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DFiltInt 
This program designs interpolation filters that minimize the mean-square error for a signal with a given 

power spectral density. The program can be put to uses beyond just designing interpolation filters. 

Consider the block diagram shown below. 
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Figure 1 Block diagram of the interpolator 

 

The interpolation filter under consideration is ℎ[𝑛] within the dashed lines. The filter design strategy 

minimizes the mean-square value of 𝑒[𝑛]. The signal 𝑥(𝑡) is a common input to both paths in the block 

diagram. Note that 𝑥(𝑡) is a continuous-time signal. For the purposes of the design strategy, only the 

power spectrum of 𝑥(𝑡) is needed. This power spectrum is used internally to calculate the correlation 

values needed. The lower reference path has an arbitrary delay 𝜏, followed by a sampler, followed by a 

reference filter 𝑔 𝑛 . In many cases the reference filter is left at the default value – a single coefficient of 

value unity. The delay is, by default, set to compensate difference in delays between the filter to be 

designed and the reference filter.  

The continuous-time input to the system allows for specifying a completely arbitrary delay to be 

matched. 

Specifying the Power Spectrum 
The power spectrum of 𝑥(𝑡) is modelled as the sum of a continuous spectrum and a discrete spectrum. 

The continuous-part is specified as a table of frequencies and power spectral density values for positive 

frequencies. The values in between the tabulated values are determined by a monotonic cubic 

interpolation. Constant power spectra can be specified with only two points. Other more complicated 

spectra can be specified with as many points as needed to get an accurate fit to the spectrum. 

Given the power spectral points and the cubic interpolation between these points, the correlation 

values used in finding the optimal filter can be calculated exactly. 

The discrete-time part of the system under consideration has two sampling rates. The sampling rate 

used as input to the program is that of the signal that is input to ℎ[𝑛]. Call it 𝐹𝑠 . The sampling rate at the 

output of the interpolator and after sampling the continuous-time signal is 𝑀𝐹𝑠 . The power spectrum is 

normally specified only up to half the sampling frequency 𝑀𝐹𝑠 .  If the power spectrum is specified 
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beyond that point, the signal after sampling will be aliased, i.e. the power spectrum beyond the half-

sampling frequency point will fold back down into the baseband. 

The discrete part of the power spectrum models sinusoidal components in the input signal. These extra 

components can be used to give more weight to certain discrete frequencies. For instance adding a 

discrete component at zero frequency, will bias the solution to reproducing that frequency at the output 

of the interpolation filter more exactly. In the limit of a large dc discrete component, the interpolating 

filter will reproduce dc values with no error. 

Features 
This program was originally based on the procedure described in paper by Oetken, Parks, and Schüssler 

[1]. That procedure was restricted to symmetric odd-length interpolating filters. The model power 

spectrum was flat. The present version of the program also draws inspiration from [2]. That paper 

suggests the addition of discrete components to the power spectrum to constrain the response at 

certain frequencies. Summarizing the features of the current program: 

 Flexible modelling of the power spectrum including both continuous and discrete components. 

The correlation functions are calculated from the interpolated tabulated values. 

 The provision for an arbitrary delay in the reference path. 

 The provision for a given filter in the reference path. 

 Special care taken to identify cases where the filter is symmetric or the error is zero at some 

phases. 

Applications 

Interpolation Filter 

The original application for the program was to design interpolation filters. In that application, 𝑔 𝑛  is an 

identity filter (the default), and the delay 𝜏 is set to (𝑁ℎ − 1)/2, where 𝑁ℎ  is the number of coefficients 

in ℎ[𝑛]. The specified power spectrum serves as a weighting function – frequencies with a larger power 

spectrum affect the mean-square error more than regions with smaller values. 

Fractional Delay Filter 

If we set the interpolation factor to unity, we can design filters which approximate the delay in the 

reference path. This delay can be arbitrary. The power spectrum specification can be used as a 

frequency weighting to specify the range of frequencies for which the match should fit best. 

Approximate a Reference Filter 

We can use the program to approximate a response given by 𝑔[𝑛]. For instance, 𝑔[𝑛] can be a long 

response derived by truncating an IIR filter response after the response has decayed sufficiently. Then 

the filter ℎ[𝑛] will be an FIR filter which approximates the frequency response of 𝑔[𝑛]. The power 

spectrum specification can be used as a frequency weighting to specify the range of frequencies for 

which the match should fit best. 



  
Page 3 

 
  

Design Examples 
  Interpolating Filter: Interpolation by a factor 𝑀 = 4, with a filter of length 22. The power 

spectrum is modelled as being constant up to 0.3𝐹𝑠 and then decreasing smoothly to zero at to 

0.4𝐹𝑠. The filter is coerced to have a response very close to 𝑀 for dc inputs by adding a large 

discrete component to the power spectrum. 

PSD.f = [0 0.3 0.4]; 
PSD.psd = [1 1 0]; 
PSD.fcos = 0; 
PSD.Pcos = 10000; 
M = 4; 
 
h = DFiltInt (M, 22, PSD); 

 Fractional Delay Filter: This 24 coefficient filter will have a delay of 8.25 samples. We use the 

same continuous power spectrum as in the previous example. The group delay of the resulting 

filter will match the desired delay of 8.25 best at low frequencies. 

PSD.f = [0 3 4]; 
PSD.psd = [1 1 0]; 
M = 1; 
Delay = 8.25; 
 
h = DFiltInt (M, 24, PSD, Delay); 
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