
FEA(5−ESPS) FEA(5−ESPS)

NAME
ESPS Feature File − (.fea)

SYNOPSIS
#include <esps/esps.h>
#include <esps/fea.h>

DESCRIPTION
An ESPS Feature File consists of a header followed by a sequence of feature records. Each record consists
of a number of named ‘‘fields’’ that may hold numeric, ‘‘coded’’, or (eventually) bit data or arrays of such
data. (The support for bit data is not yet available.) A field is characterized by its name, data type, size
(number of items), and array dimensions. The header contains a list of field names and associated informa-
tion. Each feature record contains, for each field, storage sufficient to hold the given number of items of the
given data type.

The numeric types include integer and floating types of various sizes, together with corresponding complex
types. Each complex type has a real and an imaginary part of the corresponding integer or floating type.
The real numeric types are double, float, long, short, and ‘‘byte’’ (signed char). Variables of the complex
types may be declared with the respective typedef names double_cplx, float_cplx, long_cplx, short_cplx,
and byte_cplx defined in the include file esps/esps.h. For example the definition of short_cplx is

typedef struct {short real, imag;} short_cplx;

If x is a variable of that type, the real and imaginary parts are accessible as x.real and x.imag. For back-
wards compatibility, COMPLEX is accepted as a synonym for double_cplx.

The initial support for BIT data will be as described in this paragraph. Each item of the ‘‘bit’’ type has one
of two values: 0 and 1. In memory, each item of type BIT occupies one byte. In the external file, a more
compact representation is used: each field of type BIT is packed, 8 bits to the byte, into the smallest number
of bytes that will hold it. Any padding required to make an integer number of bytes is added at the end of
the field; there is no internal padding to align rows of a multidimensional BIT field. The functions that read
and write FEA records (see get_fea_rec(ESPS-3u) and put_fea_rec(ESPS-3u)) unpack and pack BIT fields
automatically. Support for representing BIT fields in packed form in memory may be added later.

Fields of type char are available for storing character data.

A ‘‘coded’’ data type is like a C enum type; the header contains a list of possible values, which are strings,
and in a record a string is represented by the short integer that gives its position in the list. A typical use for
a coded type is to represent class identifiers. For example the header could associate the field name "voic-
ing" and the set of values {"voiced", "unvoiced", "silent"} with a record item; the size would be 1 for a sin-
gle item. Then in each record a value 0, 1, or 2 for that item would indicate a value of "voiced",
"unvoiced", or "silent", respectively, for the voicing class of the record.

For many applications, each feature record refers to a frame of speech in some sampled-data file or, more
generally, to a contiguous segment of records in some ESPS file. There is provision for flagging a feature
file as ‘‘segment_labeled’’, which implies that, in addition to whatever other information is stored, each
record identifies an ESPS file and a starting record and number of records in that file. A support function
(set_seg_lab(3−ESPSu)) is provided for setting up fields to hold this information.

The header has the following layout as defined by <esps/header.h>. The data items common to all ESPS
data files are described in ESPS(5−ESPS). The type-specific header structure for FEA files is shown below.

/* Feature File specific header */

struct fea_header {
short fea_type; /∗ indicates special feature-file types ∗/
short segment_labeled; /∗ If YES, records contain file name,

start & length of segment ∗/
unsigned short field_count; /∗ number of fields ∗/
short field_order; /∗ YES if file is in field order fmt ∗/

10/18/89 1

FEA(5−ESPS) FEA(5−ESPS)

char **names; /∗ name of each field ∗/
long *sizes; /∗ total number of items in field ∗/
short *ranks; /∗ number of dimensions in field ∗/
long **dimens; /∗ array dimensions for field ∗/
short *types; /∗ type (DOUBLE, FLOAT , etc.) of field ∗/
char ***enums; /∗ arrays of values for coded types ∗/
long *starts; /∗ starting point for this field ∗/
short *derived; /∗indicates whether field was derived ∗/
char ***srcfields; /∗for derived fields,

arrays of source field names ∗/
short spares[FEA_SPARES]; /∗ spares ∗/
long ndouble; /∗ number of doubles in feature record ∗/
long ndcplx; /∗ number of double complex in feature record ∗/
long nfloat; /∗ number of floats in feature record ∗/
long nfcplx; /∗ number of float complex in feature record ∗/
long nlong; /∗ number of longs in feature record ∗/
long nlcplx; /∗ number of long complex in feature record ∗/
long nshort; /∗ number of shorts in feature record ∗/
long nscplx; /∗ number of short complex in feature record ∗/
long nbyte; /∗ number of bytes in feature record ∗/
long nbcplx; /∗ number of byte complex in feature record ∗/

};

The following items are all in the feature-file-specific header structure.

fea_type
This item may be used to indicate that the feature file is of a special type. It might imply specific
uses of some of the spares, for instance, or that certain conditions apply to the set of fields that
may or must be defined. FEA_GEN indicates a completely general feature file type with no spe-
cial conditions except those implied by segment_labeled. ESPS uses the fea_type field to indicate
the FEA subtype. Currently defined subtypes in fea.h include FEA_SD (for sampled data),
FEA_ANA (for speech analysis), FEA_STAT (for statistics), FEA_VQ (for vector quantization),
and FEA_SPEC (for spectral records). An ASCII array of strings (char *fea_file_type[]) for these
defined constants, suitable for use with lin_search (3−ESPS, is defined in the ESPS library. The
definition is included automatically by means of <esps/esps.h>.

segment_labeled
If the value of this flag is YES, three fields are guaranteed to be defined: a coded field of size 1
named "source_file" and two long-integer fields of size 1 named "segment_start" and "seg-
ment_length". For each record these give the name of an ESPS file and the beginning record num-
ber and number of records of a segment in that file to which the feature record refers. If the flag
value is NO, these fields need not be defined and in fact should not be defined; the three field
names should be treated as reserved. The flag is set by the function set_seg_lab(3−ESPSu), and
the programmer should not set it directly. A value of YES for segment_labeled is incompatible
with a value of YES for tag in the common part of the header.

field_count
This is the number of distinct fields defined in the header. The items names, sizes, ranks, dimens,
types, starts, and enums each point to the first element of an array of length field_count or (in the
case of names) field_count + 1. Each element of each of these arrays refers to the field named by
the corresponding element of names.

field_order
Normally, the data record in ESPS feature files is organized by data type. All of the doubles are
written first, then all of the floats, then the longs, then the shorts, and then the character (byte)
data. If this field is YES, then the data is written to (and read from) the disk file in the order that

10/18/89 2

FEA(5−ESPS) FEA(5−ESPS)

the feature file fields were created by calling add_fea_fld. This feature is intended to be used by
applications that must read or create files in an externally imposed format. The normal ESPS con-
vention is more efficient. The default value for this field is NO.

names This points to the beginning of an array of strings that contains the field names and a terminating
null string. The array is suitable as an argument of lin_search2(3−ESPSu). (Note that the differ-
ence between lin_search and lin_search2 is that lin_search does a case insensitive compare.)

sizes This points to the beginning of an array of long integers. Each integer gives the number of items
in the corresponding field.

ranks This points to the beginning of an array of short integers. Each integer gives the number of dimen-
sions of the corresponding field (0 for a scalar, 1 for a vector, 2 for a matrix, etc.). If the rank of a
field is 0, its size must be 1. This item and dimens may be NULL if there are no fields of 2 or
more dimensions, and if there is no need to distinguish a scalar from a vector of length 1.

dimens This item points to the beginning of an array of pointers. Each of these pointers points to the
beginning of a long-integer array that gives the dimensions of the corresponding field. The length
of that integer array is the number of dimensions given in the array that ranks points to. The prod-
uct of the dimensions must equal the field size given in the array that sizes points to. This item
may be NULL if ranks is NULL or contains no entries greater than 1.

types This points to the beginning of an array of short integers. Each integer is a code that indicates the
type of the items in the corresponding field. The allowed values for the codes are the integer con-
stants DOUBLE, FLOAT , LONG, SHORT, BYTE, DOUBLE_CPLX, FLOAT_CPLX,
LONG_CPLX, SHORT_CPLX, BYTE_CPLX, BIT, CHAR, and CODED, which are defined in
<esps/esps.h>. The following table shows the C data type that corresponds to each code.

code type

DOUBLE double
FLOAT float
LONG long
SHORT short
BYTE signed char
DOUBLE_CPLX double_cplx
FLOAT_CPLX float_cplx
LONG_CPLX long_cplx
SHORT_CPLX short_cplx
BYTE_CPLX byte_cplx
BIT char
CHAR char
CODED short

The type codes DOUBLE, FLOAT , LONG, SHORT, and CHAR stand for the C types that the
names suggest. Type codes DOUBLE_CPLX, FLOAT_CPLX, LONG_CPLX, SHORT_CPLX,
and BYTE_CPLX stand for the complex types corresponding to the five floating and integer types.
Typedefs for double_cplx, float_cplx, etc. are in the include file esps/esps.h. Type codes BYTE
and CHAR stand for types of the same size, but BYTE is used to store byte-size integer data
(signed), while CHAR is used for character data. The type code BIT stands for the ‘‘bit’’ data
type. When available, this will occupy the same space in memory as BYTE or CHAR but will be
packed into single bits in the external file. Type codes SHORT and CODED stand for types of the
same size, but SHORT is used for arithmetic (signed integer) data, while CODED data consists of
arbitrary codes that each designate one of a set of strings defined in the header. (See enums
below).

enums This item points to the beginning of an array of pointers. Each of these pointers is NULL unless
the corresponding type is CODED, and then it indicates the possible values for each item of the
corresponding field. More specifically, the pointer, if not NULL, points to the beginning of a null-

10/18/89 3

FEA(5−ESPS) FEA(5−ESPS)

terminated array of strings suitable as an argument of lin_search2(3−ESPSu); these strings are the
possible values. Functions are available to find the code corresponding to a given string and vice
versa; see fea_encode(3−ESPSu), fea_decode(3−ESPSu).

starts This points to the beginning of an array of longs. Each element gives the starting point of the data
for the corresponding field relative to the pointer of the correct type in the data record. (Type
CODED is treated as a SHORT).

derived This points to the beginning of an array of shorts, one for each field. A non-zero value means that
the corresponding field was "derived" from another FEA file. That is, each element in the field
corresponds to some particular element in another FEA file with a different field structure (see src-
fields).

srcfields
This item points to the beginning of an array of character pointers. Each of these pointers is
NULL unless the corresponding field is derived (see derived), in which case it points the begin-
ning of a null-terminated array of strings. Each string has the form

<fieldname> [<element_range>]

where <fieldname> is a field name (usually not a field in the current FEA file), and where <ele-
ment_range> is a list of elements in a form suitable for grange_switch (3−ESPS). The total num-
ber of elements described in this way must equal the size of the corresponding field. For example,
suppose that a FEA file contains a derived field named svector of size 5. The contents of the cor-
responding array of strings in srcfields might be as follows: "raw_power[0]", "spec_param[1,3:5]".
This is interpreted to mean that the five elements of svector were derived from elements in the
raw_power and spec_param fields of some other FEA file − in particular, the 5 elements of svector
correspond to raw_power[0], spec_param[1], spec_param[3], spec_param[4], and spec_param[5]
(see set_fea_deriv (3−ESPSu)).

spares There are FEA_SPARES spare shorts.

ndouble, ndcplx, . . . , nbcplx
These give the total number of scalar items of each of the types DOUBLE, DOUBLE_CPLX, . . . ,
BYTE_CPLX in a record. The total for type CODED is included in nshort along with the total for
SHORT, and the totals for types BIT and CHAR are included in nbyte along with the total for
BYTE. Some of these items have the same names as items in the common part of the header, but
their values may be different. For example ndouble in the common part of the header includes a
count of 2 doubles for every double_cplx item in a FEA record and so is equal to ndouble+ 2*ndc-
plx in terms of these members of the FEA-specific part of the header.

The data follows the header. The default data format in the file is that suggested by the following pseudo-C
structure declaration.

struct fea_data {
long tag; /∗ position tag ∗/
double d_data[ndouble]; /∗ double data ∗/
float f_data[nfloat]; /∗ float data ∗/
long l_data[nlong]; /∗ long data ∗/
short s_data[nshort]; /∗ short and coded data ∗/
char b_data[char]; /∗ byte, char, and bit data ∗/

};

The variables ndouble, nfloat, nlong, nshort, and nchar here refer to the items in the common part of the
header. They cannot actually occur in a C declaration, but are used by the FEA support routines. An alter-
native external format is used if the item field_order has the value YES——see field_order above.

In memory, the data is held in a structure like the one below, which is defined in <esps/fea.h>. The vari-
ables ndouble, . . . , nbyte, . . . , nbcplx here refer to the items in the FEA-specific part of the header. Again,
these items do not actually occur in a C declaration; however, a function is available to allocate memory for

10/18/89 4

FEA(5−ESPS) FEA(5−ESPS)

this data structure, based on the values in a particular header. See allo_fea_rec(3−ESPSu).

struct fea_data {
long tag; /∗ position tag ∗/
double d_data[ndouble]; /∗ double record items ∗/
float f_data[nfloat]; /∗ float record items ∗/
long l_data[nlong]; /∗ long record items ∗/
short s_data[nshort]; /∗ short and coded record items ∗/
char b_data[nbyte]; /∗ byte, char, and bit record items ∗/
double_cplx dc_data[ndcplx]; /∗ double complex record items ∗/
float_cplx fc_data[nfcplx]; /∗ float complex record items ∗/
long_cplx lc_data[nlcplx]; /∗ long complex record items ∗/
short_cplx sc_data[nscplx]; /∗ short complex record items ∗/
byte_cplx bc_data[nbcplx]; /∗ byte complex record items ∗/

};

A feature file may have a position tag in each record. This tag refers to records in the file named in the
header field common.refer. In addition there is space for ndcplx pairs of doubles, ndouble doubles, nfcplx
pairs of floats, nfloat floats, nlcplx pairs of longs, nlong longs, nscplx pairs of shorts, nshort shorts, nbcplx
pairs of bytes, and nbyte bytes, (where these are values from the FEA-specific part of the ESPS file header).

Space in d_data for fields of type DOUBLE is allocated in the order of occurrence of the fields’ names in
names. Space in the other data arrays in a record is allocated similarly. Howev er, programs generally need
not and should not depend on this information about record format. Functions are available to get a pointer
to the beginning of the storage in a given record for the field with a given name; see get_fea_ptr(3−ESPSu).

EXAMPLES
Assume declarations

struct header *hd;
struct fea_data *rec;
int siz, rnk, *dim;
double *pd;
short *pe;

Suppose hd and rec have properly initialized, for example by new_header(3−ESPSu) or
read_header(3−ESPSu) and by allo_fea_rec(3−ESPSu). Then the statement

pd = (double *)get_fea_ptr(rec, "energy", hd);

will assign to pd a pointer to the first double in the storage in rec for the field named "energy", provided that
the field exists. Now a statement like

*pd = 3.7

will store a value into the field in rec. If the field has several elements, a subscripted variable like pd[3] can
be used instead of *pd. If rec already contains data, for example as a result of calling
get_fea_rec(3−ESPSu), the data can be accessed by using *pd or a subscripted pd in an expression. The
statement

pe = (short *)get_fea_ptr(rec, "voicing", hd);

will assign to pe a pointer to a short integer in the storage in rec that holds a code for a value in the field
named "voicing". A statement like

*pe = fea_encode("voiced", "voicing", hd);

will assign the code for the string "voiced" to the short integer, and the expression

fea_decode(*pe, "voicing", hd);

will get the string value corresponding to the code that is there.

10/18/89 5

FEA(5−ESPS) FEA(5−ESPS)

SEE ALSO
allo_fea_rec(3−ESPSu), get_fea_rec(3−ESPSu), put_fea_rec(3−ESPSu), add_fea_fld(3−ESPSu),
set_fea_deriv(3−ESPSu), get_fea_deriv(3−ESPSu), set_seg_lab(3−ESPSu), get_fea_ptr(3−ESPSu),
fea_encode(3−ESPSu), fea_decode(3−ESPSu), new_header(3−ESPSu) read_header(3−ESPSu),
write_header(3−ESPSu), lin_search(3−ESPSu), ESPS(5−ESPS)

FUTURE CHANGES
Make BIT type available. Support for packed bit fields in memory. Define additional values for the type
field in the header.

AUTHOR
Manual page by Rodney Johnson. Incorporates suggestions by Joe Buck, Alan Parker, and John Shore.
Implementation by Alan Parker.

10/18/89 6

