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Abstract 

Blind Signal Separation is the task of separating signals when only their mixtures are ob-

served.  Recently, Independent Component Analysis has become a favourite method of re-

searchers for attacking this problem.  We review the techniques, from cumulant-based algo-

rithms to Infomax to second-order statistics, from feedback to feedforward architectures, 

from the instantaneous to the convolutional problem.  A new method for reducing the whiten-

ing effect on speech, known to occur in feedforward architectures, is introduced.  The proce-

dure also possesses significant stabilization properties, being based on performing the filter 

update in the LP-residual domain of speech.  Experimental tests are conducted, and the algo-

rithms compared. 
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1 Introduction 

Blind Signal Separation is the general problem of determining original sources when 

only their mixtures are available for observation.  Over the past 5 years, research on this topic 

has exploded due to the emergence of relatively successful separation algorithms, as well as 

the growing sentiment that the technique constitutes a universal panacea capable of every-

thing from de-noising speech to uncovering the laws of the stock market.   

The process is often termed “blind”, with the understanding that both source signals and 

mixing procedure are unknown [1, 2].  Such a statement is of course blatant exaggeration – 

indeed the assumption of some specific mixing model is the paramount piece of prior infor-

mation required, and in many scenarios even knowledge of certain source statistics is neces-

sary.  We thus begin with the channel model: 

 

Channel
H

Source 1

Source 2

Source 3

Source M

Mixture 1

Mixture 2

Mixture 3

Mixture N

 

                                             Figure 1: Block Diagram of the Mixing Model 
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The sources may be sounds, images, biomedical or financial data. Our primary interest 

will be in audio source signals, with microphones to collect the output mixed signals.   

Under this setting, the channel H may generally be construed as a linear time-invariant 

(LTI) system, though there is some activity occurring with nonlinear mixing models (see for 

instance [1, 3]).   

Three levels of complexity are discerned: 

•  H is a matrix.  We call this the instantaneous mixing model, since only the rela-

tive attenuations of sound due to the microphone-source distances are accommo-

dated. 

•  ijD
ij ijH a z−= .  This is the delayed mixing model, incorporating not only the at-

tenuation ija  between the thi  microphone and thj  source, but the travel time ijd  

as well. 

•  A matrix of FIR filters 
1

0

L
k

ij ijk
k

H a z
−

−

=
=∑ .  This is the convolutive mixing model, 

where room reverberation is accounted for. 

Further generalization admits a non-dimension preserving H: N M≠ . Another attempt 

at realism introduces a dynamic environment equipped with moving speakers: ( )t=H H .  

Finally, we may include microphone (sensor) noise ( )tn  with the model, though it is possible 

to consider noise as an additional source.  For the latter reason we do not deal with noise in 

this report; however, methods are available (see [2, 4, 5]) for estimating and eliminating such 

deteriorating effects without analyzing them as sources. 

Though many papers purport to introduce “new” methods of solution, the existing 

framework (and solutions) for blind signal separation are often the same.  Sources are mod-
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eled as random processes despite their essential deterministic mode of production1, and the 

statistical independence of these random sources is then exploited2. Specifically, the deter-

mining criterion for separation is a measure of independence, typically represented by some 

cost function J . The extremum of J, with respect to the parameters of some inverse mixing 

process, then corresponds with more or less independent outputs.  Such a system is illustrated 

in Fig 2: 

H
W

Unmixing
System

J

Cost Function
Adjust

Coefficients

Output unmixed
signals

Sources

 

                                              Figure 2: Block Diagram of a Separating System 

                                                 

1 Justification for such procedures may be found in examining the relationships between maximal descrip-

tion length, Kolmogorov complexity and entropy, see [6].  

2 For an interesting algorithm in which statistical independence of sources seems not to be required see [7].   
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Algorithms which rely on this concept, the separation-independence equivalence, may be 

classed as those performing Independent Component Analysis.  The problem of blind signal 

separation is then reduced to a mathematical optimization problem, upon which a multitude 

of tested techniques may be brought to bear. 

The principal differences rest on the varieties of cost functions utilized. Researcher A 

swears by kurtosis, B by mutual information, C by cross power-spectra, D by negentropy and 

E by log-likelihood.  In many cases these approaches are the result of superficially different 

formalisms, and can be shown to be mathematically equivalent [1]. Where real divergence 

remains, a particular path may be chosen on a case-by-case basis, depending on the require-

ments of the application (computational ease, source characteristics, stability etc.) 

The purpose of this report is to provide an exposition of these procedures and to perform 

comparative experimental tests of the algorithms.  Chapter II details the mathematical theory 

behind a number of approaches.  Section 1 deals with instantaneous mixtures, Section 2 with 

delayed mixtures and Section 3 with convolved mixtures. Section 4 overviews a variety of 

optimization techniques, prime among them the natural gradient, to vastly increase conver-

gence rate.  Section 5 delineates our own contribution to the subject: an analysis of how LP 

filtering and an LP domain weight update may be used to improve the stability and conver-

gence of feedforward adaptive deconvolution, in addition to reducing the well-known whiten-

ing effect. 

Chapter III is concerned with experimental results, obtained through simulation, roughly 

paralleling the layout of Chapter II.  The report ends with a conclusion of our work and an 

appendix containing a timeline of topics. 
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2 Theoretical Considerations 

2.1 Instantaneous Mixtures 

Let ( )ts be a vector of n independent source random processes, and ( )tx  be a vector of n 

mixtures3, obtained via: 

nxn( ) ( ),            t t= ∈x Hs H R  

Perfectly recovered outputs ( ) ( )t t=u Wx  result if =WH I .  Since the independence of 

sources is invariant to any amplitude multiplication, as well as to re-ordering within the vec-

tor, we may only expect WH = p , p some permuted and row-scaled version of the identity 

matrix.  This is the well-known indeterminacy of recovery. 

Before continuing it is apposite to discuss a point which is sometimes mysteriously ne-

glected in the literature: the non-stationary/stationary qualities of the sources.  It should be 

clear that within our framework we always speak of random processes, and not random vari-

ables.  Yet frequently one sees reference to the static “kurtosis”, or “probability density dis-

tribution”, or the “entropy” of a source as if random processes were simply a series of i.i.d. 

random variables.  Typically, all these statistics change with time, in a possibly arbitrary way.   

Speech is often said to be “non-stationary” on the inter-frame level (due to the dynamic 

shape of the vocal tract [8]) and locally “quasi-stationary” within a frame (5-20 ms intervals).  

Yet global statements such as “A histogram of typical speech amplitudes approaches a 

gamma or Laplacian probability distribution” [9], abound.  Clearly, the connotation behind 

these disparate attitudes is that stochastic attributes qualitatively differ depending upon the 

optic used.  It is thus helpful to describe a three-stage taxonomy: 

                                                 

3 We restrict ourselves to the square case, though greater robustness in the presence of noise can be ob-

tained with more microphones than sources see [33]. 
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•  On the local (intra-frame) level of duration 5-20 ms, speech may be considered to 

be a stationary random process. 

•  On a frame-to-frame level, speech is non-stationary with dynamic auto-

correlation function, local probability distribution etc.  (e.g. the voiced parts pos-

sess a gamma/Laplacian distribution, whereas the unvoiced parts are more Gaus-

sian.) 

•  On the global interval of hundreds of frames (seconds of speech), speech is a 

random variable.  Static ensemble statistics may be discerned (e.g. speech histo-

grams approach some fixed Laplacian distribution, with a fixed variance, kurto-

sis, entropy etc.).   

In addition to these ideas, some assumption of ergodicity is required [10] in order to use 

time averages instead of ensemble expectations and to justify the convergence of local aver-

ages to global statistics. 

2.1.1 Moment and Cumulant-Based Separation  

Reiterating, the crux of the Independent Component Analysis solution rests on optimiz-

ing a cost function reflecting the independence of the outputs, with respect to channel coeffi-

cients.  Classical “Principal Component Analysis”, “Karhunen-Loève Transform”, or Singu-

lar Value Decomposition” are specializations of the technique in that they require compo-

nents only to be decorrelated (linearly independent).  This rests upon diagonalization of the 

cross-covariance matrix.   

For analytic probability density functions, a necessary and sufficient condition engender-

ing statistical independence is that all higher-order cross-moments also diagonalize.  Thus we 

require (assuming zero-mean sources): 
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 1 2 3 ...( ( ) ( ) ( )... ( )) ,    1,2,3...i j k n N ijk NE X t X t X t X t Nδ= = , 

for all choices of times 1 2, ,..., Nt t t  

 Thankfully, full mathematical independence is unnecessary for auditory separation.  A 

first simplification foregoes the need to diagonalize at different times, requiring only instan-

taneous diagonalization: 

...( ( ) ( ) ( )... ( )) ( ) ,i j k N ijk NE X t X t X t X t F t δ= =  

However, such an objective still requires considerable computational power, since the 

number of components in the N-th moment tensor increases exponentially with N.  Moreover, 

the time-average estimation of higher-order statistics necessitates much larger sample sizes 

than their second-order counterparts [11].  This estimation non-robustness can cause prob-

lems with statistical series not truncated at just 4th order, leading to excessive fluctuations at 

the tail-ends of the distribution [1]. 

Instead of moments, it is often convenient to use a different measure: the cumulants of a 

random process, which possess special physical significance for Gaussian-like distributions.  

In particular, the first three cumulants kc  of a random variable are precisely the first three 

(central) moments: 

1
2

2
3

3 [ ]

c
c
c E X

µ
σ

=

=

=

 

For symmetric distributions, 3c  is zero, so one must move a step further: 

4 2
4 [ ] 3c E X σ= −  

The fourth cumulant is then the first relevant statistic higher than second order.  Normal-

ized by variance, we obtain an energy-invariant characterization of amplitude spread: 
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4
4
2 2

[ ] 3
[ ]

c E Xkurtosis
E X

κ
σ

= ≡ = −  

Suppose we wish to diagonalize the N-th order cross-cumulant tensor NT .  A variety of 

cost functions J are possible4; a particularly useful one is the sum of squares of the diagonal 

components under a rotation, which maximizes when NT  is diagonal: 

2 2 2
1 2[ ( )] [ ( )] ... [ ( )]n n n NJ c u c u c u= + + +                                                                       

where =u Wx    

The extremum is simply found via the gradient:  

( )
0

J∂
=

∂
optW

W
 

This equation, though in general nonlinear, can be iteratively solved, for instance, by any 

number of optimization routines (such as steepest ascent).  Alternatively, it is possible to use 

a Singular Value-like decomposition to diagonalize directly.  Such approaches are essentially 

the one taken in the JADE algorithm [12], by Cardoso, and the contrast function of Comon 

[13] specialized to the fourth cumulant5.  

Many cumulant-based algorithms require no adaptation, as iterative techniques are not 

necessary since the diagonalization is often a purely algebraic problem.  Still, being an ex-

plicit processing of higher-order statistics, they are difficult and non-robust, and sensitive to 

outliers [10].  Moreover, the estimation of the expectations involves a global, batch-based 

method requiring intensive computation [1].  Use of only second-order statistics reduces the 

                                                 

4 A list of criteria cumulant-based cost functions ought to satisfy is given in [15]. 

5 See [14], and the generalization to complex-valued signals and higher-orders in [15]. 
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level of complexity, but in the absence of cross-time-lag information is often inadequate for 

separation.  We thus investigate other options.  

2.1.2 Information Maximization 

In 1995, Bell & Sejnowski [16] introduced a cost function taking into account, in an im-

plicit fashion, all higher-order statistics.  Their primary novelty was to use Mutual Informa-

tion, an information-theoretic quantity, as the measure of statistical independence.  We pro-

vide a brief account of their motivation: 

The Mutual Information ( , )I X Y  is a quantity introduced by Shannon which quantitates 

the degree of overlap between two random variables, X and Y.  It is always positive, and zero 

if and only if X and Y are independent [6].  Writing the mutual information between n vari-

ables in terms of a more measurable quantity, the joint entropy 1 2( , ,..., )nH y y y , is possible 

via the chain rule: 

1 1 1( ,..., ) ( ) ... ( ) ( ,..., )n n nH y y H y H y I y y= + + − ,      which is by definition 

1 1 1( ,..., ) [log ( )] ... [log ( )] ( ,..., )n n nH y y E p y E p y I y y= − − − −  

where p is the probability density function of each variable iy . 

The above equation demonstrates clearly that simply maximizing the joint entropy of the 

outputs y=u is not the same as minimizing the mutual information, due to the interfering 

marginal entropy terms.  However, if ( )g=y u , where g is an invertible function so that 

( )( ) i
i yi

ui

p up y
∂
∂

=  (by simple Jacobian transformation), then the marginal terms can be elimi-

nated by setting '( ) ( )i
i i

i

y g u p u
u
∂ = =
∂

. 

In this case we have 

1 1( ,..., ) ( ,..., )n nH y y I y y= − . 
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Thus maximization of the joint entropy of y is equivalent to minimizing the mutual in-

formation between the components of y.  This in turn renders the outputs y independent, and, 

by invertibility of the function g, also the outputs u.   

A detailed discussion of the nonlinearity g is postponed until Section 2.4.3.  In the mean-

time, assuming an appropriate g may be found so that the marginal error terms are negligible, 

we have obtained an information-theoretic cost function: 

( ) ( ( )) [log ( ( ))]J H H g E p g= = = −y u Wx       

From here, J∂
∂W

gives a deterministic gradient ascent direction by which to determine the 

maximum.  Due to the expectation operator, however, this involves block estimation of aver-

ages over x.  An alternative attack is to remove the expectation operator, thus using stochastic 

gradient.  This gradient is perturbed by the local random motion of x, but still eventually con-

verges given the averaging effect on search directions on a global scale (Figure 3).  Stochastic 

gradient methods enjoy the special advantage of tracking capability.  

                                  

Figure 3: An illustration of the locus of a deterministic gradient (solid line), and stochastic gradient (arrowed line) 
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Our final objective function is thus: 

log{ ( ( ))}J p g= Wx  

The computation of J∂
∂W

is a straightforward exercise in matrix calculus; interested read-

ers may consult [1] for a derivation.  We produce here the ultimate result: 

1 ''( )( )
'( )

T TJ g
g

−∂∆ ∝ = +
∂

uW W x
W u

 

A gradient ascent update is then given by: 

1 ''( )( 1) ( ) ( ( ))
'( )

T Tgt t t
g

µ − 
+ = + + 

 

uW W W x
u

      

where µ  is the step-size or learning rate.  Following convention, it is useful to define the 

nonlinearity ''( ))
'( )

g
g

ϕ( = uu
u

 (termed the score function): 

1( 1) ( ) ( ( )) ( )T Tt t tµ ϕ− + = + + W W W u x      (Eq. 1) 

A similar approach, based on like-minded intuition, is to maximize the entropy of the 

outputs u relative to the Gaussian distribution.  This relative entropy is called negentropy, and 

is defined by [6]: 

N

( )( ) ( ( ) || ( )) ( ) log
( )G

G

pJ D p p p d
p

= = ∫
uu u u u u
uR

      

A special case of the Kullback-Leibler divergence, it is something of a metric measuring the 

statistical distance between a given distribution p(u) and a Gaussian distribution with the 

same mean and variance as p(u).  Lee has shown in [1] that the maximization of the joint en-

tropy of y is mathematically equivalent to the maximization of relative entropy of u; this 
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gives some physical insight into information maximization: in effect we drive the output sig-

nals as far away from Gaussian as possible. 

2.1.3 Natural Gradient Algorithm 

A much more efficient search direction manifests by post-multiplying the entropy gradi-

ent in equation (1) by TW W  [17]: 

1( 1) ( ) ( ( )) ( ) ( ) ( )T T Tt t t t tµ ϕ− + = + + ⋅ W W W u x W W  

             ( ) ( ) ( )Tt tµ ϕ = + + W I u u W       (Eq. 2) 

This results in the so-called natural gradient algorithm.  The reader should be aware that 

the natural gradient is not simply a stumbled-upon empirical heuristic, but a very general 

mathematical optimization tool entertaining wide applications.  A full explication is given in 

Section 2.4.1, but a simple intuition can be obtained by noticing the standard gradient in Eq. 1 

has different units on either side, hence a convergence depending on the axis scaling [1], 

whereas the natural gradient algorithm normalizes by W, rendering the gradient invariant to 

such scaling.  Surprisingly, this enhancement comes at lower computational cost, removing 

the need to perform a matrix inversion (compare Eq. 2 with Eq. 1). 

2.1.4 Separation Based on Second-order Statistics 

We alluded in Section 2.1.1 that second-order statistics are not usually sufficient for the 

separation of sources.  The reasoning can be formulated mathematically, following [18]:  

Assume an instantaneous mixture model of: 

( ) ( ),            nxnt t= ∈x As A R  

An intra-frame measurement of the mixed cross-covariance matrix produces: 

( ( ) ( )) ( ) ( )T T TE t t t t= ⋅ = ⋅R x x A s s A  
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Due to the symmetry of R, this gives only ( 1)
2

n n+  equations for 2n coefficients of A, 

and n auto-covariances in ( ) ( )Tt t⋅s s  (recall the sources are mutually independent).  Even 

constraining the scaling indeterminacy by setting 1,   i=1,...,iiA n= , there remain ( 1)
2

n n+  

equations for 2n unknowns. 

The above demonstrates the poverty of second-order statistics.  However, one can use 

the non-i.i.d. character of most random processes to advantage.  Suppose that a given random 

process is wide-sense stationary.  Then the cross-covariance matrix can also be measured at 

time lags, with differing results: 

( ) ( ( ) ( )) ( ) ( )T T TE t t t tτ τ τ= ⋅ + = ⋅ +R x x A s s A  

A measurement of R(0) and ( )τR  for some τ gives n(n+1) independent equations for 
2n n−  unknown channel coefficients and 2n unknown source covariances: a well-determined 

system.  The solutions may be found within a non-symmetric eigenvalue problem as de-

scribed in [18]. 

Even more interestingly, if the random process is non-stationary, instantaneous meas-

urements of the cross-covariance at various times will give independent equations without 

resorting to time-lags [4]: 

( ) ( ( ) ( )) ( ) ( )T T Tt E t t t t= ⋅ = ⋅R x x A s s A  

In particular, K measurements of the cross-covariance matrix R at times 1,...., kt t  produces 

( 1)
2

Kn n+  equations in 2n Kn n+ −  unknowns.  Sufficient conditions for well-

determinedness are possible as long there are 2K ≥  measurements. 

A peculiar landsdcape thus arises: the richer the source characteristics, the greater the 

separation capability of second-order statistics.  This is analogous to the fact that a mixture of 
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Gaussians is the most difficult to separate just because they are completely characterized by 

only two statistical parameters: mean and variance. 

A cost function can be obtained by interpreting the K instantaneous cross-covariance 

measurements ˆ ( )kR  as imperfect estimates of an underlying, dynamic ( )kR [4].  First define 

an error term: 

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T Tk k k k k k k k= − = − ⋅ = − Λ ⋅E R R R A s s A R A A , 

 and a total error 2

1
|| ( ) ||

K

k
J k

=

=∑ E ,  where the norm is the sum of squares of matrix elements: 

22|| ( ) || ( )T
ij

i j
k E trace= =∑∑E EE . 

It is then reasonable to estimate the values of the mixing matrix A and source covari-

ances ( )kΛ  by minimizing the squared error with respect to these unknowns: 

2

, ( ), 1 1

ˆ ˆ, ( ) arg min || ( ) ||
ii

K

k A k
k k

Λ = =

Λ = ∑
A

A E  

The extremum may be found be computing gradients: 

1
4 ( ) ( ) ,       2* ( ( ) )

( )

K
T

k

J Jk k diag k
k=

∂ ∂= − ⋅ Λ = = − ⋅ =
∂ ∂Λ∑E A 0 AE A 0
A

 

Note that the diagonalization function ( ( )ij ij ijdiag δΒ = Β ) makes use of our a priori 

knowledge of source independence and further constrains the gradient.  The second equation 

can be solved easily: 

1 1ˆ( ) ( ( ) ( ) )Tk diag k− −Λ = ⋅A R A         (Eq. 3) 

The first equation, however, is more complicated and probably the simplest method of 

obtaining the minimum is via (deterministic) gradient descent: 
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1
( 1) ( ) ( ) ( ) ( ) ( )

K

k

Jt t t k t kµ µ
=

∂+ = − = + ⋅ ⋅Λ
∂ ∑A A A E A
A

    (Eq. 4) 

Equations 3 and 4 are coupled; a continuous iteration between the two formulas provides 

an instantaneous separating algorithm based on only second-order statistics.  For the case of 

speech, this algorithm is not local, unlike stochastic gradient, since it is necessary to choose 

the K covariance estimates far enough apart to render independent equations.  
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2.2 Delayed Mixtures 

Adopting the same source assumptions as in Section 2.1, the mixing process becomes: 

1
( ) ( ),           1,...,ij

n
D

i ij j
j

x t a z s t i n−

=

= =∑       (Eq. 5) 

A simplification is afforded, in analogy to the arbitrary scaling indeterminacy of Section 

2.1, by realising that only relative delay is significant.  Thus with no loss of generality6 we 

consider exclusively cross-delays: 0iiD = .  This constraint also removes the delay ambiguity 

in the separated solution.   

One may ask why the pure delay case should be studied given that the delay operator 
Dz−  is a special case of general convolutional mixing.  The answer is it may be useful for 

more general FIR filtering.  At a sampling rate of 16 kHz, a meter of distance in air corre-

sponds to a delay of 50 taps.  These are 50 additional filter coefficients which must be ap-

pended to each deconvolving filter: a total of 250n additional coefficients to adapt.  Thus it 

seems pertinent to study a scheme for adaptive delays in the hope that redundancy may be 

removed in the later problem. 

The separation of delayed mixtures is not much more difficult than for that of instanta-

neous mixtures.  The principal quandary rests in the selection of an un-mixing process.  

While a feedforward design is possible, we emulate [19] in the use of the following feedback 

network, here displayed in the 2x2 case: 

                                                 

6  Nearly no loss of generality.  It should be noted that this assumption of relative delay provides con-

straints on the nature of the channel assignment: i.e. that the “direct” source-microphone channels should corre-

spond with the shortest paths so as to eliminate “negative delays” from equation descriptions. 
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+

+
W22

W11X1

X2

d21

d12

W12

W21

U1

U2

 

                          Figure 4:  A feedback separation network with adaptive weights and delays 

 

This network computes the output: 

1
( ) ( ) ( )

n

i ii i ij j ij
j
j i

u t w x t w u t d
=
≠

= + −∑        (Eq. 6) 

From Eqs. 5 and 6 it is not hard to see that separation will occur if the adaptive delays 

ijd  converge to the mixing delays ijD , for all ,ii jjw w i j= , and ,  for ij ijw a i j= − ≠ .  Essen-

tially the direct source component of ix  is used to subtract the indirect component from jx .  

The direct forward weights iiw  manipulate the overall scaling factor.   
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Again, by choosing a cost function J, a stochastic gradient algorithm can be derived.  

Once more, the information-theoretic objective log{ ( ( ))}J p g= u will be considered.  The 

derivations for the gradients 
ij

J
w
∂
∂

,
ij

J
d
∂
∂

 are trivial7; we quote the final result: 

''( ) 1 ,  for all 
'( )

i
ii i

i ii

g uw x i
g u w

∆ ∝ +        (Eq 7) 

''( ) ( ),  for all 
'( )

i
ij j ij

i

g uw u t d i j
g u

∆ ∝ − ≠       (Eq 8) 

''( ) ( ( ))
'( )

i
ij ij j ij

i

g u dd w u t d
g u dt
−∆ ∝ −       (Eq 9) 

These 3 equations define the standard gradient feedback Infomax algorithm for the separation 

of delayed sources.   

                                                 

7 There is a slight difficulty when taking the delay derivative however, since the outputs in the feedback 

system are functions of not only the current time but previous time values as well.  Backwardly-expanded time 

derivatives are needed to fully account for all contributions; however, this added information may not aid sig-

nificantly and indeed may hinder convergence [19].  Here we consider only the simpler gradient rule. 
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2.3 Convolved Mixtures 

Here, the mixing process assumes the form: 

1

1 0
( ) ( )

n L

i ijk j
j k

x t a s t k
−

= =

= −∑∑         (Eq. 10) 

The assumption of a full matrix of mixing FIR filters 
1

0

L
k

ij ijk
k

H a z
−

−

=
=∑ models the most realis-

tic scenario for acoustical signals.  As with delay, the solution to the convolutional problem is 

in principle no more difficult than the instantaneous case: an inverse filtering system sepa-

rates, adapting the filter coefficients by optimizing some cost function.  In practice however, 

it is a far more formidable procedure since the interference from other sources must be can-

celled not at a single lag, but at all lags up to the filter length L.  This can be large: thousands 

of taps. 

Moreover, the scaling indeterminacy of the outputs is exacerbated to an arbitrary filter-

ing indeterminacy since filtered versions of original sources are still mutually independent.  

In practice, the ambiguity is not as dire as it seems and will depend on the statistics of the 

source.  For temporally correlated data, in particular speech, the term “arbitrary filtering” 

ought to be replaced with “whitening”.  We will explicate on this point in far greater detail 

later (Section 2.5, p. 36); for now it suffices to note that most of the distortion imparted by 

many signal separation algorithms comes in the form of temporal decorrelation. 

Blind deconvolution algorithms can be divided into two main categories: those which 

perform all operations in the frequency domain, including the separation, and those which 

process the data in the time domain, using the frequency domain only for certain aspects 

(such as performing fast convolution).  For Infomax species, a simple classification comes 

from examining the form of the nonlinearity ''( ))
'( )

g
g

ϕ( = uu
u

.  If u is a frequency domain quan-

tity, then the separation optimization is executed in the complex frequency domain, relegating 
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it among the first category of algorithms.  If u is a time-domain output, then separation is per-

formed in the time-domain and the procedure belongs to the second class. 

The first class of algorithms is rooted in the following idea: 

Writing the convolutional mixing in terms of FIR polynomial matrices: [20] 

( ) ( )* ( )z z z=X A S  

A further decomposition results in: 

( ) ( )* ( )f f ft t t=X A S . 

This is an instantaneous signal separation problem for each frequency bin f for every short-

time Fourier transform of the signal about the time point t [21].  Thus the convolutional prob-

lem can be broken up into many simpler problems, solvable by any of the methods outlined 

in Section 2.1.  There is, however, an associated difficulty: permutation indeterminacy now 

appears at each frequency bin.  A rigorous solution is still awaited, though there exist heuris-

tic rules [21] and a few application-dependent methods [10] to overcome the problem. 

Another difficulty, of pertinence only to Infomax algorithms, is what form the nonlinear-

ity ''( ))
'( )

g
g

ϕ( = uu
u

 takes in the complex domain.  The question has analogues with the question 

of complex activation functions in neural networks [11], and a set of desiderata has been 

formulated in [22]. 

Due to such intractables, we do not investigate here frequency-domain algorithms, but 

devote space to two types of time-domain architectures. 

2.3.1 Feedback Architecture 

Torkkola in [23] addressed the problem of multichannel blind deconvolution with the 

following feedback network (shown in the 2x2 case), suitably generalised from Figure 4: 
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                           Figure 5: A feedback separation network employing adaptive cross filters 

The output of this network is: 

1 1
( ) ( ) ( )

n M

i i i ijk j
j k
j i

u t w x t w u t k
= =
≠

= + −∑∑       (Eq. 11) 

Here, only cross-filters ,  ijw i j≠ , are full FIR filters performing separation; the direct 

filters iiw  are used, as in the case of the adaptive delay feedback system, for gain control [1].  

This reduction of the direct filters to mere scaling coefficients ensures no filtering is applied 

to the reverberated version of each source, implying a reduction in the whitening effect (as 

well as any dereverberation).  Whitening is also avoided in this configuration since the output 

of a cross filter is summed to a branch different to that of its input origin.  Thus the algorithm 

removes redundancies across sources, and not within the source [23].   

The Infomax algorithm relevant to a feedback deconvolution architecture may be com-

puted by evaluating the gradient for, as usual, log{ ( ( ))}J p g= u .  Consulting [23], we have as 

the final step: 
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'' 1( )
'( )

i
ii i

i ii

g uw x
g u w

∆ ∝ +         (Eq. 12) 

''( ) ( )
'( )

i
ijk j

i

g uw u t k
g u

∆ ∝ −         (Eq. 13) 

Lee [1] has noted the feedback architecture is only capable of separating minimum-phase 

systems: causal and stable mixings with causal and stable inverses.  A room channel in which 

the echo is louder than the source signal gives rise to non-minimum phase transfer functions 

since there will exist zeroes lying outside the unit circle.    

Another problem with feedback systems is the difficulty in incorporating instantaneous 

cross-filter feedback weights.  Strictly speaking, the output u(t) is defined in terms of its pre-

sent value as well as past values; however, this is nearly impossible to implement, requiring a 

host of computationally intensive special cases.  Eq. 11 exhibits this difficulty, with cross fil-

ters beginning at time lag 1 instead of 0.  Thus each “leading” cross weight is applied only 

about the mixtures at the previous time step, rendering it impossible to precisely cancel out 

interference at the current time point.  Such a mechanism is not particularly damaging if the 

signal is temporally correlated (i.e. signal variation is small between adjacent time points), 

but fails completely in the case of white sources [1]. 

A feedforward system can also learn more general inverses than the feedback case, since 

feedforward FIR filters can approximate an inverse for a non-minimum phase mixing func-

tion.  White sources are also not a problem here due to the lack of recursive definitions.  We 

consider such an architecture next. 

2.3.2 Feedforward Architecture 

A feedforward FIR unmixing system produces outputs of the form: 

1

0
( ) ( )

L

k
k

t t k
−

=
= −∑u W x  

This corresponds with a matrix of FIR filters, displayed explicitly in the 2x2 case: 
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                                                      Figure 6: A feedforward matrix of filters 

Here kW  denotes the usual matrix of elements ijkW :  k-th lag of the filter connecting the j-th 

source to the i-th microphone.  Bell & Sejnowski in [16] derived a standard gradient algo-

rithm for multichannel blind deconvolution by straightforward gradient calculation of the in-

formation-theoretic cost function. 

We are interested mainly in the natural gradient algorithm, however, due to Amari et al 

[24].  Its derivation is based on examining the geometry of LTI filters in the z-domain: 

( ) k
k

k
z z

∞
−

=−∞
= ∑W W ; because the natural gradient depends upon the parameter space, our in-

formation theoretic cost-function must also be formulated in the z-domain.  The standard gra-

dient ( ( ))J z∇ W which follows is then post-multiplied, not by TW W as in Section 2.1.3, but 

by 1( ) ( )T z z−W W  to form the natural gradient.  A proof is omitted here, brave readers are re-

ferred to [24]; see also discussion in Section 2.4.1. 

For the final stand, a computationally tractable update is given in [24]: 

( ( 1)) ( )T
k k t L t kϕ∆ = + − + −W W u p       (Eq. 14) 

where ( )
1

1
0

( ) ( )
L T

L q
q

t t q
−

− −
=

= −∑p W u        (Eq. 15) 
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These two equations constitute the Natural Gradient Infomax Feedforward algorithm for 

convolved sources. 

2.3.3 Block Implementations 

The natural gradient algorithm as delineated above updates the un-mixing filters every 

time a new sample vector x is presented; an alternative strategy is to average the data over a 

block [ ]( ),..., ( )t t M+x x and then update W.  Though this slows the rate of convergence in 

real-time, there exist at least two reasons for such implementation: 

1) FIR block adaptive filtering can be employed efficiently in the frequency domain. 

2) The use of blocks to average data increases the stability of an algorithm by minimiz-

ing the influence of random variations in the signal.  [1] 

Na et al [25] outline the details for producing a block implementation of Amari’s natural 

gradient algorithm.  This involves writing the update as an averaged sum of data, then using 

well-known overlap-save methods as outlined, for instance in [11], to compute fast correla-

tions and fast convolutions.  It is important to note that this is still a time-domain algorithm, 

since ϕ  is formulated in the time-domain; the frequency-domain is only brought to bear as a 

useful aid in filtering. 

We present a succinct summary of the Block Natural Gradient Algorithm; technical de-

tails may be found in [25]. 

1. Initialize the un-mixing filters in the frequency domain,
0

( )|b
b

=
W , where b stands 

for block number. 

2. Given a deconvolving filter length of L, compute the Fourier transform (all trans-

forms are length 2L for 50% overlap) of two blocks of the input: 

   
( 1)-th block -th block

( ) {[ (( 1) ,...., (( 1) 1)]}
b b

b b L b L
−

= − + −X F x x!"#"$ !""#""$  
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3. Calculate the frequency-domain output ( )bU : 

  
1

( ) ( ) ( )
n

i ij j
j

U b b b
=

=∑W X% , where %  denotes the component-wise multiplica-

  tion between two vectors. 

4. Compute the b-th block of the time-domain output ( )bLu : 

  1( ) last  elements of { ( )}i iu bL L U b−= F  

5. Compute ( )bLp : 

  1

1
( ) first  elements of { ( ( )) ( )}

n

j ij i
i

p bL L b b− ∗

=
= ∑F W Y% , where * denotes com-

  plex conjugate. 

6. Form the frequency-domain version of p : 

  
( 1) th block th block

( ) {[ (( 1) ,...., (( 1) 1)]}
b b

b b L b L
− − −

= − + −P F p p!"#"$ !""#""$  

7. Compute the temporary frequency domain quantity: 

  &
 zeros

( ) {[0,...,0 , ( ( )),..., ( (( 1) 1))]}
L

b bL b Lϕ ϕ= + −Φ F u u  

8. Calculate the gradient: 

  1( ) first  elements of { ( ) ( 1) ( )}ij ij i jbL L b b b∗−∆ = + −W F W Φ P%   

9. Update the filters: 

  &
 zeros

( 1) ( ) {[ ( ),0,...,0]}T
ij ij ij

L

b b bLµ+ = + ∆W W F W  

10. Return to step 2, incrementing the block number. 
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This concludes our overview of significant algorithms for Blind Signal Separation.  

Readers acquainted with the field will note that we have not said anything about the plethora 

of deconvolution procedures using only second-order statistics.  Lack of space and time has 

not permitted the inclusion; they are, however, a straightforward generalization of the con-

cepts presented for the instantaneous case in Section 2.1.4. 
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2.4 Optimization Strategies 

Speed of convergence is a highly important issue for online adaptation, even in slowly 

changing environments.  Since Independent Component Analysis reduces to an optimization 

problem for the vast majority of cases, it is useful to examine possible approaches for solving 

the system of equations: J∂ =
∂

0
W

.  Except for Section 2.4.3, we do not specifically refer to 

the Infomax technique but rather any algorithm based on cost function optimization. 

2.4.1 The Natural Gradient 

Consider the Euclidean vector space n' .  Define a cost function : nJ →' ' .  It is well-

known that the gradient 
1 2

( ) , ,...,
n

J J JJ
x x x

 ∂ ∂ ∂∇ ≡  ∂ ∂ ∂ 
x  gives the direction of steepest-ascent at 

the point x, making it a prime candidate for the search direction8.  However, what is not well-

known is that if one can formulate the cost function in terms of nxn matrices (i.e. for even 

n, 2 2:
n nx

J →' ' ), the direction of steepest-ascent is not given by J∇ , but by the natural gra-

dient, a quantity due to Amari. 

A simple example concretizes the distinction: 

Let 1 2 3 4 1 4 2 3( , , , ) ln | |f w w w w w w w w= − .  One can easily compute the gradient as: 

34 2 1

1 4 2 3 1 4 2 3 1 4 2 3 1 4 2 3

, , ,ww w wf
w w w w w w w w w w w w w w w w

 − −∇ =  − − − − 
   (Eq. 16) 

However, we may also formulate f as a matrix function: 

                                                 

8 [26] has noted that the conjugate gradient search direction, which also only makes use of gradient 

information, is often more efficient.  
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( ) ln | det( ) |f =W W , whose gradient is: 

1( )Tf −∇ =W W ,         (Eq. 17) 

a consideration in complete agreement with Eq. 16 under the mapping 

11 1 12 2 21 3 22 4,  ,  ,  ww w w w w w w= = = = . 

Equation 17 is not the steepest ascent direction in the matrix space, however.  It may ap-

pear we have simply changed notation, but we have really changed spaces: from that of vec-

tors to that of matrices.  The latter possess a group structure which the former lacks: a multi-

plication structure.  This (Lie) group structure modifies the very geometry of the parameter 

space; the set of variables behave like a curved manifold with a metric tensor ( )g W .   

Of course in this new space the standard gradient cannot provide the direction of steepest 

ascent, valid as it was only in a Euclidean geometry.  Amari in [17] proved by Lagrange mul-

tipliers that the direction of steepest ascent is given by: 

1( )f f−∇ = ⋅ ∇W
Wg W  

This is the natural gradient.  For those familiar with the terminology of differential ge-

ometry, f∇ W is the vector gradient or contravariant gradient, whereas f∇ W is the one-form, 

or covariant gradient.  The two are duals of one another. 

  Amari analyzed the form the metric tensor assumes in a variety of contexts, such as pa-

rameter estimation of probability distributions and multilayer perceptrons in a neural net-

work, finding that the geometric space often attains a Riemannian character.  In both cases 

the Fisher Information Matrix produces a metric.  For instantaneous Blind Signal Separation, 

where the parameter space is the set of non-singular nxn matrices, he proved in [17] 

that Tf f∇ = ∇ ⋅W
W W W , whereas for convolutive separation the required modification is: 

1( ) ( )Tf f z z−∇ = ∇ ⋅ ⋅W
W W W  [24]. 
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The moral behind this discussion is that if one can equip the parameter space with a 

richer structure (such as the matrix algebraic structure), convergence speed can be increased.  

Empirical experiments have shown that the natural gradient is vastly superior to the standard 

gradient for optimizing matrix cost functions [27].   

2.4.2 Newton Iteration 

Another interesting path is afforded by Newton’s Method.  Suppose we seek the solution 

of: 

( ) =F W 0 ,  where J∂=
∂

F
W

. 

Newton’s method states the answer can be found recursively via: 

( ( ))( 1) ( )
( ( ))

nn n
n

+ = − F WW W
dF W

 

This idea was implemented by Hyvarinen in his misnomered “A fast fixed-point algo-

rithm for ICA”, (it is a Newton algorithm) [28].  Hyvarinen’s F consisted of the usual alge-

braic system obtained under Lagrange extremum conditions to a cost function “approximat-

ing negentropy”.  The advantage of using Newton’s Method is that the procedure usually 

gives at least quadratic convergence.    However, because there is no step-size parameter in 

the update, the algorithm can be unstable, completely eliminating the possibility of a non-

averaged (non-batch) based adaptation.  Thus the “fixed-point algorithm” is practical only in 

off-line applications. 

2.4.3 Choosing the Nonlinear Activation Function “g”  

It is a peculiarity of Infomax algorithms that successful separation depends upon a suit-

able choice of the function ( )g u .  Recall from Section 2.1.2 that we must have '( ) ( )g p=u u , 

where the right hand side denotes the (global) probability distribution function of the sepa-

rated outputs.   
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A surprising fact, backed by numerous simulation results performed by researchers, is 

that ICA algorithms with a fixed nonlinearity converge to a separating solution despite the 

fact that the nonlinearity is often a crude approximation to the underlying source distribution 

[1].  In other words, the choice of g is somewhat flexible.   

A theoretical argument for such robustness, first hinted by Cardoso [29], suggests 

model-mismatch is tolerable because sources are recovered only up to scaling factors.  Con-

sider for instance the family of sigmoidal nonlinearities: ( ) tanh( )g u uλ α= , where λ andα  

are tuneable parameters.  This family is the most commonly employed of all “squashing” 

functions.  Its derivative is displayed in the following figure: 
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                                      Figure 7:  Graph of 2sech ( )uα with varying α  

As can be plainly seen, the significance of α  resides in controlling the variance of the 

distribution.  Together with the scale factor λ , (which normalises the function to a proper 

probability density function), typical signal histograms such as speech or music may be mod-

eled somewhat accurately by one or two parameters.  However, there is no need to model α , 

since the variance can be adjusted arbitrarily via amplitude scaling of the sources – one of the 
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ambiguities in source recovery.  Moreover, the form of the update in Infomax algorithms 

does not use g, but rather ''( ))
'( )

g
g

ϕ( = uu
u

.  With ( ) tanh( )g u uλ α= , we have 

( ) 2 tanh( )u uϕ α α= − .  λ vanishes in the final update: there is no need to model the scaling 

factor λ  either.  This two-parameter freedom is precisely the flexibility required in model-

mismatch robustness.  

Still, one cannot afford excessive laxity in the choice of nonlinearity.  An ill-matched 

squashing function may converge to the correct solution, but will require many more itera-

tions than a well-matched density.   

A further consideration comes from the choice of a density family.  For the separation of 

speech signals at least, the Laplacian distribution | |ue α−  is more appropriate than 2sech u , ob-

taining the proper convexity profile and center cusp [30]:  

            −4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Hyperbolic Squared Secant vs Laplacian Distributions

Squared sech
Laplacian

 

                     Figure 8: Comparison of Laplacian and 2sech u distributions 
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An additional pleasantry occurs with the Laplacian distribution: the form of the score 

function ( )uϕ  inhabits a beautifully simple form: 

( ) sgn( )u uϕ α= −  

The parameterα may be obtained by estimating the source variances sourcesVar   and then 

matching with the Laplacian variance: 

2

2[ ]

2 

sources Laplacian

sources

Var Var X

Var

α

α

= =

→ =
       (Eqs. 18) 

Even without knowledge of source variances one can obtain an estimate by globally comput-

ing the received mixture variances.   

Interesting physical insight may be gleaned by examining the direct form of g: 
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                    Figure 9: Comparison of nonlinearities: 2( ) sech  g u u du= ∫ and | |( )  ug u e du−= ∫  
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The above graph demonstrates the role of the activation function as an invertible ampli-

tude bounder – necessary so that entropy maximization of g(u) does not diverge. 

2.5 Whitening and a LP Residual-Domain Weight Update 

It has been well-documented that for self-correlated inputs (speech being a prime exam-

ple), practically all time-domain blind deconvolution algorithms exhibit the side-effect of 

whitening [1, 23].    This corresponds with a flattening of the power spectrum: energy at 

higher frequencies is increased at the expense of energy in lower frequency bands.   

Why is this so?  After all, blind signal separation is supposed to perform spatial decorre-

lation, not temporal decorrelation.  The answer resides in the following figures: 
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(a) The p.d.f. of normal speech                      (b) The p.d.f. of “whitened” speech 
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               Fig 10: Comparison of probability density functions and kurtosis for normal and whitened speech 



Blind Signal Separation 38

Fig.10 displays a histogram and time-evolution of normal speech on the left side, and a 

histogram and time-evolution of “whitened speech” on the right side.  “Whitened speech” 

may be simulated by computation of an nth order Linear Prediction (LP) residual, which 

represents a speech signal with the short-term correlation removed.  The diagrams above 

show that whitened speech has far smaller amplitude spread than normal speech, resulting in 

a drastically higher sample kurtosis.  Since kurtosis gives an approximate indication of 

negentropy (distance from the Gaussian), which from previous discussion is equivalent to 

information maximization, log-likelihood maximization etc., we see that adaptive filtering 

employing typical measures of independence must necessarily time-decorrelate as well as 

spatially decorrelate.   

Torkkola in [23] already noted the deleterious effects of whitening.  In his experiments 

the joint entropy increase due to whitening was so large as to overshadow entropy increases 

due to spatial separation.  Thus weighting coefficients converged to mere whitening filters, 

and not separating filters.  In our own experiments (Section 3.3) the whitening effect was sig-

nificant enough to destroy convergence.  Torkkola’s solution was to introduce a feedback 

structure where the direct filters were reduced to scaling coefficients (Section 2.3.1).  How-

ever, feedback structures have special weaknesses not present in feedforward architectures, as 

already mentioned (Section 2.3).   

We present here a novel method to eliminate whitening in the speech separation process, 

while preserving feedforward design.  The key idea involves a type of temporal pre-

whitening of the mixed speech signals via LP analysis filters.  ICA is then performed in the 

residual domain, and a synthesis filter reconstructs the separated speech from the residuals.  

We expect the following theoretical improvements to result: 

•  Since LP residuals have most of the short-term correlation removed, there can be 

little to no further entropy increase due to temporal decorrelation: ICA will fol-

low those directions which separate rather than whiten. 

•  The short-term uncorrelatedness of the LP waveform will result in a more stable 

algorithm since adjacent weight updates become independent of one another. 
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The second point may be realised by thinking of stochastic search directions as devia-

tions from some preferred deterministic locus.  Correlated weight updates tend to reinforce 

these deviations, resulting in oftimes quicker convergence but generally unstable (high and 

low amplitude) behaviour.  By performing filtering on (temporally) pre-whitened samples, 

weight updates are rendered independent of one another.  Our process may then be thought of 

as introducing an anti-momentum (stabilizing negative feedback) term to the convergence. 

Use of LP analysis for adaptive filtering may seem unusual given its traditional role in 

speech coding.  There are precedents, however, in the domain of speech enhancement [31].  

Gillespie et al [32] have applied a kurtosis-based cost function to the LP residual for derever-

beration.   

The following displays a theoretical setup: 
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                                                     Fig 11: ICA architecture on speech residuals 
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There exists a problem with the above configuration, however: the inverse LP filter in-

troduces reconstruction artefacts.  It is important to realise that these artefacts arise not be-

cause of block-edge effects, but rather to the fact that the output speech is necessarily differ-

ent from the input speech, due to adaptive filtering.  LP coefficients from initial analysis can-

not be used to recover speech since they are appropriate coefficients only for the signal be-

fore the filter.  Malvar et al [32] has noted this effect in the case of dereverberation; for blind 

signal separation the distortion is bound to be even more pronounced since LP analysis is per-

formed on not one, but a sum of n speakers, while the output is supposed to represent but one 

speaker.  A way to circumvent the problem is to adapt coefficients in the residual domain, but 

actually apply the filter to the time-domain signal without modification.  This is essentially 

the solution contained in [32], which was justified by the assumption of a linear system with 

small step-sizes.  Our justification for ICA lies in the hope that LP residuals retain enough 

significant speech information so the extremum of the cost function remains invariant under 

analysis filtering.  This can be tuned by modifying the LP filter order.  With this variation, 

Fig. 11 attains the form: 
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                           Fig 12: Equivalent ICA architecture without residual reconstruction artefacts 
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We refer to the above as ICA with a LP residual-domain weight update.  Experimental 

results for a time-domain version of this system are given in Section 3.4.  Though we illus-

trate its utility only with the Infomax cost function, the technique may be applied to any blind 

signal separation algorithm utilising feedforward adaptive filtering. 
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3 Experimental Results  

The corpus of results which follow represent the culmination of numerous simulations 

performed in Matlab.  For brevity we have not displayed all tests but rather selected those 

deemed germane.  Experiments were conducted with speech segments sampled at 16 kHz, 

lasting approximately 9 seconds, obtained from the Lincoln Laboratory Speech Enhancement 

Corpus (LLSEC).  No signal pre-processing was used prior to applying a separation algo-

rithm.  Simulations were performed on a 1 GHz Pentium III machine.   

Absolute necessary to navigate the maze of results is the audio guide included in Appen-

dix B, which provides a map between the disk directory accompanying this report and the 

sections contained herein. 

3.1 Instantaneous Mixtures 

Here, xn n channel matrices were generated to artificially mix the sources.   

Since the mixing matrices A are known beforehand, it is easy to determine separation 

success by examining a “performance” matrix P = WA .  Perfect separation renders P a 

scaled and permuted version of the identity.  The following cross-talk error measure is invari-

ant under such scaling and permutation: 

1 1 1 1

| | | |
1 1

max | | | |

n n n n
ij ij

i j j ik ik k kj

p p
p max p

ε
= = = =

  
= − + −       
∑ ∑ ∑ ∑  

Note for perfect separation, (up to standard indeterminacies) 0ε = . 

3.1.1 Natural Gradient Algorithm 

The algorithm of Eq. 1 was used to separate 4 speech sources mixed under 20 different 

randomly generated (uniform on [ ]0,1 ) matrices.  Parameters were fixed as follows: learning 

rate 0.0005µ = , nonlinearity ( ) 2 tanh( )ϕ = −u u , and (0) =W I .  An update was performed 
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for every incoming speech sample, thus for 9 seconds of speech or 51.35 x 10 samples.  Dis-

played below are the convergence loci: 
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Figure 13:  Convergence curves for the Instantaneous Natural Gradient Algorithm under Random Channel Conditions 

As one can see, despite the variety of initial mixings the algorithm converges in a rela-

tively uniform manner (the so-called equivariance property [27]).  Separation of a single mix-

ing scenario required only 10.845 seconds of computation time for 9 seconds of speech – 

very nearly real-time separation.  Informal listening tests reveal an excellent quality of sepa-

ration. 

3.1.2 Optimal Nonlinearities 

The above simulation utilitized the squashing function ( ) tanh( )g u uλ α= , with 

1λ α= = , representing an unmatched nonlinearity (see Section 2.4.3).  In this section we 

compare its performance with the more theoretically optimal squashing function 
| |( )  ug u e duα−= ∫ , designed to accurately reflect the Laplacian character of speech.  The score 

function in turn becomes ( ) sgn( )u uϕ α= − , where α is automatically chosen via Eq. 18 and 
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by evaluating mixture variances.  The following graph shows two convergence curves of the 

natural gradient algorithm under identical mixing scenarios, one under the standard sigmoidal 

squashing function and the other with the matched Laplacian squashing function. 
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 Figure 14: Comparison of convergence curves with unmatched sigmoidal and matched Laplacian nonlinearites 

Clearly the matched nonlinearity outperforms the unmatched nonlinearity, converging nearly 

twice as quickly. 

We also give, in analogy with Figure 13, the convergence curves of the matched algo-

rithm under 20 randomly generated mixing scenarios: 
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        Fig 15:  Convergence curves for a matched Natural Gradient Algorithm under Random Channel Conditions 

The above is plainly superior to its counterpart (Fig. 13).   

3.1.3 Effect of a time-varying mixing matrix 

Here, we investigate the ability of the natural gradient algorithm to track moving speak-

ers.  Begin with the following initial mixing matrix: 

                                        

0.3046 0.3028 0.3784 0.4966
0.1897 0.5417 0.8600 0.8998
0.1934 0.1509 0.8537 0.8216
0.6822 0.6979 0.5936 0.6449

 
 
 =
 
 
 

A  

From this point, 0.000005 was subtracted off every element of the first column at every sam-

pling moment, until the elements reached 0.  Over the course of 9 seconds of speech, the mix-

ing matrix attains a final form of: 
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0 0.3028 0.3784 0.4966
0 0.5417 0.8600 0.8998
0 0.1509 0.8537 0.8216

0.0323 0.6979 0.5936 0.6449

 
 
 =
 
 
 

A  

This alteration physically corresponds with the first speaker gradually moving away 

from all microphones until there are practically only 3 sources.  An error curve is presented 

next, with parameters ceterus paribus to those of Section 3.1.1: 
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                    Figure 16: Convergence curve of natural gradient algorithm under fading source mixing 

The reader is urged to examine for himself the quality of separation by observing the au-

dio waveforms.  A somewhat satisfactory separation seems to occur at 2 seconds on all chan-

nels, but at approximately 3.5 seconds, two channels “switch” with one another.  This seems 

to be an interesting manifestation of the permutation ambiguity in separation. 
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3.1.4 Multiple decorrelation 

We apply the multiple decorrelation algorithm of Equations 3 & 4 for the separation of 

instantaneously mixed voices.  In its present incarnation, the procedure is not a local adaptive 

algorithm but depends upon a measurement of K cross-covariances to estimate the channel 

matrix A.  The algorithm derived in Section 2.1.4 relied upon the presumed non-stationary 

qualities of  sources.  For speech this involves calculating the cross-covariances at distinct 

inter-frame points via the average of local intra-frame covariances.  Two conflicting ideals 

are present: the sample size required to estimate each cross-covariance must be large for ac-

curate estimation, however, it cannot be too large so as to overstep the interval in which 

speech possesses a static instantaneous covariance function (5-20 ms).  Parameters were es-

tablished as follows: 

•  13K =  cross-covariance measurements ( )kR  in total, one at every 10000 sam-

ple interval, by averaging 400 local instantaneous cross-covariances. 

•  In accordance with the theoretical dictates of Section 2.1.4, diagonal elements of 

A set to 1, removing the scaling indeterminacy.  

Because the algorithm is an offline deterministic procedure, it is not possible to directly 

compare the performance with that of the natural gradient.  In particular, the reliance on de-

terministic optimization renders the convergence curve an inadequate description of perform-

ance, since the rate of convergence can be nearly arbitrarily set by increasing the step size µ : 
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 Fig 17:  Error curve of multiple decorrelation algorithm on two mixed voices with changing gradient step-size 

The 8000 iterations shown above required 24.025 seconds of processing time.  The resulting 

waveforms sound perfectly and uniformly separated, since the inverse matrix 1−=W A  is 

only applied to the signals after optimization. 

What follows are convergence curves for the separation of two voices under random 

mixing, using the fixed step size 80µ = : 
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Fig 18: Error curves of multiple decorrelation algorithm for two mixed voices under random channel conditions 

The result shocking: fully half of the mixings do is not converge.  This is experimental 

confirmation that equivariance is not one of the properties of multiple decorelation.  Another 

weakness rears its head in the separation of more than two voices: under the initial 4-voice 

matrix of Section 3.1.3, the algorithm converges to a spurious minimum: 
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                   Figure 19: Error curve of multiple decorrelation algorithm for the separation of 4 voices 

A quick listen to the audio file confirms completely inadequate separation.   

We conclude that on nearly all counts the natural gradient algorithm is far superior to the 

multiple decorrelation algorithm.  The Infomax procedure is local, adaptive, independent of 

the channel (equivariant), and handles a relatively large number of sources well, whereas the 

latter is deficient in all these respects.   
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3.2 Delayed Mixtures 

Torkkola’s adaptive delay system of Fig. 4 and Eqs 7-9 are implemented.  Two speech 

sources were mixed according to the formulas: 

1 1 2

2 2 1

( ) ( ) 0.4 ( 10)
( ) ( ) 0.8 ( 20)

x t s t s t
x t s t s t

= + −
= + −

 

We do not implement the direct delay, but only the relative delay, in compliance with 

discussion in Section 2.2.  An update was performed at every speech sample, for all 9 sec-

onds of speech.  This required 25.116 seconds in total processing time. 

With initial settings 11 22 12 21 12 211,  0,  15w w w w d d= = = = = = , a ijw  learning rate of 

0.0005µ =  and a delay learning rate of 0.1ν =  the following parameter convergences oc-

curred: 
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  (a) Cross-Weights                                 (b) Cross-delays (dashed), rounded cross-delays (solid) 

                                       Fig 20: Convergence of parameters for feedback adaptive delay system 

The second graph gives both an internal, floating point delay value of the update algorithm 

and the rounded delay value (delay must be an integer before application to mixtures). 

From previous work, we know that cross-weights should converge to the negative of the 

mixing cross coefficients: 0.4 and 0.8.  Adaptive delays should also learn actual mixing de-
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lays: 10 and 20.  Both conditions are satisfied but convergence is not very strong.  A listening 

test confirms that there is separation, but only after approximately 6 seconds of speech.   

The problem with an adaptive delay algorithm is that to achieve separation, delays must 

be estimated highly accurately.  Without perfect estimation, the weights have a difficult time 

converging to appropriate values.  A deviation of just 1 sample caused separation problems. 

Of even greater concern is the very erratic and non-robustness of delay convergence loci.  

Firstly, convergence was highly dependent on the delay-update step size ν .  This is not ab-

normal for gradient descent algorithms, but in our case was sensitive to the point where es-

sentially a different step-size was required for every initial delay condition.   

Moreover, it is known that since speech is highly periodic, the algorithm can become 

trapped in local maxima which exhibit strong correlation due to periodicity, rather than to 

delay [19].  A study of this effect, such as may be found in [1], shows that the joint entropy 

surface of two linearly mixed speech signals has multiple maxima, as functions of delay.  

These extrema are very closely spaced – approximately 10 samples apart.  Thus one must ob-

tain exceptionally precise estimates for the delays apriori, as initial conditions, to within 5±  

samples.  Even with this knowledge, an un-tuned step-size can destroy convergence.   

Computation of a cross-correlation sequence can provide an estimate of delays; for 2 

mixtures, calculating a cross-covariance between mixtures and taking the indices of the two 

highest values would seem to produce good delay estimates.  The technique may also be 

readily extended for a greater number of sources.  However, we found that cross-covariance 

estimates were just as prone to the same trapping along oscillatory (voice-like) segments as 

the gradient rule was.  The ultimate fact to be faced is that periodic speech portions behave 

much too like delayed versions.  Thus no local algorithm, processing sample by sample, can 

distinguish between these two scenarios.   

In our view, there is not much hope for adapting the delays separately in the above man-

ner.  Including the delays as a part of the deconvolving filter may be inefficient but permits 

additional freedom in terms of extra coefficients, allowing for increased robustness. 
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3.3 Convolved Mixtures 

One difficulty with evaluating blind separation algorithms more complex than the instan-

taneous case is in the choice of an error measure.  For feedback systems the question is espe-

cially difficult given the recursive nature of their equations.  The best we may do is to com-

pare the weights to some ideal solution.   

From Eqs. 10 and 11, the reader should verify that for two sources and two mixtures, an  

ideal solution is obtained via: 

1 1
12 12 22 21 21 11,  W A A W A A− −= − = −  

This suggests the two performance indices: 

1
1 12 22 12

1
2 21 11 21

( ) ,

( )

P z W A A

P z W A A

−

−

= −

= −
 

where each ( )P t  ideally is a scaled impulse response.  The simplest such measure is: 

| ( ) | 1
max | ( ) |

i

i n k i

P ne
P k

 
= − 

 
∑ ∑        Eq. 19 

Because our reference performance is an ideal case, we cannot expect 0e →  over time.  

The error measure is thus relative, but still useful for observing the dynamic behaviour of fil-

ter coefficients.   

For feedforward systems, a performance filter matrix ( ) ( ) ( )z z z= ⋅P W A  provides a 

clue.  Again, consider the case of two sources and two mixtures.  Ignoring permutation by 

manual reordering, perfect separation and dereverberation occurs if 11 12

21 22

( ) ( )
( ) ( )

P t P t
P t P t
 

=  
 

P  pos-

sesses impulse responses on diagonals and zero responses on off-diagonals, i.e. 

11 22( ) ( ) ( ),P t P t tδ= =  12 21( ) ( ) 0.P t P t= =   This would be too much to expect, however, given  

filtering indeterminacies.   
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An approach is to compute the total energy of diagonal terms and compare to the energy 

contained in off-diagonal terms.  This measure is flawed though, since greater signal distor-

tion (a significant impulse response) is perceived as greater separation.  We thus adopt the 

following error metric, which uses the ratio of maximum filter values in each performance 

row: 

12 21
1 2

11 22

max | ( ) | max | ( ) |,  
max | ( ) | max | ( ) |

t t

t t

P t P te e
P t P t

= =  

The attenuation of unwanted source component for each channel may then be defined as a 

decibel representation of the “signal-to-unwanted signal” ratio: 

1 10 1

2 10 2

20 log
20log

e
e

Α = −
Α = −

 

Tests of the algorithms are performed for two voices, with two sets of mixing scenarios: 

Set I: 

 

25 45
11

20 28 36
12

10 22 34
21

20 38
22

( ) 1 0.4 0.2 ,

( ) 0.4 0.2 0.1

( ) 0.5 0.3 0.1

( ) 1 0.3 0.2

z z z
z z z z
z z z z
z z z

− −

− − −

− − −

− −

= − +

= − +

= + +

= − +

A
A
A
A

 

Set II: 

 

1 2 3 4 5 6 7
11

1 2 3 4 5 6 7
12

1 2 3 4 5 6 7
21

1
22

( ) 1 0.8 0.7 0.4 0.3 0.25 0.2 0.15

( ) 0.6 0.5 0.5 0.4 0.3 0.2 0.25 0.1

( ) 0.5 0.5 0.4 0.35 0.3 0.3 0.2 0.1

( ) 1 0.9 0.8

z z z z z z z z
z z z z z z z z
z z z z z z z z
z z z

− − − − − − −

− − − − − − −

− − − − − − −

− −

= + + + + + + +

= + + + + + + +

= + + + + + + +

= + +

A
A
A
A 2 3 4 5 6 70.6 0.4 0.35 0.3 0.15z z z z z− − − − −+ + + + +

 

Of course both sets are completely artificial, but the principles and operation of the pro-

cedures are most easily demonstrated with relatively simple filters.  The first matrix filter  
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involves far-spaced coefficients, with a relative delay of 10 and 20 samples.  The second test 

set uses 8 closely spaced taps.   

3.3.1 Feedback Architecture 

We test Torkkola’s deconvolution algorithm (Eq. 12 & 13) on the test cases I and II.  

FIR unmixing filters ijw  of length 100L =  were utilised, initialised to ( )ijk ijw kδ= , step size  

0.001µ = , and a hyperbolic tangent nonlinearity.  Updates occurred at every speech sample.  

The error curves as defined by Eq. 19 are given below: 
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(a)  Test Set I                         (b) Test Set II 

                  Fig 21:  Error curves for the separation of two mixed voices in the Infomax feedback architecture  

The method performs reasonably well for Test Set I; and seemingly well for Test Set II.  

A listening test shows some deception: the output exhibits good separation (though not per-

fect) for the first set of mixings, but terrible separation in the latter case.  There is little to no 

filtering distortion of the original sources for case 1, however – in correspondence with ex-

pected theory. 

3.3.2 Feedforward Architecture 

Since the block update format of Amari’s Natural Gradient Algorithm is far more effi-

cient and stable, we only consider implementation of the procedure given in Section 2.3.3.  
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Parameters were set as follows: FIR filters of length L=128 (implying blocks of length 256, 

50% overlap), initialized to ( )ijk ijw kδ= , step-size 0.0005µ =  and a nonlinearity of 

40sgn( )− u .  All 9 seconds of data were passed through the algorithm a number of times until 

the filters iterated to the point of convergence. 

The attenuation curves 1 2 and Α Α  are produced below, as well as the impulse responses 

of the resultant performance matrix: 

Test Set I: 
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                                               Fig 22: Channel attenuations of unwanted signals 



Blind Signal Separation 57

0 100 200 300 400 500 600
−4

−3

−2

−1

0

1

2

3

4

5

6

  0 100 200 300 400 500 600
−10

−8

−6

−4

−2

0

2

4

6

8

10

 

         (a)  Performance row 1      (b)  Performance row 2 

Fig 23:  Final impulse responses of the filters in P(z).  Each row contains two filters, the impulse responses which are               

         concatenated. 

Test Set II: 
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                                                  Fig 24: Channel attenuations of unwanted signals 
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         (a)  Performance row 1      (b)  Performance row 2 

Fig 25:  Final impulse responses of the filters in P(z).  Each row contains two filters, the impulse responses which are 

         concatenated. 

An intuitive sense of the level of separation can be found by examining the final per-

formance rows.  As in Section 3.3.1, the subjective auditory impression is of considerable 

attenuation of the unwanted component, but not perfect separation.  Notice in each channel, 

the initial strong impulse tap is followed by negative taps.  This corresponds with temporal 

decorrelation – an insidious side-effect of all feedforward designs.  The whitening effect can 

be plainly discerned in the output audio waveforms as well – speech sounds less full and 

more metallic.   

A serious problem manifests itself once the natural gradient algorithm seems to con-

verge.  From Figs. 22 & 24 it might appear that further iteration results in superior separation.  

This is not the case.  In fact the algorithm becomes unstable and diverges!  Observe the fol-

lowing two graphs of the attenuation ratios 1 2&e e , after continued update: 
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(a) Test Case I                (b)  Test Case II 

                                        Fig 26: Channel attenuation ratios for the feedforward architecture.   

Alteration of the step-size (by decreasing), or (increasing) filter lengths help “stave off” 

divergence, but not indefinitely – for all paths, the algorithm eventually diverges.  The update 

can be terminated just prior to instability but then the adaptive property is destroyed.  An un-

derlying mechanism behind this divergence may have to do with a whitening pursuit direc-

tion overtaking the separation pursuit direction.  The next section addresses this difficulty. 
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3.4 LP Residual-Domain Weight Update 

We now attack the problem of whitening, implementing the residual-domain filter up-

date expounded in Section 2.5.  As a first step, illustrating at least the plausibility of ICA 

upon speech residuals, we present an application of the algorithm upon two instantaneously 

mixed sources: 
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                         Fig 27: Error curve for residual-domain weight update for the instantaneous case. 

An LP analysis filter of order 4 was used, and the nonlinearity 120sgn( )− u .  Note that 

the signum amplitude coefficient (120) has been increased drastically from the usual one in 

Section 3.2.2 to account for the smaller variance of LP residuals as compared to regular 

speech.  The associated audio files show perfect separation, as does the above error curve. 

We move on to the convolutional case.  With all parameters identical to those of the ba-

sic feedforward case of Section 3.3.2, we apply LP pre-processing of order 4 with a window 

size of 512 samples before ICA.  The attenuation curves and final performance matrix filters 

are shown below: 



Blind Signal Separation 61

Test Set I: 
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                                              Fig 28: Channel attenuations of unwanted signals 
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                                                  Fig 29:  Final impulse responses of the filters in P(z) 

 

 

 



Blind Signal Separation 62

Test Set II: 
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                                                    Fig 30: Channel attenuations of unwanted signals 
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                                                   Fig 31:  Final impulse responses of the filters in P(z) 
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Important considerations may be taken from these graphs: 

1) The LP residual-domain update improves convergence drastically, ob-

taining the maximum in less than half the time required for that of the ba-

sic update. 

2) Vastly increased stability: the algorithm does not diverge after finding 

the extremum. 

3) Whitening of sources is reduced significantly 

The third point may be witnessed by first-hand observation of the output speech wave-

forms, which sound far more like the original sources than the versions produced in Section 

3.3.2.  Separation quality itself is also superior to that of the basic algorithm.  A more objec-

tive indication of whitening can be obtained from the autocorrelation sequence of the output 

waveforms (or more accurately the autocorrelation sequence of the original sources filtered 

by the diagonal elements of the performance matrix).  The autocorrelation sequence of a 

segment of normal speech is shown below: 
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                                               Fig 32: Autocorrelation function of normal speech 
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A relative measure of whitening (which we call the correlation factor) may then be de-

fined by calculating the energy of the function within some neighbourhood (e.g. 250±  sam-

ples) of the central peak.  High energy indicates strong correlation, or little whitening, and 

low energy indicates weak correlation, or heavy whitening.   

The following table gives indications of the degree of whitening produced by the basic 

and residual-domain algorithms:   

Test Set I Test Set II  Original Speech 

Basic Update Residual Update Basic Update Residual Update 

Speaker 1 65.36 20.59 39.72 38.09 42.83 

Speaker 2 51.22 23.23 42.40 50.46 51.54 

Table 1: Correlation factors for the block feedforward algorithm and residual-domain filter update algorithm 

These observations provide objective confirmation that whitening is reduced when using 

the Residual Update algorithm. 

Finally, it may be of some peripheral interest to display the computation time required 

for each algorithm: 

Algorithm Time for 1 update (s) Number of updates for 

convergence 

Total time to             

convergence (s) 

Feedback 0.0067 20000 134 

Basic Feedforward 0.0068 8000 54.4 

Residual Update 0.0068 4500 30.6 

                                       Table 2: Processing times for Blind Deconvolution Algorithms 
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4 Conclusion 

We have presented a number of variants on Independent Component Analysis, and per-

formed comparative experimental tests.  Overall, the information maximization cost function 

seems to be superior to methods relying on nth-order statistics, as well as being especially 

suited for adaptive stochastic filtering.  Separate adaptation of delays has been shown to be 

non-robust and difficult.  In the choice between feedback and feedforward architectures, a 

feedforward architecture is more general for being able to learn non minimum-phase systems, 

but exhibits the whitening effect for temporally correlated sources.  The LP residual-update 

introduced allows one to use the feedforward architecture while eliminating whitening, as 

well as providing greater stability and faster convergence.   
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Appendix A: Timeline of Topics 

 

May 1st – 14th:   Background reading on Information Theory, Probabil-

     ity, and DSP.  Implementation of the basic instantane-

     ous mixing problem and the “Infomax” solution. 

May 15th – 31st:   Investigation of the effects of dynamic mixing in Blind 

     Signal Separation.  Shift to convolutive mixing  

     problem.  

June 1st – 14th:   The pure delay problem.  Implementation of an adaptive 

     delay system. 

June 14th – 21st:   Optimization techniques for faster convergence. 

June 21st – July 14th:  Implementation of feedback and feedforward InfoMax

     deconvolution algorithms. 

       July 14th – July 21st:   Incomplete and overcomplete representations; nonlin

 earity parameter matching. 

       July 21st – Aug 1st:  Time-delayed and multiple decorrelation methods. 

       Aug 1st – Aug 21st:  Blind Signal Separation on LP residuals. 

       Aug 21st – Sept 10th:  Report writing. 
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Appendix B: Audio Guide 

The CD Audio Files contains the results of all simulations discussed in this report.  It is 

organized into the following directories: 

Sources 

Section 3.1.1, Section 3.1.2, Section 3.1.3, Section 3.1.4 

Section 3.2 

Section 3.3.1, Section 3.3.2 

Section 3.4 

The directory “sources” contains four wav files which form the original speech material 

for all simulations. 

Each “Section” directory corresponds with the appropriate section in the Experimental 

Results chapter, and contains files of two types: mixn.wav, and unmixn.wav (or 

demixn.wav), where n is a number.  The “mix” files are the sensor channels (received micro-

phone signals), and the “unmix” files are the output channels after algorithm application.  All 

sound files have been amplitude scaled to the interval [-1, 1].   
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