
FEA_SD(5−ESPS) FEA_SD(5−ESPS)

NAME
ESPS Sampled-Data Feature File Subtype − (.fsd)

SYNOPSIS
#include <esps/esps.h>
#include <esps/fea.h>
#include <esps/feasd.h>

DESCRIPTION
The FEA_SD file is a subtype of the FEA file. If hd is a pointer to the header of such a file, then
hd−>hd.fea−> fea_type== FEA_SD. FEA_SD files are used for storing sampled data, such as the output of
an A/D converter. The data may be of any ESPS numerical data type, and multichannel data is supported.
(Some ESPS programs, however, may require single-channel data.)

Typically the part of the file following the header is a simple stream of data values, and a record consists
merely of a single sample value or (for multichannel data) a fixed number of samples. There are functions,
such as get_feasd_recs(3-ESPS) and put_feasd_recs(3-ESPS), that can take advantage of this simple struc-
ture by reading or writing an entire multi-record array of data in one operation, rather than one record at a
time. It is possible to create FEA_SD files with a more complicated record structure since
add_fea_field(3-ESPS) can be used to add extra field definitions to any FEA file header. The function
get_feasd_recs(3-ESPS) will still work on such files, ignoring the extra fields, but will not work as fast as if
the extra fields were not present.

Samples as stored in memory may have a different data type from their type as stored in the file. The input
and output routines, get_feasd_recs(3-ESPS) and put_feasd_recs(3-ESPS), perform the necessary conver-
sions automatically.

FEA_SD files must be untagged. (See ESPS(5-ESPS) and FEA(5-ESPS) for an explanation of tags and
tagged FEA files.)

A FEA_SD file header is created by calling init_feasd_hd(3-ESPSu) after new_header(3-ESPSu)

The header of a FEA_SD file may contain the following generic header items. The first 2 are always pre-
sent. The remaining one is not present in every file, but if present has the meaning given below.

Name Size Type Enums

start_time 1 or no. of double NULL
channels

record_freq 1 double NULL

max_value 1 or no. of double NULL
channels

The items have the following meanings.

start_time
Time corresponding to the first record in the file——given in seconds. If start_time has more than
one element, each applies to a separate channel. Separate starting times might be appropriate if,
for example, samples from the various channels were recorded in rotation, rather than simultane-
ously.

record_freq
The sampling frequency in Hz.

max_value
This item is optional. If it is present, no sample may exceed this value in magnitude. It is permis-
sible for all samples to be smaller——that is, max_value is an upper bound rather than an exact
maximum. For example, if the data are from an A/D converter, max_value may be used to indicate
the maximum value that can be represented by the converter. In multichannel files, max_value
may have one component for each channel or may be a single value applying to all channels.

The header of a FEA_SD file also contains a definition for one record field given by the following table:

9/18/89 1

FEA_SD(5−ESPS) FEA_SD(5−ESPS)

Name Size Rank Dimen Type Enums

samples no. of channels 1 NULL or {size} any numeric NULL

The field can be created by calling init_feasd_hd(3-ESPSu). When the size is 1, there is a single channel; if
no additional fields are present, each record is a single sample of the given type, and the part of the file after
the header is just a sequence of such samples. When the size is greater than 1, the file contains multi-chan-
nel data. In general, each record in the file contains a vector with as many components as there are chan-
nels.

Most programs that deal with FEA_SD files will use the support routines in the ESPS library and will not
directly use the information in the tables above. The library routine init_feasd_hd(3-ESPSu) creates the
record field and the required generic header items.

Programs that deal with FEA_SD files do so in terms of structures of type (struct feasd) ——pointers to
structures of this type are returned by allo_feasd_recs, and the FEA_SD read and write routines,
get_feasd_recs and put_feasd_recs, have parameters of type (struct feasd). Here is the definition of the
feasd structure as given in <esps/feasd.h>:

struct feasd {
short data_type;
long num_records, num_channels;
char *data, *ptrs;

};

The structure members have the following meanings.

data_type
A code indicating the data type of the samples as stored in memory. Leg al values are give by the
type-code constants BYTE, SHORT, LONG, FLOAT , DOUBLE, BYTE_CPLX, SHORT_CPLX,
LONG_CPLX, FLOAT_CPLX, DOUBLE_CPLX, defined in the include file esps/esps.h. (Codes
for non-numeric ESPS types such as CHAR, CODED, EFILE, and AFILE are not allowed.)

num_records
The number of consecutive records that may be stored in the data part of this feasd structure (see
below).

num_channels
The number of channels of sampled data.

data A pointer through which to access storage for the sampled data from num_records consecutive
FEA_SD records. For single-channel files, the storage is just an array with num_records elements
of the type indicated by data_type. The pointer data when cast to the appropriate type points to
the first element of the array. The appropriate types are (char *) for BYTE data, (short *) for
SHORT data, (double_cplx *) for DOUBLE_CPLX data, etc. For example, with declarations

struct feasd *rec;
short *s_data;

suppose rec points to a feasd structure properly initialized to hold SHORT data. (So
rec−>data_type==SHORT .) Then, after the assignment

s_data = (short *) rec−>data;

sample number s may be accessed as s_data[s]. For multi-channel files, the storage is conceptu-
ally a 2-dimensional array with num_records rows and as many columns as there are channels. If
the number of channels is fixed and known in advance (say num_channels==3) then a declaration

short (*s_arr)[3];

and a cast

s_arr = (short (*)[3]) rec−>data;

9/18/89 2

FEA_SD(5−ESPS) FEA_SD(5−ESPS)

allow sample number s of channel c to be accessed as s_arr[s][c]. Unfortunately the constant 3
here cannot be replaced with a variable such as rec−>num_channels in legal C code. One proce-
dure that works with a variable number of channels is to treat the data array as 1-dimensional and
access sample number s of channel c as s_data[s*rec−>num_channels+c], where s_data is
defined as above. This way of accessing multichannel data is somewhat awkward; a more con-
venient method involves the structure member ptrs discussed next.

ptrs When appropriately cast, ptrs, if not NULL, points to the first element of an array of num_records
pointers, each of which points to the first element of a row of the data array. Appropriate types for
the cast are (char **) for BYTE data, (short **) for SHORT data, etc. To continue the example
begun above under data, suppose a declaration

short **s_ptr;

and a cast

s_ptr = (short **) rec−>ptrs;

then sample number s of channel c can be accessed as s_ptr[s][c]. The function
allo_feasd_recs(3-ESPSu), which creates feasd structures, has a parameter that determines
whether to set up the pointer array or to make the ptrs structure member NULL. For single-chan-
nel data, ptrs should probably be made NULL except to avoid special-case code for single-channel
data in cases where multichannel data must be handled as well. For multichannel data, the pointer
array should probably be used except when considerations such as space limitations warrant forgo-
ing the convenience.

Since the structure of the data storage depends on values in the file header, it is important to be sure that a
given FEA_SD struct is consistent with the header of the file it is being used with. Specifically, all headers
used with a given FEA_SD struct must have the same number of channels.

SEE ALSO
init_feasd_hd(3-ESPSu), allo_feasd_recs(3-ESPS), get_feasd_recs(3-ESPSu), get_feasd_orecs,
put_feasd_recs(3-ESPSu), get_genhd(3-ESPSu), ESPS(5-ESPS), FEA(5-ESPS), SD(5-ESPS)

RECORD ELEMENT FILE STRUCTURE
FILES

/usr/esps/include/esps/fea.h
/usr/esps/include/esps/feasd.h

FUTURE CHANGES
Support for tagged files.

AUTHOR
Manual page by Rodney Johnson, ESI.

9/18/89 3

