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The Computation of Line Spectral Frequencies

Using Chebyshev Polynomials

Abstract

Line spectral frequencies provide an alternate parameterization of the analysis and synthesis
filters used in linear predictive coding {(LPC) of speech. In this paper, 2 new method of converting
between the direct form predictor coefficients and line spectral frequencies is presented. Both even
and odd order LPC systems are considered. The system polynomial for the analysis filter is converted
1o two even order symmetric polynomials with interlacing roots on the unit circle. The line spectral
frequencies are given by the positions of the roots of these two auxiliary polynomials. The response
of each of these polynomials on the unit circle is expressed as a series expansion in Chebyshev
polynomials. The line spectral frequencies are found using an iterative root finding algorithm which
searches for real roots of a real function. The algorithm developed is simple in structure and is
designed to ronstrain the maximum number of evaluations of the series expansions. The method
is highly accurate and can be used in a form that avoids the storage of trigonometric tables or the
computation of trigonumetric functions. The reconversion of line spectral frequencies to predictor
coefficients uses an efficient algorithm derived by expressing the root factors as an expansion in

Chebyshev poly nomials.
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3. Imtroduction

In many speech coders. the parameters of the all-zero predictor filter or the corresponding all-
pole synthesis filter are coded and sent as part of the information stream. Recently, there has been a
growing interest 1n the use of line spectral frequencies (LSF’s) to code the filter parameters for linear
predictive coding (LPC) of speech |11[2]{3]i4]. LSF’s are an alternative to the direct form predictor
coefficients or the lattice form reflection coefficients for representing the filter response.

The direct form coefficient representation of the LPC filters is not conducive to efficient quan-
tization due to the large dvnamic range of these coefficients. Instead, non-linear functions of the
reflection coefficients (e.g. log-area ratio or inverse sine of the reflection coefficient) are often used
as transmission parameters (5,. These paramerers are preferable since the reflection coefficients have
a well-behaved dynamic range. Coefficient by coefficient quantization of the reflection coeflicients
results in an efficient representation of the salient spectral features.

Line spectral frequencies are an alternate parameterization of the filter with a one-to-one cor-
respondence with the direct form predictor coefficients. The concept of an LSF was introduced
by ltakura ‘6. LSF’s have a well-behaved dynamic range and have been shown to encode speech
spectral information more efficiently than other transmission parameters {2][3}[4]|7]. This can be
attributed to the intimate relationship between the LSF’s and the formant frequencies. Accordingly,
LSF’s can be quantized taking into account spectral features known to be important in perceiving
speech signals. For instance. the higher LSF’s may be quantized more coarsely or even not trans-
mitted at all. This reduces the required bit rate with no significant effect on speech intelligibility |4].
In addition. LSF’s lend themselves to frame-to-frame interpolation with smooth spectral changes
because of their frequency domain interpretation.

The emphasis of this work 1s on the efficient computation of line spectral frequencies. This
will involve an iterative root finding algorithm for a series representation in Chebyshev polynomials.
The algorithm developed is simple in structure and constrains the maximum number of function
evaluations. These considerations are important if LSF’s are to be used in a real time environment.
The reconversion of LSF's to predicior coefficients is based on reconstructing the expansion in
Chebyshev polynomials from the root factors.

In the next section the background framework is set up for computing line spectral frequencies.
This includes an explicit formulation for odd order LPC systems as well as the even order ones.
Previous work has focussed on coding of pairs of line spectral frequencies (line spectral pairs) and

as such. only the case of even order predictors has been explicitly presented in earlier studies.



2. Line Spectral Frequencies

Although LSF’s show great promise for c..ding the LPC filier response. deriving them from
predictor coefficients is computationally more complex than deriving reflection coefficients from
predictor coefficients. Indeed. the reflection coeflicienis are a byproduct of solving for the predictor
coefficients in an autocorrelation formulation for LPX¢

The starting point for deriving the LSF's 1s the response of the prediction error filter with P

coeflicients,
P

Alz)=1- ) alk)z™" . (1)

k=1
The {a(k)} are the direct form predictor coefficients. The corresponding all-pole synthesis filter is
1/A{z). A minimum phase prediction error filter {i.e. one with all its roots within the unit circle)
has a corresponding synthesis filter which is stable.

A symmetric polynomial Fj(z) and an anti-symmetric polynomial F2{z) related to A(z) are

formed by adding and subtracting the time-reversed system function,

Fi(z) = A(z) + 2= P+ 4(z7Y) ,

Fa(z) = A(z) — 2~ P+ A(z7Y) . g
The roots of these two auxiliary polynomials determine the line spectral frequencies. The two
polynomials also have the interpretation of being the system polynomials for a P + 1 coefficient
predictor derived from a lattice structure. The first P stages of the lattice have the same response
as the original P stage predictor. An additional stage is added with reflection coefficients equal to
~1 or —1 to give the response Fy(z} and Fy(z) respectively ‘2.

Soong and Juang |2] have shown that if A(z) is minimum phase, (1} the roots of Fy(z} and F3(z)
are on the unit circle; and (2) the roots are simple and separate each other. For minimum phase
predictors, the above conditions assure that the LSF’s are well defined. In addition, any procedure
which determines an ordered set of LSF’s can be used to construct a minimum phase predictor filter.

The reconstruction of a predictor from a set of LSF’s will be discussed in a later section.

The polynomials Fy{z) and Fz{z) being symmetrical and anti-symmetrical respectively, have

roots at z = +1 and/or z = —1 which can be removed by polynomial division.
F F.
Gi(z) = —l(i_)— and Ga(z) = LZ_) , P even,
1+271 1-271
Fy(2) (#)
G](Z) = Fl(z) and Gz(z) = ﬁ \ P odd.

These polynomial divisions can be performed by additions and subtractions of the coefficients of
F1(z) and Fs(z). The resulting G,(z} and G3(z) are symmetric polynomials of even order and have
all their roots on the unit circle. These unit circle roots are simple and separate each other on the

upper semi-circle. Since the roots occur in complex conjugate pairs, it is only necessary to determine
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the roots located on the upper semi-circle The roots of interest are exp jw, for7:. 1.2. . P The
line spectral frequencies are the angular positions of the roots. 0 < w; < 7.

Fig. 1 shows the arrangement of zeros of Fy(z} and Fy(z) for both even and odd P. These
plots show the actual root positions for a voiced segment of speech (8 kHz sampling rate}. The
polynomials G;{z) and Gz(z) have the same zeros as Fi(z) and Fy(z) respectively, except for the
zeros at z = =1. It can be noted that for any order, the lowest frequency LSF corresponds to a
root of Gy(z). These plots show that for roots of A(z) near the unit circle, a pair of LSF’s tends
to bracket the angular position of the root of A(z). However, it also indicates that the difference
between pairs of LSF’s is not necessarily a good indicator of how close a root of A(z) is to the unit
circle. Interpretation of the LSF’s in terms of formant resonances for P odd is more tenuous due to
the influence of the real axis root of A(z).

A stability theorem which uses a form similar to the LSF formulation has been formulated
by Schussler {8. The auxiliary symmetric and anti-symmetric polynomials defined by Schussler
become the same as Fy(z) and Fz(z) if A(z) is considered to be a polynomial of degree P + 1 with
a(P + 1) = 0. The root locations of the auxiliary polynomials given by a direct application of
Schussler’s theorem (1.e. without appending a zero valued coefficient) and those given by a LSF
formulation are compared in Appendix A. This examination provides additional insight as to the
relationship of the LSF’s to the roots of A{z).

The cases of an odd number and an even number of LSF's differ in some details. Let the order

of the polynomials G1(z) and Gz(z) be 2M; and 2M, respectively,

M, = —213 and M., = }E) , P even,
‘ 1)
P+1 - (
M, = 5 and Mo, = P—z—-l . P odd.

Then explicitly showing the symmetry of the polynomial coefficients,

Gilz) = 1= gi(1)z™ o g (My)s ™M1 4 oo gy (1)27 (3400 4 o o2M,

(5)

Galz) = 1~ g2(1)27" oo v g2 (Ma)2 ™™ 4 oot gy(1)27BMaTH) oy o 2Me

Both polynomials are of even degree, with G1(z) contributing M) pairs of conjugate zeros and G,(z)
contributing My pairs of conjugate zeros (M; + M2 = P). On the unit circle, the linear phase term

can be removed to give two zero phase series expansions in cosines,

Gy(e™) = e M Gl (w) | o

Gale™) = e™7M: G} |

where
Gi{w) = 2cos Myw + 2¢; (1) cos (M ~ 1w =~ -+++ g (M) .

Gy(w) = 2cos Maw ~ 2g2(1) cos (M2 - 1w ~ ++ -+ g2( M) .

.9



O roots of Fi(z)
O roots of F3(z)
roots of A(z)

O roots of Fi(z)
O roots of Fa(z)
roots of A(z)

(b) P odd (shown for P =T)

Fig. 1 Root locations

Various methods to locate the roots of G} (w) and G,{w) have been suggested. Soong and Juang
[2} have proposed a numerical technique to find the LSF’s. The function values given by evaluation
of Eq. {7} are found on an “adequately fine” grid. Evaluation proceeds with a direct calculation of a
discrete cosine transform. It i1s suggested that a cosine table can be stored beforehand to speed up
the computation. Sign changes at adjacent grid points isolate intervals containing roots and further

bisection of these intervals gives an approximation to the root positions. Soong and Juang also point

-4 -



»ut that for P = 8. a closed form solution for the roots s possible. In this case. the roots of two
fourth order polynomials are sought.! However, such a closed form solution involves the computation
of transcendental functions and hence may not be appropriate in a real-time environment.

Kang and Fransen (7| have proposed two other methods for finding the LSF’s. In one method.
the autocorrelation functions of the coefficients of Gj{w) and G5(w) are used to calculate power
spectra. The locations of the local minima of the power spectra give the LSF’s. Again. the eval-
uation of the power spectrum for various values of w involves a series expansion in cosine terms.
Furthermore, the search for local minima can be very time consuming.

The second method proposed by Kang and Fransen to determine the LSF’s uses an allpass ratio

filver,
z—(P+1)A(Z—1)

R(z) = T (®)
The phase spectrum of the ratio filter is evaluated and whenever the phase response takes on a value
which 1s a multiple of 7, the corresponding frequency is an LSF. The computation of the phase
spectrum for various frequencies involves evaluating a series expansion of sine and cosine terms and
an inverse tangent operation.

The method proposed in this paper requires no prior storage or calculation of trigonometric
functions. Instead, an expansion in Chebyshev polynomials is used. The method is introduced in two

steps. In the next section, the use of a Chebyshev polynomial expansion is discussed. Subsequently

an efficient numerical algorithm to find the roots with this formulation is established.

! The fourth order polynomials are essentially expanded forms of the Chebyshev polynomial series introduced in
the next section.



3. Chebyshev Series Formulation

The use of Chebyshev polynomials eliminates the computation of trigonometric functions and/or

the prior storage of trigonometric tables. Frequencies are mapped using r = cosw. Then
cosmw = Ty, (z) , {9)

where T,,(z) is an m’th order Chebyshev polynomial in z. The Chebyshev polynomials satisfy the
order recursion.

Tk(I) = 2ITk_1(I) - Tk-g(l‘) y (10)

with initial conditions, To(z} = 1 and 73 (z) = z. The series expansions in cosines, Eq. {7), can now

be expressed in terms of Chebyshev polynomials.

Gi(z) = 2Tm, (2) = 291 (1) Ty, —1(2) = -+ + g1 (M) , (11)
Glz(i’-') = 2T, () + 292(1) Thg, -2 (2) + -+~ + 92(M2) -

Once the roots {z;} of Gi(z) and G%(z) are determined, the corresponding LSF’s are given by
w; = arccos z;. The mapping £ = cosw maps the upper semi-circle in the z-plane to the real interval
-1 +1:.. Therefore, all the roots z; lie between —1 and +1, with the root corresponding to the
lowest frequency LSF being the one nearest +1.

The Chebyshev polynomial series lends itself to an efficient and accurate evaluation which
bypasses an expansion in powers of z. Let the series to be evaluated be represented as

N=-1

Y(z)= > eTelz) . (12)

k=0

Consider the backward recurrence relationship
bk(.’[) = 2Ibk.;.1(1') - bk+2(1') -+ Ck . (13)

with initial conditions by (z) = by41(z) = 0. This recursion is used to calculate bg(z) and ba(z).
Then Y (z) can be expressed in terms of bg{z) and bo(z),

N-1
Y(I) = Z {bk(.’t) — 21’bk+1(12) +bk+2(.’t”Tk(I)

k=0

N-1

= bo(I)To(Z) -+ bl(I)T1 (I) — 2Ib1(.’L')To(I) - Z bk(z) [Tk(l) — 2z Tk_l(:z:) + Tk_z(Z)J (14)
k=2

= bo{z) — zb1(7)

_ bo(I) - bg(I) -+ Co
= 2 .

The benefit of this formulation is that errors in the evaluation of bg(z) and bs(z) tend to cancel

19.. This results in a numerically stable evaluation of the Chebyshev polynomial series. Neglecting
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the factor of 2 which does not affect root locations. each »valuation can be computed with about N
multiplies and 2N additions.

Using the above procedure to evaluate G (z) and G5(z), the numerical algorithm which 1s used
to solve for the roots can avoid altogether the need to compute cosine values. In fact as will be seen

later, the roots in the £ domain are more convenient than the w values for reconversion to predictor

coeflicients



4. Numerical Solution for the Line Spectral Frequencies

In this section. a numerical algorithm to find the roots corresponding to the line spectral
frequencies is developed. The basic task is to isolate the roots of G}(z) by searching incrementally
for intervals in which the sign changes. The search proceeds backwards from z = 1 since G}{z) has
the root nearest r = 1. The location of the root in an interval containing a sign change 1is refined
by successive bisection of the root interval. The function values are determined using the backward
recursion given 1n the previous section to compute the Chebyshev polynomials at a given argument
value as needed. In this way. only two function values at a time need be stored. Given the interlacing
property of the roots. the search for a root of G5(z) starts from the position of the root of Gi(z)
just found. The algorithm continues as before, but interchanges the roles of the functions as each
root is found.

Two different precisions must be specified for the numerical algorithm. The initial evaluation
interval, é, must be sufficiently small so that two or more roots of the same function do not occur
in the same interval. Let the roots be denoted by {z;} for ¢ = 1.2,.... P. and let them be ordered
such that z; > z,-;. The roots of G}(z) (z; with 7 odd) interlace with the roots of G5(z) (z; with ¢
even). Recall that the root nearest +1 belongs to G}(z). Then the initial evaluation interval must

satisfy

§ < miin(a:,- —Zi_2) . (15)
This guarantees that all roots can be found by examining sign changes.

A second increment, €, specifies the acceptable uncertainty in root position. This value must
be small enough that in switching the search for roots from one function to the other, a root is
not missed or roots are not interchanged in order. To guarantee this, ¢ must be smaller than the
minimum spacing between pairs of roots, one taken from each function,

€ < min{z; — T;-1) - (16)

1

Experiments with speech data were conducted to determine reasonable values for é and ¢. Five
utterances comprising 10 seconds of speech sampled at 8 kHz were used. Three utierances were
spoken by males and two by females. In all cases, a 20 ms Hamming window was used to perform
a 10’th order autocorrelation analysis. This ensures that the predictor is minimum phase {10]. The
root locations corresponding to LSF’s were determined to a high precision. A plot of G}(z) and
G4 (z) for a voiced segment of speech is shown in Fig. 2. It shows a tendency of roots to pair which
requires € to be significantly smaller than é.

Histograms of root differences are shown in Fig. 3. The extreme values of the root differences
are summarized in Table 1. These results indicate that 6 = 0.02 is sufficiently small to avoid missing

sign changes. Each interval of length 6 will be bisected to further resolve the root location. From
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Fig. 2 Plots of Gj(z) and G,(z) (P = 10)

the table, € should be chosen to be less than 0.0015, implying that 4 bisections will be sufficient
{for § = 0.02). While the worst case uncertainty in the z-domain is constant, the uncertainty in
the w-domain varies with w due to the nonlinear relationship between z and w. For the parameters
given above and assuming 8 kHz sampling, the worst case uncertainty in the LSF’s varies between 64
Hz at low and high frequencies down to 1.6 Hz at the middle frequencies. However, the uncertainy
remains less than 10 Hz for the frequencies between 200 and 3800 Hz. Kang and Fransen (7] suggest
a 10 Hz resolution in evaluating LSF’s and furthermore find that coarse quantization of LSF’s below

300 Hz does not affect speech quality.

Minimum Difference ‘ Maximum Difference
. G'(z) only 0.0232 1.121
G4(z) only 0.0564 { 1.195
G (z) and Gj(z) 0.0015 | 0.946

Table 1 Root differences

The root finding algorithm described above uses simple bisection to refine the estimates of the
root positions. This brings the root position uncertainty below the threshold €. As a last step, the
root position is estimated by linearly interpolating between the already known function values. This

results in an average error which is significantly smaller than the worst case value given by €. The
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Fig. 3 Histograms of root differences

given root finding algorithm has been formulated to limit the number of function evaluations. Using
the interlacing property of the roots, the root finding algorithm alternates between the polynomials.
The initial search for intervals containing roots uses approximately 2/6 + P evaluations. Bisection
then uses an additional {log,(6/¢)] P evaluations. For the values of § and ¢ given above, the number
of function evaluations for a 10’th order LPC system is less than 150. The actual number is somewhat
smaller than this value, since the search for roots can be terminated when all roots are found. This
generally occurs before the entire interval |1, +1; has been examined. A listing of a program that
finds the LSF’s from a given set of predictor coefficients using the algorithm described in this section

appears in Appendix B.
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The routine to find the LSF's uses an algorithm which is extremely simple in structure and in
which the number of function evaluations is relatively constant. The numerical analysis literature
abounds with more sophisticated root finding algorithms. These will tend to find the roots with
fewer function evaluations on the average. However, for most of these algorithms, the maximum
number of function evaluations required is indeterminate. For use in a real-time environment, it is
usually the worst case number of evaluations that is of concern. In addition, the more sophisticaied
algorithms come with a considerable program size penalty.

A slightly more complex root finding algorithm which combines bisection with inverse parabolic
interpolation {11} merits consideration for some applications. It can be used to refine the root
position when an interval containing a root has been identified. The worst case number of function
evaluations for this algorithm is two or three times that for simple bisection, but the average number

is smaller.
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5. Conversion of LSF’s to Predictor Coefficients

The conversion of LSF’s to predictor coefficients is less computationally intensive than deriving
LSF’s from predictor coefficients. Each LSF w; gives rise to a second order polynomial factor of the
form 1 — 2cosw;z~ Y + 272, These can be multiplied together to form the auxiliary polynomials di-
rectly. In this section, an alternate reconstruction process using the Chebyshev series representation
will be formulated. This leads to an efficient reconstruction process which takes symmetries in the
auxiliary polynomials into account.

The polynomials G {z) and G,(z) are reconstructed from their roots by successive polynomial

multiplication of the appropriate first order LSF polynomials,

M,
Gi(z) = H 2(z — Tok-1) -
v (17)
Go(z) = H 2(z — z21) -
k=1

However it is not the coefficients of the powers of z that are desired, but the coefficients of the

Chebyshev polynomial terms. Consider an N’th order polynomial expressed as a Chebyshev series,

N
Yn(z) = ) exTi(z) . (18)

k=0

Adding one more root factor to form an N + 1’st order Chebyshev representation,

Ynii(z) = 2(z — z,)YNn(z)
N+1
Z ‘Ck—l - 2I,Ck -+ Ck+1] Tk(l‘) .

k=-1

(19)

This expression has been put in this form by applying the relation 22Tk (z) = Tx_1(z) + Ti+1(z)
(see Eq. (10)). For simplicity, ci is defined to be zero for £k < 0 and k£ > N. In addition, note
that T_;(z) = Ti(z), which means that the term for k = —1 should be combined with the term
for k = 1. The bracketed term in Eq. (19) is the coefficient of the k’th Chebyshev polynomial in
the representation of ¥Yn.1(z). This equation defines one step in the recursion to determine the
coefficients of the Chebyshev representation from the root factors.

The Chebyshev series coefficients for Gj(z) and G4(z) are determined from the root factors
using the above recurrence relationship. The coefficients for G1(z) and G2(z) can be determined
directly from these coefficients {compare Eq. (5) and Eq. (11)). This involves applying a factor of
1/2 to all but one of the coefficients. In fact, multiplication by this factor can be avoided if the
recursion is modified to apply directly to the coefficients of G1{z) and G2(z).

As the penultimate step, G1(z) and G2(z) must be multiplied by the polynomial terms with

roots at £1 to give Fi(z) and Fy(z) (see Eq. (3)). This can be carried out on half of the total
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number of coefficients in these auxiliary polynomials (using symmetry) and involves only additions

and subtractions. Finally, the coefficients of the prediction error filter are determined from

Alz) = F‘(Z.)_;_&.(.,Z_) (20)

A reconstruction procedure as described above will give a minimum phase prediction error filter.
This follows directly from the fact that the reconstruction procedure is the step-by-step inverse of
the procedure to find the LSF’s. As long as the LSF’s are distinct, and Fj(z) and F3(z) are formed
from alternating roots, the minimum phase property of the reconstructed prediction error filter is
guaranteed.

A program that determines a minimum phase predictor from a set of LSF’s appears in Ap-
pendix B. This routine requires about P?/4 — P/2 multiplies and P?/2 + 2P — 4 adds.! This
procedure uses less than 1/4 of the number of multiplies and adds cited for the reconstruction
procedure suggested by Kang and Fransen |7].

An alternative to converting the LSF’s to predictor coefficients. is the use of filter structures that
use the LSF’s directly as parameters. This kind of structure implements F;(z) and Fy(z) directly
as cascaded second order sections [7]. This structure can be used as the basis of both the analysis
(prediction error) filter and the corresponding synthesis filter. However, this form of filter requires
more arithmetic operations per sample than a direct form filter using the predictor coefficients. The
tradeoff 1s then between this extra computation which occurs for each sample of data processed and
the computation required to convert LSF’s to predictor coefficients. Kang and Fransen {7] show
that for reasonable frame sizes in an LPC coder. conversion to predictor coefficients and the use of
a direct form filter structure results in a lower operations count than the use of an LSF based filter
structure. This conclusion is strengthened by the more efficient procedure to convert to direct form
coefficients described here.

The reconstruction procedure given in this section has been expressed in terms of the roots in
the r-domain. This complements the formulation for the procedure to derive the LSF’s. In any
transmission system. the LSF’s must be quantized and coded. In order to avoid conversion of the
LSF’s to the w-domain, the quantization procedure must be modified to work directly on the z;
values. Quantization of line spectral pairs with a position and difference parameter is an efficient
coding option. This same strategy can be applied to the z, values. The cosine non-linearity which
relates the w, values to the z; values is not so severe as to change the qualitative nature of the
root difference statistics over the range of frequencies important for speech coding. Quantization

of the z; values leads to the possibility of working entirely in the z-domain. This has the merit of

' These counts apply for P even. For P odd, the number of operations is slightly smaller than given by these

formulas. Note, also that the counts do not include P multiplies by the factor 1/2 and P multiplies by the factor
o
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completely avoiding the need to evaluate transcendental functions in either the conversion process

or the reconversion process.
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6. Summary and Conclusions

This paper has reported a method for converting predictor coefficients to a set of line spectral
frequencies which can be used for both even and odd order LPC systems. The proposed method
with the given interval parameters is highly accurate. The accuracy can be further increased by
performing more bisections within the root interval, of course at the cost of more function evalua-
tions. The use of an expansion in Chebyshev polynomials obviates the calculation of trigonometric
functions and, or the storage of trigonometric tables calculated on a dense grid. The evaluation of
these expansions makes use of an efficient and numerically stable algorithm. The root finding algo-
rithm which determines the LSF’s has been structured to limit the maximum number of function
evaluations for a given accuracy constraint.

The reconversion of the LSF’s to predictor coefficients is formulated in terms of a recursive
calculation of the coefficients of the Chebyshev expansion. This gives a computationally efficient
algorithm which takes into account inherent symmetries in the auxiliary polynomials. If the LSF’s
are expressed in the cosine domain, trigonometric computations can be avoided altogether. The
predictor coefficients derived from a set of distinct LSF’s give a minimum phase prediction error
filter.

As a test of the overall procedure, LSF’s were found using the procedure described in Section 4
for the speech data used previously. The analysis conditions are the same as specified earlier. The 10
LSF’s for each frame of speech were reconverted to predictor coefficients by the procedure described
in Section 5. The maximum difference between a reevaluated predictor coeflicient and the original

predictor coefficient was 3.8 x 105,



Appendix A. Relationship Between LSF’s and the Predictor Roots

The relationship between the LSF's and the roots of the prediction error filter A(z} is explored
in this appendix. In the main text, examples for real speech data have shown that there is indeed a
tendency for the LSF’s to cluster around the angular positions corresponding to roots of A(z} when
these are close to the unit circle. Some insight into the clustering phenomenon can be obtained by
examining another formulation related to that for the LSF’s.

Schussler |8] has given a stability theorem for a polynomial A(z). The stability condition is

expressed in terms of two auxiliary polynomials,

Fi(z) = A(z) + 2P A7),
- (A1)
Fo(z) = A(z) — 2 P A(z7Y) .
The polynomial A(z) has all its roots within the unit circle if and only if: (1) the roots of F;(z) and
F3(z) are on the unit circle; (2) the roots are simple and separate each other; and (3) |a(P)| < 1.7
These auxiliary polynomials differ from those used for LSF’s by being of order P instead of order
P - 1. In Schussler’'s theorem. the auxiliary polynomials are formed by adding a time-reversed
polvnomial to the original system polynomial. For the LSF formulation. the auxiliary polynomials
are formed by adding the time-reversed polynomial with an additional unit time shift. As will be seen,
the formulation derived from Schussler’s theorem has drawbacks as a pseudo-LSF representation.
Schussler’s auxiliary polynomials become identical to those in the LSF formulation if A(z) is
artificially extended with a zero valued coeflicient, a(P +~ 1) = 0. However, if Schussler’s theorem
is applied directly (without appending a zero valued coefficient). the resulting symmetric and anti-
symmetric polynomials are each of one degree lower than the Fy(z) and Fz(z) polynomials in the
LSF formulation. As a result, the roots of Schussler’s polynomials cannot be used to uniquely
reconstruct A(z). An additional quantity must be specified. This could be the coefficient a(P),
which in addition is known to have magnitude less than unity for a minimum phase polynomial.

Consider rewriting Fy(z) and Fy(z) as

Fi(z) = Alz)[1 + R(2)] .

) N (A.2)
Fal) = A)1 - R(2)] .
where the ratio filter R(z) is defined as
5oy 27 P4z
R(z) = A (A.3)

This is similar to the ratio filter defined in Section 2 (see Eq. (8)). Note that the only difference

between the ratio filter as defined here and that for the LSF formulation is an extra z~! delay term

T The last condition was added Gnanasekaran |12]. Conditions (1) and (2) by themselves also hold if A(z) has all
its roots outside the unit circle.
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in the latter. In either case, the ratio filter has an allpass response. The auxiliary polynomials have
roots at those points on the unit circle at which the phase of the ratio filter passes through multiples
of .

A simple example will point out some of the ramifications of the extra delay term associated
with the LSF formulation. Consider an A(z) which has conjugate pairs of roots near the unit circle.
1t can be shown that the LSF formulation gives pairs of roots bracketing the angle corresponding to
the roots of A(z). These LSF’s coalesce as the roots of A{z) approach the unit circle. By contrast, the
formulation that arises from Schussler’s stability theorem gives single roots at the angular position
of the roots of A(z), but in addition, roots appear midway between these positions. Fig. A.1 shows a
phase plot of both R{e’*) (LSF formulation) and R(e?*) (Schussler’s formulation) for the case of an
A(z) which has 3 pairs of conjugate roots. each with magnitude 0.99. The angular positions of the
roots correspond to w equal to /4, 7/2 and 37/4. Symbols are used to mark the places where the
phase angle crosses a multiple of 7. The frequencies corresponding to these points are the frequencies
corresponding to the roots of the auxiliary polynomials. In the vicinity of the roots of A(z), the
phase undergoes an excursion through nearly 27 radians for both formulations. However, the phase
offset due to the linear phase component in the LSF formulation is enough to substantially change

the positions of the roots of the LSF auxiliary polynomials from those for Schussler’s formulation.

-27

phase angle
&
3

—-67{

—87

0 7/4 7/2 37/4 7

w —

Fig. A.1 Phase responses of R(e?*) and R(e?) — A{z) has roots at
0.99e*77/4 0.99¢77/2 and 0.99 ¢I37/4

Kang and Fransen [4] point out that the group delay of R(z) increases in the neighbourhood of
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a pole of A(z). This clearly also applies to R(z) since R(z) differs from R(z) only by a linear phase
term. However, the previous example has shown that peaking of the group delay. or the equivalent
rapid change in phase angle, is not sufficient in itself for a pair of LSF’s 10 occur close together. The
linear phase component is an important element in keeping the LSF’s together in the vicinity of a

resonance of A(z).

phase angle

—~8m

0 /4 /2 3n/4 T

w —

Fig. A.2 Phase response of R(e’“) — A(z) has roots at rje=7m/4
0.99e*77/2 and 0.99 ¢*I37/4

The previous example can be explored further. For this discussion, only the LSF formulation
will be considered. Consider changing the radial position of the first pair of roots of A(z} (at angular
position w = 7/4) while keeping the other root positions constant. As the radius of this pair of roots
1s reduced to 0.8, the phase change occurs more gently. The lowest frequency LSF’s are now spread
apart (see Fig. A.2). When the radius is reduced to 0.5. the phase change is even more gradual
and effects the overall phase in the vicinity of w = /2. There are now three closely spaced LSF’s
near w = 7/2. As the radius is further reduced to 0.2. the LSF’s take on a different configuration.
The lowest LSF has moved to just above w = 7/4. the second and third LSF’s occur close together
near w = 7/2, and the fourth LSF lies midway between these LSF’s and the two paired LSF’s near
w = 3n/4. This root configuration shows that the sharp resonance at w = /2 is signalled by a close
spacing between the second and third LSF’s. In the coding scheme proposed by Kang and Fransen
[7], LSF’s are coded in pairs specified by a centre frequency and an offset frequency. In this case,

the coding would be applied to two pairs of LSF’s, each of which has a relatively large offset. After
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guantization of the offset. this coding scheme may not adequately represent the fact that the upper
LSF from one pair and the lower LSF from another pair are closely spaced.

This appendix has shown examples that point out that the relationship between the positions
of the roots of A(z) and the LSF configuration is more fragile than the literature would lead one
to believe. Nonetheless, this does not invalidate the use of LSF's in speech coding. Clearly, the
extensive perceptual testing carried out by Kang and Fransen shows that in spite of hurdles in the
interpretation of the LSF’s in terms of the spectral features or roots of A{z), LSF’s do efficiently

represent the perceptually important features of speech spectra.
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Appendix B. Programs to Calculate LSF’s

This appendix gives listing for programs which implementing the conversion from direct form
predictor coefficients to LSF’s and vice versa. The subroutines have been coded in standard FOR-
TRAN 77 for the most part, except that structured DO constructs have been used for enhanced
readibility. The routines have been written so as to keep the code compact and maximize clarity by
paralleling the analysis given in the main text. This style does compromise execution time to some
extent.

The routines given here represent the LSF's as w; /27 in order to be compatible with the standard
description of the LSF’s. The invokation of the inverse cosine function in subroutine PTOLSF and
the cosine function in subroutine LSFTOP can be eliminated if the LSF's are retained in the z

domain.

B.1 Predictor Coefficients to LSF’s

B.1.1 PTOLSF

* MODULE:
* SUBROUTINE PTOLSF (PRCOF, FRLSF, NPOLE)

*

*

* PURPOSE:

* This subroutine converts a set of predictor coefficients to

* a set of normalized line spectral frequencies.
*

*

* DESCRIPTION:

* The transfer function of the predictor filter is transformed

* into two reciprocal polynomials having roots on the unit circle.
* These roots of these polynomials interlace. It is these roots

* that determine the line spectral frequencies. The two reciprocal
* polynomials are expressed as series expansions in Chebyshev

* polynomials with roots in the range -1 to +1. The inverse cosine
* of the roots of the Chebyshev polynomial expansion gives the line
* spectral frequencies. If NPOLE line spectral frequencies are not
* found, this routine signals an error comditijon.

* PARAMETERS:

* PRCOF - Predictor coefficients (NPOLE values)

= (%) FRLSF - Array of NPOLE line spectral frequencies (in ascending
* order). Each line spectral frequency lies in the range
* range O to 0.5.

* NPOLE - Order of the system (at most 20)
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»*

ROUTINES REQUIRED:
CHEBPS - Evaluates a series expansion in Chebyshev polynomials
HALT - Signals an error comndition

*

*

SUBROUTINE PTOLSF (PRCOF, FRLSF, NPOLE)

PARAMETER (MXPOLE=20,PI2=6.283185307 ,RESL=0.02,NBIS=4)

REAL PRCOF (NPOLE),F1(0: (MXPOLE+1)/2) ,F2(0: (MXPOLE+1)/2)
REAL T(O:(MXPOLE+1)/2,2) ,FRLSF (NPOLE)

INTEGER NC(2)

LOGICAL ODD

* Determine the number of coefficients in each of the polynomials
* with coefficients T(.,1) and T(.,2).
* 0DD ie true when NPOLE is odd
ODD=MOD (NPOLE, 2) .NE.O
IF (ODD) THEN
NC(2)=(NPOLE+1)/2
NC(1)=NC(2)+1
ELSE
NC(2)=NPOLE/2+1
NC(1)=NC(2)
END IF

*

Let D=z#**(-1), the unit delay, then the predictor filter with
N coefficients is

*

* N n
* P(D) = SUM p(n) D
* n=1

* The error filter polynomial is A(D)=1-P(D) with N+1 terms.

* Two auxiliary polynomials * are formed from the error filter polynomial,
* F1(D) = A(D) + D»*(N+1) A(D**(-1)) (N+2 terms, symmetric)

F2(D) = A(D) - D**(N+1) A(D**(-1)) (N+2 terms, anti-symmetric)

*

*

Establish the symmetric polynomial F1(D) and the anti-symmetric
* polynomial F2(D)
Only about half of the coefficients are evaluated since the
* polynomials are symmetric and will later be reduced in order by
* division by polynomials with roots at +1 and -1
F1(0)=1.0
J=NPOLE
DO I=1,NC(1)-1
F1(I)=-PRCOF (I)-PRCOF (J)
J=J-1
END DO

*
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*

F2(0)=1.0

J=NPOLE

DO I=1,NC(2)-1
F2(I)=-PRCOF (I)+PRCOF (J)
J=J-1

END DO

N even, F1(D) includes a factor 1+D,
F2(D) includes a factor 1-D
N odd, F2(D) includes a factor 1-D**2
Divide out these factors, leaving even order symmetric polynomials,
M is the total number of terms and Nc is the number of unique terms,

N polynomial M Ne=(M+1)/2
even, G1(D) = F1(D)/(1+D) N+1 N/2+1
G2(D) = F2(D)/(1-D) N+1 N/2+1
odd, G1(D) = F1(D) N+2 (N+1)/2+1
G2(D) = F2(D)/(1-D**2) N (N+1)/2

IF (ODD) THEN
DO I=2,NC(2)-1
F2(I)=F2(I)+F2(I-2)
END DO
ELSE
DO I=1,NC(1)-1
F1(I)=F1(I)-F1(I-1)
F2(I)=F2(I)+F2(I-1)
END DO
END IF

To look for roots on the unit circle, G1(D) and G2(D) are
evaluated for D=exp(ja). Since G1(D) and G2(D) are symmetric,
they can be expressed in terms of a series in cos(ma) for D on
the unit circle. Since M is odd and D=exp(ja)

M-1 n
G1(D) = SUM fi1(n) D (symmetric, f1(n) = f1(M-1-n))
n=0
Mh-1
= exp(j Mh a) [ f1(Mh) + 2 SUM f1(n) cos((Mh-n)a) ]
n=0
Mh
= exp(j Mh a) SUM ti(n) cos(ma) ,
n=0

where Mh=(M-1)/2=Nc-1. The Nc=Mh+1 coefficients t1(n) are defined as
t1(n) = £1(Ne-1) , n=0,
= 2 f1(Nc-1-n) , n=1,...,Nc-1.
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*

The next step is to identify cos(na) with the Chebyshev polynomial
T(n,x). The Chebyshev polynomials satisfy T(m,cos(x)) = cos(nx).
Then omitting the exponential delay term which does not affect the
positions of the roots on the unit circle, the series expansion in
terms of Chebyshev polynomials is

Ne-1
T1(x) = SUM t1(n) T(n,x)
n=0

The domain of T1(x) is -1 < x < +1. For a given root of Ti{(x), say
x0, the corresponding position of the root of F1(D) on the unit
circle is exp(j arccos(x0)). '

Establish the coefficients of the series expamsion in Chebyshev
polynomials s
T(0,1)=F1(NC(1)-1)
J=NC(1)-2
DO I=1,NC(1)-1
T(I,1)=2.0+F1(J)
J=J-1
END DO
T(0,2)=F2(NC(2)-1)
J=NC(2)-2
DO I=1,NC(2)-1
T(I,2)=2.0+F2(J)
J=J-1
END DO

Sample at equally spaced intervals between -1 and 1 to look for sign
changes. RESL is chosen small enough to avoid problems with multiple
roots in an interval. After detecting a sign change, successive

bigsections and linear interpolation are used to find roots corresponding
to LSF frequencies. Since the roots of the two polynomials interlace,

the search alternates between the polynomials T(.,1) and T(.,2).
IP is either 1 or 2 depending on which polynomial is being examined.
NF=0
IP=1
XLOW=1.0
YLOW=CHEBPS (XLOW, T(0,IP),NC(IP))

DO WHILE (XLOW.GT.-1. .AND. NF.LT.NPOLE)
XHIGH=XLOW
YHIGH=YLOW
XLOW=MAX (XHIGH-RESL,-1.0)
YLOW=CHEBPS (XLOW, T(0, IP) ,NC(IP))
IF (YLOW+YHIGH.LE.0.0) THEN
NF=NF+1
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* Bisections of the interval containing a sign change
DO I=1,NBIS
XMID=0.5+ (XLOW+XHIGH)
YMID=CHEBPS (XMID, T (0, IP),NC(IP))
IF (YLOW*YMID.LE.0.0) THEN
YHIGH=YMID
XHIGH=XMID
ELSE
YLOW=YMID
XLOW=XMID
END IF
END DO

* Linear interpolation in the subinterval with a sign change
XINT=XLOW-YLOW* (XHIGH-XLOW)/(YHIGH-YLOW)
FRLSF (NF)=ACOS (XINT) /PI2

¥*

Start the search for the roots of the next polynomial at

*

IP=3-IP
XLOW=XINT
YLOW=CHEBPS (XLOW, T(0, IP) ,NC(IP))
END IF
END DO

* Halt if NPOLE frequencies have not been found

IF (NF.NE.NPOLE)
- CALL HALT ('PTOLSF - Too few frequencies computed’)

RETURN

END

B.1.2 CHEBPS

* MODULE:

* FUNCTION CHEBPS (X, COF, N)

*

*

* PURPOSE:

* This function evaluates a series expansion in Chebyshev
* polynomials.

*
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* DESCRIPTION:
The series expansion in Chebyshev polynomials is defined as

*

*

L I ]
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*

*

N-1
Y(x) = SUM c(i) T(i,x) ,
i=0
vhere Y(x) is the resulting value (Y(x) = CHEBPS(...)),
N is the order of the expansion,
c(i) is the coefficient for the i’th order Chebyshev
polynomial (c(i) = COF(i+1)), and
T(i,x) is the i’th order Chebyshev polynomial
evaluated at x.
The Chebyshev polynomials satisfy the recursion
T(i,x) = 2x T(i-1,x) - T(i-2,x),
vith the initial conditions T(0,x)=1 and T(1,x)=x. This
routine evaluates the expansion using a backward recursion
to obtain a numerically stable solution.
PARAMETERS:
(*) CHEBPS - Resulting function value
X - Input value
COF - Array of coefficient values. COF(i) is the coefficient
corresponding to the Chebyshev polynomial of order i-1
N - Order of the polynomial and number of coefficients
FUNCTION CHEBPS (X, COF, N)
REAL COF(O:N-1)
Consider the backward recursion b(i,x)=2xb(i+1,x)-b(i+2,x)+c(i),
with initial conditions b(N,x)=0 and b(N+1,x)=0.
Then dropping the dependence on x, c(i)=b(i)-2xb(i+1)+b(i+2).

Y(x)

N-1

SUM c(i) T(4i)

i=0

N-1

SUM [b(i)-2xb(i+1)+b(i+2)] T(1)

i=0
N-1

b(0)T(0)+b(1)T(1)-2xb{(1)T(0) + SUM b (i) [T(i)-2xT(i-1)+T(i-2)]
i=2



The term inside the sum is zero because of the recursive relationship
satisfied by the Chebyshev polynomials. Then substituting the values
T(0)=1 and T{1)=x, Y(x) is expressed in terms of the difference between
b(0) and b(2) (errors in b(0) and b(2) tend to cancel),

* O* X *

*

*

Y(x) = b(0)-xb(1) = [b(0)-b(2)+c(0)] / 2

B1=0.0
B0=0.0
DO I=N-1,0,-1

B2=B1

B1=BO

BO=(2.*X) *B1-B2+COF (I)
END DO
CHEBPS=0. 5 (BO-B2+COF (0))

RETURN

END

B.2 LSF’s to Predictor Coeflicients

B.2.1 LSFTOP

*

MODULE:
* SUBROUTINE LSFTOP (FRLSF, PRCOF, NPOLE)

* PURPOSE:
* This subroutine converts a set of normalized line spectral
* frequencies to the equivalent set of predictor coefficients.

* DESCRIPTION:

* The line spectral frequencies are assumed to be frequencies

* corresponding to roots on the unit circle. Alternate roots on

* the unit circle belong to two polynomials. These polynomials

* are formed by polynomial multiplication of factors representing
* conjugate pairs of roots. Additional factors are used to give

* a symmetric polynomial and an anti-symmetric polynomial. The sum
* (divided by 2) of these polynomials gives the predictor

* polynomial.
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PARAMETERS:
FRLSF - Array of NPOLE line spectral frequencies (in ascending
order). Each line spectral frequency lies in the range
0 to 0.5.
(*) PRCOF - Output of array of NPOLE predictor coefficients
NPOLE - Order of the system (at most 20)

ROUTINES REQUIRED:
CONVSM - Convolves coefficients for symmetric polynomials

SUBROUTINE LSFTOP (FRLSF, PRCOF, NPOLE)

PARAMETER (MXPOLE=20,PI2=6.283185307)

REAL FRLSF (NPOLE) ,PRCOF (NPOLE)
REAL F1(0: (MXPOLE+1)/2) ,F2(0:MXPOLE/2)
DATA F1(0)/1.0/,F2(0)/1.0/

Each line spectral frequency w contributes a second order

polynomial of the form Y(D)=1-2%cos(w)#*D+D**2. These polynomials

are formed for each frequency and then multiplied together.

Alternate line spectral frequencies are used to form two polynomials
vith interlacing roots on the unit circle. These two polynomials

are again multiplied by 1+D and 1-D if NPOLE is even or by 1 and
1-D**2 if NPOLE is odd. This gives the symmetric and anti-symmetric
polynomials that in turn are added to give the predictor coefficients.

Form a symmetric F1(D) by multiplying together second order
polynomials corresponding to odd numbered LSF's.
This procedure is equivalent to the reconstruction of a Chebyshev
polynomial representation from its root factors.
NC=0
DO I=1,NPOLE,2
A=-2.0+COS(PI2+FRLSF(I))
CALL CONVSM(F1(1) ,NC,A)
END DO

Form a symmetric F2(D) by multiplying together second order
polynomials corresponding tc even numbered LSF’s
NC=0
DO I=2,NPOLE,2
A=-2.0%COS(PI2*FRLSF(I))
CALL CONVSM(F2(1),NC,A)
END DO
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*

Both F1(D) and F2(D) are symmetric, with leading coefficient
equal to unity. Exclusive of the leading coefficient, the

* number of coefficients needed to specify F1(D) and F2(D) is:
NPOLE F1(D) F2(D)

* even NPOLE/2 NPOLE/2

*  odd (NPOLE+1)/2 (NPOLE-1)/2

*

*

IF (MOD(NPOLE,2).NE.O) THEN

**xx*x NPOLE odd
F2(D) is multiplied by the factor (1-D**2)
M=(NPOLE-1}/2

*

DO I=M,2,-1
F2(I)=F2(I)-F2(I-2)
END DO

*

Form the predictor filter coefficients
Note that F1(D) is symmetric and F2(D) is now anti-symmetric.
Since only the first half of the coefficients are available,
symmetries are used to get the other half.
K=NPOLE
DO I=1,M
PRCOF (I)=-0.5* (F1(I)+F2(1))
PRCOF (K)=-0.5*(F1(I)-F2(1))
K=K-1
END DO
PRCOF (K)=-0.5%F1(K)
ELSE

*

*

*

xxxxx NPOLE even
* F1(D) is multiplied by the factor (1+D)
* F2(D) is multiplied by the factor (1-D)
M=NPOLE/2
DO I=M,1,-1
F1(I)=F1(I)+F1(I-1)
F2(I)=F2(I)-F2(I-1)
END DO

* Form the predictor filter coefficients
* Note that F1(D) is symmetric and F2(D) is now anti-symmetric.
K=NPOLE
DO I=1,NM
PRCOF (I)=-0.5% (F1(I)+F2(I))
PRCOF (K)=-0.5* (F1(I)-F2(I))
K=K-1
END DO

END IF

RETURN

END
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B.2.2 CONVSM

* MODULE:

* SUBROUTINE CONVSM (X, N, A)

%*

*

* PURPOSE:

* This routine convolves the coefficients of a symmetric polynomial
* with the coefficients of a three term polynomial.

*

L3

* DESCRIPTION:

* This routine convolves two sets of coefficients to form
* an output coefficient array. If the coefficients are

* considered to be polynomial coefficients, this operation
*

is equivalent to polynomial multiplicatiomn.

*

* The input coefficient array contains the coefficients for

* a monic (leading coefficient equal to one), symmetric

* polynomial. The polynomial has an odd number of terms,

* X(D) =1 + x(1)D + x{(2)D**2 + ... + x{N)D*=N

* + x(N-1) D**(N+1) + ... + x(1) D**(2N-1) + D**(2N)

* Note that the polynomial is specified by only N coefficients,
* x(1),...,x(N). The other polynomial is

* Y(D) =1 + aD + D*x2

* wvhich is also a monic, symmetric polynomial with an odd number
* of coefficients. It is specified by the single coefficient a.
* The product of X(D) and Y(D) has 2N+3 coefficients. However,
* the product is also a monic, symmetric polynomial and hence can
* be specified by N+1 terms.

*

*

* PARAMETERS:

* (*) X - Input / output coefficient array. On imput, X

* contains N coefficients specifying a monic,

* symmetric polynomial with a total of 2N+1 terms.

* On output, X contains the N+1 coefficients resulting
* from the convolution of the input polynomial

* coefficients with those for a three term monic,

* symmetric polynomial. The resulting N+1 coefficients
* specify a 2N+3 term monic, symmetric polynomial.

* (*) N - On input N is the number of coefficients in the

* input array X. On output, N is the number of

* coefficients in X, (N <-- N+1).

* A - Input coefficient for a three term monic, symmetric
* polynomial

SUBROUTINE CONVSM (X, N, A)

REAL X(*)
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*

*

* ¥
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*

*  #* *

*

Consider a monic, symmmetric polynomial with an odd number of
coefficients (2N+1). This polynomial can be specified by N unique
coefficients, x(1),...,x(N). Let

X(D) = x(0) + x(1)D + x(2)D**2 + ... + x(2N) d=*=*(2N)
x(0) = x(2N) =1 (monic and symmetric)
x(1) = x(2N-1)
xkﬂj = xkﬁﬁ—n) (general term)

x(N-1) = X(N+1)

x (1) (not paired)
Consider another monic, symmetric polynomial with 3 coefficients
Y(D) = 1 + aD + D*x2

The convolution of the coefficients of X(D) and Y(D) gives another
monic, symmetric polynomial with an odd number of coefficients.
Let Z(D) = Y(D) X(D), then

z(0) = x(0) =1

z(1) = x(1) + ax(0) = x(1) + a

z(2) = x(2) + ax(1) + x(0) = x(2) + ax(1) + 1

z(3) = x(3) + ax(2) + x(1)

z(n) = x(n) + ax(n-1) + x(n-2) ... general term

z(N-1) = x(N-1) + ax(N-2)} + x(N-3)

z(N) = x(N) + ax(N-1) + x(N-2) .
z(N+1) = x(N+1) + ax(N) + x(N-1) = 2x(N+1) + ax(N)
notes:
1) z(0) need not be calculated
2) terms z(N+2),...,z(2N+2) need not be calculated since they
can be obtained by symmetry
3) terms z(3),...2(N) are of the same form as the general term
4) term z(N+1) uses the symmetry of X(D), x(N+1)=x(N-1)

Convolve the coefficients by summing shifted versions
of X(.) weighted by a. By choosing the order of the operatioms
appropriately, the result can overlay the input array X(.).
IF (N.GE.2) THEN
X(N+1)=X(N-1)
DO K=N+1,3,-1
X(K)=X(K) +A*X(K-1)+X(X-2)
END DO
X(2)=X(2)+A*xX(1)+1.0
X(1)=X(1)+A
ELSE IF (N.EQ.1) THEN
X(2)=2.0+A*X(1)
X(1)=X(1)+A
ELSE IF (N.EQ.0) THEN
X(1)=A
END IF
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* Update the number of coefficients in X
N=N+1

RETURN

END
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