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QUANTIZERS IN LINEAR PREDICTIVE CODING OF SPEECH

Marc L. Belleau

Abstract

There have been many attempts in the past to reduce
the transmission rate for a digital representation of a
speech waveform. One technique‘for achieving this goal
is a paramétric representation using linear prediction, in
, which;the parameters of that model are quantized before
~being transmitted. The purpose of this thesis is to Study
the>effects of quantization. First, linear prediction methods
in analysis, pitch extraction and synthesis are reviewed.
Different distance measures and fidelity criteria are intro-
duced. Then, for the reflection coefficients of linear
prediction, schemes like inverse sine quantization and
one which minimizes the eﬁpected spectral deviation bound,
are discussed in detail. Finally, because these coefficients
are mutually dependent, a decorrelation procedure is applied,
_and for the set of parameters obtained in this way, a
quantization method which minimizes the expected spectral
deviation bound is then derived and compared to the above

. mentioned schemes.
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QUANTIFICATEURS OPTIMAUX DANS LE CODAGE DE LA PAROLE

UTILISANT LA PREDICTION LINEAIRE

Marc L. Belleau

Résumé

Afin de diminuer la vitesse de transmission dans la
représentation digitale de la parole, la prédiction lin&aire
est utilisée, et ies coefficients de réflexion, implicite
dans la solution aux équations de cette méthode, sént quantifiés.
Tout d'abord, une revue est faite des méthodes.de la prédiction
linéaire dans l'extraction de la fréquence fondamentale,
i'analyse et la synthése de la parole. Ensuité, différentes
mesures de distorsion et différents critéres de f£idélité sont
considérés. Pour les coefficients de réflexion, des méthodes
telles que la quantification arcsinus et celle qui minimise
la borne supérieure de la déviation spectrale moyenne, sont
examinées. Etant donnée l'interdépendance des coefficients
de réflexion, ces derniers sont transformés en &'autres
paramétres, pour é&liminer cette corrélation. Finalement, la
méthode de guantification, minimisant la borne supérieure de
la déviation spectrale moyenne de ces nouveaux paramétres,

est comparée aux mé&thodes mentionnées ci-dessus.
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I: INTRODUCTION

Over the past ten Years much effort has been spent
trying to reduce the bit rate of digitized speech subject
to a fidelity criterion. Bit rate reduction is necessary
in the transmission of speech signals ovef noisy communication
channels. Conventional sampling and quantizing of a speech‘
waveform requires 36,000 bits/sec if no difference between
bthe original and output waveform is to be perceived by the
‘ear. However the entropy of the writtén information bf a
spoken language in terms of the relative frequencies of
occurrence of independent letters is about 50 bits/éec [1}.

[
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language are introduced, the entropy is even smaller.
Furthermore, " as : stated in [1], experiments have shown

that human subjécts probébly cannot process information at

a -rate above 50 bits/sec. Hence, if a subject is to perceive
all the particular characteristics of a speaker, such as vocal
inflections, timbre, nasality, the written version of the
spoken utterance must contain redundant information. In view
of these facts, the speech waveform is seen to be highly
redundant. Therefore a écheme is sought that will extract as
few parameters as-possible and will permit reproduction of the
original speech waveform as well as possible in some percéptual

sense. Many such methods have been proposed and in particular
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the method of linear prediction has been guite successful

in achieving that goal.

The following is a brief list of guantization methods

based upon linear prediction, that have been found useful in

the reduction of bit rate in speech:

equal area coding of the reflection coefficients by

Seneff [17, December 1974]. |

uniform quantization of the feflection coefficieﬁts by
Markel and Gray [10, 1974].and also by Chandra and |

Lin [16, August 1977]. 1In connection with this'method‘
there is also the dynamic programming bit allocation of
Itakura and Saito mentioned in [10] (1972).

the log arearquantization of the log area parameters by
Viswanathan and Makhoul [15, June 1975]. The Huffman
coding of these parameters by Makhoul (1974) is also
described in detail in [2].

the inverse sine quantization of the reflection coefficients
and the two parameter quantization scheme by Markel énd
Gray {14, December 1976].

the minimum expected spectral deviation'bound guantization
of the reflection coefficients by Markel and Gray [12,
February 1977].

the decorrelation and DPCM approach of Sambur [18, December

1975]1.



All of the above methods will be discussed in the
following chapters. First, an overall introduction to the
thesis will be given.

The first section of Chapter II is essentially a
review of linear prediction analysis as covered by Markel
and Gray in [2]. The solution parameters of the linear
prediction equations are the basic building blocks of all
later work in this thesis. Section 2.2»then expounds on
the physical models of the vocal tract, in order to bbtain
some insight into how well the above linear prediction
model applies to it. Most of this work is covered by
Flanaéan in [1] and the relation with linear prediction is
the subject of Chapter 4 in [2]. As the model is deficient
in many respects, the efforts of Strube [5], Steiglitz [6]
and Kopec [7] in improving it are briefly discussed in
Section 2.3. With a better model, it is then shown that the
poles and zeroes of the vocal tract are in closer agreement
with actual values.

Chapter III first presents a short review on the results
of a subjective comparison between various. pitch extractors
by McGonegal, Rabiner and Rosenfeld in [22]. The SIFT
algorithm, as developed by Markel and Gray in ([1], [9], is
then discussed in some detail since it was the pitch tracker
used in the present studies.

Chépter IV then reviews the particular analysis conditions

éﬁ , used on speech when performing linear prediction analysis, and



the type of synthesis structures and driving function to

the speech synthesizer. The latter discussion culminates

in the synthesizer program of Section 4.5. This pitch-
synchronous synthesizer will be used to obtain the results
of Chapter VI. All the above material is covered by Markel
and Gray in [2]. Chapter IV is then concluded by the review
of Markel and Gray on autocorrelation linear prediction
vocoders [10].

In reducing the total bit rate some suitable quantization
schemes are needed. This is the subject of Chapter V.

Io this end, a spectral deviation measure is introduced
and two fidelity criteria based on this measure are applied to
quantization of the linear prediction parameters. Section 5.1
is essentially the work of Markel and Gray on distance measures,
[11], and on optimal quantization using the expé;ted spectral
deviation bound, [12]. There is also a mention of another
distance measure and of a proof concerning the maximum deviation

bound criterion which is taken from Viswanathan and Makhoul in

[15]. The material of Section 5.2 on the use of various sets of

parameters in quantization is also to be found in [15].

Section 5.3 then describes the efforts of researchers
in trying to reduce the bit rate using reflection coefficient
quantization. First the maximum entropy coding scheme of
Seneff [17] is discussed for comparison. An average bit

rate of 1450 bits/sec was achieved when variable frame rate



transﬁission is used in conjunction with egual area
gquantization. Then more details are given about the
theoretical and experimental results of Viswanathan and
Makhoul on two distance measures [15]. It is mentioned

in the article, that speech quality is better using the

‘p4;5 distance measure of Markel and Gray [11l] in the

case of p = 1. The rest of Section 5.3 then expounds

on the theoretical and experimental results of Markel and
Gray on minimum max D and two parameter quantization [14]
and minimum E (D) quantization [12]. Using an optimum bit
allocation procedure, they find that the total bit rate

for direct, inverse sine and log area ratio quantization

is about 3500 bits/sec for max D = 3dB as opposed to 2800
bits/sec in the two parameter scheme. The speech quality

is the same in both cases. [14] is a theéreticél study
giving only the number of bits allocated to the first and
tenth reflection coefficient for a fixed E(D) = .3dB each.
It is then mentioned that the reflection coefficients are
dependent oﬁ past values and also on each other, and that
further bit rate reduction would be possible if this depend-
ence could somehow be extracted. In [14], Sambur's work on
decorrelation of data and DPCM is pointed out. This scheme-
[18] and decorrelation especially, is discussed at the begin-

ning of Section 5.4. In conjunction with DPCM, decorrelation

can redﬁce the bit rate to 600 bps and for some utterances
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the quality will still be acceptable. The purpose of this

research is then to test whether or not decorrelation of the

reflection coefficiénts, as done in [21], will reduce the total bit

rate when the minimum éxpected séectral deviation bound

qﬁantization scheme of [12] is applied to the decorrelated

parameters. Only dependence within a frame isbtreated in

| this study (no DPCM). In order to decorrelate the data,

a Jacobi diaéonalization of the covariance métrix of thé

reflection coefficients isjperformed, [19]. A summary of

, thé basic ideas behind this diagonalization is presented.

In the remainder of Section 5.4, the reiation between the

- sensitivity function of thé new parameters and the sensiﬁivity

function of the refleétion coefficients is- then derived.

The new parameter is a'known linear combination of the

reflection coefficients (from the Jacobi diagonaiization)

and if these relations are used in conjunction with the

equations of [14], then the desired result is obtained.

Then, a few assumptions will be made on what the probability

density function and average sensitivity function of the new

parameters should be. These results are then substitﬁted

into the equations of [12], to yield the optimum quantizer

curves and the number of levels. An alternative SCheme which.

was developed is to compute these functions using time averages.
In order to establish a comparison with other schenes,

experimental results on quantization of the reflection



coefficients themselves using the E(D) fidelity criteria

are also computed. These will at the same time complement
the theoretical study of [12]. For this study,‘two

quantizer functions are selected: the inverse sine quantiza-
tion which optimizes the fidelity criteria max D of [14]

and min E(D) quantization. A time average of the sensitivity
function will be coﬁputed as was done above for the decorrel-
ated parameters.

Experimehtal results appear in Chapter VI. Thé set-up
procedure is first described, and then the logarithmic quanti-
zation of the pitch and gain [10], is discussed. With a
fidelity criteria E(B)tot* = 3.5 dB, it is found that inVerse‘
sine and min E(E):quantizatibn of the reflection cdeffici—
ents, and min E(D) quantization of the.deéorrelated parameters
result in a total bit rate of 3070, 2750, 2884 bits/sec’
respectively. Moreover, the subjective quality of speech
processed under these three conditions is the same.

The conclusion and suggestion for further research

appear at the end.



IT: THE LINEAR PREDICTION MODEL OF SPEECH

In section 2.1, the method of solution to the covariance
and autocorrelation equations is presented. Using the
correlation matching criterion, the energy in the output sig-
nal from - the linear-prediction analysis is then shown to
be equal to the gain of the linear prediction filter.

Section 2.2 then describes fhe physics of theIVOCal fract

and its excitation sources. A simplified model consisting

of a cascade of transmission lines is then developed. If
further assumptions are made, then the model is found to be
mathematically equivalent to the solutionrto_the autocorrelation
equations. Finally; section 2.3 gives a briéf discussion

about more accurate methods of obtaining the parameters of

the speech waveform} in the case where the above assumptions

are not made.

2.1. The Basic Equations of Linear Prediction

Linear prediction attempts to achieve bit rate reduction
by, as the name implies, approximating a speech sample value
using a linear combination of a certain number M (to be

specified later) of past speech.samplés. Namely,

s{n) =

o=

-aKs(n—K) + e(n) ‘ (2.1.1)

K=1



where the error signal e(n) is small. The parameters to be

extracted are the =—-a_'s and they are chosen to be those which

K
n
1 ,
minimize o = z e2(n) where the interval (no,nl) to be used
n=n

will also be specified. Extrema . can be obtained by setting

the derivative with respect to each a, to zero. Let

K
gt
.= X s(n-i)s (n-73j) (2.1.2)
1] n=n
0
oy 5 MM
and o = I e"(n) = I z a;c,.a. (2.1.3)
n=n, i=0 i=0 ] :
o0 - M
=— =0 =21 a.c, . (2.1.4)
aaK i=o 1 ik
yields
M
_Z a;Cip = "Cok (2.1.5)
i=1
M
and -
'Z a;c ; =@ (2.1.6)
i=o

In linear prediction, the calculation of (2.1.2) involves
a finite number N of samples. Let them be denoted by s (o),

s(1), «i».., S(N-1). As will be seen later, N depends on the
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region-of validity of (2.1.1). Two methods [2, p. 14-15,
Chapter I] are used for solving the system of simultaneous
linear equations Ab = c as represented by (2.1.5). They

differ in the way the N samples are used to obtain the ak's.

Autocorrelation method

Here, n0 = - and n1 = «, Hence, because only N samples

are used, this is equivalent to windowing the speech waveform

over the N samples. Note that c,. = c.. and
ij ji
cij - n:z—oos (n—l)S(n—J) B n:z—ooS(n)S(n_|j_l|) - COI Ij—il |
Hence, ci+l,j+l = co,[j+l—(i+l)| = cij and the matrix [cij] is
Toeplitz. ¢ | §-1] is then.an autocorrelation coefficient and

is denoted by r(|j-i|). Also from (2.1.1), e(n) is :defined

for n =90,1,....,N+M-1.

Covariance method

Here, ng = M and n, = N-1. The symmetric matrix [cij]

is no longer Toeplitz because

Ci+1,3+1 ~ Ciy + s(M-i-1)s (M-j-1) - s(N-1-i)s(N-1-7).
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An attractive scheme for the numerical solution to

(2.1.5) and 2.1.6) is now discussed.

The inner product formulation [2, p. 35-38, Chapter 2]

For any two arbitrary polynomials in z_l, of degree M

M . M .
F(z) = ¥ £,z 1 ana G(z) = % g,z 1 where f., g.eR, define an
. i . i i i
i=0 1=0
M M 4 -
operation (F(z), G(z)) = (G(z), F(2)) = & I £.(z ,z Ng..
i=o j=o J
From its form, it is seen to satisfy some of the properties of
) M s
the inner product. Equation (2.1.3) together with A(z) = I az =
i=o
is seen to be an inner product (A(z), A(z)) with (z_l,z_]) = cij’
M M
Similarl 2.1.5) is I r a.c..S,.
vy, ) Do gl 2iCij 23 )
M . M
= (2 azzh, 16,z ") = (A(x),z ") =0
s — J
i=0 =0

This orthogonal relationship is the basis for a recursive

scheme used to calculate the ak's. The idea is to solve the

problem for m = 1, 2, ... M successively.

+ .
Let e (n) = amis(n-l) a =1

o]

=

i

It is called the forward prediction. Similarly, let the backward
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| predictor be

_ m+1
em_(n) = .E bmis(n_l) . bm,m+l =1
i=1
1 +, .2
As before, the extremum o of I [em (n) 1™ and the
ny =N,
extremum B of I [em_(n)]2 are obtained by setting the
n=n_
derivatives with respect to a_., b_. to zero. In inner
mi mi ‘

product notation the solution is

m .
(Am(z), z_z) =0 2 =1,2,...m - where Am(z) = iio amiz—l
-2 m+1 —3
(B_(z), z 7)) =0 and B_(z) = ¥ b .
m m i=1 mi
o = (A (2),A (2) By = (B, (2),B_(2)).

Now it is shown that these extrema are indeed minima.

Proof: Let F(z) be a polynomial minimizing (F(z),F(z)).

Then,
(F(z)+Cz 3, F(z)+Cz d) > (F(z),F(2)) YCCR

j=1,2,...,degF .

Then 2C(F,z ) + c2(z3,273) >0 (2.1.7)

Since it is true for any C, choose C to be —(F(z),z_J)/z—J,z_j).



(2.1.7) then implies (F(z),z_J)2 < 0. However, if (z—j,z—j)
let C = —(F(z),ij). In both cases then, (F(z),z_J)2 < 0.
All speech samples s(n) are real - (z ~,z J) = c;.€eR and

coefficients of any polyhomial aré real. Hence (F(z),F(z))

is a minimum implies (F(z),z J) = 0. Conversely, given
' M

13

(F(z),2 %) =0 for any O(z) = I q.z 3, (F(2)40(z), F(z)+Q(z2))

s J
: _ j=o
=(F(z), F(2))+(Q(=z),Q(z)). But (Q(z), Q(z)) =

ny n
1 2
r {Igys(n-i)}" >0 .
n=n0

£ q. & s(n-i)s{n-j)q.
ij n=n : ]

Consequently, (F(z), z—g) = 0 implies (F(z), F(z)) is a

minimum. Hence the necessary and sufficient conditions have
been proven. From the orthogonality propertiés of A.m and Bm

~and the linearity of the scalar product,

m m
(x_(z), . . .
m i=1 * i=1 * _ i=1

Notice then that (Am(z), An(z)),= (Am,z°) # 0.

However, (Bm’Bi) = GmiBm'

Proof: The case i = m is from the definition: (Bm,Bm) = Bm
Since the inner product is symmetric, the case m < i is the
. m+l -3
same as m > i and (B_,B.) = ¥ b _.(B,,z ) = 0 because
m’ i =1 mj

1 <j<mtl < i satisfies 1 < j < i, Q.E.D.

_ _ -i
) - 0 - (Bm(Z) '} Z diz

)
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Going back to the problem of finding A(z) which satisfies

(A(z) 2%

} = 0, the recursive procedure to be followed is to
find an Am(Z) orthogonal to the basis'z_z given that orthogonal
polynomials Am_l(z) and Bm—l(z) are already known [2, p.48-56,
Chapter 3]. Since Am(z) = deg Bm_l(z),

Am(z) = Am_l(z) + kmBm_I(z) (2.1.8)

. 1s easily seen to be orthogonalized by letting'

kn =~y 1(2),27 ) /(B _(2), B _;(2)
= =By (2 2 /By (2.1.9)
From (2.1.8)
m -
Am(z) =1 + iilkiBi_l
m m
(A_(z)-1, A_(2)-1) = = % k,k.(B, .,B. 1) (2.1.10)
m m i=1 =1 3 Ti-1"73-1
mo2
= L k"B, (2.1.11)
1=1
o2
(B (2) B (228 (2) D +(1,D) = T k%85 (2.1.12)
mo2
o = (1,1) - I k. B 4 (2.1.13)
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_ _ 2
O py = Op km+l Bm (2.1.14)
A (z) =1
B, (z) = 2z *
0o = (1,1) = 00
-1 -1
k. = - (Ao(z),z_l) - _ o1
l BO cll
01 -1
A_(z) = A,(2) + k,B,(z) =1 + - — ¢z
1 1 : C
11
Hence, 319 = 1; a;p = —éol/éll which completes the initializa-

tion. Notice that Bl(z) has not been found. In fact at any
step m—l,Bm(z) is not obtained by the above procedure. The

solution is to use a Gram-Schmidt orthogonalization

- Z-(m+l)

Bm(z) YmiBi(z) (2.1.15)

Because the Bm(z) are.olr.t_hogonal to each other,

(z—m+l B.(z)) = mgly . (B, (z) ,B.(2))
“ r 3 i=o mi 1 J '
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Tmj T T(Bi(2),B.(z - 03 =nmd
m]J ( j(z), ]( )) Bj )
B. 0
J
If Bj = 0, ij 1s arbitrary. Then,
m—-1 i+l . m-1 i+1 .
B (z) = L LYy I Dbysz J o gl Ty YmiPi 4 z" )
i=o j=1 *J i=o j=1 J
or,
m-1
b . = - z .b
mj i=j—lle ij

Now that Bm(z) is known, Bm and km+l are easily calculated.

Rewriting (2.1.8) for step m as

am+l,o =1
an+l,i =~ Zmi T ¥mt1Pmi (2.1.16)
q+l,m+l - Fmtl C(2.1.17)

and substituting the above values of bmi’Bm' k in (2.1.14),

m+1
(2.1.16), and (2.1.17), step m is therefore completedand applies
to both the covariance and autocorrelation method. In the

latter, the relation cij = r(j-i) simplifies the algorithm

even more. For,
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let j

= m+l-2 m
in I a_.r(i-j)=0 _
i = m+l-k i=o ™ ‘ o = 1
Then
m+i m+1
r a _pr(m+l-k-(m+l-2)) = I a Lr(2-k) =0
k=1 m,m+l-k k=1 m,m+1-k
Let bmk = am,m+l—k k=1, 2, .... m+l
— — : -, _
Then, bm,m+l =a. = 1 as regquired for Bm(z) and (%Nz ) = 0.
Furthefmore,
m+1l . m+1 .
_ 3 -1 m+l-i -(m-1) _ , -(m+l)
Bm(z) - .E bmiz - E am,m+l—i 2 =tz Am(l/z)
i=1 i=1 .
) (2.1.18)
Substituting (2.1.18) in (2.1.8) gives
-m+1 - o -m
Z Bm(l/z) =z mBm_l(l/z)+kmz Am_l(l/z) z +~ 1/z
m+1 .+ m .
Z Bm(z) = 2z mBm_l(z)+kmz AL _1(2)
zBm(z) - kmAm_l(z)== Bm—l(z) (2.1.19)

This autocorrelation algorithm has been implemented as a

FORTRAN subroutine program in [2]}, and will be used in analysis
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and pitch extraction of speech as described in Chapter VI.

Correlation matching - calculation of gain

In z transférm notation (2.1.1) may be expressed as
S(z) = E(z)/A(z). In the autocorrelation method it is
desired to match the‘autocérrelation p(j) of the unit sample
response of the vocal apparatus to that of thé input speech
signal s(n) within the window used: p(j)=r(j), j=0,1,...,M
[2, p. 31—32, chapter 2]. Assume the transfer function of
this unit sample response to be a causal all-pole filter H(zf

= g/A(z) and rewrite this as

m
I a.h_ ., = 0§
. i n-1i no
i=o
Then
m
¥ a,p(i-j) =0 6. . h . =ch . =20 j > 0 2.1.20
i=o 10 +3) n ° 87d -J ) ( )

because of the causality. From (2.1.19) n=0 gives aoho=ho=o.

Consequently,
m 2 ‘
z aip(i) =g (2.1.21)
i=o
But since p(j) = xr(3)
for 3 = 0,1,...M, the solution to (2.1.20) is the ak's
obtained in the previous section and 02==a = (A,A) is the

minimum energy. In particular since p(0) = r(o) = the
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energy of the input signal,by Parseval's theorem then,: o
matches the average value of |S(eje)|2 to the average value
of 02/[A(eje)lz. |

Now, as M =+ «, p(j) = r(j), jJ € I and since the spectrum
equals the transform of the autocorrelation sequence,
[S(eje)l2 = oZ/lA(eje)Iz;' The autocorrelation method then
gives a perfect fit to the magnitude of the speech spectra.

Consider the log spectra of IA(eje)|2

b . ’ .

» 6, 12 do ﬂ -36,,2 4o .
=—"fr ln]A*(ej )I 'i?r' = 1{ lln[A(e J )l -2—11_— since ai C R
= 2Re ?z|=l 1nA(1/z) 2i§2'f But A(z} is causal

and therefore the roots of A(l/z) are all outside the unit

circle. The residue is simply
2 RefnA(») = 2 Refnl = 0 ©+ gince a = 1.
Consequently,
flnl——gv——lzgg = 1no? = lna
A(eje) 2T

Experimentally it is found [2, Chapter 6] that the log spedtrum
of the speech signal tends to lie below the model log spectrum
and also the latter tends to fit the peaks more accurately

than the dips. Actually this observation is desired because
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the peaks represent the resonande frequencies of the vocal
ﬁract and these play a dominant role in the perception of
voiced speech. In the covariance formulation a pdwer'spectrum
cannot really be defined since cij is not an autocorrelation.
Neverthelesé, if A(z) is causal and]JiLI[A(eje)lz is
compared to ln]S(eje)l2 the same observations are madé [2,

Chapter 6].

2.2 The Speech Production Model and its Relation to Linear

Prediction

Vocal tract apparatus [l, p. 9-15, Chapter 2}.

The complex sound which is percei&ed as speeéh is the
result of a préssure wéﬁe generated by our vocal apparatus.
The major components of the system are shown on diagram
‘(2.2.1). The source of'power for the expiration of air is
‘the contraction of the lungs by the rib muscles. The éources
of excitation for modulating this mass air flow are (1} vocal
cord vibrations and (2) any constriction at an arbitrary
‘location in the vocal apparatus. The first gives rise to
-speech classified as voiced. By voluntarily tighfening_the
vocal cords which are attached to the arytenoid cartilages
in the glottis, the subglottal pressure will force them

-apart to allow the air to be expired. But by the Bernoulli

principle, which is a form of energy conservation, a moving
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fluid exerts less bressure on the walls than a stationary
enclosed one. Hence, the pressure in the glottal region

drops and the vocal cérds are brought closer together

reducing the air flow and building up the pressure again.

This v;bratory behavior of the vocal cord then results

in guasi periodic variations in the output airflow. The
tension in the vocal cords and the subglottal pressure
determine respectively the pitch and intensity of the resulﬁ—
ant pressure wave. The duty cycle of the waveform is also
proportional to the pitch and intensity. The second excitation
can be subdivided into two categories. If a pressure is built
up behind a closure point constriction and is suddenly;reléased
“by opening the latter, then a plosive unvoicedsound is
produced. If a constriction creates local turbulence in

the air stream, the resulting random pressure wave is called

~a fricative sound. It is possible to have sounds characteri-
zed as voiced and unvoiced. When-the velum is open the air
passes through both the nasal and oral cavity giving rise to

-nasal sounds.

Models of the vocal apparatus [1, Chapter 3]

Consider a stationary vocal tract configuration (with the.
velum closed) and a pressure wave emanating from it. For the
range of frequencies involved in the production of audible

sounds, the length of the vocal tract from the glottis to the
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lipsis'oftheSame order of magnitude as the sound wayelengths.
Consequently a wave analysis of sound production is required.
Moreover, if the transverse dimensions to the tract are small
compared to a wavélength then the analysis is one-dimensional
and reduces to solving the classical Webster-Horn eqguation
subject to the inen boundary conditions at the lips and the
glottis. However, the analeis does not lead to tractable
mathematics because the vocal_ﬁract's cross section is a
function of the distance from the glottis‘(a-non uniform
tube) . An approximate solution tolthe problem is to represent
the vocal tract by.a'finite numbe:»of series interconnectiohs
of uniform tubes each of which has a short‘length compared to
the range of wavelengths of interest. The solution to a
,ohe—dimensiohal wave analysis of a uniform tube is ahalogous
to that of a uniform electrical transmission line. Here the
inertia of the air particles, the.compressibility of the air
volume and the viscous and heat conduction losses at the walls
are playing thé role of inductance, capacity.and resistance
respectively. These losses are even more important when
modelling the nasal tract (velum open) because of its con-
voluted surface area. In'addition the walls themselves are not
smooth and rigid and this is another contribution to the net
impedance of the tube. A cascade connection of tubes of
‘different cross sections isvthen'analogousrto a cascade connection

of transmission lines of different lengths and impedances per

unit length.
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Models of excitation sources [1]

First, consider voiced excitation. The subglottal
pressure_PS is almost egqual to the lung pressure PL because
of the negligible drop across the bronchi and trachea. Ps
is also constant-over mény pitch periods because the rib
muscles contract the lungs in proportion to the quantity of'
air expelled. Consequently; the‘lung capacitance and induct-
ance are variable. It Was already pointed out that the vocal
cords vibrate undexr tension. Cénsequently théir inertia can
be represented by an inductance and the damping of their.motion
due to the viscous fluid flow by a resistance.- However, during
their vibratory cycle, the cords' inertia and damping are time
varying. The model of the glottis assumes that the glottal
éutput volume velocity of air is not perturbed at all by £he
presence of the vocal tract. This is obviously not true,
especially When a tight constriction exists, because the
pressure wave is partially reflected back into the glottis.

The model for the source when a constriction occurs is
a random impedance and generator whose mean values depend on
the volume velocity and the area .of the constriction in é
~nonlinear way. The spectrum of this noise source has been
determined to be relatively uniform at the point of thé_constric-
tion. It can then be modelled as white noise. A similar

model can be used for plosive sounds.
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Termination at the lips

Since a pressure wave 1is radiated from the lips,
there.is,a non—-zero output impedance. It varies with the
size of the mouth opening and for wavelengths long compared
to the mouth opeéning, it behaves as a resistance proportional
to w2 in series with an inductance proportional to w, where
‘w is the freqﬁency of 'a sinusoidél input. The model used to
compute the impedahce is even morxe Suited to the nasal tract
because the nosﬁril opening is even smaller. Also‘beéause the
distance from the nostrils to the mouth is short compared
to the wavelength, the phase difference between the mouth and
nostril pressure waveforms is small and to a good approximation;

the output speech is the sum of the two contributions.

Relation to the linear prediction all-pole model

Since a computer simulation was used} the speeqh had to
be digitized. Procedures in recording speech on discs and
playing it back will be discussed in Chaptef Vi. If no
~aliasing is desired, then one sets the sampling frequency of
the‘converter to at least twice‘the cutoff frequency. To
show this, let Fa(s) be the Fourier transform of fa(t) and
let £(n) = fa(nT) be the equally spaced samples of fa(t). Then
£(n) = er-]—. $F (2) 2" Laz |

‘o

T . .
= f%' [ Fe!V)el"aw where F(z) = I f(n)z ©
-

=00
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. X .
— JwnT

1 Ve
= 5 f F (Jw)e dw

Combining these, results in [3, p.26-29 (Chapter 1]

©

'.—l

) = & I P GE -2 | (2.2.1)

m=-—co

Jw

F(e

Consequently, i1f no aliasing is‘desired, it is necessary that
]Fa(¥)| = 0 for |w|>w. The speech must then be béndlimited
prior to sampling.

In the lanquage of sequences let Tle(n)] = s'(n).be
a transférmation from glottal.input, to the output speech

.waveform. Now,

(2]

e(n) = Kjiw e(K)d6 (n—-K) since §{(m) = 6mo

Lftwill be assumed to be linear. This requires among other
things that the glottis be uncoupled from the vocal tract.

e [ee]

Tle(n)] = ¥ e(R)TI[S(n-K)] = I e(K)h{(n-K) (2.2.2)
Keco Koo _

“(letting TI[§(m)] = h(m)). Up to now it was assumed that the
vocal tract configuration did not change in time.. This
condition will now be relaxed. (2.2.2) will not be true for

all n (i.e. h(X) = h(K;n) V‘K). However, it will be assumed
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that h(K) does not depend on n for a certain range of n say,
from 0 to N-1, Therefore let s(n) = w(n)s'(n) where

w(n) = 0 for n-¢[(O,N—l). " Then by the convolution theorem
s(ed¥) = [sr(eI®)w(ed (W70 4

Details can be found in [3, section 5.5] about the type of.
windows used to ap?roximate S'(ejw)bby S(ejw). For exémple
a Hamming window will be used before performing autocorrelation
analysis. Notice that even if the system was time invariant,
only an appfoximation to a spectral computaﬁion S(z) = f;iss(n)z_n
is possible because of the infinite limits of ~:—:ummation.=—°°

With the series connection of uniform tubes model of
tﬁe vocal tract (i.e. velum closéd), it cén be shown, from
" [1] and also from the further_usé:of (2.2.1) that to a goodvi

approximation, the transfer function from the glottal output,

to the lips is of the form

v(z) = I A i Ickl <1

(1-c, 2z 1) (1-c*. z ™1

kI (1-¢p k% )

(2.2.3)
-in the case of voiced excitation. In the case of excitation
at a constriction in the vocal tract, there is also generation
of zeroes and to a good approximation, the transfer function

is
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(1-apz ) (1mo* 27 )

=

(2.2.4)

z_l)(l—c* z—l)

(l-c Kk

k

=L AN E=N=]

?\-'
| aad

It can also be shown from [l], that the poles and =zeroces will
be perturbed by_the lip radiation model's poles and zeroés
contribution. However the contributions due to this model
can be simplified by an'additional factor.l—z_l in the numerator
[2, section 1.3]. The z transform for the noise source is
a constant as it is represented by white noise. Since the
output of the glottis is a periodic pulse,wthe@input"£0the'
glottis' can be modelled bj an infinite train of unit pulses
-equally spaced by an amount egual to the pitch period. The
transfer function of the glottis will modify the pulses.
Since it is uncoupled from the rest of the vocal tract its
poles and zeroes contribution-will not perturb those of the
vocal tract.
This glottal transfer function is often approximated

by a 2 pole filter (l/(l—az—l)2 [2, sectioﬁ 1.31. One of
these factors can then cancel the numerator l—z—.l due to the
lips because o is close to 1 in this model. Hence for the
véiced situation the het»transfer function 1/A(z) is all-
pole. ‘Using (2.2.2), s(n) = w(n)(e(n)*h(n)}. If h(n)

vafies slowly with respect to w(n) [3, p. 514, chapter 10}

- then
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s(n) ~ [w(n)e(n)l*h(n) (2.2.5)

since 1/A(z) = ; h(n)z-n,
n=-c

where Ew(z) is an all zero input because it is of finite
duration. This last equation is the z transform of (2.1.1).

Next usihg the mass coﬁtinuity, momentum and the
Webster-Horn equations (the latter being easily derived from
ﬁhe first two) and thé continuity equations for volume
velocity and presSure at the boundary between two uniform
tubes, it is shown in [2] that. in the case of_ﬁo pressure
wave leaving the lips (i.e., the output impedance at the
lips is zero), équations entirely anaiogous to the auto-

correlation equations

A,(z) = 1 ' : | (2..2.6)_‘
Bo(z) = z* O (2.2.7)
A (z2) = Am_l(z) t+k B _;(2)
zBm(z) = kmAm_l(Z) + Bm_l(ZY

afe obtained. In the present situation, m_is the index
denoting a uniform tube. m=0 stands for the tube terminated
on one side, at the lips and m=M for the tube terminated on

one side at the glottis. Here km = l—Am/Am_l / 1 + Am/Am-l



where Am is the cross-section of uniform tube m and it
represents the fraction of the energy which is reflected
back into the tube. This is the reason for calling the M

parameters km in autocorrelation linear prediction, reflection

coefficients.

2.3 Improved Parameter Representation of Speech

The erxrror signal e(n) whigh is the dutput of the linear
prediction filter A(z) exhibits the following properties
[4, page 11].
(1) It is gquasi-periodic due to the vibratory motion
of the vocal cords.
(2) No interval can be found within a period, which

will possess a flat amplitude spectrum like that

of silence or white noise.

(3) A jitter from one pulse to the next in the instant-
aneous period of the waveform is observed because
of instabilities in the vocal cord motion.

In addition, tﬁe glottal transfer function is time-
varying within a pitch period (Section 2.2). A(z) and e(n)
as obtained from an interval covering several periods might
then not accurately represent the vocal tract transfer

function and the input to it. For example, as pointed out in
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[5], there is no clear cut one-to-one correspondence between
two adjacent peaks of e(n) and the points of strong excita-
tion in pre—émphasized speech. Howevér, as will be done in
the next chapter, e(n) can still be used to provide an
estimate of the pitch. Once having obtained such an
estimate, it is then proposed in [5], to perform linear
prediction over intervals short compared to this calculated
pitch period. Then, assuming hard glottal closure,
L. n 2
it 1s then expected that I e (n)
n=n,

would fall to zero as the segment of constant length is shifted
to an interval lying between two points of glottal closure.
In practice it should not fall exactly to zero even if glottal
closure is quite sharp, because of thée slow rise of the next
glottal pulse. However this is not a practical scheme to
be implemented in a speech transmission system because
once an initial pitch estimate is obtained for: an analysis
frame (10-30 ms in length), the computation involved in the
search of just one excitation-free interval is to be done
on all such intervals within that analysis frame if correct
information about the excitation signal is to be transmitted.
The method might also not be accurate if the assumption of
hard, glottal closure does not hold.

Nevertheless, returning to the error signal e(n) obtained

from the original analysis frame, it is found in [6], that
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linear ?rediction applied to an interval of speech lying
between two finite duration pulses, will result in a spectral
plot a/IA(eje)l2 which averages the peaks of [S(eje)l2 better
than the previous analysis. Letting E(z) be the 2z transform
of the new error signal, it is then suggested to obtain the
zeroes of the spectrum by performing linear prediction on
the z'_l transform of 1/E(z) or by solving for the roots of
z e(n)z_n where J is an interval lying within one of the
?%gite duration pulses. It is then observed in [6] that
approximately the same zeroes are obtained if the interval J
is shifted to a region between pulses. The zeroes are then
more likely to be due to an opening of the velum than to the
presence of a glottal pulse.

| Up to now, methods of obtaiping the error signal e(n)
and the vocal tract transfer function in the presence of a
voiced excitation, have been‘briefly described. However there
is a method which avoids the difficulties arising from the
existence of such an error signal. It is called homomorphic

deconvolution and in some cases [3, Chapter 10] is useful in

separating a signal into its basic components. It involves
'finding the z 1 transform g(n) of log X(z) where X(z) = § x(n)z ™.
n=-w
“Now from (2.2.5) S(z) = Ew(z)H(z).
Therefore log S(z) = log Ew(z) + log H(z)
or S(n) = e (n) + h(n)

It is then shown in [3] that for large pitch periods, h(n)
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Fal

does not overlap ew(n) appreciably because of its rapid decay
(h(n) < Cn/n, where C is a bound). Consequentlyit is then

possible to separate h(n) from ew(n) and hence h(n) from ew(n).

Writing the vocal tract transfer function H(z) as

~the‘problem then becomes that of solving for the ai‘s and

bi's simultaneously. As it is-a highly non-linear problem,

its solutions are approximated by those solutions.to modified
linearized problems. Methods of solutioﬁ to two such simplified
problems héﬁe been proposed by Kalman and Shank‘[8]. ‘The
original non-linear problem can only be solved iteratively, énd
even then, there is no gﬁarantee that the algorithm will con-
verge. One such scheme, callea itefati&e prefiltering, is
discussed.in.[B];whereit was shown that it'actuélly results

in a more .accurate representation of the vocal tract than
Shank's method. However the two main disadvantages are
increased complexity and execution time of the algorithm.

In conclusion, this section was basically concerned with
the limitations of the linear prediction algbrithm. Further prob;-
'lems.arise in.including:Zerbes'as_paraﬁeters. First'{here.is-
the difficulty in locating them in any real system due to

ever-present interfering signals. Also recall that if aliasing
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is avéided, then a cutoffbfrequency fc < fé/z is necessary.
But then fC must be as close to fs/zlas possible if zeroes

. in the spectrum are also to be avoided. Also since a
windowed frame contains a finite number of samples only,

the z transform is then a polynomial (an all zero transform).
Zeroes in the transmission are in addition masked by these
artificially created zeroes. Conﬁéntional linear prediction
will from now on be used. Also the input to the glottis
will from now on beAapproximated by a train‘of equally

‘spaced input samples.
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IIT: PITCH EXTRACTORS

One parameter of gfeat importance in thé.perception
of voiced speech is the fundamental frequency of the glottal
excitation, [2], more commonly called the'pitch. Therefore
the conéeption of é Very acéurate pitch tracker would allow
a great reduction in transmission bit rate “at little loss
of fidelity." Se&eral-pitch detectors have already been
proposed. In section 3.1, the subjective results [22] of
speech synthéasized using different pitch detectors are '
summarized and section 3.2 describes in more detail one
particular detector which was used in obtaining the results

of Chapter VI.

3.1 Comparison of Various Pitch Extractors

In [22] a subjective comparison of linear prediction
synthesized speech in which only the method of pitch extractioh
is allowed to vary, was carried out. In all, eight such

‘methods were studied and are listed below:

(1) SAPD (semi automatic pitch contour)
(2) LPC (spectral equalization LPC method)

(3) AMDF (average magnitude difference function)
(4) PPROC (parallel processing method)
(5) AUTOC .(modified autocorrelation method)

{6) SIFT (simplified inverse filtering method)
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(7) CEP (cepstrum method)

(8) DARD (data reduction method)
Details on the theory of operation of each bf these algorithms
are provided in the references listed in [22]. The original
unprocessed utterance was also included in the study of [22}],
for a total of niné versions of én utterance. For each of
these versions, the speaker, listener,-sentence‘uttered and
recording conditions were varied. To remove as much as
possible any bias on the part of a listener, the utterances
were randomly selected among all values of the above para-
meters. This preference ranking method is described in detail
in [22]. Denoting a preference of method A‘over method B
by A > B it is seen from a plot of the average_df the preference
over all parameters (keeping the‘deteétioh method fixed) versus
the detection method that
‘original utterance>SAPD>LPC>AMDF>PPROC>AUTOC>SIFT>CEP>DARD .
Alsé, with respect to this average, the original utterance
scores considerably better than any of the eight LPC synthesized
utterances,.and the variation of the average preference among
these eight methods is not as great. Moreover,; the standard
deviation in preference scéres is much larger for the éight
detection methods than for the nétural utterance. Plots of
the average preference score versus detection method used,
keeping not only the detection method but also either of the

listener, speaker, recording conditions, fixed, are also
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shown in [22]. Variations in préference scores among
speakers are seen to be larger than variations among
recording conditions and these are in turn larger than
those among either listeners or sentence-uttered;

Ansther comparison expériment,in which the mean
preference for.utterances synthesized with smootﬁed pitch
contours over those synthesized with uhsmoothéd pitch
contours is plotted versus the pitch detection method,
was carried out in [22]. The same general trend concerning
the preference scores keéping the sentence uttered, listener,
speaker and recording conditions fixed, respectively, is
observed in this experimént. Generally speaking, the higher
an-utterance scores in the>previous experiment, the lower is
its need for pitch smoothing in order to improve its subjective
quality.

In conclusion, the fact that no LPC synthesized utterance
comes close in quality to the original utterance should not be
surprising in view of the discussion in section 2.3 on the
limitations of linear prediction. Further work on pitch
extraction algorithms is.also necessary in view of the fact
that on the average, the semi-automatic pitch contour method

scores higher than the seven pitch detectors.



37

3.2 The SIFT Algorithm

From the previous discussion of section 3.1 on subjective
testing, it is clear tﬁat SIFT is not a particularly good
algorithm for pitch.extraction. Héwever, as the quantization
properties of the reflection coefficients and some of their
transformations is the subject of this thesis, the particular
pitch extraction algbrithm to be chosen is not of prime concern.
Besides, implementations of SIFT by two FORTRAN sdbroutine
programs were readily available for use in [2,'Chapter-8].
Therefore, this algorithm will now be discussed in some
detail.

First, it is observed that direct extraction of
the pitch from the speech'signai é(n) can be done mahually
and is quite acburate; However for the purpose df imélement-
ing an automatic procedure of pitch extraction, the logical

step to follow is to compute the autocorrelation

B I
R(j) = )) s(n)s(n+3j)
n=0
ﬁhere the interval (0, N-1) includes many pitch periods.
Obviously, R(0) > R(Jj). Suppose there is g'priofi kndwledge
of the interval J C (0, N-1) in which the pitch value should
lie. Then compute R(j) for all j € J and assign the value

2 to the pitch where £ satisfies
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R(%) = max R(3)

J€d,

3#0
Notice that if the gain R(0) changes by a.:constant factor
a then so does any R(j). Because R(0) > R(j) the normaliza-
tion R(3j)/R(0) can}then'always be compared-with a fixed
threshold function D(j) independent of gain. Unfortunately,
the poles 6f the vocal tract transfer function have narrow |
bandwidths (especially those of low frequency). Therefore
componénts'of the speech waveform at those frgquencies will
not decay considerably within a pitch period. High amplitude
correlation peaks due to those components could result in

false pitch detection [9].

Inverse filtering [9]

This is simply linear prediction and ensuing inverse
filtering of the speech signal s(n). Autocorrelation is
then performed on thé error signal. Gain normalization is
then applied and a simple voicedunvoiced decision based upon
a fixed threshold function D(j) can be defined. In this way,
most of the source voéal tract interaction is eliminated.
Refinements of the method have led to the simplified inVerse

filter technique (SIFT) ([9].

SIFT

Preliminaries [10]. Before performing linear prediction

- analysis the mean of the input signal within the analysis frame
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is extracted and subtracted from each Samble value. If this
was not done, the bias in the windowed frame would‘coﬁtribute'
to R(3j), a linear termnmnotonically decreasingin j. By its
presence it is possible that a peak which would otherwise

be below the threshold D(j), could cross it and have an
amplitude greater than a peak to.its right corresponding to
the actuél pitch value. It iS'alsd possible that the
threshold’D(j) is exceeded for aAvalue of j smaller than the
highest fundamental frequency of interest.

If the speech energy in the frame is less than some
number called the. lower dynamic range, then the frame is
defined as silence. This allows the number of computations
involved in linear prediction analysis and pitch extraétion
to be greatly reduced because of the substantial fractién
of silence frames even in continuous speech. The same lower
bound is used in gain quantization (see Chaptér VvI).

Finally, if the zero crossing deﬁsity exceeds 2/ms,
the frame is defined as unvoiced. This is because in
unvoiced frames, the source of excitation has higher frequency
components than for voiced frames, corresponding to a zero
crossing density of at least 2/ms.

Human pitch for the average male or female speaker
ranges from 50 to 250 Hz. The input spéech can then safely
be bandlimited (prior to the above preliminaries)} to 1 KHz

without any loss of pitch information. As will become clearer
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in Chapter IV, a sampling freéuency fs of 2 KHz and a
filter order M=4 is sufficient for the linear prediction
analysis. The advantage of this épproach lies in the

great reduction in the total number of necessary_operations
in the analysis. This scheme does not work wéil in the
case of nasal or voiced plosive sounds because the speech
signal contains zeroes around the frequencies of human
pitch. To cancel thié zero‘spectrum a pre-emphasis filter
1-z71 is used before performing liﬁear-prediction {2, p. 193-
197]. To get the-filter coefficients, the input speech is
also windowed using-a Hamming window in order to obtain a
more accurate representation of the speech spectrum. Then
the efror signal is obtained by inverse filtering the
unwindowed and nonpre-emphasized speech signal. If the
filter order M had been chosen to be much larger for such

a bandlimited signal then the output would have been a

unit sample (e(n) = 8(n)) because
o .
.___.__M_,é__. > lS(eje)l
|ae?™ | -

as M +» » for autocorrelation linear prediction. The length
of the analysis frame should encompass several pitch periods
yvet be small enough to ensure that the vocal tract does not

change shape appreciably within the frame, and that pitch
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variation from pulse to pulse is insignificant. At fs = 2 KHz
80 samples are used. The autocorrelation sequence is then

twice that long but is symmetrical R(j) = R(~j).

Interpolation

The sampling period T is .5 ms. Taking a typical pitch per-
‘iod P to be of the order of 6 ms [9] the quantization error

in Hertz is

I 1 ;l _ ;| 1 L T _ ,25x1000
= L _

P+T/2. P 1+T/2P v p2 | 6x6 7 Rz

which is'large enough to be noticeable. vSince increasing the
sampling frequency is undesirable'a.more accurate peak value
and location is obtained from a simple parabolic interpolation
of the maximum autocorrelation R(L) and its two adjacent
samples [9]. |

A block diagram of the SIFT algorithm is shown in
Figure 3.2.1.

The variable threshold D(j) and the error detection

.and correction logic are discussed in more detail in [2,

Chapter 8]. 1In addition STEP 1 and STEP 2 of Figure 3.2.1
are implemented as two FORTRAN subroutine programs.
As a tradeoff between complexity and accuracy, SIFT

uses only two frames of delayed pitch information for the
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detection and correction of errors. To further redﬁce the
amount of computation involved, SIFT oniy éearches pitch
values over the rangé (50,250) H=z eveﬁ though‘human pitch
can go aé high as 500 Hz. |

Because linear prediction results are very sensitive
to‘recording conditions [10], any type pf background noise
Iincluding ﬁore than one speaker) must be kept to a minimum.
dthérwise the performance of the SIFT algorithm will be
éonsiderably degraded. For the same reason, because of the
binary voiced-unvoiced élaséification of each frame, implicit‘
in linear prediction, voiced plosive and fricative sounds
cannot be well recohstructed.

It should berpointed out that a single parameter
extraction from the error signal, as is done above,
accounts for the largest feduction ih the transmission bit

rate of speech.
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Iv: ANALYSIS AND SYNTHESIS USING PITCH EXCITATION

In this cﬁapter, the basic building biocks of a pitch-
excited vocoder are reviewed. Section 4.1 eésentially deals
with preprocessing and inpﬁt variables to either a covariance
or autocorrelation énalyzer: sampling ffeqﬁency, filtérérder,
analysis frame length, frame rate, windowing and pre-emphasis
of the input speech. In Section 4.2 the stabilizing pnjxxty of the
reflection coefficients is briefly discussed. In the next
éection, two important synthesis structuies are described.
One of them, the two-multiplier lattice structure becomes
part of the pitch sYnchronous synthesizer briefly discussed
in Section 4.5. The driving function to this synthésizer
uses the gain métching criteriondiscussed in the previdus
section. Finally, in view of the fact that quantization
properties of various transformations of the reflection
coefficients will be the main topic of Chapters V and VI,
this synthesizer'program is adopted and Section 4.5 concludes
by enumerating some characteristics of_autocorrélation

vocoders.
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4.1 Analysis Conditions [2, sections 6.5.2-6.5.6]

In order to éccount for the most important formant
struCture‘of speech, a sampling frequency fS of at least
6 KHz is necessary. If low intensity and high frequency
ffiéatives sounds were £o be represented, a high éNR and
fs = 20 KHz would be required ﬁnless the technigque of
selectiﬁe linear prediction [2, chapter 6} was employed.
' As discussed earlier, to prevent any aliasing, the speéch
must be bandlimited to |f] < f./2. However, since the
introduction of artificial zeroes in £he spectrum is
undesirable, a variabie'filter with avvery sharp cutoff at
'f = fs/2 is required.

A figure of merit for the filter order M is'fS(KHz) + 4.
This can be accounted for in thé following way. In relaﬁing
linear prediction to the speech production model, an equation

of the form

— _ _,*:7 -
V(8D = w v (8 + V-1 8

is derived in [2, Chapter 4]. T = 2&/c where % is the length
of a uniform tube and ¢ is the speed of sound. T represents
the time it takes for a wave to traverse the length of a
uniform tube and be reflected back to its starting point.
However, in digital representation of speech the samples

are spaced l/fs apart. In order to be aware of the existence

of such a tube a resolution l/fs < 22/c>is required. Let
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the number of tubes be M. Then__MR = L is the distance

from the glottis to the lips. For hﬁmans; 2L/c v 1 ms.
Hence M < fS(KHz). In other words it is useless to use

M > fs because no additional formants are present in the‘
range (0, £_/2). The best that can be done is M = fS(KHz).
However there are 4 or 5 additional poles which are observed
in the input speech spectrum énd these are due to thé glottal
transfer function and lip radiation model. Therefore to
represent these poles a filter order value of at least
fS(KHz)'+ 4 is used.v For unvoiced speech the vocal tract
formant structure does not‘stand out as clearly‘in the input
speeéh spectrum. If unvoiced frames of ‘speech are analysed,
then a sméller value for M than‘thé one ébove could be used
to accurately represent speech. Also there might not be a
contribution from thé glottis.

The analysis frame length N is.limited by the time‘
varying nature of the vocal tract. For most épeech soundé
it should not exceed (15-20) fS(KHz) [2, Chapter 61].

However it would be preferable for some voiced and especially
plosive sounds to use a value of N/fS (KHz) of only a few
msec if accurate representation of these sounds is desired.

As these values of N cover many pitch periods, absolute

placement of the interval is unnecessary in both the covariance

and autocorrelation methods. To accurately represent the

continuous nature of speech, a frame rate fr of at least
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50 Hz is recommended. Hence for a typical fs of 10 KHz, |
fs/fr = 200 and with the above values of N, shifted inter-
vals do not overlap. This is to be contrasted with the
SIFT algorithm in which the overlap ratio is i/2 (N=80 and
fs/fr = 2KHz/50Hz = 40).

| " As was previously mentioned, windowing of input speech
reduces the distortion between the actual and truncated speech
spectra. Specific details about these distortions depend on
the shape and length of the windows. For analysis lengths of
order of magnitude as stated ‘above, non-rectangular windowing
of the speech_is desirable.

Reéall that an approximate way to account for the effect of
~glottal transfer function and lip radiation model on theroutpﬁt
.Speech is to divide the all pole filter 1/A(z) of a vocal tract
transfer function with zero lip impedance‘and'infinite glottal
impedance by the term l—z—l. Since performing linear predictién
'to obtain the original all pole filter 1/A(z) is desifable the
input speech is then preemphasized by a factor l—z_l. This will
lower the energy of the low frequency part of the spectrum.
However, most unvoiced sounds contribute energy mostly to the
high frequency part of the spectrum. For most of these sounds, the.
glottis does not contribute an all pole filter 1/(1—e;CTzq1)2.
"There is then no reason to preemphasize the speech. Therefore,
prior to the autocorrelation analysis an adaptive preemphasis
filter l-uz T where u = r(l) /x(0), is used. 1r(0) is the

energy of the input speech in the analysis interval. For
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- unvoiced sounds, the autocorrelation r(1l) is much less
than r(0) because there is-practically no correlation
among samples. There is then no preemphasis. For voiced
sounds preemphasis is greafest because f(l) é‘r(O).

[2, Chapter 6].

4.2 Stability Problems and Comparison of Autocorrelation

and Covariance Analyses

Recall frqm Section 2.2 that the paraméters km
-involved in the solution to the autocorrelatibn linear
- prediction equations are termed reflection coefficients
because they represent the fraction of the enefgy which is
reflected at a boundary between two uniform”tubes. More

precisely it was found in [2, Chapter 4] that

1-A_/A
Kk = m m—1

m 1+Am/Am_l

where Am is the cross-section of the mth uniform tube. An

area is a positive quantity and therefore from simple -

inspection of the above equation, |kml<l, as is required

from physical grouhds since apart from the glottal input,

there is no additional source of energy. This result can
m

also be seen from (2.1.14) since ao_ = Bﬁ in the autocorrela-

tion analysis and therefore the equation reduces to

_ ; 2
Ol = Ot~ Kpgg) (4.2.1)
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But am is a sum of squares and is always positive. Hence
|km|< lfor all m and consequently stability is ensured..
(A more»rigorous proof relating the condition [km]<1 to the
requirement that the roots of A(z) lie inside the unit
circle |z]<1 for stability of 1/A(z), can be found in [2,
Chapter 5].) This result does not generally hold for the
éovariance method since o is not necessarily equal to Sm in
(2.1.14) . However, combining (2.1.8) and (2.1.19) yields

A (2) = Am(Z)_szBm(Z) - (4.2.2)

m-1 1-k
m

and using'(2L1.18), (4.2.2) can be rewritten as

A (z)—z_mk A (1/2) ,
A (z) =& m o (4.2.3)

m-1
1-k
m

or in time-domain notation

(4.2.4)

for m = M, M-1, ... 1l and i =0, 1, ..., m~1. Therefore
all Am(z) can be found given A(z). But from (2.1.17),
A = k.- Therefore if a filter A(z) is obtained by the

covariance method, the step down recursion 4.2.4 can be

used to test for a possible occurrence of at least one
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Ikml > 1, 1If there is one, A(z) is expanded in product
form, and for the roots Z; which lie outside the unit

circle, let z; = l/zi. Then reconstruct the new polynomial
A(z). If reflection coefficients km are to be used in
transmission apply (4.2.4) once more to find all km for the
new A(z). It must beinoted that this new A(z) does not
satisfy the original minimization criterion. The above
procedure is called the step down-step up methodf The
advantages of the autocorrelation over the covariance

method are therefore (i) the filter is assured to be stable,
(2) a useful gain matching is easily computed and (3) for

the same analysis frame length, it requires less calculations.
However, the quality of the synthesized speech is often

iower than that of the pitch synchronous covariance analysis.
i.e., a frame of duration less than a pitch period [2,

section 10.3.3]. However the_gain calculation in the
covariance analysis may require a larger frame of data [2,
Section 6.5.1]. Notice that both methods should give similar
results as thé frame length increases because then cij
_differs from r(i-j) only in the end terms in the summation

over (no,nl).

" 4.3 Synthesis Structures [2, sections 5.4,5.5]

Up to now, analysis has been discussed. However, many of

the ideas involved in linear prediction can be used in the
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inverse problem of synthesizing speech. First assume that
an all-pole linear prediction filter 1/A(z) and an arbitrary

input signal E(z) to this filter are given. Then the output

is

_ E(z) _ - E(z)
D(z) = 372y = T (4.3.1)
1+ ¥ a.z
i=1

or in time domain notation

d(n) = e(n) -
i

N ~=

a.d(n-1i) (4.3.2)
l 1

The idea in synthesis is to compute d(n) consecutively

for a certain range of n, giveﬁ the input e(n) and the filter
coefficients aj s i=2, 2, ... M, and updating the ai's at
the first n outside the above range. Notice that, by the
above computation 4.3.2, the memory d(n-1), ..., d(n-M)

is updated for every new input e(n). In the SIFT algorithm
there is such a filter memory used in the computation of

the error signal:

E(z) = S(z) A(z) (4.3.3)

or ‘ e(n) = s(n) + ais(n-i), (4.3.4)

™~

i=1
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For every analysis frame of length N there are N new samples
s(l) .... s(N) but fo: n=1l it must be decided which wvalues
bshould be assigned to the mémory s{0), s(-1) .... s(~M).
These are chosen to be zero at the initiation of every frame.
The computation scheme (4.3.2) is called the DIRECT
FORM synthesis structure. Now the parameters which are often
transmitted to the receiver are the reflection éoefficients
,ki' As can be understood from the previous discussion, this
 is’because stability is guaranteed under quantization of the
ki's in,the.open interval (-1,1). Therefore a_scheme which
computes the output speech samples directly from the ki's
should be sought. Such a method is presented below and is
called the TWO-MULTIPLIER LATTICE structure. First rewrite

(2.1.8) and (2.1.19) as

Am_l(z) = Am(z) - kmBm_l(z) (4.3.5)

~and

zBm(z) = kmAm_l(z) + Bm_l(z) .(4.3.6)
Combining (2.2.6) and (2.2.7) gives

A (z) = zBo(z) = 1 _ | (4.3.7)

Multiply (4.3.5-4.3.7) by E(z)/A(z) and let
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E;(z) A_(2)E(z) /A(z) (4.3.8)

E;(z) B, (2)E(2) /A(z2) ' (4.3.9)

(4.3.8) and (4.3.9) are the z transform of the forward and
backward predictor respectively. Equations (4.3.5-4.3.7)

then become

E,7 (2) =E~(2) -kE % (2) (4.3.10)

for m=M, M-1,...1

- _ + - .
zEm (z) = kmEm_l (z) + Em—l (z) (4.3.11)

EY (z) = 2E, (z) (4.3.12)

In z 1 transform notation it is written

em;1 (n) =&l (n) - ke 7 (n) (4.3.13)
for m=M, M-1,...1
e,  (n+tl) =k e ¥ (n) +e 7 (n) (4.3.14)
et (n) = &7 (n+1) (4.3.15)
The k_- are only updated after a certain value of n. The

m

. . . + .
& input to the synthesis structure is ey (n) and the memory is
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eM_l(ﬁ), ..., €5(n). The output et(n) can be calculated
recursively in the order of decreasing m by the sole use

of equation (4.3.13). Equation (4.3.14) and (4.3.15)

compute the new memory eM_I(n+l),..., e, (n+l) to be used with
the next input eg(n+l). The two-multiplier lattice structure
was implemented in [2, Chapter 5] as a Fortran subroutine
program and will be used in Chapter VI for the reconstruction
of speech which wés analyzed by the autocorrelation linear

prediction method. Other practical structures exist which

are simple modifications of the above two-multiplier lattice.

[2, Chapter 5]

4.4 The Driving Function to the Synthesizer [2, section 10.2.4]

For the purpose of speech transmission it would be possible

to use the error signal itself as input to the synthesizer.

Figure 4.4.1.

S(z) —%l A(z) Elz) X' 1/A(z) >S(z) |

.
|
]

L \,

However the quantizétion of the error signal for its subsequent
fransmission would result in an excessive bit rate. To

obtain a relatively low bit rate, pitch extraction from

the input $(n) is suggested. The pitch estimate as

obtained, say, by the SIFT algorithm is transmitted along with
the reflection coefficients and the gain information through

the channel. At the receiver a sequence e(n) 1is constructed
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from the pitch and gain information. Basically if the frame
is unvoiced a randomly generated sequence e(n) is chosen as
input to the sfnthesizer and if it is voiced it will consist
of fixed amplitude samples equally spaced by the pitch value
P(ms)fS(KHz) where P(ms) is obtained from the pitch extractor
and fS is the sampling frequency of the output speech. The
gain of the output spéech is to be calculated subject to

. some matching criterion. One suggestion is to match the
energy of the input speech to the analysisAfilter, to that
of the output speech at the receiver wifhin each consecutive
interval of length equal to a pitch period [2, Chapter 10].
Transient contributions to the gain from one previous pitch
period are taken into account. The disadvantage of the
approach is that there is no guarantee that the gain will not
vary discontinuously from one pitch period to the next.

Also notice that in addition to the filter coefficients

and pitch period information, the transmitter has to send

the gain information for all pitch periods encompassed by
the length of the frame. If the frame is unvoiced then the
situation is simpler in that the pitch period can be assigned
the value of the synthesis frame length since there is

no memory - involved. 1In the synthesizer program of {2,
Chapter 10] the synthesis frame length is fs/fr (the same
number as used for the elapsed time before an analysis

frame is updated). It employs a different gain matching
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method based on the error signal energy per analysis frame,
namely o. If the frame is unvoiced, the excitation is
provided by randomly generated samples g{(n). The mean
Eg(n) is set to zero and a uniform probability distribution

over a range (-b,b) is utilized for g(n):

(P p(x)dx = A.2b = 1 or p(x) = 1/2b
-b
: 3 2
Eg?(n) = 0, = [P°x%. 1/2b ax = 1/2b & =B
g y 3 3
The gain of the excitation e'(n) is then matched by
eln) . gln) (4.4.1)
Yo/N g
where N is the frame length in the analysis. . If the frame is voiced,

an exXcitation consisting only of fixed amplitude samples egually
spaced by a pitch period, will not have a zero mean. To force it
to have a zero mean, a fixed amplitude of opposite sign is
assigned to the remaining samples. More quantitatively,

let Ci and C

an analysis frame length N and a pitch period I there are

2 be these two respective amplitudes. With

then N/I samples of amplitude C., and N-N/I samples of

1

amplitude C2. Then with the same gain matching criterion as

used for unvoiced speech, plus the zero mean regquirement,
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there are two constraint equations in Cl and C2:

Clz(N/I) + 2 (N-N/1) = (4.4.2)

Cl(N/I) + C2(N—N/I) =0 (4.4.3)
" Solving these two eqﬁations yields

c, = Yo/N /I-1 _ (4.4.4)
and c, = -Va/N //I-1 (4.4.5)

4.5 A Pitch Synchronous Synthesizer

A synthesizer has been implemented as a FORTRAN program
in [2, Chapter 10]. It performs pitch-synchronous linear
interpolation of the gain, pitch and reflection coefficients
from the present and previous frames. The idea behind this
is that speech of better quality can be obtained by smoothen-
ing out discontinuities in going from one frame to the next.
Because reflection coefficients are inputted, the two-
multiplier lattice synthesis structure implemented as a
subroutine program is utilized. A eonstant postemphasis
value of .9, an_analysis frame length N of 128 and a
synthesis frame length of 64, are used. For unvoiced excita-

tions, gain matching criterion (4.4.1) is employed while for
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voiced excitation, the constants Cl and C2 are obtained by

solving the equations
2 _ .
Cl N/I = a
and (4.4.3) simultaneously. (This is only slightly less

accurate than solving 4.4.2 and 4.4.3 since Cl>>C2).- To

‘obtain the results of Chapter VI, the above program was
"used, with only slight modifications. The value of fs/fr

" in both the analysis and synthesis, is 200. Also, if an

analysis frame was pre-emphasized by a factor u, then the

corresponding frame in the synthesis will be post-emphasized

by the same factor:

I

x(n) v(n) - uy(n-1) vy(n) is pre-emphasized

v (n) x(n) + yuy(n-1) x(n) is post-emphasized

If a frame is voiced, then the constants Cl and C2 are

obtained by solving 4.4.2 and 4.4.3. There is no Hamming

window w(n) in the above synthesizer program. However, it

was introduced in the analysis, for better spectral repreéenta—

tion of speech, and fhis reduces the gain of the input speech
N-1

by a factor nilw (n) v 1.58 for the range of N under considera-

tion. Taking this into account, the gain of the output speech

was increased by a factor of 1.58.
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4.6 Some Characteristics of AﬁtocorrelatiOn'VOCOders

Fig 4.6.1 is a block diagram of a pasic pitch excited
vocoder. Either covariance or autocorrelation analysis
could be performed. Tﬁe parameters are then quantized
before being transmitted through the channel. ‘More details
on the transformations and guantization of parameters will
be given in Chapter V;

Markel andvGray have used autocorrelation analysis and

the SIFT algorithm as the pitch extractor [10]. A summary

-0f the results in [10] is now presented. The sampling

frequency, preemphasis and windowing considerations already

mentioned were taken into account. From the analysis, the

-reflection coefficients are obtained and are linear quantized

while the pitch and gain are logarithmically quantized [see
Chapter V}. After quanﬁizing, the speech was synthesized
as described under Section 4.5. Even though interpolation
is important for speech dquality it can cause blurring of
fast transitions from one élass of sound to another. Fixed
frame analysis can cause errors in the timing and gain of
some plosivé sounds. Fricative sounds are more difficult
to represent in view of their voiced-unvoiced character.

As will be seen in Chapter V spectral distortibn of speech
is important in its perception. Consequently, it is more
important to have an accurate spectral representation of the

original speech utterance rather than to have an accurate
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temporal structure. Part of this distortion in the temporal
domain is due to using too simplified a gain matching
criterion [Equations 4.4.1, 4.4.2]1 in the synthesizer program.
This can be remedied by replacing it with a more accurate

criterion [2, Chapter 10]. As the error signal contains most

of the information in speech it is important that the artificial

excitation input e(nf to the synthesizer matches it as
closely as possible if the output speech is to be almost
indistinguishable from the original utterance. In cases
where the match between .the error signal peaks and those of
e(n) is good (voiced speech) it is observed that perceivable
differences are much smaller [10]. It is concluded that for
bit rates as low as 3300 bits/sec, the quality of synthesized

speech is good in general. Between 1400 and 3300 bits/sec

~the degradation in the quality depends on the particular

speaker and also on the speech content. Unless variable,

bit rate analysis is used, synthesized speech is unintelligible
at bit rates under 1400 bits/sec. It is possible to use
variable bit rate trénsmission because of the large number

of silence and unvoiced intervals requiring less spectral
information, even in continuous speech (See equal area coding
Chapter V). A particular variable bit rate scheme [2, section
10.3.2] was used involving a maximum likelihood distance
measure which will also be discussed in Chapter V. The filter

order M is also variable and Huffman coding is performed on
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the guantized parameters in order for the average bit rate

to approacﬁ their entropy [13]. Aﬁ average bit rate of

1500 bits/sec was then achieved although the analysis frame
rate was as high as 100 Hz. The quality of the outpu£ speech
was even better by using time synchronous instead of pifch

‘synchronous, interpolation of the parameters.
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V: QUANTIZATION*

In section 5.1 the basic properties of the log spectral
deviation measure, are reviewed, in view of their application
to speech parameter gquantization. The emphasis is on their

~behavior in fine cguantization. After a sensitivity
function and deviatién bound are defined for single parameter
guantization, two fidelity criteria, the maximum and expected
spectral deviation bound, are introduced [12,14]. Non-
asymptotic and asymptotic results involving these criteria
are then derived. Section 5.2 then briefly enumerates the
properties of different sets of parameters that have found
use in quantization. One of these, the set of reflection
coefficients, is then the subject of section 5.3. Several
quantization schemes are discussed. First, there is uniform
and equal area guantization. Then inverse sine and log area ratio
guantization [14] are shown to be optimal in the sense of
minimizing the maximum spectral deviation bound criterion.
After an alternativé‘scheme, the two-parameter quantization
method [14], is presented, overall deviation bounds in
terms of the above single parameter deviation bounds are
derived in order to determine the optimum bit allocation
among the parameters. Two parameter quantization is then
shown to be supérior to log area or inverse sine quantization,

in terms of bit rate, for the same gquality of speech. The

*Tn the following, except where specifically mentioned, auto-
correlation linear prediction is assumed.
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bit rate results of [12], where the fidelity critérion is
the expected spectral deviation bound, are then summarized.
As entropy coding does not reduce the bit rate substantially,

decorrelation of the reflection coefficients is suggested.

Section 5.4 first describes the eigenvector analysis method

of [18] for decorrelating the reflection coefficients within

a frame. The DPCM technique is briefly mentioned. The

theoretical development which led to the experimental results
of Chapter VI is then introduced. Using the quantization
scheme which minimizes the expected séectral deviation bound
in the asymptotic limit, on the decorrelated parameters'

resulting from the eigenvector analysis of [18], it is hoped

that a lower total bit rate can be achieved. The eigenvector

analysis will be carried out by the Jacobi method for

diagonalizing a matrix. The sensitivity function of the
decorrelated parameters is then defived. Nekt,assumptions
involving the probability density function and also the
average sensitivity function of these parameters are made.
One difficulty concerning the average sensitivity is then
resolved, and an alternative, more accurate method of‘
obtaining the density and average sensitivity function is

proposed, based on time averages. These results are then

.substituted in the already derived formulae for the quantizer

curve function and the number of levels. These time averages

are also computed for the reflection coefficients themselves
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as these will also be quantized for a comparison of their

performance with that of the decorrelated parameters.

5.1 Introduction to Distortion Measures and Fidelity Criteria

It is desired to greatly reduce the bit rate in

~transmission of speech, subject to the requirement that no

- difference between the original and synthetic speech shall be

perceived. Unfortunately, the perception mechanism is
extremely complicated and far from being understood. It
will therefore be necessary to work with empirical distortion
measures which describe some aspects of the hearing mechanisms.
Many of these distortion or distance measures find use in
both guantization and variable frame rate transmission. A
few of the most commonly used ones will now be discussed.

-~ Consider a set {ai} of filter coefficients or any
transformation of them. These will be discussed later. One
distortion measure is based on the difference ai—ai'. For

example in variable frame rate transmission the fidelity.
M. 2
criterion could be I (ai-ai') where a; belongs to one frame
i=1
and ai‘ belongs to the adjacent one [2, section 10.2.3].
If this quantity is smaller than some prescribed number, then
no information is sent to the receiver and the synthesizer

reconstructs the speech using the previous frame's parameters.

It has been shown experimentally that poor results are
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obtained unless the parameters used are tbe cepstral
coefficients [11l]. As will be shown, this is because of

their relationship to a spectrél deviation which has been
successful in bit rate reduction. ' In single parameter
Quantization (letting x stand for the parameter ai)bthe £0llow-

ing fidelity criterion has been used [12]:

"N-1 Fn+l | P
M = I J x-% P, (x)dx
P n=0 n X
X
n

where N, X in, Py stand for the number of levels, the
boundary values, the levels and theAprobability density
function of x respectively and p is an arbitrary integer.
Subject to this constraint, it can be shown that as N - ®,

uniform quantization of x will minimize the entropy defined by

H = —‘E P lqg Pn where P, =

=0

N-1 Xn+l
J PX(x)dx

X
n

Now, H X log ﬁ, with equalityifEPn = l/N,-[l3] and in cases
where it is considerably less than log N, it becoﬁes
advantageous to reduce the bit rate to as close to H as
possible by an appropriate scheme such as Huffman‘coding [13].

Uniform quantization has been applied to reflection coefficients
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ana this will be described in more detail later.

“Though the approach to be followed éhould be to minimize
the ent£0py subject to a fidelity criterion [13], it is
possible that a scheme which maximizes output entropy is
_successfui in reproducing speech. In such a case,

X
P =J-n+l

1 dex = 1/N and hence the scheme is also called

X
n
equal area quantization. This has been applied on reflection
coefficients and will be described later. The distance
measure lx—inlp is however not appropriate for speech.
reflection coefficients because it does not take into account
gross spectral errors as |x| ='lki[ + 1. (The condition

1ki| < 1 is required for stability). Hence a distance measure

which takes into account the filter A(z) should be sought [12].

Spectral deviations [11]

Letting unprimed and primed>variables correspond to

different values of the same set of parameters in

ne

vie) & 1n 0%/ |? - m oo 2/|a @3 (5.1.1)

a particular distance measure D is defined by the following

relation:

pP = [T|v(e)|P ae/2n (5.1.2)
T
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It is stated in [1ll] that a deviation D in the speech spectrum
of at least 3 to 4dB is required in order to be able to
perceive any difference between the original and synthetic

speech. Now, as p =+ <, va - |AV(9)[m [11]. This quantity

ax
is plotted in [11l] versus 2/57 for every 2 successive frames
in an utterance with the following analysis conditions

-‘ f, = 6.5 Kz, M = 10, N = 120, 1/f_ = 20 ms. The cross
correlation coefficient was tﬁen measured to be .84. It was
concluded that the choice of p is not significant. Hence p = 2
was selected because known properties'of analytic functions

2 . . .. .
can be used to evaluate D™ in terms of an infinite summation

instead of having to use an approximation for the integral

in (5.1.2). (This would involve the use of two FFT's for the
evaluation of A(e]e) and A'(eqe). Since
Moo
A(z) = I a;z a, € R
i=0
log A(z) = - & aKz—K
K=1

where aK is a cepstral coefficient.

It is then shown in [11l] that,
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log 02/|A(eje)l2 = log ¢° - log A(e?’) - log A(e 36)
t JK ©
= 3 _J p—1d 3
KjiwaK where aK a_g
and a_ = log o
Consequently,
p2 = [T (15, e 3K® ra,'e %% 2 qe/2n
-7
=11 [T(a,8,")(a -5 e I MO0 07
Km-m
D
= (8 -8, ") (5.1.3)

Since a computer only sums a finite number of terms, only

the most important contributions are summed over. As already
mentioned in a previous chapter the én's decay as Cn/n. Since
D” is an infinite sum of squares, such a finite approximation
is a lower bound to D2. This representation of D2 is used

in variable frame rate transmission. In quantizing speech,
however, the main interest is in the behavior of D in the limit
of small perturbations in the values of the parameters.

3o,

Going back to (5.1.2), assume 02 = 02(1) and A = A(e” "; A)

A

o == Ap) [14].

where A is a vector of parameters (Al, A
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Next, rewrite V(0) as

2 jo, % (30,
o kad) o AledTa Al o A* (e arAN)

In - :
qz(i) 7 A(eje;i) A*(eje;L)

In the calculation of the gain using the correlation matching

df section 2.1, it was shown that
$| 4=y 1n B(1L/2) dz/2mjz = 0 (5.1.4)

From these analyticity properties and again in the case p =2,

rewrite (5.1.2) as

A(eje;AﬁAA)) 2 30

2 L
5 _‘(5.1.5)

o (A+AN) 2 ™ 10 (

o (1) “ INCANY

A conventional method which guantizes the gain independently

- will be discussed in Chapter VI, and since its contribution to

D2 is additive, o(X) is normalized to 1. Théh, writing

A(eje;lfAL) as A(eje;&) + AA(eje), using the approximation

In (1+x) " x for small x since AX is infinitesimal

oG8, |2 -
p? =2 7 |f2le ) | g0 2n © (5.1.6)
- A(eJ ;A) :
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This expression is also involved in another distance measure
discussed in [11]. (5.1.2) with p = 1, and the following
distance measure (where o is the minimum energy of the

error signal)

D = 1n [ @ (2)/0, W) "
| 21 a (A+AN) /(e (A+AX) 2

2
%, (5.1.7)

INCADUN
INCAPN

have been used in the gquantization studies of {15]. It will
be discussed later in connection with refléction coefficient
guantization. Denote D explicitlyas D(.,.) where the two
arguments will refer respectively to different values of the
‘same set of parameters. Then it can be shown that (5.1.2)

satisfies the following properties:

D(A,A) =0 | (5.1.82a)
D(A,A") = DI(A",}A) (5.1.8Db)
D(A,A") >0 A#E A (5.1.9)
D(A,A") S D(A,A') + D(A',A") (5.1.10)
Properties (5.1.8) - (5.1.9) are almost self-evident from

the form of(5.1.2). (5.1.10)is the continuous analog of the
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triangle inequality, whose proof can be found in ([20].

Independent parameter quantization [12]

As it is much easier' to obtain quantizer curves in the
asymptotic limit of a large number of levels,(5.1.6) can be

the starting point of the analysis instead of (5.1.2). In terms

of a single pafameter variation, the following sensitivity

function is then defined

_ lim D (A, A+AM)

SA(A) = A)\")O—_—]TXT—— (5.1.11)

in which A stands for a single parameter. Also define ‘

D(x,y)

[¥ s, 0vax
X

The following proof is from>[12]. Let D stand for any measure

like (5.1.2) which obeys properties (5.1.8) - (5.1.10).
Show that D(x,yj < D(x,y) (5.1.12)
Proof: . D(x,A+AN) S D(x,A) + D(A,A+AN) - (5.1.13)

D(x,\) 2 D(x,A+AX) + D(A+AA,}) (5.1.14)
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Taken together, (5.1.13) and (5.1.14) imply
ID(x,A+AX) = D(x,A)| S D(X,A+A1)

db (x,2)

or ax

Using (5.1.8), (5.1.12) is then obtained.
Hence ﬁ(x,y) is an upper bound to D(x,y). Also for x

vy, D(x,y) ~ D(x,y). Recall that the fidelity criterion M

P
used an inappropriate distance measure. Replacing it with
D(x,y) the new fidelity criteria is then

- b =
E(D) = [ D(x,q(x))py(x)dx
a .
N-1 x
= 5 [ ™! B(x,2) p,(x)dx (5.1.15)
n X
n=0 x

n

where X, and in are the quantization boundaries and levels
respectively, and (a,b) lies in the allowed range for X. The
valués to be chosen for X ﬁn, a, and b will be discussed
later. As stated in [12] it is not clear as to whether

or not the value of E(D) is close to that of its upper

bound E(D). Now as mentioned in [12], the minimization of
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E (D) with respect to all x_, ﬁn' keeping N fixed results

in equations which require an iterative numericél technique
for thei: solution. To avéid this'procedure, the asymptotic
case of large N is treated in [12] in order to get a closed

form solution for the quantizer curve. Let z = U(x) such

that z is uniformly quantized in the range U(a) = 0 to U(b) =
Hence z, = n/N and z, = (n+1/2) /N where z and z are the
boundaries and levels respectively. Since the probability
andrsensitivity measures should not depend on the coordinates
used, it is required that
pZ(z)dz = pX(x)dx . (5fl.16)
sy (z)dz = sX(x)dx v 7 (5.1.17)
Let u(x) = dz/dx.n In the new coordinates, using (5.1.16) and
(5.1.17), E(D) becomes
N-1 n+l 2n |
r [ P s, (0ar|p, (2)dz (5.1.18)
n=0 z VA :

It is then shown in Appendix B of [12] that, in the asymptotic
limit of large N, (after transforming back to the old

coordinates)

1.
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""" - P, (x)dx
BE) v g [0 sgl0 (5.1.19)
a
and
H~ —fb pX(x)log[pX(x)/u(x)]dx + logN (5.1.20)

a
-Using the Schwartz inequality
2 < 2 2
| [x(e)ye)de]® < [|x(v)|“atf|¥(s)]|“ds

with equality iff X =dY, where 4 is a constant, and

substituting u(x) in IYIZ, and s, (x)py(x)/u(x) in lez gives

b sx(x)px(x)dx N
u{x) -

}DFX(X)pX(X), 2
i J D) Yu(x) dx (5.1.21)

a

Hence, for fixed N, E(D) is smallest iff

FX(X)pX(x)

J T00) = dvu(x)

Using the normalization jb u(x)dx = U(b) = 1,
a

/sx(x)px(x)
ui{x) =

b
£ £ Vsy (M) Py (A1dA

(5.1.22)
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then achieves the global minimum of E(D) [12]. ZIntroducing
another fidelity criterion, max. D(x,q{(x)) it can be shown

a<x<b
that

Sy (X)
ulx) = p———
[Tsg () ax
a . .

‘minimizes the above criterion even for finite N. IA proof of -
this is given in [15] and can also be found in Appendix A.
This criterion will be discussed later in_connection with
reflectibn coefficients. This u(x) can also be shown to
minimize the entropy H for fixed E(D) in the asymptotic
1imit of large N. A proof of this is given in [12] and is
also included in Appendix A.

The asymptotic results (5.1.19) and (5.1.20) together
can be used to find H.énd N given a fixed value for E(D) and

a general quantizer curve U (x).

5.2 Characteristics of Various Parameters under Uniform

Quantization [15]

. The filter coefficients a; or some transformation of them
are then quantized before being transmitted through a channel.
" Using distance measure (5.1.2) with p = 1, results have been

obtained and compared for commonly used transformations [15].
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Some of these results will now be summarized:

(1) If the filter coefficients are themselves quantized, then
the reconstructed filter at the receiver might very well be
ﬁnstable. (The roots of a filtér with guantized coefficients
do not necessarily have to be within the unit circle). If
such a method is employed, then Véry fine quantization would
have to be used and thus the bit rate would be too hiéh for

transmission purposes.

(2) Similarly, the quantization of the auto-correlation

coefficients of afﬁa might result in an unstable filterr

(3} The DFT of the sequence in (2) once quantized gives

superior results which are comparable to method (6) below.

{4) The cepstral coefficienté, obtaiﬁed from the ai's, are
~ then Quantized énd_the inverse transformation is applied

to give the modified ai's. Instabilities are still possible
although results are also (like (3) above) superior to (1)

and (2).

(5) If the roots of A(z) are quantized to values within
the unit circle, the instability problem is solved. Band-

widths are not as important as frequencies and so the
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guantization of the absolute magnitude of the roots does not
have to be as fine as for the frequencies. Unfortunately,
the set of roots {zi} is not an ordered set like the other
transformations which have been mentioned. 1In fact it is
difficult to associate a root with a particular peak in a
spectrum., In addition the computation of the roots of a high

degree polynomial like A(z) is not easy.

(6) An alternative set of parameters [2, section 10.2.1]
would be the autocorrelation sequence, r(n), of the input.
speech to the LPC analysis itself. Autocorrelation linear
prediction would be performed at the receiver instead of at
the transmitter. Stability of the all-pole filter A(z) is
ensured if guantization is performed in such a way that the
transformed autocorrelation coefficient matrix remains positive
definite,

(7) The_best set for transmission purposes is the set of
reflection coefficients. 1In addition, this set is ordered
and from Chapter IV, it was mentioned that the condition
]ki[ < 1, for all i, always results in a stable filter A(z).
Hence, the ki‘s can be gquantized to the range (-1,1) without
any stability problem. Of course any function which maps
(-1,1) to another ipterval in a one-to-one correspondence is

equally acceptable. Examples of these, mentioned in [2, section

10.2.1] are the area ratios Am/Am_l = l—km/l+km, the log
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area ratios, and the areas Am themselves.  To conclude,
the roots and ahy such function of the ki'e.will_produce
stable filters at the output, after quantization at the input.
Also for exactly the same reason as quantizatioh, linear
‘interpolation of parameters whose values lie within the
region of stability will also be in the same region‘pfovided
the region is convex. The unit circle and the straight line arev
convex regions, so that there is no stability problem with regard
to the above sets Qf parameters. Linear interpolation was
used in the synthesizer in Chapter IV.

It must be further noted that all transformations
considered have a unique inverse. A computer program could
then be developed that would produce any set of parameters
given any other set as input. Also if covariance analysis
had been applied, the step down-step up method of Chapter IV’
could be used in order to be assured of starting with a
stable filter A(z) from which any set of parameters could be

transmitted after quantization.

5.3 Reflection Coefficient Quantization

Uniform and nonuniform quantization of the ki's subject

to various fidelity criteria will now be discussed.

Uniform guantization

As will be seen later, this scheme is suboptimal
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because of the non-uniform spectral sensitivity Ski(ki) when
the distance measure is (5.1.2). This is especielly so

when ki n 1 and is even more-pronounced for k1 and k2' Hence
kl and k2 are most important parametersrin.accurate represent-—-
ation of speech. Unfortunately, as was observed by many
researchers, the probability distribution of kl and.kz‘are
highlylskewed (especialiy kl) towards -1 and +1 respectively.
The probability distribution of the other less important ki's
look more or less like truncated Gaussian densities with

mean zero and renge .7 [2, section 10.2.2]. AThe skewness
property of kl and k

, was derived in [10] using an approximation

to the autocorrelation r(n) valid for high sampling frequencies.

The ki's for all i > 2 were then uniformly quantized to the

interval (-.7, .7) [10].

The same was done for i = 1,2 except that kl and k2 are
linearly shifted by .3 and -.3 respectively, because of their
skewness. For i > 2, fewer bitsvare necessary-because the
singularity of ski(ki) becomes 1ess pronounced as mentioned
above. More quantitatively, it is stated in [10] that dynamic
programming has been used fo allocate bits in the optimum
fashion for this uniform quantization. As expected the
optimum allocation is non-uniform. Another study, ([161],
drawing on the fact that for all ki where i is even, the
probability distribution is less symmetrically distributed

than that for odd i, avoided uniform quantization throughout
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the range ((k,) (k

Dmin’ ) Y. (The limits (ki)mi and (k.)

i'max n i‘max
are here defined as the values at which the probability

- function is truncated and depend on i). In conclusion, when
using distance measure (5.1.2), uniform quantization comes
close to being optimal except for kl and ké. Moreover in

the limit of fine quantization, it minimizes entropy subject

to the fidelity criterion Mp [12].

" Equal area quantization

This scheme has been applied in [17]. As was shown
‘previously, it maximizes output entropy. The results of the
study in tl?] will now be summarized. Histograms of the
relative-frequency distribution of the reflection coefficients
were collected for silence, voiced and unvoiced intervals,
separately. ¥For this scheme,'u(ﬁ) = dz/dx = px(x).' Since =z
is'uniformly quantized in (0, 1) the COrresponding levels
and boundaries for x (where x is a fefleétion coefficient)
éan be found. The bit allocation was determined empirically
from listening tests. It was found that for unvoiced
speech, the total number of bits used is only slightly over
half the number of bits used for voiced speech, and they
are aistributed among the first 5 reflection coefficients
~only. As the probability distributions obtained depend much
more upon the recording conditions (backgrbund noise) than

on the speaker or speech content, the quantiiation tables for
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silence, unvoiced and voiced speech were kept fixed under

fixed recording conditions. Because k., is important as far

1
as minimizing spectral deviation) adaptive pre-emphasis of

1
to the one resulting in the fixed quantization table for k

input speech is suggested, to match the distribution of k
1*
However, there is no guarantee that the other ki will be
simultaneously matched. The speech, must then be post-_-
~emphasized by the same factor at'the receiver. . By processing
speech with these fixed quantization tables; it was found
that 25% ofrthe analysis frames were silence, 30% unvoiced
speech and 45% voiced speech. The relatively high percentage
of silence intervals is due to stop gaps and short pausés
funavoidable eveﬁ in continuous speech. Only 2 bits ére needed
in order to distinguish between the 3 above classes of
~intervals. Two bits represent 4 levels. One of the levels
could then be used to inform the receiver that the present
frame belongs to the same class as the previous one if
‘variable frame rate transmission is used. 1In conclusion,
because of the above relative percentages,‘plus'the fact

that no additional information needs to be sent if the frame
is silent, and that ﬁnvoiced frames require a much smaller
number of bits than voiced frames, Seneff was able to achieve
~a variable rate vocoder with an average bit rate of 1450

bits/sec.
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Spectral deviation quantization

The derivations are taken mostly from [14]. The first
step is to use the distance measure (5.1.6) as an approximation

to equation (5.1.2) with p = 2. Let

M .
MR = 3 [ag (A4AN) - ag (M)1z
i=1

The inverse Fourier transform of lAAlz is then

M
r,(n) = iil[ai_(ylsp - ag (M lay,, ) - a; (W)
(5.3.1)
But r,(n) = 0 for [n| > M - 1 because
aj(d) =1 v A
and _
a; (M) =0 cidqo,1,2,....m
Also rA(n) = rA(—n). Hencé, by Parseval's theorem
2 2 M-1 _
D = & [r(0)r,(0) + 2 X r(n)r,(n)] (5.3.2)

::_']_
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where r(n) is the autocorrelation sequence of the input speech.
Assume that A ='(Al, Az, ey AL) reduces to X = X, i.e.

consider single parameter variation only. First, let the

parameter be a filter coefficient ag. Then
. _ 3A 9 -m
AA = a—é.— Aaz = -8—5._— I%amz Aag’
L L .
-2
= Aazz | (5.3.3)

and

r, (n) 2”1 transform [AA(z)AA(1/z)]

= z_l transform [(Aag)zl

(Aal)zéno (5.3.4)

Hence by (5.3.2)

2 2 2 _ 2 %
3 r(O)(Aag) = Z(Aaz) (?T)

o
Il

2(Aa2)2
M

T (1—ki2)
i=1
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So, as ]ki] + 1, D2 becomes unbounded. Therefore apart from
the stability problem that arises in quantizing the filter
coefficients, using these as parameters to be guantized is
 to be avoided.

Consider using as the single parameter, an arbitrary
transformation of a single reflection coefficient. Namely,

ok

2 3A(zZ;A)

AA v AA =% ok,

(5.3.5)

As was shown in Chapter IT

Il

A (z) =A__ (2) + kB . (z)

m m-1

2 Ik A (2)+B__ (2)]

i

B (Z_)

From the form of these equations, it is seen that A{z;A) is a

linear function of every k Consequently,

9"

dA(z; L) _ AA(z; M)

BkL Akz

o= v vy =
Let kz = kg(k) and A' be such that kz(k ) kz(k) 1.

9A(z;: A)

.Then
Bkz

= A(z;\') - A(z;))
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da; (1) | |
or B . | . —_-B—}Z;l_ = ai(l') .'" ai(x) - . (5.3.6)

To get D, (5.3.6) is first computed for all i and the

resultsbare substituted in (5.3.1) and (5.3.2). Note

that lim b is the sensitivity s,(A). Now it can be shown
AX>0 AA _ A .

that if Ikzl < 1, then r(n) and rA(n) are bounded and there-

fore so is Zr(n)rA(n) [14]. But,

‘Therefore szA(A) can be written in a form

Bkl 2 fz(kl,...;,kM) : o
(=5) . : (5.3.7)
oA 2 .
1-k 2

"where the only singular contribution of kz.to SA(X) is due

to the denominator (l—kﬁz).

This singularity can then be cancelled by the transformation
k, = sin A/cg

aor A

. -1
cgsin kz (5.3.8)
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as it is easily seen to satisfy (Bkl/a)\)2 = l—klz. Now
recall that the;ﬂmaice.dz/dx = u((x) = sx(x) minimizes
max D(x,q(x)) (5.3.9)

a<x<bp

- where z is uniformly quantized. Therefore, if this fidelity
criterion is to be satisfied sA(A) in (5.3.7) must be equal

to a constant, which implies that Bk/akz is proportional to

reeee,k V/1-k 2, In cases where the function £, can be
1 M 2 2

represented by a constant when compared to l—kl2 it is seen

that the inverse sine guantization (5.3.8), to a good

/fz(k

approximation, satisfies the minimization of the above fidelity

criterion. WNow (5.1.6) is the result of using o(A) = 1, VA.

The following normalization will now be used:
M
¢“(\) =a=a_ T (1-k, %) (5.3.10)

The input energy oy is independent of all ki's. The
first term on the right hand side of (5.1.5) can be written

as,

- o (A+A)) 2 _ 0(A+AL) 42 2
4 {ln[_T(?L—)—]} = {ln[Tz\_)——] }
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In the one parameter variation this becomes

{ AX[1no2 (A+AA) -1no2 (A) ] }2
¥

1 ng2 2
n (AN 2 {8[1ngx(k)]}

Substituting o(A) as given by (5.3.10) results in

2.
, ¥k, , 4k
(AM= () 73
(1-k,7)
g
Adding this to (5.3.7),
SR T P SO pPE
sy (M) = (57 2.2
(l_kl )

where the only singularity due to k

denominator as (l-kiz)z. Straightforward differentiation

, appears in the

will show that A = ¢, In (1+k,)/(1-k,) satisfies 3k,/3\ = 1-k °.
But 1n (l+k£)/(l—k2) is a log area ratio and this parameter

has already been mentioned a few times; Hence there are two
quantization schemes which minimize the fidelity criterion

max D(x,q(x)) in an approximate manner. Inverse sine and log

area ratio quantization. Log area ratio quantization has also
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been empirically arrived at in [15] ﬁsing the same gain
normalization (5.3.10), but a value of p equal to 1 in
distance measure (5.1.2). Hence_if can be concluded that a
different quantizing scheme is arrived at'solely because of
the use of a different gain normalization and not because of
the choice of p in (5.1.2). :

Now distance measure (5.1.7)-has gain normalization
(5.3.10), with the input gain oy being a function of the
parameter vector A. Consider the single parameter variation
where A = k,. Then the gain normalization'is.exactly like
‘(5.3.105 withbonO independent of all ki. (5.1.7) then

becomes

o (k) T A(eje;k2+Ak2) 2 .
D=1n|———t——— 1] + 1n —-—f : as| (5.3.11)
Gk, +AK ) o A(eje;kl)

It is proved in Appendix B that the second term on the right

is simply

36 ’ 30,
(A (e ,k2+Ak£),A(e ,k2+Ak2))

a3k, ,aeI%K,))

In

in the inner product notation of section 2.1.

Denoting A(eje;kl), A(eje;k£+Ak£) by A and A' respectively,
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lim In(A',A')-1In(A,A)

Ak£+0 Akz

=9 1n(A(eje;k ),A(e]e;k ))
4 . % L

=0

because (A,A) is minimum since it is the error signal energy
of the linear prediction analysis.

Therefore,

' lim D

s, (k,) — (5.3.12)

: k% L Ak2+Q Akz .

In combination with (5.3.10) this simplifies to

1n(1-k,2)~1n (1- (k,+Ak,) %) 2|k, |

lim L L L d 1n(1-k 2) . L

Ak£+0 | Akl dkg_ L 1—k22
(5.3.13)

-With respect to (5.1.7) this is an exact result for kl which
is independent of the values of all other ki's {15]. The
. requirement for A to have a constant sensitivity measure is

that
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9A
=—— = S

2) | - (5.3.14)

Integration of (5.3.13) evidently results in

Ak,) o sgn(k,) ln —=— (5.3.15)
L '3 2
: 1-k
')
S o
= sgn(k, ) 1n —=1 (5.3.16)
2 , aﬁ
% 2
- where Gy = O 1 (l—ki ) is the forward prediction residual
i=1

energy of Chapter II. 5.3.16 is called log error ratio
‘quantization and it is-pointed‘out in [15] that speech quality
is better usingvlog érea ratio quantization réther than
log,efror ratio guantization. From this fact, it is concluded
that diétance measure (5.1.2) describes the speech perception
mechanism better than distance measure (5.1.7). An additional

reason for preferring (5.1.2) over (5.1.5) is also included

in Appendix B.

Two parameter quantization 114]

M o,
In this method the roots of the filter A(z) = I a.z +

i=0 *
are computed. A(z) is then factored into IM/2} quadratic

Zpolynomials. If M/Z_# IM/2}, then there is a leftover linear
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MJ.-S

chosen to be the leftover, and which real root is to be

term—z-zM where Zy is a real root. Which real root z
associated with which real root in the formation of a guadratic
with real coefficients will be considered later when
quantization is discussed in more detail. For the moment
assume a polynomial A(z;}) = l+alz-l+azz—2 has been formed.

Then treating it as a linear prediction filter, (2.1.16) and

(2.1.17) yield
a, = k, | o (5.3.17')
a, = ky +ky.K; | (5.3.18)
if both-kl and k, are gquantized simultaneously, then

"~ 9A A .

1 2

_ gL -1,,-
= b0k, (1+ky)z = + Ak, (kyz “+z %)
after substituting (5.3.17) and (5.3.18) in A(z;)A). Now
in scalar product notation, distance measure (5.1.6) is

2/o (AA,AA). Then take the AA of (5.3.19) but first write

it as a linear combination of the orthogonal polynomials
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m+1

' . _ -i
Bm(z) of Chapter II. If a polynomial Pm(z) = iil P;2 is

constructed using the recursive formula Pm_l(z) = Pm(z) -

B (z) form = M-1, M-2, ...., 0 then, starting from

pm,m+l m

the initial conditions AA(z) = Pm_l(z), AA(z) is represented

M-1
as I

Bm(z). Therefore by the orthogonality of the
m=0 :

pm,m+l

1 : =
B 's, i.e., (Bm,Bn) 6mnum’

D% =2 % p? ' (5.3.20)

Here M=2 and using (2.1.16)-(2.1.18)

BO(Z) = z_l
B, (z) = klz_l + 772 |
énd | AA = (l+k2)B0(z)Akl + Bl(Z)AkZ
. or Py = (1+k,)Ak,
P1p = 4%y
Consequently p? = 2(l+k2)2Ak12 %? + 2(Ak2)2 %}
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'2(Ak2)2
ot (5.3.21)
5 3

1-k,

2
2 1+k2 (Ak_l)
D™ = 2 1%
1 1-k

1

" Relation between numbexr of bits and D

The asymptotic result relating N or the entropy H to
the fidelity criterion E(D) has already been derived in the‘case
- of single parameter variation. This has been applied in
[12] when the parameter is a reflection coefficient. Détails
will be described later. If the fidelity criterion is
. max ﬁ(x,q(x)),rthen it was proven in Appendix A, that this
guantity is minimized by transforming ki to a constant
sensitivity parameter that is uniformly quantized. For such
‘a parameter, the maximuquuantization error is’eQual to half
the distance between‘levels. Let k, and Ek define tﬁe range
of the truncated probability distribution of kz. Then
define A, and A, to be the transformed values of these two:
numbers. If the number ofrlevels is Ny the following

relation is obtained

max D(kg,q(kz)) = —f—~s

‘a constant independent of kQ. The form of skz(kl) will depend

upon the choice of p in (5.1.2) and the gain normalization o(X).
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Recall that in the case of fine quantization D(ki,q(kz)) 4y
ﬁ(kl,q(kz)) and the above holds approximately if D is replaced
by D. Furthermo:e, if kﬁ is transformed to a uniformly
gquantized variable A with a non constant sensitivity, then

the above result is valid for large N if 0k, /3% s (k

)
kg L

is maximized | over kz.. For the 2 parameter variation
deécribed abdve, there is no one-dimensional sensitivity
function s, (1) defined as (5.1.11). Hence a bound D Qill not
be défiﬁed either. The smallest number of ievels (in the
asymptotic limit) that are required if a fixed spectral
deviation D is not to be exceeded will now be computed., From
(5.3.21) with the change of variables ¥, = sin'lki, i=1,2,

(5.3.21) becomes

5 (l+sin¢2)

b™ =2 l—sinl,b2

w2+ 209,02 (5.3.22)
which is the equation of an incremental ellipse. For
simplicity, rectangular boundaries would be desired when
guantizing wl and wz. To minimize the numbér of levels the
area of a rectangle inscribed in the incremental ellipse with
center (wl,wz) must then be maximized if D is not to be
exceeded. The area is 4Awl sz and differentiation with
respect to Awl,'with,the value of Aw2 given by (5.3.22L'wi11

yield a maximum when the derivative is set to zero. 1In this
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way, the height of the rectangle is found to be sz =D and its

widthAlpl=D/l—sinw2/l+sin4)2. 1f k, and k, satisfy -1 < kq 21

and k, < kq < EZ where k, and Ez are determined empirically,
then -m/2 2y, 27/, and sin_lk oy, 2 sin-li . Therefore

1 2 =2 2 2
a necessary and sufficient condition for a spectral deviation

not to exceed D is that (wz axis is vertical) the number of

horizontal strips Ns'is to be at least

sin_ Ez—sin-l£2
) : (5.3.23)

Let the boundaries values be Ik(n), n=l,2,.ﬂ..,NS. Similarly

for a fixed wz(n), the number of vertical strips is

N(n) =

l+siny,(n) | 1/2
'”[ 2 } (5.3.24)

D 1-siny, (n)

Obviously wz is uniformly quantized and so is wl for fixed
wz. Therefore the total fequired number of guantization

levels is

N = I N(n) (5.3.25)

Define szé D = wz(n+l) - wz(n). (5.3.25) can then be

rewritten for smali sz as
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' r (510 TRy f14gine) /2 T 1-k,
N v @ — — dy = — 1n

D2 -1 l-siny : D2 1<k

sin 52 ’ T2

(5.3.26)

This is the minimum number required if D is not to be exceeded.
If a pair of uniformly guantized parameters is desired, ¥y
is then multiplied byv[(l+sin1b2)./(l—sinl,bz)]l/2 and the new

transformation of kl and k2 is given by

.-
12 = s;n kz
: f 1+k 1/2
. — 2 . =1
Ay = (l—k2> sin kg

Bounds and bit allocation -

If the single parameter analysis is‘applied to each of
~the reflection coefficients, it must be decided 6n how the
total number of bits B should be allocated among each ki in
order that the threshold of a certain fideiity criterion shall
not be exceeded.

To find this optimum allocation, it is first necessary
to get a bound on the overall spectral deviation when all

parameters are simultaneously quantized. As the derivations
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of the results were rather lengthy and would have interfered
with the continuity of the subject, a third appendix, devoted
to these proofs, was added. Only the final results are

summarized below.

< M Xi_ﬁi max aki
"max D(A,A") = I — s, (k.) (5.3.27)
, = i1 2Ni kl’k2"'kM axi ki i
< M 1 Xm ESAm(xm)pAm(Am)dAm _2
E D(A,A") = E N J 00 (5.3.28)
m=1l""m i\ m'm
_In
where A = (Xl,AZ, ceey AM) is a vector of the M parameters
to be guantized. A" = (Al", Xz“, ey XM") where A." is a
quantized value of Aj. Therefore, the maximum of the spectral

deviation over all values of A, and its expected value where
the average is taken over all A, are iespecfively bounded by
the sum 6f the M single parameter maximum and expected
spectral deviation bounds [12,14].

A similar result is proven for the case of two parameter

quantization:

(M/2]

- < —
tht = jzl Dj + IM/2 IM/241 DO (5.3.29)
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o In —=2:1 as in (5.3.26) and IxJ, Ix! stand
3 1%, | |
14

respectively for the integer smaller and greater than X,

where Dj2 =

which are closest to x. If there is a leftover root (i.e.

M/2 # [M/2,;) then an additional bound

is present (see Appendix C). Denoting the overall bounds

in (5.3.27) and (5.3.28) by max DtOt and EDtot respectively,

it is then shown using Lagrangian multipliers that minimization

tot (OF ED )

is achieved by setting all individual single parameter bounds

of the total bit rate subject to a fixed max D

to the same value, namely, (max Dtot)/M (or (EDtot)/M), [12,14].
For the two parameter quantization scheme , a similar

result holds. Denoting the overall bound of (5.3.29) by D
2D ' Db
Dj = N and DO'= e minimize the total bit rate subject to

a fixed Dy, [141. (For details, refer to Appendix C.)

b’

The results of [14] will now be summarized. By assigning

arbitrary values A to max D and Bi to max [(3ki)/(akiﬂ Sk.(ki)

X

tot

{for all i), a number Ni can be found for which the single
parametér deviation bound does not exceed A/M except for those
points (kl’kz"""kM) whose corresponding value of

[(aki)/(axi)] ski(ki)'exceeds Bi‘ In terms of this pumber Ni'
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it is then experimentally determined for ki where 1 > 2, that

uniform reflection coefficient quantization is slightly superior

to log area ratio and inverse sine gquantization of the ki's.

' In spite of the gain normalization o(A) = 1, inverse sine

quantization is.ohly slightly superior to log area ratio
quantizatibn. For i = 1,2, however, inverse sine_quantization
is significantly superidr to uniform quantization.> In terms
of overall bit raté, the.3'schemés are almos£ equivalent.

For the 2 parameter quantization schemes [14], it is

easy to derive by direct substitution, that the roots of the
| 1 2

quadratic polynomial A(z;}X) = 1 + kl(l+k2)z— + kzz— are
‘related to kl and k2 by
k, = (x,)7 + (y;)? ~ (5.3.30)
Ky - ~2x,/ (1+k,) 'i (5.3.31)
if the roots are z; = X, i_jyi, and by
k2 = Xixj (5.3.32)
kl = —(xi+xj)/(l+k2) | - (5.3.33)

:i.fx:.L and xj are the 2 real roots.
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Iin order to find the.]_c_2 and Ez values to be substituted
in (5.3.26), a histogram approach must be used. . However
there is a k2 associated with each |[M/2} polynomials. There-—
fore, to_obtain statistics about each k2, an'crdering scheme
must be developed. It is observed from (5.3.30) that k2 is
the magnitude of the root z; which is inversely proportional
to»the exponential of the bandwidth. The [M/2] k2's are theﬁ_
ranked in order of increasing bandwidth. To find the largest
kz, the two largest real roots or, complex root with largest
magnitude, are chosen at any step in the procedure, depending
on which yields the largest k,. This procedure eﬁsurés that.
the leftover term, if there is oné, is associated with the
smallest real root. If this scheme is repeated for every
analysis frame, {M/2] scatter plots of (kl,kz) planes are
obtained. By inspection, 52 and Ez are found for each
ordered k2.‘ The numbers 52 and Ez of.course decfease with
decreasing k2. It is observed fhat, for each plot, the
range‘(kz,iz) is small compared to the allowed range (-1,1)
for a reflection coefficient. (in fact much smallexr than
the observed range for k2 in single reflection coefficient-
guantization). This is one of the reasons for the experimental
fact that with a fraﬁe fate fr of 50 Hz and 5 bits per frame
for pitch and gain respectively, any one of thé above three

single paraméter quantization requires 3500 bits/sec given a

‘fixed value of 3dB for max Btot as compared with 2800 bits/sec
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for Db = 3dB in the two parameter quantization scheme [14].
The quality of speech is the same in both cases and bit rate
reduction has‘béen achieved for the two parameter method at
the expense of more computation invoived in poiynomial root
solving. | |

In [12] results on the first and tenth reflectioh
coefficients using the min E(B)‘fidelity criterion are
presented. Let the Variable stand for kl. Then if was
found that even in the case of only 4 quantization 1evels,'
the distribution of the points x , X obtained by using the
quantizer curve which minimizes E(D) asymptotically (5.1.22),
is almost identical to that obtained using the quantizer
curve which minimizes E(ﬁ) non—asymptotically (the.létter being
found iteraﬁively starting from 5.1.15). Then, still using
4 quantization levels, E(D) is compared.as obtained boﬁh
asymptotically (5.1.19) and non-asymptotically (5.1.15}) for

the following 5 quéntization schemes:
(1) u(x) o 1
(2) u(x) o sy (x)
(3) u(x) O_LPX(X)

(4) u(x) which minimizes E (D)
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(5) u(x) a ‘/SX(X)PX (%)

-1

For non-asymptotic cases, X, ﬁn are known from x = U "~ (z)

and are then substituted in (5.1.15) while for the asymptotic

cases, u(x) is directly substituted into (5.1.19).. In

~general, it is found that for any particular u(x), the

asymptotical result for E(D) is surprisingly close to the
actual non-asymptotic result. Next, the astptotic results . .

for the minimum number of bits and entropy are obtained for

" E(D) set at .3dB. Recall that, in the asymptotic limit,

over all choices of u(x), the above scheme (2) minimizes

entropy while scheme (5) minimizes log N. Unfortunately,

it is experimentally determined that the difference between

those valuesrof log N and H is only .25 and .28 bits.for kl
and k10 respectively. For such small differences, it is
not worthwhile to use variable bit rate coding which achieves
rates close to entropy.

If further bit rate reduction is desired, then some
other scheme which may involve an hitherto unexploited
property of speech must be sought. Such a property exists and

is stated in [12]. It has been experimentally verified

that for voiced speech,’reflection coefficients are

dependent of each other and also from frame to frame. The

and k..

dependence within a frame is greatest between kl 2
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The frame to frame dependence is felt to be even more
significant. If this tdtal dependency could somehow be
‘extracted before transmission, a means for further redUcing the
bit rate without diminishing the quality of the output speeéh

would have been achieved.

5.4 Orthogonal Parameter Quantization

To achieve a certain measure of independence among the
reflection coefficients within a frame, a technique found
in [18] is used to decorrelate them. Basically, the

covariance matrix R = [Rij] is first obtained

Ryy = E[(ki—Eki) (kj—-Ekj)] o (5.4.1)

In practice, using the law of large numbers and stationarity
the mean of all ki's should be computed using a time average
over N frames and then the cross-correlation obtained by a time
average over N-1 frames. The equation [R-AI| = 0 (for the M
eigenvalues ki of the matrix R) is then solved, whefe I is the
identity matrix and |.} is the notation for the determinant

of a matrix. Then solve the simultaneous equatidns
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where ¢, is the eigenvector corresponding to eigenvalue Ai

(gi = (¢li’¢2i"""¢MiFL Now let A be a diagonal matrix

[x.éij] and U be the Mx M matrix [¢,,¢,,....,

1. Then the
i .

2y
previous eguation can be rewritten as

or U "RU = A

But R = R and A = AT and consequently,

AT = ik T = oTRT (0™ H T
= uTr@w™HT = 2
-1 T .
Therefore U = U~ (U is orthogonal).

Claim: The covariance matrix of the M parameters ei's, where
¢2ik2 is A

Proof: E[(ei-Eei)gej—Eej)] = E§i¢£i¢mj(kl-Ek2)(km—Ekm)

T _ -1 -
(U RU)ij = (U RU)ij = (A)ij
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There is then no correlation between different ei's and in

this sense they are termed orthogonal parameters. In addition,

M
the total variance I R.. will be reallocated among the

i=1 **
orthogonal parameters in such a way, that few of these will

possess a large variance Ai' This can be seen from the

,-following observation.

Note that from the unitary property of U that

M
k. is I ¢.. 0,. The variance of k. can then be expressed as
J i=1 ji i J
2 u 2
R.. = E(k.-Ek.)” = E( £ ¢..(8.-EB.))
13 J ] j=1 41 1 1
M M _
= izl = l¢jl¢32E[(ei—Eei)(el-Eel)]
N 2,
But the 9.'s are decorrelated, so that R.. = I ¢.
i i=1 ji 1
Again, from the unitary property of U
M M
¢<b=¢¢—<5~
j=1 FiTjL 5=1 ij"e) i
M M
and consequently I R.. = I A, This is true in general: the

j=1 741 i=1

trace of a matrix is equal to the sum of its eigenvalues.
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Now apply Holder's inequélity [20]:

M ' M o l/p [ M a
Eolxgys 20T Ik Lyl

1/q

for 1/q = 1 - 1/p and p > 1. 1In the case of p = 2, this

reduces to the Cauchy-Schwartz inequality:

M M M 1/2
2 2
x lxiyil < Z lxil Z !Yil '
Consequently,
. N1z [ , [ n O\
VR = T (¢, VL) Cul=1 0 (L AL L T (9L))
733 i=1 I i | i=1 IV 1 i=1 It

and therefore by the above inequality

M

ol N I o

13 j=1 3 1
M M

and T VR.. Z L /1;
. 3=1 33 i=1

Hence, by decorrelating the data, the sum of the square root
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of the variances is minimized. The problem then reduces to

. M
finding the Xi's which minimize I Vki subject to a known
M i=1
constraint P = I Ai and Vki >0, i=1,2,...M. The inverse
i=1 M M
problem, that of maximizing I Vki subject to P= I Ai is easily

~ solved by the Lagrangian function

to yield‘)\i ; 1/40L2 which, substituted in the constraint gives

0l = M/4P'or‘>\i = P/M. 1In other words, the total variance

P is distributed equally among each of the M parameters.
Therefore, following the decorrelating scheme it is expected
that the total variance will be redistributed among the
parameters in an uneven way. In section 6.1, a tabulation of
R.. and;?\i will demonstrate this fact. Sambur has applied
decorrelation on the log area ratio parameters as well és
on the ki's [18,21]; (It was already seen that as far as
stability is concerned, log Am and km are equally good
représentations.) Using a filter order M = 12, he obtained
statistics over N frames about individual utterances. From
f;ble VIII, [18], with the 12 eigenvectors ordered in terms

of decreasing variance, it is observed "that 90% of the total

e statistical variance is contained in the first 5 or 6
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eigenvectors". This redundancy can then be exploited iﬁ,a
DPCM scheme, [18] resulting in- further bit réte reduction,
by sending the 5 or 6 paramefers with largest variance. DPCM
is basically a scheme whére linear prediction is performed on
data and the differencé between the data and its linear
prediction estimate is quantized before being sent to the
receiver. Good results will be obtained if the original
‘data is correlated in time. This is the cése for speech where
the solution to the linear prediction ﬁinimization criterion
is consistent with the simplified model of the vocal tract
(Chapter IT). However, guantization of the error signal it-
self will not lead to substantial bit rate reduction. But’
it is mentioned at the end of the last section, that the ki's
‘are themselves dependent on their own past values. It is
then proposed in.[18], to apply liﬁear predicﬁion.on the ki's,‘
the gain and pitch information. The linear prediction coef-
ficients which can alsé be variable in an adaptive scheme,
are then known to the receiver, and after probability
distributions in the linear prediction errors in the pitch,
gain and ki's are obtained, optimal quantization ievels and
boundaries are calculated for each of these differences.
The quantized valﬁes of these differences are then ready to
be trénsmitted. To achieve further reduction in bit rate,
dependence among the ki's within a frame is taken into account.

Linear prediction analysis is then performed on the ei's instead
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of the k;'s. Because 6 of these 0;'s have a very small

variance, they do not vary much across an utterance. In

the DPCM scheme, these parameters can be considered as

constant and only their average values need to be sent.

The number of bits is then alloéated to the linear prediction
- errors of the remaining Gi's with greater variance A,. It

must be emphasized that once a number of biﬁs, Ni'

is determined that optimal quantizer curves

must stiil be calculated for each of the

linear prediction errors. This requires a knowledge of the

probability distribution of these errors, which is not

necessarily equal to the distributions of the original ei‘s.

Sambur then maintains that it is possible to achieve a total

bit rate from 600 bps to lOOO\bps, "and still yield acceptable

quality speech". The degradation is as mentioned before,

dependent on the content and particularly on the speaker.

The drawback to using this method is the amount of computation

involved in the eigenvector-eigenvalue analysis. Moreover,

if the gathering of statistics to obtain R, and the subsequent

computation, is done for every consecutive N frame utterance

in céntinuous speech, then the system could not be operated

in real time. However the probability distribution of the

k;'s are not very speaker and content dependent. In fact it

was stated under the discussion on equal area coding that

they are much more dependent on the amount of background noise.
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Keeping this to a minimum, and assuming that the correlation
among different ki's is also speaker and content independent,
the computation can be done prior to any transmission of.
orthogonal parameters ei's, if the speech data is first
processed for the sole purpose of obtaining the necessary

statistics, once and for all.

Intrqduction to the present study: theory

From now on, the dependence among ki‘s within a frame
only, will be taken into account and the necessary analysis
leading to a comparison of results under the min E (D)
quantization scheme obtained using on the one hand, ki's, and

on the other Gi's as the parameters will be described.

. M M
Following the inequality ¥ VR.. 2 % /xi, it is hoped that not
j=1 3] i=1 M _
only will N increase as Ai increases, but that % log N, will
Coi=l

be greater for the reflection coefficients than for the

orthogonal parameters.

Diagonalization of the covariance matrix

Since the R matrix is symmetric, the Jacobi method for
diagonalizing a matrix will be used to get both the eigenvalues
and eigenvectors. The basic idea is as follows. Starting

with a matrix A = [aij], let
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S -1
Ay = a5 = g U 1) TAUU,. ..U, )
(5.4.2)
_ . -1l -1
= Uk+l Uk . .Ul_ A Ule ..... Uk+l | (5.4.3)

Ak+l has obviously the same eigenvalues as A and is also

symmetric if Ui is orthogonal (i.e. Ui_l = UiT for all i).

Notice that it is possible to diagonalize a matrix A where

1

A = sTAS for some S. But if 8T # s~ , A is not the matrix of

eigenvalues of A.
Furthermore, the trace of A.A being the sum of the

diagonal elements

Il
PR
w2

o

I
e =

M
- P r a.. (because A is
ij ji 3

symmetric)

I

the sum of the eigenvalues of A.A. .

Now let TV be any nonsingular matrix. Then,

1

T_l(A.A)T = (T_lAT)(T_ AT) has the same eigenvalues as A.A.

Let T = UlUZ""Uk+1 where all U, are orthogonal. Then by
(5.4.2) and the resulting symmetry of Ak+1

M M
5 5 (ai_(k)
j=1 j§=1 %)

2' M M
= sum of the eigenvalues of A.A. = I L a.

) )
i=1 i=1 *3

2
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k
M M :
(1) X (a..(k+l)2 > I (a..(k))2 for all integer k
- ii . ii
i=1 i=1
and
M M ' M :
@2 oz (a2 - x (@ "2 > 0ask >
i=1 j=1 *J i=1
then the aij(k)’ i # j, converge to zero as k + « and A has

been diagonalized

and letting U = 1lim (U

k—>co

1Y2

AU = UA

...U ), from (5.4.2),

(5.4.4)

It is proved in [19] that there exists a sequence {U,} that

will result in (5.4.4). At step k, the largest aij(k) which is

(k)

denoted by agm

k

, 1s to be zeroed out. U, is of the form
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3
J

g

+
wnenane N arsmcas e [} mwm e 3O
et [} -"-q-"-ﬂﬂﬁ- H e waao-

m | —eem————— sin 0 =—=—e————— COS O —=—=m—
' . : (k) (k)
where o has to be properly chosen in terms of a0m r 80
and amm(k). For details, see [19].

The eigenvectors and eigenvalues of the matrix R have
therefore been obtained. Autocorrelation analysis will now
be performed to obtain the ki's as usﬁal, and by transforming

them to the set of uncorrelated parameters Gi'given by

M

Gi = I ¢jikj a certain measure of independence has been
i=1

achieved. The parameter?\m in (5.3.28) then becomes em instead

: M
of k.. Z log N, is then minimized by letting each term in
i=1
this asymptotic formula for E(Dtot) be equal to E(Dtot)/M.

Substituting (5.1.22) into (5.1.19) with this value for the

individual bounds results in
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| Es, (x)p, (x)dx
1 AE(D, ) ‘ S jb |

tot YEs, (X)p, (x) vEs, (x)p, (x)dx

— ( 10 /a 0 70
a ~ (5.4.5)

M b 2

= — I /Ese'(x)pe.(x) ax’ _ (5.4.6)
4E(Dy ) a 4

Thebrange (a,b) will be discussed shortiy. As was stated
previously 3 to 4dB is the smallest distortion that can be
pérceived when using distance measure (5.1.2). In the
" theoretical study of [121, E(ﬁtot) is sétAto 3dB. As a
compromise, Ivset it to 3.5dB. Thereafter (5.4.6) 1is used
to obtain the number of bits Ni‘for all the parameters. If
ei has a small variance Ai’ it is hoped the the outcome of
the computation (5.4.6) will be a small number. One other
" remark is in order: (5.4.6) is the aéYmptotic formula valid
for large N,. However, the interest lies in obtaining a
small N,. It is assumed that (5.4.6) is still accurate
for small N; as is demonstrated for kl in [12].

Notice also that only A, and ¢, are evaluated. The

guantizer curve
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o, o
/ﬁée (x) pg (x) ax
i i

b

/Ese'(x)pe.(x) dx
i i

o —— | —

and the number of bits as given by (5.4;6) cannot be computed,

until Ese (x) and pe (x) are specified. Two methods will be
i _ i _

proposed for the computation of the quantizer curve and hence

-of (5.4.6).

METHOD I - This method assumes thatOi has a Gaussian p.d.f.

~.0of the form:

1 e—(x—EX)2/202
/2ﬂ62

Py (x) = - (5.4.7)
1 -

M .
where 02 is the eigenvalue Xi and Ex is the mean I ¢jiEk
_ =1

J

This is easily obtained since.the kj's were computed in getting
 the covariance matrix R. Notice in passing, that if the ki's
were all normally distributed, that ei, being a linear
combination of the ki‘s would also be_Gaussian. Since the Bi‘s
are uncorrelated, this would imply their independence and

this is exactly what is desired. The assumption is of course
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false since Prob{[ki[ > 1} = 0 and therefore the range of 0,

M

is = lejil for all i. Consequently, the 6, 's are not
i=1

Gaussian variables and it does not follow that they are
independent. The best that can be said is that they are
uncorrelated. However, for the convenience of representing
pe_(x) by an analytic function, (5.4.7) can be used because
itlis a good fit to experimentally obtained relative
frequency histograms of ei (see Chapter VI). The problem
now is to get an expression for the average overall.6m¢i,
Ese_(x), as a function of ei. In its derivation it is
reqiired to know the sensitivity as a function of Gi, for

fixed but arbitrary em#i' Now in terms of a single parameter

variation (where ei is the parameter), A(e]e) in (5.1.6)

becomes =
AA(eje) n Aei é%? (z;ei) and since
M
k. = I ¢..0. j=1,2,....M (5.4.8)
S
. M 3k
jo j 0A )
AA(e”7) v 4B I mE= ap— (270;)
j=1 ""i "3
M 9A(z;0.)
= AB, I ¢.. (5.4.9)
. i k..
tog=1 j
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But from (5.3.6)

oA

ok . .
J i

N~z

-i
lz [ai(kj+l)-ai(kj)]

The inverse Fourier transform of |AA[2 is then

M M M
E z ¢j ) (ai.(kj-'—l)—ai (kj) z ¢] 2 (ai+n(kj+l)—a- k.))

2
r,, (n) = (A8,)
AB L =1 itn " j

% i=1 | j=1

(5.4.10)

This equation is to be substituted in (5.3.2) to yield D2.

But from (5.4.10), D2/A9i2 depends on all ki's, or
M o=
transforming to 6, = I ¢..k., depends on all 6,'s. For
i 5=1 3i73 i

example, in [12], a one parameter sensitivity function D2/Aki2

is desired for the computation of Ni' Some sort of averaging

procedure is required.

The following is the approach used in [12]. Since
all Sy (x) have, as only singularity, the factor (l—xz)l/2
i
in the denominator (recall gain normalization o(A) = 1), Sy (x)
i

is multiplied by v1-x2. This is performed for each point
in the scatter plot. Then a histogram of the relative frequency

of occurrence of points is obtained over the whole range of x.
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A mean value B for skv(x) /&—xz is then extracted from the

. i
histogram and the one-dimensional function Sy (x) to be used

in the quantization schemes of [12] is fheﬁ B;/i:gyl
Following the discussion that led to (5.3.28) the

representative one dimensional function that will be used

for sei(x) i; the average value Esei(x) where the avergge is

taken over all possible values em#i' Using the maximum

M .
range R, =.j£l[¢ij[ for 6;, and pei(x) as given by (5.4.7),

(5.4.6) is then.evaluated as

| R, 7
N; = 133535 J lJESe () ——— o7 7B /2A
: ‘R. i /2ﬂXi
i

(5.4.11)

This integration is carried on using the approximation by

- Simpson's Rule with 200 subdivisions. This number was found

to be sufficient in depicting'the shape of the gquantizer
curve. Once Ni is known from (5.4.11) the quantization levels
and boundaries are then obtained from the quantizer curve.

One technical remark is in order: The pP measure (5.1.2) is

'derived using a natural logarithm whereas values for E(D) and

max D were always quoted in decibels. If a variable x has

units of power (e.g. a/lA(eje)lz), then the definition of x in
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aB is 10 logl0 x, and using the conversion logex = loglox/logloe,
the sensitivity function must then be multiplied by a factor _
10 logloe v 4.3492. Now, SG.(X) is a very complicated formula
involving all Gm and moreovei the actual formula for
Prob{em/ei, all m#i} is unknown. . Evenrif a multidimensional
Gaussian density .function was used, the calculation of Ese.(x)
would be prohibitively difficult. The easiest way to obtain
Ese'(x) islthrough a time average of se.(x). .Ey the law of
lar;e numbers, the sum of the se.(x) th;t‘occur in the

scatter plot for a given x, diviéed'by the number of these
6ccﬁrrences shouid be a good approximation to Ese_(x). This
will be the approach to be followed in METﬁOD II.1 In the
preéen£ method, Ese.(x)_is assumed to be the se.(x).given by

i i
6 = Eem for m#Zi. It is in general not true that

m
if(x)Prob{x} = f(ixProb{x}). But the quantizer'curves that
-are plotted using the two differenf methods, turn out to be
bsimilar in shape (see Chapter VI). |

There is still one inconsistency which must be resolved;
There is no guarantee that the ﬁecessary.conditions Ikil < 1
for stable filters will be satisfied with the set of
ofthogonal parameters consisting of an arbitrary ei and em = E©
for m#i. Indeed, from computer printouts, values of 0; outside

a certain range that will be denoted by (fil,fiz) for

convenience, always results in absolute values of k, slightly

L
greater than 1, for a few index values of &. In fact, [kgl"l
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increases monotonically as ei goes from Eei to * Ri‘ The
schemé that was adopted then, was to alter Eem to new values
%m’ m#i,.in such a way that all k, satisfy Ikil < 1 for ény
particular Gi. This cannot be said to be.a single parameter
variation. However as will be seen in Chapter VI, /7; is
relatively small in comparison with the range Ri' and also
the actual probabilify density function of Gi is truncated

to an interval (til,tiz) C (—Ri,Ri), which is approximately
the above interval (£.,,f;,). Also it happens thatIVT; <
min(lfiz—Eeil,[fil—EGil). From an inspection of (5.4.11) it
is therefore seen that, because of the Gaussian densityv
term, under the condition that Ese.(x) is not too singular,

_ i
the complement of either (f'l’fiz) or (til'tiz) dQes not

i

contribute very much to the number of bits Ni’ and the
quantizer curve will be flat outside the truncated range.

This is substantiated by the results of Chapter VI. Notice
that because Si has a truncated density function, only the
interval (til,tiz) needs to be guantized instead of the whole
interval (—Ri,Ri). This was done- in inverse sine quantization
of the ki's as their p.d.f. are truncated also. But in the
min E(Btot) guantization scheme as discussed above, because
the quantizer curve is flat outside the truncated range (til’
tiz), it makes no difference whether that range or (—Ri,Ri)

is chosen for quantization. The latter is chosen because
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initially it is desired to prove that the integral over the -
complement of (til'tiz) was close to zero.

Letting ei run from —Ri to R,, it is first tested if

M
k. = ¢..6., + ¥ ¢. E6
i Jjivi g=1 3% 4

AL

(5.4.12)

results in just one lkj] > 1 for some j. If there is one
such kj' other values @2 have to be used instead of Eez.
The basic assumption is to let

32 - EO, = e/rg/q)jg (5.4.13)

~where B is a constant of proportionalityrwhich is to be sought.
The reason behind this assumptioh is that the bigger the
variance Az, the more likely it is that 62 departs from its
mean value Ee2 and if ¢j2 is small in (5.4.12), then in order
for a change 32~E62 to make its presence felt, a correSponding
factor ¢j2 must appear in‘the denominator. A value for B must
now be found. In order to minimize the ¢hange %z—Eeﬁ'lkjl <1
can be made as close to 1 as is desired. An arbitrary value

|K| = .99 is chosen. Then
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M M
$..6, =k. -~ % . E6, =K - I 6. 8 (5.4.14)
ji’1 j 0=1 JLTL 0=1 EAS
A1 2#L
from which,
K-k. = 3 ¢.2(@2—E9£)
I gt
=B % ¢., VA, /b, (5.4.15)
pgi 3% TP
Consequently,
K-k, VA,
§,-E0, = —L ; RAL (5.4.16)
z VX i -
n#i n

Therefore, the values %2 for which\kj becomes I .99 have been

found. Now %2 must lie between Rz and it would be preferable
that IEQ—E%J does not exceed /A, i.e. if in (5.4.16) it turns
out that for some 2%

then the value of 6, is kept at E8

) and (5.4.14) is changed to

L
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¢..6,+¢., B8, =k. -~ I ¢ EO, = K-1I ¢ & (5.4.17)
jivi 324 3 n#i in n n#i 3n n
n#L n#f

But this would result in

K-k. Vi )
§ -Eo_ = 3 m | for ng (5.4.18)
z /T; ¢jm *
n#i
n#4

If for some m, Igm-EGml >./7;, the same procedure is repeated
until all the remaining l@m-Eeml are less than VX _. There might
be none remaining in which case the method failed. After all,
the subscripts m, n run over a~decreasing set of values from
{1,2(...1-? and as the number of differences @m—Eem decreases,
their value tends to increase because the denominator 2/7;
becomes smaller as the sum is over fewer elements. If the
proceduré fails, then an alternative simpler scheme is developed
and described below.

But first supposing the method does not fail, then given
this new set of orthogonal parameters, a check is made from
(5.4.8) for the first occurrence of a |k,| > 1. Recall that
the above method, guarantees the inequality ]kj] < 1 for one
j only. If all {k;| < 1, then s, (x) is computed using this

i
set of orthogonal parameters. If there is just one ]kil > 1,
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the above procedure must be repeated in order to find a new
set that will safisfy-lkil < lf If the procedure itself
should fail at some point (no ém-Eem remain which satisfy
]gm—Eeml < /7;) or if after repeating the procedure a certain
number of times, no set of orthogonal parameters have been
found to yield lkil < 1 for all i, then the following step

is taken. (From computer printouts, it was seen that the

" following scheme was forced upon, even for values of ei

relatively close to (til’ti2)’ Only for values even closer

to that interval is the above procedure successful.) Let
0.sgnd.. . 8.sgnd¢. .
kK, = —= - = vE (5.4.19)
L
for all j.

It must then be shown that these are a consistent set of

equations. This certainly satisfies lkj[ <1, since |68,] <R

i
as it runs over (—Ri,Ri). Also
M ei M
6n = X d)mnkm = R X d)mnsgncbmi (5.4.20)
m=1 i m=1
- : M
If n = i, the R.H.S. of (5.4.20) becomes (8,/RJ) mzl}¢mi|==ei

as required by equation (5.4.20). If n # i, the R.H.S. of

(5.4.20) is less or eqgqual to(ei/Rﬁ R < R also required
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of eh for all n. The set of equations (5,4.19), therefore

satisfies the necessary constraints. Sg (x) is then

computed from (5.3.2) and (5.4.10) usinglthis set of ki's.
Results using METHOD I will be shown at the end. It is

desired to compare fhe guality and the bit rate of the speech
~generated by the above "optimal quantizer"” with that obtained
by using other quantization schemes. As the fidelity criterion
in fhe above is E(Btot), for easiér comparison, this is the
fidelity criterion that will also be used to find the necéssary
number of levels in the other quantization schemes. Further—
more, the asymptotic formula in the 1imit of large NZ'

relating E(DQ) tq NQ.

b ESA (xm)pA (Am)dxm
m m

4E (.BIL) a u.(km)

will be used. The first quantization scheme that will be
studied is the one that minimizes max 5(X2,q(kg)) for the .
reflection coefficients. This quantizer curve was derived

in section 5.3:

_ . =1 -
Ax = CQSln k2 = U(kg)

Let the range of kl be (Eg'ig)' Then normalization of U requires
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1

sin kz

C =

—51nE2

Then u(kz) = dU/dX2 = cz/vl_AQZ is substituted in the above
asymptotic formula. Once these quantizer curves are assigned
to each reflection coefficients, the total number of bits

B = E log Ng is minimized subject to the constfaint E(D

tot)
3.5dB (as was shown previously) by letting E(ﬁz) = E(ﬁtot)/M’
The - second quantization scheme that is next considered is

asymptotic min E(D) on the ki's;

k ' ‘
'3
U(ki) o J /Esk (T)pk (t) dr
4 g v

and

1 2
E— vEs, (1)p, (t) drt|
4E(B,) | !, ke TRy

where E(Bl) = E[ﬁtot]/M. This will then be an experimentall
result following the theoretical developmeht in [12].

Minimum deviation orthogonal parameter quantization will then
be compared with minimum deviation and inverse sine reflection
coefficient guantization. As was already mentioned, the k

1
and k2 distributions are skewed and hence do not look like
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symmetric truncated Gaussian densities. Although analytical
functions which approximate their empirical distributions

are derived in [10], the following empirical method to obtain

the probabilities:and the sensitivities will be used'in éomparing

the 3 quantization schemes.

METHOD II - Histograms of the relative frequency of occurrences
of the 6,'s and k,'s are obtained. The full range of the
parameter (ei or ki) is subdivided into 200 intervals. The
counts in any given interval are added. For this particﬁlar
interval this value is then divided by the sum of the counts
over all intervals, and this number is assigned to thé
probability éf the-parémeter lying in that intetval. Since

a probability density function

lim Prob{x < X £ x+Ax}

Ax->0 Ax

is desired, the probability of the intefval just computed is
divided by its length and this number is assigned to the
probability of the parameter at the value halfway between
the ends of the interval. As was previousiy_stated in the

section on METHOD I, Es, (x) is obtained empirically by

)
i ‘
again subdividing the range into 200 subdivisions, then the

sum of all values that occur in a given interval divided by
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the number of occurrences in that interval is computed and that

number is assigned to Ese (x) where x is a point midway in that
i
interval. Notice that in the 3 quantization schemes, EsA and
jul

p, appear only as a product EsA Py in the asymptotic formula
m m ‘m

for Nl' Since Py is the number of occurrences in a given
m

interval divided by the sum of eounts over all intervals,

EsA ) does not explicitly depend on the number of occurrences
m m

within that particular interval.
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VI: EXPERIMENTAL RESULTS

The experimental setup will first be briefly described.
It waé.mentioned in the last chapter that gain quantization
is often done independently of the vocal tract parameters'
guantization. In the present study, logarithm, of the gain’
and also pitch, quantization as used in [10] is adopted.
The range for quantization of the gain is also chosen to be
the range in one of the preliminary tests to the SIFT |
algorithm. More details about the SIFT algOrithm.and the
subsequent autocorrelation linear prediction analysis, are
then given; .In order to Study the dependence of the reflection
.coefficients on the text and speaker, statistics about
1 file and 14 files of speech were separately compiled. The
dependence was found to be rather small. The Jacobi
diagonalization procedure is then carried out, and the results
using METHOD I and II are then tabulated. 1In terms of
bit rate reduction, it is then seen that min E(ﬁtot)
quantization of the orthogonal parameters performs better
than inverse sine gquantization of the reflection coefficients
but not as well as min E(ﬁtot) quantization of the reflection
coefficients. Plots of the relative frequency of occurrence
“histograms, averaged sehsitivity functions and guantizer
curves for the orthogonal parameters using METHOD I and II,

are then compared. Then, plots of the histograms and
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sensitivity funqtions for the reflection coefficients arev
compared favorably with those of [12,14]. To obtain the
guantizer levels and boundaries, linear interpolation on

the quantizer curves, is then performed. Finally, a subjective
comparison is established. It is found that the gquality
. of synthesized speech usiﬁg pitch extraction is very much

the same for all quantization .methods, and ohly slightly
worse than that of speech synthesized with no quantization
of the pafameters. When the input to the synthesizer is the
unguantized error signal, the quality of the output speech is
somewhat more dependent on which of the three guantization
schemes is used but is better than that of aﬁy speech obtained

using the pitch-synchronous synthesizer.

" Procedures in recording and playing back speech

The original speech utterances were recorded on analog
magnetic.tape using a high impedance microphone at INRS-Telecom,
Montreal. The input gain to the tape was set by observing
the peaks in the utterance. Then a converter was set in A/D
mode. To prevent aliasing, the input speech is first passed
through a variable analog filter with a value for the cutoff
frequency, less or equai to half the sampling frequency of
the converter. ,Thié filter allows frequency settings from 0
to 100 KHz in steps of 10 Hz, the selection of high pass versus

low pass characteristics and also flat amplitude versus



130

délay characteristics. The sampling frequency of the converter
is then set at 10 KHz, théreby éssuming that the amount of
energy of the input speech in the rangé 5 to 10 KHz éan be
neglected. Thére is an implicit quantization of every speech

sample because of the finite memory of the computer: a

14' 214_1).

sample is stored as an integer'in the range (-2
Overload lights indicate whether the input utterance exceeds
fhis range. To avoid overloads, the input gain to the tape
must be reduced. Once the speech is stored on computér disk
as a file, a FORTRAN program which can‘further filter and
déwn—sample the file is also available. The file can then
be played back, by putting the converter in D/A mode.
‘Since'the D/A creates an analog signal by a sampled—and—hold
method, the above mentioned variable analog filter is used

as a low-pass filter in order to smoothen out the discontinui-

ties introduced by that method. Before listing the experimental
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indépendent of frequency is desired. Let

131

conditions; the conventional appréach to quantizing the pitch
and gain will now be‘described.‘-This quantization, done
independently, of the vocal tract parameters, is the reason
behind'preferring the gain normalization 0(lj as unity in

the spectral distance measures.

Quantization of the pitch and gain

Pitch

As discussed in Chapter III the SIFT algorithm determines

as estimate of the pitch P in the range 2.5 to 20 ms. The

sampling frequency fs of the input speech was 2 Kﬁz.'.In
dimensionless unité then the pitch P' is Pfs. The question
is how the interval should be quantized. Evidence pointed
out in [10] suggests that the ear is sensitive to relative
fundamental frequency error Af/f. Since Alnf ~ Af/f, uniform

quantization of 1nf is necessary if a relative error

N

£ . = l/P'm

and f = 1/P%" ,
min m mi

ax ax n
stand for the range of frequencies of interest in the SIFT

algorithm. 1If BP is the number of bits used, then 1nP' is

quantized to the value
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t - 1
28P In(l/P") In(1/P maX)
. Y — 1
- 1In(1/P min) In(l/P maX)
unless the speech is unvoiced, in which case, P' = 0. The

inverse operation 1nP' » P' is then carried out at the receiver.

Gain of the Error Signal [10]. Experiments have

 shown that the probability density function of the gain can
be roughly represented by an exponential [10]. It follows
that if the logarithm of the gain is uniformly quantized,
then the probability of -occurrence of an interval is
approximately uniformly distributed over all intervals.

If BG bits are used, then as for the pitch, the quantized

vvalue of 1nG is

InG - 1nG

* 1nG - 1InG_.
max min

As for pitch the inverse operation 1nG » G is carried out
at the receiver. G = 0 is a problem but since there is
always some background noise Gmin is selected to be just
above the upper cutoff for the noise gain. Adopting the
f}gure in [10] this is set at Gmax/300' GmaX must now be

found. Recall that in the autocorrelation method
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For small a_ as in low amplitude fricative noise, Oy is

not much less than oy and for large aé as in some voiced

sounds, o, is usually << a_. Consequently,

(o) - (a )

M 'max o’ 'max

(a )

M)min o’min

(o

and a dynamic range greater than that of the input speech

is not needed. - In [10], (o,) is set to .3 (o )

o . i
M max o’ max Since

there are N samples in a frame, this would then correspond

to an average amplitude v.3(o_) _ 7N. This is the adopted

value for G in [10]. o _ is obtained from the auto-

max o _
correlation analysis of the input speech. In the present
study, the pitch extraction is performed before the analysis.
This is described in more detail in the next subsection.
In one of the preliminary tests (prior to the pitch
extraction) the value of Gmin and hence of GmaX 1s required.

Since oy is as yet undetermined, the value of Gm will be

ax
set at /.3 A where A is the maximum amplitude over all
speech samples in an utterance. Recall that speech samples
are qﬁantized to 215 levels when stored on computer disk. |
Only integers ranging from --214 to 214—1 are then possible
for representing speech. The input gain to the converter

(in A/D mode) is then kept at a constant value. This value

must not be too large, as overloads, which are indicated
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by the A/D overload light, are to be avoided. Table 6.1.1
lists a few characteristics of 14 utterances which are
described below. The value of A is set at the maximum over
the most positive ampiitude and the absolute value of the most
negative amplitude. Values for g, and Bé of 5 bits each
‘were allocated to the.pitch and gain. According to ([10]
these should result in reasonably good quality speech. Indeed
it was observed that with.only'pitch and géin qguantization,
the output speech is almost indistinguishable from that
.synthesized with no guantization at all.

In ali, 14 speéch files of approximately 2 to 3 seconds
in duration, wefe recorded and stored'cn computer disk,
as described earlier. The-déta were chosen from a selection

of well-known phonetically balanced utterances, [4]:

(1) OAK IS STRONG AND ALSO GIVES SHADE

(2) CATS AND DOGS EACH HATE THE OTHER

(3) ADD THE SUM TO THE PRODUCT OF THESE THREE
(4)  THIEVES WHO ROB FRIENDS DESERVE JAIL

(5) THE PIPE BEGAN TO RUST WHILE NEW

(6) OPEN THE CRATE BUT DON'T BREAK THE GLASS

There were 3 adult male speakers and 2 adult female speakers.
The first male uttered sentences (1), (3) and (4); the
- second male, sentences (2) and (3) and the third, (1Y, (3)

and (4). The first female uttered (2), (3), (5) and the
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second (1), (3) and (6). A file will be denoted by a-b-c,
where a stands for the sex of the speaker (M or F), b which
of the speakers of the same sex and c, which of the above

6 sentences. A speech sample is denoted by s(n) and the
speech characteristics in Table 6.1.1, are taken over the

~whole speech file.

Analysis conditions

The'variable filter cutoff frequency was set at 5 KHz
with a low pass flat amplitude characteristic. The sampling
frequency of the converter in A/D mode was set at 10 KHz.
The cutoff is abrupt enough to make the confribution to the
spectrunm, of aliasing and =zeroes introduced in this way,
negligible. The SIFT algorithm is then applied to produce
14 pitch files, one corresponding to each input speech file.
SIFT uses an elliptic filter of third order, in prefiltering
the speech file down to 1 KHz. The file is then downsampled
to 2 KHz. (This is a computer simulation: all these
operations were carried out with FORTRAN programs). The
frame rate was 50 Hz, the analysis length N, 80 and the
lineér prediction filter order M, was 4. The preliminary
test lower gain value was set to Gmax/300 where Gmax is
obtained from Table 6.1.1 as was discussed previously.

This same value of G ax Was also used in quantization

X

studies. Then, the 33 autocorrelation values R(l), R(2),....,
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Table 6.1.1

File ‘Min s(n) Max s (n) E s(n) vVar s(n)
M-1-1 ~14077 11395 22 1748.5
M-1-3 ~14419 10222 ~22 1545.4
M-1-4 -13967 12700 -22 1703.8
M-2-2 ~15466 9549 ~23 '1800.8
M-2-3 -15503 10715 -23 1697.7
M-3-1 ~14199 11579 -24 1976.0
M-3-3 ~16384 11772 -23 2394.2
M-3-4 '~13403 9631 ~21 1980.0
F-1-2 ~15010 9160 -22 1762.0
F-1-3 ~12015 9179 -22 1759.8
F-1-5 ~12782 8366 ~22 1847.8
F-2-1 - 7685 6407 ~21 919.0
F-2-3 ~ 6083 5230 -22 749.9
F-2-6 - 5173 4196 ~23 640. 4
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R(33) are obtained from the last 76 samples in the 80 samples
analysis frame. Following Figure 3.2.1, the procedure
up to now is called STEP 1 and the further processing of
the autocorrelation values R(n) is called STEP 2. For
additional details, see Section 3.2 and [9]. The pitch
decision of the SIFT algorithm, for each analysis frame
in the speech file, is then stored in a pitch file. Recall
that, because of the error defection and correction
performed in STEP 2, there is a delay of 2 frames in the
computation of the pitch. |

Autocorrelation analysis is then performed on the 10 KHz
speech file. The frame rate fr = 50 Hz and the filter
order M = fS(KHz) + 4 = 14. For the mth frame, the analysis
frame length N is chosen to be .01 fs = 100 or .02 £_ = 200,
depending on whether the decision in the corresponding
(m-—2)th pitch frame is unvoiced or voiced respectively.
Adaptive pre-emphasis using a factor u = r(1)/r(0), and
windowing using a Hamming window with a scale factor of .54,
is done prior to this linear prediction analysis. The pitch,
gain and reflection coefficient information for each analysis
frame is then stored in a speech parameter file. Statistics
necessary in the evaluation of the-covariance matrix R are
then gathered aboﬁt the ki's. Statistics, about the 1 file of
reflection coefficients corresponding to speech file M-1-3

and about the 14 files of reflection coefficients were
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separately compiled in order to study their dependence on

the text and speaker. For the purpose of calculating R

and Eei as required in METHOD I, Eki must first be obtained.
" The values of the Eki and Varki are shown in Table 6.1.2

for the 1 file and 14 file statistics. Other data on the

ki!s will be presented when results on METHOD II are
'discussed. Table 6.1.3 and 6.1.4 are computer printouts

from the Jacobi diagonalizatién Fortran program using 1 file

and 14 file statistics respectively.

N is the filter order and thus is thé rank of the
covariance matrix. In this program, this matrix is denoted
by A instead of R and because of its symmetry, only its
upper triangular form is stored. ITER counts the number
of times the whole procedure is repeated, and ITMAX is the
maximum number of these iterations allowed in the program.

SIGMA 1 and SIGMA 2 are respectively

of the previous discussion on Jacobi diagonalization leading

to (5.4.4). EPS1 and EPS2 are arbitrary threshold

values used in the zenxﬁng of some elements alm(k) and in

the selection of the value of o in orthogonal matrix Uk’

respectively. Approximate convergence is achieved when
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(a (k+1))2 _
1 i .
1

< EPS3

I~ =

N
5 (a__(k))z
oy i

i
With the values of EPS1l, EPS2 and EPS3 as listed in the
printouts, it can be seen that the matrix has for all
practical purposes been diagonalized, after only 4
iterations. The diagonal elements are the eigenvalues of
A and the eigenvectors (¢li’ ¢2i' cecey ¢Ni) qorrespondlng
to each eigenvalue Ai appear in the columns of matrix T.
For additional details concerning the flowchart and the
program listing, see [19].

Straightforward calculation yields

14 14 ' '
X /Varki = 3.085 > X /ki = 2.881, for 1 file statistics
i=1 - i=1
and
14 ' 14
Z'VVarki = 3,308 b} Vki = 3.181, for 14 file statistics
i=1 i=1

L/Vark; - I/X7 = .204 for 1 file as opposed to .127 fér 14

file statistics. This is to be expected since statistics

on some data should yield larger correlation values, than

when other less correlated data are added to the previous data.
Table 6.1.5 lists characteristics of the orthogonal

parameters ei and also the number of levels Ni for METHOD I. .
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Note that the ei's are listed in order of decreasing variance

M
A;. The range _El]¢ji] is denoted by R;.
J= - 14
For 1 file statistics, the total variance is Z A, = .783
i=1

whereas for the 14 file statistics, it is .888, which is larger as
expected. Also the variance is allocated among the parameters in
the same way for both statistics. Notice that the range'is always
much larger than /VEE@Z. For the smallest X;, it is in fact 31
and 26 times larger than Ri for the 1 and‘l4 file étatistics
respectively.

The probability distribution of the ki's does not depend
on the filter order M for all i < M, i.e. taking two arbitrafy
filter orders Ml and M2, the distributions are the same for 1 = i
i.min (Ml, MZ). In [21] a filter order M = 12 is used as opposed
to M = 14 in the present study.- Similarly it is expected that
the probability distributions of the 6,'s do not depend very
much on the value of M if the latter is large because the variance
and the cross-correlation of the ki's decreases as i incréases.
Comparing the 12 eigenvalues from Table 1 in [21], it is found
that the sum of the 12 variances is roughly the same and is also
disfributed in the same way.

From a previous discussion, the expected spectral
deviation for each parameter is E(ﬁtot)/M = 3.5dB/14. The
optimum allocation of levels Ni to each orthogonal parameter

i

0. is listed in Table 6.1.5 for METHOD I. N; is first

computed in floating point notation. The values obtained



1 file statistics

Table 6.1.5

14 file statistics

83 M Ry Ny B84 Ay Ry Ny
.451 .224 2.695 36 .495 .251 2.085 50
-.033 .160 2.619 22 -.027 .138 2.705 18
.190 .091 2.954 . 12 -.231 .111 2.158 16
-.124 .055 3.072 9 -.130 .080 2.912 10
.243 .049 2,722 9 .104 . 062 2.800 10
.008 .036 2.947 7 -.022 .056 2.904 8
.070 .033 2.930 7 .032 .037 2.839 7
.103 027 3.171 7 .069 .033 2.844 7
.055 .023 2.696 5 .039 .031 2.233 6
-.081 .019 2.892 6 .054 .026 2.848 6
-.027 .016 2.871 5 -.078 .019 3.276 6
-0.30 .013 2.364 4 -.302 .018 2.414 5
~.090 .010 2.994 4 .061 .015 2.836 5
.025 .007 2.598 3 -.012 .011 2.688 4
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are then rounded off to the next greater integer. From
inspection of Table 6.1.5, it is seen that with one minor.
exception under 1 file statistics, N, decreases as Xi
decreases. Cdnverting 1evelsvto bits and'allocating BP
bits to pitch,vBG bits to gain, with a frame rate fr’ the

total bit rate is

M
(

logzNi+BG+BP)fr
i=1

In the present study, fr = 50 Hz, BG = BP = 5. In [l0],

an extra bit per frame is allocated to the variable pre-

1 = 0, “2 = .9

and the boundaries are ul = 0,'u2 = .6, u3 = 1.0. But as

~emphasis 1 = r(l)/r(0). The levels are 1

will be seen under the results of METHOD II, the absence
or presence of pyefemphasis quantization is iﬁsignificant
percebtually. .Then, using the above formula for total
bit rate, 2539 bits/sec and 2674 bits/sec are.required for
the 1 file and 14 file statistics respectively, if E(Béot)
in the asymptotic minimum deviation scheme, is not to exceed
-3.5 dB. ‘

Table 6.1.6 lists results for the orthogonal parameters
and reflection coefficients, using METHOD II. Only the

14 file statistics results of the Jacobi diagonalization will

be utilized, because in order to obtain a good representative



—
E

~of the ki's, 2750 bits/sec for min E(D
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time average of the sensitivity and relative frequency
of occurrence of the parameter, a large number of frames
encompassing all 14 files is required. Table 6.1.6a then
lists the variance Xi' the range Ri'(both also found in
Table 6.1.5), the values 6. and 51 at which the probability
distribution of Gi is truncated and the number of levels N,
under the min E(ﬁtot)‘scheme,.for each of the orthogonal |
parameters Oi. |

Table 6.1.6b then lists the values k. and Ei at which

the probability distribution of the ki's is truncated, the

number of levels, Nil using inverse sine quantization, and

the number of levels, Ni2 using the min E(ﬁtot) quantization

. scheme, for all ki's. The number of levels have been

calculated using the bound E(D, ,)/M = 3.5dB/14 for all

tot

parameters in all 3 of the quantization schemes.

With Bg = BP =5, £ = 50 Hz, as in METHOD I, the total

number of bits required if a bound E(ﬁto ) = 3.54B is not

t

to be exceeded, is 3070 bits/sec for inverse sine quantization

tot)-quantlzatlon‘

of the ki's and 2884 bits/sec for min E(Btot) quantization

of the ei‘s. Min E(ﬁtot) guantization of the ki's is therefore
slightly superior to inverse sine quantization of the ki's

as predicted in the theoretical study of [12]. Unfortunately,

M

even though I VR.,. 2>

YA. as was already derived using
1 ii 1 ‘

1

M=

i=1



Table 6.1.6a

.011

METHOD ‘I I
A N, | R, 8, ﬁi
.251 '35 2.085 -0.856 1.376
.138 25 2.075 -1.055 1.001
111 18 2.158 ~1.122 -734
.080 14 2.912 -1.048 .728
.062 14 2.800 - .756 . 952
.656 11 2.904 - .871 .813
.037 8 2.839 - .653 .823
.033 9 2.844 - .512 - 796
| .03i’ 8 2,233 - .580 .603
.026 - 8 2.848 - .427 .655
.019 8 3.276 - .524 .360
.018 6 2.414 - .507 .531
.015 6 2.836 - .425 .454
5 2.688 - .376 .430




Table 6.1.6b

- METHOD II
i Ni1 Ni2 3 &y
1 33 27 -.98 .72
2 26 22 -.85 .87
3 21 16 -.86 .76.
4 18 13 -.70 .85
5 17 13 ~.79 .73
6 13 10 -.53 .77
7 13 8 -.57 .73
8 11 8 -.50 .75
9 12 9 -.60 .80
10 11 8 -.52 .84
11 9 6 ~.53 .65
12 7 5 -.48 .52
13 7 4 -.57 .38
14 5 4 -.36 .41
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HSlder's inequality, min E(D ) quantization of the

tot

orthogonal parameters is not an improvement over min E(I_)t

ot)

guantization of the reflection coefficients as far as
the bit rate is concerned, given a fixed bound E(ﬁtot).
The final conclusion must however be based on perception
~ tests since the actual hearing mechanism is far from beinc under-
stood. But first, béfore quaptizing the input parameters,
the quantization levels and boundaries must be known. A
few approximations will be made in both METHOD I and II.
So the graphical results obtained in both cases will first
be compared. Figure 6.1l.la and Figure 6.1.2a represent
the 14 file statistics Gaussian probability density function
of the first and second largest variance ei's, as used
in METHOD I. Figure 6.1.1b and 6.1.2b are the corresponding
14 file statistics relative frequency of occurrence histo-
grams as used in METHOD II. The corresponding diagrams are
to the same scale and a quick inspection will show that
they are quite similar. The Gaussian assumption is then
not a bad one. For fhe largest variance ei, Figure 6.1.3
is the average sensitivity of METHOD I using 1 file
statistics, Figure 6.1.4, using 14 file statistics and
Figure 6.1.5 the time averaged sensitivity of METHOD II.
Ail 3 graphs are to the same vertical scales. For Figure
6.1.5, the value of the sensitivity will depend on the number

of occurrences at a particular value of ei and consequently
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the graph is truncated because the p.d.f. of the orthogonal
parameter is truncated. Extrapolation of these results
outside this truncated range would give the indication that
the sensitivity might be unbounded as 6, ~ ¥ R.. This would

1

not be surprising in view of the fact that Sg. is a linear
i

combination of sk_'s each of which becomes unbounded as
i

6, » * R, because thén all ijl ~ 1. The truncated p.d.f.
will however be responsible for flatteningbout the quantizer
curve U(x) as ei moves away from Eei. Figure 6.1.3Vand 6.1.4
show clear spikes outside the above trﬁncated interval,
a region where the values Eém had to be changed to (5.4.205
- or to %m as explained earlier. It is therefore seen that
~as far as the sensitivity‘is concerned, METHOD I and II give
quite different results. There was no gUaranﬁee that the
outcome should be similar under the assumption that the
average of the sensitivity for a fixed ei is given by the
sensitivity at, the average values of em, or gm’ or by |
(5.4.20) for all m # i. Nevertheless taking this sénsitivity.
fﬁnction in conjunction with the Gauss;an density seems to
give comparable results for the number of levels and as
will also be seen below, for the shape of the quantizer
curves.

Similar sets of 3 sensitivity graphs are obtained for
all smaller variance orthogonal parameters. Figures 6.1.6,

6.1.7, 6.1.8 are the min E(ﬁtot) quantizer curves of the
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largest variance-ei for METHQD I using 1 file statistics,
METHOD I using 14 file statistics and METHOD II using 14 file
statistics respéctively. The third graph is somewhat
different from the first two and is not to the same scale
éither. As far as finding the levels and boundaries it
is only necessary to kﬁow the shape of the quantizer curve
although its correct normalization is required'in computing
the number of levels. It is seen from Table 6.1.6a or
from Figure 6.1.1b that the quantizer curve of Figure 6.1.8
is flat outside the range defined by the values at which
the probability densiﬁy function of the parameter is
truncated. This transition is less abrupt in Figure 6.1;7
since a true Gaussian density is used as the p.d.f. It was
judged superfluous to include the corresponding graphs of the
smaller variance parameters as they were even more comparable
and symmétrical about a vertical line.close to Eei.

Figure 6.1.9%9a, 6.1.10a, 6.1.1la are respectively the
relative freguency of occurrence histogram, the time
averaged sensitivty function and the min E(ﬁtot) quanfizer
curve for the first reflection coefficient. Figure 6.1.9b,
6.1.10b, and 6.1.11b are the corresponding graphs for the
second reflection coefficient. Of course, the time averaged
sensitivity function will depend on the number of occurrences
at any given value of the reflection coefficient and

~consequently the graphs are truncated at the values at which
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the probability density function of the ki's is tfuncated.
It can be seen that the general shape of these histogramé is
in agfeement with the histograms and scatter plots of [12], [141.
Of course, the quantizer curve is flat outside the truncated
range. It was also found unnecessary to include the graphs for
the other ki‘s because as 1 increases, the quantizer curves of
the ki's‘become‘more symﬁetrical about a vertical line close:
to Eki and in fact their shape is more reminiscent-of that of
the orthogonal parameters' quantizer curves.

In the calculation of the number of levels and shaée of
the quantizer curves in the min E(ﬁtot) quantization scheme,
it was mentioned already, that the integrals are‘approximated
by Simpson's Rule with 200 subdivisibns. Therefore 200 values
of sensitivities and probabilities are computed and assigned to
the point ﬁidway betﬁeen the ends of each subdivision, and

then 99 values of the unnormalized quantizer curve

Ulx) = J J%A(A)pA(A) ar
a

are obtained for the corresponding values x which are equally
spaced by twice the originai subdivision length. Denoting

the range by (a,b), the number of levels is then

N = 0m)12/14EB, ) 1/m
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Let Wl and W2 be respectively the closest values of x to a and

b. Then z = U(x) can be uniformly quantized in the range
(U(Wl), U(Wz)) because since the number of subdivisions is
largé, Wl and W2 will be respectively close enough to a and
b to ensure that the quantiier curve U(x) will be flat

outside a truncated range (tl’tz) C (W ,W,) C (a,b).

It is then easy to compute all levels and boundaries

2., 2z if the number of levels is known. The problem is

n

then to find which of the 99 values U(x) is closest to one
of the computed En (or zn). Since U(x) is obviously'
monotonic in x, a Fortran program is easily implemented with

a few DO-LOOP's, that will search for those values Xy Xi+l'

341 which satisfy

1 x2 ".f.. < x99 é W2

: : < 5 < < < <
and U(Xi) fz = U(xi+1) = U(xj) S 2h,q 2 U(xj+l)

for all n.

1 which satisfy

The problem is then to find values Rn, X4

< & <
S 4 X,
1 n— i+l

[ A
e
N

and ' %3 n+l — %3+1
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such that U(in) = in and U(xn+l) = Z 41" Since z was not
computed as an analytic function of x, but is rather found
empirically, the inverse function U“l is unknown. . However
because the number of‘subdivisionsvis large, thé function

U in the interval (xi, Xi+1) can be approximated by a stfaight

line and thus, linear interpolation can then be performed.

Consequently, in is solved for, by using

This idea was applied in the min E(ﬁtot) scheme of both
METHOD I and II. For inverse sine-quantization of the ki's

however, it is only necessary to uniformly quantize z = s:'L.n"l ki

in the interval (sin % k, sin 1 Ei) and to apply the inverse

transformation to get X = sin Z_ and x = sin z The

n+l n+l”
values Ei and Ei are taken from Table 6.1.6b.

Subjective results and Conclusion

It is first checked that the original file M-1-3 is
perfectly reconstructed when played back through the converter
in D/A mode. Figure 6.1.12a shows the time domain | |
- representation'of the file covering 2.432 seconds of speech,
éampled at 10 KHz and bandlimited to 5 KHz. Figure 6.1.12b

is a corresponding low time resolution spectrogram of the
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first 2 seconds of speech. (An FFT of length N=128 is used.
‘The 128 speech samples are first windowed using a Hamﬁing
window with a scale.factor of .54). The darker éreas
indicate larger concentration of energy. The horizontal
striations represent harmonics of the pitch period. If,vin
a particular interval, these are absent and there.is a non-
zero concentration of energy, then this interval of time
corresponds to unvoiced speech. The frequehcy axis extends
only up to 5 KHz since the speech is bandlimited.

The speech parameter file obtained in autocorrelation
analysis is then inputted to the_synthesizer program discussed

in section 4.5.

L r
’{-kilarP} i

Figure 6.1.13

Since thefe is no quantization involved (exqept fof the
negligible quantization implicit in the integer storage of
the speech samples) the reconstructed speech utterance should
be the one most similar to the original one. Other utterances
by the 3 male speakers were also analvzed in this way. The
output speech is of acceptable guality and nothing peculiar

. was discerned that was not already discussed in section 4.6.

g(n)
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Figure 6.1.14a and 6.1.14b represent the time domain and
corresponding spectrogram respectiﬁely. 'Figﬁre 6.1.15a and
6.1.15b demonstrate the fact thaﬁ quantization of pre-
emphasis to 2 levels results in output speech virtually
indistinguishable from non-quantized synthesized speech.

Figure 6.1.16a and 6.1.16b demonstrate results when, in

addition to pre-emphasis, pitch and gain are both logarlthmlcally

quantized to 5 bits. The only noticeable change is the
représsion of a few éonsecutlve peaks in the middle of the
time domain diagram.

Figure 6.1.17 shows the.sequence of steps that was
followed in obtaining synthesized speech using inverse sine

gquantization of the k;'s.

——
| | r

lIN’VERSE STNE QUANTIZA- .( lk o) | SINE TRANSFORATION l:f\ A :
TION OF k;'s. LOG (sin o0, (109 AND WRyase B . SYNTHESIZER
lthm_cxzz\'r*m oF ; ANTILOG OF . |

\u AND P | I

|

i PROGRAM -
© o AND P e =

Figure 6.1.17

Figure 6.1.18a and 6.1.185Vare:the time domain and
spectrogram respectively of the output speech, at a total
bit rate of 3070 bits/sec. A slight degradation in quality
is now perceived when the speech is compared with non-

quantized synthesized speech.

SRS N L N A
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If inverse sine quantization is replaced in Figure 6.1.17

by min E(ﬁtot) guantization of the k,'s, and E(Btot) is
fixed at 3.5 dB, there resultstigure 6.1.1%9a and b,
representing'quantized speech transmitted at a total bit
rate of 2750 bits/sec. It was not possible to discern any
difference in quaiity when compared to speech proeessed
using inverse sine quantization.

~Figure 6.1.20 then represents the sequence of steps
followed in min E(ﬁtot) quantization of the 8, 's. Figure_
6.1.21a and 6.1.21b and, Figure 6.1.22a and 6.1.22b re‘present
1 file aﬁd 14 file statistics results'respectively, using

METHOD I. At E(D ) = 3.5 dB, the total bit rate is 2539

tot
bits/sec and 2674 bi%s/sec respectively. Finally, in the case
of METHOb IT on the ei's, Figure 6.1.23a and 6.1.23b and,
Figure 6.1.24a and 6.1.24b are the results for pre-emphasis
quantization but no pitch and gain quantizetion,,end pitch.

and gain quantization, but no pre-emphasis quantizetioni
 respectively. The total bit rate of the guantized

parameters is in eachcase 2884, and 2934 bits/sec respectively,
at Etﬁtot) = 3.5 dB. Again the only major difference when
pitch and gain are quantized is.the repression of ﬁhe same
peaks as discussed earlier. The quality of speech produced
by min E(ﬁtot) quantization on the orthogonal parameters

is very comparable to that of reflection coefficient

quantization. If one method happens to perform bettexr than
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another in some portion of the-utterance, the other metﬁod

will be found to produce speech of>better quality in another
segment. Now, the following experiment was also carried out.
The errox signal‘of file M-1-3 was used- as input‘to the two-
multipliér'latticé synthesis structure. (The basic bleck
diagraonf the.prodedure is simpiy Figure 4.4.1); The error
signal is obtained by passing the nonpre—emphasized and unwindowed
version of the original file M-1-3 through the inverse

' filter A(z). The pre-emphasis factor and the reflection
coefficients being.already stored in a speech parameter-file,
it is only neéessary to épply a s£ep-up brocedure on the 

ki's in order to.obtain the filter coefficients of the-

inverse filter A(z). However, the’ki‘s used in the syntheéizef
are those from the quantized reflection cocefficient files.

This experiment then permits a subjective comparison of
proceésed speech files in which only the reflection
coefficiénts are varied. The important degradation due to
pitch extraction is thereforeveliminated. Figures 6.1.25-"
6.1.27 represent synthesized speech in which inverse éine

and min E(B) guantization of the reflection coefficients,

and min E(5)'quantization on the Qrthogonél parametérs was applied,
respectively. Subjectively speaking, all 3 files were almost

. indistinguishable from the original file M-1-3.
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However when the original utterances wefe processed, it was
found that, on the average, inverse sine quantization produces
speech of quality, close to that of the original, and better

" than that using min E(Btof) quantization on the Bi‘s, while
min E(Dtot) quantization on the k;'s results in the most
discernable degradation. It must be emphasized that for this
synthesizer with fhe error sighal as the driving function,

14 file statistics were used on all files including M-1-3.

File M-1-3 performs better than other files and this was first.
thought to be due to the fact that its statistics are-similar
to the statistics obtained using 14 files. for example,'file
M-1-4, whose performance.is the worst, has statistics less:
comparable with thé 14 file statistics (see Table 6.1.7).
However, tests using METHOD II with its statistics instead of
the usual 14 file statistics seem to indicate that the
statistics are not the major reason for the poor performahce

. since the latter does not improve at all under 1 file

statistics.
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CHAPTER VII: CONCLUSION

Using the E(ﬁtot) fidelity criterion, it has therefore
been verified that gsymptotic min E(ﬁtot) quantization of
the ki's results in a slightly lower bit rate than inverse
sine quantization, as is expected from the results of [12].
Next decorrelation of the ki's results in a total bit rate
‘which is also lower than that using inverse sine quantization

‘ _ tot)
quantization on the ki's. Recall from page 138, that the

but unfortunately, is higher than that using min E(D

difference Z/VEE~E; - Z/T; is not substantial for either 1
file or 14 file statistics. As can be seen from'Tablelﬁfl,B
énd Table 6.1.4, this is because the cross-correlation in
| the original covariance matrices is not pronounced. Now
as was already mentioned undei equal érea quantization
(Chapter V) a great percentage of speech consists of silence
'and unvoiced intervals. Also, from pége 102, section 5.3,
it is stéted that the frame to frame dependence of the ki's
is felt to be even more significant than the abové cross-—
correlation within a frame. Afterall, the variable frame rate
approaches of Makhoul (section 4.6) and Seneff (séction 5.3)
and the DPCM approach of Sambur all result in an average bit
rate of about 1500 bits/sec. Hence, if decorrelation is to
* be performed, it should be followed by variable frame rate

transmission and/or DPCM on the orthogonal parameters thenselves.
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As was shown in [18] this can further reduce the bit rate
in DPCM by about 500 bits/sec.

Notice that if the spectral deviation D is an adequate
representation of the hearing mechanism, then as discussed
previously a value Qf D in the range 3 tu 4dB is required
if a difference is to be perceived. As the gain quantization
is done independently, the distance measute D depends only
on the ki's. As the degradation due to.the use of_pitch
'in the construction of the driving function to the synthesizer
masks the differences in quality among the 3 reflection
coefficient quantization methods studied, it was decided in
the énd to use the error signal as driving function to the
"synthesizer. In Chapter V two fidelity criteria were

“introduced: the maximum spectral deviation bound, max (D

tot)

and the expected spectral deviation bound, E(D ). The

tot

E(D o t) criterion was then chosen for study. It 1is then
found that min E(D ) quantization on the 6.'s results in
speech quality sllghtly superior to that using min E(Dt t
guantization on the ki s. However the performance under these -
two methods is noticeébly worse than that under inverse sine
quantizatipn on the ki's.‘ In fact, the latter methud results
in speech quality fairly close to that of the originai |
utterance. But, from Chapter V, it is observed that inverse

sine quantization does not minimize the E(D ) criteria,

tot

but instead, minimizes the max (D ) criteria. The fact

tot
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that under the E(ﬁtot) criterion inverse sine quantization is.i
subjectively a bettexr schéme than min E(ﬁtot) quantization,
seems to suggest that, as far as the minimization of criteria
is concerned, the max (Btot) criterion is a better approximatibn
to some aspect of the hearing mechanism than the E(ﬁtoﬁ)
criterion.

For this error signal synthesis, the degradatioﬁ in
quality (which on the averagé is especially apparent when
using min E(Btot) gquantization on the ki's, shows itself
in the introduction of discontinuous dips and'peaks fairly
well distributed throughout the whole speech filg (see
Figures 6.1.28—6.1.31)ﬂ However, the difference in‘quality
‘between the Qriginal utterance and the unguantized linear
predicﬁion synthesized>utterance, is even greater. The reason
for this was discussed before: linear prediction is 6nly an
incomplete description of the speech production mechanism
and among other things, the actual pitch values for each frame
are not neceésarily extracted. It is possible that these
errors are larger than those resulting from quantizatidn kas
is‘the case here). The natural quality of the speech is also
degraded because of the difficulty in reproducing speech
when dealing with nasal and fricative sounds and, fast

transitions from one class of'souﬁds to another. Additional

problems also arise because of the use of a fixed frame

analysis.
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If the actuai hearing mechanism was underétood, then -
which parameters should be e#tracted from the speech ﬁaveform
and how they should be quantized would then be known. Only
further basic research intovspeech production and heaiing
mechanisms and the cdnstruction of efficient algorithms will
permit the reduétion.of the total bit rate by .a great factor

.and at no price in speech quality.
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Appendix A

‘ Sy (x)
It is required to show that u(x) =

gbsx(x) ax

minimizes max D(x,q(x))
axx<b

Proof: (from [15]1) = Transform coordinates to z = U(x).

Then, using (5.1.17)

q(x) U(q(x)) o U(g(x))

D(x,q(x)) = |/ s (Mar| = f "s,(z)dz = | Sy (¥)dz
x U(x) _ U(x) u(x)

Sy (x) _
Hence if u(x) = 5 then sZ(z) is a constant
| J7 sy () ax

a

sensitivity measure. The problem reduces to proving that a

constant'sz(z) minimizes max D iff z is uniformly gquantized.

Necessary condition: let sZ(z).= C, a constant.

‘Then if z is uniformly quantized into N levels, max D = %% .
However, if it is not uniformly guantized max D > é%v.
Consequently, if sZ(z) = C, then uniform quantization of 2z

is required.
‘Sufficient condition: let z be uniformly quantized.
"Then if sz(z) is not constant it 1s obvious that non uniform

quantization of z will decrease max D. Consequently if uniform
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gquantization of z is to be optimal, sz(z) must be constant.

Next, it is shown that the same choice of u(x) also minimizes
the entropy H for fixed E(D) in the asymptotic limit of

large N.

Proof:v (from [12])

Substituting (5.1.19) in (5.1.20) yields

s, (x) ' Dy (%)

= - D) + -E
H 1og4E (D) + logE ype log

u(x)

Recall from Chapter V, that the integral of u(x) over (a,b)

is normalized to 1. ©Now, using the following inequality

(stated in [12])

s, (x) s, (x)

. X | X
. log E > E log G

u(x) -

satisfied with equality iff

sx(x)

b
é. s, (1) dx

ulx) = Csy(x) =

vields
B sX(X)
- + _
H > -1og4E (D) E log px(x)

the lower bound being attained by the above choice of-u(x).



Appendix B
A1 m ar(ed% 2
~ To show that § = — | —=5—— | 48 (B-1)
. 21T -7 A(eJ )
(A',A')

is equivalent to
(a,R)

analysis filter.

Proof: (from [11]) |A'|2 is the inverse Fourier transform
of the autocorrelation ra'(n) of the sequence {ai'}. But

a; = 0 for i ¢ (0,M) which implies that ra‘(n) is zero for

In|>M. Let the autocorrelation of a/lA[z be p(n). (B-1)

can then be written as

1 M
yp == L xr_'"(n)p(n).
O ey @ )
But by the correlation matching of section 2.1, p(n) = r(n)-

for |n|{<M. Substituting this in the above summation, (B-1)

is seen to be equivalent to

<
|

_ 1 (m 38, 2 j6, (2 4o
o Iﬂ |A'(¢ y|7Iste )l 2m

Let E' ='A'S. Then by Parseval's theorem,

(o]

I [e'(n)]1?

n=-—co

<
It
Q|+

(A',AT")

= Liar
= a(A lA|) (A,A)

- 159

, Wwhere A is the linear prediction
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Note that (A',A') is greater than the minimum value o since

o = (A,A) is the error signal energy of the linear prediction

analysis.

Also recall from Chapter II that

i

(A(z),z 7)) =0 ~for | i=1,2,....,M.

Since A(z)-A'(z) does not contain z°, A(z) is orthogonal

to it and consequently

(A'~A+A,A'-A+A)

(A',A') =
= (A,A)-{-(A'—A,A'—A)‘
or
o = 1+ (B'-AA-R)

(A,Rn) !

Therefore, the right hand term in (5.3.11) can be written as

36, a(adB.yy12
1n [l + 511_; f'lT A(e ,)\+A}\)e A(e I)\) de]
- aed®;n
which is
. je, _ j0 2 _
- Aed¥;n)

in the limit of small AX.
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However consider

] 2
1 fﬂ 1n A(eJ?7A+AA) as (B-3)
2T o4 A(eje;l)
- A(eje;HM)—A(eje‘;)\) _ 'A‘A'('e‘je)
Let X = N = ———
19, je;k)

A(e” 7)) ' A(e

- then the integrand in (B-3) becomes

C1n|1+x|? = In[(L+x) (L+x*)]
= ln[l+2Rex+|x|2]
" 2Rex+|xT2 for small x.
However
v as U o aaed®Hared®n  as
- A(eje;k). 2m - lA(eJe;A)I2 2m
_ (a,A'-) .
(A,R)

Consequently (B-3) is approximately (B-2) and therefore

30, y |12 je, 2
1n jﬂ A(e” ;A+AA) |7d0 ]Wln A(e” ";A+AM) de

2o U aed® CLE a(ed®;n 2m
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for small AX. But notice that, after the gain contribution

is substracted, as was done for (5.3.11), distance measure

(5.1.2) with p=1 is

as

In 27 .

I'IT

A(el®;a4a0) |2
-

INCEASY!

It is similar to (B—3) except that the "absolute value of

the log term is taken before integrating. This is an additional

reason for preferring distance measure (5.1.2) to (5.1.5),

- because the absolute value prevents contributions with
|a(e?®;a+an) [<]aed®;n |

to cancel those with

1a(e3®nean) |> a0 |

as can happen in (B-3) [15].
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- Appendix C

It is desired to obtain bounds concerning spectral
deviations, for three different quantization schemes. The
optimum bit allocation procedure for these three methods
will then be discussed. It is first necessary to get a
bound on the overall spectral deviation when all parameters
are simultaneously quantized. Distance measure (5.1.2) will
be used throughout. From the triangle inquality (5.1.10),

it follows, inductively, that

i=1 = =
where El = A §T+l = A" and all,Ei are L-vectors with
components (Ei)j, j=1,2,...,L.. Let T+~ and Ei - Ei+l'
Expand D(Ei’_;+l) in a Taylor series about Ei,
L 3D(E,,&;,,) ((E; 1) 5= (E.) )
D(E, ,E.,4) ~ D(E,,E,) + 1 _ = 1% SESE U N
i’ 7i+l i° 71 . :
—_ = — = j=1 B(£i+l).
=3 g, o=t
i+l ~°i

Therefore replacing thesum over index i by an integral over a

continuous variable (é)j
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a(g) (c-1)
y

Defining Ay = (0,0,...,0,(A2)j,0,...,0) the integrand could

have been written as

lim D(E,y+Ay) ~-D(&,y)
(Az)j+0, (Az)j gt
' D(g,E+AE)
B l(zrg) ~+0 — = S(g . (8 from (5.1.11),
=3 &Ag)j =75 .

since only one parameter (_g_)j is varied by the definition of
a partial derivative. However the integrand is a function
of £ and in going from A to A", variations have not been

restricted to any particular subset of parameters. Therefore

choose a path

p— - — n é n " 1]
A ”(Kl,Kz,...,AL)—gl—+92-+...-+QL-+_L+1 = A" =(A ,Az,...,AL)

such that

in.l: ( ll 2’...,Am—lrkmllm“"l,.."}\L)

m=1,2,...,L+1
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and only km = (Qm)m varies in going from pt Qm to pt im+l'

Using this path,

D(L,A" < I S(p, (Dn)d(8),

where s (g) is written as s ((E) ) to emphasize the
, (é)m = (§)m ='m
fact that only the parameter (_g_)m varies in going from
Qm to 9m+l' As a result of this restriction, the definition

of D can now be used to obtain

D(A,A")< ilpﬁx ’Xz""xm—l'xm'xm+l’"'KL;Al'Am—l’Aﬁ'xm+1""'AL)'

(C~2)

The Aﬁ are to be interpreted as arbitrary but fixed quantized
values of km; Then choose the L parameters Am which will
maximize D(A,A"). Since (C-2) is true for any values of the

parameters Am

: L L
max - max =7 . max = .
D(A,A") < Z D( ; )< I D(¢ ;5 ¢ ..)
Aqhg oAy, TS ISA A e A m’ Sl m=111rAgr s erAy Tm’ Sl
L max = ' '
< I D(A v A reed  opd e iAo ke cd S A", L0A)
mel AprAgreeAp 1"%2 m-1""m’ " ""L" 172 m-1""m L
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Let Am be uniformly and finely quantized into Nm levels

(Am is an arbitrary transformation of a reflection coefficient

k ). Then
m

L . :
max D(A,A")< I = S (ki) (C-3)

Now consider the E D(A,A") where the average is over the

random variables A, , A <A Denote the pfobability of this

l, 2,-. L-

set of parameters by p(k 2""’AL)" This can be

rewritten as p(kl,lz,...kL/Am)p(Am). Hence

E D(A,A")< I ED(9,

m’ m+1 ) over

). First average D(¢_i¢ .,

=1

kl,kz‘...,AL for fixed Am. Since m-1 parameters are already

quantized in Qm’ integrating p(xl,kz...AL/xm)D(Qm;gm+l) over
any one of these m-1 parameters (say the jth one), yields

N

J n n n ‘, 1] "
z D(X Az,...Aj(n),...,Km...k P A

>\l|
4
n=1 1

2,...,13(n),...k%,...k )

Aj(n+l)
p(xl,lz,..,AL/Am)dkj

A.(n

3 )

where k (n) is the quantized value of the jth parameter if

that parameter lies in (Aj(n), Aj(n+l)). For fine guantization
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of all L parameters, replace gm and Qm+l' by (Xl,kz,...,
km_lxm,xm+l...,AL)_and (Al,xz...km_lxm,...AL)-respectlvely
and D can appear inside the integral in the above expression
which reduces then to:

lj _ . _ - o

J p(Alkz...AL/km)D(Al...Am...AL;Allz...km...kL)dAj

AL
—-J

further integrating this. over all parametersjki#m,,an average
denoted by Bh is obtained. Hence, for fine quantization,
| A (n+1)
N _
I L m o m. .

ED(A,A")< L ED = I 3 Py (A D, (A, Ar(n))dr
=1 m=1 n=1 . -
, A (1)

which by the preVious asymptotic result in the single parameter

case, edquals

>

L 1 m ESAm(Am)pAm(Am)
L e airx_ . {C-4)
m
N

uﬁ(lm)

4

where EsA (Am) is the average over all other parameters Ki
- .

#m’

A bound on the total spectral deviation must now be
- M

found when A(z) = I aiz_l is factored into a product of
i=0

quadratic polynomials and 2 parameter quantization is applied

on each of these polynomials. First, factor A(z) into ¢q



polynomials: AlAZ"'Aq' Denote the corresponding quantized

polynomial A'(z) by A'_Aé...A'. Substituting in (5.1.2)

1 q
yields (gain normalization o(A) = 1)
| q ‘ P 1/p
Dy = P (In—to - 1 25| 28
=1 |A.| |al|
] ]
L A .
Now by the Minkowski inequality [20]
n 1/p n 1/p n 1/p
)3 [xi+yi]p <l z Ixilp +H =z lyilp
i=1 i=1 : i=1
' q
This can be generalized if X, + Y; is replaced by I in
‘ j=1
to yield
n,;gq 1/p g | n 1/p
3 j L x. |P <t izoxlP)
i=115=1 4 j=1] i=1 I

Replacing the summation by an integral gives

1/p q 1/p
- l x. (t) |Pa < oz [}hx.(t)lp] (C-5)
j=1 J j=1 LJ

let dt = d9 and

Il =.Q

168
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if |M/2] = M/2, then q = |M/2] and eacthj_will be a

quadratic polynomial. _From (5.3.26), the jth term in (C-5)

becomes .
1-k, . |1/2
J Ny 1-k, .
2,7

If M/2 # |M/2], then therelis a leftover linear term 1 + alz—;.
Treating it as a linear prediction filter of order M=I, a single
'parameter analysis is applied since there is only one parameter,
namely ay - kl' Recall that a general filter A(z;A) is a-
linear function of each ki and therefore, using the recursion
formulae developed in Chapter II, A{z;\) = AMfl(Z)+kMBM—l(Z)'
But kM does not appear in any Am, Bm where m<M. As a result

dA _ _
gi—(z,x) = BM_l(z) so that
M
2 _ 2 _2 2 ,0A 3A
M M
- 2(Ak )2 2(Ak )2
M , M
=M SR . (Cc=7)
M-1 2
o l--kM

Therefore in the 2 parameter quantization scheme, [14]}, the

filter of order M=1 will contribute a term

172y 9Ky 3

2N Bkl l—kl

A

)
i

5 (C-8)
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There remains to determine the optimum allocation
of bits which minimizes the total bit rate B = I log N,
subject to equality constraints on the total bounds. Denoting
‘bounds (C-3) and (C-4) by max Diot and EDtot respegtlvely,
it is seen that their dependence on. the Ni's are both of

the form

T./Ni where Ti does not depend on Ni.r(C-Q)
This constraint problem is then solved by introducing a

Lagrangian multiplier'y and a function F defined by

ﬁ‘— +

(e

. T, M
F =Y
X i ,

log Ni
i

1 i=1

The solution is given by

OF i,
ON. 2 .
1 N. i

1 .

2|~

= 0 or Ti/Ni = 1/Yy a constant.

The value of this constant Y—l, after substituting in (C-9) is

maxDiot

found to be either i or EEﬁQL depending upon which

criterion is utilized. It is therefore seen that minimization
of total bit rate is achieved by setting all individual .
single parameter bounds to the same value.

If however, a parameter quantization is performed,
then the overall bound in (C—Sj.is used. The Lagrangian
multiplier solution of the constrained minimum is derived

-from using
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= v 9 ' -
Fo=vgS o+ y .§ =+ {1log N + ;E. log Ni} (C-10)
o i=]1 i o i=1

where the first term represents (C-8) in the case there is

a leftover term (M/2#|M/2]), the second term the bound (C¥5)

R T, g ,
with Di = -~ as defined by (C-6) and the third term in
VN3

brackets is the total bit rate. If M/2 = [M/2]vthen To is

set to 0 and N is set to 1 in order that logNO eQuals 0.

T
If T # 0, the solution to the leftover term is ﬁ9-= %-as
: : , ' o]
in the single parameter analysis.
For i =1,2,..., 1M/2]
o 1 i o1 oo 02
BNi 2 Ni3/2 . Ni /N'—l Y

Therefore, if TO#O, (denoting the overall bound on the right—

hand side of C-5 by Db),

1 M—-1 M

= —_ 4 1 = =

by Y Y oy Y

T D T, D

‘Therefore ﬁ9-= 3% and - = P
o /Ni M/2

if M/2 = M/2], then To = 0 and Db = (M/2)$

D

b
= ﬁ7§ as before.
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