Therefore, the structure of the DWT fdter bank is the same as the QMF 
bank seen in Figure 6.11, and so the non-uniform subband decomposition described ear- 

lier can be viewed as a form of wavelet decomposition. The wavelet coefficients ur(k) 

1=0,17 ..., m-1 can be viewed as the subband signals vL(k) at the output of the non-uniform 

QMF analysis bank. 



Figure 6.23 Filter bank representation of the DWT. 

A generalization of the DWT is the concept of wavelet packets. First proposed by 

Coifinan et al. [I 17,1161, wavelet packets correspond to arbitrary trce-structured fdter 

banks, and thus they allow the input signal to be decomposed in a far more flexible man- 

ner. The sub-fratning and high resolution DFI' which is performed on each of the sub- 

band signals as described in Section 6.1 could be viewed in terms of wavelet packets. 

One of the merits of the wavelet transform is that it can be useful in unifying seem- 

ingly unrelated areas of research, and may therefore help to provide new insights [115]. 

While wavelets offer an interesting mathematical viewpoint for examining the time- 

frequency decomposition described in the previous section, i n  this thesis we prefer to use 

of the language of quadrature mirror filter banks and STFT's since they are more familiar 

to the electrical engineer. Moreover, the psychoacoustic models of the human auditory 

system which will be examined in the following chapter, are better understood in terms of 

S m  analysis. Also, perceptual-based processing of audio signals (e.g. compression) 

using wavelets has not tended to yield any improvement in performance over traditional 

STFT approaches [I 18,1191. 

6.5 Summary 

In this chapter, the concepts of spectral subtraction using sub-frames and subband fil- 

tering were introduced. When steps are taken to synchronize the process to the film rate 

and to align the windows to the noise pulses, the combination of sub-frames and fie- 

quency subbands provides a significant improvement in the performance of the spectral 

subtraction algorithms. The benefit of these approaches is that they allow the spectral 

subtraction process to be better matched to the cyclical characteristics of the camera 



noise. This inherently reduces all forms of audible artifacts since the average amount of 

processing applied to the signal is minimized, At the time intervals and frequencies 

where the camera noise is loudest, more aggressive processing is employed. Elsewhere, 

less aggressive noise suppression is applied. By using a combination of sub-frames and 

frequency subbands spectral subtraction can be used to successfully remove camera noise 

even for relatively poor signal-to-noise ratios. 



7. SPECTRAL SUBTRACTION BASED ON MASKING IN THE 

HUMAN AUDITORY SYSTEM 

So far, the focus has been placed on finding ways of obtaining the best estimate of the 

camera noise which is corrupting a desired (speech) signal. This estimate of the noise is 

subtracted from the noisy signal to give an estimate of the desired signal. While this is a 

sensible mathematical approach, Tsoukalas et al. [120] describe a novel modifcation to 

the process which can significantly improve the performance of a spectral subtraction 

based noise reduction system. They note that, due to the masking properties of the ear, it 

is not necessary to remove the entire noise component in a noisy signal. Rather, it is only 

necessary to remove that part of the noise which is perceptually relevant. 

By limiting the noise reduction process to removing only the audible portion of the 

noise, the overall amount of noise reduction can be significantly reduced. This in turn, 

reduces the audible artifacts (musical noise in particular) which can result from the spec- 

tral subtraction process. This approach is in concert with the philosophy of processing in 

subbands and sub-frames in order to concentrate the processing on those parts of the sig- 

nal which require it most, thus reducing the overall amount of processing applied to the 

signal. 

It should be noted that Tsoukalas et al. were not the frrst to suggest that adding a per- 

ceptual model could improve the performance of a speech enhancement system. In 1981, 

Peterson and Boll [I211 described a "perceptual subtraction" algorithm, which is essen- 

tially a spectral subtraction algorithm operating in the perceptual domain rather than the 

Fourier domain. Peterson and Boll state that their perceptual subtraction algorithm elimi- 

nates the musical noise. Interestingly, this work appears to have been largely ignored by 

other researchers. Cheng and 0' Shaughnessy [I22 ] also took advantage of the masking 

properties of the ear in their speech enhancement algorithm. We will focus our attention 

on the work of Tsoukalas et al. since it is the most recent and the most comprehensive. 

In this chapter we review the basic features of the spectral subtraction method pro- 

posed by Tsoukalas et al. which is based on the perceptual audio quality measure 

(PAQM) developed by Beerends and Stemerdink [123]. This approach, which uses the 

critical band approximation to the human auditory system, has certain fundamental Limi- 

tations which will be outlined. Due to these limitations, we choose to examine another 



auditory model which is perhaps better suited to the task of noise reduction. Whereas 

PAQM combines many aspects of the peripheral auditory system into a computationally 

efficient modeI, the new method uses a more direct approximation of the various compo- 

nents of masking. 

7.1 An introduction to Auditory Masking 

Perceptual based spectral subtraction relies on the masking properties of the ear. Stated 

simply, masking is the process by which one signal which would otherwise be audible is 

rendered inaudible by the presence of another signal (masker). Masking is a psychoa- 

coustic phenomenon which occurs due to the nonlinearities in the human peripheral 

auditory system (i.e., the outer, middle, and inner ear). 

Modern theories of masking derive directly from the work of Fletcher [124]. Fletcher 

measured the threshold at which a sinusoidal signal could be detected in the presence of 

bandpassed noise centered on the signal. He noted that the threshold of detection of the 

signal increased as the bandwidth of the noise was increased. However, he found that 

beyond a certain point any further increase in the bandwidth of the noise did not alter the 

signal detection threshold, To explain his findings, Fletcher reasoned that the peripheral 

auditory system must behave as a bank of overlapping bandpass fdters which are now 

called the auditory filters. When detecting a sinusoidal signal in noise, the listener at- 

tends to (i.e., pays attention to) the auditory filter centered on the signal. Therefore, in 

Fletcher's experiments, if an increase in the bandwidth of the noise occurred within the 

bandwidth of the auditory filter, then the detection threshold increased. If however, the 

bandwidth of the noise was Iarger than the bandwidth of the auditory filter, the threshold 

of detection did not change. Fletcher called the bandwidth (of the noise) at which the 

threshold of detection no longer increases the critical bandwidth. Fletcher's model as- 

sumed that the auditory filters had perfect (i.e. rectangular) transfer functions. While this 

model is clearly unrealistic, Patterson and Moore [I251 suggest that Fletcher realized that 

the details of the shape of the filters were of lesser importance than the general underlying 

concept. 

Masking can be divided into two general classes: simultaneous and non-simultaneous. 

In simultaneous masking, the signal and the masker occur at the same instant in time, 

whereas in non-simultaneous masking the signal can arrive either before or after the 

masker [126]. Both forms of masking can be relatively difficult to measure and to quan- 

tzfy since they are highly nonlinear. For example, the auditory fdters are asymmetric and 



their widths vary across frequency. Moreover, the shape of the filters change significantly 

with the level of the input signal [l26,127,128]. In the case of non-simultaneous mask- 

ing, there is a nonlinear relation between the level of the masker and the amount of 

masking obtained. Also, due to phenomena such as beating; the amount of masking 

available is dependent on the spectral characteristics (noise-like versus tone-like) of the 

signal and the masker. Moreover, the masking effects of two or more maskers do not add 

linearly. Finally, masking thresholds can change dramatically depending on whether the 

listener is using one or both ears. How these various aspects of masking are dealt with is 

an important consideration in the accuracy of a given perceptual model. 

7.2 Method of TsoukaCas et al 

As mentioned earlier, Tsoukdas et nl. added a psychoacoustic model to the spectral sub- 

traction process. Their original work was based on the psychoacoustic model described 

by Johnston [129,], but more recently they have used the model found in PAQM [130]. 

The essence of the method can be summarized by the expression, 

l%(ei0)l2= 1 ~ , ( e ~ " ) 1 ~ - m a x { ~ 1 ~ , ( e ~ ~ ) l ~ ] - ~ ~ ~ ,  0). (7-1) 

At each frequency the auditory masking threshold (AMT) due to the clean signal is calcu- 

lated. The AMT for a given signal is the level below which all other signals will be 

masked. This threshold is then compared to the noise estimate for that frequency 

E[W,(~'O)I]. If the noise estimate falls below the AMT, then no processing is done at that 

frequency. If the noise estimate is above the AMT, then the difference between the noise 

estimate and the AMT is subtracted from the spectral magnitude of the noisy signal 

lyW(e'",12. This reduces the noise level to the AMT thus brin-ging it to the threshold of 

audibility. Therefore, this version of spectral subtraction only removes the audible por- 

tion of the noise. Tsoukalas et al. claim that this results in significant improvements to 

the performance of the noise reduction process.t 

It should be noted that Tsoukalas et al. do not calculate the AMT explicitly. Rather 

they calculate the compressed loudness function of the clean and noisy signals, and com- 

pare the two [128,123]. This approach stems from the use of the PAQM model which 

was designed as an objective means of evaluating the perceptual effects of noise in an 

audio signal. Therefore, the expression in (7.1) is only an idealized approximation to the 

Peterson and Boll [I211 claim that including a perceptual model in their spectral subtraction process sig- 
nificantly reduced musical noise. 



Tsoukalas method. Also, the above expression assumes that the clean signal s(k) is avail- 

able in order to determine the AMT. Of course, this assumption is not valid in practice, 

and so the power spectrum of the clean signal must be estimated by some means. 

In order to determine the AMT, the signal s(k) must be processed by some form of 

perceptual model. The choice of model is an important consideration since it determines 

the predicted AMT and thus the performance of the noise reduction system. The most 

common model, and indeed the one used by Tsoukalas et aL, is the one based largely on 

the work of Zwicker [127,128] and implemented in the context of a perceptual audio 

coder by Johnston [129]. This model, which is based on the concept of critical bands, has 

also been used by other researchers investigating the use of perceptual models in spectrd 

subtraction 113 1,1321. Another perceptually based objective measurement system, NMR 
(noise masking ratio) is also based on the critical band model. In the present work, we 

choose to develop a new model based on the more recent psychoacoustic research con- 

ducted by Patterson and Moore [125,126] which provides a more direct approximation to 

the components of the peripheral auditory system. This approach has certain adv=tages 

in some applications. 

7.2.1 The Critical Band Model 

There are several steps in calculating the M T  using the critical band model. The signal 

s(k) is first windowed (a Hanning window is typically used [12g7130, 1331) and trans- 
'on 2 formed using an FFT' of length N. The power spectrum IS(d )I is then determined for 

that block. A critical band analysis is performed wherein the power spectrum is parti- 

tioned into critical bands according to the expression, 

where bli is the Lower boundary, bhi is the upper boundary, and Bi is the energy of the ith 

critical band. Typically i = 1,2,. . . ,2S for full bandwidth signals and the boundaries of the 

critical bands are those defined by Scharf [134]. In general, the number of FFT bins will 

be much larger than the number of critical bands and so the critical band model reduces 

the frequency resolution. Johnston [I291 points out that a true critical band analysis 

would sum the energy across one critical band for each kequency a, n d ,  1,. . .J-1. 

Therefore, the 25 band implementation inherently discards some accuracy in its predic- 

tion of the masking threshold. It is important to note that the implementation of the crib- 



cal band model described by Johnston was motivated by its application to perceptual 

audio coders and so it may not be optimal for the purpose of noise reduction. 

The signal Bi is now in the bark domain, where 1 bark = I critical band. In order to 

account for the masking across critical bands, a spreadingfinction is applied to the criti- 

cal bands to produce the spread masking threshold Cis The spreading operation consists 

of a convolution of Bi with an asymmetric triangular function H-,. having a lower slope of 

25 dB/bark and an upper slope of -10 dB/bark (shown later in Figure 7.8) [128,135] 

The spread masking threshold must next be related back to the bark domain in order 

to obtain the critical band masking threshold. Johnston [I291 points out that this opera- 

tion can not be done directly due to possible numerical instabilities and so it is approxi- 

mated by a sub-optimal renormalization process. Finally, an approximation to the abso- 

lute threshold of hearing is applied as a lower limit of the masking threshold in each criti- 

cal band. A full description of the details of the critical band model can be found in 

[ID]. 

The critical band model provides a reasonable first approximation to the masking 

threshold created by a given signal, and it has been used with success in the development 

of perceptual audio codecs. The model is also quite computationally efficient and 

straightforward to implement. However, the model makes numerous assumptions and has 

certain fundamental shortcomings which can limit its performance. 

The critical band model assumes that the auditory frlters have perfect transfer func- 

tions (i-e., they have rectangular shapes). As discussed earlier, this assumption is obvi- 

ously invalid, and in fact, the shapes of auditory filters are known to be triangular-like (on 

a dE3 scale) [l36, l37,125]. Also, the auditory filters are known to be asymmetrical and 

vary nonlinearly with the level of the signal. The shape of the auditory fdters and their 

dependence on level is frequency dependent. As stated earlier, it is inaccurate to assume 

that there are only 25 critical bands and this assumption limits the fiequency resolution of 

the model. Moreover, the critical bands used in the model are based on the results of 

Zwicker and Scharf [ l U ,  lZ8,138], and assume that the width of the critical bands are 

constant for frequencies below 500 Hz. Moore and Glasberg [I391 reviewed the results 

of several studies and demonstrated that the bandwidths of the auditory filters decrease 

for frequencies below 500 Hz. Therefore, the assumption regarding constant bandwidth 

critical bands below 500 Hz appears to be incorrect. 



There are other factors which suggest that a psychoacoustic model with higher fre- 

quency resolution will provide better performance. As part of their mandate, Task Group 

10-4 of the K U  (International Telecommunications Union) has been evaluating and de- 

veloping a perceptual based objective measurement system. The group has adopted a 

model which significantly outperforms both the PAQM and NMR models [I401 and uses 

a much higher frequency resolution. Furthermore, the results of a recent study by Soulo- 

dre et al. [141] examining the performance of six state-of-the-art perceptual audio codecs 

clearly demonstrate that the performance of the codecs is directly linked to the frequency 

resolution used in the codec. Without exception, the performance of the codec increased 

as the frequency resolution of the model increased. 

In the critical band model, the masking of a signal at one frequency by a signal at an- 

other frequency is approximated by the spreading function. In reality, this masking is due 

to the overlapping of the auditory filters and is thus the amount of masking is both level 

and frequency dependent. Neither of these aspects is accounted for directly in the critical 

band model. The convolution which provides the spreading across fiequency implicitly 

sums the masking on a power basis. Studies by Penner [142,143] (for the non- 

simultaneous case) and Lutfi [l44,145] (for the simultaneous case) have shown that the 

addition of masking does not obey a simple linear law and can be either siWcantly 

greater or less than predicted by linear addition. This finding is supported by the results 

of a study by Green [146]. Humes and Jesteadt [I471 proposed a model for the additivity 

of masking which accounted for both the simultaneous and non-simultaneous cases. 

The critical band model described by Johnston does not account for non-simultaneous 

masking. This is an important omission and should be included in any model. It should 

be noted that Tsoukalas et al. do include a parameter to crudely account for one compo- 

nent of non-simultaneous masking (forward masking). Modeling the masking properties 

of the peripheral auditory system in terms of non-overlapping critical bands and a fured 

spreading function is a somewhat indirect approach. As a result, it can be difficult to 

separate the contributions of the individual components of the auditory system, and there- 

fore it is difficult to modify a given component independently of the others. As such, 

modifying the critical band model to account for the deficiencies Listed above is not a 

trivial task. Moreover, it may be desirable, in some applications, to modef the peripheral 

auditory system of a given individual (for example, in a noise reduction system as part of 

a hearing aid). This would be more to achieve using the critical band model than 

by a more direct implementation. Finally, the psychoacoustic model described above, as 



well as the model used by Tsoukalas et al. is only valid for monophonic signals. Due to 

binaural masking level differences (BMLD) large differences in masking can occur for 

stereo signals versus monophonic signals. 

There are several parameters in the PAQM model (employed by Tsoukalas et al.) 

which are intended to represent cognitive rather than physiological aspects of the human 

auditory system. To calibrate these parameters within PAQM, Beerends and Stemerdink 

relied on the results of formal subjective evaluations of perceptual audio codecs. The 

calibration of these parameters therefore relies on the data set used in these tests and may 

not be valid for other data sets. That is, by tuning the psychoacoustic model to a given 

data set, the performance of the model may not translate well to other data sets. Also, the 

need to calibrate these parameters makes it very difficult and time consuming to make an 

individualized psychoacoustic model. Tsoukalas et al. used PAQM and NMR to tune the 

parameters of their model and therefore suffer fkom similar limitations. 

7.3 Development of a New Psychoacoustic Model 

In this section a new (high frequency resolution) psychoacoustic model is developed 

which is based largely on the work of Patterson and Moore and does not make some of 

the assumptions made in the critical band model. The new model implements the various 

components of the peripheral auditory model more directly and thus allows greater flexi- 

bility in modifying its characteristics. 

Before deriving the model based on the work of Patterson and Moore, we consider an 

intermediate model. Like the critical band model described above, this intermediate 

model is based largely on the work of Zwicker. However, the model does not use the 

concept of critical bands. Rather, it retains the high frequency resolution resulting from 

the FFT. We will therefore refer to this psychoacoustic model as the high resolution 

Zwicker model. This model shares many similarities with another perceptually based ob- 

jective measurement system, PERCEVAL developed by Paillard [l48,149,133] which 

has been shown to work as well as PAQM. This model is useful in that it allows us to 

make direct comparisons between the work of Zwicker and that of Patterson and Moore. 

7.3.1 The High Resolution Zwicker Model 

The fnst stage in the model is to simulate the effects of the outer ear which is composed 

of the pinna and the auditory canal. The pinna modifies an incoming sound to some ex- 

tent (particularly at high frequencies) and is important in our ability to localize sounds. 



However, the effects of the pinna are ignored in this model since they vary with the di- 

rection of arrival of a sound. Due to its structure, the auditory canal tends to amplifv fie- 

quencies in the range fiom about 1 kHz to 4 kHz [150]. The task of the middle ear is to 

provide an efficient transfer of acoustic energy between the outer ear and the inner ear. 

The three small bones of the middle ear (popularly known as the hammer, anvil, and stir- 

rup), provide an acoustic impedance matching between the tympanic membrane and the 

oval window of the cochlea, The middle ear is most efficient at transferring sounds in the 

500 to 4 kHz frequency range and is quite inefficient at higher frequencies. Terhardt et 

al. El511 proposed the following expression to account for the attenuation effects A of the 

auditory canal and the middle ear, 

A = -65 e[4"(f -33)21 +0000 dB, (7.4) 

where f is the frequency of the input signal in kKz. The first half of the expression pro- 

vides a slight boost to frequencies between 1 and 5 m, while the second half gives a 

high fiequency roll-off. The curve defined by (7.4) is plotted in Figure 7.1. 
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Figure 7.1 Combined response of the outer and middle ear. 

A study by Shlien and Soulodre [lo71 showed that for many Listeners the rate of high 

fiequency roll-off given by (7.4) is too severe. They measured the threshold of hearing of 

12 subjects at 500 Hz intervals in the frequency range from 4 kHz to 24 kHz. The results 

of these measurements for 5 subjects are shown in Figure 7.2 with the bold curve repre- 

senting the expression proposed by Terhardt et al. for an average listener. It can be seen 

that equation (7.4) underestimates the high frequency acuity of some subjects and overes- 



timates the acuity of others. Therefore, in applications where a customized perceptual 

model is warranted, user-specific measurements of the outer and middle ear responses 

will be necessary. Shlien and Soulodre found that the average of their data was in rea- 

sonable agreement with equation (7.4). 
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Figure 7.2 Absolute threshold of hearing for 5 subjects for frequencies above 6 IrHz. 

Another parameter of the peripheral auditory system which must be accounted for, is 

the internal noise of the inner ear. As in all real-world systems, there is an inherent noise 

floor in the auditory system. The noise is predominantly in the lower frequencies and 

Terhardt et al. El5 11 proposed the following expression to model it 

noisef[oor=3.64f~-8 dB, (7-5) 

where f is the frequency in kHi. The inherent noise floor of the peripheral auditory sys- 

tem as proposed by Terhardt et al. is plotted as the solid curve in Figure 7.3. Included in 

the figure is the absolute threshold of hearing (dotted curve). It can be seen that, in this 

model, the absolute threshold of hearing is determined by a combination of the auditory 

canal response (outer ear), the middle ear response, and the internal noise of the inner ear. 

In the critical band model described by Johnston [129], the various components were ac- 

counted for at the last stage in the model where the final masking threshold was deter- 

mined. This approach is inaccurate since the effects of the outer and middle ear should be 



applied prior to the signal being mapped to the basilar membrane. Only the internal noise 

should be considered in the final stage of determining the masking threshold. 
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Figure 7.3 Internal noise of auditory system proposed by Terhardt et al. 

There is evidence to suggest that the model proposed by Terhardt et al. is not entirely 

correct. That model assumes that there is no outer or middle ear filtering at frequencies 

below about I kHz. It assumes that the high threshold of hearing at low frequencies is 

due entirely to internal noise. However, Glasberg and Moore [I521 point out that, at high 

sound pressure levels (100 phons), the equal loudness contours are not flat in the low fie- 
quencies. At these high levels, the signal is well above the noise floor of the auditory 

system and therefore some filtering of the signal seems to be taking place. This suggests 

that part of the threshold of hearing curve measured at frequencies below about I kHz is 

due to a filtering process in the middle ear, and part is due to the internal noise of the 

auditory system. To account for this, we derive a new model. 

We begin by assuming that, at high sound pressure levels where the signal is weli 

above the noise floor, the equal loudness contour represents the filtering action of the 

outer and middle ear. The resulting filter is based on the equal loudness contour (100 

phons) provided in tabular form in IS0 recommendation R.226 [152]. We thus propose 

the following analytic expression for the attenuating process As, representing the com- 

bined transfer functions of the outer and middle ear, 



where f is in kHz. This expression is plotted as the solid curve in Figure 7.4. The dotted 

curve in the figure represents the absolute threshold of hearing. It can be seen that for 

frequencies above 1 icHz, the absolute threshold of hearing curve is equal to the curve 

representing the filtering action As of the ear. 

To derive an expression for the internal noise of the auditory system, we subtract the 

filter response A, from the absolute threshold of hearing. Again, the tabular values pro- 

vided in IS0 recornmendatidn R.226 were used in the calculations. In order to represent 

the internal noise of the auditory system, we propose the foLlowing expression, 

where f is in kHz. This expression is plotted as the dashed curve in Figure 7.4. 
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Figure 7.4 Proposed model for outer and middle ear  filtering and internal noise 
floor. Solid curve: 100 phon equal loudness contour, dotted curve: threshold of 

hearing, dashed curve: internal noise floor. 

The middle ear transfers the acoustic signal &om the outer ear to the cochlea where 

the individual hair cells on the basilar membrane each respond to a particular frequency 

range. Effectively, the basilar membrane maps the linear frequency scale to a nonlinear 

pitch or me1 scale. The me1 is the unit of measure used to describe changes in pitch. 

Zwicker and Terhardt [I531 proposed an analytical expression which approximates the 

mapping from the linear frequency scale to the bark scale. Since 1 bark equals approxi- 

mately 100 mels, the expression can be easily modified to provide a mapping from fre- 

quency to mels. 



mels = 1300 tan-l(0.76f) + 350 tan-l(Cf 1 7.32) , 

where f is the frequency in kHz. The curve defined by (7.8) is plotted in Figure 7.5. 
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Figure 7.5 Mapping from linear frequency scale to me1 (or bark) scale. 

The curve suggests that the entire audible frequency range (about 20 Hz to 20 kHz) 

can be mapped into a range of 2500 mels which is equivalent to 25 bark. This observa- 

tion serves as the basis for the earlier assumption (in the critical band model) that the fie- 

quency content of a signal can be divided into 25 critical bands. While the curve in 

Figure 7.5 is the basis of the division of the fiequency scale into critical bands, there is 

some question as to its validity. ShLien and Soulodre [lo71 measured frequency to me1 

mapping functions of 15 subjects. This was done by measuring the subjects' ability to 

detect small variations in the frequency of a tone. Specifically, a frequency modulation 

threshold test as described by Zwicker and Fast1 (1281 was conducted. The test consisted 

of playing a tone whose frequency was modulated by w a n d  asking the subject to indi- 

cate when he heard a wavering pitch, rather than a steady pitch. The threshold, Afr where 

the listener is able to detect a modulation in the pitch typically increases with increasing 

frequency. The results of these measurements for five of the subjects are plotted in 

Figure 7.6 in terms of the just noticeable variation in frequency (JNVF'). 

The INVF, the critical bandwidth, and the frequency to distance mapping along the 

basilar membrane are all believed to be related [l28,lS4]. Specifically, the JNVF is be- 



lieved to map to a constant step size along the basilar membrane. The JNVF has also 

been shown to be related to the critical bandwidth by a constant factor of about 25. 

Frequency. Hz 

Figure 7.6 Just noticeable variation in frequency measured for 5 subjects. 

From the results of the INVF measurements, the frequency to me1 mapping for each 

subject can be derived by integrating over the JNVF curve, 

frequency, HZ x 104 

Figure 7.7 Frequency to me1 mappings measured for 15 subjects. 



The results of these measurements for all 15 subjects are shown in Figure 7.7. The 

bold line indicates the mapping proposed by Zwicker. 

It can be seen fiom the figure that there are large deviations between the measured 

mappings and the c w e  proposed by Zwicker. Of particular interest are those c w e s  

which Lie above the Zwicker curve. These curves represent subjects who demonstrated 

better fiequency resolution than predicted by Zwicker and Terhardt. As such, for these 

subjects, the linear frequency scale maps onto a larger range of the me1 scale. This sug- 

gests that these subjects require more than 25 critical bands in order to accurately describe 

their peripheral auditory systems. These findings are supported by the results of a study 

by Stevens and Vokmann [I551 who found that, on average, the fiequency range fiom 40 

Hz to 12 kHz maps onto an interval of about 3500 mels, or about 35 bark. Another study 

which supports this finding is that of Moore and Glasberg [139,156] who found that the 

widths of the critical bands predicted by Zwicker are too large for frequencies below 500 

Hz. This implies that subjects have better fiequency resolution below 500 Hz than pre- 

dicted by Zwicker. The derivation of a new perceptual model (different fiom the Zwicker 

model) is strongly motivated by the above findings. 

In the critical band model, the simultaneous masking across frequencies is calculated 

using a spreading function. The spreading function consists of a two slope triangular 

function as shown in Figure 7.8. The spreading fbnction is convolved with the signal 

mapped to the bark or me1 domain. 

Figure 7.8 Spreading function proposed by Zwicker and Fastl. 

The spreading function is typically assumed to have a rising slope SI of 25 dBhark 
and a falling slope S2 of about -10 dB/bark [135]. The rising slope represents the down- 

ward component of masking wherein a higher frequency signal masks a lower frequency 

signal. The falling slope represents the upward masking component wherein a lower fie- 

quency signal masks a higher frequency signal. Clearly, upward masking is the dominant 

effect. That is, lower frequency signals tend to better mask higher frequency signals 

rather than the converse. It is known that the amount of upward and downward masking 

varies with the level of the signal although the variation in downward masking with level 



is not very large. To account for the variation in upward masking, the following expres- 

sion is used by Beerends and Stemerdink [I231 in the PAQM model for the falling slope 

of Figure 7.8, 

where f is the masker frequency in hertz, and L is in dB SPL. PAQM uses a value of 

3 ldB/bark for SI. Terhardt et al. [I511 propose a slightly different expression to account 

for the variation in the upper slope of the spreading function with level, 

As will be seen later, the choice of equation can significantly affect the amount of mask- 

ing predicted by the model. 

Figure 7.9 Mapping of spreading function in the me1 domain to excitation pattern in 
the frequency domain. 

Typically, in order to calculate the spread masking threshold, the spectral magnitude 

of the signal would be mapped to the bark domain using (7.8), and the spreading function 

would be applied. Rather than take this approach, we choose instead to perform aIl 

masking calculations in the linear frequency domain. This will allow for more direct 

comparisons between the Zwicker and the Patterson and Moore psychoacoustic models. 

To do this we map the spreading function at each point along the me1 scale, to its equiva- 

lent location along the frequency scale. This is done using the frequency to mapping re- 



lation defined in (7.8) in conjunction with the spreading function defined above. The 

process is shown pictorially in Figure 7.9. 

The mapping depicted in Figure 7.9 provides an excitation pattern in the linear fie- 

quency domain. The excitation pattern refers to the level of excitation across frequency 

(or more specifically, across the basilar membrane) due to a given input signal and thus 

accounts for the effects of masking- The mapping process is determined for each position 

along the me1 scale by sliding the spreading function along the me1 scale and calculating 

the resulting excitation pattern. This yields a family of excitation patterns which can be 

summarized by the excitation matrix EWick, where each row represents the excitation 

pattern due to the frequency component of an input signal determined by the column of 

the matrix. Calculating the composite excitation pattern 9, for an arbitrary input signal 

s(k) is done through the following matrix multiplication, 

s s = ~ o  Envitker (7.12) 

where so is a 1 by N vector of the spectral magnitude coefficients of s(k). 3, is therefore a 

1 by N vector containing a "smeared" version of s, reflecting the effects of simultaneous 

masking. 

The excitation matrix Ernickr, is shown graphically in Figure 7.10. Each curve in the 

figure represents the excitation pattern for a sinusoidal input signal. The front-most curve 

is the excitation pattern for the lowest frequency, while the fhthest curve is for the high- 

est frequency. The height of the curve represents the excitation level at each frequency. 

Figure 7.10 Excitation patterns across frequency. 



In discussing Fletcher's work on critical bands, the concept of auditory filters was in- 

troduced. As one would expect, there is a direct link between the excitation pattern ma- 

trix Ezwickcr and the auditory filters. In theory, the responses of the auditory filters are 

simply the columns of excitation matrix. That is, 

where AF'rnicker is a matrix whose rows are the auditory filters of the Zwicker model. It 

should be pointed out that, since the Zwicker model is not typically viewed in the linear 

fkequency domain, the true auditory filters predicted by the model are not provided in the 

literature. Rather, the Zwicker model assumes the ideal filter characteristics associated 

with the concept of critical bands. Therefore, the present analysis provides an interesting 

new way of viewing the Zwicker model, and allows comparisons between this model and 

the Patterson and Moore model which is based on direct measurements of the auditory 

filters. This comparison will be done in the next section. 

With the various components of the high resolution Zwicker model defined, it is now 

possible to calculate the simultaneous masking threshold for a given signal. As a test sig- 

nal, a sum of 3 sinusoids at frequencies of 250, 1000, and 4000 Hz was used. This signal 

was chosen since Zwicker and Feldtkeller [127] provide measured masking thresholds for 

signals at these frequencies and so a direct comparison of the results is possible. The 

masking threshold for the test signal is plotted in Figure 7.1 1. 
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Figure 7.11 Masking threshold resulting from a combination of three sinusoids. 



It can be seen from the figure that, as expected from the spreading function, the signal 

provides more masking for frequencies above the three centre frequencies than below. 

The lower limit of the masking threshold is the absolute threshold of hearing. The results 

of Figure 7.11 match very well with the measurements by Zwicker and Feldtkeller, thus 

suggesting that the model is providing a good prediction of measured masking thresholds. 

7.3.2 The Patterson-Moore Model 

In this section, we develop a new model based largely on the psychoacoustic studies of 

Patterson and Moore. The auditory filters and excitation patterns predicted by this model 

will be compared to the those predicted by the high resolution Zwicker model developed 

in the previous section. 

As stated earlier, the human auditory system can be described as a filter bank com- 

posed of overlapping bandpass filters with the bandwidth of the filters increasing with 

increasing fiequency. Masking occurs because of the overlapping of the filters which re- 

sults in significant leakage of a signal into adjacent auditory filters. There are two basic 

approaches to measuring and predicting the masking properties of the human auditory 

system. One approach is to measure the amount of masking provided by a given masker 

signal [lS7,158,159]. This is referred to the masked audiogram approach. Here, a 

masker (typically a tone or a narrowband noise) is played and the threshold at which a 

probe signal (a tone) can be detected by a listener is measured across frequency. This 

method yields a prediction of the masking pattern due to the masker. To determine the 

composite masking pattern, the individual masking patterns for each frequency compo- 

nent of the masker are summed. While this method is intuitively appealing since it pro- 

vides the desired masking information directly, it can yield erroneous results due to psy- 

choacoustic phenomena such as beating and off-frequency Zisrening 11251. The critical 

band model and the high resolution Zwicker model are both based on measurements us- 

ing this approach for predicting the effects of masking. 

The second approach is to measure the characteristics of the auditory filters at various 

frequencies across the audible range. Given the characteristics of the auditory filters, the 

excitation pattern for a signal is predicted by calculating the output of each auditory ftlter. 

Typically, the auditory filters are measured using the notched-noise method proposed by 

Patterson [136]. The notched-noise method has been shown to overcome the problems 

and beating and off-frequency listening and is considered to be a more reliable measure- 



ment technique. The Patterson-Moore model is based on measurements of the auditory 

filters. 

Patterson [I601 measured the shapes of the auditory filters at 3 frequencies (0.5, 1.0, 

and 2.0 kSz) and showed that, to a first approximation, they were linear when plotted in 

decibels on a linear frequency scale. Based on this observation, Patterson et al. [I371 

suggested the following expression to describe the response of the auditory filters 

W(g) = (1 + pg1e-g , (7.14) 

where g is the normalized distance from the centre fiequency fo of the filter to the evalua- 

tion point, 

g=!I%vfo - (7.15) 
The parameter p determines the rate of attenuation (i.e., slopes) of the filter and thus its 

bandwidth. A smaller value of p results in a slower rate of attenuation and thus a larger 

bandwidth filter. This parameter can be determined from the results of the notched-noise 

measurement method. Since the variable g is always positive, the resulting filter response 

appears as two back-to-back exponentials. The term (l+pg) serves to round off the top of 

the curves where the two exponentials meet. As a result, the filter shapes suggested by 

Patterson et al. are referred to as the rounded exponential, or Roex filter shapes. 

In the critical band model the auditory filters were assumed to be ideal rectangular 

filters, whereas the measurements by Patterson show that the filters are better approxi- 

mated by a pair of back-to-back rounded exponentials. It is convenient in some instances 

to be able to express the shape and parameters of the Roex auditory filter in terms of an 

ideal rectangular fdter. To do this, the bandwidth of the Roex filter can be expressed in 

terms of the equivalent rectangular bandwidth (ERB). The ERB of a given auditory filter 

is equal to the bandwidth of perfect rectangular fdter which passes the same power of 

white noise as the auditory filter. That is, the area under the ERB curve is equal to the 

area under the Roex curve for a given auditory fdter. 

Numerous researchers have measured the auditory fdter shapes for various fiequen- 

cies. Moore and Glasberg [139] compiled the results from several studies and calculated 

the ERB's for each auditory filter measurement. They found very good agreement in the 

results across the studies and derived an analytic expression which successfully predicts 

the ERB's for auditory filters with centre frequencies between 125 Hz and 6.5 lcHz 

ERB = 6.23f + 93.39f + 28.52 Hz 0.125 f < 6.5 icHz , (7.16) 

where f is the frequency in kilohertz. These results are valid for a notched-noise level of 

40 dB SPL. 
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Figure 7.12 Equivalent rectangular bandwidth (ERB) as a function of frequency. 
Dotted curve: old ERB expression, solid curve: new ERB expression, dashed curve: 

bandwidth of critical bands. 

More recently, Glasberg and Moore [152,161,162] have added the results from newer 

studies which allows the prediction of the ERB's to centre frequencies between 100 Hz 

and 15 kHz- The new expression for calculating ERB's is, 

ERB = 24.7*(4.37*f+1) Hz 0.1 c f < 15 IcHz . (7.17) 

The two expressions for ERB are plotted in Figure 7.12. The dotted curve represents 

the older expression of (7.16), while the solid curve is the new expression (7.17). Also 

included in the figure (dashed curve) is the classical critical band function proposed by 

Zwicker and Terhardt [153]. 

It can be seen from the figure that the two ERB curves are very similar for frequencies 

below about 2.5 kHz. However, the two curves diverge with the newer expression (7.17) 

predicting smaller ERB's at higher frequencies. In applications which require a psychoa- 

coustic model extending beyond 6 it is very important to use expression (7.17) 

rather than (7.15) since the older expression yields excitation patterns (and hence masking 

thresholds) which are significantly inaccurate at higher frequencies. 

It can be seen that the critical band curve is quite different from the two ERB curves. 

In particular, the critical band estimates below 500 Hz are much larger than the ERB es- 



timates. If the critical band modei and the ERE3 model were essentially the same, then the 

curves would be parallel to each other. Since they are not, we expect the two models to 

produce significantly different predictions of masking, psaicularly at lower frequencies. 

With the ERB at a given frequency as defined by (7.17), it is a straightforward process 

to determine the parameter p for the auditory Nter and thus the shape of the auditory filter 

at each fiequency can be determined, To do this, we recall that the area AERB under a 

given ERB filter curve is equal to the area AAf under the corresponding auditory filter 

curve. Am is simply 

ERB Am=- ,  fo 
where fo is the centre frequency of the auditory Wter. AAF is found by solving the fol- 

lowing integral 

Equating Am and AAF and solving for p, we get 

With equations (7.14), (7.17), and (7.22), it is a straightforward process to derive the 

shape of the auditory filter at any frequency. 

It is of interest to compare the Patterson-Moore model to the Zwicker model 

described earlier to determine if they would predict the same masking threshold for a 

given input signal. Despite its fundamental importance, this type of direct comparison 

does not appear to be available in the literature. To compare the two models, it is 

convenient to derive a general expression for the shape of the Patterson-Moore auditory 

fdters in terms of frequency. We begin with the following equations which were 

introduced earlier, 

W(g) = (1 + pg1e-g , (7.23) 

g=Ffovfo , (7.24) 
ERB = 24.7 (4.37fo+1) Hz 0.1 < fo < 15  HZ , (7.25) 

Substituting (7.24) into (7.23) gives, 



where AFpM denotes the auditory fiIters of the Patterson-Moore model. Substituting 

(7.25) into (7.26) gives, 

Substituting (7.28) into (7.27) gives, 

Equation (7.29) allows the response of the auditory filter centered at fo to be calculated as 

a function of frequency f (in kHz). 

With a slight modification to (7.29), it is possible to calculate the excitation pattern 

across fiequency due to a signal at frequency&. 

Equation (7.30) can 

nal atf,. 

be used to determine the excitation level at frequency f due to a sig- 

Frequency, Hz 

Figure 7.13 Comparison of predicted auditory fiter responses. Solid curves: 
Patterson-Moore model, dotted cuwes: Zwicker model. 

Equations (7.29) and (7.30) are now used to compare the Patterson-Moore model to 

the high resolution Zwicker model described earlier. Figure 7.13 compares the auditory 



filters predicted by the Patterson-Moore model (solid curves) to those predicted by the 

Zwicker model (dotted curves) for an input signal with a level of 40 dB. It can be seen 

from the figure that si-cant differences exist between the two models. This is par- 

ticularly true at low frequencies where the bandwidths of the Zwicker auditory filters are 

significantly wider. This result could be anticipated fiom Figure 7.1 2, where it was seen 

that the Zwicker estimate of the critical bandwidth was much larger than the predicted 

ERBYs below 500 Hz. It should dso be noted that the differences between the two mod- 

els is not consistent across frequency. That is, at some frequencies the Zwicker auditory 

filters are wider than the Patterson-Moore auditory filters, whereas at other frequencies 

they are narrower. To better examine the differences in the auditory filters, they are pre- 

sented on a Linear frequency scale at selected frequencies in Figure 7.14. The differences 

in the auditory filters are more obvious in this figure, where differences of more than 10 

dB can be found. 
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Figure 7.14 Patterson-Moore versus Zwicker auditory filters at 3 frequencies. Solid 
curves: Patterson-Moore model, dotted curves: Zwicker model. 



Another way to compare the two models is in terms of the predicted excitation pat- 

terns. Figure 7.15 compares the excitation patterns predicted by the Patterson-Moore 

model (solid curves) to those predicted by the high resolution Zwicker model (dotted 

curves) for an input signal with a level of 40 dB. Again there are significant differences 

in the two models across frequency, with the Iargest differences occurring at the lower 

fkequencies. The differences in the two predictions are also very large at the highest fie- 

quencies, but this may be of little practical concern. 

t 
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Figure 7.15 Comparison of predicted excitation patterns. Solid curves: Patterson- 
Moore model, dotted curves: Zwicker model. 

Figure 7.16 provides a closer view of the excitation patterns on a linear frequency 

scale for three input signal frequencies. It can be seen that differences of more than 10 

dB can occur in the excitation patterns predicted by the two models. Moreover, the dif- 

ferences are not consistent across frequency. 
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Figure 7.16 Patterson-Moore versus Zwicker excitation patterns at three 
frequencies. Solid curves: Patterson-Moore model, dotted curves: Zwicker model 

The figures comparing the auditory filters as well as the excitation patterns clearly in- 

dicate that, while they are both intended to predict the masking characteristics of the hu- 

man auditory system, the two models produce significantly different predictions. Thus it 

is important to compare the performance of the two models for the noise reduction appli- 

cation. 

7.3.3 Variations in the Shapes of the Auditory Filters with Level 

Moore and Glasberg [I561 measured the shapes of the auditory filters as a function of the 

level of the masker. They found that the slopes of the low-frequency skirts of the filters 

broadened as the level of the masker was increased. Conversely, the slopes of the high- 

frequency skias of the auditory fdters increased as the level of the masker was increased. 

In a later study, Glasberg and Moore [I521 re-analyzed these results and concluded that, 

while the lower slopes do indeed vary with level, the upper slopes remain relatively un- 

changed with increasing masker level. This result is in keeping with the well known psy- 



choacoustic phenomenon called upward spread of masking, wherein the masking thresh- 

old at frequencies above the masker increase nonlinearly with level [l28,126]. 

Glasberg and Moore aIso found that the auditory filter centered at 1 kHz is approxi- 

mately symmetrical when the Ievel of the masker is 51 dB/ERB. The auditory filters at 

other centre frequencies were found to be symmetrical when the input levels to the filters 

(i-e., after the outer and middle ear attenuation) are equal to the level of 51 dB/ERB at 1 

kHz. Glasberg and Moore propose the following expression to determine the parameter 

pl of the low-frequency skirt of a filter as a function of input level, 

Pl(x)  = Pi(51) -03~~1(51)/~1(51,lk))(X-51) 3 
(7.3 1) 

where p o l )  is the value of p at the centre frequency for an equivalent noise Ievel of 5 1 

dB/ERB and p l ( s l , ~ ~  is the value of p1 at 1 1;Hz for a noise level of 5 1 dB/ERB. The pa- 

rameter X denotes the equivalent input noise level in dB/ERB. The value of pr(sll can be 

found using (7.22). 
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Figure 7.17 Auditory fdters at 1 lrHz and excitation patterns for a 1 kEz signal as a 
function of level. 

The auditory filters at I kHz as a function of level (20 to 90 dBSPL) predicted by the 

Patterson-Moore model are shown in the left panel of Figure 7.17. It can be seen that the 

slope of the low-frequency skia of the filter varies significantly. The steepest slope cor- 

responds to an input level of 20 dB SPL while the shallowest slope corresponds to a level 

of 90 dBSPL. The right panel of the figure provides the excitation pattern as a function 

of level for 1 kHz sinusoidal input. It can be seen that the level of excitation at fiequen- 

cies above 1 lcHz is quite large, while for frequencies below 1 kHz, the level of excitation 

drops off very quickly. Stated differently, the signal produces a signifcant amount of 

masking above the input frequency, and much less masking below the input frequency- 



The nonlinear relation between the level of the input signal and the amount of masking 

can also be seen from the figure. Higher level input signals result in a greater amount of 

masking above the fiequency of the input. 

It is of interest to compare the excitation patterns predicted by the Patterson-Moore 

model (solid curves) and the Zwicker model (dotted curves) as a function of level. This 

is done in Figure 7.18 using the Terhardt et al. expression (equation (5.109)) to account 

for the effects of level. The f i s t  panel in Fiewe 7.18 compares the predicted excitation 

patterns for a 250 Hz sinusoidal input signal. It can be seen that the excitation patterns 

predicted by the two models are very different in this fiequency range. The Patterson- 

Moore model predicts much lower excitation levels than the Zwicker model. This is true 

for fiequencies above and below the signal frequency. Differences in excess of 10 dB are 

evident in the upper fiequencies, while differences in excess of 30 dB can be found in the 

lower frequencies. The discrepancies between the two models tend to increase for de- 

creasing input levels. 
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Figure 7.18 Excitation patterns as a fimction of level predicted by Patterson-Moore 
model (solid) and Zwicker model (dotted) using equation (7.11). 



The second panel of the figure compares the predicted excitation for a 1 kHz sinusoi- 

dal input. The differences between the two models is much less in this frequency range. 

However, large differences do exist in the lower frequencies, where the Zwicker model 

predicts significantly lower excitation levels. 

The third panel of the figure compares the predicted excitation for a 10 kHz sinusoi- 

dal input. In this frequency range, the two models are in reasonable agreement for the 

lower frequencies. However, at higher frequencies, the Zwicker model predicts signifi- 

cantly higher excitation levels than the Patterson-Moore model. The differences between 

the two models is in excess of 10 dB and increases for lower level signals. 

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 
Frequency. Hz 

Figure 7.19 Excitation patterns as a function of level predicted by Patterson-Moore 
model (solid) and Zwicker model (dashed) using equation (7.10). 

The excitation patterns shown in Figure 7.18 used the expression proposed by Ter- 

hardt et al. to account for the effects of level. As seen earlier, a different expression for 

level is used in PAQM and hence by Tsoukalas et al. (see equation (7.10)). Figure 7.19 

compares the excitation patterns predicted by the Pattenon-Moore model and the Zwicker 

model (using equation (7.10)) as a function of level. The excitation patterns are for a 1 

kHz sinusoidal input. It is evident from the figure that the two models predict very dif- 

ferent excitation pattems when the PAQM expression for level is employed. A compari- 

son of Figure 7.19 and the second panel of Figure 7.18 shows that the use of this expres- 

sion for level results in a much larger discrepancy between the Patterson-Moore model 



and the Zwicker model. This discrepancy between the two models when using the 

PAQM expression for level is also larger for input signals at other frequencies. 

The results of the comparison of the Patterson-Moore model and the high resolution 

Zwicker model clearly demonstrate that the two models predict significantly different ex- 

citation patterns. The differences are amplified when the expression for level used by 

Tsoukalas et al. is employed. The accuracy of the perceptual model is expected to be 

critical to the performance of a perceptually based spectral subtraction algorithm, and so 

the two models should be implemented and compared. 

7.3.4 Non-Simultaneous Masking 

The peripheral auditory models described so far are intended to predict the simultaneous 

component of masking. That is, the masker and the signal were assumed to occur at the 

same instant in time. In this section the non-simultaneous component of masking is ex- 

plored. In non-simultaneous masking, the masker occurs either before (forward masking) 

or after (backward masking) the signal. Forward masking is the dominant of the two 

forms of non-simultaneous masking and can provide significant amounts of masking for 

up to 200 ms after the masker has terminated. Backward masking provides much less 

masking and is much less consistent across listeners. Also, it has been demonstrated that 

trained listeners can exhibit almost no backward masking [126,163]. As such, we will 

only consider forward masking in our perceptual model. 

Forward masking has been studied by many researchers and certain consistent fmd- 

ings emerge. The amount of forward masking is greater for signals arriving nearer in 

time to the masker. Roughly speaking, the amount of forward masking is logarithmically 

related to the delay between the signal and the masker. The amount of forward masking 
decays to zero for delays longer than about 200 ms. Also, forward masking varies with 

frequency and level. However, the amount of forward masking is nonlinearly related to 

the level of the masker. 

An analytic expression describing non-simultaneous masking as a function of level 

and frequency does not appear to be available in the Literature. Therefore, we choose to 

derive such an expression based on the measured results from a few studies. The results 

of a study by Jesteadt et al. [I641 are in good agreement with a later study by Moore and 

Glasberg [I651 and will form the basis of our derivation. 

Jesteadt et al. investigated the forward masking of a sinusoidal signal by another sinu- 

soid of the same fkequency [164]. They conducted measurements for frequencies ranging 



fiom 125 to 4000 Hz. The level of the masker in their experiments was systematically 

varied in the range £?om 20 to 90 dBSPL. They found that an expression of the following 

form provided a good fit to their results at a given frequency, 

FM(L,J = a(b - logAt)(L, - c) dE3 SL, (7.32) 

where a, b, and c are parameters which must be fit to the data for a given frequency, b is 

the length of the delay between the masker and the signal, and L, is the level of the 

masker measured in terms of the sensation level (SL). Jesteadt et al. provide values for 

the parameters a, 6, and c for frequencies of 125,250,500, 1000 and 4000 Hk. The form 

of equation (7.32) is somewhat inconvenient for the present application since it does not 

provide straightforward estimates of the forward masking at arbitrary frequencies and 

levels. Also, the amount of predicted forward masking is not given in dl3SPL. It is there- 

fore desirable to derive an analytic expression which addresses these issues. 

Using the values for the signal and masker thresholds provided by Jesteadt et al., the 

forward masking thresholds were calculated fiom the data. To simplify the process, the 

analysis was restricted to delays of At =20 ms. This value of At was chosen since it cone- 

sponds to the typical time between processing frames in the spectral subtraction algo- 

rithm, assuming 50% overlap of the frames. A variety of analytic expressions were in- 

vestigated to find one which provided a reasonable fit to the measured data at each 

masker level. The following expression was found to give a very good fit to the data, 

The values in Table 7-1 for a, f i  and y were found to give the optimal fit at each masker 

level. 

The values in Table 7-1 can be used in conjunction with equation (7.33) to calculate 

the forward masking for any fiequency at a given masker level. For frequencies below 

100 Hz, the above expression predicts excessive amounts of forward masking and the 

value predicted at 100 Hz should be used. 

To form a single analytic expression for predicting forward masking, the parameters 

in Table 7-1 were fitted with appropriate equations. These equations were then substi- 

tuted into equation (7.33) to yield the following expression, 



dB, (7.34) 

with 100 Hz If 5 20 kHz and 10 dBSPL I L 5 100 dBSPL 

where f is the frequency in Hertz and L is the level of the masker in dBSPL. For masker 

levels L below 10 dBSPL, a value of zero should be assigned to FMCf,L).  Again, it 

should be stated that equation (7.34) is only intended to predict the amount of forward 

masking for a delay of 20 ms. The expression developed above provides a very good 

prediction of the measured results of Jesteadt et al. as shown in Figure 7.20. 

The horizontal axis provides the measured data (for At = 20 ms) taken from the study 

30 

20 

10 

by Jesteadt et aL, while the vertical axis shows the amount of forward masking predicted 

by (7.34). The forward masking predicted by (7.34) is in good agreement with the meas- 

Table 7-1 Parameter values for equation 7.33 to predict forward masking. 
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ured data and satisfies the requirement for a single analytic expression to predict forward 
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Measured forward masking level, dBSPL 

Figure 7.20 Forward masking predicted by equation (7.34) versus measured values. 

7.3.5 Addition of Masking 

In the previous sections, methods for predicting the amount of masking due to a single 

masker were described for both the simultaneous and non-simultaneous rnasking cases. 

The question arises of how to combine the rnasking effects due to two or more maskers. 

In the traditional power spectrum model of masking, the output of each auditory fdter is 

simply the linear sum of the power of each masker component applied to the filter 

[124,166]. According to this model, if two maskers provide the same amount of masking 

individually, then the two maskers together should provide 3 dB more masking than ei- 

ther masker alone. However, results of experiments to measure the addition of masking 

indicate that this simple h e a r  model is not appropriate. 

Green [I461 measured the masking thresholds of a signal for two independent simul- 

taneous maskers, and compared these results to the masking threshold with the two mask- 

ers combined. The two maskers were chosen such that each provided the same amount of 

masking. Therefore, combining the two maskers should have increased the masking 

threshold by 3 dB. However, Green found that the combined masker produced 6 to 14 dB 

more masking than either masker alone. That is, Green found an excess masking of be- 

tween 3 and 1 1 dB. 



Lutfi 11441 further investigated the issue of additivity of simultaneous masking by 

measuring the amount of excess masking produced by a variety of masker types and ob- 

tained between 10 and 17 dB of excess masking. Based on the work of Penner and Shif- 

frin [143], Lutfi proposed the following transformation to predict the combined masking 

of two simultaneous maskers 

where Ma and Mb are the individual masking effects of the maskers and Md is the com- 

bined masking effect. The parameter p provides a compressive nonlinearity to account 

for the excess masking. Lutfi found that values for p between 0.20 and 0.33 provided the 

best fit to his measured data. This model of the addition of masking is referred to here as 

the power-law model. 

In a later paper, Lutfi [I451 reexamined his data as well as the data from studies by 

Canahl 11671, Nelson 11681, Zwicker [127], Green [l46], Patterson and Nimmo-Smith 

11691, Bilger [170], and Moore [I661 to see how well the power-law model could predict 

these results. He found that setting p to 0.33 provided a good fit to the data from each of 

these studies. In all cases, the power-law model with p = 0.33 was a far better predictor 

of the excess masking than the simple linear model. 

Moore [I661 voiced his skepticism of Ludi's fmdings as well as the overall concept 

of excess masking, and devised a series of experiments wherein excess masking appeared 

to be either non-existent or far less than measured in previous studies. Moore suggested 

that the experimental procedure used by Lutfi (and others) did not account for off- 

frequency listening and thus led him to erroneous conclusions regarding excess masking 
in the simultaneous case. Moore included a broadband background noise in his meas- 

urements to Limit the effect of off-frequency Listening. Moore concluded that Lutfi's 

power-law model clearly fails in some situations and that the traditional linear model 

should not be abandoned. 

In a more recent study, Humes and Jesteadt 11471 reexamined Lutfi's results in the 

context of Moore's comments and rejected Moore's conclusions. Humes and Jesteadt 

contend that, in his experiments, Moore did not account for the effects of intermasker 

suppression, wherein one masker can suppress the effects of another. Moreover, Humes 

and Jesteadt demonstrated that the background noise used by Moore gave additional 

masking which was not accounted for. Humes and Jesteadt also argue that the internal 

noise of the peripheral auditory system must be considered as an additional masker which 



is always present. They devised a modified power-law for predicting the addition of si- 

multaneous masking which accounts for the internal noise. The modified power-law can 

be expressed as 

where Mi i= 1,2,. . . JV are the levels of the various masking components, ATH is the abso- 

lute threshold of hearing at the signal frequency, and p is compression factor. Humes and 

Jesteadt found that setting the parameter p to 0.3 gave a very good fit to the results of 

Lutfi, as well as the results of Moore. Therefore the modified power-law appears to be 

the most appropriate model for predicting the addition of simultaneous maskers. It 

should be noted that for larger values of Mi, the modified power-law model is equivalent 

to the power-law model and so it is not surprising that the optimal value for p found by 

Humes and Jesteadt is very close to the value found by Lutfi. 

Pemer and Shiffrin [142,143] have studied the additivity of masking in the non- 

simultaneous case by comparing the masking due to individual and combined maskers. 

They found that excess masking also occurs in the non-simultaneous case, and that the 

amount of excess masking obtained is dependent on Ievel. Higher masker levels provide 

greater amounts of excess masking. Pemer and Shi f3b  measured as much as 10 dB of 

excess masking in some of their test conditions. More recently, Oxenham and Moore 

[I631 investigated the additivity of masking in the non-simultaneous case and obtained 

results which were in good agreement with those of Pemer and Shiffrin. 

To predict the masking due to two non-simultaneous maskers, Pemer and Shifhin 
proposed a high-compression model based on the following expression 

where the parameters a and p are obtained by fitting the equation to the data. Humes and 

Jesteadt showed that their modified power-law (equation (7.36) above) provides a very 

good fit to P e ~ e r  and Shiffrin's measurements. In the case of two sequential forward 

maskers, a value for p of 0.08 gave the best fit to the data, while a value for p of 0.23 was 

best when combining forward and backward maskers. Humes and Jesteadt also showed 

that the modified power-law performed well at predicting the results from other studies of 

non-simultaneous masking conducted by Wilson and Carhart [171], and Widin and Vie- 

meister [172]. Therefore, it appears that the modified power-law, with the appropriate 



choice of p, provides a good model for predicting the additivity of masking in both the 

simultaneous and non-simultaneous case. 

In order to better appreciate the amount of excess masking that might be obtained as a 

result of two maskers, it is instructive to examine a plot of masking predicted by the 

original power-law model. 

Figure 7.21 plots the amount of masking predicted by the power-law model for two 

maskers. In the figure one of the maskers is assumed to be at a constant level, and the 

abscissa indicates the level of the other masker relative to the frrst. Therefore, a value of 

0 dB on the abscissa indicates that the two maskers are providing the same amount of 

masking. The ordinate shows the increase in masking due to the addition of the second 

masker. Curves are provided for three values of the compression factor. 

Figure 7.21 Amount of masking due to two maskers as predicted by the power-law 
with compression factor as a parameter. 
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With p=l the power-law model is equivalent to the linear model. Therefore, when the 

two maskers provide equivalent amounts of masking, the total masking increases by 3 dB. 

With p=0.3, the power-law model predicts that the sum of the two equal maskers is 10 dB 

greater than the masking due to a single masker. That is, the model predicts 7 dB of ex- 

cess masking. Also, with ~ 3 . 3 ,  the second masker provides significant additional 

masking (about 3 dB) even when it's individual masking effect is 20 dB below the first. 

With p=0.15, the power-law model predicts that two equivalent maskers will provide 17 

dB (20 - 3 dB) of excess masking. Furthermore, for this value of p, the second masker 
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provides a significant amount of additional masking even when it's individual masking 

effect is more than 40 dB below the other. 
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Figure 7.22 Amount of masking due to two simultaneous maskers as predicted by 
the modified power Iaw with masker level as a parameter. 

Figure 7.22 shows the amount of combined masking due to two simultaneous maskers 

predicted by the modified power-law model with p d . 3 .  The various curves in the figure 

indicate the amount of masking due to the more dominant masker. That is, the amount of 

masking predicted by the modified power-law model is dependent on the level of the 

masker. Therefore, if the two maskers each provide 10 dB of masking, then their com- 

bined masking is 16 dB (10 + 6 dB) according to the model. At the other extreme, if the 

two maskers each provide 50 dB of masking, then their combined masking is 60 dB (SO + 
10 dB) according to the model. 

Figure 7.23 shows the amount of combined masking due to two non-simultaneous 

maskers predicted by the modified power-law model with p d . 0 8 .  Again, the various 

curves in the figure indicate the amount of masking due to the more dominant masker. 

Due to the lower value of p, the excess masking found in the non-simultaneous case is 

greater than was seen in the simultaneous case. This is particularly true at higher masker 

levels. Here, if the two maskers each provide 10 dB of masking, then their combined 

masking is 18 dB (10 + 8 dB) according to the model. At the other extreme, if the two 

maskers each provide 50 dB of masking, then their combined masking is 76 dB (50 + 26 

dB) according to the model. The effect of the compression factor p and the importance of 

accounting for excess masking is thus evident from these figures. 
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Figure 7.23 Amount of masking due to two forward maskers as predicted by the 
modified power law with masker level as a parameter. 

7.4 Applying Perceptual Models to Spectral Subtraction 

In the previous sections simultaneous masking predicted by the high resolution Zwicker 

model as well as the Patterson-Moore perceptual model were examined. It was seen that 

while the two models are both intended to predict the auditory masking threshold for a 

given input signal, their predictions are quite different. In particular, the responses of the 

level dependent auditory fdters were shown to be significantly different for the two mod- 

els. In this section a generalized approach for implementing the various components of 

the perceptual model is given. The perceptual model is then integrated with the spectral 

subtraction algorithm. This allows the performance of the two perceptual models to be 

compared. 

Figure 7.24 shows a general block diagram of a perceptual model which includes each 

of the components described in this chapter. The model accepts the measured spectral 

magnitude of a signal at its input, and provides an estimate of the masking threshold for 

that signal. It should be noted that the components of the auditory model relating to non- 

simultaneous masking and the addition of masking are not inherent to either of the two 

models. Rather, they were derived as part of the present study. Also, the expressions 

used in the Patterson-Moore model to describe the outer and middle ear transfer func- 

tions, as well as the internal noise floor were derived in the present study. 
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Figure 7.24 Block diagram of perceptual model. 

In order to compare the two perceptual models, they were each incorporated into the 

subbandhub-kame spectral subtraction algorithm. Figure 7.25 shows the spectral sub- 

traction process with the inclusion of a perceptual model. As shown in the figure, the 

model is used to provide a perceptual based estimate of the noise. As in the traditional 

spectral subtraction process, this noise estimate is subtracted from the input signal. 

In Figure 6.14, it was seen that in the subbandlsub-frame based spectral subtraction 

algorithm, separate zerophase spectral subtraction filters Yii(k) are applied to each of the 

time-frequency cells vij(k). These filters can now be replaced with perceptual based 

spectral subtraction filters. However, the perceptual based spectral subtraction filters are 

not entirely independent of each other. Some information regarding masking levels must 

be exchanged between the filters operating on the different subbands. 
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Figure 7.25 Perceptual based spectral subtraction. 

In describing the simultaneous masking component of the auditory models, it was 

seen that a masker can mask signals that are both higher and lower in fiequency. There- 

fore, it is necessary to exchange this masking information between subbands. Specifi- 

cally, the energy in the lower frequency subbands will contribute to the masking threshold 

in the higher frequency subbands. As such, some estimate of this masking must be 

passed from the lower frequency subbands to the higher frequency subbands. Conversely, 

the energy in the upper frequency subbands will also provide a degree of masking 

(although much less) to the lower frequency subbands, and that information needs to be 

passed to the lower subbands. 

7.4.1 Estimating the Clean Signal 

In deriving the perceptual based spectral subtraction fdter, it was assumed that the clean 

signal was available in order to determine the masking threshold. Of course, in a practi- 

cal situation this is not the case. Therefore, the various means of obtaining an estimate of 

the clean signal must be considered. This matter has received very little attention in the 

literature. 

Tsoukalas et al. [I301 do not determine an estimate of the clean signal explicitly, but 

use the following equation to determine the zero-phase spectral subtraction filter Y((w,). 

where we use PM{ } to denote the processing of a signal through the perceptual model. It 

can be seen that, in this approach, the noise estimate which is made during periods with- 

out speech activity is processed through the perceptual model. This, in effect, provides an 



estimate of the excitation pattern due to the noise. The denominator of the equation is the 

excitation pattern due to the noisy input signal which is determined on a frame-by-frame 

basis. 

A key advantage of this approach is that the estimate of the excitation pattern due to 

the noise (i-e., the numerator) only needs to be calculated once, and does not need to be 

updated for each frame. This provides a significant reduction in computational complex- 

ity since a major component of the perceptual model involves multiplication of a 1 by N 

vector with an N by N matrix to account for the auditory filter bank. 

A shortcoming of the above method is that it ignores the fact that the width of the 

auditory filters vary significantly with level. In the method described above, the noise is 

processed through the perceptual mode1 in the absence of the signal and is therefore proc- 

essed assuming a fixed sound pressure level. However, in reality, the noise is mixed with 

the desired signal and so the sound pressure level changes on a frame-by-frame basis. 

Therefore, the width of the auditory filters used in the perceptual model should also 

change for each h e .  It should be noted that it is not the level of the noise that is 

changing on a frame-by-frame basis, but rather the overall level of the noisy signal. By 
not accounting for the change in the auditory filters with level, the method of Tsoukalas 

et al. also inherently ignores the nonlinear addition of masking that was seen earlier. 

To overcome these shortcomings, the following method for calculating the zero-phase 

spectral subtraction filter is proposed 

In this approach, an initial estimate ~S(o,)l of the spectral magnitude of the clean signal is 

made using a traditional spectral subtraction algorithm. This estimate of the clean signal 

is then processed through the perceptual model PM yielding an estimate of the excitation 

pattern due to the clean signal. The excitation pattern due to the noisy signal is also 

found. The main advantage of this approach is that both excitation pattems are calculated 

using the correct auditory filters, and these calculations are updated with each frame. 

Also, this method allows complete flexibility in the choice of spectral subtraction pa- 

rameters for determining the initial estimate of the clean signal. The disadvantage of this 

method is that two excitation pattems must be determined for each frame and thus the 

computational complexity of the algorithm is significantly increased. 

Informal listening tests were conducted to evaluate the two approaches. It was found 

that the new method significantly outperforms the method proposed by Tsoukalas et al. 



This method is therefore recommended for situations where the highest quality output is 

required. 
25 

Figure 7.26 Noise estimates with and without a perceptual model. 

With the perceptual model incorporated into the spectral subtraction algorithm, it is of 

interest to investigate how the model affects the processing applied to a noisy input sig- 

nal. Figure 7.26 shows an example of the effect of the perceptual model on the noise es- 

timate for a given processing frame. The solid curve in the figure shows the noise esti- 

mate without incorporating the perceptual model. The dashed curve shows the noise es- 

timate when the perceptual model is used and the masking due to the speech signal is 

taken into account. As can be seen, for frequencies below about 2 kHz, the perceptual 

model predicts that the noise in this frame is entirely masked by the desired (speech) sig- 

nal. Therefore, no spectral components are subtracted from the noisy signal at these fre- 

quencies. Above 2 kFIz, the amount of masking due to the speech signal is reduced, and 

so a larger noise estimate is subtracted fiom the input signal. Therefore, by incorporating 

a perceptual model into the spectral subtraction process, the amount of overall processing 

applied to the input signal is dramatically reduced. A comparison of the performance of 

the spectral subtraction algorithm with and without a perceptual model is provided on the 

compact disc accompanying the thesis. 

7.4.2 The Effect of Windows in Perceptual Based Spectral Subtraction 

When describing the basic spectral subtraction algorithm in Chapter 5, it was stated that 

several researchers had investigated the effect of the type of window used prior to per- 

forming the DFT. They concluded that the choice of window did not have a significant 



effect on the performance of the spectral subtraction algorithm. In this section, we ex- 

amine how the choice of window can be important for perceptual based spectral subtrac- 

tion algorithms. 

In the traditional spectral subtraction method, a windowing function (e-g. Hanning) is 

applied to the input samples prior to performing the DFT. To account for the effect of the 

window, the input signal is processed in overlapping frames. After the signal has been 

enhanced in the frequency domain, it is transformed back to the time domain and the 

frames are overlapped when constructing the output signal. A rectangular window is ap- 

plied when constructing the output signal. 

Due to the temporal aliasing described in Section 6.2, the samples at the beginning 

and end of a processing frame may not decay to zero as they should. This can cause dis- 

continuities at the boundaries of each fiame which can result in audible clicks in the out- 

put signal. This is particularly true when the signal-to-noise ratio of the input signal is 

low and aggressive processing must be applied since this results in more severe temporal 

aliasing. The problem of discontinuities can also be more severe for subband/sub-frame 

based spectral subtraction since the amount of processing applied to the input signal can 

vary significantly from frame to frame. The problem of discontinuities can be seen as  the 

vertical lines in Figure 5.7. 

To resolve this problem we propose a method which is employed in perceptual based 

audio codecs where discontinuities at the boundaries of processing frames are a signifi- 

cant concern. To eliminate the discontinuities a synthesis windowing function is applied 

to the output signal. That is, an analysis windowing function is applied to the input sig- 

nal, and a synthesis windowing function is appLied to the output signal. The constraint 

described by (5.16) must now be generalized to allow for the synthesis window, 

where wai(k)and wsi(k) are the analysis and synthesis windows respectively. Equation 

(7.41) states the well-known condition that the analysis/synthesis windows must sum to 

unity. It should be noted that the Hanning window or the Bartlett window recommended 

for traditional spectral subtraction do not satisfy the constraint of (7.41). Therefore, other 

windows must be investigated. 

Typically, in perceptual audio codecs, a sine window is used for both the analysis and 

synthesis window [l73,174]. The sine window satisfies (7.41) and provides a relatively 



narrow main lobe and reasonable attenuation of the side lobes [175]. However the sine 

window has certain limitations when used in conjunction with a perceptual model. In the 

perceptual models, the convohtion of the auditory filters with the magnitude spectrum of 

the signal provides an estimate of the masking threshold for the signal. This convolution 

effectively causes a smearing of the signal in the fiequency domain. The windowing 

function applied to the input signal prior to performing the DFI' also causes a form of 

smearing of the signal in the fiequency domain. Therefore, the window causes excess 

smearing, beyond what is desired for the auditory model. This can be seen in Figure 7.27 

and Figure 7.28. Figure 7.27 shows the excitation pattern for a 250 Hz input signal. The 

solid curve shows the response to the 250 Hz input signal as predicted by the Patterson- 

Moore auditory filters- The dotted curve in the figure shows the combined effect of a sine 

window and the Patterson-Moore auditory frlters. Also included in the figure is the ab- 

solute threshold of hearing. The dashed curve shows the combined effect of the KBD 

window which will be described later. 
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Figure 7.27 Effect of windows for a 250 Hz input signal. Solid curve: Patterson- 
Moore model, dotted curve: effect of sine window, dashed line: effect of RBD 

window. 

It can be seen that the sine window causes the excitation pattern to be broader (in fre- 

quency) than desired. That is, the sine window causes the amount of masking due to the 

signal to be ~ i ~ c a n t l y  overestimated. This same effect, although somewhat reduced, 

can also be seen in Figure 7.28 for a I kHz input signal. 
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Figure 7.28 Effect of windows for a 1000 Hz input signal. Salid curve: Patterson- 
Moore model, dotted curve: effect of sine window, dashed line: effect of KBD 

window. 

An alternative choice of windows is the Kaiser-Bessel Derived (KBD) window which 

was developed for the Dolby AC-3 audio codec [176,177]. m e  KBD window is also 

used in the newly developed MPEG AAC codec [174,178]. TInis window function was 

designed with the intent of providing a main lobe which is as narrow as possible, while 

attenuating the side lobes to a level below the threshold of hearing. The goal of the win- 

dow is to minimize the number of bits needed to encode an audia signal. The KBD win- 

dow is used as both the analysis and synthesis window. 

The first step in creating the KBD window is to convolve a kernel window (the Kai- 

ser-Bessel) with a rectangular window and the KDB window is obtained by taking the 

square root of the result. The KBD window is defined mathematZcally as follows, 

where 



In (7.42), w(k) is the kernel window of length K+1, r(k) is a rectangular window of length 

N-K, N is the size of the transform, and K is the width of the transition region of the KBD 

window. Within the Kaiser-BesseI kernel window there is a parameter a which allows a 

tradeoff between the width of the main lobe and the attenuation of the side lobes. The 

AC-3 codec uses a = 5 [176], while the MPEG AAC codec can select between a = 4 and 

a= 6 [I781 

The effect of the KBD window in conjunction with the smearing due to the auditory 

filters can be seen as the dashed curves in Figure 7.27 and Figure 7.28. It can be seen that 

the KBD window provides a signifcant improvement over the sine window. For an input 

signal of 250 Hz, the KBD window still causes the amount of masking at the lower fre- 

quencies to be overestimated somewhat. However, masking in the upper frequencies is 

very well predicted. At 1 kHz the KBD window causes airnost no excess smearing and 

hence no overestimation of the masking threshold. Therefore, the KBD window is better 

suited to the task of predicting the masking threshold for a signal. 

A further refinement to obtaining an accurate masking threshold can be had by modi- 

fving the slopes of the auditory filters to account for the additional spreading due to the 

KBD window. That is, the slopes of the auditory filters should be made steeper so that, 

once the KBD windowing function is included, the combination of the window and the 

auditory filters will provide the correct masking threshold. With the perceptual model 

based on auditory filters (i.e., the Patterson-Moore model), this is a relatively straightfor- 

ward refinement. The equation describing the response of the auditory fdters (see equa- 

tion (7.14)) would then be 

w&) =(l+~&-Fg j5 P p ,  (7.43) 

where is a modified version of p which accounts for the effect of the chosen window. 

As a final point regarding the choice of window in a perceptual based spectral sub- 

traction algorithm, it is important to realize that the signal reaching the perceptual model 

does not include the effects of the synthesis window. That is, the perceptual model pre- 

dicts the masking threshold using data which has only been windowed by the analysis 

window. Since the sum of the overlapping analysis windows does not equal unity (see 

(5.16)), there is an inherent error in the information received by the perceptual model. 

Depending on where it arrives within a processing frame, a signal component wiIl be ei- 

ther emphasized or de-emphasized with respect to other components within the window. 



To resolve this we propose the following. The input samples are windowed by an 

analysis window which satisfies the constraint of equation (5.16) prior to the Dm. This 

frequency domain information is then used by the perceptual model to derive the masking 
threshold for that frame. In parallel to this, the input samples are also windowed by the 

KBD analysis window (or a similar window) prior to performing a separate Dm. The 

noise reduction (spectral subtraction) is performed on this transformed data, but the per- 

ceptual noise estimate for that fiarne is calculated fiom the other transform data. 

In order for this process to be successful, it is necessary to derive a window function 

which satisfies the constraint of (5.16) and has fkequency characteristics which are similar 

to the response of the KDB window. The following window was found to satisfy both 

requirements, 

where 

M={ k O S k t K  K K l k < N  

In (7.44), w(k) is a Kaiser-Bessel kernel window of length K+1, r(k) is a rectangular win- 

dow of length N-K, N is the size of the transform, and K is the width of the transition re- 

gion of the new window. It is clear that this is very similar to the KBD window, except 

that the square-root has been removed in order to satisfy (5.16). In order to obtain a fie- 

quency response which is similar to the KBD window's response with a = 5, a value of a 

= 2.5 was used in the Kaiser-Bessel kernel of the new window. 

The above discussion regarding the various aspects of choosing an appropriate win- 

dow can be extended directly to the case of non-uniform sub-framing as depicted in 

Figure 6.19 and Figure 6.20. The refinements to the windowing process described in this 

section appear to have been overlooked by the developers of high quality perceptual audio 

coders. 



7.5 Summary 

In this chapter, the use of a perceptual model to improve the performance of the spec- 

tral subtraction algorithm was introduced. The psychoacoustic model based on critical 

bands was described and its limitations were highlighted. A new psychoacoustic model, 

based largely on the work of Patterson and Moore, was derived. A comparison between 

this model and a model based on the work of Zwicker revealed significant differences 

even though they are intended to predict the same masking threshold. 

Based on the experimental results of Jesteadt et a[., an expression for predicting non- 

simultaneous masking as a function of level and frequency was derived. Expressions de- 

scribing the nonlinear addition of simultaneous and non-simultaneous masking were also 

described. 

A spectral subtraction process incorporating a perceptual model into the subband/sub- 

frame structure was described, and it was shown how the perceptual model can signif- 

cantly reduce the amount of processing applied to the signal. Finally, the effects of the 

choice of window when using a perceptual based model was described and a method for 

reducing these effects was introduced. 

The main objective behind the use of a perceptual model, as well as the use of sub- 

bands and sub-frames is to minimize the overall amount of processing applied to the 

noisy signal. By minimizing the amount of processing the severity of the residual arti- 

facts and signal distortion is reduced. The subbands and sub-frames allow the processing 

to be directed by the characteristics of the noise, while the perceptual model allows the 

processing to be directed by the masking provided by the signal. 

The work in this chapter which examined perceptual models, including a comparison 

of the simultaneous masking models, the development of new expressions for the outer 

and middle ear response, the derivation of an expression for non-simultaneous masking, 

and the examination of the effects of the window function, is of value to many other ap- 

plications (e.g. perceptual audio codecs) not related to noise reduction. 



8. EVALUATION OF THE NOISE REDUCTION ALGORITHMS 

In this chapter the performance of the various noise reduction schemes described in this 

thesis are evaluated. IdeaIly, formal subjective listening tests would be conducted to 

evaluate and compare each of the various schemes. However, due to the complexity, as 

well as the time required to properly conduct such tests, it is not feasible to evaluate each 

scheme in this manner. Therefore, a formal subjective test was conducted to evaluate 

only the most promising noise reduction algorithms. The results of informal listening 

tests are used to describe the performance of the remaining noise reduction schemes. 

Also, a compact disc (described in this chapter) is included with the thesis to demonstrate 

the various noise reduction schemes as well as some of the artifacts which can result. 

Before listening to the entire CD, the reader may wish to hear a few selected tracks in 

order to briefly compare the performance of the noise reduction algorithm developed in 

this thesis to the classic spectral subtraction algorithm. For this purpose, we suggest that 

the reader listen to the following three tracks. 

m k  #3: Ref+l2dB Speech with camera noise at highest SNR used in the tests. 
Track #24: Ref+ l tdB  inpu t  signal (Track #3)  processed using the Boll's method. 
Track #33: Ref+l2dB inpu t  signal (Track #3) processed using with subbandsfsub- 

frames and the Patterson-Moore perceptual model. 

Demo 1: Quick overview of algorithm performance. 

The first 3 tracks on the CD contain a segment of speech which has been corrupted by 

camera noise. The level of the camera noise is varied in 6dB increments between the 3 

tracks. Track #1 has the highest level of camera noise and is referred to as Ref. The level 

of the camera noise in Track #2 is 6dB lower (i-e., SNR is 6dB higher) and is referred to 

as Ref+6dB. The level of the camera noise in Track #2 is 12dB lower than Track #1 (i.e., 

S N R  is 12dB higher) and is referred to as Reftl2dB. These 3 tracks are used throughout 

this chapter as the input signals to demonstrate the performance of the various noise re- 

duction algorithms . 

Track #1: Ref Speech with camera noise at lowest SNR. 
3- Ref+6dB Speech with camera noise a t  intermmediate SNR. 
Track Ref+ l 2 d B  Speech with camera noise at highest SNR. 

Demo 2: Reference input signals with camera noise. 



8.1 Perfmanee of Noise Reduction Techniques based on Adaptive 
Filtering Methods 

Chapter 4 described noise reduction techniques based on adaptive filtering methods. To 

satisfy the requirement that a successful camera noise reduction scheme must be a single 

input system, an adaptive noise cancellation algorithm using a synthesized reference input 

signal was proposed. This algorithm was shown to provide a degree of reduction to the 

periodic component of the camera noise. It was also seen that, due to jitter in the arrival 

times of the camera noise pulses, the effectiveness of this noise reduction scheme was 

compromised, Therefore, steps were taken to synchronize the ANC process to the camera 

noise. This resulted in improved noise reduction. 

The next six tracks on the CD demonstrate the performance of the ANC algorithm 

with a synthesized reference input. Track #4 is the noisy speech segment (Track #I) 

processed by the non-synchronized ANC system. Track #5 is the same noisy speech 

segment (Track #I) processed by a synchronized ANC system. 

W c k  #4: Ref input  signal (Track #I )  processed by the non-synchronized ANC 
sys tern. 

Track #5: Ref i npu t  signal (Track # I )  processed by the synchronized ANC system. 

Demo 3: ANC with synthesized reference on lowest SNR input. 

Track #6 is the noisy speech segment (Track #2) processed by the non-synchronized ANC 

system. Track #7 is the same noisy speech segment (Track #2) processed by a synchro- 

nized ANC system. 

Track #6: Ref+6dB i n p u t  signal (Track #2) processed by the non-synchronized ANC 
system. 

Track #7: Ref+6dB i npu t  signal (Track #2) processed by the synchronized ANC 
system. 

Demo 4: ANC with synthesized reference on intermediate SNR input. 

Track #8 is the noisy speech segment (Track #3) processed by the non-synchronized 

ANC system. Track #9 is the same noisy speech segment (Track #3) processed by a syn- 

chronized ANC system. 



-- - 

m k  #8: Ref+l2dB input signal (Track #3) processed by the non-synchronized 
ANC system. 

Track #9: Ref+l2dB input signal (Track #3) processed by the synchronized ANC 
system. 
-- - - - - 

Demo 5: ANC with synthesized reference on highest SNR input. 

From the six tracks it is apparent that, as described in Chapter 4, the synchronized 

ANC system provides more noise reduction than the non-synchronized ANC system. 

Specifically, the synchronized ANC system provides more reduction at the higher fie- 

quencies. However, neither system provides complete e m a t i o n  of the periodic com- 

ponent of the camera noise, and of course, neither system provides any reduction of the 

cyclical random component of the noise. Interestingly, by removing a portion of the peri- 

odic component of the noise, one can begin to hear the other components of the camera 

noise more clearly. Nso, the perceived noise reduction is more dramatic when the input 

signal has a lower initial signal-to-noise ratio. 

It can be noted on these tracks that the ANC methods do not provide much noise re- 

duction during the intervals where there is speech activity. This makes It mcult to 

combine this method with the spectral subtraction methods since they assume that the 

noise is locally stationary. Efforts to combine the two approaches results in good noise 

reduction during the intervals without speech activity, but poor performance during the 

intervals where there is speech activity. 

From these tracks it can be concluded that, as stated in Chapter 4, the ANC-based 

methods do not provide a suficient degree of noise reduction on their own. Therefore, 

the ANC-based noise reduction methods were not included in the formal subjective test 

described Iater in this chapter. 

8.2 Performance of Noise Reduction Techniques based on Spectral 

Subtraction 

Chapters 5, 6, and 7 described noise reduction techniques based on variations to the 

spectral subtraction method. These variations of the spectral subtraction algorithm 

(magnitude, power, etc.) were implemented in a generic form without the use of sub- 

frames and without synchronizing the process to the film rate. Informal listening tests 

indicated that these basic implementations were only effective at removing camera noise 

at rather high signal-to-noise ratios (>30 dB). At lower signal-to-noise ratios the artifacts 



resulting from the processing made the systems unusable for the task of removing camera 

noise. 

In all of the listening tests, the enhanced signal was compared directly with the origi- 

nal noisy input signal. Moreover, the difference of these two signals was also derived. 

This allows the listener to hear the portion of the original signal which was being re- 

moved by the spectral subtraction process. This ability was found to be particularly use- 

ful when trying to determine the best setting for a given parameter. 

As described in Chapter 5, a very limiting artifact resulting from spectral subtraction 

is the musical noise. Track #lo, which was derived using Boll's method, provides an ex- 

ample of musical noise. It should be noted that the quality of the speech signal is very 

good, but the musical noise makes the output signal unusable for a frlm soundtrack. 
- -- 

y '  Example of musical noise resulting from Boll's method. 

Demo 6: Musical noise. 

One way to overcome the problem of musical noise is to overestimate the level of the 

noise (see Section 5.4.5). However, if the overestimation is too high, the desired signal 

can become highly distorted. As a compromise, a minimum noise floor can be introduced 

to reduce the audibility of the musical noise without overly distorting the signal. Track 

#I 1 is the noisy speech segment (Track #1) processed by Boll's spectral subtraction algo- 

rithm with a minimum noise floor set to 30 dB below the level of the camera noise. In 

this example the audibility of the musical noise is greatly reduced compared to Track #lo. 
There is however some distortion to the desired speech signal. Moreover, the camera 

noise is still audible and thus Track #11 is not usable in a f b  soundtrack. 

Track Spectral subtraction (Boll's method) with a minimum noise floor set to 
30dB below the level of the camera noise. 

Demo 7: Minimum noise floor. 

In Section 5.4.5 a method for making the residual background noise more perceptu- 

ally benign (i.e. hiss-like) was proposed. Track #12 is the noisy speech segment (Track 

#I) processed by Boll's spectral subtraction algorithm with a more benign residual noise. 

The minimum noise floor was set to 30 dE3 below the level of the camera noise. In this 

track, the structure of the camera noise has been greatly reduced and so the residual noise 

may be more acceptable. 



Track #12: Spectral subtraction (Boll's method) with a perceptually benign noise 
floor set to 30dB below the level of the camera noise. 

Demo 8: Benign minimum noise floor. 

The various spectral subtraction algorithms were also implemented using two sub- 

frames. This provided a better estimate of the noise and also allowed for more aggressive 

processing to be applied using the overestimation parameter which was set independently 

for the two sub-frames. As a result, signals with poorer signal-to-noise ratios could be 

successfully processed using these systems. When the signal is also processed in sub- 

bands, the performance of the algorithm improves further. For example, a 4 subband 

system was implemented and tested. .The highest 2 subbands were processed using 8 sub- 

frames. This allowed the processing to be very localized in these subbands and so the 

performance in the higher frequencies was noticeably improved. Specifically , the output 

signal did not suffer from as much high frequency roll-off. These findings were con- 

f m e d  in the formal subjective tests. 

The two perceptual models described in Chapter 7 (i-e., the high resolution Zwicker 

model and the Patterson-Moore model) were implemented and incorporated into the sub- 

bandsub-frame based spectral subtraction algorithm. It was found that both models pro- 

vided a significant improvement to the noise reduction process as confirmed in the formal 

subjective tests. The effect of the perceptual model is to restore much of the high fre- 

quency speech signal that is removed when a high overestimation value is used. Moreo- 

ver, the restored speech signal tends to have less temporal smearing when the perceptual 

model is used. These points will be discussed further in the next section. 

To reduce the number of test items in the formal subjective test, a preliminary test 

was conducted to compare the performance of the two perceptual models (Tracks #13 to 

18). Listeners compared the noisy speech segments processed by the spectral subtraction 

algorithms using the two models and were asked to indicate which segment they pre- 

ferred. All Listeners agreed that the Patterson-Moore model provided the better output. 

Low frequency noise components could be heard in the output of the spectral subtraction 

algorithm based on the high resolution Zwicker model. These noise components were 

more obvious when the input signal had a poorer signal-to-noise ratio. This is a reason- 

able finding since, as discussed in Chapter 7, the critical bands below 500 Hz are known 

to be too large and so the model would tend to overestimate the amount of masking avail- 

able below 500 Hz. The unmasked noise resulting from the high resolution Zwicker 



model is due in part to the very aggressive (noise reduction) processing used in this the- 

sis. This aggressive processing is required in order to completely eliminate the camera 

noise as weil as the musical noise. With less aggressive processing, this unmasking does 

not occur. 

Track #L3: Ref input signal (Track #1) processed using the high resolution Zwicker 
model. 

Track #14 Ref input signal (Track # I )  processed using the Patterson-Moore model. 
W c k  #IS: R e f t 6 d B  input signal (Track #2) processed using the high resolution 

Zwicker model. 
#16: R e f + 6 d B  input  signal (Track #2) processed using the Patterson-Moore 

model. 
Track #17: R e f + l 2 d B  i n p u t  signal (Track #3) processed using the high resoIution 

Zwicker model. 
Track #18: R e f + l 2 d B  i n p u t  signal (Track #3) processed using the Patterson-Moore 

model. 
-- - 

Demo 9: Comparison of perceptual modeIs. 

To further compare the two perceptual models, it is instructive to listen to the masking 

thresholds predicted by the two models. To this end, a clean segment of speech was 

processed through the two models and the masking thresholds were determined. The 

masking thresholds were combined with the phase of the input signal to create audio sig- 

nals which are representations of the masking thresholds due to the two models. There- 

fore, these signals represent the maximum amount of noise (as predicted by the two per- 

ceptual models) which can be masked by the input signal. Track #19 is the representation 

of the masking threshold for the high resolution Zwicker model and Track #20 is the rep- 

resentation of the masking threshold predicted by the Patterson-Moore model. The two 

masking thresholds sound quite different and the additional high and low frequency 

masking predicted by the high resolution Zwicker model can be heard in these tracks. 

This is an interesting result since the two perceptual models are intended to predict the 

same quantity (i-e., the masking threshold), yet their predictions are clearly different. 

This has important implications for other applications, such as perceptual audio codecs, 

which rely extensively on the predicted masking threshold. Most perceptual codecs are 

based on the critical band theory and thus the Zwicker model. The results described here 

strongly suggest that the Patterson-Moore model should be examined for these apphca- 

tions. 



Masking threshold predicted by the high resolution Zwicker model. 
Track #29: Masking threshold predicted by the Patterson-Moore model. 

Demo 10: Predicted masking thresholds. 

By combining the various processes (subbands, sub-frames, perceptual model) de- 

scribed in this thesis, it is possible to obtain very good noise reduction on signals with 

relatively low signal-to-noise ratios. Therefore, the scheme developed in this thesis for 

reducing camera noise be deemed a success. This conclusion is confirmed by the results 

of the formal subjective tests described in the next section. 

DAT recordings of noise £?om the IMAXTM camera were obtained and the algorithms 

developed in this thesis were appLied to the recordings. It was found that the camera 

noise reduction system (based on subbands, sub-frames, perceptual model) was quite suc- 

cessful at removing the IMAX camera noise. However, due to the large size of the IMAX 
camera, its noise is generally much louder and so residual artifacts remained in the proc- 

essed signal. One must decide whether to use more aggressive processing to completely 

eliminate the camera noise while audibly distorting the desired speech signal, or reduce 

the amount of processing thus allowing some residual camera noise to remain. Nonethe- 

less, the methods proposed in this thesis appear to be very promising for reducing the 

nMAX camera noise.* 

Representatives at IMAX indicated that even though the noise reduction scheme can- 

not completely remove the camera noise without distorting the speech, it may still be a 

very useful tool in the automatic dialogue replacement process. Specifically, the noise 

reduction algorithm developed here could be used to significantly reduce (not eliminate) 

the camera noise prior to the ADR process. This would give the actors a much cleaner, 

and less distracting version of their dialogue to listen to during the ADR process. 

8.3 Formal Subjective Test 

A formal subjective test was conducted to evaluate the performance of the most promis- 

ing camera noise reduction schemes to emerge fiom the thesis. Specifically, the subjec- 

tive test was intended to evaluate the performance of a subbandsub-kame based spectral 

subtraction algorithm incorporating a perceptual model. 

* Unfortunately, due to copyright considerations, the demonstration CD does not include examples of  the 
IMAX cameras. 



The procedures and methods detailed in the ITU-R recommendation for subjective 

testing of audio systems with small impairments (ITU-R Rec. BS.1116 [179]) were fol- 

lowed. The subjective test methods outlined in BS.1116 are considered to be the most 

rigorous and sensitive for evaluating the quality of audio processing systems (i.e., algo- 

rithms), and are used extensively in the assessment of perceptual audio codecs. This rec- 

ommendation addresses the performance of the playback system (amplifiers, loudspeak- 

ers, etc.), the acoustic characteristics of the listening environment (reverberation and 

background noise), assessment of listener expertise, the grading scale used to indicate 

subjective evaluations, and the methods of data analysis. The tests were carried out at the 

Audio Perception Lab of the Communications Research Centre in Ottawa, Canada which 

is one of the world's foremost subjective testing facilities. Further description of the use 

of BS.1116 as well as details regarding the Audio Perception Lab can be found in 

[l8O, 18 11. 

The subjective tests described in this chapter are perhaps the fust such tests conducted 

to evaluate the quality of noise reduction algorithms. While it is true that other research- 

ers have evaluated the quality of their noise reduction algorithms, they have not used the 

very sensitive methods used here. These sensitive methods are both warranted and neces- 

sary since the audio signals are full bandwidth signals (i.e., about 20 to 20000 Hz) and 

they will be used in an application (film soundtracks) which demands CD quality audio. 

Therefore, the use of telephony oriented subjective test methods, such as the Diagnostic 

Rhyme Test are not appropriate in this case. 

A 15 s segment of male speech, consisting of four sentences from the Harvard Test 

Sequences [45], was used as the test material. The sentences were recorded in a quiet 

studio at the National Film Board of Canada in Montreal (see Section 3.5.6). The test 

segment was mixed with a recording of camera noise at 3 different levels (6 dB incre- 

ments), thus providing 3 different signal-to-noise ratios. The 3 signal-to-noise ratios are 

referred to as Ref, Ref+6dB, and Ref+l2dB, where Ref contains the highest level of cam- 

era noise. Relatively high levels of camera noise were used since it was felt that it would 

be easier for subjects to discriminate between algorithms. The levels of the noise were 

such that any noise reduction system which could successfully restore Ref+l2dB should 

be capable of successfully eliminating camera noise in most applications. 

These 3 test segments were then processed by 4 variants of the spectral subtraction al- 

gorithm, to produce a total of 12 test items for the subjective test. The 4 noise reduction 

algorithms consisted of: a standard spectral subtraction scheme based on Boll's method; a 



subbandlsub-fiame spectral subtraction scheme based on Boll's method; a subbandhb- 

frame spectral subtraction scheme based on the Wiener Hter; and a subbandsub-frame 

spectral subtraction scheme incorporating the Patterson-Moore based perceptual model 

described in Chapter 7. In processing the test segments for the subjective test, the over- 

estimation parameters were set such that all of the camera noise was eliminated as well as 

all of the musical noise. Since this is a necessary criteria for a successful camera noise 

reduction scheme, it was considered to be a suitable and fair criteria for determining the 

overestimation parameter. 

The subjective test used the highly efficient within-subject (or repeated measures) de- 

sign which is known to eliminate the effects of individual differences among subjects. A 

total of 21 subjects (17 male and 4 female) participated in the test and included many 

subjects who have previously shown a high level of expertise in audio subjective tests. 

Each subject conducted the test alone and the order in which each subject was exposed to 

the 12 test items was randomized thus eliminating the possibility of any time-related bi- 

ases in the results- 

A computer based playback system enabled the subject to instantaneously switch 

among any one of three versions of an auditory stimulus (see Figure 8.1) on each trial. 

Selecting button "A" on the screen produced the reference stimulus which was always 

known by the subject to be the clean speech segment. Clicking on button "B" or "C" 

produced either a hidden reference, identical to "A", or else a processed version of the 

test sequence. Which of "B" or "C" produced the hidden reference or the processed ver- 

sion was unknown and unpredictable to the subject from trial to trial. 

Figure 8.1 Computer screen used by listeners to control playback and switching. 



The subject's task on each trial was to identify the processed version (on '73" or "C") 
and to grade its quality relative to that of the clean speech segment on "A". In the con- 

tinuous grading scale used by the subjects, 1 to 1.9 represented an evaluation of varying 

degrees of a '%cry annoying" judgment, 2.0 to 2.9 covered the "annoyingy' range, 3.0 to 

3.9 meant "slightly annoying", 4.0 to 4.9 was for judgments of "perceptible but not an- 

noying", and 5.0 indicated c'imperceptible". This is, in effect, a 41 grade continuous 

scale, with categorically labeled groupings for ease of orientation and to aid rating con- 

sistency throughout the experiment. The version judged to be the hidden reference (on 

"C" or "B") was given a grade of 5.0 ("imperceptible") so that on each trial one grade had 

to be "5.0". 

During the blind-rating phase, each subject was free to take as much time as required 

on any trial, switching freely among the three stimuli as often as desired. The audio ma- 

terials within a trial were time-synchronized so that the cross-fade when switching among 

"A", 'W' and "C" was subjectively seamless. The subjects listened to the stimuli over 

loudspeakers since film soundtracks are typically auditioned in this manner. 

Prior to conducting a formal double-blind listening test, each subject went through an 

extensive training session which allowed them to become familiar with the playback sys- 

tem, the experimental procedures, as well as the artifacts resulting from the noise reduc- 

tion algorithms. The training process is outlined in BS.1116 and has been shown to pro- 

vide a high degree of resolution and stability in subjective test results. 

The test method described above using the ABfC hidden reference double-blind ap- 

proach allows the expertise of the subjects to be evaluated so that the results from non- 

expert subjects can be eliminated. A post-analysis showed that all of the subjects partici- 

pating in this test demonstrated a high level of expertise and so the data from all subjects 

was included in the subsequent analysis. 

An analysis-of-variance (ANOVA) was conducted on the test results and the main ef- 

fects of the noise reduction algorithm, the signal-to-noise ratio, and the interaction be- 

tween algorithms and signal-to-noise ratios were evaluated. The ANOVA indicated a 

highly significant effect @<0.001) due to noise reduction algorithm and a highly signifi- 

cant effect (pc0.001) due to signal-to-noise ratio. The ANOVA also revealed that there 

was no significant interaction between the noise reduction algorithm and signal-to-noise 

ratio. 



The results of the subjective test are shown in Figure 8.2. The horizontal axis indi- 

cates the 3 signal-to-noise ratios used in the test, while the vertical axis provides the MOS 

(mean opinion score) of the 21 subjects. Also included dong the vertical axis are the 4 

categorical descriptors used in the BS. 1 116 rating scale to describe the magnitude of any 

audible artifacts in the test items. Any two data points in the figure are statistically dif- 

ferent (pc0.05) if their error bars do not overlap, while overlapping error bars indicate 

that the data points should be considered to be statistically identical. 
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annoying 
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Figure 8.2 Results of subjective test. 

The results of the subjective test provide a clear indication of the performance of the 

various noise reduction schemes. The lower curve represents the subjective pedormance 

of the traditional spectral subtraction algorithm based on Boll's method (i.e. magnitude 

subtraction). It can be seen that it provides the poorest subjective performance at each 

signal-to-noise ratio. The two middle curves represent the subband/sub-frame spectral 

subtraction algorithms based on Boll's method and the Wiener mter. It can be seen that 

these two algorithms provide a significant improvement in the quality of the resulting 

output signals. The two algorithms provide statistically identical results and so there does 

not appear to be any subjective benefit in using one algorithm instead of the other. The 

upper curve represents the spectral subtraction algorithm which incorporates the Patter- 

son-Moore based perceptual model into the subbandhub-kame spectral subtraction algo- 

rithm (referred to in the figure as the Soulodre algorithm). The figure shows that this al- 



gorithm provides a clear and consistent improvement in performance over the other noise 

reduction algorithms. Therefore, this algorithm provides the best overall performance for 

reducing camera noise. 

There are several interesting details which can be gleaned fiom the figure, First, by 

dividing the spectral subtraction process into subbands and sub-fhmes, the improvement 

in the noise reduction algorithm is roughly equivalent to a 6dB increase in the signal-to- 

noise ratio of the input signal. That is, the performance of the subband/sub-he spectral 

subtraction algorithms at a given signal-to-noise ratio is roughly equivalent to the per- 

formance of the traditional spectral subtraction algorithm at a 6dB higher signal-to-noise 

ratio. Similarly, the performance obtained by combining a perceptual model with the 

subbandlsub-frame spectral subtraction algorithm (the Soulodre algorithm), is roughly 

equivalent to the performance of the traditional spectral subtraction algorithm operating at 

a 12 dB higher signal-to-noise ratio. These are signifcant gains in the signal-to-noise ra- 

tio since the performance of the spectral subtraction algorithms is very dependent on the 

initial signal-to-noise ratio of the input signal. For the Ref+I2dB noise condition, this 

(Soulodre) algorithm had a MOS which fell in the not annoying range of the perceptual 

scale. In the evaluation of high quality audio systems, the W - R  requires a score in this 

range in order for a system to meet "broadcast quality" (i.e. CD quality) requirements 

[182]. Essentially, a score in this range indicates that the system is providing an output 

which is virtually indistinguishable &om the clean signal. Therefore, for signal-to-noise 

ratios at or above ReftlZdB, the noise reduction algorithm derived in this thesis satisfies 

this very stringent requirement. Given that Ref+IZdB was intended to represent a rela- 

tively high level of camera noise, this result implies that this algorithm should be success- 

ful at removing camera noise under most (typical) conditions. Moreover, in many in- 

stances, music and sound effects will be mixed with the dialogue in the final soundtrack, 

thus masking any low-level residual artifacts. 

It should also be noted that the improvement in the performance of the spectral sub- 

traction algorithm which is obtained by including subbands, sub-fkames, and a perceptual 

model is very robust. That is, the improvement in performance is consistent regardless of 

the initial signal-to-noise ratio of the input signal. This is confirmed by the fact that the 

ANOVA revealed that there was no significant interaction between the noise reduction 

algorithm and the signal-to-noise ratio of the input signal. 

The audio sequences used in the subjective test are included on the demonstration 

CD. Track #21 is the segment of clean speech to which the camera noise was added. 



This segment of speech was used as the reference (button "A") to which the subjects 

compared the various processed test items. Track #22 to Track #24 are the output of the 

spectral subtraction process for 3 levels of camera noise using the Boll method (i.e. mag- 

nitude subtraction) without subbands or sub-framing. Track #25 to Track #27 are the out- 

put of the spectral subtraction process using the Boll method with subbands and sub- 

fiaming. Track #28 to Track #30 are the output of the spectraI subtraction process using 

the Wiener filter method with subbands and sub-framing. Track #31 to Track #33 are the 

output of the spectral subtraction process using both subbands and sub-framing as well as 

the Patterson-Moore based perceptual model (the Soulodre algorithm). 

b M  Clean speech signal. 
Track #22: Ref input signal (Track #1) processed using the Boll's method. 
Track #23: R e f + 6 d B  input signal (Track #2) processed using the Boll's method. 
T r a c k  R e f + l 2 d B  input signal (Track #3) processed using the Boll's method. 
Track #25: Ref input signal (Track #1) processed using Boll's method with 

subbandslsub-frames. 
Track #24; R e f + 6 d B  input signal (Track #2) processed using Boll's method 

with sub bandslsu b-frames. 
Track R e f + l 2 d B  input signal (Track #3) processed using Boll's method 

with subbandslsub-frames. 
Track #28: Ref input signal (Track #1) processed using Wiener filter method with 

subbandslsub-frames. 
Track #29: R e f + 6 d B  input signal (Track #2) processed using Wiener filter method 

with subbandslsub-frames. 
Track #3Q: R e f + l 2 d B  input signal (Track #3) processed using Wiener filter method 

with subbandslsub-frames. 
Track #3k Ref input signal (Track #3) processed using with subbandslsub-frames 

and the Patterson-Moore perceptual model. 
Track #32; R e f + 6 d B  input signal (Track #3) processed using with subbandslsub- 

frames and the Patterson-Moore perceptual model. 
Track #33: R e f + l 2 d B  input signal (Track #3) processed using with subbandslsub- 

frames and the Patterson-Moore perceptual model. 
- - - - 

Demo 11: Tracks used in formal subjective test. 

Several types of artifacts can be clearly heard in the tracks Listed above. The effects 

of temporal smearing become audible as the signal-to-noise ratio of the input signal be- 

comes poorer and more aggressive processing is applied. Specifically, on Tracks #22, 

#25, and #28 certain syllables are quite smeared. Also, there is an obvious Loss of high 

frequency information which becomes less severe as the signal-to-noise ratio of the input 

signal increases. Also, the loss of high frequencies is less severe for those tracks where 



the perceptual model is included (i-e, Track #3 1 to Track #33). At lower signal-to-noise 

ratios, a whistling sound is superimposed on some portions of the speech. 

It is interesting to note that some of the artifacts in the above tracks are more audible 

when auditioned over headphones rather than loudspeakers, For example, in Track #33, 

components of the noise are partially unmasked when auditioned over headphones, 

whereas these components are entirely masked in loudspeaker Listening. This is a com- 

mon observation in the subjective evaluation of perceptual-based audio codecs [179]- 

8.4 Conclusions 

h this chapter, subjective evaluations were conducted of the various noise reduction 

schemes described in the thesis. A comparison of a spectral subtraction algorithm incor- 

porating different perceptual models revealed that the Patterson-Moore based model 

tended to perform better than the Zwicker based model for the noise reduction applica- 

tion. Audio representations of the masking thresholds predicted by the two models re- 

vealed clear and important differences. This result has signifcant implications for other 

applications (e.g. perceptual audio codecs) not related to noise reduction. 

A formal subjective test of the most promising schemes demonstrated that a sub- 

bandhub-frame based spectral subtraction algorithm incorporating the Patterson-Moore 

based perceptual model provides the best noise reduction performance for camera noise. 

This algorithm performs as well as a traditional spectral subtraction algorithm operating 

on an input signal having a 12 dB higher signal-to-noise ratio. It was also shown that the 

improved performance (over traditional spectral subtraction) due to this algorithm is ro- 

bust and is relatively independent of the initial signal-to-noise ratio of the input signal. 

The results of the formal subjective test support the philosophy taken in this thesis of 

minimizing the amount of processing applied to the signal. 

The results of the formal subjective test indicate that the newly developed algorithm 

should be successful at removing camera noise under typical conditions without audibly 

distorting the signal. Therefore, this algorithm satisfies the requirements for a successful 

camera noise reduction sys tern. 



In this thesis, the problem of camera noise corrupting film soundtracks was investigated 

and an effective method for reducing the noise was developed. Section 9.1 summarizes 

the key points of the thesis, while Section 9.2 looks at future research directions. 

9.1 Summary 

The problem of camera noise in film soundtracks was introduced and the requirements 

for a noise reduction scheme were outlined. A successful scheme must render the camera 

noise inaudible while not significantly distorting the underlying speech signal. Another 

requirement is that it must be a single-input system which can be applied in post- 

production. This requirement adds a significant degree of difficulty to the task. 

In Chapter 2, the methods currently used to limit or eliminate camera noise in film 

soundtracks were described. Methods based on microphone techniques attempt to focus- 
in on the desired signal either by using a highly directional microphone or by placing the 

microphone as close as possible to the actors. In another approach, the camera noise is 

limited at the source by placing the camera behind an acoustic barrier. An analogue sig- 

nal processing device (the Dolby 430 Series) was described which is sometimes used to 

try to reduce camera noise. The device was not designed with the intent of reducing cam- 

era noise, and so its usefulness in this application is limited. 

A comprehensive characterization of camera noise was described in Chapter 3. An 

examination of the time waveform revealed that the camera noise consists of a series of 

pulses coinciding with the film rate of the camera (24 frames per second). Each pulse 

consists of an initial peak followed by an interval of noise. While the pulses showed 

similarities, it was seen that the pulses are in fact different. Directivity measurements 

were also made, and it was found that the power spectrum of the camera noise changes 

with the angle of the measurement. 

Several factors were evaluated to determine whether they caused any variation in the 

camera noise. It was found that the type of lens mourited on the camera had a small ef- 

fect, whereas the film stock caused much greater changes to the noise. Measurements 

taken over time demonstrated that the power spectrum of the camera noise did not change 

significantly within a given reel of film. Measurements were also conducted on three 

IMAX cameras. These cameras were very different (physically, and in their intended ap- 



plication) from each other and were also very different from the NFB camera. Yet each 

camera exhibited similar characteristics which can be exploited in the noise reduction 

process. 

It was shown that, due to its physical size, as well as its many mechanical compo- 

nents, the camera behaves as a distributed noise source. This finding has important irn- 

plications regarding the possible success of certain noise reduction schemes. The lMAX 

cameras also behaved as distributed noise sources. The consistency in the characteristics 

of the cameras measured in the this chapter support the notion that the noise reduction 

methods developed in the thesis should be widely applicable to other types of cameras. 

A mathematical model was developed to describe camera noise. The model divides 

the camera noise into two parts: a periodic component, and a cyclical random component. 

This allowed the noise reduction schemes to be described in terms of their ability to re- 

duce either or both of the components. 

In Chapter 4, ANC based methods for reducing camera noise were investigated and a 

review of the theory behind the LMS algorithm and some of its variants was provided- 

The potential limitations (extraneous noise sources, rate of convergence, leakage of de- 

sired signal into reference input, etc.) of the adaptive noise cancellation method were 

identified. It was shown that the performance of the ANC method is dependent on the 

coherence between the two input signals. The coherence is reduced in the presence of a 

diffuse sound field and it was shown that a distributed noise source acts as a diffuse noise 

field. Since the camera is a distributed noise source, the inputs to an ANC system (for 

reducing camera noise) have low coherence. Therefore, it can be concluded that, for the 

purpose of reducing camera noise, an ANC system will have only limited success. This 

conclusion was confirmed through experimental results. 

Blind signal separation methods were reviewed and their relation to ANC was high- 

lighted. The effect of microphone spacing on the performance of a blind signal separa- 

tion system based on second order statistics was considered. It was shown that blind sig- 

nal separation is also dependent on the coherence between the input signals, and therefore 

its performance will be limited by the distributed nature of camera noise. 

To satisfy the single-input requirement for the camera noise reduction system, an 

adaptive noise canceling scheme using a synthesized reference input was proposed. The 

method relies on the noise having a high inter-pulse correlation and is intended to reduce 

the level of the periodic component of the camera noise. Unfortunately, an analysis of the 



camera noise found rather low inter-pulse correlation and thus the approach is largely un- 

successful for the present application. The poor performance of this method was shown 

to be due in part, to the jitter in the times of arrival of the individual camera noise pulses. 

To resolve this matter, a method for synchronizing the ANC process to the camera noise 

was devised. This method significantly increased the inter-pulse correlation (primarily in 

the higher fiequencies) and consistently provided between 10 and 15 dB of noise reduc- 

tion. 

In Chapter 5, signal enhancement techniques based on estimating the short-time 

spectral magnitude of the signaI were investigated. The mathematical foundation for the 

spectral subtraction process was derived for the method proposed by Boll. Spectral sub- 

traction reduces both the periodic and cyclical random components of camera noise. It 

was shown that spectral subtraction is equivalent to a zero-phase filter and that this inter- 

pretation allows for both a better understanding and a generalization of the process. 

The limitations of the method were identified and the artifacts resulting from spectral 

subtraction were described. Several new modifications to the traditional spectral subtrac- 

tion algorithm were proposed to minimize the audibility of these artifacts. The minimum 

spectral floor proposed by Berouti et  al. for reducing the audibility of musical noise was 

extended to make the noise floor more perceptually benign. A modified version of the 

survival algorithm devised by Vaseghi and Frayling-Cork was proposed which was found 

to provide better reduction of musical noise. An overestimation parameter based on the 

mean and variance of the noise was proposed, as was a means of reducing time aliasing 

effects caused by modifications to the spectrum of a signal. An analysis/synthesis win- 

dowing function (when performing the FFT/IFFT operations) was added to remove the 

discontinuities at the boundaries of overlapping processing frames. Use of these exten- 

sions is not limited to the camera noise problem, and can improve the performance of the 

spectrai subtraction algorithm in general. 

In Chapter 6 general mathematical framework for integrating subbands and sub- 

frames into the spectral subtraction algorithm was derived based on the use of quadrature 

mirror fdter banks. It was shown that matching the noise reduction process (in the time- 

frequency plane) to the noise can significantly improve the performance of the spectral 

subtraction algorithm by reducing all forms of audible artifacts. By directing the proc- 

essing to those portions of the noise which require it most, the overall amount of proc- 

essing applied to a signal can be significantly reduced. This approach was generalized 

using non-equal sub-frames. The need for window alignment and frame synchronization 



when using s u b - h e s  was demonstrated and a simple means of maintaining frame syn- 

chronization was proposed. This general philosophy of minimizing the amount of proc- 

essing applied to the signal in a given subband/sub-frame is carried throughout the thesis. 

In Chapter 7 the addition of a perceptual model to the spectral subtraction process was 

investigated. The perceptual model was used to determine which portions of the noise 

are audible and which are being masked by the desired signal. The noise reduction proc- 

ess is then limited to reducing those portions of the noise which are audible. As such, the 

overall amount of processing applied to the signal is minimized from a perceptual point 

of view and thus the levels of the artifacts are also reduced. 

Certain limitations of the critical band based model used by Tsoukalas et al. were 

identified and two other models of simultaneous masking were considered. The high 

resolution Zwicker model and the Patterson-Moore model were compared from a mathe- 

matical point of view by mapping them fiom their basilar membrane representations to 

the linear frequency domain- The models were shown to produce significantly different 

estimates of the auditory masking threshold. 

A new perceptual model was developed based on the Patterson-Moore model for si- 

multaneous masking. The model also contained several new components derived in this 

thesis to account for the fdtering effects of the outer and middle ear, the internal noise 

floor of the internal ear, forward masking as a function of level and frequency, nonlinear 

addition of masking, and the interaction between the auditory filters and the window used 

in the Fourier transform. The new model was incorporated into a subband/sub-frame 

based spectral subtraction algorithm and a new method for estimating the clean signal 

was proposed. This implementation of spectral subtraction with the perceptual model 

was found to provide superior performance over traditional implementations. 

Chapter 8 provided a subjective evaluation of the performance of the various noise 

reduction algorithms derived in the thesis. Listening tests c o n f m  the differences be- 

tween the auditory masking thresholds predicted by the two perceptual models. The 

spectral subtraction algorithm operating with the Patterson-Moore based perceptual 

model was found to perform better than the algorithm based on the Zwicker model. A 

formal subjective test using the most rigorous and sensitive methods was conducted to 

evaluate the more promising noise reduction algorithms. The Boll method and the Wie- 

ner filter method of spectral subtraction were found to be subjectively equivalent in their 

performance. The results of the formal subjective test clearly show that the subbandlsub- 

frame based spectral subtraction algorithm with the new Patterson-Moore based percep- 



ma1 model provides the best performance overall. The results demonstrate a signiticant 

improvement in the performance of the spectral subtraction algorithm due to the use of 

subbands and sub-fiames, as well as the use of a perceptual model. It was therefore con- 

cluded that the methods developed in the thesis meet the requirements for a successful 

camera noise reduction system. 

This thesis appears to constitute the first formal effort to apply adaptive signal proc- 

essing techniques to the problem of reducing camera noise in film soundtracks. In the 

thesis, the characteristics of camera noise were thoroughly analyzed and many different 

approaches to reducing camera noise were investigated. The method based on spectral 

subtraction using subbands, sub-fiames and a new perceptual model was shown to pro- 

vide very good performance. The application of adaptive signal processing techniques to 

the problem of camera noise is in its infancy, and one might compare its current state to 

that of gramophone restoration about 10 to 15 year ago. It is likely that, as has occurred 

with gramophone restoration, other researchers will investigate the camera noise problem 

and develop new methods for improving the quality of the noise reduction algorithms. 

Hopefully, the work in this thesis will provide some insight to these researchers about 

which methods are most likely to be successful. 

The work in this thesis related to the analysis and development of a new perceptual 

model is of potential benefit to many applications not related to camera noise. The model 

can be incorporated into any spectral subtraction algorithm for reducing a noise which is 

corrupting a speech or music signal. Moreover, since the model uses an auditory filter 

approach, it is relatively straightforward to develop customized implementations of the 

algorithm which might be useful in some applications. The new perceptual model also 

offers interesting new possibilities in the fields of perceptual audio codecs as well as per- 

ceptual-based objective measurement systems. 

9.2 Future Research Directions 

There are several issues which should be addressed in order to improve the performance 
of the signal enhancement system developed in this thesis. In this section, some of the 

more important issues are identified. 

9.2.1 Realtime Implementation 

The work in this thesis provided a generalized form of the spectral subtraction process as 

well as several extensions intended to minimize specific artifacts created by the spectral 



subtraction process. Moreover, a subbandkub-frame ficamework was introduced as was a 

perceptual model. As a result, there are numerous parameters which must be adjusted in 

order to obtain the highest degree of noise suppression without causing significant distor- 

tion to the underlying speech signal. In this thesis, al l  processing was done on a non- 

realtime basis, thus making it rather difficult to fine tune the values of these parameters. 

Furthermore, it was not practical to process large amounts of data. 

At this stage, a very useful next step in the research would be to develop a realtime 

implementation of the process. This would allow the effects of each parameter in the 

process to be evaluated quickly and efficiently. Furthermore, this is the most sensible 

means of fully determining the required tradeoffs between the various parameters. 

The computational requirements for most parts of the noise reduction scheme devised 

in this thesis are not excessively demanding. The most demanding portions of the proc- 

ess are those related to the calculation of the auditory masking threshold required for each 

block of data. As implemented in the thesis, this requires the multiplication of a 1 by N 

vector with an N by N matrix. Present day DSP chips include specific instructions de- 

signed to rapidly perform these operations. Furthermore, sigmf3cant computational sav- 

ings could be had by calculating the auditory masking threshold in the basilar membrane 

domain where the (pitch) resolution is lower and so the number of points in the calcula- 

tions is much less than N. It seems probable that, given the current state of the art, the 

entire noise reduction process could be performed in realtime on a single high-end DSP 

processor. Due to requirements for high quality audio output (i-e. 16 bits), the processor 

should have an internal resolution of no less than 24 bits. 

9.2.2 Improved Perceptual Model 

The use of a perceptual model was found to provide a significant improvement in the per- 

formance of the spectral subtraction algorithm. Moreover, the new model based on the 

Patterson-Moore simultaneous masking model was found to provide better performance 

than the model based on the Zwicker model. It should be noted that these models were 

not developed with engineering applications in mind, and so from an engineering point of 

view, these two models leave many important questions unanswered. It would be very 

useful to perform a series of fundamental experiments related to auditory masking which 

are designed with engineering applications in mind. Such experiments would include the 

effects of kame-based processing, transform-based processing, windowing effects, etc. 



For example, work which is currently being done in the area of very low bitrate per- 

ceptual audio codecs may be useful in this regard. At very low bit rates it is inevitable 

that the effects of quantization (e.g quantization noise, temporal smearing, timbre effects. 

etc.) will be audible. Research is currently being done to investigate strategies for mini- 

mizing the perceived annoyance due these inevitable artifacts. The results of these stud- 

ies may help designers of noise reduction algorithms to find the best balance between re- 

sidual noise and artifacts in the signal. The author is currently conducting such experi- 

ments, but there are many questions to be answered. 

9.2.3 Improved Reduction of Periodic Noise Component 

In Chapter 4 a method was developed for reducing the level of the periodic component of 

camera noise. This method was shown to be inadequate by itself as a means of reducing 

camera noise. It seems sensible to use this method as a pre-processor to the spectral sub- 

traction based method. However, this approach did not perform well because the ANC 

based method developed in Chapter 4 does not adequately reduce the periodic noise com- 

ponent during intervals of speech activity. It is possible that the removal of the periodic 

component of the camera noise could be improved at lower frequencies (especially during 

speech activity) by using the method proposed by Godsill and Tan [42] for removing low 

frequency transient noise from gramophone recordings. They model the transient noise as 

an autoregressive process and use a Kalrnan fdter approach to remove the noise. If this 

method can provide a more consistent reduction of the periodic component, including 

during speech activity, then it may be useful as a pre-processor to a spectral subtraction 

algorithm. This could be quite beneficial in situations where the level of the camera noise 

is excessively high. It is not clear how their method would perform at higher frequencies- 

Nonetheless, their method should be investigated. 

9.2.4 Use of Discrete Cosine Transform 

In their work on noise reduction using a signal subspace approach, Ephraim and Van 

Trees used the KLT to decompose the noisy vector into two subspaces. This method was 

reported to provide an enhanced signal which is free from musical noise. Use of the KLT 

however, is computationally demanding and does not lend itself easily to integration with 

a perceptual model. As a possible compromise, it would be worthwhile to investigate the 

use of a discrete cosine transform in the signal subspace approach. The DCT is known t o  

give a good approximation to the KLT yet it is computationally efficient. Moreover, the 

DCT lends itself more readily to integration with a perceptual model. 



9.2.5 Increased Number of Frequency Subbands 

The use of a combination of sub-frames and subband filtering was seen to provide a sig- 

nificant improvement in the performance of the spectral subtraction system. In the simu- 

lations performed in this thesis, four frequency subbands were used. The use of more 

subbands at lower frequencies (below 6 IcHz) should be investigated as a possible means 

of achieving better performance at these frequencies. This may provide additional im- 

provement when used in conjunction with a perceptual model since upward masking is 

the dominant form of masking and so it is important to have the best possible estimate of 

the signal at low frequencies. 

9.2.6 Phase Estimation 

Vary showed the reIation between the maximum expected deviation in phase and the sig- 

nal-to-noise ratio of the input signal. His results suggest a possible means of trying to 

estimate the short-time phase of the desired signal. Vary's work provides bounds which 

would help in the estimation of the phase. It is expected that a more accurate estimate of 

the phase could provide improved performance (particularly at low signal-to-noise ratios) 

by reducing the artifacts related to temporal aliasing. 

9.2.7 Multiple Passes of the Spectral Subtraction Process 

While investigating the effects of the various parameters in the spectral subtraction proc- 

ess, it was found that if only a moderate amount of noise suppression was applied to the 

corrupted signal, no musical noise resulted. The amount of noise suppression was con- 

trolled by the parameters a, P, and y as shown in Figures 5.3 to 5.6. That is, a, P, and y 
were set so that the slope of the noise suppression curve did not become too steep thus 

causing musical noise. Of course, the remaining camera noise was still at an unacceptabIe 

level. 

To obtain more noise suppression, the processed signal was re-processed through the 

spectral subtraction system. A new estimate of the background noise was derived from 

the residual noise at the output of the fxst spectral subtraction process. This procedure 

was repeated over several iterations. 

Although this approach was not entirely successful, it did show enough promise to 

warrant further investigation. Since musical noise results from the non-Linearity of the 

spectral subtraction process, it seems reasonable that it could be reduced by decreasing 

the severity of the non-linearity. 



9.2.8 Higher Order Statistics 

Though not reported in the thesis, the use of higher order statistical methods was investi- 

gated as a possible means of taking advantage of the repetitive (cyclical) nature of camera 

noise. Higher order statistics are frequently used when dealing with cyclostationary sig- 

nals, and therefore it was felt that they could be useful in reducing camera noise 

[l83,L84,l85,l86,l87,l88,l89,l9O, 1911. A major drawback with signal processing 

methods based on higher order statistics (such as the bispectrum or trispectrum) is the 

computational requirements involved. Calculation of these statistical measures is far 

more demanding than second-order quantities. Also, they must be calculated over many 

cycles in order to obtain accurate measurements. Moreover, since the rate of repetition of 

camera noise is relatively slow (24 frames per second), one must examine the signal over 

a large number of samples in order to include a sufficient number of "cycles" for the 

noise to appear cyclical. This implies that a camera noise reduction scheme based on 

higher order statistics would have to deal with very large quantities of data and the proc- 

essing of this data would be very computationally demanding. Given the author's current 

computing capabilities, it was not possible to implement algorithms based on the use of 

higher order statistics. As greater computing power (and memory) becomes available, it 

may be worthwhile to investigate these methods. 

9.3 Epilog 

In this dissertation a signal processing method was proposed which removes camera noise 

from film soundtracks. The method uses a technique known as spectral subtraction which 

is based on estimating the short-time spectral magnitude of the desired signal. The basic 

spectral subtraction process however, creates audible artifacts which are often more dis- 

turbing than the original noise and thus new algorithms were proposed to minimize these 

artifacts. The spectral subtraction process was also extended to take advantage of the cy- 

clical or repetitive nature of camera noise. Sub-frames, which were synchronized and 

aligned to the interfering noise, used in conjunction with frequency subbands were found 

to significantly improve the noise reduction process. The use of subbands and sub-frames 

permits the noise reduction process to be better matched to the noise in the time- 

frequency plane. This in turn allows the overall amount of processing applied to the sig- 

nal to be reduced, thus reducing the resulting artifacts. The noise reduction process was 

further improved by including a perceptual model which allows further reduction in the 

amount of processing applied to the signal. A subband/sub-frame based spectral subtrac- 

tion algorithm using a perceptual model provided a means of successfully removing cam- 



era noise fiom film soundtracks without adversely affecting the quality of the underlying 

signal. In a formal subjective test the proposed method was shown to work well even in 

the presence of relatively high levels of camera noise. 

While the work in this thesis examined the specific problem of reducing camera 

noise, the results could be extended to other applications which require a signal to be en- 

hanced in the presence of a repetitive noise. Also, much of the work can be applied to the 

general problem of noise reduction in audio signals, while other aspects of the thesis are 

directly useful to other applications. 



APPENDIX A 

The power spectrum of the camera noise can be averaged over short intervals of time re- 

lated to the pulse rate of the camera (i.e. 2000 samples), or it can be viewed over longer 

intervals spanning many pulses. The choice of whether to view the power spectrum of 

the interfering noise over a shorter or longer time interval depends on the application. 

For example, some noise reduction schemes, such as spectral subtraction described in 

Chapter 5, process the signal over short intervals wherein the signal (typically speech) is 

considered to be stationary. 

It was seen in Figure 3.7 that, when viewed over a time interval equal to the period of 

the noise pulses, there was no obvious structure to the camera noise. Specifically, there 

were no spectral h e s  that would indicate a harmonic structure to the noise. However, 

given that the camera operates at a rate of 24 frames per second, it is reasonable to as- 

sume that a power spectrum measured over several noise pulses would reveal spectral 

lines spaced 24 Hz apart. Indeed, these spectral lines do occur, but only if the power 

spectrum is measured over many pulses of the camera noise. 

Figure A. I shows the power spectrum of the camera noise measured over 16 pulses of 

the camera noise (i.e. 2/3rds of a second). Spectral lines spaced 24 Hz apart can be seen, 

although the amplitudes of the spectral lines do not appear to follow a constant pattern. 

The amplitudes of the spectral lines tend to decrease with increasing frequency. Although 

not seen in the figure, the spectral lines tend to disappear above about 2500 Hz, even 

though the spectrogram of Figure 3.8 showed significant noise energy above this fre- 

quency associated with the onsets of the pulses. Furthermore, the magnitudes of the 

spectral lines vary with the angle of the measurement, the f h  stock, and the type of lens 

mounted on the camera. 
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Figure A.1 Typical power spectrum of the camera noise measured over 16 noise 
pulses. 

There is an underlying broadband noise that can be seen between the spectral lines. 

This is due to the fact that the camera noise is effectively a series of noise bursts and that 

each burst is unique. Furthermore, the camera noise is made up of other components that 

are not directly related to the 24 frames per second film rate. 

The power spectrum of the camera noise can look quite different depending on the 

length of the time interval over which it is measured. For the spectral subtraction scheme 

used in this thesis it is necessary to process the signal over short time intervals, and there- 

fore, the power spectrum must also be measured over these shoa intervals. 



APPENDIX B 
-- - 

Twenty sentences from the 1965 revised list of phonetically balanced sentences (Harvard 

Sentences [45]) were used in evaluating the performance of the various noise reduction 

schemes described in this thesis. The Harvard Sentences consist of 720 phonetically bal- 

anced sentences which are grouped into 72 lists each containing 10 sentences. List 1 and 

list 5 were used in the tests, and were recorded as described in Section 3.5.6. These 20 

sentences are Listed below. 

List 1: 

List 5: 

The birch canoe slid on the smooth planks. 

Glue the sheet to the dark blue background. 

It's easy to tell the depth of a well. 

These days a chicken leg is a rare dish. 

Rice is often served in round bowls. 

The juice of lemons makes fine punch. 

The box was thrown beside the parked truck. 

The hogs were fed chopped corn and garbage. 

Four hours of steady work faced us. 

A large size in stockings is hard to sell. 

A king ruled the state in the eariy days. 

The ship was tom apart on the sharp reef. 

Sickness kept him home the third week. 

The wide road shimmered in the hot sun. 

The lazy cow lay in the cool grass. 

Lift the square stone over the fence. 

The rope will bind the seven books at once. 

Hop over the fence and plunge in. 

The friendly gang left the drug store. 

Mesh wire keeps chicks inside. 
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