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Abstract

Modern audio coding exploits the properties of the human auditory system to effi-

ciently code speech and music signals. Perceptual domain coding is a branch of audio

coding in which the signal is stored and transmitted as a set of parameters derived

directly from the modeling of the human auditory system. Often, the perceptual rep-

resentation is designed such that reconstruction can be achieved with limited resources

but this usually means that some perceptually irrelevant information is included. In

this thesis, we investigate perceptual domain coding by using a representation de-

signed to contain only the audible information regardless of whether reconstruction

can be performed efficiently. The perceptual representation we use is based on a mul-

tichannel Basilar membrane model, where each channel is decomposed into envelope

and carrier components. We assume that the information in the carrier is also present

in the envelopes and therefore discard the carrier components. The envelope com-

ponents are sparsified using a transmultiplexing masking model and form our basic

sparse auditory envelope representation (SAER).

An iterative reconstruction algorithm for the SAER is presented that estimates

carrier components to match the encoded envelopes. The algorithm is split into two

stages. In the first, two sets of envelopes are generated, one of which expands the

sparse envelope samples while the other provides limits for the iterative reconstruction.

In the second stage, the carrier components are estimated using a synthesis-by-analysis

iterative method adapted from methods designed for reconstruction from magnitude-

only transform coefficients. The overall system is evaluated using subjective and

objective testing on speech and audio signals. We find that some types of audio

signals are reproduced very well using this method whereas others exhibit audible

distortion. We conclude that, except for in some specific cases where part of the

carrier information is required, most of the audible information is present in the

SAER and can be reconstructed using iterative methods.
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Sommaire

Le codage audio moderne exploite les propriétés du système auditif humain de manière

à coder efficacement la parole et la musique. Le codage en domaine perceptuel est une

branche du codage audio dans lequel le signal est enregistré et transmis sous forme

d’un ensemble de paramètres provenant directement d’un modèle du système auditif

humain. La représentation perceptuelle est souvent conçue pour que la reconstruc-

tion puisse être réalisée avec des ressources limitées, mais cela requiert généralement

l’inclusion de certaines informations perceptuellement non pertinentes. Dans cette

thèse, nous étudions le codage perceptuel en utilisant une représentation destinée

à ne contenir que l’information sonore, indépendamment du fait que la reconstruc-

tion puisse être effectuée de manière efficace. La représentation perceptuelle que

nous utilisons est basée sur un modèle à canaux multiples de la membrane basilaire

pour lequel chaque canal est décomposé en éléments de l’enveloppe et du signal por-

teur. Nous supposons que l’information contenue dans le signal porteur est également

présente dans les enveloppes et supprimons donc les composantes du signal porteur.

Les composantes de l’enveloppe sont réduites à l’aide d’un modèle de masquage trans-

multiplexeur pour former notre représentation parcimonieuse des enveloppes sonores

(RPES).

Nous présentons un algorithme de reconstruction itératif pour la RPES qui fait

une estimation des composantes du signal porteur à partir des enveloppes codées.

L’algorithme a deux étapes. À la première étape, deux ensembles d’enveloppes sont

produits: le premier dilate les échantillons des enveloppes clairsemées tandis que le

deuxieme fournit des limites pour la reconstruction itérative. À la deuxième étape,

les éléments du signal porteur sont estimés en utilisant une méthode d’analyse par

synthèse itérative adaptée de méthodes conçues pour la reconstruction de coefficients

de la transformée de grandeur. Le système est évalué à l’aide de tests subjectifs et

objectifs sur des signaux de parole et audio. Nous constatons que certains types de sig-

naux audio sont très bien reproduits par cette méthode alors que d’autres démontrent

de la distorsion audible. Nous concluons que, sauf dans certains cas spécifiques où une

partie de l’information du signal porteur est indispensable, la majorité de l’information

sonore est présente dans la RPES et peut être reconstruite en utilisant des méthodes

itératives.
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Chapter 1

Introduction

1.1 Perceptual audio coding

Audio coding has been an area of active research for several decades both in academia

and industry. It has reached a remarkable level of maturity and its application has

become ubiquitous in everyday consumer items. Today, if a device has a way to store

a few megabytes of data and is capable of producing sound, chances are one can use

it to play back music encoded in the popular “mp3” format. Yet, there continues to

be interest in improving the sound quality of the stored audio and in reducing the

amount of storage required.

The efficiency of an audio coding scheme is a function of the number of bits per

second (bitrate) required for storage and the distortion the audio signal exhibits when

reproduced. Usually, a higher bitrate results in lower distortion and to express the

theoretical efficiency as a numerical quantity, we use the rate-distortion (RD) function.

We aim to make a tradeoff between the bitrate and the distortion, either by fixing

the bitrate and minimizing distortion or minimizing the bitrate to achieve some fixed

level of distortion. While measuring the bitrate is a simple matter of counting the

number of bits needed by the audio codec over some given period of time, evaluating

the distortion is a more complex task. We often measure the distortion using a simple

signal to noise ratio, but the ultimate judge of quality for an audio signal is a human

being and it is hard to predict how much distortion the listener can hear and the degree

to which different types of distortion are audible. A better estimate of distortion can



2

be achieved by using a computational model of a typical human listener. Audio coding

that exploits this is termed perceptual coding and is the main subject area of this

thesis.

1.1.1 Block-transform perceptual coding

The use of auditory models to aid in the design of audio codecs began in the 1980’s

with Johnston [Johnston, 1988], and his pioneering work has led to many of the

transform based codecs that are common today [Painter and Spanias, 2000]. In a

typical transform codec as depicted in Fig. 1.1, the audio signal to be encoded is first

split into short-time segments, which are then transformed into a frequency domain

representation using a fast block transform. A model of the human auditory system

then evaluates this frequency domain representation of the sound to determine regions

of the frequency spectrum where added noise is inaudible. This information is used by

the quantizer block to encode the frequency domain representation in such a manner

as to reduce the quantization noise in the audible portions of the spectrum.

There are several reasons why this approach has been very successful. Block trans-

forms can be performed very efficiently using fast transforms (such as the Modified

Discrete Cosine Transform, MDCT, or the Fast Fourier Transform, FFT) and the

properties of the resulting transform coefficients are well understood in the context

of data compression. Furthermore, the frequency domain properties of the auditory

system have been investigated thoroughly and can be exploited easily by processing

the transform coefficients.

A disadvantage of this approach is that block based processing of sound signals

makes temporal properties of the auditory system difficult to exploit, since the hu-

man hearing system is not based on fixed-length time segments. Thus, the process-

ing of some audio events (such as sharp transitions) depends on when they occur.

Block-based coders can be made more flexible in this respect using techniques such

as dynamically changing the length of frames to better fit the current signal proper-

ties [Spanias et al., 2007], but there is no unified, consistent approach to dealing with

both the time and frequency properties. Block-transform codecs can be regarded as

using a perceptual model guiding the quantization of the transform coefficients, hiding

the artifacts where they cannot be perceived. A more direct use of perceptual models
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audio in

perceptual model
transform

(MDCT, etc.)

quantizer & coder

decoder

inverse transform

transform
coefficients

transform
coefficients

audio out

storage & 
transmission

Fig. 1.1: Diagram of block-transform perceptual coding

that has appeared recently is perceptual domain coding.

1.1.2 Perceptual domain coding

A recent new approach to perceptual audio coding is perceptual domain coding

(PDC), which uses the parameters of an auditory model directly to encode the audio

signal. As shown in Fig. 1.2, the structure of such a scheme is actually quite simple. It

is based on the idea that the auditory model can be used as the primary transform of

the sound signal into a representation which can be quantized directly. Quantization

can thus take into account perceptual properties, especially if the representation has

a single-letter squared-error criterion that reflects the audibility of distortions [Kubin
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perceptual model

quantizer & coder

decoder

inverse perceptual model

audio in

audio out

auditory model 
parameters

auditory model 
parameters

storage & 
transmission

Fig. 1.2: Diagram of perceptual domain coding

and Kleijn, 1999]. However, in these codecs the model is constrained to be easily

invertible to reduce the computational load on the decoder.

To date, no perceptual model has been designed specifically for audio coding. Gen-

erally, the models have been designed either purely for research purposes (to further

the understanding of the human auditory system) or for the objective evaluation of

perceived quality (eg. PEAQ [ITU-R, 2001]). As a result, the problem of parame-

ter granularity is addressed only in terms of a noticeable difference detection or as a

globally aggregated number. In their initial analysis stage, models also often increase

the amount of data manyfold, with the aim towards accuracy and flexibility at the

expense of efficiency. Our ultimate goal for a coding-oriented model is to strike a

balance between accuracy, data efficiency and computational complexity.
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This balance is in part determined by the depth to which the auditory system is

modeled. The human auditory system is a complex biological system that is closely

knit into other cognitive functions, such as the memory, motor, and of course linguistic

structures [Moore, 2003]. Models can be designed to simulate only the periphery of the

inner ear, such as the movement of the Basilar Membrane (BM), they can model the

neuronal signals in the auditory nerve, or even take higher order effects into account.

Modelling each step from the periphery to the cortex should allow for higher coding

efficiency as more inaudible information is discarded. The problem is that higher

order functions cannot be directly observed, which makes accurate modeling of these

functions very challenging. In this thesis we tackle the human auditory system by

modeling the envelopes of early auditory neuron excitations, which we term auditory

envelopes.

1.1.3 Auditory envelopes representation

Based on the frequency analysis performed by the BM and the temporal smoothing

of neural transduction, auditory envelopes (AE) are a representation that has been

used in several research auditory models. AE properties have been studied to under-

stand the audibility of modulation patterns. This representation has the property of

being relatively high-level, discarding a significant amount of information. However,

AE have not been used in perceptual coding since reconstruction from envelopes is

computationally difficult. If we lift the constraint on computational complexity for

the decoder, this reconstruction can be done using iterative methods: synthesis by

analysis with refinement.

1.1.4 Reconstruction using synthesis by analysis

The computational difficulty of inverting auditory models arises from the fact that

as the level of modeling increases, information is discarded. An auditory model is

therefore a many-to-one mapping of a signal to a representation and the inversion

of audio from the model parameters is not unique. In effect, some of the discarded

information must be recreated to create an audio signal that is perceptually equivalent

to the original signal. Given the nonlinearities in the auditory system, direct model

inversion may be numerically unstable.
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Perceptual domain audio codecs are designed to encode and decode signals in-

tended for human listeners. Since the coded representation is based on an analysis

stage that emulates the human auditory system, we can look at the decoder in a

different way: as a transmultiplexing system, encoding a set of percepts into a single-

dimensional channel (the audio signal), to be decoded by the human ear. Introduced

in [Feldbauer and Kubin, 2004] to design a masking model for perceptual domain

coding, the transmultiplexer model uses the analysis stage from the encoder to model

the human listener, effectively turning the codec “inside out”.

While originally used to design and optimize a perceptual domain encoder, in

this thesis we propose to take this idea a step further and make the transmultiplexer

model an integral part of the decoder, rather than just an aid in the design of the

encoder. Adding a perceptual model to the decoder allows us to immediately check

the quality with which the coded information will be perceived. Then, if the model

indicates that the quality is not satisfactory, the decoder can adjust the reconstructed

audio signal to better fit the encoded data. This leads to the concept of iterative

synthesis-by-analysis. Iterative methods are not usually used at the decoder in audio

coding systems due to the high computational cost, but the continued increases of

available computational power even in handheld portable devices make this subject a

worthwhile topic for study.

1.2 Perspective and goal of the thesis

The origin of the ideas in this thesis can be traced back to earlier work in perceptual

modeling and audio coding. Perceptual models are often used indirectly in the de-

velopment cycle of audio codecs to evaluate the performance and coding efficiency as

part of objective quality measures; doing so is far cheaper and quicker than perform-

ing repeated subjective testing with many subjects whose responses can be difficult

to interpret. There have even been proposals to automate the tweaking of codec

parameters by using perceptual models [Holters and Zölzer, 2009].

The “target audience” to a codec developer then almost seems to be the model

itself rather than a real listener, though of course developers of auditory models and

subjective audio measures strive to make the model and human listener consistent
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with each other. The question then arises, if we are developing to satisfy the demands

of some computational construct, why not include this construct directly into the

decoder to check the quality of the reconstruction? Furthermore, if we do so and if

the perceptual model is evaluating the signal based on parameters X, Y and Z, should

it not be sufficient to transmit just those parameters? After all, the original signal is

not available at the decoder so if the extra information is needed for the perceptual

model, how much of the original information is required?

This thesis is the result of our work tackling these questions. It draws on combining

concepts from the science of psychoacoustics to evaluate perceptual audio representa-

tions with signal processing and linear programming theory to evaluate the iterative

system that implements the decoder. The overall system is very complex so we fo-

cus on iterative audio reconstruction from auditory envelopes. Given the maturity

of the audio coding field, we cannot hope to design and implement a complete audio

codec that competes with those that are commercially available and used in con-

sumer devices. Rather, we use components that can be understood individually and

in combination with each other to explore the feasibility of iterative reconstruction

for perceptual coding from auditory envelopes.

1.3 Thesis contributions

There are several contributions in this thesis:

• We introduce a new perceptual audio representation based on the sparse sam-

pling of auditory envelopes. In contrast to representations that are designed

for computationally simple inversion, this representation is designed to only

contain the perceptually relevant information. The algorithm to generate the

representation consists of extracting the auditory envelopes, subsampling and

sparsification using a masking model. We show that some types of signals can

be reconstructed very well from this representation. However, we also show that

some types of audio signals cannot be reproduced accurately, and we examine

the cause for this.

• A two-stage algorithm is presented to reconstruct an audio signal from the

above perceptual representation. The sparse sampling of auditory envelopes
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is expanded into two sets of full-rate envelopes, one set for known envelope

values and the other set for limits within which the reconstructed envelopes must

fit. This stems from the idea that in the perceptual representation, a missing

sample is not without information, but was removed due to the application of

the masking model. The second step is the iterative estimation of information

discarded from the perceptual representation at the encoder, using a synthesis-

by-analysis loop applying the envelope constraints from the previous stage.

• We present a method of analyzing the iterative reconstruction from subchannel

envelopes of FIR filterbanks using a circulant matrix notation and frame theory.

While this notation is limited to fully oversampled FIR filterbanks, it is simple

to understand and allows for straightforward numerical analysis.

1.4 Outline of the thesis

This thesis is organized as follows. Chapter 2 gives an overview of the human audi-

tory system focusing in particular on the inner ear and early neural transduction to

show the basis for auditory envelopes as a representation of auditory percepts. We

discuss the basics of modeling these structures computationally, then describe some

applications of perceptual modeling in audio coding. In particular, perceptually mo-

tivated coders are introduced upon which we base a new perceptual representation to

illustrate the key concepts of our research.

In Chapter 3, some background mathematical notation and techniques are pre-

sented that tie into the basic scheme of iterative reconstruction from perceptual sub-

band envelopes. We describe subband filtering using circulant matrix notation and

frame theory. The reconstruction from subband signal estimates and subband sig-

nal envelopes is presented and analyzed using the framework used by Griffin and

Lim [Griffin and Lim, 1984], which was used originally for reconstruction of signals

from magnitude-only transform coefficients.

The central topic of the sparse auditory envelope representation and its iterative

reconstruction method is presented in Chapter 4. We describe the general framework

and issues that must be addressed, beginning with an abstract discussion of iterative

reconstruction from perceptually coded representations. The sparse auditory envelope
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representation is adapted from a perceptually motivated audio coder by Feldbauer

[Feldbauer, 2005] and we show that the new representation discards the fine temporal

structure of auditory subband signals, which is typically both difficult to encode at low

bitrates and of limited perceptual importance. The various stages of the encoder and

decoder are described from a perceptual modeling perspective. The encoder begins

with a highly redundant envelope representation, which is first subsampled and then

sparsified. The sparsification is achieved using a transmultiplexer based masking

model to remove from the representation envelope samples that are assumed to be

inaudible due to temporal and simultaneous masking. We then describe the algorithm

to reconstruct an audio signal from the sparse envelope representation. This also is

a multi-step process: in the first step the full auditory envelopes are estimated from

the sparse representation and in the second step the carrier signals associated with

the envelopes are rebuilt using the iterative framework from Chapter 3.

The details of the implementation of the reconstruction algorithm are described

in Chapter 5, along with the results of testing this implementation on speech and

audio signals. The quality of the reconstructed signals is evaluated by subjective

analysis and we examine the properties of the algorithm using objective measures as

introduced in Chapter 3. Using these results, we discuss the premise of using the

sparse auditory envelope representation and iterative reconstruction for perceptual

coding in the conclusion of the thesis in Chapter 6.



10



11

Chapter 2

Auditory perception and modeling

The topic of this thesis is based on the processing of sound by the human auditory

system. To show how the algorithms presented in later chapters are rooted in the

human auditory system, this chapter will provide a brief overview of the physiological

structures of the ear, as well as a signal processing view of modeling these structures.

Also, some applications of auditory models are presented, focusing on coding using

pulse-based and modulation domain techniques.

2.1 Overview of the auditory system

Like all sensory organs, the human ear is a very complex instrument. Of particular

interest to the research presented here is the processing of information in the inner

ear. It is useful to briefly discuss the outer and middle ear as well as they act as

direction-dependent filters for the incoming sound. Detailed descriptions of the entire

auditory system can be found in [Moore, 2003; Allen, 1985; Zwicker and Fastl, 1999],

but important concepts are summarized below.

2.1.1 The outer and middle ear

The outer ear, consisting of the earlobe (pinna) and the ear canal, is the only visible

part of the ear. It focuses the incoming sound into the ear canal and alters the sound

depending on direction. The ear canal ends at the ear drum (the tympanic membrane),

where the pressure waves are converted into mechanical movement. In the middle ear,
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three small bones (ossicles) connect the ear drum to the oval window of the cochlea

in the inner ear. These bones act as a set of levers to match the impedance of air to

the fluid in the cochlea, ensuring efficient transmission of the sound signal.

The effect of the outer and middle ear on incoming sound is mostly regarded

as a linear passive filter, emphasizing frequencies between 500 and 4000 Hz. There

are nonlinear effects which appear when certain sounds are present, such as noise

exceeding the threshold of pain. However, these are outside the scope of signals

considered here since there is little interest in reproducing these effects in audio coding.

2.1.2 Inner ear anatomy

The inner ear, a structure embedded in the hard temporal bone, is shown in Fig. 2.1a.

This structure contains both the balance organ (in the semicircular canals) and the

auditory organ in the cochlea. The cochlea is a snail-shaped structure of three fluid-

filled channels, called the scala vestibuli, the scala media, and the scala tympani.

These channels are separated by two membranes, the basilar membrane (BM) and

Reissner’s membrane. Reissner’s membrane separates the scala vestibuli and the

scala media, but since this membrane is very light and thin, these two channels are

usually treated as a single unit [Zwicker and Fastl, 1999]. The three channels curl

up in parallel up to the apex of the cochlea, where the scala vestibuli and the scala

tympani are joined at the helicotrema. At the base of the cochlea, the channels are

connected to the middle ear, by the oval window and the round window. The oval

window is the interface between the ossicles (specifically, the stapes or stirrup) and

the scala vestibuli. Here, the movement of the ossicles is converted into pressure

variations of the fluid in the cochlea. The round window is connected to the scala

tympani to equalize the pressure.

The scala vestibuli and the scala tympani are separated by the BM. Since the fluid

medium is essentially incompressible, pressure changes must be equalized through the

BM to the scala tympani and the round window. The BM varies in stiffness and

thickness along its length and resonates at high frequencies at the base of the cochlea

and low frequencies at the apex. Thus, periodic pressure variations will create a

travelling wave pattern on the BM as shown by the schematic view of the BM in

Fig. 2.1b. Given a simple sinusoidal input, the maximal displacement of the BM
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Fig. 2.1: Schematic depiction of the ear and the BM in response to a stimulus, with
the cochlea unwound, being shown as a straight and uniform canal [Zweig et al., 1976].
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will be at a point dependent on the frequency of that sinusoid and, for more complex

signals, there will be multiple local maxima. The BM can be thought of as performing

a frequency analysis similar to a Fourier Transform.

The BM supports the Organ of Corti, consisting of a set of sensory cells, the inner

and outer hair cells (IHC and OHC). These cells convert the mechanical movement of

the BM into neural impulses. The IHC primarily attach to afferent neurons (trans-

mitting information to the brain) and the OHC to efferent neurons (transmitting

information from the brain). There are about 3 500 IHC and 12 000 OHC connected

to about 30 000 neurons; however, only about 1 800 of those are efferent. It is thought

that the OHC play an active role in changing the characteristics of the BM and are

controlled by the auditory complex of the brain [Moore, 2003].

The auditory nerve connects the cells within the cochlea to the central nervous

system. There, it is attached to the auditory cortex in several different places, in-

cluding the ventral cochlear nucleus and the dorsal cochlear nucleus. These forward

the auditory information to the superior olive (SO) and higher level structures in the

brain. However, the SO is notable for being one of the first structures to combine

stimuli from both ears and thus plays an important role in the spatial perception of

sound [Moore, 1991]. In the brain in general, higher level tasks are often quite difficult

to localize and all but impossible to examine in isolation.

2.2 Modelling auditory properties

To develop models of the human auditory system, researchers have studied it using

both anatomical examinations and functional observations. Since it is a part of a living

system and both highly complex and delicate, anatomical examinations are only done

on either cadavers or animal models. On the other hand, functional observations are

done by presenting certain controlled stimuli to volunteer test subjects who are then

asked to perform some task based upon their perception. This may be as simple

as indicating whether or not they can detect a target stimulus in the presence of a

background stimulus, such as a tone in the presence of broadband noise. From the

results of these tests, many processes in the ear can be inferred. However, functional

observations of this kind are prone to variations and bias of the individual subjects.
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Together, anatomical and functional observations are complementary for under-

standing auditory perception and can be used to construct auditory models. Viewing

sound as a signal carrying information [Zwicker and Feldkeller, 1967], an auditory

model in the context of this thesis is a signal-processing algorithm that takes as in-

put a representation of sound (usually a digital sound file) and turns it into a set

of parameters that represent stimuli internal to the auditory system. Possible model

parameters are the deflection of the BM, the firing rate of a group of auditory neurons,

and a more abstract detection of “objects”. For the signal analysis in this thesis we

model the BM and neural transduction only since auditory object detection is an area

where fundamental research is still being conducted.

2.2.1 Modelling the BM movement using auditory filters

A key concept in the understanding of the auditory system from a functional perspec-

tive is the Critical Bandwidth (CB). Originally postulated by Fletcher [Allen, 1996],

the CB describes the extent to which sounds at different frequencies interact and thus

can be used to predict masking behaviour in the auditory system.

A common way to describe the frequency-specific behaviour of the properties of the

auditory system is to model it as a bank of parallel auditory filters (AF). A great deal

of research has been done to quantify the interactions of stimuli at different frequen-

cies more precisely, commonly using threshold-of-hearing experiments with human

subjects [Moore, 2003], but also by direct observation of the BM in sedated animals

[Békésy, 1953]. For a comprehensive review see [Robles and Ruggero, 2001]. In fre-

quency domain, the AF shape can be described as a rounded exponential (“roex(p)”,

where p is a parameter to fit observations), with the bandwidth described in terms

of the Effective Rectangular Bandwidth (ERB). The AFs are highly overlapping in

frequency since each point of the BM defines its own AF, with a critical frequency

determined by its distance from the round window.

Auditory filters can be specified in the frequency domain, where the input signal

is first transformed by use of a short-time block transform such as the Fast Fourier

Transform (FFT) or the Modified Discrete Cosine Transform (MDCT). The individual

auditory filter responses are then computed by a weighted integration using the filter

shapes in frequency domain, as given by functional observations. Because of the
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transform, this frequency domain view of auditory filters processes the audio signal

in blocks, transforming a fixed length segment of audio at a time. However, in the

auditory system, stimuli are processed over timescales that are not easily described

by simple intervals. While it is possible to work around this limitation, it makes the

implementations more complicated.

Alternatively, auditory filters can be modeled in time domain using an approx-

imation of the impulse response of the BM. This is closer to being a model of the

physiological processing in the ear and is described in more detail below, as it is the

basis of the model used in the following chapters.

Gammatone filters

A common model for the AF is the gammatone filter, with a causal impulse response

in the form of

gm(t) =

{
amt

(n−1)e−2πbmt cos(2πfmt+ φm), (t > 0),

0, (t ≤ 0),
(2.1)

where fm is the critical frequency and n, bm, and φm are constants fitted to empirical

data. The parameter bm defines the bandwidth of the filter and is directly related

to the CB, while n determines the slope of the temporal envelope. The subscript

m = 1, . . . ,M is used to indicate that Eq. (2.1) defines a set of discrete filters that

sample the BM at a set of (spatial) points. The spacing of these samples from the

base to the apex depends on several factors that will be discussed in Chapter 5.

These formulae were used by Patterson for creating “auditory images” for both

simple stimuli and complex sounds [Patterson et al., 1992] and have since found

widespread use as an auditory pre-processing step for many perceptually motivated

audio processing applications. Flanagan [Flanagan, 1962] first used gammatone func-

tions to match the measurements by Békésy, but the “modern” formulation was de-

veloped to match data obtained using the reverse-correlation (‘revcor’) technique on

recordings of nerve-fiber responses in cats [de Boer and de Jongh, 1978], with the

constants fitted to subjective measurements in humans. Values commonly used are
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n = 4 and bm = 1.019 ERB(fm) [Moore, 2003] where

ERB(fm) = 24.7(4.37fm/1000 + 1). (2.2)

Typical responses of gammatone filters are shown in Fig. 2.2a. The dashed lines

show the envelopes ge,m(t) = amt
(n−1) exp(−2πbmt), with the interior solid lines rep-

resenting the actual response with φm = 0. The value of am is set such that the gain

at the critical frequency is 1, as shown in the frequency domain versions in Fig. 2.2b.

For clarity a set of filters very far apart in frequency (spaced at 5 ERB) is shown.

This does not show the large overlap of adjacent filters in frequency domain. At a

spacing of 1 filter per ERB, the crossover attenuation of the filters is at -3dB.

2.2.2 Auditory envelopes for modeling neural transduction

As described above, conversion of the BM deflection into neural impulses is accom-

plished by the hair cells. In auditory models based on gammatone filters, hair cells

are not modeled individually, but rather as groups. Since a gammatone filter chan-

nel models the movement of a point on the BM, the neural transduction model is a

description of the combined responses of the hair cells near this point.

The hair cell response to the BM movement is generally modeled by a nonlinearity

followed by a lowpass filter [Patterson and Holdsworth, 1996]. The implementation of

the nonlinearity in particular can vary in complexity between models. Based on sim-

ulating intracellular processes, a temporal derivative followed by a sigmoidal function

is used in [Yang et al., 1992; Chi et al., 2005]. Later models use a half-wave rectifier

[Dau et al., 1996a;b; Jepsen et al., 2008] which produces effectively the same signal

but at lower complexity. In this thesis, we use a Hilbert envelope decomposition to

extend the half-wave rectifier to complex signals as in [Ghitza, 2001]. The Hilbert en-

velope of a signal has fewer high-frequency components than the rectification of a real

signal and thus requires less filtering than the other methods. We call the envelopes

of the gammatone filter outputs the auditory envelopes (AE).

A common property of all of the methods to compute the hair cell model output

is that the resulting signal is strictly positive with attenuated high-frequency compo-

nents. The combination of rectification and lowpass filtering models the stochastic
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nature of the individual hair cell responses and the summation of the large number of

individual cells. From a physiological viewpoint, the signal computed by the neural

transduction model (one for each gammatone filter channel) represents the cumula-

tive rate of firing of a group of hair cells in the narrow section of the BM tuned to

that particular critical frequency. We may also regard it as being proportional to

the probability of an individual hair cell at the centre of the spot represented by the

gammatone filter firing a neural impulse. The complete set of all auditory channel

responses is termed the auditory pattern (AP).

In Fig. 2.3, we show representations of a short sample of speech, the word “turned”

spoken by a female speaker. The top figure shows the waveform sampled at 16 kHz,

followed by the spectrogram with FFT length of 128 samples, or 8ms. Each block

is windowed using a Hamming window. Next, we show the auditory pattern as ob-

tained from the Dau model [Dau et al., 1996a;b], plotted in a similar manner to the

spectrogram. The data was obtained using the Dau model implementation from the

HUTear2 toolbox [Härmä and Palomäki, 1999]. Comparing the spectrogram to the

auditory pattern, the logarithmic stretching of the frequency axis is evident by the

spacing of the harmonics around the 1.2 second mark. From the auditory pattern,

one auditory channel (with a critical frequency of 532.8 Hz) is shown in the bottom

plot. Both the log of the Hilbert envelope of the gammatone filter output (line with

high-frequency spikes) as well as the final auditory channel response (smooth line)

are shown. This plot shows that, compared to the Hilbert envelope of the auditory

channel signal, the Dau model channel response is a strongly low-pass envelope.

The question of the nonlinear processing and lowpass filtering within each auditory

channel is especially interesting with respect to coding, since these affect the frequency

response and thus are indicative of the amount of information carried within each

channel. A notable study of the auditory channel frequency characteristics from

a perceptual viewpoint can be found in [Ghitza, 2001], based on the Modulation

Transfer Functions in [Chi et al., 1999]. Ghitza found that to preserve speech quality,

the minimum bandwidth of the envelope information must be roughly half the CB.

More recent studies have proposed a better model of the varying timescales across

the audible frequency range by using a multiresolution representation [Chi et al.,

2005]. These concepts are combined in the model we describe in Chapter 4, which
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uses a sparse sampling of low-pass filtered Hilbert envelopes from the outputs of a

gammatone filterbank.

2.2.3 Higher order modeling

Higher-level modeling is possible by further processing the neural transduction re-

sponse. However, processing can vary greatly between different models and make

comparisons difficult. Lateral inhibition may be applied to the auditory channel re-

sponses [Yang et al., 1992] to model interactions between neurons that are close in

terms of critical frequency. Other models apply modulation analysis to segregate

modulation patterns by frequency content of the channel responses [Jepsen et al.,

2008].

The processes of how the brain interprets the information from the BM or the

auditory neurons are simulated by higher order cognitive models that tend to be even

more abstract. These processes include the perception of pitch [de Cheveigné, 2005],

binaural information [Thompson and Dau, 2008], and the processing of “auditory

objects”. The field of Auditory Scene Analysis (ASA) describes how audible sensations

are grouped in the brain into these auditory objects, much like the visual system sees

shapes. Models are still somewhat rough, and while there are applications of ASA for

speech recognition, pitch tracking, and music segregation [Bregman, 2007], the level

of detail with which auditory objects can be described is not yet suitable for audio

coding.

2.3 Applications of perceptual analysis and synthesis

Auditory models started as methods to either visualize audio signals or to predict

audibility of stimuli in some condition. Auditory model inversion, the process of

synthesizing an audio signal from parameters obtained using an auditory model, has

been used to test model accuracy and to perform speech enhancement or separation

[Yang et al., 1992; Slaney, 1995; Kollmeier, 2005]. In these applications there is

no data to transmit over a finite capacity channel, thus quantization and coding

of parameters is not needed. Still, reconstruction or model inversion is typically

a difficult and computationally complex problem, since multiple constraints in time
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and frequency domain must be met. Furthermore, two signals that sound very similar

(and so should have nearly identical perceptual representations) can be very different

in time-domain. However, auditory modeling and model inversion has recently been

the basis for several proposed codecs. In the following section, some methods are

summarized that use a gammatone filterbank (FB) or equivalent decomposition as

the initial stage.

2.3.1 Pulse based methods and matching pursuits

Two related methods of encoding the signal as a set of pulses are by subchannel peak-

picking and matching pursuits of gammatone impulse atoms. The reconstruction from

these methods is quite similar mathematically, being the summation of gammatone

filter impulse responses that are scaled and translated. The analysis methods are very

different, as will be explained in this section.

Subchannel signal peak-picking methods

An early method for coding of narrowband speech using auditory pulses is presented

in [Kubin and Kleijn, 1999], shown in Fig. 2.4. This method uses an analysis FB of

gammatone filters to model the BM followed by a simple model of neural transduction.

The transduction model is a half-wave rectification of the filter responses followed

by a power-law compression to model the IHCs. A peak picking process models

the combination of neuronal groups, lowering the frequency of pulses. The resulting

auditory representation is a set of impulses of varying amplitude in each channel of

the FB, similar to Patterson’s pulse-ribbon model [Patterson et al., 1992]. Figure 2.4

shows the multichannel nature of the pulse coding methods and how each stage of

processing roughly corresponds to the processing in the human auditory system. The

decoder compensates for the processing of the pulse amplitudes then generates the

reconstructed audio signal using a synthesis FB.

The reconstruction of the speech signal (after decoding the auditory representa-

tion) is performed by first reversing the power-law expansion on the impulses and

compensating for the energy loss due to the peak picking. The resulting pulse trains

are passed through a synthesis FB, where for each channel the filter impulse response

is the time-reverse of the analysis filter. The resulting quality is robust to quantization
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Fig. 2.4: Invertible auditory pulse coder [Kubin and Kleijn, 1999], redrawn from
[Feldbauer, 2005].

of the pulse amplitude when at least one bit per impulse is used. However, a large

number of pulses is needed, more than the number of samples in the original signal.

In [Ambikairajah et al., 2001] a method for wideband speech and audio coding

is presented, based on the above ideas. The problem of the number of impulses

is addressed, and an algorithm is introduced where impulses are removed from the

channels by incorporating a masking model similar to that of MPEG [Brandenburg

and Stoll, 1994] across channels and accounting for temporal post-masking using an

exponential decay function. Within a channel, a pulse is discarded if its amplitude is

below the decay function of a previous pulse.

Also addressed in [Ambikairajah et al., 2001] and a followup [Lin et al., 2002] is the

problem of quantizing and coding the temporal pulse position. The pulse positions of

the higher frequency channels (above 1.5kHz) are coded less precisely using a vector

quantizer, while lossless coding is used in the lower frequency bands.
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To reduce the number of impulses required by the auditory representation for cod-

ing, Feldbauer introduces the concept of the transmultiplexer as part of a masking

model [Feldbauer and Kubin, 2004; Feldbauer et al., 2005]. As shown in Fig. 2.5a, the

encoder described in [Feldbauer et al., 2005] modifies the system shown in Fig. 2.4 by

moving one of the pulse amplitude correction steps from the decoder to the encoder,

and more importantly, adding a masking model before the pulse amplitude compres-

sion and coding stages. This masking model will be briefly described here, and in

more detail in Chapter 4.

Like the coder shown in Fig. 2.4, the input signal is analyzed by a gammatone

FB followed by a half-wave rectifier and a peak-picking function. The adjustment of

pulse amplitudes to compensate for the loss in energy due to the peak-picking process

is now performed by the encoder, such that the masking model that follows uses the

correct energy per channel to estimate masking thresholds. The masking model finds

pulses that do not contribute significantly to the reconstructed audio and removes

those from the auditory representation. To ensure the overall energy in the channel

is maintained, the pulse amplitudes are corrected again before being compressed,

quantized, and encoded into the bitstream.

The decoder shown in Fig. 2.5b is actually a simpler version of the one shown in

Fig. 2.4 since the amplitude correction step has been moved to the encoding stage.

The decoder rebuilds the pulse representation by decoding the stream and the pulses

are converted into an audio signal using the synthesis FB of reverse-time gammatone

impulses as with the earlier coder. Feldbauer adds an equalizing postfilter to reduce

the frequency domain ripple of the overall system.

The masking model is based on observing a single isolated impulse as it is passed

through the synthesis FB and then analyzed again. At the decoder, the audio signal

due to that pulse will simply be the impulse response of the corresponding channel

filter of the synthesis FB, a time-reversed gammatone pulse. Analyzing this pulse

with the auditory FB yields an excitation pattern that spreads in time and in the FB

frequency decomposition from the initial pulse position. This excitation pattern is

compared to adjacent pulses in the original auditory pulse pattern to identify pulses

that are masked by their stronger neighbours.
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Matching pursuits

An alternative to the above methods is used in [Pichevar et al., 2007] where the au-

dio signal is decomposed into gammatone impulses directy using a matching pursuits

algorithm [Mallat, 1993]. This method is based on research suggesting that speech

signals are matched to auditory filter responses [Smith and Lewicki, 2006], though

later research disputes this [Strahl and Mertins, 2008]. The decomposition results in

a description that is similar but more flexible than the above, since the Feldbauer au-

ditory impulses are basically gammatone atoms with time, amplitude, and frequency

parameters, where the frequency parameter is restricted to the frequencies of the syn-

thesis FB. The matching pursuits approach of [Pichevar et al., 2007] has a search

space that is more flexible in frequency, and also includes a chirp parameter. The

drawbacks of this method are that the search space is very large and that the chirp

parameter also needs to be encoded.

The major problem of pulse-based perceptual coding is the required precision of

pulse timing information. This problem can be illustrated by considering two pulses in

adjacent bands and overlapping in time. If the timing of one of the pulses is modified

due to quantization, the pulse response due to the synthesis filters may result in

additive interference or subtractive interference. In addition, on a more global scale

the ear is insensitive to small timing changes. As a result, the pulse timing information

tends to be encoded with higher precision than is theoretically necessary.

2.3.2 Envelopes and modulation domain processing

While auditory pulses of the methods described above can be interpreted as being a

model of internal auditory events, a more abstract view is used in some coding and

sound processing applications. As an alternative to the pulse-based processing, it is

possible to regard the output from the gammatone filters as an amplitude and phase

(or frequency) modulated sinusoid. From a coding perspective, this representation

contains the same information as the gammatone filter output, but the channel signal

is now represented by two generally slowly varying signals (an amplitude modulation

and a phase modulation) rather than a sequence of individual impulses. From the

perceptual perspective, the question of audibility of the precise pulse timing becomes



27

the question of how well the phase modulation is perceived, and the question of the

audibility of the pulse amplitudes becomes the question of how well the amplitude

modulation is perceived.

This type of representation of the audio signal by a set of modulated carriers

is known as modulation domain representation and has been used in some form for

several decades. The analysis functions are typically not gammatone filters, but win-

dowed sinusoid functions at regular intervals. One such type of modulation analysis

is the Short-Time Fourier Transform (STFT), used because it can be computed very

efficiently.

Any natural signal can be represented using this modulation analysis. This was

found originally to be useful for speech coding and was later adopted for audio cod-

ing in general. In particular, subband coding has been used for speech starting with

the Channel Vocoder [Dudley, 1940]. Dudley’s vocoder reproduced speech using an

oscillator or noise source feeding into bandpass filters whose output is amplitude mod-

ulated, where the amplitude modulators and oscillator pitch were found by analyzing

the source speech. This concept was refined with the Phase Vocoder by Flanagan and

Golden [Flanagan and Golden, 1966]. In the Phase Vocoder, the analysis stage is a

set of bandpass filters, where the amplitude and phase of the outputs are sampled at

regular intervals. These parameters are then quantized and transmitted. Flanagan

and Golden found that the channel amplitude modulations were bandlimited to about

20–30 Hz, but the phase component was not bounded. Instead, the derivative of the

phase component was better behaved for transmission. The loss of the additive phase

constant during reconstruction by integration was not considered a problem. Effec-

tively, the phase vocoder thus transmitted the instantaneous frequency and amplitude

of each channel. Subsequently, subband amplitude processing has found applications

such as time-scale modification of audio [Laroche and Delson, 1999], noise reduction,

and speech recognition [Kingsbury et al., 1998].

Of particular interest here is the research into perceptual coding of modulation

spectra, that is, the analysis of the modulation functions in terms of their frequency

content. The relative spectral transform - perceptual linear prediction (RASTA-PLP)

technique by Hermansky et al. [Hermansky et al., 1992] was one of the first tech-

niques to exploit the dynamics of spectral amplitudes, originally in the context of
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speech recognition. RASTA-PLP is based on computing the power spectrum of the

input signal, then transforming it into a log-compressed critical-band spectrum. This

critical-band spectrum is bandpass filtered to remove the effects of the acoustic en-

vironment and noise. RASTA-PLP was modified and extended for use as a noise

reduction method [Hermansky and Morgan, 1994], with reconstruction of the modi-

fied signal by the overlap-add technique.

A comprehensive approach to modulation spectra began with Greenberg [Green-

berg, 1996]. An early method of representing speech using the modulation spectrum

aimed at speech recognition [Greenberg and Kingsbury, 1997] uses a critical-band FB

followed by half-wave rectification and envelope detectors. While not mentioned di-

rectly by the authors, this front-end processing can be regarded as a simplified version

of the perceptual models that were developed at the same time [Dau et al., 1996a].

The auditory envelopes thus generated are then analyzed using a STFT to produce the

modulation spectrogram. The modulation spectrogram is a three-dimensional repre-

sentation of speech, representing the speech signal in terms of modulation frequencies

within each channel over time. Like RASTA-PLP, the original motivation was in the

context of speech recognition, but the modulation spectrogram concept was then in-

vestigated for perceptual modeling [Chi et al., 1999] and has strongly influenced the

study of modulation patterns in auditory perception.

In [Schimmel and Atlas, 2005a;b], Schimmel and Atlas introduce a modification

on the envelope processing used by Greenberg and others by proposing the use of

coherent envelope detection for audio processing. They point out that the traditional

envelope analysis results in a signal whose energy is not well concentrated in low

frequency, since the “carrier” is not a simple sinusoid; this was also noted by Ghitza

[Ghitza, 2001]. By replacing the envelope with a “modulator” function that can be

negative, the subband signal can be decomposed into a modulator and carrier signal

that that can be processed more easily. This processing has been applied successfully

to source separation [Schimmel et al., 2006; Schimmel, 2007], showing that an audio

signal can be reconstructed with good perceptual quality from filtered modulators.

However, while useful in applications, there is no physiological correlate of the coherent

modulating functions since the modulator is a complex function retaining frequency

information of the carrier component. This information is generally lost at the neural
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transduction stage of the auditory system.

In general, modulation domain processing is useful for audio processing and per-

ceptual audio analysis, as evident by the diverse applications. The particulars of this

modulation domain processing vary greatly but the methods presented above outline

the key techniques that influenced the development of the method presented in the

following chapters.

2.4 Summary

The human auditory system is a complex structure but, over the last few decades,

functional models have been developed for use in audio enhancement and coding. In

particular, the internal structures can be modeled using a gammatone FB, followed by

nonlinear processes that mimic neural transduction, lateral inhibition, and temporal

adaptation.

From their use in scientific investigation of human psychoacoustics, these models

have been adapted for practical coding applications. By analyzing the audio signals

using bandpass filters based on the gammatone FB model, the audio signal is rep-

resented as a set of subchannel signals that are then transmitted either as a set of

auditory pulses or a set of low-frequency modulating functions. The following chapters

build upon these techniques to explore a new paradigm of auditory based coding.
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Chapter 3

Mathematical Background

This chapter will present the mathematical framework to analyze the perceptual re-

construction methods that will be discussed in the later chapters. After introducing

the basic notation, the analysis of filters will be presented in terms of circulant matri-

ces, which have useful properties with regards to the frequency domain. This notation

is then extended to filterbanks (FBs) and FB systems with matched analysis/synthesis

filters. We then introduce a brief overview of the theory of discrete finite frames and

will show how it can be used to analyze the matched filter FB system. The frame al-

gorithm and its use in the design of the matched filter FB are introduced. Finally, we

discuss the reconstruction of a signal from the Hilbert envelopes of its sub-band rep-

resentation by iterative refinement and examine the convergence of the reconstruction

algorithm.

3.1 Notation

This thesis deals with audio processing and so the basic signals being dealt with are

one-dimensional discrete-time signals. Using a sampling frequency fs, the time index

is the integer n, representing the time instant t = n/fs, so

x[n] ≡ x(t/fs). (3.1)
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We assume that x(t) is appropriately bandlimited to avoid aliasing. Signals are in

general assumed to be complex valued.

We define the inner product of x[n] with another signal y[n] as

〈x, y〉 =
∞∑

n=−∞

x[n]y∗[n], (3.2)

and a norm

‖x‖2 = 〈x, x〉 =
∞∑

n=−∞

|x[n]|2, (3.3)

where the asterisk indicates complex conjugation.

In this thesis, we deal mostly with finite length signals. This allows simplification

of the notation of many operations by using vector notation. In general, we use

vectors of size N , chosen to be larger than the signal length. Zero padding is used

where appropriate and this is made explicit in the text.

Using vector notation, the signal x[n] of length Lx can be represented by the

column vector x of size N by

x = [x[0] x[1] . . . x[Lx − 1] 0 . . . 0]T , (3.4)

or x[k] = x[k− 1], where x[k] is the kth element of x, and x[k] is defined to be nonzero

only for k = 0, . . . , Lx − 1.

Using equally sized vectors, this allows us to rewrite the above inner product as

〈x,y〉 = yHx (3.5)

and the Euclidian norm as

‖x‖2 = xHx, (3.6)

using the Hermitian transpose, that is xH is a row vector whose elements are the

complex conjugates of those of x.
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3.1.1 Frequency domain

To analyze the discrete time signals in frequency domain, the standard Fourier Trans-

form is used,

Fx(ejω) =
∞∑

n=−∞

x[n]e−jωn. (3.7)

For finite length signals, we can write the Discrete Fourier Transform (DFT),

Fx[k] =
N∑
n=1

x[n]e
−2πj (k−1)(n−1)

N , k = 1, . . . , N, (3.8)

where Fx[k] is the kth element of the column vector Fx,1 for k = 1, . . . , N . Note that

Fx[k] is Fx(ejω) sampled at ω = 2π(k− 1)/N . This transformation can be described

in matrix notation by declaring an N ×N Fourier transform matrix W ∈ CN×N with

elements

W[m,n] =
1√
N
e−2πj

(m−1)(n−1)
N , (3.9)

where m and n are the row and column indices respectively. So, Eq. (3.8) can be

restated as

Fx =
√
NWx, (3.10)

noting that we choose N to ensure that W is of the appropriate size. The scale factor
1√
N

is introduced to make the matrix W unitary, so that we obtain W−1 = WH .

It should also be noted that WW−1 = I, and so Parseval’s theorem [Proakis and

Manolakis, 1996] can be applied,

‖Wx‖2 = xHWHWx = xHx = ‖x‖2. (3.11)

3.1.2 Subband domain

An important representation used in this thesis is the subband domain, which is

obtained by filtering the signal with a set of bandpass filters. We restrict ourselves

here to finite impulse response (FIR) filters, with impulse response gm[n] for the mth

1We avoid using bold uppercase letters for the discrete frequency representation to avoid confusion
with the notation for matrices.
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filter (m = 1, . . . ,M) of the filter bank. All impulse responses are of length Lg or less.

Linear convolution and circulant matrices

Using standard convolution notation, each channel m has the output

cm[n] =

Lg−1∑
l=0

gm[l]x[n− l],
m = 1, . . . ,M,

n = 0, . . . , Lx + Lg − 1.
(3.12)

We can now show how the convolution operation can be described as a multiplica-

tion of a vector by a matrix. In particular, we will use Circulant matrices derived from

the FIR filter impulse responses. A Circulant matrix is a special form of a Toeplitz

matrix, with useful properties that will be discussed below. For a comprehensive

discussion of Toeplitz and Circulant matrices, see [Gray, 2006].

We express the FIR filter with response gm[n] as the matrix Gm ∈ CN×N , with

elements

Gm,[n,l] = gm[(n− l) mod N ] (3.13)

or using the vector notation gm,[k] = gm[k − 1], Gm,[n,l] = gm,[((n−l) mod N)+1], that is,

each column of Gm is a shifted and wrapped copy of gm. We call gm the prototype

vector for Gm.

To visualize, assume that

1. gm[n] = 0 for n < 0 and n ≥ Lg (causal with impulse response length Lg),

2. N > Lg,
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then the matrix has the form

Gm =



gm[0] 0 · · · gm[2] gm[1]

gm[1] gm[0] gm[3] gm[2]

gm[2] gm[1] gm[4] gm[3]
...

. . .
...

gm[Lg − 1] gm[Lg − 2] 0 0

0 gm[Lg − 1] 0 0
...

. . .
...

0 0 gm[0] 0

0 0 · · · gm[1] gm[0]



. (3.14)

With this definition of Gm, the multiplication

cm = Gmx, m = 1, . . . ,M, (3.15)

is equivalent to

cm[n] =
N−1∑
l=0

gm
[
(n− l) mod N

]
x[l],

m = 1, . . . ,M,

n = 0, . . . , N − 1.
(3.16)

This equation is equivalent to Eq. (3.12) if N > (Lg + Lx). If this condition is not

satisfied, the filtering will result in circular convolution, where the tail of the response

(beyond index N) is added to the beginning of the filter response. This also means

that while any FIR filter operating on a finite-length signal can be represented by a

circulant matrix multiplication, if the vectors are large enough, the converse is not

true.

While the above example of a filter is a causal FIR filter, the circulant matrix

notation can be used for non-causal filters as well. Given a filter with impulse response

a[n] which is nonzero only for n = −La + 1, . . . , 0, its vector representation a[k] is

nonzero for k = 1 and k = N − La + 2, . . . , N . Using Eq. (3.13) to construct the

circulant matrix A, the multiplication b = Ax is a valid linear convolution if x is

zero-padded at the beginning, that is, x[k] is zero for k = 1, . . . , La − 1.

We now introduce some properties of Circulant matrices. Assume that A and B
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are Circulant matrices of equal size with eigenvalues {αk} and {βk}, respectively. The

eigenvalues of C are {γk}.

1. Using the definition of W in Eq. (3.9), A = WHdiag(Fa)W, that is, the

columns of W are the eigenvectors of a circulant matrix and the elements of the

DFT of the prototype vector are the eigenvalues, αk = Fa[k].

2. If C = A + B,C is circulant and γk = αk + βk.

3. If C = AH ,C is circulant and γk = α∗k.

4. If C = AB,C is circulant, with γk = αkβk.

5. If A is nonsingular, C = A−1 is circulant and γk = 1/αk.

6. Circulant matrices commute, AB = BA.

The proofs for these properties can be found in [Gray, 2006]. However, from the first

property (illustrated in Appendix A), showing the remaining is straightforward.

With respect to linear filter operations, first we consider the properties of transpos-

ing circulant matrices and of multiplying two circulant matrices. From the discussion

of non-causal filters above, it should be apparent that the filter represented by the

matrix Hm = GH
m is simply a filter with an impulse response that is the complex

conjugate time-reverse of gm, as can be shown by exchanging the row and column

indices in Eq. (3.13). The cascading of two filters A and B can be expressed using

the associative property of matrix multiplication, where y = ABx = A(Bx). As

stated above, care must be taken that the size of the vectors and matrices are such

that circular convolution is avoided.

Filterbanks using circulant matrices

The vector notation can be extended to parallel FIR filterbanks. In particular, we

define the subchannel signal c as

c = [c1(0) c1(1) . . . c1(N − 1) c2(0) . . . cM(N − 1)]T

= [cT1 cT2 . . . cTM ]T , (3.17)
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a column vector of size MN which is a vertical concatenation of the subchannel signal

vectors. Note that the kth element of the subchannel signal cm is the lth element of

c, where l = (m − 1)M + k. Then, the filter operation of a signal x by a set of M

filters described by Gm can be written as

G = [GT
1 GT

2 . . . GT
M ]T ,

c = Gx. (3.18)

The matrix G is thus a vertical concatenation of the channel filter matrices and has

an overall size of MN ×N . This is the analysis filterbank that splits the signal x into

M channels.

To complement the analysis filterbank, we can construct the synthesis filterbank

that combines the M channel signals back into a single channel. We define the matrix

H as

H = [H1 H2 . . .HM ], (3.19)

the horizontal concatenation of submatrices Hm, which are the circulant matrices

representing the channel synthesis filters. This matrix is of size N ×MN .

. . .

. . .

. . .

G1

G2

GM

c1

c2

cM

H1

H2

HM

x

x +

G

y

c H y

Fig. 3.1: Subchannel analysis and synthesis filters

The structure of a simple subband analysis/synthesis system is shown in Fig. 3.1.
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Using the definitions of G and H we can now describe the entire system using

y = HGx =
( M∑
m=1

HmGm

)
x, (3.20)

assuming that the channels are without noise or distortion. Note that while neither

G or H are circulant, the summation term of this equation, U =
∑M

m=1 HmGm =∑M
m=1 Um, is a circulant matrix and typically is a realizable filter whose impulse

response characterizes the filterbank system.

Matched filters

It is now of interest to consider a filterbank system where each channel’s synthesis filter

is defined as the time-reverse complex conjugate of the analysis filter. As described

above, the matrix form of these synthesis filters can be stated as Hm = GH
m, so

Um = GH
mGm. Using the properties of circulant matrices above, it can be shown that

for all vector element indecies k,

Fum,[k] = Fg∗m,[k]Fgm,[k] = |Fgm,[k]|2, (3.21)

that is, the STFT coefficients of the filter cascade in each channel are real and positive.

Since U =
∑M

m=1 Um, the STFT of the impulse response of the entire filterbank is

also real and positive. We further note that a real-valued frequency domain response

implies that the impulse response is non-causal and symmetric about the origin in time

domain. These “matched filter” systems are well known in communication theory.

3.2 Redundant representations and frame theory

In the previous section, we introduced the notation for filterbanks using FIR filters.

We used circulant matrices that can be used to describe linear filters without decima-

tion, that is, the sample rate of the output of the filter is the same as for the input.

Thus one signal is turned into multiple subband signals, all of which are at the same

sampling rate as the original signal.

In this context, subband filtering can be regarded as a redundant analysis of a
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signal. Clearly, the transformation of a vector x of size N into a vector c of size

MN is an M -fold increase in the number of values representing the same amount

of data, and thus is potentially largely redundant. Redundancy means that under

certain conditions, given a subset of samples of the subband signals, it is possible to

recover the original signal without error. In terms of the notation presented above,

this means that we can recover x from an incomplete version of c.

In this section, we introduce some key concepts from frame theory [Mallat, 1998],

which provides a framework for analyzing redundant representations. In addition to

providing a method to determine the precision with which the representation can

be inverted, frame theory provides algorithms to compute the reconstruction and

methods to analyze the sensitivity of the redundant representation to distortions.

The discussion here deals with discrete finite frames that we apply to the finite-

signal representation of x and the filterbank structures described in the previous

section (a treatment of discrete finite frames specifically can be found in [Pei and

Yeh, 1997]). Detailed analysis of filterbanks using frame theory can be done using

polyphase matrices [Bölcskei et al., 1998] or state-space representations [Chai et al.,

2007]. A detailed discussion of STFT-like processing with general short-time trans-

forms and relation to FIR filters can also be found in [Dembo and Malah, 1988]. There,

reconstruction from transformed representations with and without modification is dis-

cussed, without invoking frame theory directly. The circulant matrix representation

and frame theoretical approach used here is a bit simpler, at the expense of not being

as general. This analysis is restricted to fully oversampled FIR filterbanks, which is

sufficient in the present context.

The frame condition

A set of vectors {em} is a frame of the space S if the frame condition is satisfied,

A‖x‖2 ≤
∑
m

|〈x, em〉|2 ≤ B‖x‖2, ∀x ∈ S, (3.22)

with A > 0 and B <∞. This frame condition implies that {em} must span S, since

otherwise it would be possible to have a nonzero x for which 〈x, em〉 = 0,∀m, giving

A = 0. By contradiction, if {em} spans S, A > 0.
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We can regard bm = 〈x, em〉 as the coefficients of the redundant representation of

x. Writing b = [b1 b2 . . . bM ]T ,

b = Ex, (3.23)

where E is the analysis operator. The set of vectors {eHm} forms the rows of E. We

also define a frame operator, which we denote S. The frame operator is defined as

Sx =
∑
m

〈x, em〉em, (3.24)

so ∑
m

|〈x, em〉|2 = 〈x,Sx〉 = xHSx, (3.25)

and the frame condition can be rewritten as

A‖x‖2 ≤ xHSx ≤ B‖x‖2. (3.26)

The frame bounds A and B are the infimum and supremum of the eigenvalues of S.

The frame operator can be found from the analysis operator by

S = EHE. (3.27)

If the frame condition is fulfilled, x can be recovered completely from b, using the

synthesis operator

P = S−1EH , (3.28)

so

x = Pb = S−1EHb. (3.29)

It should be noted though that for redundant frames, there are infinite possible syn-

thesis operators that recover x from b exactly. If b is perturbed by white noise of

equal variance on all elements, Eq. (3.29) is optimal in the mean-squared error sense

to recover x from b, and P is called the pseudo inverse of E.

The ratio B/A indicates the numerical properties of reconstruction, and it should

be apparent how it relates to the eigenvalues of S and thus S−1. If B/A = 1, the

frame is called tight and S = AI, therefore S−1 = (1/A)I, which means that the frame
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is its own inverse, where x = (1/A)EHb. If B/A ≈ 1, the frame is called snug, and

the property of energy preservation can be assumed with little error.

3.2.1 The frame algorithm

In some cases, it is impossible or at least impractical to find a synthesis operator. In

the case of discrete finite frames, this is typically due to computational constraints

making direct computation of S−1 impossible. An alternative method to find x from

b is an iterative method called the frame algorithm [Daubechies, 1992] or the Extrap-

olated Richardson algorithm [Mallat, 1998].

The frame algorithm effectively inverts the frame by using the adjoint analysis

operator with a scale factor as an approximate synthesis operator. Then the error of

the estimate is corrected by projection into the frame. In effect, S−1 is approximated

by a scaled identity matrix, γI; then, in the next iteration, the error between that

estimate and the projection thereof onto the frame is added. Using x̂(i) as the ith

estimate of the original signal x, the full update equation is

x̂(i) = γEHb + (I− γS)x̂(i−1), (3.30)

where we typically set x̂(0) = 0. Note that we use x(i) as the value of x in the ith

iteration of the iterative loop, and xi to indicate x raised to the ith power.

We can calculate the error at the ith iteration as

x− x̂(i) = x− γSx + (I− γS)x̂(i−1)

= (I− γS)x + (I− γS)x̂(i−1)

= (I− γS)ix. (3.31)

As noted above, if the frame defined by S is tight, S−1 = (1/A)S, and the estimate

will be the exact solution on the first iteration if γ is chosen to be 1/A. If the fame

is not tight, we can calculate a bound on the error for each iteration e
(i)
x = x − x̂(i),

which depends on the frame bounds and the scale factor. Using R = (I − γS), the
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norm of the error can be calculated simply as

‖e(i)
x ‖2 = ‖Rix‖2

≤ ‖Ri‖2‖x‖2, (3.32)

where ‖Ri‖2 is the spectral norm, which can be found from the largest eigenvalue of

(Ri)H(Ri). Recall that the eigenvalues of S are bounded by the frame bounds A and

B (see Eq. (3.26)), so the eigenvalues of R are bounded by |1− γA| and |1− γB| and

the norm of Ri can be found from A,B and γ as

‖Ri‖2 = max(|1− γA|2i, |1− γB|2i). (3.33)

If the frame bounds are known, we can find the value of γ to minimize the norm and

thus the error, with

‖e(i)
x ‖2 ≤ min

γ
max(|1− γA|2i, |1− γB|2i)‖x‖2

=
(B − A
B + A

)2i
‖x‖2, (3.34)

for

γ =
2

B + A
. (3.35)

Since B−A
B+A

< 1 for A,B 6= 0, the frame algorithm is guaranteed to converge for this

value of γ.

3.2.2 Frame theory and filterbanks

We can now use frame theory to analyze FBs using the circulant matrices. Using

the notation from the previous section, the analysis FB G is the analysis operator

and the subchannel signals c are the frame coefficients. If the frame formed by this

analysis operator satisfies the frame condition, that is S = GHG satisfies Eq. (3.26),

the original signal x can be reconstructed from the subchannel signals. However, in

the context of circulant matrices representing FBs, Eq. (3.28) cannot be used to design

a synthesis filter for G. While S is nonsingular (by satisfying the frame condition)

and circulant (since S = GHG =
∑M

m=1 GH
mGm), a synthesis filter constructed by
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H = S−1GH would not be realizable as a linear filter. The submatrices Hm of

H = [H1 H2 . . . HM ] in this case would be circulant, but it is not possible to

guarantee that the impulse response length is bounded, that is, the order of Hm might

be too high2. Thus, it can not be guaranteed that the resulting circulant matrix can

be realized as a linear time-invariant filter due to circular convolution.

In Section 3.1.2, we introduced the matched filter filterbank and noted that the

system response is defined as U =
∑M

m=1 Um =
∑M

m=1 GH
mGm. The notation shows the

equivalence of the matched filter system to the projection of the signal onto the frame

defined by the analysis filter. Furthermore, if we now modify the synthesis filterbank

by adding a scale factor γ, the estimate x̂ of x if passed through the matched filterbank

system can be stated as

x̂ = γGHc. (3.36)

Comparing Eq. (3.36) with the frame algorithm update equation Eq. (3.30) it

can be observed that Eq. (3.36) is simply the first iteration of the frame algorithm

(assuming x(0) = 0). Thus, we can apply the same equations as above to determine

the bound on the reconstruction error ‖x − x̂‖2. By substituting i = 1, the upper

bound of the error is

‖x− x̂‖2 ≤ max(|1− γA|2, |1− γB|2)‖x‖2, (3.37)

where A and B are the bounds of the frame defined by GHG. As above, the optimal

scale factor if A and B are known is γ = 2/(A+ B) and the resulting maximal error

is

‖x− x̂‖2 ≤
(B − A
B + A

)2
‖x‖2. (3.38)

Frequency-weighted error

The error between the original and reconstructed signal as calculated above assumes

that any error present in the reconstruction is equally significant. When dealing with

audio signals this is not necessarily true since some types of errors (such as a DC

2This can be thought of as designing a filter in frequency domain using the inverse STFT. Given
just the power spectrum, we cannot tell if the time-domain impulse response will be shorter than
the transform size.
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offset) are completely inaudible. The proper way to handle this is of course to use

an auditory model and this will be discussed in more detail later. However, we can

introduce the concept of frequency-weighted error here, where the error for some parts

of the frequency spectrum is considered less significant.

A simple way to handle this is to calculate the error signal in frequency domain

using the W matrix as defined in Section 3.1.1. We define the frequency domain

weighting using a vector v scaling the Fourier transform values of the error, giving

the weighted error

‖eW‖2 = ‖diag{v}W(x− x̂)‖2. (3.39)

The error bound in this case depends on the range of the eigenvalues of diag{v}W(I−
γGHG). Finding γ to minimize the norm of this expression is relatively simple if the

eigenvalues of GHG are known3.

3.3 Signal estimation from modified subband signals

In the previous discussion, the focus has been on reconstruction of the original signal

x with full knowledge of the subchannel signals c and with constraints on the recon-

struction filters. In this section, we will reverse this problem to some degree. Here,

we consider the problem of estimating a signal x̂ given a modified channel signal c′

that may have been obtained from some “original” x, but what is more important in

this context is that we find the estimate x̂ that minimizes the error between Gx̂ (x̂

when passed through the analysis filter) and c′. Later in this section, we will consider

finding an estimate of x given the envelopes of c to prepare for the discussion of au-

ditory model inversion in the next chapter. The discussion here will closely follow a

paper by Griffin and Lim [Griffin and Lim, 1984] that outlined a method to estimate

a signal given STFT magnitudes.

We define the error to be minimized as

D(c′,Gx̂) = ‖c′ −Gx̂‖2. (3.40)

3In Chapter 5 we use a weighting vector that is simply binary by measuring the frame bounds
over a limited frequency range.
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Expanding this and finding the gradient4, we get

∂D(c′,Gx̂)

∂x̂∗
= −GHc′ + GHGx̂, (3.41)

and equating Eq. (3.41) to zero, the signal that minimizes the difference is

x̂ = (GHG)−1GHc′. (3.42)

This result is equal to the synthesis frame stated in Eq. (3.29) and many of the same

arguments from frame theory apply. Thus if (GHG)−1 cannot be implemented, the

frame algorithm can be used to obtain the estimate iteratively, or, if G can be designed

to form a snug frame, the Hermitian transpose serves as a synthesis operator with

small error.

3.3.1 Envelopes and carriers

We now define the concept of envelopes as a particular modification of a subband

signal. An envelope of a signal is generally taken to be a non-negative real quantity

that is always larger than the magnitude of its underlying signal, so

x[n] ≥ |x[n]|. (3.43)

For complex signals, typically this equation is used with the equality, so we use

c[k] = |c[k]| (3.44)

as the envelopes5 of the subband signals. The envelope of real signals is often obtained

from the Hilbert envelope

x[n] = |x[n] + jH{x}[n]|, (3.45)

4We use differentiation with respect to x∗, see [Haykin, 1999].
5We use an overline (·) to indicate the envelope in general and the absolute value notation (| · |)

as the magnitude specifically.
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where H{x}[n] is the nth sample of the Hilbert transform of the signal x. Alternative

definitions often relax the requirement of the envelope to be non-negative (calling it

the amplitude or modulator instead) in order to ensure that the resulting signal is

continuous or closed under convolution [Cohen et al., 1999; Schimmel, 2007]. Since

we generally assume signals to be complex, we only use the absolute value operator.

Complementary to the envelopes, we define the carrier components c̊[k] such that

c[k] = c[k]̊c[k]. (3.46)

By using the magnitude as envelope, the carrier is the phase component of the complex

signal with unit magnitude and thus can be found using c̊[k] = c[k]/|c[k]|. If |c[k]| is 0,

we define c̊[k] = 1, but typically we will avoid this problem as described below. Thus,

c and c̊ are the envelopes and carriers6 of c.

3.3.2 Estimating a signal from the subband envelopes

In this section we consider the problem of finding a signal estimate based on subband

envelopes. The relationship of subband envelopes to perceptual representations of

audio signals will be discussed in the following chapter, but in the remainder of this

chapter, we approach the problem from a more general viewpoint.

Of interest is the error between the given envelopes c and the subband envelopes

of the estimate x̂, so we modify Eq. (3.40) such that

DM(c,Gx̂) = ‖ |c| − |Gx̂| ‖2. (3.47)

Note that the expression |c| indicates a vector of the same size as c with all elements

being the magnitude of the corresponding element in c, while the notation ‖c‖2 is

the (scalar) norm of c. A closed-form expression of x̂ minimizing DM(c,Gx̂) is not

a simple task due to the nonlinearity of the envelope operator. Some recent research

shows that direct reconstruction from magnitude-only is possible for certain classes of

frames [Balan et al., 2006; Bodmann et al., 2008]. Since we aim to develop a method

for a frame representing a perceptual analysis, we use an iterative method based on

6Recall that c is the collection of subband signals cm for m = 1, . . . ,M .
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[Griffin and Lim, 1984] to find the estimate of x̂ using convex projection.

Griffin and Lim described a method to estimate a signal from the modified STFT

(MSTFT) and modified STFT magnitude (MSTFTM) for use in time-scale modifi-

cation of speech and speech enhancement. Using a windowed STFT, a signal x[n] is

represented by

XW (mS,ω) =
∞∑

n=−∞

w[mS − n]x[n]e−jωn, (3.48)

where w[n] is a window function, S is a constant integer indicating the “step size” in

samples from one segment to the next, m is the segment index, and ω is the frequency

index within each segment. Noting that for an arbitrary modified STFT YW (mS,ω) in

general there is no sequence whose STFT is given by YW (mS,ω), instead Griffin and

Lim derive a method to find the sequence x[n] whose STFT XW (mS,ω) minimizes

the distance

D
(
x[n], YW (mS,ω)

)
=

∞∑
m=−∞

1

2π

∫ π

ω=−π
|XW (mS,ω)− YW (mS,ω)|2dω, (3.49)

using

x[n] =

∑∞
m=−∞w[mS − n]yW [mS, n]∑∞

m=−∞w
2[mS − n]

, (3.50)

where yW [mS, n] = 1
2π

∫ π
ω=−π YW (mS,ω)ejωndω.

This method is termed least-squares error estimation from the MSTFT (LSEE-

MSTFT). The function to find x[n] from the MSTFT is then extended to the MSTFTM.

Derived from image-processing methods, their method is an iterative algorithm that,

at each iteration, decreases the error measure

DM

(
x[n], |YW (mS,ω)|

)
=

∞∑
m=−∞

1

2π

∫ π

ω=−π

[
|XW (mS,ω)| − |YW (mS,ω)|

]2
dω. (3.51)

Key to the iterative algorithm is the computation of the MSTFT estimate X̂
(i)
W (mS,ω)

at each iteration by combining the phase component of the previous estimate with



48

the MSTFTM |YW (mS,ω)|,

X̂
(i)
W (mS,ω) = |YW (mS,ω)| X

(i)
W (mS,ω)

|X(i)
W (mS,ω)|

, (3.52)

from which the sequence x(i+1)[n] is calculated using LSEE-MSTFT,

x(i+1)[n] =

∑∞
m=−∞

1
2π

∫ π
ω=−π X̂W (mS,ω)ejωndω∑∞

m=−∞w
2[mS − n]

. (3.53)

The similarity to the problem of finding x given c should be apparent. We replace

|YW (mS,ω)| with c, which are the envelopes to which the signal must be fitted, and

X
(i)
W (mS,ω) with c(i), which is the subchannel decomposition of the current estimate

x̂(i). The frame theory motivated method to find x from modified subband signals as

discussed in Section 3.3 is analogous to LSEE-MSTFT, and we can modify Eq. (3.52)

to become

ĉ
(i)
[k] = c[k]

c
(i)
[k]

|c(i)
[k]|
, k = 1, . . . , (MN), (3.54)

or ĉ
(i)
[k] = c[k]̊c

(i)
[k], where c(i) = Gx̂(i). This equation gives us the subchannel signals

with the envelopes constrained to c.

The next estimate is then calculated using the equivalent to Eq. (3.53),

x̂(i+1) = Hĉ(i) (3.55)

which in terms of elements of x̂(i+1) can be stated as

x̂
(i+1)
[n] =

MN∑
k=1

H[n,k]c[k]̊c
(i)
[k]. (3.56)

We label this sequence as the refinement function x̂(i+1) = R(x̂(i), c), the function

that generates a better guess of a signal matching c given a previous estimate.

Visually the structure of this iterative loop is shown in Fig. 3.2, showing how

the output x̂(i) is generated purely from c. Note that the analysis filter G calcu-

lates the channel signals from the previous estimate and that for c
(i)
[k] = 0, we define
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c(i)c[k]

Hc +

G
c(i)c[k] c(i)

x(i+1)c(i)ˆ ˆ

Fig. 3.2: Iterative loop to find estimate x̂ from envelopes c.

c
(i)
[k]/|c

(i)
[k]| = 0.

We address here the issue of circular convolution. Consider the filter cascade of

ĉ(i) being first passed through the filterbank H then through the filterbank G. This

is a transmultiplexing system: the M signals in ĉ(i) ∈ CMN are combined into one

signal x̂
(i+1)
[n] ∈ CN , then expanded back out into M signals c(i+1) ∈ CMN . Assume

that all filters in H are anticausal (or strictly non-causal, with zero causal impulse

response) of length Lh and all filters in G are causal of length Lg. Then, in order to

avoid circular convolution in the iterative estimation loop, all subchannel envelopes

cm must be zero-padded at the beginning with Lh zeros and at the end with Lg zeros:

Eq. (3.54) will force these zeros onto ĉ(i) and these subchannel signals in any iteration

will result in an estimate x̂
(i+1)
[n] without circular convolution yet zero padded by Lg

samples at the end. Thus the next subchannel signals c(i+1) are obtained without

circular convolution.

3.3.3 Convergence

When using iterative algorithms, the question of stability and convergence must be

addressed. An algorithm that is unstable or that converges only very slowly is useless

in any practical setting since computational resources are finite. It is also useful to

know how likely the algorithm is to converge to a local rather than a global minimum.

Given the above notation for the iterative estimation algorithm, we can now show

what conditions must be met for the result x̂(i) to converge to a solution. A common

method to use is the global convergence theorem [Luenberger, 1973], which works for

general nonlinear iterative descent algorithms. Similar algorithms have been shown

to converge [Tom et al., 1981; Quatieri et al., 1981] but do so by assuming that the
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update equation uses nonexpansive transforms. This is not necessary for the global

convergence theorem.

We define x, x̂(i) ∈ S, and the solution set as Γ ⊂ S. This means that if x̂(i) ∈
Γ, x̂(i) is considered an acceptable final output from the iterative procedure. The

refinement function Eq. (3.55) generates a sequence {x̂(i)}∞i=0, starting from x̂(0).

Applying the global convergence theorem states that for the functions x̂(i+1) =

R(x̂(i), c) and DM(c,Gx̂), if

1. all points x̂(i) are contained in a compact set Ψ ⊂ S,

2. (a) DM(c,Gx̂(i+1)) < DM(c,Gx̂(i)), for x(i) /∈ Γ and

(b) DM(c,Gx̂(i+1)) ≤ DM(c,Gx̂(i)), for x(i) ∈ Γ

3. the mapping defined by R(x̂(i), c) is closed outside Γ,

then the limit of any convergent subsequence of {x̂(i)} is a solution.

Of these conditions, the first one can be interpreted as requiring that the sequence

cannot diverge even if the sequence does not converge. For example, the sequence

{sin(kl)}∞l=0 does not converge to a limit as l→∞ (for k 6= 0), yet it is a compact set

with interval [−1, 1]. In the context of estimating the signal x from the envelopes c,

this means that we must ensure that any guess generated by the refinement function

is finite and bounded for all x̂(i). This follows simply from the property of c̊
(i)
[k] being

closed and bounded: |̊c(i)
[k]| = 1 for all k. From Eq. (3.56), each element of x̂(i) is a

linear combination of elements in c̊(i), thus the elements in x̂(i) are also in a closed

and bounded set, satisfying the first condition.

The second condition states that the function R(x̂(i), c) must be a strictly decreas-

ing function with respect to the error measure DM(c,Gx̂(i)), unless the solution set

has been reached. Once the solution set has been reached, the error must either de-

crease or remain the same for any further iterations. This condition requires detailed

analysis of the refinement algorithm and the function that computes the error. In the

context of estimation from modified envelopes, Γ is a disconnected region, since there

are usually multiple “correct” estimates (for example, if some signal x̂ is a solution,

the signal −x̂ will also be a solution). Thus, the algorithm would be allowed to jump

between multiple points within Γ yet still be considered as having converged.
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Following the steps of [Griffin and Lim, 1984], we show that DM(c,Gx̂(i)) de-

creases at every step under certain conditions, by using the error measure described by

Eq. (3.40). Constraining ĉ(i) to magnitude c using Eq. (3.54) minimizes D(ĉ(i),Gx̂(i))

for x̂(i) fixed. Thus we have

D(ĉ(i),Gx̂(i)) ≤ D(ĉ(i−1),Gx̂(i)), (3.57)

since the elements of ĉ(i) are of the same magnitude as the elements in ĉ(i−1), but the

phase component is aligned with Gx̂(i). We also write out the next iteration as

D(ĉ(i+1),Gx̂(i+1)) ≤ D(ĉ(i),Gx̂(i+1)). (3.58)

Now given a way to estimate the next signal x̂(i+1) which minimizes D(ĉ(i),Gx)

for any given ĉ(i), we find that

D(ĉ(i),Gx̂(i+1)) ≤ D(ĉ(i),Gx̂(i)), (3.59)

where equality holds if and only if x̂(i+1) = x̂(i) since otherwise x̂(i+1) is not at the

minimum. We now combine Eq. (3.58) with Eq. (3.59) to get

D(ĉ(i+1),Gx̂(i+1)) ≤ D(ĉ(i),Gx̂(i)). (3.60)

We note now that ĉ(i) and Gx̂(i) by Eq. (3.54) always have the same phase for all

elements, thus we expand D(ĉ(i),Gx̂(i)) element-by-element

D(ĉ(i),Gx̂(i)) = 〈ĉ(i) − c(i), ĉ(i) − c(i)〉

=
∑
k

∣∣∣ĉ(i)
[k] − c

(i)
[k]

∣∣∣2
=
∑
k

∣∣∣(c[k] − |c(i)
[k]|)

c
(i)
[k]

|c(i)
[k]|

∣∣∣2
=
∑
k

∣∣∣c[k] − |c(i)
[k]|
∣∣∣2

= DM(c,Gx̂(i)). (3.61)
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Hence we show that Eq. (3.60) can be rewritten as

DM(c,Gx̂(i+1)) ≤ DM(c,Gx̂(i)), (3.62)

with equality if and only if x̂(i+1) = x̂(i), showing that the distance measure always

decreases until a fixed value is reached. At this point, the envelopes Gx̂(i) will not

change from one iteration to the next and thus the gradient ∇DM(c,Gx̂) with respect

to x̂ will be zero, indicating x̂(i) ∈ Γ, with Γ closed.

However, note that Eq. (3.59) is only true if we can calculate x̂(i+1) to minimize

D(ĉ(i),Gx̂(i+1)) exactly. In the framework of a synthesis filterbank, this can be guar-

anteed only if the analysis filterbank is a tight frame as described in Section 3.2.2.

The approximation of the optimal synthesis operator by the matched filterbank if the

frame is snug rather than tight results in the possibility of a small additive error to

the estimates x̂(i+1) and c(i+1). The bound can be calculated from the frame bounds

as described in Section 3.2.2 and thus it is important to ensure the filterbank frame

is as close to tight as possible. It is possible to add more terms of the frame algo-

rithm to compensate for a non-tight frame but this would be at the expense of higher

computational cost.

Finally, we consider the third condition, the requirement to have a closed mapping.

The concept of a closed mapping applies to point-to-set mappings and is a general form

of the concept of continuity in point-to-point mappings. Since the function R(x̂(i), c)

is a point-to-point mapping, we need to show that it is continuous. It should be

apparent, however, that the given function is not continuous in general. At issue is

the calculation of the carrier in Eq. (3.54), which clearly is not continuous if c
(i)
[k] is

infinitesimally small. Typically this is not a problem since in the iterative loop this

will only occur at samples where c is also very small, thus any small change that will

cause the phase to ‘flip’ at any given subchannel sample c
(i)
[k] is likely to also be a small

change in the magnitude constrained ĉ
(i)
[k]. Interestingly, in [Griffin and Lim, 1984] it is

claimed that the update equation is continuous without detailed proof, even though

the update function contains a similar phase term, as stated in Eq. (3.52). However,

unlike our analysis using discrete finite frames, LSEE-MSTFTM is analyzed in the

continuous frequency domain and thus can behave differently at the critical points.
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3.3.4 Implementation issues

From the analysis above, it must be concluded that for the algorithm we present to es-

timate a signal from subchannel envelopes using a physically realizable FIR filterbank,

convergence to a global minimum cannot be guaranteed. However, the analysis high-

lights the reasons that prevent convergence and thus we can design a workaround to

ensure that the algorithm will at least find a reasonable suboptimal estimate. The def-

inition of a reasonable estimate will depend on the application. This will be explained

for audio signals specifically in the next chapter and is used in the implementation of

the iterative algorithm to terminate processing.

Simulated annealing

We note that for nonlinear iterative algorithms in general, the proof of convergence

does not guarantee speed of convergence nor that the solution is reachable in a finite

number of iterations. Thus it is possible that the gradient becomes very shallow with

the estimate staying near a local minimum even if convergence to a global minimum

is guaranteed. Often, it is possible to perturb the current estimate by a small random

amount and reach a state where the gradient is more steep. An example of such a

method is the technique known as simulated annealing, which models an annealing

melt going from a hot chaotic state to a near optimal crystalline structure. Originally

proposed for discrete optimization [Kirkpatrick et al., 1983; Aarts and Korst, 1989]

and later adapted to continuous functions [Vanderbilt and Louie, 1984; Corana et al.,

1987], simulated annealing can be found in several applications including perceptual

audio coding [Holters and Zölzer, 2009].

By itself, Eq. (3.54) is undefined for c
(i)
[k] = 0, which is a rare occurrence if the input

signal is nonzero. To completely avoid the need to handle this case, we can make a

small modification to the algorithm. At the same time, this change will introduce a

controllable amount of perturbation, implementing a simplified version of simulated

annealing. This modification is to change the step which finds the next set of carriers

from the current signal estimate estimate from c(i) = Gx̂(i) to

c(i) = Gx̂(i) + µr (3.63)
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where r is a vector of MN zero-mean random variables of unit variance and µ is a scale

factor to control the perturbation. The scale factor can be controlled dynamically,

being effectively the “temperature” control of the simulated annealing process, but

should never be reduced to 0. A typical control of µ would be to observe the error

gradient and inject more noise at one instance to try to push the current estimate out

of a local minimum, while keeping µ very low at other times.

Modified envelopes

The discussion about the envelopes implies that c is computed from a signal x, thus

there exists some set of carriers that when combined with the envelopes yield the

original channel signals c. However, no such assumption is made in the above analysis

of the iterative estimation algorithm, so the algorithm should work just as well if given

a set of modified envelopes c = |c′|. The main problem of modified envelopes is simply

that no perfect solution can be guaranteed to exist: there might not be any signal

estimate x̂ that can be generated for which DM(c,Gx̂) is within the frame error

bounds.

Terminating condition

In the case of modified subband envelopes the minimal possible error is difficult to

predict. While in general a simple threshold on DM is a reasonable solution, we can

also consider a method to terminate the iterative loop by measuring the change in the

error DM(c,Gx̂), the relative change in error from one iteration to the next. How-

ever, this must be coupled to the simulated annealing factor µ, since addition of the

perturbing noise may change the difference in DM for one iteration from negative to

positive (that is, adding noise will increase the error). To differentiate between a local

minimum and the final result, an actual implementation of the estimation algorithm

should observe the change in DM for multiple iterations. If after a noise injection the

gradient still indicates shallow convergence, the algorithm should terminate.
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3.4 Illustrative example

In the following chapter, we will apply the methods described here to analyze a

perceptual model based on a complex gammatone FB. However, to illustrate the

concepts presented in this chapter, it is useful to show some simple FBs without

being constrained to the properties of the human auditory system. With these FBs,

we can show the issues of estimation from envelopes with tight-frame and snug-frame

FBs. The reconstruction algorithm is trimmed down to a very simple loop with fixed

noise injection to avoid division by zero.

The example FBs we use have eight channels (M = 8) and are based on the

windowed STFT. Each channel analysis filter is of length Lg = 8 with impulse response

gm[n] = 0.2w(n)e−2πj(m−1)n/M , (3.64)

with m = 1, . . . ,M and n = 0, . . . , (Lg−1). The window w(n) is the Hanning window

of length 8. The scaling factor of the impulse response is chosen to make the plots

more clear. From these prototype vectors, we generate circulant matrices and combine

them into the first FB labeled GT . The second FB is derived from GT by scaling the

filter of index m = 3 by a factor of 0.9 and this FB is labeled GS. We can now show

that the frame defined by GT is tight and the frame defined by GS is snug.

The frequency-domain responses (power spectra) of the FBs are shown in Fig. 3.3,

where the top line in each graph shows the sum of the spectra for all filters. This is

equivalent to the frequency response of the matched-filter FB system with no scaling

of the synthesis FB, as shown by Eq. (3.20) with H = GT .

A B B/A γopt
(
B−A
B+A

)2
GT 1.08 1.08 1 0.9259 3.054e-30
GS 0.9261 1.08 1.1662 0.9970 0.005885

Table 3.1: Table of frame parameters for GT and GS with N = 256.

The circulant matrices were generated with N = 256 and the resulting parameters

calculated from GHG are shown in Table 3.1. The factor γopt = 2/(B+A) is used to

implement the FB system minimizing the error bound, as in Eq. (3.36), with the error
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(a) Tight-frame FB
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(b) Snug-frame FB

Fig. 3.3: Filterbanks with tight and snug frame bounds

bound shown in the rightmost column. Note that due to finite numerical precision,

GT is not exactly tight.

We illustrate the reconstruction error by creating a unit impulse signal x of size

N with the unit sample at n = 128. Figure 3.4 shows the resulting error (real part)

e = γGHGx−x. For the tight frame FB, the error ‖e‖2 is less than 7 · 10−32 and for

the snug FB, less than 0.005, both within the predicted bounds.

3.4.1 Example estimation from envelopes

We can now illustrate the effect of the tightness of the frame on the estimation of a

signal from its subband envelopes. The test signal used is a speech signal sampled at

8 kHz, the first part of the word ‘twisted’ spoken by a female speaker. The fragment

is about 0.22 seconds long and was padded with zeros at the beginning and end to

set N = 2048 as the base size of the vectors and matrices.

The signal and its envelope representation obtained by filtering with the tight

frame FB are shown in Fig. 3.5. Clearly visible in the envelope representation is the

broadband onset which is equally strong in all subchannels, followed by the voiced
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Fig. 3.4: Reconstruction error, impulse at n = 128.

section ‘-wi-’ which is concentrated in the lowest frequency subchannels7 and finally

the fricative ‘s’ is dominant in the high frequency subchannels at the end of the

signal. These envelopes were then used to estimate the original signal, using the

tight frame FB, the snug frame FB, and the snug frame ‘optimal’ (non-LTI filter)

synthesis operator from Eq. (3.42). Note that the envelopes for the snug frame FB

are identical to the tight frame case with the 3rd subchannel envelope scaled by 0.9.

For the purpose of illustrating the evolution of DM , the algorithm is implemented in

its basic form, running for a fixed number of iterations with constant noise injection.

To facilitate comparison of convergent behaviour with different signals, the Signal

to Error Ratio from [Griffin et al., 1984] is used, defined for the MSTFTM as

SER[x(n), |YW (mS,ω)|] =

10 log10

( ∑∞
m=−∞

1
2π

∫ π
ω=−π |YW (mS,ω)|2dω∑∞

m=−∞
1
2π

∫ π
ω=−π[|XW (mS,ω)| − |YW (mS,ω)|]2dω

)
. (3.65)

7Note that in this complex frequency representation, the high frequency bands are channels
4 and 5.
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Fig. 3.5: Time-domain signal and subchannel envelopes of the word fragment ‘twis-
(ted)’ spoken by a female speaker, sampled at fs = 8000 Hz.

The denominator of this equation is simply DM [x(n), |YW (mS,ω)|], and the numerator

is constant for a given YW (mS,ω), giving a scaled inverse of the error function. This

function has the advantage of being independent of signal energy. For our FB using

circulant matrices, we use the equivalent

SER(c,Gx̂) = 10 log10

(
‖c‖2

‖ |Gx̂| − |c| ‖2

)
. (3.66)

The algorithm is started with the subchannel signals initialized to the envelopes

with random phase. In comparison with zero-phase initialization, this was found to be

useful to ensure rapid convergence at the beginning of the iterative procedure, since

otherwise the initial guess would be a signal that is mostly DC and thus is strongly

attenuated by the (bandpass) synthesis filters.

In Fig. 3.6, we show the increase of SER(c,Gx̂) over 1000 iterations for the set of

envelopes that represent the speech signal. To generate the graph, the noise added

at each iteration was scaled by a constant µ = 10−9, which is small enough to show

monotonic decrease in the error. What can be seen clearly is that the algorithm
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Algorithm 1 Iterative Reconstruction of ĉ from c

i← 0;
ĉ← r;

ĉ[k] ← c[k]
ĉ[k]
|ĉ[k]|

k = 1, . . . , (MN);

repeat
x̂← Hĉ;
ĉ← Gx̂ + µr

ĉ[k] ← c[k]
ĉ[k]
|ĉ[k]|

k = 1, . . . , (MN);

i← i+ 1;
until i = L.

converges to a small error (high SER) very quickly, then settles to a steady state.

The iterative algorithm using a snug frame (dashed line) converges to an error value

of about 0.02 (SER = 21.8, with ‖c‖2 = 2.92), which is close to the value that can be

expected due to the frame bound, (B−A
B+A

)2‖c‖2 = 0.0172. For the tight frame (solid

line) the SER after 1000 iterations is far higher. In theory, the limit would be about

10−15 due to the added noise but it would take an infinite number of iterations to

reach that value.
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Fig. 3.6: Error measure over 1000 iterations

The dotted line represents the estimation of the signal using GS as analysis op-

erator and (GH
S GS)−1GH

S as synthesis filter, ignoring for the moment the circular

convolution effect. It can be seen that overall the behaviour is very similar to the
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tight frame case, showing the importance of ensuring tight frame bounds.
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Fig. 3.7: Difference of error measure between iterations

The effect of local minima8 is visible as a vague stair-like pattern in Fig. 3.6, but

clearer in Fig. 3.7. The improvement in the error becomes lower with each iteration,

but occasionally the estimate breaks out of the current local minimum and improves

more quickly again for a short stretch.

Finally, we compare the original signal and its estimate (using the tight frame

FB). The top graph of Fig. 3.8 shows the beginning of the signal in solid, with the

estimate as a dashed line, while the lower graph shows the corresponding original

envelope (channel 1) and the error c − Gx̂(i) at the final iteration. The beginning

part of the signal was reconstructed exactly, whereas the second part generally has

reverse polarity to the original. The envelopes match well for long stretches, but

where the energy (and thus envelope) is low, it is possible that a phase inversion

occurs. The envelope of the estimate cannot match the original well at the instance

when the phase “flips”.

This is a significant property of the algorithm and can contribute to audible ar-

tifacts for pitched sounds, as will be discussed later. Envelopes are made to match

within connected regions, that is, the signal has to be consistent with parts of it-

self that overlap in either time or frequency within the bounds of the filter impulse

response. In this example, the impulse response is very short (15 samples for the com-

bination of synthesis and analysis filters) and the filters overlap in frequency domain

8Note that there are not true local minima since the algorithm continues to converge to the global
minimum even without noise perturbation. However, the error improvement in these sections is very
small from one iteration to the next.



61

0.025 0.03 0.035 0.04 0.045 0.05
−0.1

−0.05

0

0.05

0.1

 

 

Original

Estimate

0.025 0.03 0.035 0.04 0.045 0.05

0

5

10

15
x 10

−3

time (s)

 

 

|c|

|c|−|c
(1000)

|

Fig. 3.8: Original signal and resulting estimate (top), channel 1 envelope of original
and estimate error (bottom)

only with their immediate neighbours. In the following chapter, we describe other

types of filters (specifically auditory-system based gammatone filters) that are more

spread out, both in time domain (longer impulse response) and frequency (covering a

larger region of the spectrum).

Given the simple FB in this section, even though an estimate was constructed

whose subband envelopes matched the original signal very closely, the resulting signal

subjectively is very different from the original. The estimate has a very rough charac-

teristic, having lost its voiced pitch to a type of incoherent buzz. This loss of quality

can be attributed to the fact that frequency information is lost in discarding the car-

rier information, and the envelopes do not match the characteristics of envelopes in

the human auditory system.

3.5 Summary

This chapter presented a novel framework and tools to analyze an algorithm that finds

the estimate of a signal based on the envelopes of a subband decomposition. Repre-
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senting filters using circulant matrices and FBs as concatenated circulant matrices,

linear convolution can be described in a compact manner if the filters and signals are

designed such that circular convolution is avoided.

The circulant matrix representation of FBs can also be used to describe the FBs

in terms of frame theory. The analysis and synthesis FB matrices can be viewed as

analysis and synthesis operators for discrete finite frames, allowing for direct numerical

computation of frame bounds and thus the accuracy with which the synthesis FB can

reconstruct the original signal after decomposition by the analysis FB. Frame theory

methods to construct a synthesis operator given an analysis operator can be applied

directly to the FB representation. We show that the well-known matched FB structure

can be regarded as the frame inverse if the corresponding frame is tight.

The concept of splitting a signal into an envelope and a carrier component is

introduced, in the specific form of an analytic (complex) signal being split into the real,

strictly positive amplitude and a carrier which is the unit-magnitude phase component

of the signal. We then introduce an algorithm that attempts to compute an estimate

of a signal given a set of subband envelopes. This algorithm is based on earlier work

that was aimed at estimation from short-time Fourier transform magnitudes. The

new algorithm is analyzed for convergence using the global convergence theorem. We

conclude that, for the algorithm implemented using FB, convergence can be expected

in general but cannot be guaranteed.

We conclude with a brief example showing the algorithm implemented with an

8-channel FB. One implementation uses a FB designed to be a tight frame, the other

a snug frame. These implementations show the basic behaviour, in particular the

problem where the algorithm spends a considerable number of iterations at a local

minimum. In the next chapter, we will introduce perceptual envelopes from a gam-

matone FB and a signal estimation algorithm from those perceptual envelopes based

on the algorithm presented above.
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Chapter 4

Perceptual Representation and

Iterative Reconstruction

In this chapter we present the central theme of this thesis, describing the perceptual

representation and the iterative method to reconstruct an audio signal from that repre-

sentation. We begin by outlining the issue of perceptual representations and iterative

reconstruction from a general standpoint, showing the parts needed to implement such

a coding system. The parts can be roughly summarized as a psychoacoustic model to

convert the original audio signal into a set of perceptual parameters, a method of cal-

culating a single-variable error between the original perceptual parameters and the set

of parameters of the reconstructed audio, and a function to modify the reconstructed

signal such that the error between the two sets of parameters is reduced. The iter-

ative approach to reconstruction allows for a new approach to designing perceptual

representations for audio coding.

A representation of audio signals by sparsely sampled auditory envelopes designed

for iterative reconstruction is presented. This representation is based on perceptual

coding methods that were briefly described in Chapter 2. We describe the auditory

pulse representation that was used as a starting point in more detail in this chap-

ter. Our new representation encodes a monaural signal by sampling the auditory

envelopes. The auditory envelopes are computed by a gammatone filter subband de-

composition followed by a magnitude envelope extraction and low-pass filtering. A

masking model evaluates the auditory envelope samples to discard samples deemed
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perceptually irrelevant, resulting in a sparse auditory envelope representation (SAER).

The envelope representation lacks the instantaneous phase information in each

auditory channel that is needed for reconstruction by linear filtering. We call this in-

stantaneous phase signal the subband carrier since it can be regarded as a frequency-

modulated sinusoid whose amplitude is modulated by the envelope signal. From a

coding point of view, it is desirable to discard this carrier information since it is

very difficult to encode, yet it can be reconstructed based on the envelopes. This

suggests the synthesis-by-analysis approach to reconstruction and we describe an it-

erative method for model inversion. These methods have been proposed in the context

of auditory models before [Slaney et al., 1994; Heming et al., 2003; Chi et al., 2005];

we show that such methods can be modified to incorporate a sparse representation

similar to pulse coding [Feldbauer et al., 2005] that is suitable for coding. This will

demonstrate the feasibility of iterative reconstruction for decoding the parameters

from a perceptual coder.

In particular, we examine the reconstruction of the carrier information which must

be done in a way such that the subband channel signals are consistent with each other.

There is considerable overlap in frequency between auditory channels and a wrong

estimate of the carrier will cause interference, resulting in audible artifacts which can

be detected by comparing the envelopes of the reconstructed signal to the original

auditory envelopes. The detection of artifacts is used to adjust the carrier information

for the next iteration of the synthesis-by-analysis loop, eventually finding a set of

carrier signals matching the auditory envelopes. However, modification of the original

auditory envelopes due to sparsification and quantization adversely affects the ability

to reconstruct an accurate carrier signal, which we examine in the implementation

described in Chapter 5.

A major criticism that can be made against such iterative reconstruction methods

is the high computational cost. The availability of ever faster and power-efficient

processing capabilities weakens this argument somewhat, but is is still important to

limit the computational requirements. In iterative methods, the computational cost

of a single pass of the reconstruction algorithm is multiplied by the number of passes.

To mitigate this, we include methods to lower the computational load within the loop

and a mechanism to terminate the loop once reconstruction quality is satisfactory.
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4.1 Perceptual representations of audio signals: general

concepts

A perceptual model is an algorithm that converts a sound signal into a set of model

parameters that are a perceptual representation of the sound. To explain the idea

of the reconstruction of a new audio signal from that perceptual representation, we

must first consider what reconstruction is acceptable and whether or not the model

parameters have been modified (for example by quantization for transmission).

Suppose we have two audio signals x1 and x2 in a space S and we have a perceptual

model giving us sets of parameters, Fx1 = P(x1) and Fx2 = P(x2) inside a parameter

space Fx1 , Fx2 ∈ A. Since an audio signal may be modified in such a way that changes

are inaudible, Fx1 = Fx2 does not imply x1 = x2, that is, the function P(·) is many-

to-one. More generally, we assume that there is an audible difference function DP and

a threshold τM such that

DP(Fx1 , Fx2) ≤ τM (4.1)

means that x1 and x2 are indistinguishable from each other by an average human

listener. For any individual parameter of a signal, this is usually called the “just

noticeable difference” (JND).

We call the set of “signals sounding like x”, Sx. Sx can be a disconnected subspace

of S. For example, most people cannot tell if a sound is played back through a speaker

with reversed polarity (for some nonzero x, both x and −x are in Sx). Thus, large

disconnected regions in S can project to a small region in A.

Inversion of a perceptual model P means that we are trying to estimate a signal

x̂ from a set of perceptual parameters F ′x. It it typically assumed that F ′x is derived

in some way from a set of features Fx that are calculated from an actual signal x,

and thus F ′x can be regarded as a perceptual representation of the signal x plus some

error, εQ (typically introduced due to quantization and coding1), with

DP(Fx, F
′
x) = εQ. (4.2)

1It is possible to generate entirely synthetic perceptual parameters but here we assume parameters
are derived from a real signal.
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Perceptual models, as described in Chapter 2, are generally nonlinear complex

algorithms. They are typically also redundant to some degree or involve sampling of

a redundant representation. Any set of perceptual features not derived directly from

a signal in S may not have an exactly matching signal in S, that is, for some F ′x it

is impossible to find a signal x̂ ∈ S such that P(x̂) = F ′x. Essentially, the perceptual

features of a modified representation might not be self-consistent. The best a model

inversion algorithm can do in this instance is to find the estimate x̂ ∈ S that minimizes

the difference function DP(F ′x, Fx̂), which is the reconstruction error. In other words,

the task of the decoder is to find an audio signal whose perceptual parameters best

match the received information. Since a decoder has no knowledge of the original x

or Fx before quantization, even the optimal reconstruction of F ′x might be outside of

Sx, that is the difference between x and x̂ might be audible even if all parameters

were quantized below their individual JND, or collectively εQ ≤ τM. This issue must

be taken into account when designing the encoder, in particular if the perceptual

parameters are quantized.

4.1.1 Reconstruction by iterative estimation

A key concept we introduce in this chapter is the reconstruction of audio from coded

perceptual parameters using an iterative method. To find an estimated signal x̂ from

the set of features F ′x, the algorithm begins with a guess of what the signal x̂ might be

and then determines how good the guess is in a perceptual sense. This estimate, or

rather its perceptual analysis, is compared to the received parameters and processed

to generate a new estimate. This process is repeated until the perceptual analysis of

the estimate is considered sufficiently similar to the received parameters.

Generating the new estimate is a critical step in this process. We denote the

sequence of signals as x̂(i), with x̂(0) being the initial guess and label the refinement

function R. This function at each iteration computes

x̂(i+1) = R(F ′x, x̂
(i)), (4.3)

that is, given the current estimate x̂(i) and the target parameters F ′x, a new estimate

x̂(i+1) is generated. This function should be designed such that applying it results in
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an improvement in perceptual quality relative to the given perceptual features F ′x, so

DP(F ′x, Fx̂(i+1)) ≤ DP(F ′x, Fx̂(i)). (4.4)

We note that in this iterative method of reconstruction every estimate Fx̂(i) is com-

puted from a signal in S. Thus, even though F ′x might not be realizable in S, if

Eq. (4.4) is satisfied, as i→∞ a reconstruction given F ′x should be found that is best

in terms of the perceptual model.

In terms of perceptual models, this allows us to change the approach to designing

a perceptual representation intended for coding applications. Rather than designing

a representation for ease of direct inversion (which typically necessitates coding in-

formation that is perceptually irrelevant), we make our representation easy to refine

given an initial estimate of the signal (which does not need to be transmitted). In ad-

dition, this approach allows for testing perceptual representations for completeness by

subjective validation. If the representation is incomplete in terms of encoding all per-

ceptually relevant information and the iterative algorithm converges to a state where

the error DP(F ′x, Fx̂(i)) is below the audible difference threshold τM as estimated by

the model, then human listeners should be able to detect a difference between the

original signal and the reconstruction. Since presumably inaudible information was

discarded at the encoder, the decoder must generate the missing information from

just the transmitted data and this artificially generated information might be differ-

ent from the discarded information.

It is difficult to predict what data the iterative reconstruction algorithm can inter-

polate from the information that is given, so one approach to develop a new auditory

representation is to trim down an existing perceptual representation. To demonstrate

this, we modify an existing perceptual coder that uses direct model inversion.

4.2 Computing an auditory representation

The perceptual representation we use in this thesis is a sparse sampling of auditory

envelopes, where the auditory envelopes are obtained using a gammatone FB. This

representation has its origin in a sparse pulse representation described by [Feldbauer,

2005], and to describe our representation (termed SAER), we first describe Feldbauer’s
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sparse pulse representation method and the algorithm to compute it. In particular,

we focus on the pulse masking model, which sparsifies the pulse representation. We

then describe the algorithm to compute the SAER, highlighting the differences and

similarities to Feldbauer’s method.

4.2.1 Feldbauer’s sparse pulsed auditory representation

The full structure of the encoder in [Feldbauer, 2005] is shown in Fig. 2.5a. For the

purpose of illustrating the sparse pulse auditory representation, we use a simplified

version in which the amplitude compensation stages as well as the stream encod-

ing sections are omitted since they are not part of the psychoacoustic model. This

simplified structure is shown in Fig. 4.1.

masking model

gammatone filterbank

peak picker

half-wave 
rectifier

input signal

sparse pulse representation

.  .  .

.  .  .

Fig. 4.1: Simplified version of the Feldbauer encoder

The filters of the analysis gammatone FB are described by the general expression

Eq. (2.1). The specific choices of the number of channels, channel gains, and phase

constants are dictated by the requirement of allowing for reconstruction with low dis-

tortion. For the implementation of our model, the details of the FB will be discussed

in the next chapter. Key to the analysis FB is that each channel is an emulation of

the BM frequency analysis for a local group of inner hair cells (IHC). The auditory
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subchannel signals from the FB outputs have a narrowband bandpass characteristic

with significant overlap in frequency domain, which allows the encoder to account for

interactions of stimuli at different frequencies.

The transformation of the subband signals into a pulse-based representation of the

original audio signal begins by half-wave rectification. Within each auditory channel,

the half-wave rectifier block in Fig. 4.1 can be described by the transfer function

xRout[n] = max(xFBout[n], 0)c, (4.5)

where xFBout[n] is the channel signal from the gammatone filterbank and xRout[n] is

the output. The exponent c = 0.4 is used to perform power-law companding as part

of the inner hair cell (IHC) model. The peak picking block that follows the half-wave

rectification sparsifies its input by setting all samples of the input to zero except for

local maxima using the function

xPeaks[n] =


xRout[n],

xRout[n] > xRout[n− 1], and

xRout[n] > xRout[n+ 1],

0, otherwise.

(4.6)

The resulting signal in each subchannel is a sparse stream of pulses synchronized

with the peaks. To clarify this pulse selection, Fig. 4.2a shows a short section of a

subchannel signal where the channel centre frequency is 374 Hz. The input signal

is a male voice speaking the word “distance”. The figure shows the signal section

corresponding to the first vowel (“i”). Sub-figure 4.2b shows the peak-picked signal

with the half-wave rectified signal as a gray line (we set c = 1 to show the match to

the peak value). Note that the signal in Fig. 4.2a bears resemblance to an AM signal;

however, the underlying carrier is not a monochromatic sinusoid but instead has a

variable instantaneous frequency. The peaks in Fig. 4.2b, synchronized to this carrier

wave, are therefore not spaced at regular intervals and their deviation from regular

spacing turns out to contain important information for proper reconstruction.

As a whole, the representation of the signal at this stage is the set of pulses in all

the subchannels. In [Kubin and Kleijn, 1999], 20 channels are used for audio signals

sampled at 8 kHz and Feldbauer expands this to 50 channels in the system described
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in [Feldbauer, 2005]. It should be apparent that although the individual subchannel

pulse signals are sparse, the total number of pulses exceeds the original number of

samples in the signal due to the large number of channels. The full representation

of the short audio signal from above is shown in Fig. 4.2, with the pulses as vertical

bars whose intensity indicates the amplitude. This short segment of speech is only

450 samples long at a sampling rate of 8 kHz, yet the pulse representation is 2246

pulses in 50 channels (the channel centre frequencies span from 26 Hz to 3329 Hz).

Note that the rate of pulses increases with the channel number as can be expected,

since the centre frequency is a function of the channel number. On average, the time

interval between adjacent pulses within an auditory channel should be 1/fc, where fc

is the channel centre frequency.

In order to code audio signals efficiently using this pulse representation, the number

of pulses in the auditory representation must be reduced significantly. This task is

primarily performed by the masking model, which will be described in more detail

below, in particular the transmultiplexer concept that implements both temporal and

simultaneous masking properties. In his implementation, Feldbauer reports that the

masking model reduces the number of pulses used to represent the audio signal such

that the number of pulses after applying the masking model is less than the number
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Fig. 4.2: Peak-picked representation of an audio signal showing multiple subband
channels

of samples for a given time segment of audio.

The transmultiplexer based masking model

We now examine the masking model based on the concept of the transmultiplexer in

more detail. The transmultiplexer originally provided the idea for the development

of the iterative reconstruction algorithm that will be explained later in this chapter.

In both cases, the key idea is that the ultimate receiver of the reconstructed audio

signal is a human listener. We can therefore substitute an auditory model for this

listener’s hearing system to evaluate the (predicted) perception of the reconstructed

output signal.

We can thus ask how much any given impulse that is part of a pulsed auditory

image contributes to the auditory image generated in the auditory system of the

listener. As shown in Fig. 4.3, we do this by first reconstructing the audio based on

the sparse pulse representation then analyzing this reconstructed audio signal using a

model of the auditory system. One can use the same model that was used to analyze

the sound to be encoded. This becomes the transmultiplexer view of perceptual-
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basilar membrane model

neural 
transduction

simulated neural response

sparse pulse 
representation

reconstructed 
signal

Fig. 4.3: Transmultiplexer view of sparse pulse coding

domain coding: the multichannel signal (the sparse pulse auditory representation) is

transmitted via a single-channel carrier (the reconstructed audio signal) to a receiver

that transforms it back into a multichannel pulsed representation (the internal neural

pattern in the human listener). Compared to the usual view of a perceptual domain

coder, the encoder and decoder are inverted.

How can this construct be used to sparsify a pulsed representation? Ideally, given

the pulse representation one could perform an exhaustive search, recomputing the au-

ditory representation for any subset of pulses from the original representation. Clearly,

with thousands of pulses for even small segments of audio, such an exhaustive search

is not feasible.

Instead, Feldbauer considers the effect that any given pulse has on its immediate

time-frequency neighbourhood. Take a single isolated pulse in a pulsed auditory

representation: the synthesis filterbank (shown in Fig. 2.5b) will turn this single pulse

into a reverse-time gammatone impulse with frequency and length dictated by the

channel wherein this impulse is located. This reverse-time gammatone is the resulting

audio signal that is passed through the analysis filterbank in the transmultiplexer
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Fig. 4.4: Reverse time pulse (Channel 10, centre frequency of 184.7 Hz), its pulse
pattern after transmultiplexing, and the associated envelope pattern

setup. Due to the overlap of the gammatone filters in frequency, the (narrowband)

reverse-time gammatone impulse will evoke a pulse pattern that spreads over many

channels adjacent to the original pulse channel. Also, the pulse will be spread in time

by the filter responses, resulting in a spread pattern such as that shown in Fig. 4.4.

Figure 4.4a shows the synthesized audio from a pulse in channel 10 (centre frequency

of 184.7 Hz) and Fig. 4.4b shows the resulting pulse pattern after reanalysis.

We can see that the isolated pulse expands into a large set of pulses in multiple

channels. If now the original pulse is part of a pulsed auditory pattern, nearby pulses

whose amplitudes are less than that of the original pulse will not affect this pattern

greatly, that is, the effect of the smaller pulses on the transmultiplexed pattern is

masked by the dominant pulse. To determine which pulses are dominant and which

smaller pulses are masked, the transmultiplexed envelopes2 [Feldbauer and Kubin,

2004] are computed since the actual temporal positions of pulses within the spread

2Specifically, the Hilbert envelopes as defined by Eq. (3.45).
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pattern are assumed to be irrelevant. In Fig. 4.4c, the envelopes of the pulse pattern

shown in Fig. 4.4b are shown. The envelopes are basically a smooth curve connecting

the peaks of the pulse pattern.

non-masked pulse

masking pulse

t

masked pulse

Fig. 4.5: Schematic representation of the masking decision

The implementation of this masking model operates on short sections of the pulse

representation. Within this section, the pulses are sorted by amplitude and evaluated

beginning with the largest amplitude pulse. This pulse is declared the masking pulse

and the surrounding pulses are compared to the envelope that the masking pulse

would generate, as shown in Fig. 4.5. Any pulse below the envelope is considered to

be masked by the masking pulse and is removed from the pulse representation.

Of the remaining pulses, the next largest pulse is selected and the process is re-

peated until every pulse of the original full pulsed auditory representation has been

evaluated as a masker or has been removed from the representation. Then, the am-

plitude of the remaining pulses is adjusted to account for the energy lost due to the

removal of pulses and this sparse auditory representation is coded for transmission or

storage.

Feldbauer introduces an additional empirical factor to the masking model, the

impact factor, used to control the severity of the sparsification. This factor (rI in the

description of the implementation in the next chapter) is used to attenuate or amplify

the transmultiplexed pulse, allowing the pulse masking effect to be either under- or

overestimated. It therefore allows a tradeoff between the number of pulses in the final
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representation and the quality of the audio signal at the decoder. The impact factor

is also used in the implementation of the transmultiplexer masking model for envelope

samples as described below.
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Fig. 4.6: Subchannel signal and pulse based representations

Fig. 4.6 shows the subband signal of a speech sample, the peak-picked pulse rep-

resentation, and the sparse representation with amplitude compensation. This figure

also shows the Hilbert envelope of the subband signal and that the peak-picked pulse

representation effectively samples the envelope at a rate determined by the subband

carrier. Note that this single-channel view does not show the effects of simultane-

ous masking (masking due to pulses in adjacent channels) that explains the lack of

retained pulses in the region of 290–320 ms.

4.2.2 Auditory envelope representation

The encoder described by Feldbauer generates a good sparse auditory representation

that can be used to reconstruct an audio signal with high fidelity at low computational

cost. However, this representation focuses on the amplitude of the pulses, assuming

that the pulse positions are encoded with little or no error. Especially for the higher

frequency channels, a small error in the pulse position can cause interference with
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the subchannel signal in an adjacent band, resulting in audible distortion of the re-

constructed signal. To avoid this interference, the encoder is required to store or

transmit the precise timing information for the pulses. This is exacerbated by the

fact that the higher frequency channels also use more pulses per unit time than the

lower frequency channels and this requirement for storing large amounts of precise

timing information is in contrast to the human auditory system, where the hair cells

have a limited temporal acuity [Moore, 2003].

We can address this problem by using iterative reconstruction as described in the

previous section. Thus, the perceptual representation that we use is a modification of

the pulse based representation in which the half-wave rectification and peak-picking

sections are replaced with an envelope detector, specifically an operator that extracts

the Hilbert envelope of the subband signal. The Hilbert envelope extractor is equiv-

alent to the envelope follower used in the isolated pulse masking model described

above, but is applied to the original gammatone filter output. The resulting subband

envelopes (or auditory envelopes) have a generally low-pass characteristic and lack

the precise timing information that is contained in the pulse positions of the peak-

picked representation: this timing information will be reconstructed by the decoder

using an iterative loop. This modified encoder is shown in Fig. 4.7. Like the pulse-

based encoder, it begins with a gammatone filter analysis resulting in a redundant

representation which is then sparsified by a masking model.

The decomposition of a signal into subband envelopes can be computed efficiently

and, more importantly, we have shown in the previous chapter that it is possible to

reconstruct a signal from just these envelopes. The relationship between the envelope

and pulse representations is pointed out in Fig. 4.6 and it can be seen that the pulsed

representation and the envelope are very similar but the pulsed representation retains

the timing information of the signal. The figure also shows the sparsified pulse rep-

resentation (with the amplitude compensation that allows for reconstruction of the

signal with correct subband energy). Effectively, the sparse representation discards

the timing information of the missing pulses but retains their amplitudes by adjust-

ing the retained pulses. Still, the decoder needs the precise timing information of

retained pulses for accurate reconstruction. This can be avoided with the envelope

representation.
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Fig. 4.7: Sparse auditory envelope encoder

Thus, the envelopes are a representation of the peaks of the subband signals with-

out the detailed timing information. In contrast to the peak-picked representation,

the envelopes can be evaluated based on their frequency characteristics in addition to

the temporal properties on which the transmultiplexer masking model is based. The

sparsification algorithm that we use exploits the frequency domain characteristics by

subsampling the envelopes and the time domain characteristics by sparsification using

the transmultiplexing model.

Sparse envelopes by sampling and salient feature detection

Up to now, we have implicitly assumed that the analysis filterbank and the envelope

extraction operate at the sampling rate of the original signal. Thus, while the en-

velopes are a representation of the audio signal without the pulse timing information,
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in terms of samples it is still a large amount of data and highly redundant. As a

first step to improve the efficiency of the representation, the envelopes are subsam-

pled. The peak-picking may be regarded as an adaptive sampling of the envelopes,

but the rate of this adaptive sampling is not dependent on the audible information of

the envelopes, instead it is tied to the instantaneous frequency of the carrier signals.

The sparsification by the masking model addresses this to some degree but remains

tied to the fine temporal structure rather than the perceptible characteristics of the

envelopes.

We look at the perception of auditory subband envelopes, which has been studied

in the past by many researchers. In particular, we note that the Hilbert envelope

of auditory subbands can be compared to the low-pass filtered neural transduction

model that has been used in perceptual models such as those described in Chapter 2.

More specifically, the effects of filtering the Hilbert envelopes of subband signals have

been investigated by Drullman [Drullman et al., 1994] and Ghitza [Ghitza, 2001],

mainly in the context of speech perception. Ghitza finds that the frequency content

of auditory envelopes is inaudible if higher than roughly half the bandwidth of the

auditory filter. Thus we can argue that the subband envelopes can be more efficiently

processed by subsampling at a rate equal to the reciprocal of the auditory channel

bandwidth, preceded by a lowpass filter equal to half the channel bandwidth to avoid

aliasing (see Fig. 4.7).

On the other hand, using the Hilbert envelope as a perceptual representation was

criticized by Schimmel [Schimmel, 2007], pointing out three problems with Hilbert

envelopes (termed incoherent envelopes in his analysis). The first problem is that

the bandwidth of the magnitude envelope exceeds the bandwidth of the subband

signal [Dugundji, 1958]. The second is that since the envelope is a real signal, its

spectrum is conjugate symmetric about DC, while the subband signal spectrum is

not symmetric about its centre frequency. The third problem is that the envelope

representation is not closed under convolution, since it is strictly positive but its

convolution by a filter response may become negative. In general, modulation domain

filtering is not well defined [Li and Atlas, 2005]. Schimmel addresses these issues by

using a coherent modulation representation rather than a strictly real and positive

envelope. However, as with representations for audio coding, his problem analysis and
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solution are motivated by allowing simple non-iterative reconstruction, in particular

for modified representations3.

In the iterative reconstruction, we find that since the operations performed on the

envelopes do not need to be exactly invertible, we can avoid the issues raised by Schim-

mel. First, since it is assumed that the frequency content of the envelope exceeding

half the auditory channel’s bandwidth is inaudible, it is sufficient to reconstruct a

signal where only the lower frequency spectra of the envelopes match. Second, the in-

duced symmetry in the envelope spectrum is not enforced on the underlying subband

signal during reconstruction and we allow the subband signal to have an asymmetric

spectrum since the refinement algorithm only compares envelopes in time domain.

Finally, the problem that the envelope representation is not closed under convolution

is more problematic in the context of subsampling and quantization. However, since

an envelope signal tends to have a very strong DC component, the antialias filter

for sampling is unlikely to cause the subsampled envelope signal to become negative.

If this situation occurs, it is likely to be below the audible threshold and half-wave

rectification can be used.

Initial experiments with reconstruction from filtered and sampled envelopes showed

promising results with little or no perceptible distortion for some classes of audio (in

particular speech signals) [Thiemann and Kabal, 2007]. It was found that the sampled

envelope representation is still a highly redundant representation, with 1.4 envelope

samples required per monaural audio sample (using a signal sampled at 16 kHz and

62 subband filters with centre frequencies from 40 Hz to 6930 Hz). The model used in

this thesis extended the FB to 65 channels (spaced 0.5 ERB apart) to increase the au-

dio bandwidth and as result has a higher redundancy (see the following chapter), but

we introduce a sparsification block to the model that reduces the number of envelope

samples significantly.

Transmultiplexer based sparsification on subband envelopes

To sparsify the sampled envelope representation, we implement a transmultiplexer

based masking model similar to the model described above. In fact, in the final

3The target application of Schimmel’s method is noise reduction by modifying the perceptual
representation of the noisy signal.
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implementation, the envelope samples can be treated as pulses and expanded to en-

velopes of pulses for comparison to the adjacent envelope samples. However, since the

transmultiplexer is based on modeling the reconstruction from pulses, the “library”

of envelopes must be modified to emulate the reconstruction from a sparse envelope

sample rather than an auditory pulse. For a given channel, the resulting transmulti-

plexed pattern in our implementation differs from the auditory pulse pattern simply

by a gain factor. The details are described in the following chapter.

We observe that since the envelope samples are generally spaced further apart than

the pulses in the auditory pulse based representation, the temporal masking effect of

the transmultiplexer model is greatly reduced even with the stretched patterns. How-

ever, the transmultiplexer model still removes envelope samples due to simultaneous

masking (in frequency domain), primarily in higher frequency bands.

The masking model is also used to handle sparsification of the samples due to the

threshold in quiet. Given an assumption of the absolute volume of the signal being

encoded, the threshold of hearing for the envelope in each channel can be calculated.

Envelope values below this threshold are not encoded.

Quantization and coding

The final step shown in Fig. 4.7 is the quantization and encoding of the SAER into a

bitstream. From the perspective of perceptual coding, the important effect of this step

is the addition of noise to the sample amplitudes due to quantization and we assume

that once quantized the auditory envelope samples are received at the decoder without

error. However, the quantization is a modification of the envelopes in addition to the

sparsification and for this reason the next chapter will present the results of applying

a simple scalar quantizer to the SAER.

In Fig. 4.8, the subband signals of Fig. 4.6 are shown with the smoothed subband

envelopes and the sampling thereof. We also show the adjacent channel to illustrate

the effects of simultaneous masking: the peak at 280 ms in channel 20 is not coded by

AE samples since the samples in channel 21 are dominant. As in Fig. 4.6, simultaneous

masking from adjacent channels removes a significant number of envelope samples.

In the following section, this effect is made more visible by the maximum envelope

limit calculation. Both the sparse pulse and sparse envelope representations encode
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Fig. 4.8: Sparse sampling of a lowpass filtered auditory envelopes

this particular subband signal with a similar number of samples. However, because

the sparse envelope representation is a sampling of a low-frequency signal at regular

intervals, the sample position (modulo the sampling rate) is known implicitly and

does not need to be encoded as side information.

4.2.3 Shortcomings of perceptual subband envelope representation

As we have described it in this chapter, the envelope based perceptual representation

that we propose for testing the iterative reconstruction algorithm is a simplified ver-
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sion of common perceptual models that have been developed for investigating human

perception. These models were used to study masking properties and modulation

pattern perception, but do not address the perception of pitch. In fact, temporal fine

structure cues are often considered essential for pitch perception [Zeng et al., 2004].

However, we will demonstrate that pitch is encoded in the envelopes indirectly, but

this lack of pitch sensitivity in the model translates into poorer performance when

reconstructing sounds that are highly pitched, such as pure tones.

We demonstrate this problem by showing the envelope representation of two pure

sinusoids. While pure sinusoids even of short duration are not common in typical

audio signals, they illustrate the problem that is common to all signals with little or

no amplitude or frequency modulation. The spacing of channels used in this example

is 0.5 ERB, from the implementation described in the next chapter.
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Fig. 4.9: Auditory envelope representations of two sinusoids

Figure 4.9 shows the envelope magnitudes in dB of the two sinusoids across several

auditory channels, at about 0.5s after the onset of each sinusoid. The line markers

show the value of the envelope at the filter centre frequencies. The frequency of the

first sinusoid is chosen to coincide with the centre frequency of an auditory channel

at f1 = 479.46 Hz, and the second is chosen such that its frequency is half a semitone

higher (a scale factor of 24
√

2), f2 = 493.51 Hz. The difference in pitch between

these two tones is quite audible, but the envelope amplitudes are very similar. In



83

the auditory channel with centre frequency f1, the difference between the envelopes

is 0.28 dB. The next higher auditory filter (at 518.6 Hz) shows a difference of about 1

dB. In other auditory channels the difference is only slightly larger, never exceeding

1.7 dB.

We can see that the frequency information is present in the envelopes, but in a

very indirect and subtle manner. In psychoacoustic theory, this is the essence of the

place theory of pitch, which states that the percept of pitch is based on the location

on the BM where the stimulus is strongest [Moore, 2003] and that closely spaced

auditory channels are needed to accurately capture pitch [Smith et al., 2002]. Com-

putationally finding the pitch on the stimulus is very difficult however, in particular

if the envelopes are corrupted by noise (for example due to quantization). Knowing

that pitch differences even smaller than we used in this example have been shown to

be audible, we can expect the reconstruction algorithm to have problems reproducing

pitched sounds accurately, especially once the masking algorithm and quantization

have been applied.

The solution to this problem is the explicit inclusion of some pitch information.

In the pulse representation, pitch is implicit in the pulse timing information, but this

information is present even when not required for perceptually transparent encod-

ing. A challenge for future research is to find a model that combines the envelope

representation with pitch information which is omitted where pitch distortion is not

perceptible. This will then change the structure of the encoded parameters and as

a result, the decoder’s reconstruction algorithm will need to be altered to match the

encoded parameters.

The details of pitch perception are still an active area of research and thus beyond

the scope of the research presented here. For the experimental iterative reconstruction

algorithm in this thesis, the envelope model is deemed adequate and, in fact, the

reconstruction method shows the strengths and shortcomings of the envelope model.

4.3 Reconstruction from the sparse envelope representation

This section presents the algorithm to synthesize a signal based on the sparse subband

envelope representation described above. In particular, we describe the refinement
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function to compute the next signal estimate given the envelope representation of

the current estimate. The refinement function is based on the estimation algorithm

presented in the previous chapter but modified to account for the sparse envelope

representation.

The overall structure of the algorithm to turn the coded SAER into an audio sig-

nal is shown in Fig. 4.10. The algorithm can be divided into three basic steps: the

decoding to convert the input stream back into the the sparse envelope representa-

tion (labeled “decoder”), the conversion of the sparse envelope representation into a

set of envelope constraints (the “fixed expansion” and “envelope limit” blocks), and

the iterative reconstruction of the audio signal using the envelope limits (the looped

structure including the “compare & adjust” block and the filterbanks). Note that the

“compare & adjust” block uses data from both the fixed expansion and the envelope

limit blocks and controls when the reconstructed signal is passed to the output. This

is indicated by the dashed line controlling the switch.

The role of the first step is simply to unpack the bitstream provided by the en-

coder back into the sparse envelope representation that was described in the previous

section. It is assumed that the encoding and decoding of the bitstream is lossless and

transparent to the overall system with the exception of some error due to quantiza-

tion of the envelope amplitudes. The focus here is to show the concept of iterative

reconstruction from a perceptual context.

4.3.1 Fixed envelopes and envelope limits

The next part of the reconstruction algorithm converts the SAER into two sets of

constraints to which the auditory envelopes of the reconstructed signal are made to

conform. The first set is simply an expansion (upsampling) of the sparse envelope

samples by piecewise constant segments. We call this set the fixed envelopes.

Recall that when generating the SAER, the envelopes are sampled at regular inter-

vals prior to sparsification. Thus, the lack of an envelope sample at the reconstruction

stage conveys some information: the missing sample was removed due to having an

amplitude less than the transmultiplexed pattern of some other sample. This means

there is an upper bound that the reconstructed envelopes must not exceed wherever

the SAER is missing samples.
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Fig. 4.10: The reconstruction algorithm for the sparse envelope representation
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With this in mind, we calculate a limit on the envelopes in the sparsified regions

of the envelope representation by applying the transmultiplexer model to the sparse

representation. In envelope regions that are not defined by the fixed envelopes, the

transmultiplexed envelope pattern due to the transmitted samples becomes the upper

limit that the envelope is allowed to reach during reconstruction. If during the itera-

tive loop the envelope of the estimate exceeds the upper limit, the subchannel signal

estimate is adjusted. We can regard this limiting of the envelopes as an optimized

recalculation of the transmultiplexer masking model outside the reconstruction loop.

The envelope limit is a precomputation of the masking model without explicit evalua-

tion of each envelope sample within the loop. Note that the limiting value is nonzero

even if there are no masking envelope samples in the spectro-temporal vicinity. In this

case, the limit is given by the threshold in quiet, as it was computed at the encoder’s

masking stage. This is the amount of noise the decoder is allowed to generate if no

samples are present since this noise will be inaudible to the human listener.

The relationships between the smoothed envelopes, the fixed envelopes, and the

upper envelope limits are shown in Fig. 4.11. The samples of the smoothed envelopes

are interpolated into a stepwise-constant curve at points where the envelopes are

known due to the envelope samples. The piecewise parabolic-like curves are the upper

envelope limits generated by the transmultiplexed envelope samples both in the time

domain and in adjacent channels (see, for example, the curves at around 290 ms and

at around 360 ms, respectively). We can clearly see that every section of the auditory

envelopes are defined either by a fixed envelope section or an envelope limit. The

stepwise approximation of the envelopes by the fixed sections does introduce some

error but is adequate for the implementation.

4.3.2 The iterative reconstruction loop to determine the carriers

The last step of the decoder is the iterative reconstruction of the audio signal estimat-

ing the carriers to match the envelope data. This process is similar to the cochleagram

inversion as described in [Slaney, 1995], and we describe it here as a modification of

the algorithm described in Section 3.3.2 and Fig. 3.2. In Fig. 4.10, we can associate

the synthesis filterbank with the block labeled H in Fig. 3.2 and the analysis filterbank

with the block labeled G. In Fig. 4.10, the individual channels are shown as parallel
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Fig. 4.11: The smoothed envelopes and the reconstruction target specification in two
adjacent channels. The envelopes are specified by fixed envelope sections (labelled c′

in Section 4.3.2) and the maximum envelope limits (c̃) that affect multiple channels
at the same time offset.

branches of the analysis and synthesis filterbank, which in Fig. 3.2 are combined in

the vector c(i).

The key difference between the algorithm here and Algorithm 1 is that we do

not have a full set of envelopes (c in Algorithm 1) to which to adjust the estimate.

Instead, we only have the set of sparsified envelope samples and the set of upper

limits calculated in the previous stage of the decoder. These two sets influence the

generation of the next iteration estimate in different ways.
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Amending the notation from the previous chapter, we use c′ to denote the fixed

envelopes. In the sparsified sections, c′ is set to zero. From this the previous stage

generates the envelope upper limits c̃ using the transmultiplexer patterns. As in

Section 3.3.2, ĉ(i) is the magnitude constrained ith estimate of the subband signals

and x̂(i) is the audio signal calculated from the previous subband signal estimate. The

subband signals from the current signal estimate are denoted c(i). The first estimate

is initialized with r̊, random complex numbers of unit magnitude.

Algorithm 2 Iterative reconstruction algorithm with envelope limits

i← 0;
ĉ
(0)
[k] ← c′[k]̊r k = 1, . . . , (MN);

repeat
i← i+ 1;
x̂(i) ← Hĉ(i−1);
c(i) ← Gx̂(i) + µr

ĉ
(i)
[k] ← c′[k]

c
(i)
[k]

|c(i)
[k]
|

∀k where c′[k] 6= 0;

ĉ
(i)
[k] ← min(c̃[k], ĉ

(i)
[k])

ĉ
(i)
[k]

|ĉ(i)
[k]
|

∀k where c′[k] = 0;

until DM(ĉ(i), c(i)) < τ or i = L.

Refinement step and error measure

Reflecting the argument of reaching an acceptable solution as part of the reconstruc-

tion algorithm, we introduce a terminating condition based on the Signal-to-Error

Ration (SER) as presented in Chapter 3, with some important modifications. These

modifications are necessary due to the sparse representation. The reconstruction al-

gorithm does not have a full version of the original envelopes. However, the envelopes

ĉ(i) are the current best estimate of the original envelopes, since the iterative loop

forces ĉ(i) to conform to c′. For all k that are specified in the sparse envelope repre-

sentation, ĉ
(i)
[k] is equal to c[k] but, for other values of k, ĉ

(i)
[k] is equal to c

(i)
[k] unless ĉ

(i)
[k]

is corrected by the envelope limits, in which case ĉ
(i)
[k] is equal to c̃[k].

So, DM(ĉ(i), c(i)) measures the amount of modification the current iteration of the

loop made to the signal estimate to fit its envelopes to the target sparse representation.
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If the signal is close to matching the target envelopes, the modifications are small, so

this difference metric should be a good indication of the reconstructed signal quality

and generally decrease at each iteration. However, since it is a global average, it is

not a good perceptual measure. The measure as stated above makes no distinction

between low-level noise present throughout the signal and a large noise burst isolated

in a short section. A human listener would find the latter far more disturbing and

thus the square error measure over the entire signal is necessarily not a useful measure

as a stopping condition.

To overcome this limitation, we introduce a modification of the iterative recon-

struction algorithm that processes the audio file in short segments. In this modified

implementation, the error is calculated just on these short segments and thus can be

used for a better estimate of perceived error based on the current signal level. Based

on this segmental error measure, we will examine the relationship of DM to perceived

quality in Chapter 5.

4.3.3 Modifying the algorithm for different perceptual representations

As presented, the reconstruction algorithm is specifically designed for the sparse en-

velope representation of audio signals. As pointed out earlier in this chapter, this

representation could in the future be improved by adding some phase information.

Here, we briefly examine the changes that are needed to accommodate an alternative

perceptual representation that includes some temporal detail.

Any modification to the algorithm must maintain the basic premise that the signal

should be modified from the previous estimate only when necessary. We can envision

a situation where the phase and/or instantaneous carrier frequency information is

transmitted for select sections of a subband. A simple implementation could replace

the carrier signal at the given section with the transmitted information, causing a

discontinuity at the transitions that will be smoothed out in subsequent iterations

of the algorithm. A somewhat more elaborate method would be to use a smooth

modification of the instantaneous frequency of the carrier signal to avoid disconti-

nuities. This is an area which must be addressed once a more complete perceptual

representation is developed. Such an envelope-and-phase representation can be used

as a generalization of models using real-valued subband signals, expanding the use of
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the iterative reconstruction algorithm to many established auditory models.

4.3.4 Nonlinear effects of loudness in the hearing system

In many perceptual models including that used by Feldbauer, nonlinear and time-

varying effects of the IHC transduction, in particular companding and adaptation,

are an important part of the perceptual representation. In this thesis we focus on the

reconstruction of audio from a sparse envelope representation, thus we only consider

these nonlinear effects in the difference function DM and the quantizer. Effectively,

the power-law companding of Eq. (4.5) is moved into a modified form of Eq. (3.47),

DM(ĉ(i), c(i)) = ‖ |ĉ(i)|0.4 − |c(i)|0.4 ‖2, (4.7)

scaling the error to be more representative of perceived loudness. Incorporating the

effects of IHC temporal adaptation into the analysis model and the reconstruction

algorithm is beyond the scope of this thesis and is an opportunity for future research.

4.4 Conclusion

In perceptual coding systems, iterative reconstruction methods are typically not used

due to the computational requirements. However, in this chapter we present the

argument that iterative reconstruction allows for using a signal representation that

is strictly based on the perceptual content of the audio signal. In particular, when

considering high frequency sounds, the fine temporal structure of signal is far less

important than the overall amplitude modulation. Furthermore, by design, the iter-

ative reconstruction algorithm compares the output to the encoded perceptual rep-

resentation in the perceptual domain, thus having an internal measure of how well

the reconstruction matches the representation. Given this information, the recon-

struction algorithm can be used to evaluate perceptual representations if the internal

reconstruction quality measure is compared to subjective evaluations. We use this

capability to test a perceptual representation that cannot easily be inverted by non-

iterative methods.

Based on a physiologically motivated audio coding system using auditory subband
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pulse encoding, we develop a perceptual representation using the Hilbert envelope of

the auditory subbands. This representation can be viewed as encoding only the sub-

band energy at the rate that the ear can perceive the changes without the temporal

specifics (the phase of the carrier). Additionally, a masking model is applied that

discards envelope sections that are inaudible. The resulting sparse envelope repre-

sentation is comparable to the output of perceptual models that have been used in

auditory research. We show that the proposed representation might be problematic

for tonal sounds.

We complete this chapter with a high-level overview of the reconstruction algo-

rithm for the sparse envelope representation. In particular we show how the masking

model can be precomputed, reducing the computation necessary in the iterative loop.

In the following chapter, we describe an implementation of this algorithm in more

detail and present the results of encoding various types of audio signals.
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Chapter 5

Implementation and Results

This chapter details the implementation of the perceptual model (encoding the signal

into the sparse envelope representation) that is described in Chapter 4 and the im-

plementation of the iterative method to reconstruct an audio signal from the model

parameters (transforming the sparse envelope representation into an audio file). The

perceptual model description will start with the design of the analysis filterbank (FB),

showing how the time and frequency characteristics of the filters in the FB can be cho-

sen such that the iterative reconstruction can converge towards a solution, then show

how the FB outputs are converted into the sparse auditory envelope representation

(SAER). This conversion is done by first extracting and subsampling the envelopes,

then sparsifying the envelope samples using the transmultiplexer masking model. In

the reconstruction algorithm the sparse envelope samples are converted into the fixed

envelope sections and the envelope limits. We continue by describing the iterative

reconstruction loop using FBs, highlighting the advantages and disadvantages of a

system that employs finite-delay processing.

By subjective testing using the Multiple Stimuli with Hidden Reference and An-

chor (MUSHRA) [ITU-R, 2003] protocol, we evaluate the quality with which the

model can represent speech and audio signals and estimate the efficiency in terms

of bits required to encode signals at a reasonable quality. Objective measurements

of the Signal-to-Error Ratio (SER) are used to compare the reconstructed signal to

the original as well as determine the convergence of the iterative algorithm. These

measures are used to gain an understanding of the dynamics of the algorithm when
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processing different types of audio signals, some of which are encoded very well using

the SAER.

5.1 Encoding the audio signal into a sparse envelope

representation

In the previous chapter, the conversion of the audio signal into a sparse envelope

representation was described from the viewpoint of perceptual modeling, presenting it

as an extension of the way the representation described by Feldbauer [Feldbauer, 2005]

is computed. This section will give a more detailed description of the implementation

of our sparse auditory envelope sample (SAES) extraction.

5.1.1 Peripheral auditory analysis

At the core of the perceptual model is the decomposition of the input audio signal

into a set of auditory channel signals, which are then processed to find the Hilbert

envelopes within each channel. These auditory channel signals are found using a set

of M complex gammatone filters, with responses given by

gm[n] = am

( n
fs

)3
exp

(
−2π1.019 ERB(fm)

n

fs

)
exp

(
−2πifm

n

fs

)
,

m = 1, . . . ,M. (5.1)

This FB is a slight modification of the standard gammatone FB as described by

Eq. (2.1), where the real-valued sinusoidal modulation term is replaced with a complex

sinusoidal term. The reason for using a complex term is that the resulting response

can easily be decomposed into an envelope and carrier component by a magnitude

operator. The formulation of Eq. (5.1) can also be regarded as two filters in quadrature

(for the real and the imaginary component). Another modification is that the constant

phase offset is missing from Eq. (5.1). This is not needed since the masking calculation

is purely based on the envelopes of the responses.

The FB is designed with the goal of modeling the human auditory system while

also being suitable for the iterative reconstruction algorithm. We can design this
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gammatone FB using the framework presented in Chapter 3 to form a snug frame by

choosing appropriate values for the total number of channels M , the channel centre

frequencies fm, and the filter scale values am.

The total number of channels in the FB is directly related to the spacing between

channel centre frequencies and the overall bandwidth that the FB covers and also to

the amount of redundancy in the representation, which we wish to control to retain

suitability for coding. The design parameter we focus on is the spacing of channel

frequencies, and we seek to find as wide a spacing to still allow reconstruction with

good quality. We use a spacing of about 2 filters per ERB. To get a uniform spacing

on the ERB scale, we find the set of frequencies computed using

fm =
1000

4.37

(ERB#m

24.7
− 1
)
, (5.2)

where the ERB#m are chosen to be 1, 1.5, 2, . . . 32 for a total of 65 filters. The filter at

the bottom of the spectrum has a centre frequency of 26.03 Hz and the filter at the top

of the spectrum has a centre frequency of 7743 Hz. Our implementation is designed

with sampling frequency fs = 16 000. Technically, Eq. (5.1) specifies infinite-impulse

filters, but we chose to implement the FBs using FIR filters, cutting off the impulse

response at 1800 samples or 112.5 ms. For the lowest frequency filter, the amplitude

of the impulse response decays to less than 1.5× 10−5 of the peak.

Some other modifications to the FB are made to suit the iterative reconstruction

algorithm. In addition to the complex formulation already noted in Eq. (5.1) above, we

find that the simple uniform spacing in the ERB scale did not result in a sufficiently

flat response as needed for iterative reconstruction. The addition of an equalizing

postfilter as Feldbauer describes was not found to be a good solution due to the

additional spreading and delay it would entail due to the longer effective impulse

response. Instead, we adapted the frame-theoretic analysis of gammatone filterbanks

found in [Strahl and Mertins, 2009]. One of the methods proposed by Strahl and

Mertins to optimize the frame bound ratio is to “nudge” the filter centre frequencies

to lower the spectral ripple and tilt of the overall frequency domain response, ensuring

a nearly flat response over the frequency band of interest.

The frequency response of the analysis/synthesis filterbank combination is shown
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Fig. 5.1: Filterbank end-to-end gain and frequency adjustment to flatten response of
the gammatone FB. The upper graph shows the original FB response as a dashed line,
and the adjusted FB response as a solid line. The bottom graph shows the adjustment
to the center frequencies of the individual filters as a relative shift.

in the top of Fig. 5.1. The frequency response of the original filter spacing (shown as

a red dashed line) can be seen to be very flat already, within 0.03 dB of the maximum

from 66 Hz to 6350 Hz. Above 6350 Hz, the gain decreases rapidly. For typical

non-iterative reconstruction methods, this roll-off is usually not a significant problem,

being just a slight lowpass filtering of the output signal. However, in the iterative

reconstruction framework, this was found to be problematic. The repeated synthesis-

analysis of the signal and envelope correction amplified the error in the region from 6

to 7 kHz. Due to the nonlinear processing of the envelope correction step, this error

spreads to other frequencies. To correct this roll-off, the filter centre frequencies were
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adjusted by numerical optimization with the filter ripple (from the lowest auditory

channel frequency to the highest auditory channel frequency) as the cost function to

be minimized. The resulting adjustments are shown in the bottom graph of Fig. 5.1.

Note that the frequency adjustment is shown relative to the centre frequency, so there

are only small adjustments for most of the filters, but the last two filter frequencies

are lowered by more than 10 Hz such that the top filter now has a centre frequency

of 7732 Hz. When combined with the other filters in the FB, this alters the gain in

the top bands sufficiently to flatten the FB response. The lowest filter is also shifted

by a small amount, which is not visible in the top of Fig. 5.1.

The small adjustment can be quantified in terms of the frame bound ratio (B/A,

see Chapter 3). For the original gammatone FB, the frame bound ratio of the is

1.0028 measured from 70 Hz to 6000 Hz but 1.014 from 55 Hz to 7000 Hz. With the

adjustment, the modified FB has a frame bound of 1.0027 over the larger frequency

range.

5.1.2 Envelope computation, filtering and subsampling

With the input signal split into 65 complex-valued narrowband signals, we compute

the magnitude of each subband signal sample resulting in a fully oversampled but

real-valued set of envelopes. Each of these envelopes is then low-pass filtered and

subsampled. The filters applied to avoid aliasing during the envelope sampling process

are linear-phase FIR filters of order 512 with cut-off frequency given by the bandwidth

parameter bm as used in Eq. (5.1). As stated in Chapter 2, for each subband m with

centre frequency fm, bm = 1.019 ERB(fm). Based on this cutoff frequency, the integer

subsampling factor of the envelopes is

Km =

⌊
fs

2bm

⌋
. (5.3)

The filter cutoff frequency is set to be at least 50 Hz, for a maximum subsampling

rate of 160. This limit was used to facilitate implementation based on short-time

segments.
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5.1.3 Sparsification using a transmultiplexer masking model

At this stage, the original audio signal is represented by a set of real-valued samples

of the filtered envelopes, similar to the full pulse based representation used by Kubin

and Kleijn in [Kubin and Kleijn, 1999]. The actual number of samples to encode a

given segment of audio is increased; on average there are 2.4 envelope samples per

input sample at fs = 16 000.

As described in the previous chapter, the number of envelope samples is reduced

by applying the transmultiplexer based masking model to the envelope samples. The

implementation we use is analogous to the procedure described in [Feldbauer, 2005],

where the envelope samples take the place of auditory pulses. For completeness, we

describe this implementation here in more detail.

We denote the transmultiplexed envelope patterns as Tk[m,n] for the pattern of

an envelope sample in channel k, and they are simply computed by

Tk = rSGhk, (5.4)

which is the impulse response of the synthesis FB channel k (hk is the first column of

Hk) passed through the analysis FB and is equivalent to the transmultiplexer pulse

setup in [Feldbauer, 2005]. We scale the pattern by rS = 1.12 to account for the fact

that envelope samples are spread over time compared to auditory pulses. For the

algorithm below, we store the patterns such that the peak of the pattern Tk[m,n]

is at n = 0, and it extends backwards and forwards in time. The choice of rS is

illustrated by Fig. 5.2, showing a unit envelope sample as it would appear in c′ and

the corresponding transmultiplexed envelope pattern. It can be seen that the pattern

in the same channel (dashed line) matches the sample at the edges. Note that the

transmultiplexed envelope patterns can be computed offline.

The sparsification process begins by creating a list of the envelope samples as

triplets of amplitude Ap, temporal location np, and channel index mp, then sort this

list such that the sample amplitudes are in descending order, so Ap ≥ Ap+1. We

assume the signal (or current section of the signal) has a total of PO envelope samples

after subsampling.

The first step in reducing the size of this list is to remove all envelope samples
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Fig. 5.2: Two views of transmultiplexed sample pattern T10 in channel 10 and neigh-
bouring channels. The gain factor rS is used to match the spread of the pattern to
the upsampled unit envelope sample.

that fall below the absolute threshold of hearing in quiet. The threshold of hearing in

quiet Tq is a constant value within each auditory channel m and we use a formulation

of Tq(fm) based on an equal loudness contour as derived in [Soulodre, 1998] in dB

SPL,

Tq(f) = 3.64(f/1000)−0.8−6.5e−0.6(f/1000−3.3)
2

+10−3(f/1000)4−80.64e−4.712(f/1000)
0.5

.

(5.5)

The values of Tq(fm),m = 1, . . . ,M are converted into envelope thresholds by assum-

ing that the input signal is scaled such that a sinusoid at 1 kHz with peak amplitude

1 is reproduced at 80 dB SPL. This would be considered “very loud” but below the

threshold of pain. This is a useful overestimation given that we have no a priori knowl-

edge the volume setting of the end user. Thus, we evaluate every envelope sample p

and remove all samples from the list where

Ap < 10Tq(fmp )/20, p = 1, . . . , PO, (5.6)
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to yield a list of size PT envelope samples. For typical signals, this process removes

most of the envelope samples in quiet parts of the signal, but also removes many

samples for signals with compact spectra such as narrowband signals.

We can now apply the transmultiplexer based masking model on the remaining

envelope samples. Beginning with the envelope sample with largest amplitude (p = 1),

we iterate over the list and remove samples from the current index pc onwards based

on the envelope masking decision. As explained in the previous chapter, we use the

transmultiplexed envelopes for a gammatone impulse in the channel mpc and scale it

using the envelope sample amplitude Apc and the impact factor rI . Then, we search

the remaining list of envelope samples: using pt to indicate the index of the envelope

sample being tested, we iterate from pt = pc + 1 to pt = PO and compare this sample

to the scaled and shifted transmultiplexed envelope pattern rIApcTmpc
. If the sample

being tested falls below the pattern, its amplitude is set to 0 to mark it as deleted.

The full procedure is shown in Algorithm 3.

Algorithm 3 Transmultiplexer masking model sample removal.

for pc = 1, . . . , PO do
if Apc 6= 0 then

for pt = pc, . . . , PO do
if Apt < rIApcTmpc

[mpt , npt − npc ] then
Apt ← 0;

end if
end for

end if
end for

It is easy to see how the impact factor directly controls the number of samples

removed from the list by either over- or underestimating the amount of masking, and

can thus be used to control the amount of sparsification. We indicate the size of the

final list with PrI . This list of the remaining envelope samples then forms the sparse

perceptual representation that is sent to the decoder after quantization and entropy

coding.

In addition to the impact factor rI , the number of envelope samples removed by

sparsification is very dependent on the type of audio signal, in particular its overall

signal bandwidth and the sharpness of its spectral peaks. In the section showing
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results below we give some examples of the sparsification achieved with both speech

and audio files.

5.1.4 Experimental quantization of envelope samples

To explore the use of the SAER as a viable audio coding method, we implement

and test a simple scalar quantizer applied to the envelope samples. The quantization

is performed in the log domain of the envelope sample values and thus is robust

to variations of scale such as quiet vs. loud passages of a sound file. In addition,

implementing a power-law compression of the envelope samples (companding) can be

achieved by a simple scaling of the log domain values.
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Fig. 5.3: Log-domain distribution of the sparsified envelope values

A histogram of log-domain values of envelope samples is shown in Fig. 5.3, using

a total of 64 bins to simulate a 6-bit quantizer as was used in the subjective testing.

The histogram shows that the distribution is not very uniform, so it is reasonable to

assume that the uniform scalar quantizer used might not be the most efficient method

to encode the envelope samples. However, it is useful to show that the representa-

tion is robust to systematic error that is introduced by quantizers. A comprehensive

evaluation of various methods such as adaptive quantizers, entropy-constrained quan-

tization, and vector quantizers [Kleijn, 2004] would be necessary for implementing
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a full SAER coding system. Since we focus just on evaluating the idea of a sparse

envelope representation and the iterative reconstruction, studying quantization and

entropy coding is beyond the scope of this thesis.

5.2 Reconstruction implementation

The overall structure of the reconstruction algorithm is shown in Chapter 4 in Fig. 4.10.

Here we detail the implementation of the two major parts of the overall algorithm.

The first part is the creation of the “fixed envelope regions” and the “envelope limits”

(c′ and c̃), a non-iterative expansion of the SAER. The second part is the iterative

loop to find the carrier information to fit the envelopes.

5.2.1 Computing the fixed regions and the envelope limit

Generating the “fixed envelopes” section c′ is quite straightforward from the list of

envelope samples p. The array c′ is initialized with all zeros, then for each envelope

sample p we set

c′[mp, n] = Ap, n = np −
Km

2
, . . . , np +

Km

2
. (5.7)

This is a stepwise constant upsampling of the envelope samples. Since the sampling

is sparse and zeroes represent absence of an envelope sample, filtering c′[mp, n] is not

appropriate, although different expansions can be considered (such as linear interpo-

lation). In our implementation, we simply accept a small amount of error added by

this step.

Next, the envelope limits are generated analogous to the masking decision algo-

rithm above, with the key difference that the transmultiplexed envelopes of all the

envelope samples are combined into full-rate sets of envelopes. As above, we begin

with the threshold in quiet. Using the notation c̃[m,n] for the envelope limit in

channel m at time index n, we initialize the surface with

c̃[m,n] = 10Tq(fm)/20, m = 1, . . . ,M ;∀n. (5.8)

We then iterate over the list of envelope samples of size PrI , adding the contribu-
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tion of the transmultiplexed pulse envelopes to the corresponding region of ĉ. Each

transmultiplexed pulse envelope is added with the same scaling as used in Algorithm 3

above:

c̃[m,n] = max(rIApTmp [m,n− np], c̃[m,n]), p = 1, . . . , PrI , (5.9)

where m and n span the region of the transmultiplexed pulse envelopes, offset by the

time index of the envelope sample np. It is important that the same impact factor is

used that generated the sparse representation, since the decision to remove samples

from the representation is made on a threshold that is equivalent to c̃.

5.2.2 Iterative reconstruction implementation

We describe the implementation of the iterative reconstruction algorithm using two

basic approaches, by either reconstructing the entire signal from beginning to end as

a unit or working on fixed-time parts of the signal sequentially (that is, parts of the

signal will be “completed” while other parts of the signal are still being reconstructed).

The former is more straightforward both conceptually and in its implementation; the

latter can process signals of any length and converges to a solution faster.

To reconstruct the entire signal as a single unit starting with c′ and c̃ is straight-

forward from Algorithm 2, since the circulant matrix notation was used explicitly to

describe FIR FBs. So the implementation begins with initializing a set of 65 car-

rier estimates (ĉ(0)) with a random phase signal. In the loop, the signal estimate is

generated by filtering all 65 carrier estimates with superimposed envelopes using the

synthesis FB, where each channel filter has the complex conjugate, reverse-time gam-

matone impulse g∗m[−n] as impulse response. The filter outputs are combined to form

the signal estimate x[n] to be reanalyzed with the analysis FB to get the next set of

carrier estimates. Implementation of the envelope correction is also straightforward

from Algorithm 2.

Care must be taken to account for the filter delay. The iterative reconstruction

algorithm is designed based on a zero-delay synthesis-analysis chain and it is assumed

that if the analysis filters are causal, the synthesis filters are anticausal. Thus, if both

filterbanks are implemented as causal filters, a delay compensation stage must realign
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the signal. In the filter design as described, the delay is equal to the FIR filter order

in each channel.

5.2.3 Finite-delay implementation of iterative reconstruction algorithm

The reconstruction of the signal by operating on the entire signal at once is an obvious

way to implement iterative signal processing algorithms where changes in one part of

the signal can affect the signal in causal and noncausal ways. However, operating on

entire signals is impractical in many signal processing settings. It precludes operating

on very long signals, such as audio streams, and even if signals can be segmented

into finite sections that do not affect one another, for each section the receiver would

have to delay processing until the entire data for that section has been received. The

solution to this problem is to modify the reconstruction algorithm in such a way that

the signal is split into short sections where only some of the sections are modified by

the iterative algorithm. Once a section of the signal has been completed, it is stored

and used by the algorithm to work on the next sections. As the completed section is

no longer being modified, it can be passed on to the next stage of processing; in the

case of audio signals, it can be output to the loudspeakers.

This type of finite-delay processing (the finite delay refers the the theoretical min-

imum amount of delay a section of the signal can incur due to reconstruction) has

been well used with iterative reconstruction methods using lapped transforms such as

LSEE-MSTFTM where the finite transforms provide for a natural segmentation of the

signal. In particular, we look at the Real-Time Iterative Spectrum Inversion (RTISI)

algorithm [Zhu et al., 2007; Gnann and Spiertz, 2009] as a model for finite-delay

processing. However, in contrast to block-transform methods, the time-domain filter-

bank based analysis and synthesis structure of our reconstruction algorithm provides

no natural segmentation, which allows for greater flexibility.

We present a finite-delay processing implementation where the step-size of process-

ing can be arbitrarily small. Using the circulant matrix notation of Chapter 3, we can

show that an efficient implementation is possible that is analogous to the processing

of lapped transform methods.

Our implementation uses a “lookback”, or fixed area, of 320 samples (20 ms) and

a work area of 2208 samples (138 ms). The fixed and work areas overlap over 160
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Fig. 5.4: Fixed and working part windows for the processing segment

samples and are windowed as shown in Fig. 5.4 with a Hanning window [Oppenheim

and Schafer, 1989] in the crossover region. The choice of step size and overlap regions

were determined experimentally, being a tradeoff between speed and quality. If the

step size is increased, there are fewer segments per unit time to process, but the

overlap is also reduced, such that past frames cannot “seed” the present frame as

well. For processing, the segment is zero-padded to 4096 samples such that we can

use the Fast Fourier Transform (FFT) for efficient conversion to frequency domain.

Once a segment has been processed, the signal is shifted by a = 80 samples and the

next segment is processed. We denote the windows wf [n] and ww[n] for the fixed and

work areas respectively, pointing out that the sum of the two windows is constant

from the origin to sample 2208 before tapering off to zero.

For per-segment operation, Algorithm 2 is modified as follows. In the initialization,

both of the envelope data arrays c′ (the fixed envelope areas) and c̃ (the upper limit for

envelopes) for the current segment are windowed with the sum of wf [n] and ww[n], and

the carrier estimate from the previous segment is shifted and windowed with wf (n)

to give the fixed estimate portion ċ, which in each iteration replaces the beginning of

the current carrier estimate.

Note that we use two notations for the elements of c: c[m,n] refers to the element

of c for channel m at time index n, so c[k] = c[m,n] for k = (m − 1)M + n (see

Eq. (A.9)). After the termination of the iterative loop for the current segment, the
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Algorithm 4 Per-segment iterative reconstruction (single segment)

i← 0;
ċ[m,n]← cprev[m,n+ a]wf [n], ∀m,n in the segment;

ĉ
(0)
[k] ← c′[k]̊r k = 1, . . . , (MN);

repeat
i← i+ 1;
x̂(i) ← Hĉ(i−1);
c(i) ← Gx̂(i) + µr;
c(i)[m,n]← ċ[m,n] + c(i)[m,n]ww[n];

ĉ
(i)
[k] ← c′[k]

c
(i)
[k]

|c(i)
[k]
|

∀k where c′[k] 6= 0;

ĉ
(i)
[k] ← min(c̃[k], c

(i)
[k])

ĉ
(i)
[k]

|ĉ(i)
[k]
|

∀k where c′[k] = 0;

until DM(ĉ(i), c(i)) < τ or i = L;
cprev ← ĉ(i).

first a samples of ĉ(i)[m,n] are considered “committed” and can be converted into the

output signal x using overlap-add filtering. The implementation of the error measure

DM based is on the SER as described in the previous chapters and calculated on the

work area only. For k such that m = 1, . . . ,M(M = 65) and n = 320, . . . , 2488 (thus

ignoring the overlap and runout),

DM(ĉ(i), c(i)) =

∑
k(|ĉ

(i)
[k]|c − |c

(i)
[k]|c)2∑

k |ĉ
(i)
[k]|2c

, (5.10)

with c = 0.4. Below, we discuss the properties of this error measure with real signals,

and the choice of τ for testing. The maximum number of iterations L was set to 20.

The zero-padding indicated in Fig. 5.4 serves a double purpose. First, zero-padding

is needed to reduce error due to circular convolution. To avoid circular convolution

issues completely, the zero-padding should be increased further, since the impulse re-

sponse length of the lowest frequency filter is chosen to be 1800 samples. However, the

impulse response length for filters decreases rapidly with increasing channel number

and the resulting error was found to be negligible. The second purpose of the choice

of an overall segment size of 4096 samples is to allow us to use the FFT to efficiently

compute the steps in Algorithm 4 to find c(i) from ĉ(i−1). Since it is not necessary to
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compute x explicitly until the loop is finished, we collapse the second and third step

of the loop into c(i) ← GHĉ(i−1), which can be implemented efficiently in frequency

domain (see Appendix A).

With the implementation of the iterative reconstruction we find that the segmented

processing of the signal not only allows for finite-delay implementation, but also that

the perceived quality of the reconstructed audio is better than the implementation

operating on the entire signal at once. This effect is observed in the RTISI algorithm as

well [Zhu et al., 2007], where it is observed that the LSEE-MSTFTM algorithm needs

a large number of iterations to find a good reconstructed signal since it is starting from

a zero phase estimate. The RTISI algorithm working on short segments starts the

iteration on each segment with a good estimate from the previous segment. Another

interpretation is that the signal is constrained to be consistent between adjacent

segments and this can be used to optimize the phase component of the STFT [Le

Roux et al., 2008]. Similarly, each new segment being processed by Algorithm 4 is

bootstrapped with the carrier from the previous frame through the fixed signal at the

onset of the segment, so the carrier can be assumed to fit the envelopes already to

some degree. As a result, the carriers in the current segment converge to fit their own

set of envelopes more rapidly.

5.3 Evaluation of the model and its reconstruction algorithm

In this section, we present the evaluation of the system described above by comput-

ing the sparse envelope representation of various types of audio signal, in particular

recordings of speech spoken by individual speakers and segments of music recordings.

The source material for the speech recordings is the TSP speech database [Kabal, 2002]

and the music recordings are taken from a database specifically designed for subjective

audio quality evaluation, the “Sound Quality Assessment Material” (SQAM) database

of the European Broadcasting Union (EBU) [EBU, 1988]. Table 5.1a lists the source

file names and their length in time and samples (sampling rate of 16 kHz) as well as

a description of the type of audio.



108

ID Length Description
CA02 3.86s (61794 samples) Speech, child
FA03 3.46s (55297 samples) Speech, female
FF32 3.21s (51407 samples) Speech, female
FI49 3.30s (52880 samples) Speech, female
MG41 2.91s (46540 samples) Speech, male
MH46 3.25s (51973 samples) Speech, male
MI50 3.56s (56959 samples) Speech, male
SQAM48 11.29s (180578 samples) Vocal quartet
SQAM60 13.46s (215293 samples) Piano concerto
SQAM70 9.98s (159638 samples) Country music

(a) Test Material for Evaluation

envelope samples rI
ID (pre-masking) 0.8 1.0 1.5
CA02 144822 51516 34480 19569
FA03 130993 45623 30327 17087
FF32 120938 41196 28002 16119
FI49 125866 40255 26968 14906
MG41 111926 40602 27598 15977
MH46 123114 37206 24871 13928
MI50 133565 40504 27492 15533
SQAM48 395378 188420 125715 69113
SQAM60 467726 144479 97327 58410
SQAM70 349660 186906 122658 65803

(b) Number of envelope samples for each file before and after sparsi-
fication with various impact factor settings.

Speech Files (combined) SQAM48 SQAM60 SQAM70
Samples, original 376850 180578 215293 159638
SAES 199738 125715 97327 122658
SAES/Sample 0.530 0.696 0.452 0.768
Bits/Sample, 6-bit 3.18 4.17 2.71 4.61

(c) Estimate of bit-per-sample rate of raw quantized SAER, using sparsification factor rI = 1.0.

Table 5.1: Statistics of test files, before and after processing.
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5.3.1 Subjective evaluation

We performed subjective evaluation based on the MUSHRA protocol, since it al-

lows for rapid testing of multiple test conditions. The test subjects we recruited are

graduate students mostly from the McGill Department of Electrical and Computer

Engineering, though none are studying speech or audio coding specifically. Overall,

we had 5 male and 5 female testers of normal hearing, with an age range of 24 to 35

years old.

All tests sessions were performed in a dedicated acoustically isolated room, with

sound being reproduced directly from the computer running the test software over a

pair of Beyer-Dynamic DT880 headphones. The software used to perform the tests

is “WinTest”, provided courtesy of the Groupe de Recherche sur la Parole et l’Audio

(GRPA) at the University of Sherbrooke [GRPA, 2010].

The tests are designed to establish first and foremost if the reconstruction algo-

rithm can synthesize a signal of acceptable quality from the envelope representation.

We attempt to establish what losses in quality are incurred by the envelope repre-

sentation itself and how adding the masking model for envelope sample sparsification

affects the quality relative to the envelope representation without sparsification. The

simple quantizer described above is tested to establish if the sparse envelope repre-

sentation is robust to noise incurred by quantization. All tests were performed on

reconstruction using the finite-delay implementation, except for one test which was

performed to verify if the finite-delay implementation is of higher perceived quality

than the implementation processing the entire file at once.

In all tests the processed signals were presented along with the original audio

signal (the reference) and the lowpass filtered anchor as suggested by the MUSHRA

protocol. The anchor is the reference signal passed through a lowpass filter limiting

its bandwidth to 4 kHz. In typical MUSHRA tests, this should provide a universally

“bad” reference in comparison to full-band audio test signals at 41 or 48 kHz sampling

rate. We found that many subjects preferred the anchor to the processed signals in

some tests, which can in part be explained by the fact that since the reference has

a bandwidth of only 7 kHz the lowpass anchor is still quite similar to the reference.

The score for the reference is not shown in the following plots, since in most cases the
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subjects had no difficulty identifying it.1

Comparison to commercially available codecs was not included in our testing. Our

method is still at an experimental stage, making it difficult to get a fair estimate of a

bitrate with which the SAER could be encoded. Furthermore, commercial codecs are

optimized to perform well for a variety of signals, whereas we show in the following

sections that the SAER has significant quality variations depending on signal type.

The test setup was designed to reveal these variations and aid us in understanding

their causes.

The figures below show statistical analyses of the MUSHRA test scores without

normalization. In a typical MUSHRA setup with full-band signals, the lowpass anchor

is expected to receive the lowest score and is used to scale all other scores. Instead,

we include the score and standard error for the anchor. In the figures, the error bars

show the standard error of the mean (SEM). If present, the lines above the bars are

used to point out statistical significance, calculated using one-way repeated measure

(RM) ANOVA: “ns” indicates that there is no significant difference between the bars,

a single star indicates significant difference with a p-value < 0.05, two stars p < 0.01

and three stars p < 0.001.

5.3.2 Reconstruction from envelopes with and without masking model

The first experiment is to test the overall reconstruction method without quantization

at varying levels of the impact factor rI . Table 5.1b shows the number of sparse

envelope samples in the representation for the tested settings of rI = 0.8, 1.0 and 1.5.

When comparing Table 5.1a to Table 5.1b, note that applying the masking model

in all cases except for SQAM48 and SQAM70 with rI = 0.8 reduces the number of

samples when compared to the original (PCM coded) file.

Figure 5.5 shows the overall summary results of reconstructing signals from the

envelopes after filtering and after applying the transmultiplexer based masking model

with impact factor settings rI = 0.8, 1.0 and 1.5. The drop in perceived quality

is very visible (and the difference in scores statistically significant) as the impact

factor is increased. However, the most notable feature is the apparent increase of

1The MUSHRA protocol asks that subjects assign a score of 100 to the item they think is the
reference.
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Fig. 5.5: Subjective testing scores evaluating reconstruction using different values of
the impact factor rI . The item labelled “No Masking” is audio reconstructed from
the low-pass filtered envelopes without sparsification. The line over the bars shows
statistical significance between conditions, with * indicating p < 0.05, ** indicating
p < 0.01, and *** indicating p < 0.001.

perceived quality from the reconstruction without sparsification (“No Masking”) to

the reconstruction from the sparse envelope representation with impact factor rI =

0.8. This result is contrary to expectation since even at that level, the representation

is sparsified significantly.

We hypothesize that the low score for the reconstruction using the low-pass filtered

envelopes introduces artifacts into the signal since it is a very redundant representation

and the iterative algorithm forces the signal onto a set of envelopes that cannot be

obtained from a realizable signal (see Sec. 4.1). For example, in Fig. 4.8 and Fig. 4.11,

the differences between the low-pass filtered envelopes and the actual Hilbert envelopes

are visible in some areas and the algorithm will modify the signal in every iteration

to try to match the filtered envelopes.

To gain a further understanding of the issue, we conducted an additional test

comparing the reconstruction from low-pass filtered envelopes to reconstruction from

the original envelopes without filtering, the results of which are shown in Fig. 5.6. It

can clearly be seen that the reconstruction from filtered envelopes is of lower perceived
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Fig. 5.6: Scores evaluating reconstruction with and without filtering of envelopes.
The label “ns” indicates that there is no statistical difference between the results for
those two conditions.

quality than the reconstruction from unfiltered envelopes and is effectively equivalent

to the reconstruction from the sparsified SAER with rI = 1.0. The reconstruction

from unfiltered envelopes instead is judged to be as good as the anchor and if we

compare this result to Fig. 5.5, this also implies it is effectively equivalent to the

reconstruction from rI = 0.8. This observation leads us to conclude that forcing

the signal to fit the lowpass filtered envelopes does introduce artifacts even though

the filtering itself does not remove perceptually relevant information. If perceptually

important information is removed by the filtering, the reconstruction from rI = 0.8

would not score higher than the smoothed envelope signal from which the sparse

representation is derived.

The reduction in artifacts can be explained by the fact that when reconstructing

from the sparse representation, the subchannel envelopes of the estimate signal are

not limited in frequency in the iterative reconstruction loop. The subchannel signals

c are allowed to have a magnitude less than c̃ unless forced by ĉ. Thus, the high-



113

frequency content of the envelopes of the reconstructed signal may be different than

those of the original signal.

5.3.3 Quantization effects

S
co

re
(+

/–
 S

E
M

)

A
nc

ho
r

N
o 
Q
ua

nt
iz
er

6-
bi
t 
Q
ua

nt
iz
er

4-
bi
t 
Q
ua

nt
iz
er

3-
bi
t 
Q
ua

nt
iz
er

0

20

40

60

80 *
ns

***

Fig. 5.7: Scores evaluating reconstruction with different quantizers, using a masking
model with rI = 1.0.

We test the robustness of the sparse envelope representation to quantization using

a uniform scalar quantizer on the log-domain envelope sample values. We tested

a 6-bit, 4-bit and 3-bit quantizer (64, 16 and 8 levels respectively). As shown in

Fig. 5.7, the degredation in perceptual quality of the 6-bit quantizer was found to

be statistically insignificant when compared to reconstruction from the unquantized

sparse envelope representation.

Given the subjective evaluation scores, we can calculate a rough estimate of the

rate a sparse auditory envelope based coding needs prior to entropy (lossless) coding.

Combining the original signal lengths from Table 5.1a with the number of samples

in the sparse representation and assuming a 6-bit quantizer, we first calculate the

average number of sparse auditory envelope samples (SAES) versus the number of

samples in the original sound samples.
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Depending on the type of signal, it seems that at the sampling rate of 16 kHz,

the sparse auditory envelope representation can be encoded with about 3–4 bits per

sample as shown in Table 5.1c, which translates to 48–64 kB/s. Combined with the

performance in subjective testing, we conclude that to be used as a viable coding

method, the SAER needs to be extended to improve overall sound quality. In the

following section we examine some cases where quality is low, resulting in an overall

lower score.

5.3.4 Dependence on signal type

During evaluation, it became quickly apparent that the quality of the reconstruction

algorithm is highly dependent on the signal content. The problem with highly tonal

signals is addressed in Chapter 4 and thus we expected that music samples would

perform significantly worse than speech samples. This was confirmed only for two of

the music items; surprisingly, the third music item performed very well, in fact better

than the speech items.
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Fig. 5.8: Scores evaluating reconstruction for the two signals with lowest and highest
scores.

Figure 5.8 shows the two samples which listeners scored consistently with the low-
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est and highest scores compared to other samples processed with the same masking

settings. SQAM60 is a solo piano piece, where chords are sustained in several in-

stances; pitch distortion was apparent to all listeners, who judged these distortions

to be very detrimental to quality. On the other hand, SQAM70 is a piece of coun-

try/folk music with a strong rhythm component which the iterative reconstruction

algorithm seems to be able to reproduce very well. In several instances, the listeners

could not distinguish the reconstructed sound from the reference. Thus the model

and reconstruction algorithm achieved perceptually transparent quality.

To illustrate how the tonal quality of a signal affects the reconstruction quality we

examine some typical segments from the audio signals mentioned above. We begin

with a section of SQAM60, showing the time-domain signal and its reconstruction

in Fig. 5.9a. The periodicity of the signal is apparent and while the reconstruction

does not match the original exactly, a phase-shift is expected but should be inaudible.

However, if we look at the frequency domain using a STFT in Fig. 5.9b (using a

2048 sample segment of the audio with Hanning window), we note some differences

more clearly. In particular, while some frequency peaks are matched quite well, some

are shifted (eg. at around 550 Hz, 1300 Hz and 1700 Hz). This particular section

is a piano chord and we can assume that the peaks represent the harmonics of the

individual notes in the chord. The shifts in frequency of these harmonics are quite

noticeable even with casual listening as they play a significant role in pitch detection

[Bernstein and Oxenham, 2008; Moore and Glasberg, 2010], producing an sensation

of an unsteady “shimmering” pitch.

These peak shifts occur because the reconstruction loop has only limited infor-

mation about the exact frequency of the harmonics, as shown in Fig. 5.9c. Using

block-transforms such as the STFT, the frequency resolution can be increased by us-

ing larger blocks, but the frequency-domain shape of the auditory channels is dictated

by the BM model, so the sensitivity to signal frequency of each channel is fixed. The

“envelope spectrum” in Fig. 5.9c would still only show broad peaks even with more

channels, so the pitch of tonal components must be encoded in a more direct way for

accurate reproduction. This is a powerful argument for the need to transmit some of

the carrier information to specify the frequency of sharp peaks in the spectrum.

In Fig. 5.10, we examine a segment of another sample, SQAM70, which also has
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Fig. 5.9: Detailed view of a short section of SQAM60

some pitched components, but is reproduced with little or no audible artifacts. Again,

we note some significant phase-shifts in the time-domain signal, but in the frequency

domain plot (using 2048 samples as above) of Fig. 5.10b, both the overall shape and
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(c) Auditory channel envelopes at t=7.09s

Fig. 5.10: Detailed view of a short section of SQAM70

the peaks in the lower frequency portion are matched remarkably well. As in the sound

segment described previously, the envelope spectrum does not capture the peaks as

well, although the overall spectral shape is similar. If we look back at the time domain
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signal, we note that the pitched portion appears to be fairly short and in the STFT

spectrum this results in peaks that are more broad than in the previous signal.

Overall we find that the SAER reproduces temporal features of a signal very well

at the expense of spectral features. Informal experiments showed that increasing the

number of auditory channels increases the quality of reproduced audio only marginally

at the cost of increasing the number of samples in the representation and computa-

tional complexity. However, modifying the algorithm by adding some information

from the original carrier signals (by initially “seeding” the iterative loop with the

original carrier) does result in a marked improvement especially for the SQAM60 sig-

nal. From the bitrate estimates in Table 5.1c, the SAER of the tonal signal SQAM60

is using almost 2 bits per sample fewer than SQAM70, which would be the budget

for the phase information. We expect a modified model accounting for phase could

achieve near-transparent quality using those extra bits.

5.3.5 Dependence on reconstruction method

As described at the beginning of this section, all tested signal were reconstructed

using the finite-delay implementation as described earlier in this chapter. The prefer-

ence for the finite-delay processing was established by running a test comparing the

reconstruction at rI = 1.0 either by whole-file processing or finite-delay processing.

The resulting mean score (combining all test files) for the whole-file processing was

39 (±3 SEM) versus 58 (±4 SEM) for finite-delay processing, showing a statistically

significant difference with p < 0.001.

5.3.6 Objective evaluation based on envelopes

We now compare the auditory envelopes of the reconstructed audio samples to the

auditory envelopes of the original sound files. The difference between the envelopes

is calculated similar to the SER as in Chapter 3,

SegSER(corig, crecon) = 10 log10

(
‖ |corig|c ‖2

‖ |corig|c − |crecon|c ‖2

)
, (5.11)

with companding c = 0.4 to allow comparison to the internal measure described

below. We use the same segment size and advance as the reconstruction algorithm
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and average the per-segment dB values over each file. The results are presented in

two tables. Table 5.2a shows the envelope difference between the reconstruction and

the original using the plain envelopes, while for Table 5.2 the envelopes for both

reconstruction and original were lowpass filtered prior to calculating the Segmental

SER (SegSER).

As might be expected, the reconstruction from the auditory envelopes without any

filtering or sparsification (labelled “Plain Envelopes” in the tables and figures) matches

the original signal envelopes best. As the modifications to the envelopes are increased

(by filtering, sparsification, and quantization), the quality decreases. The quantization

effect in particular shows that while the 6-bit quantizer is effectively transparent, the

quality decreases significantly as the number of bits is reduced below that value. On

the other hand, if we look at some detailed values we notice some striking differences

compared to the subjective results. For example, while in subjective testing the

SQAM60 sample scored consistently very low (see Fig. 5.8), the envelopes of the

reconstruction for this audio sample actually match the original sample envelopes more

closely than we observe for other samples. Conversely, the SQAM70 sample in many

cases has a lower average SegSER even though listeners had difficulties distinguishing

the reproduction from the original at rI ≤ 1.0. The decrease in SegSER that we

observe from masking with rI = 0.8 to rI = 1.5 (increasing sparsification) is also less

than we would expect given the subjective scores. Finally, completely missing from

the objective data is the increase in quality that we observed from the reconstruction

from filtered envelopes to using the masking model at rI = 0.8. As described in Section

5.3.2 above, we attribute the discrepancy to the fact that the non-sparsified envelope

representation forces the reconstructed signal into a set of low-pass envelopes. If the

representation is sparse, the reconstruction algorithm can introduce high frequency

envelope modulations. While these envelope modulations reduce audible artifacts,

they do not necessarily match the original envelopes.

This means that if given two signals whose auditory envelopes are very similar,

the audible difference between them can still be very significant. In other words, the

sparse auditory envelope representation in general is not sufficient to fully describe an

audio signal, nor can the error between two sets of envelopes capture subtle audible

perceptual differences. However, we also observe that this only applies to specific
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Envelopes Masking Quantizer (rI = 1.0)
Sample Plain Filtered rI = 0.8 rI = 1.0 rI = 1.5 6-bit 4-bit 3-bit
CA02 21.13 16.39 14.47 14.14 13.98 14.11 13.44 12.35
FA03 21.47 16.71 14.88 14.67 14.51 14.55 13.94 12.59
FF32 21.40 15.68 13.65 13.42 13.33 13.34 12.86 11.72
FI49 21.21 15.35 13.69 13.37 13.23 13.29 12.84 11.93
MG41 21.54 15.35 13.49 13.24 13.01 13.23 12.83 11.59
MH46 21.13 15.19 13.54 13.42 13.19 13.38 12.76 12.02
MI50 21.66 15.53 13.22 12.91 12.79 12.94 12.50 11.43
SQAM48 20.73 15.55 14.34 14.15 13.87 14.12 13.72 12.81
SQAM60 20.96 16.18 14.68 14.53 14.36 14.46 14.08 13.01
SQAM70 21.27 16.11 14.27 14.06 13.96 13.98 13.63 12.53
Average 21.25 15.80 14.02 13.79 13.62 13.74 13.26 12.20

(a) Average SegSER between original envelopes and reconstructed envelopes

Envelopes Masking Quantizer (rI = 1.0)
Sample Plain Filtered rI = 0.8 rI = 1.0 rI = 1.5 6-bit 4-bit 3-bit
CA02 26.02 22.98 17.69 17.22 16.64 17.11 16.19 14.40
FA03 26.35 23.30 18.21 17.78 17.25 17.66 16.69 14.47
FF32 25.95 21.35 16.46 16.14 15.61 16.07 15.29 13.40
FI49 26.25 21.86 17.11 16.64 15.88 16.58 15.70 14.13
MG41 26.90 22.20 17.08 16.68 15.90 16.59 15.93 13.82
MH46 26.33 21.56 17.14 16.70 16.00 16.62 15.75 14.29
MI50 26.95 22.68 16.37 16.07 15.40 16.06 15.24 13.48
SQAM48 25.31 22.25 19.58 19.12 17.74 19.06 18.24 16.24
SQAM60 24.80 22.77 19.27 18.98 17.92 18.93 18.06 15.88
SQAM70 25.99 22.44 18.49 18.03 17.57 17.93 17.21 15.14
Average 26.08 22.34 17.74 17.34 16.59 17.26 16.43 14.52

(b) Average SegSER between original filtered envelopes and reconstructed filtered envelopes

Table 5.2: Average SegSER (in dB) for envelopes of reconstructed audio files
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types of signal, since some signals are reproduced very well from this representation

alone. This reinforces the observation that while the envelopes capture a significant

part of the audible information in a signal, the differences in the carrier information

can be very audible in some cases.

5.3.7 Sparsity and DM

We now examine the distance measure that the iterative loop is minimizing and

how it serves as a measure of convergence and perceptual quality. The value of DM

is calculated per segment by Eq. (5.10), then converted to dB using SegSERint =

−10 log(DM) (so ĉ, the “best estimate” of the envelopes within the iterative loop

takes the place of corig in Eq. (5.11)).

Envelopes Masking Quantizer (rI = 1.0)
Sample Plain Filtered rI = 0.8 rI = 1.0 rI = 1.5 6-bit 4-bit 3-bit
CA02 19.63 18.86 22.08 25.20 27.65 25.20 25.01 24.29
FA03 19.38 18.80 22.25 25.54 27.77 25.50 25.28 24.68
FF32 19.56 17.97 21.64 24.72 27.61 24.68 24.48 23.87
FI49 19.45 18.16 21.25 24.33 27.51 24.30 24.10 23.56
MG41 19.21 18.11 21.22 24.46 27.47 24.44 24.22 23.57
MH46 19.34 17.97 21.14 24.39 27.48 24.41 24.15 23.48
MI50 19.25 18.01 21.16 24.25 27.48 24.16 23.96 23.35
SQAM48 19.09 18.52 20.91 24.03 27.47 24.02 23.80 23.19
SQAM60 19.30 18.72 21.33 24.60 27.63 24.56 24.36 23.79
SQAM70 19.27 18.70 20.78 23.94 27.35 23.90 23.66 23.04
Average 19.35 18.38 21.38 24.55 27.54 24.52 24.30 23.68

Table 5.3: Internal SegSER for sound samples at different parameters.

The average internal SegSERint for all test files at the various values for rI and

quantizer granularity are shown in Table 5.3. The loop termination value is set to 27

dB. Most notable is the fact that for any given sound signal, the average SegSERint

increases (decrease of DM) as the representation becomes more sparse. However,

as a sparsified representation reduces the constraints on the auditory envelopes, it is

expected that it becomes easier for the iterative procedure to match the reconstruction

to the target envelopes. At rI = 1.5, the iterative loop to find the carrier signals
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is terminated before 20 iterations for almost all segments, resulting in an average

SegSERint greater than 27 dB. This contributes to the decrease in quality for sparse

representations, since fewer iterations are performed that would otherwise find a better

match for the carrier signals.

0.5 1 1.5 2 2.5 3
0

20

40

60

80

100

time (s)

S
A

E
S

/s
eg

m
en

t

(a) SAES per segment for FF32

0.5 1 1.5 2 2.5 3

15

20

25

30

time (s)

S
E

R
 (

d
B

)

(b) DM per segment for FF32

Fig. 5.11: Number of SAES per segment and SegSERint for FF32

To show the variation of the SegSERint between segments and the relationship with

sparsity, Fig. 5.11a shows one of the speech signals and the number of sparse auditory

envelope samples (SAES) per 80-sample (5 ms) segment and Fig. 5.11b shows the per-

segment SegSERint during reconstruction. For this figure, the terminating condition

was disabled: the solid line shows the SegSERint after the full 20 iterations and the

dashed line shows the SegSERint after the first 3 iterations. It is apparent that the

final SegSERint is very variable, depending both on the properties of the signal being
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processed and the number of envelope samples within the segment. For example,

at 2.7 s, the number of envelope samples is around 40 samples/segment, while the

SegSERint increases to almost 30 dB.

We conclude that while DM is a good indication of how well the reconstructed

signal matches the encoded representation, the degree of sparsification needs to be

taken into account to make the measure more uniform over varying signal types.

The addition of phase information to the representation would complicate this metric

further and should be a focus for future research.

5.3.8 Computational complexity of the implementation

The implementation of the perceptual model and the iterative method to reconstruct

an audio signal from the SAER was primarily designed to show the feasibility of such

a representation for audio coding. Thus, no concerted effort was made to optimize

computational performance beyond the need to allow for testing of the implemen-

tation in a reasonable timeframe. In particular, the model and reconstruction were

implemented in a high-level modelling language (Matlab R©), with structuring of the

code such that it could be easily understood, tested, and modified. This results in

inefficiencies. For example, special cases can be handled to avoid computing unused

data, but a regular structure was used to facilitate experimentation. In particular,

the use of a fully oversampled filterbank causes a significant amount of memory to be

used for storing the auditory channel signals prior to subsampling and sparsification,

with the transmultiplexed envelope patterns also stored and processed at full rate.

This allowed for testing different subsampling rates and filterbank configurations, but

prevents us from making a fair estimate of achievable complexity.

The reference implementation (Intel R© CPU at 2.83 GHz with 8 GB of RAM)

required 27 minutes (12.5 minutes for the computation of the SAER and 14.5 minutes

for reconstructing the audio signal) to process the SQAM70 audio sample (10 s long).

It is noteworthy that in comparison to typical codec designs, the computational load

at the decoder exceeds the load at the encoder, due to the iterative structure of the

reconstruction algorithm. Further development should aim to reduce the complexity

of the reconstruction algorithm in particular.
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5.4 Summary and discussion

This chapter presents some of the details of implementing the method to turn an audio

signal into the sparse auditory envelope representation and the iterative inversion to

get a signal back from the representation. We first detail the design of the analysis and

synthesis filterbank, where special attention is paid to ensure that the response is as

flat as possible over the desired frequency range. Low-pass filtering and subsampling

of the envelopes is described, followed by the transmultiplexer based masking model,

which sparsifies the envelope representation by first creating a sorted list of envelope

samples then removes samples from the list based on a masking threshold decision.

The reconstruction of the audio signal from the sparse auditory envelope repre-

sentation is achieved in two steps. The first step expands the sparse representation

to a pair of specifications: points where the reconstructed auditory envelopes must

match specified values, and points where the reconstructed auditory envelopes must

be within a defined limit. In the next step of the reconstruction algorithm, a set of

carrier signals is estimated using iterative refinement to match the constraints.

The implementation of the encoding and reconstruction is tested by processing

a set of speech and audio samples and verifying the incurred distortion using both

subjective and objective testing. Subjective tests reveal that the quality of the recon-

structed audio signals varies greatly with signal type, but the objective comparison

of the model parameters shows only little difference; this implies that the sparse au-

ditory envelope representation is insufficient for general audio signals. On the other

hand, since some types of signals are reproduced very well, the information present

in the carrier is often inaudible.

Sparse auditory envelope samples are therefore a representation of audio signals

that can be used for audio coding if we can identify situations where the carrier is

important and send the missing information in those specific cases. This seems to

be coupled to instances where the sparsification algorithm can remove many of the

auditory envelope samples, since tones display sharp peaks in the frequency domain.

The amount of side information containing the carrier phase could then be coupled

to the sparsification factor: if few samples were removed, it is probably not necessary

to send extra information. The development of such an extended model is a topic

for future research, but we point out here that the amount of phase information that
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an extended model would require is probably fairly low. In the case of the STFT-

based algorithms, use of a single bit per transform coefficient has been shown to allow

for high-quality reconstruction [Alsteris and Paliwal, 2007]. Our own initial informal

experiments showed a marked improvement with a similar addition of the carrier

information.
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Chapter 6

Conclusion

6.1 Summary of research

Perceptual models have been used in audio coding for several decades now, primarily

to direct the quantization stage of a frequency transform encoder. Recently, more

direct methods have been proposed in which the bitstream of the coded audio is

derived directly from the parameters that the perceptual model computes. However,

to date the decoding stage of these perceptual domain codecs is designed with a

constraint on computationally efficient reconstruction and thus the encoded bitstream

typically includes more information than a strict perceptual analysis would consider

relevant.

Considering the ever-increasing availability of powerful processing capabilities both

in consumer desktops and even portable devices, we set out to investigate the possi-

bility of using iterative methods at the decoding end of a perceptual domain codec. In

particular, if the decoder is given a set of perceptual parameters sufficient to describe

the audio signal but not to do a straightforward reconstruction, the decoder can es-

timate what the audio signal should be, then reanalyze the estimated signal. If the

received (target) information is inconsistent with the analysis local at the decoder,

the signal is refined and analyzed again. This cycle is repeated until the analysis of

the local signal is a match to the target.

To test the feasibility and potential issues of such a decoding scheme, we design

and implement a simplified auditory model based on auditory envelopes. Auditory
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envelopes are a perceptual representation that models the processing of stimuli of

the peripheral auditory system: parallel bandpass filtering by the Basilar membrane

(splitting the original signal into auditory channel signals) then nonlinear processing

and temporal smoothing by the neural transduction of the inner hair cells. This level

of analysis has been used for perceptual domain coding, but to reconstruct a sig-

nal accurately, existing decoders need the information contained in the fine temporal

structure of the auditory channels, encoded as impulses or a frequency-modulated car-

rier. This temporal information, either the time-difference between individual pulses

or instantaneous frequency of a carrier, is difficult to encode at a low bitrate. It can

vary rapidly, yet due to the overlap between auditory channels in frequency domain,

small errors can cause interchannel interference during reconstruction. The literature

on auditory perception suggests that the temporal information is critical to pitch per-

ception [Zeng et al., 2004], yet present in the envelopes [Yang et al., 1992; Smith et al.,

2002]. The iterative reconstruction reveals to what degree the temporal information

can be synthesized from the envelopes alone.

We find that reconstruction from subband envelopes can be analyzed using a

framework previously used to analyze reconstruction Short-Time Fourier Transform

Magnitude (STFTM) data. Using a circulant matrix representation of linear FIR

filters, the filtering and reconstruction can be analyzed using frame theory and treated

similar to STFTM reconstruction methods, to examine the question of whether the

algorithm converges. The subband envelope reconstruction is not an exact match to

STFTM reconstruction and convergence cannot be guaranteed, but in general the

reconstruction converges to a reasonable estimate.

In its initial form, a subband envelope representation is a highly redundant rep-

resentation, even though some information has been discarded (the fine temporal

information present in the carrier that underlies the envelopes). Based on models of

auditory perception, the subband envelopes are low-pass filtered and sampled. Further

reduction of the number of samples is achieved by processing the envelope samples

using a masking model. This masking model is based on the assumption that the

presence of a large amplitude auditory channel signal can inhibit the perception of

signal energy nearby in time and frequency (that is, in the same or neighbouring

auditory channels), accounting for temporal and simultaneous masking effects in the
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human auditory system. The resulting set of envelope samples is the sparse auditory

envelope representation (SAER) from which we reconstruct an estimate of the original

audio signal.

Reconstruction of an audio signal from the SAER is a two-step process, somewhat

mirroring the encoding process. However, neither step is a ‘straight’ inversion: the

inverse of the sparsifying masking model must create a set of envelopes at the full

sample rate based on the sparse envelope samples and the audio synthesis from en-

velopes must recreate the carrier signal in each auditory channel. The first part is

non-iterative, creating two sets of envelope data. One set of envelope data is simply

the received envelope values, expanded to account for sampling and the other set is

an extrapolation of the fixed envelope data mirroring the masking model. In effect,

if a particular envelope sample (at a sampling location) is missing in the representa-

tion, we know that the masking model at the encoder removed it by deciding that an

envelope sample nearby inhibits its perception. Thus, the decoder must ensure that

the auditory subchannel signal (of the reconstructed audio) at the location of that

missing sample must not exceed the threshold that the encoder used during sparsi-

fication. Thus, the intermediate envelope data at the decoder consists of one set of

envelopes where the reconstruction analysis must match (the “fixed” set) and one set

of envelopes which the reconstruction analysis envelopes must not exceed (the “upper

limit” set).

The second part of the decoder then is the synthesis of the audio signal from the

two sets of envelopes. For each auditory channel the carrier information is assumed

initially to be a random signal. The estimate of the auditory channel signals is synthe-

sized into an audio signal, which is then reanalyzed using the same analysis filters as

used by the encoder. The envelopes of the analysis are computed and compared with

the envelope sets from the previous stage of the decoder. First the “fixed” sections

are applied, then the remaining envelopes are compared to the “upper limit” set. Any

portion of the locally analyzed envelopes that exceeds this set is adjusted to match.

This loop is repeated until either no further adjustments are needed or the loop has

been run a set number of times.

Iterative reconstruction of signals usually requires processing finite signals as a

single unit since filtering with delay adjustment (needed to ensure the signal lines up
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with itself at each iteration) involves non-causal processing of the signal. This prevents

implementation of such algorithms for long signals such as audio streams. Thus a

modified version of the reconstruction algorithm is implemented, which reconstructs

the signal by short-time sections using overlap with adjacent sections to ensure a

coherent overall signals. Also based on Short-Time Fourier Transform (STFTM)

methods, this type of finite-delay processing actually results in faster convergence to

acceptable signal quality. Due to the overlap, if one section has converged to match

the target envelopes, its carrier estimates “seed” the carrier estimates of the following

section, which will then find its local minimum faster. A good carrier estimate thus

cascades along the reconstructed signal.

The implementation of the encoder of audio into the sparse envelope representation

and the matching decoder is tested on a set of speech and audio files by subjective

evaluation using the MUSHRA testing protocol. The result reveals that the SAER can

be used to get adequate quality overall even with quantization of the representation

at a modest bitrate reduction from the original signal. We note that the perceived

quality is very dependent on the type of signal encoded, which we take as indication

of a shortcoming of the SAER if signals contain pitched sounds.

6.2 Discussion, possible applications and future work

6.2.1 Summary of results

The work presented in this thesis examines the feasibility of the SAER for audio coding

and the iterative method of reconstructing an audio signal from this representation.

Subjective and objective testing leads us to the following conclusions.

Perceptual model based on envelopes

We find that for some types of audio signals, the SAER can be used to obtain a

reconstructed signal with high perceptual quality. This means that the SAER contain

a significant portion of the audible information and, in some cases, all of the audible

information. However, a particularly problematic class of audio signals to reconstruct

from envelopes alone are those that are strongly tonal in nature. A tonal signal is

one that evokes a pitch sensation and we observe that while pitch directly affects
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envelopes, this effect is very subtle in the magnitude of the envelopes. This means

that it is very difficult to find the precise pitch of a given set of auditory channel

envelopes.

Iterative perceptual model inversion

Although iterative methods have been used to reconstruct signals from magnitude-

only transform representations in the past, this thesis presents a novel adaptation

tailored to the sparse auditory envelope representation. By generating two sets of en-

velopes, the fixed envelopes and the upper limits, we precompute the masking effect of

the recomputed envelopes in a noniterative way, thus requiring that the computation-

ally expensive iterative loop produce only an estimate of the carrier signals. While

the overall computational complexity is still very high, this simplification opens up

the possibility of further computational optimizations.

Analysis of FIR filterbank using circulant matrices and frame theory

We analyze the iterative reconstruction from the envelopes of a subband decomposi-

tion using a circulant matrix representation of FIR filters. This allows for application

of frame theory to FIR FB systems using a simple and compact notation which also

lends itself to straightforward numerical analysis. However, there is a loss of generality

in comparison to methods such as state-space analysis as this notation is applicable

only to fully oversampled FIR FBs.

6.2.2 Criticisms and future work

The research in this thesis aimed to investigate the use of a purely envelope based

perceptual representation for audio coding using iterative reconstruction, in part to

explore some of the issues that arise with iterative reconstruction from perceptually

coded audio. In this respect, we only had qualified success, showing that the SAER is

not sufficient for audio coding in general. Iterative decoding of perceptual represen-

tations shows promise if one can afford the computational complexity, but care must

be taken that the model parameters define the signal well enough.

Thus, future investigations of envelope-based sparse representations should focus
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on the phase component, to establish how the input signal can be analyzed to de-

termine if it is necessary to encode part of the carrier signal. Like the envelopes,

the phase information would be sparse since our tests show the phase is not required

for all signal types. This also means that a bimodal set of constraints could be con-

structed at the decoder analogous to the fixed and maximum envelope, either forcing

the carrier information or constraining it within some limits based on audibility. How-

ever, designing such a scheme requires further study of the human auditory system,

as phase perception is not as well understood as envelope perception.

A significant effort to understand the role of the fine temporal structure that the

phase represents has been in the context of binaural hearing [Moore, 2003]. Extending

the SAER and its reconstruction algorithm to stereo audio signals can be an avenue of

research to understand the coding aspect of auditory phase. The envelope and phase

decomposition should translate well to inter-aural level and time differences as used

in [Baumgarte and Faller, 2003; Faller and Baumgarte, 2003].

There are also refinements to the computation of the auditory envelope that can be

considered. In this thesis, we used a gammatone FB as model for the BM movement,

but recent refinements of BM modeling include multi-path implementations combining

a linear and nonlinear branch [Lopez-Poveda and Meddis, 2001], the gammachirp

function [Irino and Patterson, 1997; Unoki et al., 2006], and compressive versions of

the gammachirp [Irino and Patterson, 2006]. A more accurate modeling of the neural

response is expected to yield better sparsification of the envelope samples.

From a more practical standpoint, there are several implementation aspects of the

reconstruction algorithm that should be addressed in more detail in future research.

Especially for the finite-delay reconstruction algorithm, there are many parameters

that can influence the reconstructed signal quality and computational complexity, such

as the segment size, the amount of overlap between segments, the loop terminating

condition, and noise injection factor. The optimal values for these parameters are

likely to depend on the auditory representation and if a new representation is designed

a more thorough investigation of these parameters should be performed.

In terms of computational complexity, we note that the implementation as pre-

sented in this thesis is far from optimal and one particular problem is that all subchan-

nel signals are processed at the original signal sampling rate. This was done to ease
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analysis and implementation as well as retaining flexibility to experiment with various

envelope subsampling methods. Once this flexibility is no longer needed, computa-

tional efficiency could be increased by performing the analysis/synthesis and envelope

correction steps at a lower rate given by the subsampling factor.

6.3 Final remarks

Perceptual audio coding is an area of research that touches on a variety of disciplines

from anatomy, biology, and physiology to the mathematics of signal processing and

information theory. In this thesis, we look only at one aspect of the broad field: how

a particular kind of representation can be used for encoding audio signals and how we

can reconstruct a signal from this representation. We believe that this new perceptual

representation and the insights gained during its development will serve as a base for

future research in auditory perception and audio coding.
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Appendix A

Eigenvalues and Eigenvectors of

Circulant Matrices

Assume the matrix C is of size N ×N and has eigenvectors forming the matrix

W[m,n] =
1√
N
e−2πj

(m−1)(n−1)
N (A.1)

and eigenvalues λn, so we can write the eigendecomposition

C = WH


λ1 0 · · · 0

0 λ2
...

...
. . . 0

0 · · · 0 λN

W. (A.2)

Writing out this equation per element of C, we get

C[m,n] =
N∑
k=1

λkW
∗
[m,k]W[n,k] (A.3)

=
1

N

N∑
k=1

λke
2πj

(m−1)(k−1)
N e−2πj

(n−1)(k−1)
N (A.4)

=
1

N

N∑
k=1

λke
2πj

(k−1)(m−n)
N . (A.5)
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By the circular property of the complex exponential, for a given set of λn this value

depends only on ((m− n) mod N), so

C[m,n] = c[(m−n) mod N ] =
1

N

N∑
k=1

λke
2πj

(k−1)(m−n)
N , (A.6)

meaning C is a circulant matrix and any circulant matrix can be decomposed into

the form of Eq. (A.2). If all λk are nonzero, this is a valid eigenvalue decomposition.

Note that λk is simply the kth (scaled) discrete Fourier transform coefficient of c.

Filter implementations using circulant matrices

The fact that circulant matrices can be diagonalized using the Fourier transform leads

directly to the overlap-add and overlap-save techniques of FIR filter implementations

[Proakis and Manolakis, 1996]. So, if A is a circulant matrix representing a filter with

impulse response a, the filter operation y = Ax becomes

y = Ax (A.7)

= WHdiag{Fa}W 1√
N

WHFx (A.8)

=
1√
N

WH(diag{Fa}Fx), (A.9)

which can be computed very efficiently if the DFT is computed using the Fast Fourier

Transform (FFT). Note that diag{Fa}Fx is simply an element-by-element multipli-

cation of Fa and Fx and that for a fixed filter Fa is a constant vector (the FFT of

the filter response) that can be precomputed.

Frequency-domain implementation of the Transmultiplexer

The (single) filter implementation in frequency domain can be extended to the efficient

calculation of the transmultiplexing step in Chapter 5. Recall that the column vector

c of size MN (subdivided into M vectors cm) is passed through the synthesis filter,

represented by H which is a horizontal concatenation of M circulant matrices Hm

of size N × N . The result of this synthesis is then passed though the analysis filter
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described by G, which is a horizontal concatenation of M circulant matrices of size

N ×N . Using d similar to c for the transmultiplexed result, the entire operation can

be written as

d = GHc, (A.10)

or per subvector/submatrix,

dm = Gm

( M∑
m=1

Hmcm

)
, (A.11)

noting that
∑M

m=1 Hmcm is simply the intermediate signal, a column vector of size N .

For unstructured matrices, this computation would be very costly in terms of op-

erations. Generating the intermediate signal is a multiplication of an N ×N matrix

by an N dimensional vector, an operation of order O(N2), repeated M times. The

analysis to find d is of the same complexity, thus the transmultiplexer requires 2M

times O(N2) operations. However, by transforming the filtering into frequency do-

main, the O(N2) operation can be reduced to O(N). The DFT approach is given

by

Fdm = diag{Fhm}
( M∑
m=1

diag{Fgm}Fcm

)
. (A.12)

While this requires the conversion of all subchannel signals cm into frequency domain

and the inverse transform to get the time domain dm, using the FFT makes this far

more efficient than direct convolution of the individual filters.
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