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ABSTRACT

This thesis presents a study of the theory of
conventional and Fractional Tap Spacing Equalizers and
outlines their relative benefits and drawbacks. Two special
cases of Fractional Tap Spacing Equalizers are emphasized
in this work: the T/2-Tap Spacing Equalizer and a new type
of equalizer, called a Hybrid Transversal Equalizer, in which
the tap spacing is either T or T/2 (where 1/T is the data
source symbols rate). A mathematical analysis of these
equalizers 1s carried out and some new results are derived.
To support the mathematical analysis, a computer program was
used to compare the performance of these models of equalizers

and the results obtained are analysed.



SOMMATIRE

Cette theése présente une étude de la théorie des
égaliseurs conventionels et ceux de perforations a4 espace
fractionnel et aussi ddnne un apercu de leurs bénifices et
inconvénients relatifs. Deux cas spéciaux des égaliseurs de
perforations 4 espace fractional sont mis en relief dans ce
travail: 1'égaliseur T/2 - de perforation a espace
fractionnel et un nouveau type d'égaliseur, appelé 1'égaliseur,
d hybride transversal, dans lequel 1'éspace de la perforation
est soit T ol T/2 (ol 1/T est la vitesse des symboles de la
source de données). Une analyse mathématique de ces égaliseurs
est exécutée et de nouveaux résultats sont dérivés. Pour
supporter l'analyse mathématique, un programme d'ordinateur
est employé pour comparer lt'accomplissement de ces modéles

d'égaliseurs et les résultats obtenus sont analysés.
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1. . INTRODUCTION

1.1 The Background and Goal of This Thesis

In Bandlimited data transmissions systems the maximum
useful signalling rate is equal to the system bandwidth.

At this rate, degradation in system performance 1is caused
by Intersymbol Interference, (ISI), as 'tails'" of the
channel impulse response are superimposed in the receiver,
due to previously sent syﬁbols. The ISI makes it more
difficult for the detection section to decide which symbol
was transmitted at each interval.

The technique used to reduce the degrading influence
of Intersymbol Interference is called Equalization. This
name originates from a discovery made by Nyquist. Usually
the signal is sampled in the receiver. Nyquist showed that

if the Fourier Transform of the sampled system impulse response

is a constant, ISI is eliminated. Since the Fourier Transform

of the sampled system impulse response is seldom constant, some

sort of equalization of this function should be performed.
Equalization is achieved by a device usually a part

of the receiver, implemented as a Transversal Filter (TF).

The TF is built of a tapped delay line and a summer. With

each tap there is associated a gain. The outputs of the

taps are fed to a summer. The output signal from the TF is



the signal at the output of the summer. The only parameters
of the TF that can be optimized .are the tap gains. . Since

the sampling proéess taking place in the receiver is at the
symbol rate, every T seconds, this was the tap time spacing
in early implementations of equalizers. In recent years if
was found out that further improvement of performance can

be obtained by increasing the system complexity and making

the time spacing between taps smaller than T. Such equalizers
are referred to as Fractional-Tap-Spacing-Equalizers.

In this thesis a generalized equalizer model in which
tap spaclngs are arbitrary, is represented. Then, three
speciai cases are examined in detail, namely the conventional
T-Spaced, the T/2-Spaced and a Hybrid Transversal Equalizer
(HTE). The HTE 1s a new type of equalizer that is being
proposed here. The HTE combines features of the T-Spaced
and the T/2-Spaced equalizer.

A study of these tnree important configurations 1is
carried out here as follows. In Chapter 2 a baseband data
transmission system is described. The problem of ISI is
discussed, and it is shown how equalization can mitigate its
effect. Chapter 3 deals with the topic of optimal (minimum
mean square error) equalization. Chapter 4 discusses the

important features of the conventional T-Spaced Equalizer.



Chapter 5 deals with the properties of a T/2-Svaced Equalizer
and compares them to those of the T-Spaced Equalizer.

Next, in Chapter 6 the model of a Hybrid Transversal
Equalizer is presented and analysed. In Chapter 7, a
computer program is used to compare the three types of
equalizers, and the results obtained are analysed. It turns
oﬁt that the T/2-Spaced Equaiizer is better than a T-Spaced
Equalizer which spans the same time interval. However, the
HTE which spans this time interval but with fewer taps may
have satisfactory performance between that of a T/2-Spaced
Equalizer and that of a T-Spaced Equalizer. Moreover, in
cases where a longer time span is desired a Hybrid Type
Equalizer is superior to a pure T/2-Spaced Equalizer with
the same number of taps which spans za shorter time interval.
The figure of merit for all comparisons is the minimum mean
square error. Chapter 8 is a brief study of the subject of
Partial Response Signailing (PRS) and Fractional Tap Spacing
Equalization. The question posed is whether PRS or correlated
levels signalling improves the performance of systems which
employ  fractional tap spacing equalizers. The conclusion
is that PRS or correlated levels signalling do not have such

a desired property.



1.2 Previous Work

Extensive material about T-Space Equalization (theory
and implementation) is found in references [1] through [7]
and in [11], [14], [15}. Selected material about T-Spaced
Equalizeré.which is relevant to the thesis is included in
Chapter 2.

The first paper published about Fractional Tap Spacing
Equalizers is [8). The analysis carried out in [8] and in this
thesis do not follow the same mathematical lines. A paper which
"Inspired" this work is J9]. Although written in a very concise
manner, 1t is rich iIn substance. In this work, among other thingé

we bring the mathematical background and derivations omitted

from [9],



2. BASEBAND DATA TRANSMISSION SYSTEM

2.1 The Structure of a Data Transmission Systenm

A baseband data transmission system is shown in
Figure 2-1. It .consists of three basic subsystems:
the transmitter, the channel and the receiver. The
transmitter itself nas two parts: the data source that
emits a symbol every T seconds into a bandlimited filter
whose impulse response 1is hT(t). The signal at the output

of the transmitter, given by:

sp(t) = }i:aihT(t-iT)

is fed into the channel. The channel is modelled here by a
filter with impulse response hc(t). At the output of hc(t),
randomnoisenR(t) is added to the signal. The signal at the

output of the channel is:
rp(t) = so(t)*h (1) + np(t)

The third part of the system is the receiver. It has three
basic components: an input filter hR(t), a sampler, and a
decision unit.

The signal at the output of hR(t) is given by
x(t) = s(t) + n(t) (2-1)

where: s(t) = ?aihT(t-iT)*hC(t)*hR(t)

and: n(t) = nR(t)*hR(t)

-

- S5 -
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By defining h(t) as the overall impulse response of the

system one can write the signal before the sampler as:

x(t) = ;aih(t-iT) + n(t) (2-2)
1
where: h(t) = hT(t)*hC(t)*hR(t) (2-3)

The samples at the input to the decision unit are:
x(kT+t) = za h(kT-iT+1) + n(kT+1) (2-4)
i
where 17 1s the sampler time offset with respect to the data
source. The decision unit accepts the samples given by
Eq. (2-4), and every T seconds emits a symbol ﬁi which is
an estimate of a., where both a; and ﬁi usually belong to
the same alphabet.

For given transmitter and channel one may seek to
optimize the receiver operation (which is estimating ai).
Usually the receiver is optimized so as to improve a system
performance index (such as probability of error, output
signal-to-noise ratio or mean square error). The optimization
itself involves the design of hR(t) and the decision unit
in the receiver.

The additive noise that corrupts the signal in the
channel can cause errors in the detection. Another source of
degradation is the intersymbol interference (ISI), the nature

of which is explained in the next section.



2.2 Intersymbol Interfcrence

Eq. (2-4) can be written as:

= ] .+
X ;alh n

5 k-1 k

=g

where: Xy x(kT+1)

l=g

h(kT-1T+1)

>

n(kT+1)

I1f we define the present input symbol to have the subscript
k we can write:

X, = ah, *+ T a:h, . +n (2-5)
k k0 iAK i7k-1 k

One notes that in each sample Xy there are three components.
The only desired one is akho; Ny is a noise sample and the

sum I aihk-i is a disturbance originating from past and

i#k
future samples of h(t). This disturbance is referred to as
intersymbol interference (ISI).
It is quite easy to derive the Nyquist criterion for
the elimination of ISI. Basically, an overall impulse response

h(t) is desired, such that:



If this is true for some h(t), then:

h(t) » I8(t-iT) = h,é(t)
1

where §(*) is a delta function. But I & (t-iT) is a periodic
i
function, thus it has a Fourier series representation,

namely:
16 (t-iT) = & 5el 2Tti/T
1 i

~]

Using this fact, we can write:
h(t)zel 21tH/T _ Thy (t)
i
If we take the Fourier transform of both sides we arrive at:

TH(f-%) = T-h (2-6)
. (£-7) 0

The sum ZH(f-%) is a periodic function of f and its
i

period is %. The first period is called the Nyquist

equivalent of H(f) and is designated as:

Heq(t) A ;H(f—%) , |fl< %T
i

The conclusion drawn from Eq. (2-6) is that for elimination
of ISI, Heq(f) should be flat.

This is the Nyquist criterion for ISI cancellation. If
h(t) satisfies Eq. (2-6) then at each sampling instant all

hi's are zero except h0 and there is no ISI.
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For a given transmitter and channel there is a
result due to Ericson [1& which specifies HR(f) in terms
of the system parameters. This HR(t) performs at least
as well as any other filter.

2.3 Ericson's Result

Given hT(t), hc(t) and the noise nR(t) power spectrum,

SnR(f). -
G (£f-1/T) 1
If: I ————5—#0 for |f| <z (2-7)
i Snp(£-7/T)
then: Gé(f) "
where: Gc(f) = HT(f)-HC(f)

and a(t) is periodic with period 1/T. HR(f) is the receiver
input filter. This filter performs at least as well as any
other linear filter with respect to any reasonable criterion.
A reasonable criterion is a criterion according to which the
performance index does not improve when signal to noise ratio
1s decreascd.

a(f) is a periodic frequency response, thus, in the
time domain it can be represented by an infinite analog

transversal filter. (See Figure 2-2).
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Gé(f)/SnR(f) is the frequency response of a filter
matched to the signal in its input. Figure (2-3) depicts
the receiver based on Ericson's result.

The following, is an interpretation of Ericson's
result; the matched filter maximizes the signal to noise
ratio in the decision instants while a(f), the transversal
filter (TF), minimizes the ISI that still corrupts the signal
in its input.

The above scheme for a receiver 1s impractical for
two Treasons:

1. The realization generally calls for an infinite TF
which implies an infinite memory.

2. The realization of a matched filter is impractical
because the channel is usually ﬁnknown or it slowly
changes with time.

The compromise 1s to realize a simple low-pass filter
followed by a finite TF. A proper design of the gains of
the taps of the TF will result in a suboptimal realizable
receiver. Before we discuss the problem of choosing a
criterion for optimality we note two points: (1) Instead
of using an analog TF we can put the sampler in Figure (2-3)
after the matched filter and use a digital transversal

‘filter which can be implemented more easily. (2) The TF
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can be used to minimize the ISI by forcing the overall
response H(f) to obey Eq. (2-6), namely, it causes the
Nyquist equivalent channel Heq(f) to be flat. For this
reason the TF is called an equalizer. Fig. (2-4) shows

the modified suboptimal receiver, realized with a digital

equalizer.

2.4 A Criterion for Optimal Receiver Design

Let Pe be the probability of error at the decision
unit output. One would wish to design the receiver so as
to minimize the probability of error, Pe' If Pe is chosen
as the design optimality criterion the probability density
function of the ISI which depends on the specific source
and channel must be known. Usually this function is
unknown in the receiver, thus, the use of this criterion is
very often impractical. A criterion which does not depend
on a prior knowledge of the statistical nature of the ISI,
but relates easily to input signal-to-noise ratio, and takes
into consideration both additive noise and ISI is the mean
square error. Under this criterion the receiver design is
carried out so as to minimize the mean square error between

the receiver and source outputs.
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3. OPTIMAL MINIMUM MEAN SQUARE ERROR EQUALIZATION

3.1 The Optimization Problem

As mentioned in Section 2.4 the equalization 1s
achieved by finding a set of gains for the taps of
the equalizer. These gain variables can be put in a

vector

where C—N is the gain of the leftmost (see Figure 3-1) tap
1

C0 is the gain of the reference tap and CN is the gain of

the rightmost tap. The total number of ta;s is N=N1+N2+l(+).
These gains are chosen so as to minimize the mean square
error between the output of the data source and output of
the decision unit in the receiver. In the next section this
optimization problem is solved for a generalized type of
equalizer in which the spacing between the taps is arbitrary,
so that the T-spaced, %—spaced, and Hybrid Transversal

Equalizers mentioned in the introduction, are just special

cases of this generalized model.

() N, and N, may either be finite or infinite.



3.2 The Optimal Generalized Equalizer

In Figure 3-1 a generalized equalizer 1is shown, in
which the spacing between the taps is arbitrary. Assume,
for the sake of mathematical ease, that the equalizer 1is
an analog . device (a tapped delay line) and the signal at
its input is a continuous one given by Eq. (2-2):

x(t) =2 aih(t—iT) + n(t) (3-1)
i .
If we assume that the spacing between the taps on the delay
line is arbitrary, then, the output of the equalizer is
given by:

y(t) = § C; x(t=D;T)

where the Dj 1s the normalized delay associated with the
jth tap on the equalizer's delay line. The kth sample

of y(t) as received in the output of the sampler that
follows the equalizer (samples at rate of 1/T) is given by:

y(kT+1) = z Cj -x(kT-DjT + 1)
J

where T is the constant time offset of the sampler with
respect to the data source clock.

In vector notation:
T
Y = & e xy (3-2)
where: C is the vector of the taps' gains;

xp & [....x(kT-D_;T), x(XT-D_T), x(kT-D;T)....]

>

y (kT+1)
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Let the desired overall response of the‘system be
f(t). If d(tj is the desired output of the equalizer
and f(t) is the desired response of the system, then:
d(t) = £(8)* ais(t—iT) = I aif(t—iT)
1 . i

The desired output samples are given by:

o
fie>

- iy & ST -

K d(kT) = ? aif(kT iT) g:.gk | (3-3)
and £, & L. F[(-DTI, £(kT), £(k+1)TT...T"
The error is defined as:

A -
ex T Yk
The mean square error is:
2
lep |? = (rpmdp) (yg-ap) (P - (3-4)

where the expectation is over the sample space of Xy -
Figure 3-2 shows a block diagram for the generation of €

It is shown in Appendix A.I that the vector C which minimizes

7 . . .
Iekl is given by:

== -1' —
Copt = A 02 (3-5)

where: A is an N x N (positive definite) channel autocovariance

matrix whose elements are given by:

Ayj = XT(RT-D THT) X (KI-D T#0) (3-6)

(+) * Superscript means complex conjugate.

A1l signals and parameters of the equalizer are complex
quantities as QAM modulation technique, often used for
transmission calls for this convention. (See [Lyon, 151])



o

8urjeasusy :7-¢ *814

{reo}

(3)p

T~ ﬁwu>

AHZ11VN04d

(M3

(3)x

(Nu

)y

(11-2)¢'e 3



and o 1s a vector whose elements are given by:

a; = df x(KT-DT+1) (3-7)

By substituting the expression for x (kT—DiT+T),
namely: '

x(KT-D;T+1) = % a h(kT-D;T+1-jT) + n(kT-D;T+1)
j

into Eq. (3-6) and Eq. (3-7) we get (see App. AII)

- *T (nem=-D.+L -D.+L
Ayj = i 9, (M) i h*[(n=m-D;+7) T1 h [ (n-D+7) T
+¢nn[(Di-Dj)T] (3-8)
o, = i 94, (m) i f*(nT)-h[(n_m-Di+%)T] (3-9)

wheTre:
¢aa(') is the data source autocovariance function
¢nn(') is the noise autocovariance function
f(+) is the desired overall impulse response.

For the conventional case, where Di = 1, a white data

. . . 2 2 .
source, white noise with powers o and o, respectively, we

get:
. 2 _iaT . T 2. _
Ajs = 9, i h*[(n-i+p) TIhL (n-j+P)T1+ o 6 (3-10)
2 .
a, = o5 I f*(nT)h[(n-1+%)T] . (3-11)

n



Eq. (3-10) can be rewritten as:

— 6% 3 R (n+)TI1-h[(n+L) T+ (i-] 2 B,
Ai,j =0, E h [(n+T)T] h[(n+T)T+(1 j)T] + Gnéij (3-12)

This form emphasizes the fact that, in this case, the A
matrix is a Toeplitz matrix (t) (see [Gray, 10] and
[Gantmacher, 13]). In general when Di # 1 A is not
Toeplitz.

A more general case is the one in which Di = %,
namely, the taps are uniformly spaced; n taps on each

interval of T sec. Such a case of importance to us is the

one in which n = 2. If we use the transform relation

@«

h(t) =-/fH(f)ej2ﬂftdf

-

to express the samples of h(t) in Eq. (3-8) and Eq. (3-9)
it can be shown that Eq. (3-8) can be rewritten as

(see App. A.III);

1/2T
A1 = % [ng(f)J*H%Q(f)-¢aa(f)df + ¢ [(D,-D)T]
-1/2T
where: ¢ __(f) A 2¢(m)e-j2ﬂfmT (3-13)
m

() A Toeplitz matrix is a matrix in which the a;
element depends on (i-j) only. »J
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and:

| | o :
uEq () £ 3 H(f+%)e'32“(f+f)(Dk‘%)T (3-14)
1

For, the conventional case discussed earlier:

1/2T . c (+)
1 -329£(1-K)T 2
Ak,l = T/ ¢aa(f)!Heq(f)]2e J ( ) df+0n6k,l
-1/2T

(3-15)
where Heq(f) is the Nyquist equivalent channel defined

earlier (for t=0) as:

AL
Heq(£) = & H(f+T)eJ‘T“
1

By using Eq. (3-9) and the Fourier transform relation of

h(t) and d(t) one can show that for the conventional case:

1/2T
oy = %'~/f Hoq (£)Feq(£)0,, (£)e 12T eI 218K e (51¢)
“1/2T

where Feq(f) is the Nyquist equivalent of the desired

overall response.

(t) Gk 1 is the Kroneker delta function.
>
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.. ) . i,
For the uniform case in which Di == the elements of
tiie autocovariance matrix can be written as:

1/2T

_1 . 2 ~F2NEAK)T/2 1, 2.
Ay 1= T / ¢,,(£) |Heq(£)|%e “afto -8y
-1/2T
~where k and 1 are even, (3-17a)
1/2T . L
_ 1 e 2 ~j29f(1-KT/2 2,
Ak,l T ¢aa(f) |Heq(£) |%e - df+o_ 6k,1
-1/2T
where k and 1 are odd. (3-17b)
| 1/2T
1 i -j29£(1-k)T/2
A1 =7 6, (£) “Heq(£)Heq(£)e I 2TEUI-KIT/ 244
-1/2T
where k is odd and 1 is even. (3-17c¢)
1/2T
1 * ~ -j29£(1-k)T
Aeq =T $ 14 (£) *Heq(£)Heq(£)e I 2TE-IOT/24¢
-1/2T
where k is even and 1 is odd, (3-174)
and:
Hea(£) &2 (-1)F H(£rp)ed 2THT/T

1

One notices that for this case A is not a Toeplitz matrix.




By using Eq. (3-9) with Di = % and the transform relations

for £f(t) and h(t) it can be shown that the elements of

the o vector are given by:
. 1l/2T -
* j29£ j 29k£TE/ 2
A = T'y/ Heq(f)Feq(f)q)aa(f)eJ T, /gdf
-1/2T

for k even. (3-18)

1/2T
o = & Heq(£)Feq(£) ¢, (£)el 2TET. oI 2TRET /24
-1/2T
for k odd. (3-19)

In the next two chapters the properties of T-spaced and

T/2-spaced equalizers are discussed in detail.



4. IMPLEMENTATION AND PROPERTIES OF A T-SPACED EQUALIZER

4.1 An Iterative Method for Equalization

In Section 2.4 it was mentioned that equalizers are
implemented at the receiver end as decision directed
adaptive devices. 1In this section we discuss briefly
the theory of Iterative-Adaptive-Equalization and show
how such an equalizer 1is implemented:

In order to equalize a givep channel, Eq. (3-5) must
be solved for Copt. The solution of Eq. (3-5) involves
the inversion of the NxN A matrix, where N may be quite
large (a typical number may range between 32 to 64).
Fortunately, there is an iterative method to solve Eq. (3-5)

(see[Proakis, 11, [Ungerboeck, 61).

We look for a vector Copt that minimizes |el?. This
vector can be found iteratively by:
ct*t = ¢t - p7lv i ey _ ' (4-1)

c-c"

D is a matrix whose elements are given by:

2.
p, . =3 lel® . (4-2)

i,] GCi 6Cj

It can be easily verified that (see App. A.I).

Ve el = 2aC - 20 (4-3)
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If instead of computing D we take a constant a/2, which 1is
called the iteration step, we get a simplified iterative

formula:

o . .
¢t - ¢t - aact - o (4-4)

We shall prove the following theorem:
Theorem: Let A be a positive definite matrix, then it is

possible to choose a so that

1im(_3_i = Copt
i >
Proof:
Recall that for A positive definite, we have ETA3>O
for any vector u, and the eigenvalues of A are all positive.

If we subtract™ Copt from both sides of Eq. (4-4) we get:

.- . . . :
act™t = act - ansct = (1 - an)act (4-5)
. A - '
Define: B=1 - aA
Note: If a; = X Ai jbj then by Schwartz's inequality we get:
j ’

Dalc  AZ ool (4-6)
i i3 s ) i J

On both sides of Eq. (4-6) we identify the following norms:

A 2
llil] = i a;
lal] & oz oAt
i,j 0’
[[o]] & 7 b3
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With these notations at hand we conclude from Eq. (4-5)
that:

[lac™ 1 < (1811 1ach|| (4-7)
This means that in each iteration the error vector gets

smaller. Now we make use of another norm definition for

B, which is:

| IB]] = max |AB| A,
‘g
where: {XB} is the set of eigenvalues of B.

By using the last definition in Eq. (4-7) one gets:

act™ )] < a |1act))

If A <1 the solution of this inequality is

Jact™ || < at]|ac’||

A can be made smaller than 1 by properly choosing the

parameter a.

It is quite obvious that AB = 1—akA, thus
A = max {[l—aAA |,ll—aAA |}
{AA} min max
. 2
By choosing:a = >0
Ap +AA
min max
we get: AA - A
= _ max min
A»]l-aAA "x — <1
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Conclusions:
1. a can be chosen so as to ensure that
1im | |act]] = 0
i » o
2., It can be shown that this choice of a brings
about the tightest bound on convergence of
Ei to Copt (see [Gersho,..141) and that fastest
convergence takes place..
3. A smaller spread of the eigenvalues results in

faster convergence.

The following is a brief description of an equalizer model

in which the iterative solution of Eq. (2-5) is practically

itl

implemented. In Sec. (4-1) we saw that C =£i_avci|e12

i

where: véi[elﬁ =a(Ac” - a)
o = di-xk
) T -
A= XXy

Thus, by Eq. (4-3),, and by assuming x(t) is real we get:

. T 1
Vel fef? - 20 [xp e (X, °CF - d)]

We note that 5} . Ql

X is the k'th output of the system during

the i'th updating cycle of the taps, and that dk is the

desired output, thus, EE ct - dk is the error, and we can

write:



. 2 _ . 1
Vel | e 2.[x ]

where each componert of V.i |e|2 can be written as:

dlel?

aC.

T, . i
J = 2{x£(K—Dj)T]-ek}

If we could calculate [ei . Xk] in the receiver it would

2
yield an optimal value for %%El— . Unfortunately the receiver
j

does not have the knowledge about the statistics of ei * Xy and

it uses an unbiased estimate of this mean namely: ei X, thus,
in practice the updating procedure is carried out according to:

i+l _ A1 LAl o
9 Cc a e * Xy (4-8)

FigureA4—l shows an automatic adaptive equalizer. Extensive
material about the implementation problems is found in the
references.

In the light of Eq. (4-8) Figure 4-1 is quite clear.
The only part that deserves a few words of explanation is
the switch. At the beginning of a transmission, the
probability of error in the receiver is assumed to be high,
thus a fixed sequence of symbols, known to the receiver is
used to sound thefsystem after carrier synchronization has
been established. This symbol . sequence is locally generated
in the receiver and used to generate e.. During this period
the switch is on position '"a'". After a while, probability of
error reduces drastically and a decision directed mode is

established by changing the position to "b'" automatically.
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4.2 On the Eigenvalues of the Autocovariance Matrix

We begin this section by stating and proving the
following theorem:
Theorem: The eigenvalues of the system'. autocovariance
matrix are bounded By the maximum value (M) and
the minimum value (m) of {Heq(f)[z; (0; = 1).
Proof: Assume that A is an eigenvaiue of A, and that

u is its corresponding eigenvector.

s - T
By definition: A = Xp Xy
Note that: EHAB = AAgﬁg (1)
Using the definition of A
we get: EHE&E{E = AAEHE
Define: q, = xTu
k  =k—=
Thus: lqy 2 = A ullu (4-9)
’ k A= —

If Q(f) is the Z-transform of {qk} computed around the unit

circle in the Z-plane then:

Q(£) = U(f)Xeq(f)
where as before: Xeq(£f) = ;x(f+%)
1

(t) H superscript means conjugate

transpose operator.
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By using Eq. (2-2) and Parseval's theorem in Eq. (4-9), we get:

1 1
2T 21
a2 = of - / |U(£)Heq(£) |?df = xA[ |UCE) | 2df
1 21
27 2T
But it was given that: m< |Heq(£f) | 2<M,

thus, we arrive at the following result:

mikAiM

We may conclude that the larger the spread of the eigenvalues,
the farther the channel's Nyquist equivalent response is from
being flat. As was mentioned in Sec. 4.1 this fact implies
longer convergence time of the taps in the iterative model
previously discussed.

Next, we find expressions for the eigenvalues and
eigenvectors of the autocovariance matrix of a model
employing an infinite T-spaced equalizer.

We previously got that [Eq.(3-15)]
1

7T .
A 1 2 ~j29£(1-X)T 2
k,1 =% [1 [Hea(£) [*0,, (£)e7)’ af + o2éy

T
We note again that A is Toeplitz. For a general row, s, of

A, we write: (for o2=0)
R |

. 2T ; —3 -
A eJZﬂAT1==Zl. |Heq(£) ] 2% (f)eJZﬂfsTe j2u(f >\)1Tdf
1 s,1 T . aa

1
2T



1
7T . e
- %J/' Heq(£) |20 (£)ed 2TEST; =329 (£-0) 1Ty
aa
1
1
2T

_ 2 jZﬂAST
= |Heq(A) |2, (M)e

j20£sT

Thus, the vector whose components are {e } is an

eigenvector of A and

|Heq (£) | e (f) (4-10)

is its corresponding eigenvalue.

Thé above result is somewhat obvious once one regards
an infinite Toeplitz matrix as a circulant matrix in the
limiting case, and uses the fact that the eigenvalues of a
ciréulant matrix are given by the Discrete Fourier Transform
(D.F.T.) of its rews, [Gray, 10], [Noble, 161].

4.3 The Frequency Response of a T-Spaced Equalizer

In Sec. 3.2 it was shown that the optimal taps’ gains

i=N

{Ci}i=-N1 are given by

Ac = a

Starting from this equation we can write another equation.

e—]Zﬂka

_ - 29AKT
k,1%1 Lok°

£z (4-11)

k1

By substituting Eq. (3-15) for Ak 1 and Eq. (3-16) for o
b

into Eq. (4-11), one can show that the first period of the

periodic frequency response, of an infinite T-Spaced



equalizer is given by

. j29f
¢aa(f)-Feq(f)'heq*(f)°eJ t | f]< 1
C(f) = " " ? 5T (4-12)
2, (£)+|Heq(f)] + o
In the noiseless case Eq:. (4-12) simplifies to
Feq(f) j29f1 1 _
C(f) = —— ~e ’ [ £1< 5% (4-13)

Heq(f)
We see that any zero of Heq(f) within the Nyquist
range is a pole of C(f). |
Note that although H(f) may have no zeroes (or-near-
zeroes) in Iflf_gi,lieq(f) may have zeroes because of the
jesit/T Hoq (5

In case dips are introduced into Heq(f) by a certain

superposition of terms such as H(f+%ﬂe

choice of 1, C(f) tends to be very large and huge values for
Ci's may be required, which are difficult to implement.
Large values for taps' gains may also cause severe noise
enhancement in certailn frequencies, increasing probability
of error in the system.

In order to overcome the problem of sampling phase
dependence of the system's performance there should be some
form of sampling phase control which chooses a good sampling
phase in the receiver and only heuristic methods are avail-

able in practice to do it [Qureshi, 111.
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4.4 The Minimum Mean Square Error of an Infinite
T-Spaced Equalizer

The minimum mean square error of an equalizer 1s

defined by Eq.(3-4) and is given in App. A.I. as:

* * - -
25t 7 2 o3y gpr (4714

The first term can be expressed as

1/2T
aeGea = 1 |Feq(£) |%e_ (£)df R
-1/2T
The second term can be expressed as
1/2T (4-16)
a- Copt = %-v/ﬂ Heq(£) Feq(£)-e 12" e (£)c(f)as
-1/2T

By subtracting Eq. (4-16) from Eq. (4-15)we arrive at:

1/2T
oz, o2 (Y reats)|®e, (6)
min - " " df
21/2T |Heq () | @aa(f)'Fon

(4-17)

Eq. (4-17) shows that for a noiseless case an infinite
optimum equalizer gives zero mean square error. One can
also see that once there is noise in the channel, its
significance is highly dependent on T - the sampling phase
which is hidden in lHeq(f)lz. For some values of T a

null or near-null may be introduced in Heq(f) within the

Nyquist range at some frequencies and by Eq. (4-17) this



may cause a larger value for the integrand and thus a larger

minimum mean square error.

4.5 The Analysis of a finite T-Spaced Equalizer with
Periodic Data Source

The previous sections dealt with the general case of
an infinite T-Spaced equalizer. We were unable to get a
useful closed form expression for the f}nite equalizer
frequency response. HoWever, it 1is po§sib1e to derive
useful results if the data is assumed to be a periodic

sequence with autocorrelation function éaa(m) , given by:

T for m = kN k =0,%1,+2,...

0 otherwise

where NT is the time span of the equalizer.

It would be expected that the results to be derived
here will coincide with those derived for the infinite
equalizer if the period of the data is large. Short
periodic sequences are used for pseudo-random channel
sounding, i.e. periodic sequences are used to sound the
channel frequency response at N dense discrete frequencies
since the spectrum of the sequence consists of equally
spaced, equal height spectral lincs [Muller, 3].

For such periodic input it is possible to show

(using Eq. (3-15), Eq. (3-16)) that:



N
1 .
1 n -j2%n(1-k)/N
A, = wr E IHea(yp)f®e™ (=) (4-19)
1=-N
1
Ny
_ 1 * . n n -j29nk/N _
oy N_TE Heq(NT)Feq(N—T) e (4-20)
n=-N
1
where the number of taps is N = 2N1+1 , (N1 = NZ)
By constructing the equation
Ny Ry | N,
z DA 1-c1-e'32“mk/N = 1 o e 32IMK/N g oy
k=—N1 1=—N1 ? k=—N1

and substituting equations Eq. (4-19) and Eq. (4-20) into
Eq. (4-21) one arrives at the following result, giving the

taps welghts:

j29mt/NT

_ Heq( gy ) Feq(yy ) e (4-22)

. m 2 2
lﬂeq(N_T)l + Gn

, =N, <m<N

C( 15m=Ny

NT )
This result shows that the frequency response of a
finite equalizer with periodic input is completely determined
by N equally spaced samples of the response of the infinite

equalizer given by Eq. (4-12).
It can be shown, following the same development as

in Sec. 4.2 that the N eigenvalues of the system are given

. 2 _
by: (Gn—O)

= n 2 - -
A, [Heq(NT)| , -N <n<N (4-23)

1

This result shows that the eigenvalues depend on t



since Heq(f) depends on 1. This t-dependency may cause a
large spread in the eigenvalues and as a result a large
convergence time for the adaptive iterative structure

discussed in Chapter 2.




5. PROPERTIES OF A T/2-SPACED EQUALIZER

5.1 The Frequency Response of an Infinite T/Z-Equalizer

The basic equation that governs the equalizer is
Ac = o where the elements of A and o are given by Eq. (3-17),
Eq. (3-18) and Eq. (3-19).

In order to derive an expression for the frequency
response of an infinite T/2 equalizer, we make the following
definitions:

Let {ck}k____°° represent the gains of an infinite

T-Spaced Equalizer, and let {dk};::_°° be the gains of
' k#o
additional taps inserted in between the previous taps as

shown in Fig. 5-1. By definition, the frequency response of

this equalizer is given by:

C(f) = c(f) + d(f)
where: c(f) A sC ejZﬂfkT/Z
k K
%‘ -
and: a(f) A deeJZﬂfkT/Z

o

We also write down the following two equations:

e~JZIAKT/Z -

-j292kT/2 -J29AkT/2_
Ak,lcle +2 A ldle —Zak (5_1)

L K
b
e]\t-'en e Vlén & e&a‘l

o J2IKT/2, & o A, d oI 2 MKT/2_
; k171

k
add even aldodd” odd

-j29AkT/ 2
ox® (5-2)

_40_
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If we insert into these'equations the expressions given
by Eq. (3-17), Eq. (3-18) and Eq. (3-19) we arrive at two
equations for c(f) and d(f).

By solving these equations and forming the sum
c(f) + d(f) we get the following expression for the frequency
response of a T/2-Equalizer:

2-Feq(£)+o__ (£)-H(£) eI 2TET

C(f) = - (5-3)
@aa(f)[lHeq(fH2 + |Heq(£)|2%1 + 0;

The expression |Heq(£f)|? + |Heq(f)|? is equal to the folded
power spectrum of the overall response once the assumption
that H(f) is bandlimited to |f|< % is made, and we may

write:

(5-4)
o, (£)Feq(£) |
0o (D) LIH(ERD) |24 [H(E) | 2+ |H(£-2) [2 7402

|f]<1/2T
From Eq. (5-4) it is obvious that the optimal infinite

C(£) = H (f)-e) 2T,

T/2 equalizer may be viewed as having two parts in cascade:
the first one is a matched filter, matched to the overall
frequency response of the system up to the equalizer. This
part as is well known [Schwartz, 171, maximizes the signal-
to-noise ratio at the sampling instants in the receiver.
The task of the second part is to minimize the mean
square error due to intersymbol interference which still

corrupts the output of the matched filter.



- 43 -

We find that in contrast to the situation in the case
of a T-Spaced Equalizer no poles (or near-poles) can be
caused by the denominator of C(f) within the Nyquist range
by the sampler timing 1. In fact, the denominator of C(f)
does not depend on T, and can be expressed in terms of the
folded power spectrum of the unequalized channel. Moreover,
one may note an interesting result if the :data _symbols are
uncorrelated and the desired response, f(t), 1s a unit
pulse. In this case, once the folded power spectrum is
constant, the equalizer turns to be a matched filter which
maximizes the signal to nolse ratio at sampling instants
and minimizes ISI as well.

5.2 The Eigenvalues of a T/2 Equalizer

Using the experience gained in deriving Eq. (4-10)
one can verify that the eigenvectors and eigenvalues of an
infinite T/2-Equalizer are given by (see: [Qureshi, Forney,

91) two eigenvectors, expressed as:

<29£T/2 | *

V) (D)=L, +feqEe  Heq(D,+feq® ) 2T 23l qpd™T T (5-5)

with corresponding eigenvalues
A (£)=|Heq(£)] 2+ Heq (£) |2 when (+) sign holds  (5-6)
and

Az(f)==0 when (~-) sign holds. (5-7)
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As shown before Al(f) can be expressed as the folded
power spectrum when the assumption that H(f) is band limited

holds. Thus:
M (D) =2 [H(£-3) |2 (5-8)

and for £<1/T we have:

(D) = [HOE-D |2 + [H(E) | + [H(E+p) | (5-9)

We see that a constant folded power spectrum in the
T/2 case has the same effect as constant folded spectrum in
the T case: in both cases it is possible, by a judicious
choice of the step size to have the taps gains reach their
optimal values in one iteration.

One may also note that while in the T-case the
eigenvalues spread '1s: subject to changes due to the sampling
timing offset,t, in the T/2 case, where kl (f) does not
depend on 1, the convergence process does not depend on the
sampler timing.

5.3 A Finite T/2-Equalizer with Periodic Data Source

For the case of a channel equalized by a finite T/2
Equalizer which spans a time interval NT and a periodic data
source with period NT, one can show in a way similar to that

employed in Sec. 5.1 that:
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2Feq (1)

n_1., N~z n. 1., 2 , (5-10)
20|HGg- ) P+ RGP+ [Hg+ ) | #3140 ]
-N/2<n<N/2

ny,_*,n j29nt/N
Cqi-H" Gy e

The above result shows that the periodic frequency
response in this case is completely determined by N samples
of the infinite T/2Equalizer frequency response.

5.4 The Eigenvectors and Eigenvalues of a T/2 Equalizer
with Periodic Data Source

For the case of a finite T/2 Equalizer and a periodic
data source the N x N autocorrelation matrix has N independ-
ent eigenvectors and N different eigenvalues whose form is

given by [9]:
1 A
\p = FUIHeQU g ) [?+[Hea ({7 ) [2)  ogmeN-1 (5-11)

1,...* ok 7 v ~ % . -
\Vi ;(HGQ(I\%\),Heq(l\!]-n,—r)°e32ﬂm/2N,,,, ,H (f).eJZﬂ(ZN 1)/2N)T

The other N eigenvalues of A are identically zero. We have
already seen that An is a sample of the folded power

spectrum when H(f) is bandlimited. = One can see from Eq...(5-11)
that in this case, once the eigenvalues' spread is small,

the folded power spectrum is almost Nyquist and the conver-
gence process described in Sec. 4.1 is fast. Moreover, the
optimal equalizer constitutes a matched filter with respect

to channel noise.

5.5 The Minimum Mean Square Error of an Infinite T/2 Equalizer

By applying very much the same procedure outlined in
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Sec. 3.5 one can show that for a T/2 equalizer, the minimum
mean square error given by:

*
le]?min = EH'G'E - gﬁ-gopt

= ¢ Za*a.G. .-Zo,c,opt-Za,d,opt
i3 3 ek K

can be expressed as:

1/2T 2
o ? |Feq(£) | %9, (£)
le|?min = —%— 22 —df (5-13)
-1/2T ¢, (£)[|Heq(£) |*+|Heq(£)|*I+0 *

One notes that here |e|?min is not influenced by 7. Moreover,

by comparison with the expression derived for the T-case one

can see that

le|2min!:§]e]2minT (5-14)

2

which proves that the T/2 equalizer has better performance
which is independent of t. In [Ungerboeck, 8] Ungerboeck

shows by simulation that Eq. (5-14) also holds for a finite
3T/4 equalizer which proves to be free from T changes influence
over a large time interval. 1In [9] a similar simulation was

carried out for a T/2 finite equalizer with similar results.



6. A HYBRID TRANSVERSAL EQUALIZER (HTE)

6.1 A Hybrid Type Equalizer is a T-spaced equalizer with
some additional taps inserted around the reference tap in
between the T-spaced taps. This type is a special case of

the general one presented in Sec. 3.2. Fig. 6-1 shows a
finite length Hybrid-Type Equalizer. Such an equalizer is
expected to have many of the benefits of a T/2-equalizer, but
with the same number of taps can be made to span a larger

time interval. This enables the equalizer to take care of
impulse responses which have significant energy over the whole
time span of the HTE. The more additional taps we insert into
a given T-spaced equalizer, the more the HTE behaviour will
resemble that of a pure T/2-equalizer.

The hope is that the T/2 section of the HTE can avoid
creation of nulls, or near nulls in the Nyquist equivalent
spectrum of the system.

It has been shown in literature (see: [61,[91)
that in the iterative adaptive model discussed in Chapter 4,
there is an additional noise component,g; , due to the taps
gains fluctuations. This noise power is linearly proportional
to N, the number of taps. In order to reduce this excess

noise 1t is desirable to reduce the number of taps in the

equalizer. The HTE is expected to suffer less than a pure

- 47 -
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T/2 equalizer from taps fluctuations noise as it has fewer
taps.

In the following sections the HTE is mathematically
analysed, and some interesting results are presented relating

an HTE to the pure T/2-spaced equalizer, both spanning the

same time interval.

6.2 The Optimal HTE

In order to analyze the HTE model we refer to Fig. 6-2.
It is obvious that every HTE can be decomposed into sections
as shown in the figure.

From Eq. (2-2) we know that:

x(t) = I a;h(t-iT) + n(t)
1

and from the figure

Yk = ykl + ykp_ + yk3
where:
-Ni,
_ . A T, -
ke T h SiT%k-i T S X (6-1)
(@]
2N,
_ _ a7 _
Tk T i=§2Nﬁ_di Xg-d,-i/2 = & t¥xlq, (6-2)
N3
—= b X = eT 6
Ty T ;" Xk-d,-d,-i = £ "*k-d,-d, (6-3)
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We have also defined the desired output as d, = ET.Ek

k

where {fk} are samples of a desired overall impulse iesponse.

The mean square error 1is:

ieklz

- (pma £ (vpmal £y | (6-4)

By substituting Eq. (6-1), Eq. (6-2), Eq. (6-3) into

Eq. (6-4) and making the following assertions:

one gets:

Aq

fi>

lle>

fi>

I > >

fie>

fic>

>

lle>

X X (6-5)

T
* .
Xx-d,; "Fx-4q,

T
Xk-d,-d Fx-d;-d,

X§ " Xk-d,

T
X-d; "Xk-d,-d>

T
Xk Xk-d,-d,

X dy (6-6)




lel? = cMearrerc Begrctone-chea, (6-7)

+ aflop,-aedltopBecadfloyienafleq,

!
I
f
!

By differentiatingEq.(6-7)with respect to c, e and d

we arrive at the following set of linear equations for <,

pt’
Copt 24 dopt
Ay BOWTE]l o (6-8)
B9 A, v |{a| ={o.
v le el

Our task now is to identify the elements of the

matrices Ay, A, Az, B, V, W, and the vectors a;, 0, and a3,

One can quite easily verify that the elements of these
matrices are related to the elements of the T/2 Equalizer

autocovariance matrix as follows:

A, = {Ai j} for: -ZNoji,jifZNl , 1,7 even

b

Az = {Ai j} for: -2N

b

Lt 2N, -1

As = {Ai,j} for: ZN,<i,j<2N; , i,j even




B = {A. .} for: ‘ZNoii’ji‘ZNl’i even; -2N *1<j<ZN,-1,j odd.

1

W = {A. .} for: 2N, +1<i,j<2N

<i
i,; ? <i,j even

3

Vv = {A. .} for: —2N1+liii2N2-l,ZNZijiZNs,j even

Also:
ay; = {ai} —Noiii—Nl
a2y = {ai} ~2N +1<i<2N,-1
agy = {Oi} ZNziiiZN3

The conclusion from the above is that the autocovariance
matrix for the HTE can be derived from the matrix of the T/2
case by deleting those rows and columns which correspond to
in between taps which are not used in the Hybrid version. A
similar result holds for the,g~v¢ctor of the HTE.

6.3 The Frequency Response of an HTE

Assume that the T-spaced sections of the HTE shown in
Fig. 6-2 are infinite. 1If one denotes the T-spaced taps by
{vi} and the in between taps by'{wi}, then the frequency
response of the HTE is given by:
N,

| i . . .
C(f) == vi~e12ﬂle+ LW, eJ 2TET(i42) (6-9)
i , i=-N

In Section 6.2 we described the structure of the



autocovariance matrix for a system equalized by an HTE.
Having at hand this knowledge, we can follow the procedures
described in Sec. 4.3 and in Sec. 5.1 (for the derivations
of the frequency-response of T and T/2 equalizers resp.) and

arrive at the following two equations for W(f) and V(f):

-1

. S A v e J2IKAT/2 4 ¢ 4 oA e~ J2VKAT/2 _ 5 | o-32TAKkT/2
S S A . k,1"1 kK K
KoL ey EANH e
ot (6-10a)
21 . A 2y : A
: ; Ak 1Vle_3 290kT/2, 7 b Ak LHoe )Zﬂ)\kT/2= 5 0‘keJ 292kT/2
k=N ]+l 1 ’ le AH =N 4 ¢ e H
of  emn ot ot ok
(6-10b)

By substituting Eq. (3-17) into Eq. (6-10) and by

making the following definitions
y
W(f) = z w.e
i=-N;
od
A
V() =X v;e

1
ewen

Ny

Y(£) & 3
k=-N;

one arrives at the following two equations for W(f) and V(f):

j29£iT/2°
j2U£iT/2

I 29E (k1) T

[|Heq(£) |20, (£)+021-V(£) +Heq(£)Heq (£, (W(H) =  (6-1la)

Héq(f)Feq(f)¢aa(f)e32“fT
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1/2T
./r Hea (A\)Heq(A)@_, (A) V(A)-Y(£-A)dx + (6-11b)
21/2T
/2T
[Bea(A) |22, OOW(A) Y(£-2)dr+o2W(£) =
21/2T
1/2T

Ak .
Heq(x)Feq(x)@aa(x)eJZ“*T-Y(f-x)dx
-1/2T

Unfortunately, it is impossible to continue from this point
towards solving (6-11) for V(f) and W(f) without making
additional assumptions. First, we note that each of the
integrals in (6-11b) is a convolution in the frequency domain.
Then one can see that when N1+m, Y(f) approaches an impulse
§(f) reducing our HTE case to the infinite T/2-equalization
case, which was treated in Sec. 5.1.

When N1 is finite the function of f generated by each
of the integrals in (6-11b) is a smeared version of the part
of the integrand convolved with Y(f), (see Fig. 6-3) and the
degree of smearing, depends on Nl'
Assuming that N1 is not too small we get that Eq. (5-4)

is still a good approximation for C(f) in this case.
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7. COMPARISON BETWEEN FINITE LENGTH T, T/2 AND HYBRID
TYPE EQUALIZERS

7.1 Computer Program for Comparison’

A Fortran IV program was used to compare these three
cases. The structure of the program is as follows:
The program reads in the channel samples, the index

of reference sample, along with an indication whether the

samples are T or T/2-spaced. Then, the program reads in

the parameters of the equalizer; i.e., the number of taps,
the location of the reference tap and the input signal to
noise ratio. The program computes and prints the channel
autocovariance matrix, the eigenvalues, the resulting equali-
zer optimal taps gains, and the minimum mean square error.
When a T/2 equalizer is run, any HTE's performance can
be computed. Moreover, the program is used to find the
optimal location of the in between additional taps fér an
HTE and a given fixed time span equalizer. Also, for a fixed
number of taps, the program finds the optimal time span, and
thus the number of in between taps. The program is listed
in Appendix: B.

In the next sections, the results for two typical

channels are presented.
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7.2 Optimizing a Fixed-Time-Span EgualizerT

The channel chosen for optimization is the channel used
in [Ungerboeck, 81. The channel impulse response is shown
in Fig. 7-1.

For fhis channel the program computed the minimum
mean square error of a 7T-time span equalizer, starting with
a pure T-equalizer. Then, one T/2-tap at a time was inserted
among the T-taps and all possible T/2-taps positions were
tried. This was done for a high signal to noise ratio in
order to bring out the differences between the possible
hybrid configurations.

In Fig. 7.2 one can see the minimum mean square error
vs the number of additional taps. For each additional tap,
the best and worst HTE configurations are shown. This
yields a "contour" within the limits of which, all possible
configurations lie. The arrays of ones and zeroes on the
graph represent the related configurations; a "1" stands

for a tap which is used and "0" stands for a tap which is not

used in the HTE.

In Table 7-1 we give the improvement in minimum mean
square error, achieved by adding taps, with respect to the
pure T-spaced equalizer performance.

The improvemenf achieved by optimally inserting only

one additional T/2 tap is remarkable.

T . . .

(')In each of section 7.2 and section 7.3, results obtained for one
typical channel response are represented. Similar results were
obtained for other practical channel responses.
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Fig.

7-1:

Channel Impulse Response [81]
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Fig. 7-2: Minimum Mean Square Error
vs Number of Additional Taps
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No. of additional Improvement
taps min max
1 3,7 dB 12.9 dB
2 7.6 dB 13.6 dB
3 11.0 dB 15.0 dB
4 14.3 4B 17.0 dB
5 17§5 dB 18.8 dB
6 17.7 4B 19.1 dB
7 - 20.8 dB
Table 7-1

HTE Performance Improvement
vs Number of Additional Taps




The difference in improvement between the best location
of the additional tap and the worst location is significant.

7.3 Optimization of a Fixed Number of Taps HTE

The program was used to find the time span of an Hybrid
Type Equalizer having 10 taps, for which the least minimum
mean square error is obtained. The channel used in this
section 1is shown in Fig. 7-3. This is an interpolated version
of the sampled impulse response used in [7] and in [9].

In Fig. 7-4 one can see that for a 10~taps equalizer
the optimal time span is 7T. The additional T/2 taps were
inserted in a symmetrical manner around the reference tap which
is located in the middle of the equalizer's delay line. The
ratio between the minimum mean square error of a pure T/2
equalizer with 10 taps>and aﬁ HTE which spans 7T is about 15.3
in this case. We may conclude that in cases where the
channel impulse response is long, and has significant>energy
over most of its duration. A longer HTE is to be preferred
over a pure T/2 equalizer with the same number of taps.

7.4 Sampling Timing Sensitivity

In this section we'compare the sampling time offset
sensitivity of a T-spaced, T/2-spaced and a Hybrid Transversal
Equalizer, all having the same time span but the complexity
is increasing: the T-spaced equalizer have 7 taps, the hybrid

equalizer has 10 taps, and the T/2-spaced equalizef has 14

taps.
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Fig. 7-3: Channel Impulse Résponse
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Mean
f Square
Error
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Fig. 7-4:

Time Span vs Minimum Mean
Square Error (10-Taps)



In order to check the sampling time offset sensitivity,
the channel in Sec. 7.2 was sampled in various phases with
T spaces and with T/2 spaces. For each phase the minimum
mean square error was computed.. The results are shown in
Fig. 7-5. The T/2-spaced equalizer proves to‘be'superior to
T-spaced equalizer; one notes the big changes in performance
in the T-case, and the modest changes in the T/2-case with
sampling timing changes over an interval of [-T, +TJ]. The
ratio between maximum and minimum values of mean square error
in the T-spaced equalizer 1s 18 while the same ratio for a
T/Z—spaced equalizer that spans the same time interval is
about 2. For a hybrid configuration represented by
(10101111111010), (three additional taps. The reference
tap is in the middle of the equalizer) the sensitivity is
smaller than that of a T-spaced equalizer but worse than that
of the T/2-equalizer as expected.

7.5 Calculation of the Autocovariance Matrix Eigenvalues

In this section the eigenvalues of the autocovariance
matrix for the channel used in Sec. 7.1 (Fig. 7-1), are
computed. The eigenvalues were calculated for both the
periodic and the white data source cases, for a T-spaced
equalizer, T/2-spaced equalizer and the hybrid configuration
used in Sec. 7.4. By examining the results (summerized in

Table 7-2) the following observations are made:
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For the T-spaced samples of a real input response we get

a circulant autocovariance matrix. Its eigenvalues are
real and come in equal pairs (except for the largest one,
when the matrix dimension 1s odd).‘ This originates from
the fact that the eigenvalues of a circulant matrix are
given by the D.F.T. of its rows [Noble, 161].

For the T/2-spaced equalizer with periodic source, half
the eigenvalues are equal to the noise to signal ratio in
the channel. The vélues of these eigenvalues is zero once
there is no noise in the system. This implies that in
this case the system given by Ac=ao is overdetermined and
it may have many different solutions for Copt.

The remaining half are in equal pairs. The reason is that
they are equally spaced samples of the channel folded
power spectrum (as proved in Sec. 5.3) which is an even
function. One may notice that the eigenvalues of the T/2-
case with white data source split into two groups. The
seven small ones may be interpreted as smeared values
corresponding to the seven small ones computed for the
T/2-case with periodic input. A similar observation can
be made for the HTE case.

One can see that the eigenvalues spread for all equalizers
is about the same. This implies about equal tap gains

convergence time in the iterative model discussed in
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Chapter 4. This idea is supported by simulations results

in [Ungerboeck, 81 carried out for a non-periodic case.



-

8. CORRELATED LEVEL SIGNALLING AND FRACTIONAL TAP
SPACING EQUALIZATION

In previous chapters the data source was assumed to be
either white or periodic. It is interesting to-verify how
correlated. level signalling performs with Fractional Tap-
Spacing-~Equalizers.

8.1 Correlated Level or Partial Response Signalling

The usual constraint on signals chosen for signalling
over a channel is that they do not give rise to intersymbol
interference. Sometimes, signal design based on this criterion
is very difficult, if not impossible and may turn the system
to be very sensitive to sampling timing.

A design which allows for a certain amount of controlled
intersymbol interference while the transmission bandwidth is
confined to the Nyquistbaﬁdwidthis referred to as Partial
Response Signalling (PRS) or, Correlated Level Signalling
(CLS). The controlled intersymbol interference can be
removed from tﬁe incoming signal in the receiver. On the
other hand, because the number of received levels is larger

for PRS it has a narrower noise margin for a comstant signal

- power,

The first PRS that was employed is called duobinary and
will be discussed below. An extensive study of PRS is in

[Kabal, Pasupathy, 71].

Jt is interesting to verify how PRS influences the
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performance of a channel equalized with a T/2 equalizer.

8.2 The Duobinary PRS and T/2-Equalization

In Fig. 8-1 we show the impulse response and frequency

"response of a channel that allows duobinary PRS.

} n(v)
1
t
= 2T SerZ T 0 T T
AIH(f)l
f
-1 ' 1
2T 2T
Fig. 8-1: Duobinary Tmpulse and Frequencv Response

In [7] it is shown that any PRS system has frequency response
which can be expressed as: H(f) = F(f) G(f)
- Nl -521fTn
where G(f) obeys Nyquist's criterion, and F(f) = I f_ e J
: n=o
where {fn} are the desired samples of the channel's impulse

response. For duobinary: fo o flzl

thus: F(f)=1+e 12T (8-1)

In order to have a channel with duobinary response the binary
data stream is precoded by the filter given by Eq. (8-1).

Moreover the rest of the channel's response should satisfy
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Nyquist's criterion. For the binary input with levels -1

and 1 we may get at F(f) output the levels: -2, 0, 2; three

levels instead of two. This fact increases the probability

of error in the detection [7]. This is the trade-off between

the narrow transmission bandwidth and performance quality.
Assuming that the original data source has power

spectrum @aa(f), after precoding it changes to @bb(f),

where @bb(f) = @aa(f)'lF(f)lz

By Eq. (8-1), we get
— el e 2 -
@b](f) ® (f)e4-.cos?9£T (8-2)

If we substitute @bb(f) for @aa(f) in Eq. (3-17)

and define:

Heqc(£) £ 2.Heq(£)+cosffT

Heqc (f) 2+Heq(f) +cosTfT "

we get for the eigenvalues of an infinite T/2 equalizer the
following expression:
A(f) = {|Heq(£)]|? + [ﬁeq(f)12}°coszﬂfT (8-3)

We recall that the expression in brackets is the folded
power spectrum of the channel (under the assumption that H(f)
is bandlimited). From Eq. (8-3) one may conclude that duo-
binary precoding tends to increase the spread of the eigenvalues
of the system,

Larger spread of the eigenvalues results in longer

convergence time in the iterative model discussed in Chapter 4.



9. SUMMARY

We started by presenting a generalized data transmission
system model and showed how an optimally designed generalized
equalizer can minimize the mean square érror in such a system.
Through Chapters 3 to 6 we dealt with three special cases of
equalizers: the T-Spaced Equalizer, the T/2-Spaced Equalizer
and a Hybrid Type Equalizer. We discussed and compared the
properties of these three models. The T-spaced equalizer's
properties are extensively discussed in literature and its
review, brought here, prepares the ground for the discussion
of the T/2-spaced equalizer. The T/2-spaced equalizer is not
that extensively discussed in literature although it is known
to be superior to T-spaced equalizer in certain features.
Here we derived closed form expressions characterizing the
T/2-spaced equalizers. By these expressions we could show
why the T/2 equalizer is superior to a T-spaced equalizer in
some respects.

Next we suggested a new model, namely, the HTE, that
possesses some of the benefits of both the T-spaced and the
T/2-spaced equalizers. The three models were compared by a
computer program. The results obtained confirmed previous
derivations and assumptions. The discussion through
Chapters 2 to 7 show that a T/2Z-spaced equalizer gives a much
smaller minimum mean square error than that given by a

T-spaced equalizer that spans the same time interval. The



improvement can easily reach 10dB. Moreover, the sensitivity
to sampling timing in the receiver is much smaller in the
T/2-spaced equalizer. Convergence time of taps gains in the
iterative model is about the same, as shown by simulation
results contained in other papers and by a similar eiéenvalues
spread obtained here, for these two cases. The performances
of the HTE 1lie between those of the previous two equalizers.
Its use can be important when a compromise has to be done
between performances and time span, given a constraint on the
number of taps. Larger time span can be vital for cases in
which the channel impulse response is long. In such cases
the longer HTE can be superior to a shorter pure T/2-
Equalizer with the same number of taps. The HTE's sensitivity
to sampling timing is less than that of a pure T-spaced
equalizer that spans the same time interval. Noise enhance-
ment due to channel noise is the smaller in a T/2-Equalizer
while the HTE 1s again in between them. The HTE has the
benefit of a lower complexity relative to a pure T/2-
Equalizer that spans the same time interval, as complexity
is proportional to N, the total number of taps.

In Chapter 8 a brief discussion reveals that PRS has

no inherent benefits for fractional tap spacing equalization.

\
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APPENDIX A
A1 The Derivation of Eq. (3-5)

We start from Eq. (3-4) (which is the definition of the

mean .square error):

ley|? = (rye-dy) rg-d)

Using the vector notations defined in Sec. 2.2 and in:

Sec. 3.2 we get:

e )2 = (M xp-ap) (xf c-a)

By defining the following matrix and vector:

L
A= xpexy
o & 337
= =k "k
we can write
H., T . H
leg|® = ¢ +Asc-a eccrar + |d,|*

c is a complex vector; c = Relcl+Imlc]l . To minimize

Iek|2 with respect to c we have to differentiate it with

respect to Relc] and Imlc] . However it can be shown that

3 2 - < Y ) _‘—2_ d 2
we@ %kl T Itameeylex!” T oselexl

With this result at hand, we get:

-a%-l-ek|2 — 2+Acc-2+a = 0



or:

as.:

A c=0 and the minimum mean square error can be written
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A.I1 The Derivation of Eq. (3-8)

For convenience we start from Eq. (3-1), which 1is

repeated here:

x(t) = I aih(t—iT) + n(t) | (A.II-1)
. i

By substituting Eq. (A.II-1) in Eq. (3-6) we get:

Ak,1==;z a;aj-h*[(k-nk-i+'VT)T]-h[(k—Dl—j+‘VT)T]

+ n*[(k—Dk+'VT)T]'n[(k—Dl+'VT)T] (A.II-2)

A

By defining: @aa(i-j) a;a. the last term in

J’
- A . .
Eq. (A.II-2) as @nh[(Dk-DI)T] , m= i-j , and at last,

n A k-j , we arrive at:

A =

k.1 $,,(m) £ h*[(n-m-Dy+ YT)TI-h[(n-Dy+ YT)TI+é_ [(Dy-D{)T]

X
m n

(A.II-3)
which is Eq. (3-8).

Eq. (3-9) is derived in a similar manner starting from

Eq. (3-7).
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A.III The Derivation of Eq. (3-13)

Start with the transform definition

[

h(t) = j[ H(f)e) 2TEL ¢

to substitute in Eq. (A.II-3) . By this substitution and

by carrying out the integrations first and then the

summation over m and n, we can write:

o , 00

_ PP . j29EmT, o j2In(A-£)T, -j29(£-2)T,
Ak,l_// H*(£) +H(X) Ii(baa(m)e Ilee e

-0 =00

ejZ“kaT-e—JZﬂXDlede+025

ondk.1 (A.III-1)

Define the data source power spectrum as:

A 529 £mT
¢, ,(f) =1 ¢ (me
m
and note that: ¢ e JETUETMIN _ Lopsig-dy
n i

In light of the above, if the integration in (A.III-1) is

carried out on successive intervals of length % and if some

careful manipulations are made we arrive at:
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1/2T
1 ok 1
A =7 J[ [Heq(£)1l -Heq(f)-@aa(f)df
-1/2T .

which is Eq. (3-13), where:

1 . n _
Heq(£) A 5 H(f+fr_1).e j2u(f+5)D1T, j2InT/T

n
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APPENDIX B

PROGRAM
LIST



. ;LAL’" o T == 2)

: DT 2 CTGY el T ) S 0E 0 U 2 CUI0) a0 ) s WETA(ED ) » (0]
le:“’lLH T{LO) s 2505 5D) A TKIS50) +HE1530) JALFA(S0) P (50450)
SD S UNNCE RS O(ZO;TO)oHﬁ(fOoSG).F(SO)

CATA it M UTYy T,/

CALL NOOT L
1'\1.\(1:3\-'::4 \,ﬂ\) VAL s VATE,
L

4.3 FURTCAT(201C WD)
TCALCL T, 2500 LJ.(J(I)vI—quo)
2335 FLPAAT(TIC/ (B35 1060))
DU o KRIZlel1D
K7=1
. EAD(II"":l\)’:‘))LX)(X(I)QIZI’LX)
2190C FOFMAT(IIO/Z(3E1060))
PEAD(IINGZS200) ISAMPL  NeNTAP J[25F
200 FUORMAT( 11G)
IF( JeEDel) GO TO ©=
12 TTAD(IINS2LI2INDS (MD(I) sI=1,NTAP)
21102 FOEMAT(I10/72011)
NDI=HNTAP-ND
T CONTINUE
CALL LTAE(XsLXs ISAMPL s NsCoyNTAP G IREF -Gy LGy VAFNJVAF S OMSE+B5sKIsDs 20K
BT G ALF AL DD MDDy ND W HND1L s P3 Qs SETA)
IF( *eGlhele AMiIDJND,GT,0) G2 TO 12
GC T3 L
12 KT=KT+1
GO TZ 13
L CORTINUE
STCPR
END L
SUBTIUTINT GTAP (X eLXs ISAMPL sNsC o MNTAP 3 IQEF 3y G2 LGyVARN S VARS , OMSEZ WK ]
B eD s Ze KTy ALF Ay BBy MDDy NDHLNDL 3P H3QyBETA)
THIS SULFTLUTINT CALCULATTES AND ORINTS GUT THE TAP CCEFFICIENTS CF
THE TEANSVEFZAL FILTER WHICH MINIMIZES THE MEAN SQUARE ERROUR GIVEN
THLE CHANNEL PULSE FESPONSE AND THE DESIRED CHANNEL-EQUALIZEFR PULSE

NTOPOUNDT e THD THANSVERSAL FILTZE HAS A TAR SPACING WHICH MAY ABE A
SULMULTIFLLE CF THE SYMAO0L SFACING. THIS SUBRCUTINE ALSO CALCULATES
AND PRINTZ THE NCSULTING MEAN SQUARE ErRROR. 1T ASSUMES THAT TRI
THPUT SY.‘f'E;TLS APE UNCIORRELATED WITH VARIANCE VARS AND THAT THE N3ISE

[a¥eTe¥alaTalelaliskalaRaloialaliaia et akaEata o ot aNe!

17 wHI™C 17H VAT TANCE VAFRMN. SUBROUTINE GELG IS USED TO SOLVE
SIMULTANSCUS TOUATICNS.
X - I FUT ARTAY CUONTAINING THE CHANNEL PUSC PESPCNSE 3SAMPLES
(W ITH THE SAMT SAMPLE 3PACING AS THE EQUALIZER TAP SPACIHLG)
LY ~ MUMLES OF ZAMPLES IN X
ISAMPL - SUDSCHIPT OF THE PCFERENCE SAMPLE (1 TO LX)
¥ — SATIC ©F THE SYMDOL SPACING TQ THE TAP SPACING (AN INTEGES)
C — CUTPUT ARRAY 3F TAP CGEFFICIENTS
N™AC NUMBER CF TAY COEFFICISENTS (MAXIMUM £0)
17 EF — DESIFED PO3ITION OF REFSSENCE TAP
5 - AFRRAY CONTAINING THE DESITED PULSE RESPONSE SAMPLES (WITH
SPACING TQUAL TC THE SYMBOL INTERVAL)
LG - NUMKET OF SAMPLES IN G
VAFN - VAFIANCE OF THE HNOISE SAMPLES
VAR S - VAZ IANCE 0OF THE INPUT SYMHCLS
CAST ~ ACAN ZQUASE EPRGCR AFTER FQUALIZATICN
o) - WLFF ATRAY WITH NT AD’NTAD SLEMENTS
IMPLICLIT FEALSS(A-H,0-7)
CIMENSTIUN Z(NTAP ,NTADP) sWK(S0) +H(1500)+F(S0)
DIMINS ILH: X(LX)sCUMNTAP) s G(B50 ) BINTAD GNTAP) ZNG(S50) sDINTAP),ALFA{NTS
*P),SS(NTAP,NTAD).BF*A(N31).D(NDl.Nox).o(wol,NTAD)
CIMENSIUN MD(NTAP)
DATA LETHC/ DHC(/,1QUT/E/
C
IF(KTGTe1) SC T2 21
I1S=1SAMPL+]1RE -
ISHNT=IZ+NANTAP
C
C FILL IN THE SQUARE ARTAY & STARTING WITH TERMS ABUVE THE DIAGONAL
EVNVESVAEN/VARS
2T 40 I=1.MNTAP
C(I1)=0.0DV
ALFA(LI)=C(I)
SUM=F VNVS
DI 20 J=1.NTAP
193L=1347—1+((J+1—1>rT)/w)»
INJ=T1-J
D0 10 K=IBEGL XN
KK=K+1MJ
SUM=S UM+ X (K) =X (KK)
10 CONT INUE
20 S(1,J)=5UM



i

DO711 I=1,NTAP
IF(MO(1).EQ.0) GO Tn711
Il1=11+1
PETA{II)=ALFA(IL)

L(:;J): Vo
UM Ve UL
i C 2T 1N
9 COrTINuUE
COFTLL 1Y THL SUST T THY AU DAy 3
IF (A0 et al) S0 7T 73
OU L IT=2 L TAR
JEND=1-1
0 L0 J=1 6 JEHD
ST SJ)=O0U. 1)
:‘J(IvJ):i'_’(Jvl)
50 COCNTIMUL
0 CONTINUE
C
7o lJio=1
TO=HNTAPR
IZ=NT AP
IF(KT«GTal) GO T 71
TF( NeEQ,1) G0 T 78
IF( NeFGal) GU TO 85
79 wRITTCICUTS3100) ((3(14J)Y3T=1NTAP) +J=1NTAP)
1O FOOMAT(IHL L, 10X, 30HTHANKEL AUTOCOFQELATI ON
210X 15(2H-=)/(1HDs 7(1X,F1043)))
o] SR U o | :
SE WIITODCICUT,3110) ((B(I+J)»,I=1+NTAP),,J=1,NTAP)
1110 FORMAT(IHI 19X, 30HCHAMNEL AUTOCORRELATION MATRIX/
MIOXS1D(2H-~)/(1HO 214 (1XsF 743)))
101 vRITE(IDUTLZ2200) N
3200 FORMAT(IHC, 10X+ 31HTHE SYMBCOL-TAP SPACING RATI
Z10A22(2H~--))
71 CALL VOVTFE(E28,NTAP,IS3,H)
CALL ZIGRS(HINTAPZTJUCEyD 2 Ze21ZsWKyIER)
WEITE(LITOUVUT 2 3300) (D(1I)sI=1,NTAP)
2300 FOUPFMAT(1IHO, 32X, 16HTHE CIGENVALUES:/
:—‘(E_ d.l:))
C FILL IN THE SIGHT HAND SIDE VECTCR C
DL T2 J=1,LG
I153J=154(J~-1)%N
IBCG=MAX0(14I5J-LX)
IF(ITEGaGTeNTAP)Y GO0 TC 100
ITND=MIND(INTAP,ISU-1)
DI ED I=1RIZG.IEND
KRK=18J-7
ClI)=C{IV+5(J)*XX(KK)
ALFA(IY=C(1)
S0 CUNTINUE
2¥¢) CONTINUT
100 CALL GELG(C D3, NTAP,1451.00~7,1E2)
IF(IEFJNE.Q)Y wRITE(IDUT,4000) IER
D2 110 I=1,NTAP
110 MO(I)=1~-1FEF
WRITE(ICUT S2000) (LETRCG,NCG(I)ClI)sI=1.NTAP)
MCT=R=(1S-2)/1+1
MEND=(LX+NTAP-IS) /N+MCTE
SUMIO=0. 0
DU 120 M=1, MEND
AUX=0. 0
K=M-MCTF
ISK=IS+K%h
JOEG=MAXO(1 4 1SK-LX)
JEND=MING( MTAP,IS5K-1)
DO 120 USJUBSG, JEND
KK=13ZK~-J
AUX=AUX+C (I ) R X(KK)
120 CONTINUL
KG=K+1
IF(KG GL.L.AQD.mg.LL.Lu) AUX=AUX-G{KG)
SUMSU=IUMSQ+AUXRAUX
130 CONTINUE
IFIKGeGL L) G2 TO 139
IBEG=KG+1
D; 140 KG=IQREGLLG
MSQ=SUMSQ+G(KG )&%
140 cuh-luu:
150 SUMC2=040
DO 1606 =1 ,NTAP
1€0 SUMC""‘CUMC¢+ ( Y% 2
LH;F VARSHSUMSQ+VARNSSUMCS
WRITE(IOUY s 3000) OMSE,NT RE
IF(NaNE<2) 720 Té} 2001,N AP, IREF
21 I1=0

MATRIX/

=
[92]
[AV]

(X CROSS—-CORFELATED wITH G)



FL712 J=1,17AR
QT 1)Y= (T1,0)
710 (‘.L..‘T}f\t”lj
711 COi.TINUL
J1= 2 :
3710 J=1 .MNT AP
IF(HA0(J)«EQeG) GO TOQ713
JI=Ji+1
10T =T AP =MD
TLT71E I=14MD1
PlIs01)=Q(1,4J)
712 CONTINUE
715 CONTINUD
16=101
I1Z=NHD1
CALL VOVTFT (P 3ND1 oI5 oH)
CALL T IGRS(HsMDI41J0R,DsZ+12Z+.WK,I1ER)
WRITI(I0UT, 37200) (D(I)sI1=1,ND1)
CALL GZiLG((b~ T'\.D,M"l,l,l.OD-7.IZ.’~“‘)
DO 200 1=1.NTAP
20¢ C(I1)=0.¢DC
J=c
GO 210 I=1,NTAP
IF(AD(1).EGa1) G T0O 211
GO T 210
211 J=u+1
C{I)=BETA(J)
210 CUNTINUY
VEITE(ITUT $5901) (MD(I),1=1,.NTAP)
5001 FUFRMAT(IH1 2 3X,21HHYDRID TYPE EQUALIZEER/3X.17(1H-)/ .
FIHO s 3X s 1£HT /2 TADS USED:IL2012)
vEITE(IGUT,1200) (LETRCLNU(I), C{I)sI=1,NTAP)
1000 FURMAT(1HO,42%,33HTAP GAINS 0OF THE HYBRID EQUALIZER/
{117 09EXsS(BXsA2y1393H) =4 1PE11.4) 1))
MCTEO=(1S=2)/N+1
MEND=(LX+#NTAP=IS)/N+MCTD
SUMLA=0.0 '
DO 1301M=1,M0ND
AUX=0a.0
K=A—-MCTF
I SK=I S+K= N
JOTG=MAXO(1e ISK-LX)
JEND=MINC(MTAP, ISK—1)
DG 1201J=J3EGs JEND
Kk=18SK-J
AUX=AUX+C(J) =X (KK)
1201 CONT INUE
NO=K+1
IF(KGaGEel «ANDe KGelLEoLG) AUX=AUX-G(KG)
SUMSEG=SUMSO+AUXEKAUX
1201 COITINUE
C
TF(KG .6 JLG) GO TD 1501
IGES=KG+1
DNCO1401KGZIBEGLLG
LUMSQ=SUMS G+ G{KG ) %x%p
1401 CUOMTINULC
C FIND THE SQUAPED DISTR®TION DUE TO NOISE
1501 SUMCZ=0.0C
OO 1£011=1,NTAP
1601  SUMCZ=SUMCT+C(T ) xx2
C
(MSTE=VARSHSUMSQ+HVARNSSUNMCE
WERITE(IOUT, 30C0) OMSELZNDIL L IREF
2GC1 CONTINUE
FETUSN
C
2000 FLOMAT(1HO» 45X 33HLTAST MEAN SQUASS CRROK EQUALIZER/
* 1HU s 42X+ Z83HTAP GAINS UF THE TRANSVERSAL SQUALIZER/
3 (1H +4Xs0(0XsA25I3+s3HY =41ME1164)))
3000 "c SMAT (LHOs 20X IOHMTAN SQUARE SEQRCR =,4,1PC11.27/
1H + 40X, 15HNUMBER GOF TAPS =,12,10X»15HREFERENCE TAP =,
4000 FCFMA*(IHO,2JX-33H“% ERRCP IN GTAP-GELG, ERRCR CODE =,I343H%%
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CUL TUTIMT D SLL (T e Ay My TP, 1FT)
13/11/75 P KADAL
Tille CUSECUTINDG SCLVES A SYSTLM TF SLYULTANECUT EQUATIONS USING
SAUZSTANL CUININATION WITH COMPLETE DIVOTING. THT INPUT MATRICTS ACTZ
SYCTOD COLUMNG 150 11 SUCCESSIVE LOCATIANSG, 2 RETURN THE SO LU*ION 1s
CTUSED COLUMNWIAE ALS3Ce THT PROCEDUI Y GIVES FESULTS IF THE NUM3ER
LT SQUATIC N< MOIS GRETATER THAN Z5RC AND THS PIVOT SLEMENTS AT ALL
SLIMIMATION STOPS ARE DIFFZOENT FROM ZERC, A WARNING (IFP=K). IF
G1IVENS, IJQIC“C% A POSSIALE LUSS OF SIGNIFICANCE. IN THE CASE OF A ,
WTLL LCALED TATRIX A AND AN APPIOPEIATR TOLTKANCE EPS, 1ER=K MAY RE
INTERPRITED TO MEAN THAT MATRIX A HAS THE RANK Ko !
o — TI4D M Y N OMATOIX CF RIGHT HAND 3IDE VECTNFS., EACH VEICTOR
19 A COLUMN OF Re ON RETUDMN S CONTAINS THE SOLUTICN OF THE
TQUATICNG,
A - THE B gy 4 CTEFFICIENT MATPIX ¢DESTRIYED).
H - THC NUMBEF OF EAQUATIONS IN THE SYSTCM.
N - THT NUMBER OF VECTCSS IN Fo
op ~ AN IMNPUT PARAMETER WHICH IS USED AS A RELATIVE TOLEFRANCE IN
TCE‘IVQ FCR LDSE OF CIGNIFICANCE.
1°F - TESULTING EZ22X CODE,
1€F7= 0 - NO EFROF .
ITR==-1 = NG 92CSULT BECAUSE M IS LESS THAN 1 GR A PIVOT
Ff EMENT AT ANY ELIMINATION STEP IS EQUAL TG 0,
IZR= K = WARNING OF A POSSITLE LOSS OF SIGNIFICANCE AT
ELIMINATICON 5T5D K+t (THE PIVOT ELEMENT WAS LES
THAN 0OR EQUAL TO THE FELATIVE TCLERANCE EPS TIMFQ :
THE GREATEST ELEMENT (ABSCLUTE VALUE) OF MATRIX A)d
WPLICIT FEALEB(A-H,0-2Z)
DIMENSTIOMN A(YMe4) s R{(M,1)
IF( 4elLT«0) 302 T3 260
15+ =9
FIND T LASGEST ELEMENT IN MATRIX A
APIV=0e0
GO110 I=1,H4
G 102 J=1,M
TorP=DALS(A(ILJ))
IF(AFPIV.3FETEMP) GO TO 100
APIV=TE M0
IRC =1
JcoL=J
CUNMT INUE
CONTINUE
A(IR s JCOUL) IS THD PIVAT SLEMENT
APTIV CONTAIMS THE A3S0LUTSE VALUE COF A(IFRQW,JCOL)
TOL=UP S ARIV
SLIMIMNATION LLC?



HAND

ONAL GF

SIDE

MATRIX R

MATRIX A

PIVOT SEARCH

-
C  TEST ON SINGULADITY
IF(AP IV Lt «De0) GO TO 24
IF(ITRLEG.C LAND, ARPIV, LL.*OL) 1TR=K-1
~
~
PIVI=1 . 0/ZA(IF0W,JC0L)
C
C 2OW PEDUCTICHN AKRD BoW INTERICHANGT IN THI RIGHT
D120 J=1N
TEMP=LIVIHR(IRIW.J)
FLIFCHsJd) =T ({KeJ)
PRy J)=TEMP
12¢ CONTINU
IF(K,0F M) G0 TO 210
IF(JCUL «LESK)Y 3O TO 140
C
C  CULUMIG INTEECHANGE IN MATRIX A
e 130 I=K,A
TEMP=A( I LK)
A{I.KI=A(T,JCCL)
A(l yJCCL)="EMP
132 ONTINUE
C
C  =mow IMTOECHANGE AND PIVCT ROW RIDUCTICN IN MATRIX A
140 D130 J=Re M
TEAP=PIVIHA{ISOW,J)
A(IRLW s JI)Y=A(KLJ)
A{K,sJ)=TEMP
150 CCITINUE
o
C  3SAVE CCOCLUMM Ib*tﬁ ANGE INFORMATICN ON THE DIAG
A{K,K)=JCC
C
C ULEMENT REDUCTION IN MATRICES A AND R AND NEXT
APIV=(.0
KiP1=K+1
DC 1920 I=KP1,M
PIVN==A(I ,K)
C
DS 170 J=KP1,M
A(IsJ)TA(T 4 J)+PIVNRA(K, J)
TEMP=DABS(A(1,J))
IF(APIV.GE.TEMP) GO T3 17D
ARPTV=TT MP
IRDw=1
JCoL=J
170 CONT INUT
C
D 180 J=1aN
180 ST s J)=F(T9d)+PIVNRR(KyJ)
C
1¢e CONTINUE -
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[RED)]

OO0

It (4. Gel) il 70O 250

DU 240 1=24+4

111=11

I11I=11-1

JCLUL=A(ITII1)+0.%

DD 2306 Jd=1,.H
TeMP=R(I1,J)
26 220 L=I11,HM
TEMP="EMP—A(IILL)*2(L,,J)
TL{TII,J)="(JC0L,J)
S{JCTL»J)=TEMP

CoNT INMUE



