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ABSTRACT 

This thesis presents a study of the theory of 

conventional and Fractional Tap Spacing Equalizers and 

outlines their relative benefits and drawbacks. Two special 

cases of Fractional Tap Spacing Equalizers are emphasized 

in this work: the T/2-Tap Spacing Equalizer and a new type 

of equalizer, called a Hybrid Transversal Equalizer, in which 

the tap spacing is either T or T/2 (where 1/T is the data 

source symbols rate). A mathematical analysis of these 

equalizers is carried out and some new results are derived. 

To support the mathematical analysis, a computer program was 

used to compare the performance of these models of equalizers 

and the results obtained are analysed. 



SOMMAI RE 

Cette thsse prEsente une Etude de la theorie des 

egaliseurs conventionels et ceux de perforations 2 espace 

fractionnel et aussi donne un apercu de leurs benifices et 

inconvgnients relatifs. Deux cas spgciaux des egaliseurs de 

perforations 2 espace fractional sont mis en relief dans ce 

travail: l'egaliseur TI2 - de perforation 5 espace 

fractionnel et un nouveau type dlEgaliseur, appelE llEgaliseur, 

3 hybride transversal, dans lequel l'2space de la perforation 

est soit T 06 TI2 (06 1/T est la vitesse des symboles de la 

source de donnges). Une analyse mathematique de ces egaliseurs 

est exgcutee et de nouveaux resultats sont derives. Pour 

supporter llanalyse mathematique, un programme d'ordinateur 

est employe pour comparer l~accomplissement de ces modsles 

d1Egaliseurs et les resultats obtenus sont analyses. 
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1. INTRODUCTION 

1.1 The Background and Goal of This Thesis 

In Bandlimited data transmissions systems the maximum 

useful signalling rate is equal to the system bandwidth. 

At this rate, degradation in system performance is caused 

by Intersymbol Interference, (ISI), as "tails" of the 

channel impulse response are superimposed in the receiver, 

due to previously sent symbols. The IS1 makes it more 

difficult for the detection section to decide which symbol 

was transmitted at each interval. 

The technique used to reduce the degrading influence 

of Intersymbol Interference is called Equalization. This 

name originates from a discovery made by Nyquist. Usually 

the signal is sampled in the receiver. Nyquist showed that 

if the Fourier Transform -- of the sampled system impulse response 

is a constant, IS1 is eliminated. Since the Fourier Transform 

of the sampled system impulse response is seldom constant, some 

sort of equalization of this function should be performed. 

Equalization is achieved by a device usually a part 

of the receiver, implemented as a Transversal Filter (TF). 

The TF is built of a tapped delay line and a summer. With 

each tap there is associated a gain. The outputs of the 

taps are fed to a summer. The output signal from the TF is 



t h e  s i g n a l  a t  t h e  o u t p u t  o f  t h e  summer. The o n l y  p a r a m e t e r s  

o f  t h e  TF t h a t  can be  o p t i m i z e d  , a r e  t h e  t a p  gains. .  S i n c e  ; 

t h e  sampl ing  p r o c e s s  t a k i n g  p l a c e  i n  t h e  r e c e i v e r  i s  a t  t h e  

symbol r a t e ,  e v e r y  T s e c o n d s ,  t h i s  was t h e  t a p  t i n e  s p a c i n g  

i n  e a r l y  i m p l e m e n t a t i o n s  o f  e q u a l i z e r s .  I n  r e c e n t  y e a r s  i t  

was found o u t  t h a t  f u r t h e r  improvement o f  per formance  c a n  

be o b t a i n e d  by i n c r e a s i n g  t h e  sys tem complex i ty  and making 

t h e  t ime  s p a c i n g  be tween t a p s  s m a l l e r ' t h a n  T .  Such e q u a l i z e r s  

a r e  r e f e r r e d  t o  a s  F r a c t i o n a l - T a p - S p a c i n g - E q u a l i z e r s .  

I n  t h i s  t h e s i s  a  g e n e r a l i z e d  e q u a l i z e r  model i n  which  

t a p  s p a c i n g s  a r e  a r b i t r a r y ,  i s  r e p r e s e n t e d .  Then, t h r e e  

s p e c i a l  c a s e s  a r e  examined i n  d e t a i l ,  namely t h e  c o n v e n t i o n a l  

T-Spaced, t h e  T/2-Spaced and a  Hybr id  T r a n s v e r s a l  E q u a l i z e r  

(kITE). The HTE i s  a  new t y p e  o f  e q u a l i z e r  t h a t  i s  b e i n g  

proposed h e r e .  The HTE combines f e a t u r e s  o f  t h e  T-Spaced 

and t h e  T/2-Spaced e q u a l i z e r .  

A s t u d y  o f  t h e s e  t h r e e  i m p o r t a n t  c o n f i g u r a t i o n s  i s  

c a r r i e d  o u t  h e r e  a s  f o l l o w s .  I n  Chap te r  2 a  baseband d a t a  

t r a n s m i s s i o n  sys tem i s  d e s c r i b e d .  The s r o b l e m  of IS1 i s  

d i s c u s s e d ,  and it i s  shown how e q u a l i z a t i o n  can  m i t i g a t e  i t s  

e f f e c t .  Chap te r  3 d e a l s  w i t h  t h e  t o p i c  of  o p t i m a l  (minimum 

mean s q u a r e  e r r o r )  e q u a l i z a t i o n .  Chap te r  4 d i s c u s s e s  t h e  

impor tan t  f e a t u r e s  o f  t h e  c o n v e n t i o n a l  T-Spaced E q u a l i z e r .  



Chapter 5 deals with the ?roperties of a T/2-Spaced Equalizer 

and compares them to those of the T-Spaced Equalizer. 

Next, in Chapter 6 the model of a Hybrid Transversal 

Equalizer is presen~ed and analysed. In Chapter 7, a 

computer program is used to compare the three types of 

equalizers, and the results obtained are analysed. It turns 

out that the T/2-Spaced Equalizer is better than a T-Spaced 

Equalizer which spans the same time interval. However, the 

HTE which spans this time interval but with fewer taps may 

have satisfactory performance between that of a T/2-S?aced 

Equalizer and that of a T-Spaced Equalizer. Moreover, in 

cases where a longer time span is desired a Hybrid Type 

Equalizer is superior to a pure T/2-Spaced Equalizer with 

the same number of taps which spans a shorter time interval. 

The figure of merit for all comparisons is the minimum mean 

square error. Chapter 8 is a brief study of the subject of 

Partial Response Signalling (PM) and Fractional Tap Spacing 

Equalization. The question posed is whether PRS or correlated 

levels signalling improves the performance of systems which 

employ fractional tap spacing equalizers. The conclusion 

is that PRS or correlated levels signalling do not have such 

a desired property. 



1 . 2  P r e v i o u s  Work _ . 
E x t e n s i v e  m a t e r i a l  a b o u t  T-Space E q u a l i z a t i o n  ( t h e o r y  

and  i m p l e m e n t a t i o n )  i s  found  i n  r e f e r e n c e s  [ l ]  t h r o u g h  [ 7 ]  

and  i n  [ l l ] ,  [ 1 4 ] ,  1 1 5 1 .  S e l e c t e d  m a t e r i a l  a b o u t  T-Spaced  

E q u a l i z e r s  wh ich  i s  r e l e v a n t  t o  t h e  t h e s i s  i s  i n c l u d e d  i n  

C h a p t e r  2 .  

The f i r s t  p a p e r  p u b l i s h e d  a b o u t  F r a c t i o n a l  Tap S p a c i n g  

E q u a l i z e r s  i s  1 8 1 .  The a n a l y s i s  c a r r i e d  o u t  i n  [ 8 ]  and  i n  t h i s  

t h e s i s  do n o t  f o l l o w  t h e  same m a t h e m a t i c a l  l i n e s .  A p a p e r  which 

" i n s p i r e d "  t h i s  work i s  191.  Al though  w r i t t e n  i n  a  v e r y  c o n c i s e  

manner ,  i t  i s  r i c h  i n  s u b s t a n c e .  In  t h i s  work,among o t h e r  t h i n g s  

we b r i n g  t h e  m a t h e m a t i c a l  background and d e r i v a t i o n s  o m i t t e d  

from 1 9 3 .  



2. BASEBAND DATA TRANSMISSION SYSTZM 

2.1 The Structure of a Data Transmission Svsten 

A baseband data transmission system is shown in 

Figure 2-1. It ,consists of three basic subsystems: 

the transmitter, the channel and the receiver. The 

transmitter itself has two parts: the data source that 

emits a symbol every T seconds into a bandlimited filter 

whose impulse response is hT(t). The signal at the output 

of the transmitter, given by: 

is fed into the channel. The channel is modelled here by a 

filter with impulse response hc(t). At the output of hc(t), 

randomnoisen (t) is added to the signal. The signal at the R 

output of the channel is: 

The third part of the system is the receiver. It has three 

basic components: an input filter hR(t), a sampler, and a 

decision unit. 

The signal at the output of hR(t) is given by 

where: 

and : 

s (t) = EaihT(t-iT) *hc(t) *hR(t) 
i 
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By defining h(t) as the overall impulse response of the 

system one can write the signal before the sampler as: 

where: 

The samples at the input to the decision unit are: 

where T is the samyler time offset with respect to the data 

source. The decision unit accepts the samples given by 

Eq. (2-4), and every T seconds emits a symbol Pi which is 

an estimate of ai, where both ai and gi usuallybelong to 

the same alphabet. 

For given transmitter and channel one may seek to 

optimize the receiver operation (which is estimating a.). 
1 

Usually the receiver is optimized so as to improve a system 

performance index (such as probability of error, output 

signal-to-noise ratio or mean square error). The optimization 

itself involves the design of h (t) and the decision unit R 

in the receiver. 

The additive noise that corrupts the signal in the 

channel can cause errors in thedetection. Another source of 

degradation is the intersymbol interference (ISI), the nature 

of which is explained in the next section. 



2.2 Intersymbol Interference 

Eq. (2-4) can be written as: 

where : 

A nk = n(kT+-r) 

If we define the present input symbol to have the subscript 

k we can write: 

One notes that in each sample xk there are three components. 

The only desired one is akho; nk is a noise sample and the 

sum E aihk-i is a disturbance originating from past and 
i$k 

future samples of h(t). This disturbance is referred to as 

intersymbol interference (ISI). 
L 

It is quite easy to derive the Nyquist criterion for 

the elimination of ISI. Basically, an overall impulse response 

h(t) is desired, such that: 



If this is true for some h(t) , then: 

where 6(*) is a delta function. But C d(t-iT) is a periodic 
i 

function, thus it has a Fourier series representation, 

namely: 

1 j2llti/T Cd(t-iT) = - Ce 
i i 

Using this fact, we can write: 

If we take the Fourier transform of both sides we arrive at: 

The sum CH(~-i) is a periodic function of f and its T 
1 period is - The first period is called the Nyquist T' 

L 

equivalent of H ( f )  and is designated as: 

The conclusion drawn from Eq. (2-6) is that for elimination 

of ISI, Heq(f) should be flat. 

This is the Nyquist criterion for IS1 cancellation. If 

h(t) satisfies Eq. (2-6) then at each sampling instant all 

hi's are zero except ho and there is no ISI. 



For a given transmitter and channel there is a 

result due to Ericson ti81 which specifies HR(f) in terms 

of the system parameters. This ilR(t) performs at least 

as well as any other filter. 

2.3 Ericsonls Result 

Given hT(t), hc(t) and the noise nR(t) power spectrum, 

SnR(f) 

If: 

then: 

G (f-i/~) 
C 

C 1 #O for If1 ern 
i ~ n ~ ( f - ~ / ~ )  

and 2(t) is periodic with period 1/T. HR(f) is the receiver 

input filter. This filter performs at least as well as any 

other linear filter with respect to any reasonable criterion. 

A reasonable criterion is a criterion according to which the 

performance index does not improve when signal to noise ratio 

is decreased. 

z(f) is a periodic frequency response, thus, in the 

time domain it can be' represented by an infinite analog 

transversal filter. (See Figure 2-2). 





G * ( f ) / S n R ( f )  i s  t h e  f r e q u e n c y  r e s p o n s e  o f  a  f i l t e r  
C 

m a t c h e d t o t h e  s i g n a l  i n  i t s  inpu t .  F i g u r e  (2-3) d e p i c t s  

t h e  r e c e i v e r  based  on E r i c s o n ' s  r e s u l t .  

The f o l l o w i n g ,  i n t e r p r e t a t i o n  o f  E r i c s o n ' s  

r e s u l t ;  t h e  matched f i l t e r  maximizes t h e  s i g n a l  t o  n o i s e  
2, 

r a t i o  i n  t h e  d e c i s i o n  i n s t a n t s  w h i l e  G ( f ) ,  t h e  t r a n s v e r s a l  

f i l t e r  (TF) ,  minimizes  t h e  I S 1  t h a t  s t i l l  c o r r u p t s  t h e  s i g n a l  

i n  i t s  i n p u t .  

The above scheme f o r  a  r e c e i v e r  i s  i m p r a c t i c a l  f o r  

two r e a s o n s :  

1. The r e a l i z a t i o n  g e n e r a l l y  c a l l s  f o r  an  i n f i n i t e  TF 

which i m p l i e s  an i n f i n i t e  memory. 

2 .  The r e a l i z a t i o n  of  a  matched f i l t e r  i s  i m p r a c t i c a l  

b e c a u s e  t h e  channe l  i s  u s u a l l y  unknown o r  i t  s l o w l y  

changes  w i t h  t i m e .  

The compromise i s  t o  r e a l i z e  a  s i m p l e  low-pass f i l t e r  

f o l l o w e d  by a  f i n i t e  TF. A p r o p e r  d e s i g n  o f  t h e  g a i n s  o f  

t h e  t a p s  o f  t h e  TF w i l l  r e s u l t  i n  a  s u b o p t i m a l  r e a l i z a b l e  

r e c e i v e r .  Befo re  we d i s c u s s  t h e  problem o f  c h o o s i n g  a  

c r i t e r i o n  f o r  o p t i m a l i t y  we n o t e  two p o i n t s :  (1 )  I n s t e a d  

o f  u s i n g  an  a n a l o g  TF we c a n  p u t  t h e  sample r  i n  F i g u r e  (2-3) 

a f t e r  t h e  matched f i l t e r  and u s e  a  d i g i t a l  t r a n s v e r s a l  

f i l t e r  which can  be  implemented more e a s i l y .  ( 2 )  The TF 





can be used to minimize the IS1 by forcing the overall 

response H(f) to obey Eq. ( 2 - 6 ) ,  namely, it causes the 

Nyquist equivalent channel Heq(f) to be flat. For this 

reason the TF is called an equalizer. Fig. (2-4) shows 

the modified suboptimal receiver, realized with a digital 

equalizer. 

2.4 A Criterion for Optimal Receiver Design 

Let Pe be the probability of error at the decision 

unit output. One would wish to design the receiver so as 

to minimize the probability of error, Pe. If Pe is chosen 

as the design optimality criterion the probability density 

function of the IS1 which depends on the specific source 

and channel must be known. Usually this function is 

unknown in the receiver, thus, the use of this criterion is 

very often impractical. A criterion which does not depend 

on a prior knowledge of the statistical nature of the ISI, 

but relates easily to input signal-to-noise ratio, and takes 

into consideration both additive noise and IS1 is the mean 

square error. Under this criterion the receiver design is 

carried out so as to minimize the mean square error between 

the receiver and source outputs. 
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3.  OPTIMAL MINIMUM MEAN SQUARE ERROR EQUALIZATION 

3.1  The O p t i m i z a t i o n  Problem 

A s  men t ioned  i n  S e c t i o n  2 . 4  t h e  e q u a l i z a t i o n  i s  

a c h i e v e d  by f i n d i n g  a  s e t  o f  g a i n s  f o r  t h e  t a p s  o f  

t h e  e q u a l i z e r .  These g a i n  v a r i a b l e s  can  be  p u t  i n  a  

v e c t o r  

where C i s  t h e  g a i n  o f  t h e  l e f t m o s t  ( s e e  F i g u r e  3-1) t a p  - N 1 
I 

Co i s  t h e  g a i n  o f  t h e  r e f e r e n c e  t a p  and CN i s  t h e  g a i n  of  - 
L (+ I  t h e  r i g h t m o s t  t a p .  The t o t a l  number o f  t a p s  i s  N = N l + N Z + l  . 

These g a i n s  a r e  chosen  s o  a s  t o  min imize  t h e  mean s q u a r e  

e r r o r  between t h e  o u t p u t  o f  t h e  d a t a  s o u r c e  and o u t p u t  o f  

t h e  d e c i s i o n  u n i t  i n  t h e  r e c e i v e r .  I n  t h e  n e x t  s e c t i o n  t h i s  

o p t i m i z a t i o n . p r o b 1 e m  i s  s o l v e d  f o r  a  g e n e r a l i z e d  t y p e  o f  

e q u a l i z e r  i n  which  t h e  s p a c i n g  be tween t h e  t a p s  i s  a r b i t r a r y ,  

T s o  t h a t  t h e  T-spaced,  T s p a c e d ,  and ~ y b r i d  T r a n s v e r s a l  

E q u a l i z e r s  ment ioned i n  t h e  i n t r o d u c t i o n ,  a r e  j u s t  s p e c i a l  

c a s e s  o f  t h i s  g e n e r a l i z e d  model.  

( t )  N1 and N 2  may e i t h e r  be  f i n i t e  o r  i n f i n i t e .  



3.2 The Optimal Generalized Equalizer 

In Figure 3-1 a generalized equalizer is shown, in 

which the spacing between the taps is arbitrary. Assume, 

for the sake of mathematical ease, that the equalizer is 

an analog. device (a tapped delay line) and the 'signal at 

its input is a continuous one given by Eq. (2-2): 

x(t) = 1 aih(t-iT) + n(t) (3-1) 
i 

If we assume that the spacing between the taps on the delay 

line is arbitrary, then, the output of the equalizer is 

given by: 

where the D is the normalized delay associated with the 
j 

jth tap on the equalizer's delay line. The kth sample 

of y(t) as received in the output of the sampler that 

follows the equalizer (samples at rate of 1/T) is given by: 

where T is the constant time offset of the sampler with 

respect to the data source clock. 

In vector notation: 

where: - C is the vector of the taps1 gains; 





Let the desired overall response of the system be 

f(t). If d(t) is the desired output of the equalizer 

and f(t) is the desired response of the system, then: 

d(t) = f (t) * X ai6(t-iT) = L aif(T-iT) 
i i 

The desired output samples are given by: 

A A T dk = d(kT) = 1 aif(kT-iT) = a.. f 
i - -k 

and 
A f = C . .  . . f C (k-1) TI, f (kT) , f [  (k+l)T] . . . I T -k 

The error is defined as: 

A 
. ek = yk-dL 

The mean square error is: 

where the expectation is over the sample space of x -k ' 

Figure 3-2 shows a block diagram for the generation of ek. 

It is shown in Appendix A . 1  that the vector - C which minimizes 

L 1 ekl is given by: - 

where: A is an N x N (pssitive definite) channel autocovariance 

matrix whose elements are given by: 

(t) * Superscript means complex conjugate. 

A! 1 signals and parameters of the equalizer are complex 
qu~ntities as QAM modulation technique, often used for 
transmission calls for this convention. (See CLyon, 1 5 1 )  





and - a is a vector whose elements are given by: 

By substituting the expression for x (kT-DiT+r), 

namely: 

x(kT-D. Ttr) = 6 a.h(kT-DiTtr-jT) t n(kT-DiT+r) 
1 

j 3 

into E q .  (3-6) and E q .  (3-7) we get (see App. A.11) 

@aa(*) is the data source autocovariance function 

( is the noise autocovariance function 

f(-) is the desired overall impulse response. 

For the conventional case, where Di = i, a white data 

source, white noise with powers a2 and a: respectively, we 
a 

get: 



Eq. (3-10) can be rewritten as: 

This form emphasizes the fact that, in this case, the A 

matrix is a Toeplitz matrix (t) (see [Gray, 101 and 

CGantmacher, 131). In general when Di # i A is not 

Toeplitz. 

i A more general case is the one in which Di = - n ' 
namely, the taps are uniformly spaced; n taps on each 

interval of T sec. Such a case of importance to us is the 

one in which n = 2. If we use the transform relation 

to express the samples of h(t) in Eq. (3-8) and Eq. (3-9) 

it can be shown that Eq. (3-8) can be rewritten as 

(see App. A.111); 

where : (f) 2 ~@(m)e - j  2YfmT (3-13) 
'aa m 

(t) A Toeplitz matrix is a matrix in which the a 
element depends on (i-j) only. i ,j 



and : 

For, the conventional case discussed earlier: 

(3-15) 
where Heq(f) is the Nyquist equivalent channel defined 

earlier (for T=O) as: 

- .  

By using Eq. (3-9) and the Fourier transform relation of 

h(t) and d(t) one can show that for the conventional case: 

where Feq(f) is the Nyquist equivalent of the desired 

overall response. 

( t )  6k,1 is the Kroneker delta. function. 





i By using Eq. (3-9) with Di = and the transform relations 

for f(t) and h(t) it can be shown that the elements of 

the - a vector are given by: 

- 1/2T 

for k even. (3-18) 

for k odd. (3-19) 

In the next two chapters the properties of T-spaced and 

T/2-spaced equalizers are discussed in detail. 



4. IMPLEMENTATION AND PROPERTIES OF A T-SPACED EQUALIZER 

4.1 An Iterative Method for Equalization 

In Section 2.4 it was mentioned that equalizers are 

implemented at the receiver end as decision directed 

adaptive devices. In this section w.e discuss briefly 

the theory of Iterative-Adaptive-Equalization and show 

how such an equalizer is implemented. ~. 
In order to equalize a given channel, Eq. (3-5) must 

be solved for - Copt. The solution of Eq. (3-5) involves 

the inversion of the NxN A matrix, where N may be quite 

large (a typical number may range between 32 to 64). 

Fortunately, there is an iterative method to solve Eq. (3-5) 
.- 

(see CProakis, 11, [Ungerboeck, 61) . 
We look for a vector - Copt that minimizes 1 e 1 '. This 

vector can be found iteratively by: 

D is a matrix whose elements are given by: 

It can be easily verified that (see App. A.1). 



I f  i n s t e a d  o f  comput ing  D we t a k e  a  c o n s t a n t  a / 2 ,  which i s  

c a l l e d  t h e  i t e r a t i o n  s t e p ,  we g e t  a  s i m p l i f i e d  i t e r a t i v e  

fo rmula :  

We s h a l l  p rove  t h e  f o l l o w i n g  theorem;  
. . 

Theorem: Let  A b e  a  p o s i t i v e  d e f i n i t e  m a t r i x ,  t h e n  it i s  

p o s s i b l e  t o  choose  a  s o  t h a t  

i l i m C  = Copt - - 

P r o o f :  

T R e c a l l  t h a t  f o r  A p o s i t i v e  d e f i n i t e ,  we have - u  Au>O - 

f o r  any v e c t o r  u ,  and t h e  e i g e n v a l u e s  o f  A a r e  a l l  p o s i t i v e .  - 
I f  we s u b t r a c t :  Copt f rom b o t h  s i d e s  o f  E q .  (4-4)  we g e t :  - 

A I 

Def ine :  B = I - a A  

Note: I f  a i  = Z Ai b t h e n  by S c h w a r t z ' s  i n e q u a l i t y  we g e t :  
j , J  J 

On b o t h  s i d e s  o f  E q .  ( 4 - 6 )  we i d e n t i f y  t h e  f o l l o w i n g  norms: 



With t h e s e  n o t a t i o n s  a t  hand we c o n c l u d e  from Eq. ( 4 - 5 )  

t h a t :  

T h i s  means t h a t  i n  e a c h  i t e r a t i o n  t h e  e r r o r  v e c t o r  g e t s  

s m a l l e r .  Now we make u s e  o f  a n o t h e r  norm d e f i n i t i o n  f o r  

B ,  which i s :  

where:  { A B }  i s  t h e  s e t  o f  e i g e n v a l u e s  o f  B .  

By u s i n g  t h e  l a s t  d e f i n i t i o n  i n  E q .  ( 4 - 7 )  one g e t s :  

I f  X < 1 t h e  s o l u t i o n  o f  t h i s  i n e q u a l i t y  i s  

X can be made s m a l l e r  t h a n  1 by p r o p e r l y  c h o o s i n g  t h e  

p a r a m e t e r  a .  

I t  i s  q u i t e  o b v i o u s  t h a t  A B  = 1 - a l A ,  t h u s  

By choos ing:  a  = 
2 
+ X  > 0 

X~ min Amax 



C o n c l u s i o n s :  

1. a  can be chosen s o  a s  t o  e n s u r e  t h a t  

l i m  I I ~ ~ I I  = O  

i - t w  

2 .  I t  can  be shown t h a t  t h i s  c h o i c e  of  a  b r i n g s  

abou t  t h e  t i g h t e s t  bound on convergence  o f  

ci t o  Copt ( s e e  [ ~ e r s h o , . . l 4 1 )  a n d  t h a t  f a s t e s t  - - 

convergence  t a k e s  p l a c e  ... 
3 .  A s m a l l e r  s p r e a d  o f  t h e  e i g e n v a l u e s  r e s u l t s  i n  

f a s t e r  convergence .  

The f o l l o w i n g  i s  a  b r i e f  d e s c r i p t i o n  o f  a n  e q u a l i z e r  model 

i n  which  t h e  i t e r a t i v e  s o l u t i o n  o f  Eq. (2-5)  i s  p r a c t i c a l l y  

implemented.  I n  Sec.  (4-1) we saw t h a t  - c ~ ' ~ < ~ - ~ P ~ ~  - 1 e  12 

where : 

Thus,  by E q .  (4 -3 )  , j  and by assuming x ( t  ) is r e a l  we g e t :  

T 
We n o t e  t h a t  - - ci i s  t h e  k 1 t h  o u t p u t  o f  t h e  sys tem d u r i n g  

t h e  i ' t h  u p d a t i n g  cyc le  o f  t h e  t a p s ,  and t h a t  dk i s  t h e  

T Ci d e s i r e d  o u t p u t ,  t h u s ,  x - dk is t h e  e r r o r ,  and we c a n  -k - 

w r i t e :  



where each componert of V C i  ]el2 can be written as: 

i If we could calculate Cek Xkl in the receiver it would 

a e 1-11 . Unfortunately the receiver yield an optimal value for a C J  
I 

does not have the knowledge about the .. . statistics of ei xk and 
- 

x thus, it uses an unbiased estimate of this -mean namely: ei -k 
in practice the updating procedure is carried out according to: 

Figure 4-1 shows an automatic adaptive equalizer. Extensive 

material about the implementation problems is found in the 

references. 

In the light of Eq. (4-8) Figure 4-1 is quite clear. 

The only part that deserves a few words of explanation is 

the swi,tch.. At the beginning of a transmission, the 

probability of error in the receiver is assumed to be high, 

thus a fixed sequence of symbols, known to the receiver is 

used to sound the system after carrier synchronization has 

been established. This symbol sequence is locally generated 

in the receiver and used to generate ei. During this period 

the switch is on position "a" . After a while, probability of 

error reduces drastically and a decision directed node is 

established by changing the position to "b" automatically. 
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4.2 On the Eigenvalues of the Autocovariance Matrix 

We begin this section by stating and proving the 

following theorem: 

Theorem: The eigenvalues of the system;. autocovariance 

matrix a re  bounded by the maximum value (M) and 

2 2 the minimum value (m) of I Heq(f)  1' ; (oa = 1) . 
< .  

Proof: Assume that hA is an eigenvalue of A, and that 

u is its corresponding eigenvector. - 

By definition: A = 5; L~ I' 

Note that: 

Using the definition of A 

we g e t :  

Define: T q k = X U  -k- 

Thus : 

I f  Q ( f )  is the Z-transform of {q  1 computed around the unit 
k 

circle in the Z-plane then: 

where as before: A Xeq(f) = ZX(~++) 
i 

(t) H superscript means conjugate - transpose operator. 



By using Eq. (2-2) and Parse-:dl's theorem in Eq. (4-9), we get: 

1 1 
27 

/ q k 2  = o2 a - /  lIJ(f)~eq(f) I 2df = AA J~~' l~(f) 1 2df 
1 -- -- 
2T 2T 

But it was given that: mgHeq(f) 1 2 ~ M ,  

thus, we arrive at the following result: 

We may conclude that the larger the spread of the eigenvalues, 

the farther the channel's Nyquist equivalent response is from 

being flat. As was mentioned in Sec. 4.1 this fact implies 

longer convergence time of the taps in the iterative model 

previously discussed. 

Next, we find expressions for the eigenvalues and 

eigenvectors of the autocovariance matrix of a model 

employing an infinite T-spaced equalizer. 

We previously got that CEq.(3-15)l 
1 

We note again that A is Toeplitz. For a general row, s, of 

A, we write: (for o;=0) 
1 



Thus,  t h e  v e c t o r  whose components a r e  Ce j 2 7 f s T l  is an 

e i g e n v e c t o r  o f  A and 

i s  i t s  c o r r e s p o n d i n g  e i g e n v a l u e .  

The above r e s u l t  i s  somewhat obv ious  once  one r e g a r d s  

a n  i n f i n i t e  T o e p l i t z  m a t r i x  a s  a  c i r c u l a n t  m a t r i x  i n  t h e  

l i m i t i n g  c a s e ,  and u s e s  t h e  f a c t  t h a t  t h e  e i g e n v a l u e s  of  a 

c i r c u l a n t  m a t r i x  a r e  g i v e n  by t h e  D i s c r e t e  F o u r i e r  Transform 

(D.F.T.) o f  i t s  raws ,  [Gray ,  1 0 1 ,  [Noble,  161.  

4 .3  The ~ r e q u e n c ~ ' ~ e s ~ o n s e  o f  a  T-Spaced E q u a l i z e r  

I n  Sec .  3.2 i t  was shown t h a t  t h e  o p t i m a l  t a p s '  g a i n s  

L 
{Ci}i=-N a r e  g i v e n  by 

1 

S t a r t i n g  from t h i s  e q u a t i o n  we c a n  w r i t e  a n o t h e r  e q u a t i o n .  

By s u b s t i t u t i n g  Eq. (3-15)  f o r  A 
k , l  

and E q .  (3-16) f o r  a k ,  

i n t o  E q .  ( 4 - l l ) ,  one c a n  show t h a t  t h e  f i r s t  p e r i o d  o f  t h e  

p e r i o d i c  f r e q u e n c y  r e s p o n s e ,  o f  an  i n f i n i t e  T-Spaced 



e q u a l i z e r  i s  g i v e n  by 

I n  t h e  n o i s e l e s s  c a s e  E q ; :  '(4-12.) s i m p l i f i e s  t o  

F e q ( f )  j27f.r  1 
C ( f )  = ..-.e j Ifkn (4-13) 

Heq ( f )  
We s e e  t h a t  any z e r o  o f  H ( f )  w i t h i n  t h e  Nyquis t  

e q  
r a n g e  i s  a  p o l e  o f  C ( f ) .  

Note t h a t  a l t h o u g h  H ( f )  may have no z e r o e s  ( o r - n e a r -  

Heq( f )  may have  z e r o e s  b e c a u s e  of  t h e  z e r o e s )  i n  1 f  15 2T, 

i j 2 7 i r l T  
s u p e r p o s i t i o n  o f  t e r m s  such  a s  H(f+T) e  i n  H ( f ) .  

eq 
I n  c a s e  d i p s  a r e  i n t r o d u c e d  i n t o  Heq( f )  by a  c e r t a i n  

c h o i c e  o f  T ,  C ( f )  t e n d s  t o  be  v e r y  l a r g e  and huge v a l u e s  f o r  

C i t s  may be  r e q u i r e d ,  which a r e  d i f f i c u l t  t o  implement.  

Large v a l u e s  f o r  t a p s 1  g a i n s  may a l s o  c a u s e  s e v e r e  n o i s e  

enhancement i n  c e r t a i n  f r e q u e n c i e s ,  i n c r e a s i n g  p r o b a b i l i t y  

o f  e r r o r  i n  t h e  sys tem.  

I n  o r d e r  t o  overcome t ,he problem o f  sampl ing  phase  

dependence o f  t h e  s y s t e m ' s  per formance  t h e r e  s h o u l d  be some 

form o f  s a m p l i n g  p h a s e  c o n t r o l  which c h o o s e s  a  good sampl ing  

phase  i n  t h e  r e c e i v e r  and o n l y  h e u r i s t i c  methods a r e  a v a i l -  

a b l e  i n  p r a c t i c e  t o  do i t  [ Q u r e s h i ,  111. 



4 . 4  The Minimum Mean Square  E r r o r  o f  an I n f i n i t e  
T - S ~ a c e d  E a u a l i z e r  

The minimum mean s q u a r e  e r r o r  o f  an e q u a l i z e r  i s  

d e f i n e d  by Eq.(3-4) and i s  g iven i n  App. A.I .  a s :  

H = a . ~ . a - ~ ~ - c  ' l e 1 2 m i n  - 
- 

- - = C C a ? a . f * f  - 
I J 1 j  $ aiCi o p t  (4-14) +'Pt j i 

where: G = {Gi . )  and G = f * f  
23 i A 1 j  

. . The f i r s t  t e r m  can  be e x p r e s s e d  a s  

1 / 2 ~  
H a  - 6 . a  = 11 1 ~ e q ( i )  I 2 ~ a a ( f ) d f  - - T (4-15) 

- 1 / 2 T  
I 

The second  t e r m  can be  e x p r e s s e d  a s  
(4-16) 

* / 1'2T H e g ( i ) * i e q ( f ) * e  - j  27 f-r+ amCopt = - - - T a a  ( f )  c ( f > d f  
- 1 / 2 T  

By s u b t r a c t i n g  E q .  (4-16) from Eq. (4-153--we .a,].-rive a t :  

Eq. (4-17) shows t h a t  f o r  a  n o i s e l e s s  c a s e  an i n f i n i t e  

optimum e q u a l i z e r  g i v e s  z e r o  mean s q u a r e  e r r o r .  One can 

a l s o  s e e  t h a t  once t h e r e  i s  n o i s e  i n  t h e  c h a n n e l ,  i t s  

s i g n i f i c a n c e  i s  h i g h l y  dependent  on T - t h e  sampl ing  phase  

which i s  h i d d e n  i n  I H  ( f ) I 2 .  For some v a l u e s  o f  T a  
eq 

n u l l  o r  n e a r - n u l l  may be i n t r o d u c e d  i n  Heq( f )  w i t h i n  t h e  

Nyquis t  r a n g e  a t  some f r e q u e n c i e s  and by E q .  (4-17) t h i s  



may cause a larger value for the integrand and thus a larger 

minimum mean square error. 

4.5 The Analysis of a finite T-Spaced Equalizer with 
Periodic Data Source 

The previous sections dealt with the general case of 

an infinite T-Spaced equalizer. We were unable to get a 

useful closed form expression for the finite equalizer \. 

frequency response. However, it is possible to derive 

useful results if the data is assumed to be a periodic 

sequence with autocorrelation function (aa(m) , given by: 

T for m = kN k = 0,+1,+2, ... 
(4-18) 

0 otherwise 

where NT is the time span of the equalizer. 

It would be expected that the results to be derived 

here will coincide with those derived for the infinite 

equalizer if the period of the data is large. Short 

periodic sequences are used for pseu-do-random channel 

sounding, i.e. periodic sequences are used to sound the 

channel frequency response at N dense discrete frequencies 

since the spectrum of the sequence consists of equally 

spaced, equal height spectral lincs Cb.luller, 31. 

For such periodic input it is possible to show 

(using Eq. (3-15), Eq. (3-16)) that: 



where the number of taps is N = 2Nl+l , (N1 = N2) 

By constructing the equation 

and substituting equations Eq. (4-19) and Eq. (4-20) into 

Eq. (4-21) one arrives at the following result, giving the 

taps weights : 

This result shows that the frequency response of a 

finite equalizer with periodic input is completely determined 

by N equally spaced samples of the response of the infinite 

equalizer given by Eq. (4-12). 

It can be shown, following the same development as 

in Sec. 4.2 that the N eigenvalues of the system are given 

by: (O;=O) 

This result shows that the eigenvalues depend on T 



s i n c e  H ( f )  depends on T . Thi s  T-dependency may cause  a 
e q  

l a r g e  sp read  i n  t h e  e i g e n v a l u e s  and a s  a r e s u l t  a l a rge  

convergence t ime  f o r  t h e  a d a p t i v e  i t e r a t i v e  s t r u c t u r e  

d i s c u s s e d  i n  Chapter  2 .  



5. PROPERTIES OF A T/2-SPACED EQUALIZER 

5.1 The Frequency Response of an Infinite T/2-Equalizer 

The basic equation that governs the equalizer is 

Ac - = - a where the elements of A and - u are given by Eq. ( 3 - 1 7 ) ,  

Eq. (3-18) and Eq. (3-19). 

In order to derive an expression for the frequency 

response of an infinite T/2 equalizer, we make the following 

definitions: 
OD 

Let { ~ ~ l ~ = - ~  represent the gains of an infinite 
OD 

T-Spaced Equalizer, and let {dkIk=-_ be the gains of 

kfo 

additional taps inserted in between the previous taps as 

shown in Fig. 5-1. By definition, the frequency response of 

this equalizer is given by: 

where: 

and : 

& 
We also write down the following two equations: 

L L Ak,lcle -j27XkT/2 d e - j  2llXk'C/2- L a  e -j2llhkT/2- . . 

k 1 Ak,l 1 k k  (5-1) 
even even evgn & even 





I f w e  i n s e r t  i n t o  t h e s e  e q u a t i o n s  t h e  e x p r e s s i o n s  g i v e n  

by Eq. ( 3 - 1 7 ) ,  Eq. (3-18) and Eq. (3-19) we a r r i v e  a t  two 

e q u a t i o n s  f o r  c ( f )  and d ( f )  . 
By s o l v i n g  t h e s e  e q u a t i o n s  and forming t h e  sum 

c ( f )  + d ( f )  we g e t  t h e  f o l l o w i n g  e x p r e s s i o n  f o r  t h e  f r e q u e n c y  

r e s p o n s e  o f  a  T / 2 - E q u a l i z e r :  

A 

The e x p r e s s i o n  IHeq(f) l 2  + IHeq(f )  l 2  i s  e q u a l  t o  t h e  f o l d e d  

power spec t rum of  t h e  o v e r a l l  r e s p o n s e  once t h e  a s sumpt ion  

1 t h a t  H ( f )  i s  b a n d l i m i t e d  t o  I f [ <  - i s  made, and we may - T 

w r i t e :  

1 f 1 - < 1 / 2 ~  
From Eq. (5-4) i t  i s  o b v i o u s  t h a t  t h e  o p t i m a l  i n f i n i t e  

T/2 e q u a l i z e r  may be  viewed a s  h a v i n g  two p a r t s  i n  c a s c a d e :  

t h e  f i r s t  one i s  a  matched f i l t e r ,  matched t o  t h e  o v e r a l l  

f r e q u e n c y  r e s p o n s e  o f  t h e  sys tem up t o  t h e  e q u a l i z e r .  T h i s  

p a r t  a s  i s  w e l l  known [Schwar tz ,  1 7 1 ,  maximizes t h e  s i g n a l -  

t o - n o i s e  r a t i o  a t  t h e  sampl ing  i n s t a n t s  i n  t h e  r e c e i v e r .  

The t a s k  o f  t h e  second p a r t  i s  t o  minimize t h e  mean 

s q u a r e  e r r o r  due t o  i n t e r s y m b o l  i n t e r f e r e n c e  which s t i l l  

c o r r u p t s  t h e  o u t p u t  o f  t h e  matched f i l t e r .  



We find that in contrast to the situation in the case 

of a T-Spaced Equalizer no poles (or near-poles) can be 

caused by the denominator of C(f) within the Nyquist range 

by the sampler timing T. In fact, the denominator of C j f )  

does not depend on T, and can be expressed in terms of the 

folded power spectrum of the unequalized channel. Moreover, 

one may note an interesting result if the data..symbols are 

uncorrelated and the desired response, f(t), is a unit 

pulse. In this case, once the folded power spectrum is 

constant, the equalizer turns to be a matched filter which 

maximizes the signal to noise ratio at sampling instants 

and minimizes IS1 as well. 

5.2 The Eigenvalues of a T / 2  Equalizer 

Using the experience gained in deriving Eq. (4-10) 

one can verify that the eigenvectors and eigenvalues of an 

infinite T/2-Equalizer are given by (see: [Qureshi, Forney, 

91) two eigenvectors, expressed as: 

with corresponding eigenvalues 

and 

when (+)  sign holds (5-6) 

h2(f) - 0  when I - )  sign holds. 



A s  shown b e f o r e  Xl(f)  can  be  e x p r e s s e d  a s  t h e  f o l d e d  

power spec t rum when t h e  a s sumpt ion  t h a t  H(f )  i s  band l i m i t e d  

h o l d s .  Thus: 

and f o r  f < l / T  we have:  

We s e e  t h a t  a  c o n s t a n t  f o l d e d  power s p e c t r u m  i n  t h e  

T/2 c a s e  h a s  t h e  same e f f e c t  a s  c o n s t a n t  f o l d e d  spec t rum i n  

t h e  T  c a s e :  i n  b o t h  c a s e s  it i s  p o s s i b l e ,  by a  j u d i c i o u s  

c h o i c e  o f  t h e  s t e p  s i z e  t o  have t h e  t a p s  g a i n s  r e a c h  t h e i r  

o p t i m a l  v a l u e s  i n  Gne i t e r a t i o n .  

One may a l s o  n o t e  t h a t  w h i l e  i n  t h e  T-case  t h e  

e i g e n v a l u e s  s p r e a d  :is s u b j e c t  t o  changes  due t o  t h e  sampl ing  

t i m i n g  o f f s e t , r ,  i n  t h e  T / 2  c a s e ,  where X1 ( f )  does  n o t  

depend on T, t h e  convergence  p r o c e s s  does  n o t  depend on t h e  

s a m p l e r  t i m i n g .  

5 . 3  A F i n i t e  T / 2 - E q u a l i z e r  w i t h  P e r i o d i c  Data Source  

For t h e  c a s e  o f  a  cl-iannel e q u a l i z e d  by a  f i n i t e  T/2 

E q u a l i z e r  which s p a n s  a  t i m e  i n t e r v a l  NT and a  p e r i o d i c  d a t a  

s o u r c e  w i t h  p e r i o d  NT, one can show i n  a  way s i m i l a r  t o  t h a t  

employed i n  Sec.  5 .1  t h a t :  



The above result shows that the periodic frequency 

response in this case is completely determined by N samples 

of the infinite T/Z-Equalizer frequency response. 

5 . 4  The Eigenvectors and Eigenvalues of a T/2 Equalizer 
with Periodic Data Source 

For the case of a finite T / 2  Equalizer and a periodic 

data source the N x N autocorrelation matrix has N independ- 

ent eigenvectors and N different eigenvalues whose form is 

given by C91: 

The other N eigenvalues of A are identically zero. We have 

already seen that An is a sample of the folded power 

spectrum when H ( f )  is bandlimited. One can see from Eq ...( 5-11) 

that in this case, once the eigenvalues' spread is small, 

the folded power spectrum is almost Nyquist and the conver- 

gence process described in Sec. 4.1 is fast. Moreover, the 

optimal equalizer constitutes a matched filter with respect 

to channel noise. 

5 . 5  The Minimum Mean Square Error of an Infinite T/2 Equalizer 

By applying very much the same procedure outlined in 



Sec. 3.5 one can show that for a T/2 equalizer, the minimum 

mean square error given by: 

can be expressed as: 

0 
2 1/2T~~eq(f)12m (f) 

e 2 m i n  = ~1 T aa 2 df (5-13) 
m (f)~lfieq(f) 12+l~eq(.f) 121+on -1/2T aa 

One notes that here le12min is not influenced by T. Moreover, 

by comparison with the expression derived for the T-case one 

can see that 

which proves that the T/2 equalizer has better performance 

which is independent of T. In [Ungerboeck, 81 Ungerboeck 

shows by simulation that Eq. (5-14) also holds for a finite 

3T/4 equalizer which proves to be free from T changes influence 

over a large time interval. In C91 a similar simulation was 

carried out for a T/2 finite equalizer with similar results. 



6. A H Y B R I D  TRANSVERSAL EQUALIZER (HTE) 

6 . 1  A Hybr id  Type E q u a l i z e r  i s  a  T-spaced e q u a l i z e r  w i t h  

some a d d i t i o n a l  t a p s  i n s e r t e d  around t h e  r e f e r e n c e  t a p  i n  

between t h e  T-spaced t a p s .  T h i s  t y p e  i s  a  s p e c i a l  c a s e  o f  

t h e  g e n e r a l  one p r e s e n t e d  i n  S e c .  3 . 2 .  F i g .  5 - 1  shows a  

f i n i t e  l e n g t h  Hybrid-Type E q u a l i z e r .  Such an e q u a l i z e r  i s  

e x p e c t e d  t o  have  many o f  t h e  b e n e f i t s  o f  a  T / 2 - e q u a l i z e r ,  b u t  

w i t h  t h e  same number of t a p s  c a n  b e  made t o  span a  l a r g e r  

t ime  i n t e r v a l .  T h i s  e n a b l e s  t h e  e q u a l i z e r  t o  t a k e  c a r e  o f  

impulse  r e s p o n s e s  which have s i g n i f i c a n t  ene rgy  over  t h e  whole 

t ime  s p a n  o f  t h e  HTE. The more a d d i t i o n a l  t a p s  we i n s e r t  i n t o  

a  g i v e n  T-spaced e q u a l i z e r ,  t h e  more t h e  HTE behav iour  w i l l  

r e semble  t h a t  o f  a  pure  T / 2 - e q u a l i z e r .  

The hope i s  t h a t  t h e  T/2 s e c t i o n  o f  t h e  HTE can  a v o i d  

c r e a t i o n  o f  n u l l s ,  o r  n e a r  n u l l s  i n  t h e  Nyquis t  e q u i v a l e n t  

spec t rum o f  t h e  system. 

I t  h a s  been shown i n  l i t e r a t u r e  ( s e e :  C61,[91) 

t h a t  i n  t h e  i t e r a t i v e  a d a p t i v e  model d i s c u s s e d  i n  Chapter  4 ,  
- 

t h e r e  i s  a n  a d d i t i o n a l  n o i s e  component ,e2  due t o  t h e  t a p s  
A , 

g a i n s  f l u c t u a t i o n s .  T h i s  n o i s e  power i s  l i n e a r l y  p r o p o r t i o n a l  

t o  N ,  t h e  number o f  t a p s .  I n  o r d e r  t o  r educe  t h i s  e x c e s s  

n o i s e  i t  i s  d e s i r a b l e  t o  r e d u c e  t h e  number o f  t a p s  i n  t h e  

e q u a l i z e r .  The HTE i s  e x p e c t e d  t o  s u f f e r  l e s s  t h a n  a p u r e  





T/2 e q u a l i z e r  from t a p s  f l u c t u a t i o n s  n o i s e  a s  i t  h a s  fewer  

t a p s .  

I n  t h e  f o l l o w i n g  s e c t i o n s  t h e  HTE i s  m a t h e m a t i c a l l y  

a n a l y s e d ,  and some i n t e r e s t i n g  r e s u l t s  a r e  p r e s e n t e d  r e l a t i n g  

an  HTE t o  t h e  p u r e  T/2-spaced e q u a l i z e r ,  b o t h  spann ing  t h e  

same t i m e  i n t e r v a l .  

6 . 2  The Optimal  HTE 

I n  o r d e r  t o  a n a l y z e  t h e  HTE model we r e f e r  t o  F i g .  6-2. 

I t  i s  obv ious  t h a t  e v e r y  HTE c a n  b e  decomposed i n t o  s e c t i o n s  

a s  shown i n  t h e  f i g u r e .  

From Eq. (2-2) we know t h a t :  

x ( t )  = 1 a i h ( t - i T )  + n ( t )  
i 

and f rom t h e  f i g u r e  

where :  





We have  a l s o  d e f i n e d  t h e  d e s i r e d  o u t p u t  a s  d  = a T - f  
k - -k 

where i f k }  a r e  samples  o f  a  d e s i r e d  o v e r a l l  impulse  L e s p o n s e .  

The mean s q u a r e  e r r o r  i s :  

By s u b s t i t u t i n g  Eq. (6-l) , Eq. ( 6 - 2 ) ,  Eq. (6-3) i n t o  

E q .  (6-4) and making t h e  f o l l o w i n g  a s s e r t i o n s :  

one g e t s :  



By differentiating Eq. c6-7),w'it.h respect to - c, - e and - d 

we arrive at the following set of linear equations for s P t ,  

Sp t and d+pt: 

- opt - 
Our task now is to identify the elements of the 

matrices A1, A2, A3, B, V, W, and the vectors - a l ,  - a p  and - a 3 .  

One can quite easily verify that the elements of these 

matrices are related to the elements of the T/2 Equalizer 

autocovariance matrix as follows: 

A l  = {A. . 1 for: -2N <i,j<-2N , i,j even 
1 9 7  0- - I 

A 2  = {Ai . for: -2Nl+l<i, j <2N2-1 
, I  - - 

A 3 =  {Ai - 1  for: 2N2<i,j2N3 , i,j even 
3 1 - 



B = {Ai . )  f o r :  - 2 N  < i , j ~ - 2 N  , i  even ;  - 2 N  + l < j < 2 N 2 - l , j  odd. 
9 J  0- 1 1 - -  

W = {Ai . )  f o r :  2 N 2 + 1 < i , j i 2 N  < i , j  even 
, J  - 3- 

V = {A .! f o r :  - 2 N  + l < i < 2 N 2 - 1 , 2 N  < j<2N , j  even 
i , l  1 - -  2- - 3 

Also :  

The c o n c l u s i o n  from t h e  above i s  t h a t  t h e  a u t o c o v a r i a n c e  

m a t r i x  f o r  t h e  HTE can  be  d e r i v e d  from t h e  m a t r i x  o f  t h e  T/2 

c a s e  by d e l e t i n g  t h o s e  rows and columns which c o r r e s p o n d  t o  

i n  between t a p s  which a r e  n o t  u s e d  i n  t h e  Hybrid v e r s i o n .  A 

s i m i l a r  r e s u l t  h o l d s  f o r  t h e  g - v e c t o r  o f  t h e  HTE. 

6 . 3  The Frequency Response o f  an  HTE 

Assume t h a t  t h e  T-spaced s e c t i o n s  o f  t h e  HTE shown i n  

F i g .  6-2 a r e  i n f i n i t e .  I f  one  d e n o t e s  t h e  T-spaced t a p s  by 

fv i )  and t h e  i n  between t a p s  b y { w .  I ,  t h e n  t h e  f r e q u e n c y  
1 

r e s p o n s e  o f  t h e  HTE i s  g i v e n  by: 

I n  S e c t i o n  6.2 we d e s c r i b e d  t h e  s t r u c t u r e  o f  t h e  



autocovariance matrix for a system equalized by an HTE. 

Having at hand this knowledge, we can follow the procedures 

described in Sec. 4.3 and in Sec. 5.1 (for the derivations 

of the frequency-response of T and T/2 equalizers resp.) and 

arrive at the following two equations for W(f) and V(f): 

By substituting Eq. (3-17) into Eq. (6-10) and by 

making the following definitions 

A W(f) = C w - e  j 2llfi~Fz '! 

1 i=-N, 

A jZnf(k+;)T Y(f)= C e 
k=-N 

1 
one arrives at the following two equations for W(f) and V(f): 



U n f o r t u n a t e l y ,  i t  i s  i m p o s s i b l e  t o  c o n t i n u e  from t h i s  p o i n t  

towards  s o l v i n g  (6-11) f o r  V( f )  and W(f) w i t h o u t  making 

a d d i t i o n a l  a s s u m p t i o n s .  F i r s t ,  we n o t e  t h a t  e a c h  o f  t h e  

i n t e g r a l s  i n  ( 6 - l l b )  i s  a c o n v o l u t i o n  i n  t h e  f r e q u e n c y  domain. 

Then one can s e e  t h a t  when N1--, Y( f )  a p p r o a c h e s  an impul se  

8 ( f )  r e d u c i n g  o u r  HTE c a s e  t o  t h e  i n f i n i t e  T / 2 - e q u a l i z a t i o n  

c a s e ,  which was t r e a t e d  i n  Sec .  5 .1 .  

When N1 i s  f i n i t e  t h e  f u n c t i o n  o f  f  g e n e r a t e d  by each  

o f  t h e  i n t e g r a l s  i n  ( 6 - l l b )  i s  a smeared v e r s i o n  o f  t h e  p a r t  

of  t h e  i n t e g r a n d  convo lved  w i t h  Y ( f ) ,  ( s e e  F i g .  6-3) and t h e  

d e g r e e  o f  s m e a r i n g ,  depends  on N1. 

Assuming t h a t  N1 i s  n o t  t o o  s m a l l  we g e t  t h a t  E q .  (5-4) 

i s  s t i l l  a  good a p p r o x i m a t i o n  f o r  C ( f )  i n  t h i s  c a s e .  





7 .  COMPARISON BETWEEN FINITE LENGTH T ,  T / 2  AND H Y B R I D  
TYPE EOUALIZERS 

7 . 1  Computer Program f o r  Comparison 

A F o r t r a n  I V  program was u s e d  t o  compare t h e s e  t h r e e  

c a s e s .  The s t r u c t u r e  o f  t h e  program i s  a s  f o l l o w s :  

The program r e a d s  i n  t h e  c h a n n e l  samples ,  t h e  i n d e x  

o f  r e f e r e n c e  sample ,  a l o n g  w i t h  a n  i n d i c a t i o n  w h e t h e r  t h e  
- - -  - -  -- 

samples  a r e  T o ?  T/2-spaced.  Then,  t h e  program r e a d s  i n  

t h e  p a r a m e t e r s  o f  t h e , e q u a l i z e r ;  i . e . ,  t h e  number o f  t a p s ,  

t h e  l o c a t i o n  o f  t h e  r e f e r e n c e  t a p  and t h e  i n p u t  s i g n a l  t o  

n o i s e  r a t i o .  The program computes and p r i n t s  t h e  c h a n n e l  

a u t o c o v a r i a n c e  m a t r i x ,  t h e  e i g e n v a l u e s ,  t h e  r e s u l t i n g  e q u a l i -  

z e r  o p t i m a l  t a p s  g a i n s ,  and t h e  minimum mean s q u a r e  e r r o r .  

When a  T / 2  e q u a l i z e r  i s  r u n ,  any HTE's pe r fo rmance  c a n  

be  computed. Moreover ,  t h e  program i s  used  t o  f i n d  t h e  

o p t i m a l  l o c a t i o n  o f  t h e  i n  be tween a d d i t i o n a l  t a p s  f o r  an 

HTE and a  g i v e n  f i x e d  t i m e  s p a n  e q u a l i z e r .  A l s o ,  f o r  a  f i x e d  

number o f  t a p s ,  t h e  program f i n d s  t h e  o p t i m a l  t i m e  s p a n ,  and 

t h u s  t h e  number o f  i n  between t a p s .  The program i s  l i s t e d  

i n  Appendix.. B.  . . 

I n  t h e  n e x t  s e c t i o n s ,  t h e  r e s u l t s  f o r  two t y p i c a l  

c h a n n e l s  a r e  p r e s e n t e d .  



7 . 2  O p t i m i z i n g  a  Fixed-Time-Span ~ q u a l i z e r  

The c h a n n e l  chosen  f o r  o p t i m i z a t i o n  i s  t h e  channe l  u s e d  

i n  [Ungerboeck,  81. The c h a n n e l  impul se  r e s p o n s e  i s  shown 

i n  F i g .  7 - 1 .  

For  t h i s  c h a n n e l  t h e  program computed t h e  minimum 

mean s q u a r e  e r r o r  o f  a  7T-time span e q u a l i z e r ,  s t a r t i n g  w i t h  

a  p u r e  T - e q u a l i z e r .  Then,  one T / 2 - t a p  a t  a  t i m e  was i n s e r t e d  

among t h e  T - t a p s  and a l l  p o s s i b l e  T / 2 - t a p s  p o s i t i o n s  were 

t r i e d .  T h i s  was done f o r  a  h i g h  s i g n a l  t o  n o i s e  r a t i o  i n  

o r d e r  t o  b r i n g  o u t  t h e  d i f f e r e n c e s  between t h e  p o s s i b l e  

h y b r i d  c o n f i g u r a t i o n s .  

I n  F i g .  7 . 2  one  c a n  s e e  t h e  minimum mean s q u a r e  e r r o r  

v s  t h e  number o f  a d d i t i o n a l  t a p s .  For  e a c h  a d d i t i o n a l  t a p ,  

t h e  b e s t  and wors t  HTE c o n f i g u r a t i o n s  a r e  shown. T h i s  

y i e l d s  a  l ' contour"  w i t h i n  t h e  l i m i t s  o f  wh ich ,  a l l  p o s s i b l e  

c o n f i g u r a t i o n s  l i e .  The a r r a y s  o f  ones  and z e r o e s  on t h e  

g r a p h  r e p r e s e n t  t h e  r e l a t e d  c o n f i g u r a t i o n s ;  a  "1" s t a n d s  

f o r  a  t a p  which i s  u s e d  and "0" s t a n d s  f o r  a  t a p  which i s  n o t  

used  i n  t h e  HTE. 

I n  Tab le  7 - 1  we g i v e  t h e  improvement i n  minimum mean 

s q u a r e  e r r o r ,  a c h i e v e d  by add ing  t a p s ,  w i t h  r e s p e c t  t o  t h e  

p u r e  T-spaced e q u a l i z e r  pe r fo rmance .  

The improvement a c h i e v e d  by o p t i m a l l y  i n s e r t i n g  o n l y  

one a d d i t i o n a l  T/2 t a p  i s  remarkab le .  

("1n each  of  s e c t i o n  7 . 2  and s e c t i o n  7 . 3 ,  r e s u l t s  o b t a i n e d  f o r  one  
t y p i c a l  channe l  r e s p o n s e  a r e  r e p r e s e n t e d .  S i m i l a r  r e s u l t s  were 
o b t a i n e d  f o r  o t h e r  p r a c t i c a l  channe l  r e s p o n s e s .  



Fig. 7-1: Channel Impulse Response C81 



Time Span: 7T 

S/N = 54dB 

O Worst Location 

0 Best Location 

Fig. 7-2: Minimum Mean Square Error 
vs Number of Additional Taps 



Table 7-1 

HTE Performance Improvement 
vs Number of Additional Taps 



The d i f f e r e n c e  i n  improvement between t h e  b e s t  l o c a t i o n  

o f  t h e  a d d i t i o n a l  t a p  and t h e  w o r s t  l o c a t i o n  i s  s i g n i f i c a n t .  

7 .3  O p t i m i z a t i o n  o f  a  F ixed  Number - o f  Taps HTE 

The program was used  t o  f i n d  t h e  t i m e  span  o f  an  Hybrid 

Type E q u a l i z e r  hav ing  10  t a p s ,  f o r  which t h e  l e a s t  minimum 

mean s q u a r e  e r r o r  i s  o b t a i n e d .  The c h a n n e l  used  i n  t h i s  

s e c t i o n  i s  shown i n  F i g .  7-3. T h i s  i s  an  i n t e r p o l a t e d  v e r s i o n  

o f  t h e  sampled impulse  r e s p o n s e  used  i n  C71 and i n  [ 9 1 .  

I n  F i g .  7 - 4  one c a n  s e e  t h a t  f o r  a  1 0 - t a p s  e q u a l i z e r  

t h e  o p t i m a l  t i m e  span i s  7T .  The a d d i t i o n a l  T / 2  t a p s  were 

i n s e r t e d  i n a s y m m e t r i c a l  manner a round t h e  r e f e r e n c e  t a p  which 

i s  l o c a t e d  i n  t h e  midd le  o f  t h e  e q u a l i z e r ' s  d e l a y  l i n e .  The 

r a t i o  be tween t h e  minimum mean s q u a r e  e r r o r  o f  a  p u r e  T / 2  

e q u a l i z e r  w i t h  10  t a p s  and a n  HTE which s p a n s  7T i s  abou t  1 5 . 3  

i n  t h i s  c a s e .  We m a y . c o n c l u d e  t h a t  i n  c a s e s  where t h e  

c h a n n e l  :mpulse r e s p o n s e  i s  l o n g ,  and h a s  s i g n i f i c a n t  ene rgy  

o v e r  most of  i t s  d u r a t i o n .  A l o n g e r  HTE i s  t o  be p r e f e r r e d  

o v e r  a  p u r e  T/2 e q u a l i z e r  w i t h  t h e  same number of  t a p s .  

7.4 Sampling Timing S e n s i t i v i t y  

I n  t h i s  s e c t i o n  we' compare t h e  sampl ing  t ime  o f f s e t  

s e n s i t i v i t y  o f  a  T-spaced,  T/2-spaced and a  Hybrid T r a n s v e r s a l  

E q u a l i z e r ,  a l l  hav ing  t h e  same t i m e  span b u t  t h e  complexi ty  

i s  i n c r e a s i n g :  t h e  T-spaced e q u a l i z e r  have 7 t a p s ,  t h e  hybr id  

e q u a l i z e r  h a s  10  t a p s ,  and t h e  T/2-spaced e q u a l i z e r  has  1 4  

t a p s .  



Fig. 7-3: Channel Impulse Response 
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F i g .  7-4 :  Time Span vs  Minimum Mean 
Square  E r r o r  (10-Taps) 



In order to check the sampling time offset sensitivity, 

the channel in Sec. 7.2 was sampled in various phases with 

T spaces and with T/2 spaces. For each phase the minimum 

mean square error was computed.. The results are shown in 

Fig. 7-5. The T/2-spaced equalizer proves to be superior to 

T-spaced equalizer; one notes the big changes in performance 

in the T-case, and the modest changes in the T/2-case with 

sampling timing changes over an interval of[-T, +TI. The 

ratio between maximum and minimum values of mean square error 

in the T-spaced equalizer is 18 while the same ratio for a 

T/2-spaced equalizer that spans the same time interval is 

about 2. For a hybrid configuration represented by 

(10101111111010), (three additional taps. The reference 

tap is in the middle of the equalizer) the sensitivity is 

smaller than that of a T-spaced equalizer but worse than that 

of the T/2-equalizer as expected. 

7.5 'Calculation of the Autocovariance Matrix Ei~envalues 

In this section the eigenvalues of the autocovariance 

matrix for the channel used in Sec. 7.1 (Fig. 7-l), are 

computed. The eigenvalues were calculated for both the 

periodic and the white data source cases, for a T-spaced 

equalizer, T/2-spaced equalizer and the hybrid configuration 

used in Sec. 7.4. By examining the results (summerized in 

Table 7-2) the following observations are made: 
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F i g .  7-5 :  Sampl ing  Timing O f f s e t  
S e n s i t i v i t y  
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1. For the T-spaced samples of a real input response we get 

a circulant autocovariance matrix. Its eigenvalues are 

real and come in equal pairs (except for the largest one, 

when the matrix dimension is odd). This originates from 

the fact that the eigenvalues of a circulant matrix are 

given by the D.F.T. of its rows [Noble, 161. 

2. For the T/2-spaced equalizer with periodic source, half 

the eigenvalues are equal to the noise to signal ratio in 

the channel. The values of these eigenvalues is zero once 

there is no noise in the system. This implies that in 

this case the system given by Ac=a - - is overdetermined and 

it may have many different solutions for - Copt. 

The remaining half are in equal pairs. The reason is that 

they are equally spaced samples of the channel folded 

power spectrum (as proved in Sec. 5.3) which is an even 

function. One may notice that the eigenvalues of the T/2- 

case with white data source split into two groups. The 

seven small ones may be interpreted as smeared values 

corresponding to the seven small ones computed for the 

T/2-case with periodic input. A similar observation can 

be made for the HTE case. 

3. One can see that the eigenvalues spread for all equalizers 

is about the same. This implies about equal tap gains 

convergence time in the iterative model discussed in 



Chapter 4. This idea is supported by simulations results 

in CUngerboeck, 81 carried out for a non-periodic case. 



- .  
8. CORRELATED LEVEL SIGNALLING AND FRACTIONAL TAP 

SPACING EOUALIZATION 

In previous chapters the data source was assumed to be 

either white or periodic. It is interesting to.verify how 

correlated.leve1 signalling performs with Fractional Tap- 

Spacing-Equalizers. 

8.1 Correlated Level or Partial Response Signalling 

The usual constraint on signals chosen for signalling 

over a channel is that they do not give rise to intersymbol 

interference. Sometimes, signal design based on this criterion 

is very difficult, if not impossible and may turn the system 

to be very sensitive to sampling timing. 

A design which allows for a certain amount of controlled 

intersymbol interference while the transmission bandwidth is 

confined to the Nyquistbandwidthis referred to as Partial 

Response Signalling (PRS) or, Correlated Level Signalling 

(CLS). The controlled intersymbol interference can be 

removed from the incoming signal in the receiver. On the ' 

other hand, because the number of received levels is larger 

for PRS it has a narrower noise margin 'for a constant signal 

power. 

The first PRS that was employed is called duobinary and 

will be discussed below. An extensive study of PRS is in 

[Kabal , Pasupathy , 7 3 .  

It is interesting to verify how PRS influences the 



performance of a channel equalized with a T/2 equalizer. 

8.2 The Duobinary PRS and T/2-Equalization 

In Fig. 8-1 we show the impulse response and frequency 

response of a channel that allows duobinary PRS. 

- 1 1 
27' 27 

Fig. 8-1: Duob.inary Tmpulse and Frequencv Res~onse 

In L 7 1  it is shown that any PRS system has frequency response 

which can be expressed as: H(f) = F(f) G(f) 
N-1 

where G(f) obeys Nyquist's criterion, and F(f) = L fne -j 2llfTn ' 

n=o 
where { f n l  are the desired samples of the channel's impulse 

response. For duobinary: fo f =1 1 

thus: F(f) =l+e -j2llfT 

In order to have a channeb with duobinary response the binary 

data stream is precoded by the filter given by Eq. (8-1). 

Moreover the rest of the channel's response should satisfy 



N y q u i s t ' s  c r i t e r i o n .  For t h e  b i n a r y  i n p u t  w i t h  l e v e l s  -1 

and 1 we may g e t  a t  F ( f )  o u t p u t  t h e  l e v e l s :  - 2 ,  0 ,  2 ;  t h r e e  

l e v e l s  i n s t e a d  o f  two. T h i s  f a c t  i n c r e a s e s  t h e  p r o b a b i l i t y  

o f  e r r o r  i n  t h e  d e t e c t i o n  [ ? I .  T h i s  i s  t h e  t r a d e - o f f  between 

t h e  na r row t r a n s m i s s i o n  bandwidth  and pe r fo rmance  q u a l i t y .  

Assuming t h a t  t h e  o r i g i n a l  d a t a  s o u r c e  h a s  power 

s p e c t r u m  a a  ( f )  , a f t e r  p r e c o d i n g  i t  changes  t o  Q b b ( f ) ,  

where Q b b ( f )  = Q a a ( f )  I F ( f )  1 

By E q .  ( 8 - I ) ,  we g e t  

@bb 
( f )  = Q a a ( f )  * 4 * c o s 2 T f T  

I f  we s u b s t i t u t e  m b b  ( f )  f o r  maa(f)  i n  E q .  (3-17) 

and d e f i n e :  

we g e t  f o r  t h e  e i g e n v a l u e s  o f  an  i n f i n i t e  T/2 e q u a l i z e r  t h e  

f o l l o w i n g  e x p r e s s i o n :  
A 

A(f)  = { l ~ e q ( f )  1 + I ~ e q ( f ) . l  2 ) * c o . s 2 ~ f ~  (8-3)  

We r e c a l l  t h a t  t h e  e x p r e - s s i o n  i n  b r a c k e t s  i s  t h e  f o l d e d  

power s p e c t r u m  of  t h e  channe l  (under  t h e  a s sumpt ion  t h a t  H( f )  

i s  b a n d l i m i t e d ) .  From E q .  (8-3)  one may conc lude  t h a t  duo- 

b i n a r y  p r e c o d i n g  t e n d s  t o  i n c r e a s e  t h e  s p r e a d  o f  t h e  e i g e n v a l u e s  

o f  t h e  s y s t e m .  

L a r g e r  s p r e a d  of  t h e  e i g e n v a l u e s  r e s u l t s  i n  l o n g e r  

convergence  t i m e  in t h e  i t e r a t i v e  model d i s c u s s e d  i n  Chap te r  4 .  



We started by presenting a generalized data t~ansmission 

system model and showed how an optimally designid generalized 

equalizer can minimize the mean square error in such a system. 

Through Chapters 3 to 6 we dealt with three special cases of 

equalizers: the T-Spaced Equalizer, the T/2-Spaced Equalizer 

and a Hybrid Type Equalizer. We discussed and compared the 

pr0pertie.s of these three models. The T-spaced equalizer's 

properties are extensively discussed in literature and its 

review, brought here, prepares the ground for the discussion 

of the T/2-spaced equalizer. The T/2-spaced equalizer is not 

that extensively discussed in literature although it is known 

to be superior to T-spaced equalizer in certain features. 

Here we derived closed form expressions characterizing the 

T/2-spaced equalizers. By these expressions we could show 

why - the T/2 equalizer is superior to a T-spaced equalizer in 

some respects. 

Next we suggested a new model, namely, the HTE, that 

possesses some of the benefits of both the T-spaced and the 

T/2-spaced equalizers. The three models were compared by a 

computer program. The results obtained confirmed previous 

derivations and assumptions. The discussion through 

Chapters 2 to 7 show that a T/2-spaced equalizer gives a much 

smaller minimum mean square error than that given by a 

T-spaced equalizer that spans the same time interval. The 



improvement can easily reach 10dB. Moreover, the sensitivity 

to sampling timing in the receiver is much smaller in the 

T/2-spaced equalizer. Convergence time of taps gains in the 

iterative model is about the same, as shown by simulation 

results contained in other papers and by a similar eigenvalues 

spread obtained here, for these two cases. The performances 

of the HTE lie between those of the previous two equalizers. 

Its use can be important when a compromise has to be done 

between performances and time span, given a constraint on the 

number of taps. Larger time span can be vital for cases in 

which the channel impulse response is long. In such cases 

the longer HTE can be superior to a shorter pure T/2- 

Equalizer with the same number of taps. The HTE's sensitivity 

to sampling timing is less than that of a pure T-spaced 

equalizer that spans the same time interval. Noise enhance- 

ment due to channel noise is the smaller in a T/2-Equalizer 

while the HTE is again in between them. The HTE has the 

benefit of a lower complexity relative to a pure T / 2 -  

Equalizer that spans the same time interval, as complexity 

is proportional to N, the total number of taps. 

In Chapter 8 a brief discussion reveals that PRS has 

no inherent benefits for fractional tap spacing equalization. 
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APPENDIX A 

A.1 The Derivation of E q .  (3-5) 

We start from 

mean square error) : 

E q .  (3-4) (which is the definition of the 

Using the vector notations defined in Sec. 2.2 and in 

Sec. 3.2 we get: 

By defining the following matrix and vector: 

we can write 

c is a complex vector; c = Re[cl+Im[c~ . To minimize - - - - 
lekI2 with respect to - c we have to differentiate it with 

respect to Re[cl and ImCcl . However it can be shown that - - 

With this result at hand, we get: 



o r :  A * c = a  and t h e  minimum mean s q u a r e  e r r o r  can be w r i t t e n  - - 

H a s :  l e k I 2  = l d k I 2 - ~  mcopt - . 
min 



A . 1 1  The Der iva t ion  of  E q .  (3-8) 

For convenience we s t a r t  from E q .  (3- 

r epea t ed  here :  

1)  , whic 

(A. 11-1) 

By s u b s t i t u t i n g  E q .  (A.11-1) i n  E q .  (3-6) we g e t :  

- 
A = L z  a?a  -h*C (k-Dk-i+ YT)T]-h[  ( k - ~ ~ - j +  T/T)T] 

' 9 1  i j  1 j  

+ n*[ (k-Dk+ VT) T I  an[ (k-Dl+ VT) T I  (A .  11-2) 

A -  
By d e f i n i n g :  Q a a ( i - j )  = a ? a  , t h e  l a s t  term i n  

1 j  
A 

Eq.  ( A I I - 2 )  a s  QnnC(Dk-DI)Tl , m = i - j  , and a t  l a s t ,  

A 
(%. 

n = k- j  , we a r r i v e  a t :  

A k , l  = m L ( aa  (m) n  1 h*[ (n-m-Dk+ VT) T I  oh[ (n-Dl+ VT)TI++,,[ (Dk-Dl) T I  

(A.  11-31 

which i s  Eq.  (3-8) .  

E q .  (3-9) i s  d e r i v e d  i n  a  s i m i l a r  manner s t a r t i n g  from 

E q .  ( 3 - 7 ) .  



A.111 The Derivation of Eq. (3-13) 

Start with the transform definition 

to substitute in Eq. (AII-3) . By this substitution and 

by carrying out the integrations first and then the 

summation overm and n, we can write: 

Define the data source power spectrum as: 

(A. 111-1) 

In light of the above, if the integration in (A.111-1) is 

carried out on successive intervals of lkngth and if some 

careful manipulations are made we arrive at: 



which is E q .  (3-13), where: 
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