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ABSTRACT

The linear predictive coding of speech produces a set of
parameters (the reflection coefficients) for each analysis frame.
Quantization of thesé parameters is often performed using an
inverse-sine quantizer which minimizes the maximum spectral deviaticn
bound. Quantizers based on the expected spectral deviation bound have
been proposed in the literature but not evaluated experimentally. This
paper evaluates this quantization scheme and in addition examines the
effect of decorrelating the coefficients within each frame. It was
found that; i) the cross-correlation of the reflection coefficients is
small; ii) no bit rate reduction is achieved by decorrelation; iii)
using the expected spectral deviation bound criterion, the quality of
the reconstructed speech is higher when "inverse-sine" quantizing of
the reflection coefficients is performed than when the quantizer
minimizing the expected spectral deviation bound for either the
reflection coefficients or the decorrelated coefficients is chosen.



I Introduction

This paper examines the reflection coefficients for linear
predictive coding of speech. It is desired to find a quantization
scheme which reduces the bit rate for the transmission of a speech
signal while retaining acceptable gquality in @he cutput wéveform. Since
the perception mechanism of the ear is not well understood, modelling
speech quality in mathematical terms is difficult. One empirical
measure of speech quality that has been proposed is the LD norm of the
difference Between the log spectra of the original and coded speech.
The spectrum referred to is the frequency response of the linear
predictor [1]. Throughout this paper, we refer to L2 norms by the term
spectral deviation. An expected spectral deviation which depends on
many parameters can be upper bounded by the sum of the single parameter
expected spectral deviation [3]. The present paper deals with the
application of these fidelity criteria to several reflection
coefficient quantization schemes. It will be shown that minimum

expected spectral deviation bound quantization (MEDQ) of the

decorrelated reflection coefficients does not result in a lower bit
rate than MEDQ of the original reflection coefficients. Also, in either
of the above two schemes, there is a noticeable degradation in the
quality of the output speech when compared to speech obtained using
inverse sine quantization of the reflection coefficients under the
expected spectral deviation bound criterion. In the following section,

these ideas will be made more precise.



II The Expected Spectral Deviation Fidelity Criterion

LLet the M parameters of the system, X s m=1,...,M be denoted by
the vector x. Parameter %m will be quantized with Nm levels to form a
new parameter vector x°. The spectral deviation due to quantization is
d(x,x”). By applying the triangle inequality, the following bound on
the expected spectral deviation is derived in [3] in the asymptotic

limit of a large number of quantization levels Nm,
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The integral in (2) is minimized by a compander U(.) whose

derivative is proportional to /Esx (v)px (v) . Using this, in
m
conjunction with the constraints on U(.) at the limits of integration,
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Denote the input speech autocorrelation coefficients by r(n) and
the resulting mean square prediction error by o . Consider the sequence
formed by the difference a (x +ax ) - a_(x ) where the a,“s are the

: i m m i m i
linear prediction filter coefficients. Denote the autocorrelation of
this sequence at lag n by PA(n). Then, for the spectral deviation, the

expression for the sensitivity function s (y) can be shown to be [2]
X
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Equation (4) involves partial derivatives of the form 3_3;.
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IIT A Comparison of Three Quantization Schemes

(1) The reflection coefficients (denoted by ki).

For the k “s one can easily prove that (see [2])
1 .

1= a (ke +1) - a (k) .



Using such a set of parameters greatly simplifies the computation
of (). Two quantization schemes were tested.

a) Inverse sine quantization (referred to as scheme 1a):
Uk,) = ¢ Sin Tk
i i i

Knowledge of U(x) and the number of levels ailows one to
compute the quantized value of a variable x. The above choice of
U(x) minimizes the maximum spectral deviation bound when the
gain of the linear prediction filter is independently quantized.
Letting the limits of integration in (2) be the points gi and

k. , the normalization of U(.) requires that
3

1/c. = Sin &, - sin Tk,
1 1’ -1

Then dU/dkiz ci/(T-ki ) is used in (2) to calculate the the

number of quantization levels.

b) Minimum E(ﬁtot) quantization (MEDQ for short) of the k. s
i
(referred to as scheme 1b):
In this scheme the upper bound on the spectral deviation is
minimized using (3). Tests based upon this scheme will

complement the theoretical development in [3].
(2) The decorrelated reflection coefficients (denoted by.g . )
. 1

For the g “s, only MEDQ was performed (scheme 2). It has been
1

observed that the reflection coefficients are not independent, with



)
the dependency being greatest between kl and k2 [3]. Decorrelation
can be used to achieve a certain measure of independence between
them [4]. The decorrelation operation can be viewed as a

transformation,

0, = g, (kpheenky) -

i
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This partial derivative can be computed since ggl(.) can be readily
determined. The transformation which decorrelates the reflection
coefficients is orthogonal. As a result, the following relation can

be shown to hcld

Since the trace of a matrix is constant under a similarity
transformation (here it represents the sum of the variances) this
implies that the variation becomes more concentrated in a few of

the 6. s.
i

Sambur has applied decorrelation to the log area ratios (where
an area ratio = (1—ki)/(1+ki) ) as well as to the k;’s [4,5]. Using
12 parameters, he observed that 90% of the total variance is

contained in 5 or 6 of them. If logNi were proportional to

¥ This study considers only intra-frame correlations.



/vg;“ig‘, then the above inequality would imply that decorrelation
reduces the bit rate. Decorrelation would then be attractive as
long as the gathering of the necessary statistics is done
infrequently. Fortunately, the p.d.f. of the ki's is not very
speaker and context dependent. In fact, McCandless [7] reports that
the statistics are much more dependent on-the>amount 6f background
noise in the input speech. Keeping the noise to a minimum, and
assuming that the correlation among different ki's is also
reasonably independent of speaker and content, the required

eigenvector analysis can be predetermined.

IV Experimental Results

Analysis Conditions

In all, 14 utterances of approximately 2 to 3 seconds in duration
by 3 male and 2 female speakers, were used for these tests. The input
speech was bandlimited to 5 kHz and sampled at 10 kHz. Adaptive
pre-emphasis and windowing (using a Hamming window) were then applied.
This was followed by an autocorrelation analysis (50 frames per second)

with a filter order of 14 as suggested in [6].



Parameter Statistics

Statistics necessary in the evaluaﬁion of the covariance matrix
were gathered about the ki's. Then in order to study the dependence of
the ki's on the text and speakers, statistics were gathered for single
utterances and also for all 14 utterances (referred to as(composite
statistics). The mean of all ki's was computed us;ng a time average
over N frames, and the cross-correlation was obtained by a time average
over N-1 frames. The values of Bki and Varki>are shown in Table I for
single utterance and composite statistics. Comparing the 12 variances
from Table I with those given in [5], it is found that the sum of the
12 variances is roughly the same and is also distributed in a similar
way. The probability distribution of the ki's does not depend on the
filter order M for i<M, i.e. taking two arbitrary filter orders Ml and

2

and 1b give the histograms of the first and second reflection

M_ , the distributions are the same for 15i§min(Ml,M2) [6]. Figures 1la

coefficient, respectively. Note that the histogram is zero over part of
the allowed ranges of the parameters. The general shape of these

histograms is in agreement with those of [2,3].

Assuming that log Ni is directly proportional to the standard
deviation of Xi’ Table II gives the potential percentage reduction in
bit rate that can be achieved when the ki's are decorrelated. For
composite statistics, the potential bit reduction is less than for the
single utterance statistics. From these percentages, it can be seen
that even for single utterance statistics, the ki's are not very

correlated. Table III lists characteristics of the Gi'sa The ei's are
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Figure 1
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TABLE 11

SUM OF STANDARD DEVIATIONS

Single Utterance Statistics Composite Statistics
Utterance #1 | Utterance #2
T Varei .783 .919 ' .888
A A Z%Varki 3.085 3.336 3.308
ZVVarei 2.881 2.976 3.181
Ba = (/Varki—learei) .204 .360 127
Potential Bit rate
reduction B/A (%) 7 11 4

10



TABLE III

SINGLE UTTERANCE STATISTICS

(Utterance #1)

- Allowable
Mean Variance ; Range

ES; A | | (-Ry5+R;)
.451 .224 + 2.695
-.033 .160 | + 2.619
.190 .091 + 2.954
-.124 | .055 + 3.072
.243 .049 | + 2.722
.008 .036 + 2.947
070 .033 + 2.930
.103 .027 + 3.171
.055 .023 + 2.696
-.081 .019 . +2.892
-.027 .016 + 2.871
-0.30 .013 + 2.364

-.090 .010 +2.994
.025 | .007 + 2.598

i1



listed in order of their decreasing variance Xi. Notice that their
range is always much larger than Ai. For the smallest ki’ it is in fact
larger than ki by a factor of 30. Figures 2a and 2b are the relative

frequency of occurrence histograms of the two largest variance

decorrelated coefficients using composite statistics. It is expected

that the probability distributions of the Bi's also do no£ depend very

much on the value of M if the latter is large because the variance and
the cross-~correlation of the ki's decrease as i increases. Again, as
for the ki's, the histogram is zero over part of the allowed range of

the parameters.

Parameter Quantization

Figures 3a and 3b are the min E(ﬁtot) quantizer companding curves
for the first and second reflection coefficients. The general shape of
the plots is in agreement with those of [2,3]. As i increases, the
quantizer curves of the ki's>become more symmetrical about Eki. In
order to determine the levels and boundaries, it is only necessary to
know the shape of the quantizer curve although its correct
normalization is required in computing the number of levels. It can be
seen from Fig. 2a that the quantizer curve of Fig. 3b is flat outside

the range over which the histogram is nonzero. (Recall that dU/dv is

proportional to /Esx (U)DX (v) )
m m

Fig. 4 is the min E(Etot) quantizer companding curve of the

largest variance ei. The quantizer curves for the smaller variance

1z
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Figure 3
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Figure 4

Quantizer Companding Law

4
¥
'

s 1 i ;. ; i

-1 [y i

N

Largest Variance Decorrelated
Reflection Coefficient

Quantizer companding curve for the
decorrelated reflection coefficient

15



parameters are even more symmetrical about Eei and in addition their

shape becomes more similar to that of the quantizer curves for the

The number of quantization levels necessary to achieve a 3.5
dEf upper bound, E(Bkot)’ on the spectral dev;ation was calculated from
(2) or (3) as appropriate. TableIVa is for scheme la (inverse sine
quantization of the ki's) and scheme 1b (MEDQ of the ki's). Table IVb
shows the same information for scheme 2 (MEDQ on the decorrelated
coefficients) and, in addition, the mean, the variance and the allowed

range of 8i's. These results shown are for composite statistics.

Converting levels to bits, with a frame rate fr, the total bit

rate is

N~

i

When the error signal is left unquantized, the total number of bits

required if EG%O } is not to be exceeded, is 2570 bits/sec for scheme

t
la, 2250 bits/sec for scheme 1b, and 2380 bits/sec for scheme 2. Scheme
1b is therefore slightly superior to scheme 1a as predicted in the

%¥ Spectral deviations in the range 3 to 4 dB have been found to give

acceptable results [1,2,3].

16



TABLE IVa

NUMBER OF LEVELS AND THE NON-ZERO INTERVAL

FOR THE REFLECTION COEFFICIENTS

Scheme Ta Scheme 1b Lower Limit Upper Limit
i N N K K
1 33 27 -.98 .72
2 26 22 ;.85 .97
3 21 16 -.86 .76
4 18 13 -.70 .85
5 17 13 -.79 .73
6 13 10 -.53 77
7 13 8 -.57 .73
8 11 8 -.50 .75
9 12 9 -.60 .80
10 11 8 -.52 .84
11 9 6 -.53 .65
12 7 5 -.48 .52
13 7 4 -.57 .38
14 5 4 -.36 .41

17



TABLE IVb
COMPOSITE STATISTICS AND NUMBER OF LEVELS FOR THE
DECORRELATED REFLECTION COEFFICIENTS

Mean Variance Lower Limit Upper Limit 8 ;gvr:agg]e Scheme 2
Ee. A 8, R (-R;,+R.) N
.495 .251 -0.856 1.376 + 2.085 35
-.027 .138 -1.055 1.001 + 2.075 25
-.23] 17 -1.122 734 + 2.158 18
-.130 .080 -1.048 .728 + 2.912 14
.104 .062 -.756 .952 + 2.800 14
-.022 .056 -.871 .813 + 2.904 | Rl
.032 .037 -.653 | .823 + 2.839 8
.069 .033 -.512 .796 + 2.844 9
.039 .03] -.580 .603 + 2.233 8
054 .026 -.427 .655 ‘ + 2.848 8
-.078 .019 -.524 360 + 3.276 8
-.302 .018 -.507 .53 + 2.414 6
.061 .015 -.425 .454 + 2.836 6
-.012 .011 -.376 .430 + 2.688 - 5

18



theoretical study of [3]. Unfortunately even though

\fk
i ¥

the bit rate for scheme 1b is still less than that of scheme 2 given a

M M
z =

z \IVarki ‘_.Z
i=1 i=1

fixed bound E(Btot)' The final conclusion must however, be based on

¢

subjective assessment of the speech quality.

Subjective Results

This experiment allows a subjective comparison of processed speech
in which only the reflection coefficients are changed due to different
quantization strategies. For one particular utterance, scheme la, 1b
and 2 all resulted in quality almost indistinguishable from that of the
original utterance. However, for most of the utterances that were
processed, it was found that scheme la produces speech of quality close
to that of the original, scheme 1b resulted in the most discernable
degradation while scheme 2 was only slightly superior to scheme 1b.
Note that the synthesizer used the error signal as the driving
function, and the quéntizers were designed based on the composite
statistics. Then, to check for dependence on the method of determining
the statistics, the composite statistics were replaced by single
utterance statistics. Among all utterances, the worst performér under
composite statistics was selected for this study. The performance did
not improve, indicating that the that speech quality does not depend on
which statistics are used to compute the ei's. This should not be

surprising in view of the faect that the ki's are never very correlated.

19



VY Conclusions

Using the E(Btot) fidelity criterion, it has been verified that
scheme 1b results in a slightly lower bit rate than scheme la, as is
expected from the results of [3]. Decorrelation of the ki's results in
a total bit rate which is lower than that usipg scheme 1a but
unfortunately, is higher than that using scheme 1b. Recall that when
the number of bits is proportional to the standard deviation, the
percentage reduction in bit rate is not substantial for either single
utterance or composite statistics since the cross-correlations in the
reflection coefficients are noﬁ pronounced. It is found that scheme 2
results in speech quality slightly superior to that using scheme 1b,
while scheme la surpasses scheme 2. In fact, the latter method results
in speech quality fairly close to that of the original utterance.
However, recall that scheme la was not designed to minimize the E(ﬁtot)
criterion but rather, to minimize the max(ﬁtot) criterion. The fact
that, under the Efﬁtot) criterion, scheme 1a is subjectively better
than scheme 1b indicates that max(ﬁtgt) may be a better objective error

criterion.

The frame to frame dependence of the ki's is even more significant
than the cross-correlation within a frame [3]. Variable frame rate
techniques [6,7] and frame to frame DPCM coding [4] can be ﬁsed to take
advantage of the frame to frame correlations. Hence, if decorrelation
is to be performed, it should be followed by variable rate and/or DPCM

on the decorrelated coefficients [4].

20



This study examined only a few of the possible quantization
strategies for the reflection coefficients. However, it is felt that it
is unlikely that other transformations of the ki's will result in any
significant bit reduction for independent quantization of the resulting

coefficients.
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