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ABSTRACT

This thesis consideré- the convergence properties of adaptive equalizers used
for data transmission. In: the conventional form of a tapped delay line equalizer,
the tap spacing is equal to the symbol interval T. Two other cases are discussed.
The ffa.ctional-spaced equalizer has tap spacing less than T ( T/2 is considered in
detail). A hybrid configuration uses both T spaced and fractional T spaced tap is also
considered. From the mathematica.l derivations and the computer simulations the

properties, the relative advantages and drawbacks of the three cases are analysed.



RESUME

Cétte theése traite des propriétés de convergence des égaliseurs: conventionnels
dans le domaine des transmissions de données. Dans un égaliseur conventionnel la
distance entre perforations correspond 2 l’intervalle entre symboles 7. Deux autres
configurations sont ici considérés: I'égaliseur 4 espace fractionnel dont la distance
entre perforations est inférieure 3 T, et l’égaﬁseur hyblfide, utilisant des distances
ae perforation égales & T et inferieures & T. Les différentes propriétés, avantages et

inconvénients des trois typés d’égaliseurs sont comparés sur une base mathématique

et de simulation par ordinateur.
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CHAPTER 1
INTRODUCTION"

1.1 Adaptive Equalization

Digital data transmission s&stems are oftén bandwidth limited. Moreover, the
channel characteristics may ch'ange for each transaction or even during transactions.
The recent applicaﬁions of computer communication on the voice-bandwidth cha.n-'
néls, and satellite channels has raised a new interest in the optimization of data

transmission systems.

The transmission gihannel tends to degrade the tra.nsmitted‘signa.l, caﬁs_ing
difficulties in i'ecovering the original data. One of the sources of degradation is the
additive noise due to background thermal noise or impulsive noise. bThis noise can
be reduced to some extent by using bandpass filters to exclude out-of-band noise.
Another form of degradation is the time dispersion, which extends the duration of
the input signal, causing the adjacent data symbols to inteffere-with each other.

This effect of overlapping of received symbols is called Intersymbol Interference (ISI)
[R.W. Lucky, J. Salz and E.J. Weldon, 1968].
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Bandwidth efficient data transmission over the real analog channels requires
equalization to reduce intersymbol interference. The idea behind equalization is to
reduce the cross effects between the individual symbols using the past and the future
samples. In practice, the equalizer is implemented in the form of a transversal filter
or a tapped delay line. The weighted outputs of the delay taps are summed to form
the output of the filter. An automatic or adaptive equalizer varies these tap weights
by using one of the methods described in [Gersho, 1969}, [Hirsch, 1970], [Lucky,
1965, 1967], [Chang, 1971].

There are two basic kinds of adjusment procedures. The first one, often called
automatic equalization, is done by sending a string of isolated test pulses before
the actual data is transmitted. The equalizer tap coefficients are kept constant after
this ‘training’ period. In the other method, ‘adaptive equalization’, the equalizer
settings are updated directly from the received data. Adaptive equalizers minimize
the degradation of the signal using, first the a priori known training sequence, and
then an estimate of the data during transmission. When actual data transmission
starts, the distortion is already reduced to a small value. At this moment, the
equalizer can use the reconstructed output signal of the receiver as a reference
signal. This kind of operation is usually referred to as decision-directed mode. The

effect of wrong decisions is usually negligible after a successful training period.

Early equalizers used a tap spacing of T, the symbol spacing period. Recent
studies on equalizers showed that further improvement in performance can be ob-
tained using a tap time spacing of less than T. These equalizers that have tap spacing
less than T are called Fractional-Tap-Spaced-Equalizers. This type of equalizer has

been analysed by [Ungerboeck, 1976}, [Gitlin and Weinstein, 1981), (Qureshi and
Forney, 1977].

In digital data communication systems, not only are different channels used

-9 -



each time a transmission is requested, but the channel itself may have time varying
‘characteristics. A data transmission is made up of a training period which is followed
by the transmission of the actual data. The start-up time is defined as the time -
during which the receiver locks on to the carrier, establishes bit synchronization
and performs automatic equalization. This overhead takes a considerable portion of
the total busy period. For the early automatic equalizers, settling times in the order

of seconds have been reported. Since then great improvements have been achieved.

1.2 Thesis Overview -

In this work, we study the adaptation behaviour of conventional, fractional-
spaced, and hybrid equalizers. The idea of a hybrid equalizer was first propesed by
P. Kabal and studied by [Nattiv, 1980]. ;

The second chapter describes a baseband digital data communication system
using passband equivalent model for the sfstem to be studied. The problem of in-
tersymbol interference is also discussed. The following chapter consists of an over-
view of o_ptimal minimum mean-square error equalization. Cha;;ter 3 also includes a
study of an equalizer analysis with general tap spacing. In Chapter 4, the properties
of f,he conventional, fractional-tap spaced, and hybrid equalizers are discussed in
terms of their frequency characteristics, eigenvalues and minimum mean-square er-
ror. Chapter 5 starts by introducting algorithms used for the adaptive equalizers,
This is followed»by a summary of the steepest descent algorithm for tap adjust-
. ments. The chapter concludes with the discussion on the conQergence properties of -

the equalizers. The description of the simulation and the results are presented in

Chapter 6.



CHAPTER II
BASEBAND DATA COMMUNICATION SYSTEM

II.1 Model of Digital Communication System

The structure of a digital communication system can be modelled as in Figure
2.1. The three main blocks are the ﬁransmitter, the channel and the receiver.
The source symbols at evéry T second intervals are passed through a bandlimited

filter whose impulse response is k4,(t), and gr(t) is generated at the output of the

transmitter,

gT(t) = Z anho(t - nT)- (21)

This signal is fed to the channel which is viewed as a filter of impulse fesponse

hw(t). Random noise n,(t) is added by the channel and the final form of the signal |

is,

gr(t) = gT(t)*hm(t) + n,(¢). o : (2.2)

_4_
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This received signal pa,sses‘ through the receiver block which consists of three parts
a; filter, >a. sampler and a decision unit. The same model serves to study modulated
pa,ssband systems. In this case the parameters take on complelfc values, repvres,enting
the quadrature and in phase components of the baseband equivalent parameters.

Before the sampler, the signal is of the form,

r®) = 3 anh(t — nT) +n(d), N (2.3)
where '
- h(t) = hy(t)rhm(t)h,(2), ' (2.4)
and |
| n(t) = ny (£)+h, (2). (2.5)

The sampled signal is given by,

r(kT) = 3 auh(ET ~ nT + 1) + n(kT + 7). o (@29)

The sampler is assumed to be in synchrony with the symbol interval but with a

time offset r . Define

e B r(kT +7), I | (2.74)
A .
ht—n = BET —nT + 1), _ , (2.78) -
ne 2 (kT +1). (2.7¢)
Then
k=D Gnhnt + i, | (2.8)

n
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are the samples input at the decision unit. The sampling time is offset by r with
respect to source clock. The final: block outputs a symbol ax which is an estimate
of the input at the source.

When one starts to look at optimizing the above system, the approach might be
either to optimize the transmitter or the receiver, or both, if enough knowledge is
available about the system. In general, the receiver is optimized in order to improve
the mean-square error, output Signal-to-Noise Ratio (SNR), probability of error etc.
This can be achieved with some improved designs of receiver filter and decision unit.
In this work, we study the receiver when the channel characteristics are unknown
at the receiver end. Our-approach is to minimize:the mean-square error, thus to

reduce the effect of both intersymbol interference and noise.

I1.2 Intersymbol Interference and White Noise

The additive noise encountered by the system causes errors in the detection. The

other concern for the designer of the optimal receiver is intersymbol interference.

Using,

R = z Gnhk—n + i, (2.9)
then (2.8) can be written: as,
Y = apho + Z Gphr—p + N, (2.10)
nokk

The desired output is the axhy term in the above equation, this corresponds to the
ri received sample. However, the rest of the terms are undesired components. These

represent the noise and interference due to the tails of the system impulse response.

-1_



This interference due to past and: future samples of k(t) at the sampler output are
referred to as the Intersymbol Interference (ISI).

To eliminate the ISI, the Nyquist criterion can be applied, the derivation of
which follows. For a desired response of an impulse, i.e. no ISI at the sampling

instants,

ho n=0_0;
hy = { , (2.11)
0 otherwise.
an equivalent condition is that
k() Y 8(¢ — nT) = hob(t), (2.12)

where 5(t) is the delta function. Since Y, é(t — nT) is a periodic function, it has a

Fourier series representation as,

Y 6t —nT) = % > exp(j%tﬁ). (2.13)
Applying this to (2.12),

W) Y expl(i22) = Tha(), (214

and taking the Fourier transform of both sides

S H(f- %) = Thy. (2.15)
The lefthand side of the above equation is a periodic function of f with period 1/7.

The first period is called the Nyquist equivalent of H(f) which is designated as,

Ho(f)=Y H(-7) 1< o (2.18)

_8 -



It can easily be observed that for the elimination of intersymbol interferance H.,(f)
should be flat. This amounts to the requirement that at each sampling instant all

ha’s be zero except ho.



CHAPTER III
OPTIMAL MINIMUM MEAN SQUARE ERROR EQUALIZATION

II1.1 Structure of Optimum Receiving Filter

In this chapter, the structure: of the receiver is discussed and an optimization
analysis is carried out. The possible criteria to optimize the receiver are introduced,
and one selected, namely minimization of the mean-square error.

For a receiver structure as in Figure 2.1, which has a receiving filter, a detector
and a decision unit, Ericson proposed a model which performs at least as well
as any other filter. He shows that the optimum linear filter can be decomposed
into two parts, a matched filter and a periodic filter. The former is a filter of the
same bandwidth as that of the channel, while the: latter can be implemented as a

transversal filter. Then

H(N) = e D P() 6

for
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and P(f) is periodic with period 1/T. H,(f), the receiver input filter performs at least
as well as any other linear filter for the minimization of intersymbol interference,
signal-to-noise ratio, and error probabilty criterion.

The periodic frequency response of P(f) can be represented by an infinite analog
transversal filter. Such a filter is shown in Fig. 3.1. Based on the above result, the
receiver of a basic communication system can be shown as in Figure 3.2.

The term Hy*(f)/®nm(f) is the: frequency response of the filter which is matched
to the signal waveform. This structure can be summarized as follows: the matched
filter maximizes the signal-to-noise ratio at the decision instant, while the transversal
filter P(f), reduces the intersymbol interference that still corrupts the signal in its
input.

Hovever, the above receiver model is impractical due to the following reasons;
(i) An infinite length transversal: filter cannot be realized. (i) Since the channel
characteristics are assumed to be:unknown, each time a connection is made, it is
impractical to realize a matched filter (or even when the same channel is used and
the channel itself slowly changes in time)..

In practice, only a cascade of a lowpass filter and a transversal filter is used.
Another simplification in: the implementation is to place the sampler in Figure 3.3
before the transversal filter (to keep the samples in digital form for use in the
calculation of the optimum tap coefficients). This reduces the transversal filter to
a shift register. The adaptation procedure can then be performed digitally. One
more point is that the transversal filter can be used to minimize the intersymbol
interference by forcing the overall response H(f) to obey (2.14). This causes the
Nyquist equivalent channel to be flat. The name equalizer is given for that reason.

The final form of the suboptimal:digital receiving end is summarized as in Figure

3‘3.

- 11 -
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I11.2 Criteria for Optimal Receiver Design

To design the receiver, one must first come up with a receiver structure. Then,
given this structure, the filter H(f) can be optimized. But, due to intersymbol
interference, there are several different optimization criteria. One of them is to try to
minimize the error probabilty resulting from the noise and intersymbol interference,
but this approach leads to quite intractable calculations. To obtain the solution,
one has to solve a set of complicated nonlinear simultaneous equations. A much
simpler approach, is to eliminate the intersymbol interference, and then minimize
the error probability subject to some constraint. Maximizing the signal-to-noise
ratio at the sampling instants can also be used as another optimization criterion.
The equalization is achieved by finding a set of gains for the equalizer taps. These

tap coefficients can be put in a vector form, (*)

C = (C—Nyy-+-10y--+16Ns) T, (3.3)

where there are N, taps to the left, N, taps to the right of the reference tap (see
Figure 3.4). The values of these taps are chosen so as to minimize the mean-square
error between the output of the data source and output of the decision unit in the
receiver. In the next section, the optimization problem is solved for a generalized

equalizer in which the spacing between the taps is arbitrary. The special cases to

be studied are derived from this model.

®[.}T is the transpose of the vector.

_16_
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I11.3 Generalized Optimal Mean Square Error Equalizer

The generalized equalizer with arbitrary tap spacing is shown in Figure 3.4.

Using an analog version of the equalizer (a tapped delay line) with a continuous

signal at its output,

z(t) =Y an h{t—nT)+ n(t). (3.4)

For arbitrary spacing, D;T of tap spacings then, the output of the equalizer can

be written as:

y(t) = Z ¢; z(t — D;T). (35)
3

The j* tap has a delay of D;T associated with itself. The above output is then

sampled at symbol intervals. The output of the sampler feeds the following signal

to the_ decision unit

y(kT +7)=_c; 2(kT —D;T + 1), (3.6)
j .

where r is the sampling time offset with respect to source clock. Using the vector

notation:

v=C"z _ (3.7)

where: C is the vector of the tap coefficients;

T A (., 2(kT — D_,T),2(kT — DoT), (kT — D, T), .. (3.8)
- 18 -



n 2 y(kT + 1) . (8.9)

Let the desired response of the overall system be f(t). For a desired output, d(t),

dit) = f(t) *Y_ 6nb(t —nT)

=Y a, f(t—nT). (8.10)

«

Clearly, a special case occurs when f({) is equal fo §(t). The main reason for the
presence of a general f(t) term is to include partial response signalling. For partial
response a correlation is introduced between the past and the present symbols. In

this work we keep this term to be: §(t) and try to eliminate intersymbol interference

due to the channel characteristics.

The samples of the desired signal at the output are,

dp 2 dkT)
=Y an f(kT —nT), (3.11)
dp = a7 f, (3.12)
where
Te & L 71k = )T, 7ET], 7k + DT, T (3.13)
By definition the error is:
o 2y dh ' (3.14)
Then the mean-square error is
% el = ve — d&) (e — da). (3.15)

- 19 -



The above expectation is over the sample space a;. The block diagram for the

generation of the error signal is shown in Figure 3.5.

The minimum mean-square error can be achieved for the particular setting of
tap weights. The calculation for: finding the optimal settings which lead to the

following equation can be found in Appendix A.1.

C=A"%g (3.16)

where A is an N by N channel autocovariance matrix whose elements are given by:

A;j = z*(kT — DT + 7)2(kT — D;T + 1), (3.17)

and o is the vector having the elements:

a; = dp* z(kT — D;T + 7). (3.18)

Inserting the expression for z(kT — D;T + r) as given by,

(kT ~D;T+7) =Y a; h(kT — D;T + 1) + n(kT — D;T + 1), (3.19)
j

into the equations (3.17) and (3.18), we get an equation of the following form (see

Appendix A.2)
A= 323 0a; W(k =Dy i+ DT] Wk —Di—j+D)T], (3.20)
i J

o =3 bea(m)[}_ S(nT) h*[(n—m—D;+ DT, (3:21)
where: |

- 20 -



‘10ubig 044 [0 UOKIDIIUIE) G5 24nbiy

y )/
P ASNOISAY
agyIsaa
HAZITVNOH
¥p

(1)*u

(1)“y

TANNVHO

¥p

21




/“"*‘g  #aal) is the autocovariance function of the data source,

J #nn(.) is the autocovariance function of the noise,

() is the desired overall response.

In the conventional case, where the tap spacings are all T, i.e., D; =1, and the

data source is uncorrelated, with power o2 and the noise is white with power o2, we

have:

a; =02y f*(nT)hl(n—i + %)T]. (3.23)

The elements of the A matrix can also be written as follows

Avy=02 3 K(n— DITIh{n— 1)T +G = )T) 1+ 026, (3.29)

With this final form of the matrix elements, it can easly be seen that the (i, )

position in the matrix depends on: (i — j). A matrix which has this property is called

Toeplitz and is a special case for the conventional equalizer. In general for D; other
than ¢, A is not Toeplitz.

A more general case is the one in which D; = i{/n, in this case there are n taps

for each T sécond interval. The most important case for our purposes is when the

taps are spaced by half the signalling interval. Using the transforrﬁ relation,

+o0

W= | H() explszast) df,

to express the samples of A(t) in the above equations for the A matrix elements, it

can be shown that (3.20) and (3.21) can be written as (see Appendix A.3):

o4
o4

- M= [ B 00l -+ 80001 DT .29
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where

Boa(f) & 3 9(m) exp(~2jxfmT),
‘a.nd
BE(f) & ZH f+ -) expl(—g2(f + )1

For, the conventional case discussed earlier

+
s

C A=

M| -
e~

where H,,(f) is the Nyquist equivalent channel defined earlier (for r =0) as

®0o(f) |Heolf)2 exp(—s2xf(i— E)T) df + olbyy, (3.27)

|

H.(f)= E_H (7 + %) exp(a'z%ri)-

By using Eq. (3.23) and the Fourier transform relations of 4(t) and d(t) one can show

that for the conventional case

+
3+

£

I
=
e

He*(7) Feolf) ®aalf) exp(—i2nfr)expli2afkT) df, (3.28)

=]

where F.,(f) is the Nyquist equivalent of the desired overall response. For the uniform

case in which D; = i{/2 the elements of the autocovariance matrix can be written as

+37
s= 2 | Gudll) Il expl=g2nf(= D) df + o2, (329
-3
where k and ! are even,
+37
1 ol 2 . T 2
At =17 | Pealf) [Heg(/) exp(=s27f(l = k)3) df + ondny (3.30)

»
-5
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where k and [ are odd,

+
Sk

Mg =5 [ ®uls) Bot) Bl erpi-stnsQ=k)3g) df @3y

+ar
Ari= % [ Cuald) Bt (1) Bl expl—stns Q= B)3) f 632)

where is k even and [ is odd, and

Bo(n) & Y(-0H( + R exslitrr).

It is now apparent that A is no longer a Toeplitz matrix. By using Eq. (3.23) with
D; = i/2 and the transform relations for j(t) and A(t) it can be shown that the

elements of the a vector are given by

+3r
o =.;'_ / H*oo(f) Feg(f) ®oalf)exp(s2nf7) exp(j2xkf%) df (3:33)
—sr
for even k, apd
1 i Ao . . T
v = [ Hilh) Full) eall)expliznsr)expliznkss) df (334)

-3
for odd k.

This generalized equalizer analysis will serve as the basis for the analysis carried
out in the rest of the thesis work. The studies on conventional equalizer, fractionally-
spaced equalizer and hybrid equalizer will refer to this chapter, as special cases of

the generalized equalizer. In the next chapter, we will introduce and discuss the

properties of these equalizers.

_24_



CHAPTER IV _
PROPERTIES of T, T/2-SPACED and HYBRID TRANSVERSAL EQUALIZERS

IV.1 Implementation of Equalizers

In the previous sections we have mentioned that equalizers are placed at the
receiver end as decision-directed adaptive receivers. This chapter discusses the

theory and the implementation techniques as well as the properties of adaptive

equalizers.

For optimum equalization, one has to find the set of tap coefficients to reduce
intersymbol interference and noise. The solution (3.16) involves the inversion of the .
N X N A matrix, where N, the total number of taps may be quite large. Tterative

methods for solving- Eqn. (3.18) will be discussed in the next chapter.

‘The hardware implementation of the adaptive equalizers can be classified into

. the following categories: analog, hardwired digital and programmable digital.

BEarly implementations used analog tapped delay linés, made up of inductor-
capacitor (LC) and switched ladder attenuators as tap gains. Field-effect transistors

 later replaced the switched attenuators. As the technology became available, digi-
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tal implementations were introduced, oﬂ‘eringv reduced size and increased accuracy.’
More recently, la.r‘ge-sca.led integrated (LSI) analog irnplementations based on the
charge-coupled device (CCD) technology renewed.the interests in analog techniques.
In this technique the sampled input waveform is stored and transferred as con-“
tinuous-valued charge packets. The variable tap gains are stored in digital form, |
and the multiplication of the tap gains and the samples are done using a multiply-
ing digital-to-analog converter. This method is still to be implemented, but it has
significant ﬁotentia.l in applications where the symbol rates are high enough to make
 the digital versions impractical or very costly. - |

Thev other class, nameiy the hardwired digital technology which was the most

" commonly used during i':he past decade. The input signal is used in sampled and
digitized form, suitable for storing in the registers.‘The tap gains were stored in the
vdigital shift registers as well. The formation and accumulation of products takes
place in logic circuits connected to perform digital afithmetic.

The most recent advance in the field is the application of programmable digi-
tal signal processors. In this type of implementation the equalization function is
performed in a series of steps or instructions in a ‘microprocessor or a digital com-
putation structure specially built to efficiently perform the type of digital arithmetic
required. The same hardware can then be time-shared to perform functions such as
filtering, modulation and demodulation in a modem.'The greatest adVantagé of this

- technology is that it is flexible, and permits sophisticated equaliier structures and

training procedures to be implemented with ease.
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IV.2 Properties of T-spaced Equalizer

1V.2.1 The Autocovariance Matrix and its Eigenvalues

In this section we will first find the expressions for the eigenvalues and eigen-
vectors for the autocovariance matrix of an infinite T-spaced equalizer. As discussed

earlier (from Eqn. (3.27)):

2

+~‘,- _ .
A1 =% f Goe(f) |H¢q(f| )|® exp(—72nf(1 — K)T) df + o261, (1.1)

R
2T

where H,4( f) is the Nyqulst equivalent channel. For a general row, s, of the Toeplitz

A matrix, we have (for 0% = 0):

+
¥

ZA,,; exp(727ATl) = Z
l .

-
P~

|Heq(f)12 ‘paa(f) exp(j27rfaT) exp(—j21r(f - )\)lT) df

=

(1.2)

2T

~ / |Hoo( ) ®aa(f) explin fsT) S exp(—52x(f —~ MIT) df.

Now, we have vectors of which having components exp(j2xfsT) . Thus, these are the

eigenvectors of the A matrix. Moreover the corresponding eigenvalues are:

|Heg(f)* ®aalf)exp(s2nssT). . Y

In this section we will state a theorem which will be relevant in the latter

sections.




Theorem 1:

The eigenvalues of the system:autocovariance matrix are bounded by maximum

value M and the minimum value m of |Heg(f)| ; (0% = 0).

m << M. (4.4)

See Appendix (A.4) for the proof of this theorem. Therefore, the larger the spread
of the eigenvalues, the farther the Nyquist equivalent response of the channel is
from being flat. This fact:is very much rela.ted to the convergence time of the taps,

as will discussed in the following chapter.

1V.2.2 The Frequency Response of the Equalizer

In the previous chapter we have shown that, the optimal tap gains can be

determined from

AC=a. (4.5)

We can write the same equation also in the following form.

Z ZAUCI exp(—j2aNkT) = E ak.exp(—j2w)\k1'). (4.9)
{ k

k
Substituting equations (3.27) and (3.28) in the above equation, assuming white noise
present one can show that the first period:of the periodic frequency response of an

infinite T-spaced. equalizer is given by

Poalf) Feq(f) Heg(f)exp(s2n
c(f) = U},“U()’)lﬂw(}{ll +"§? 17) 1< A (47a)

In the noiseless case, the above equation simplifies to
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olf) = g2 D explsaesn) 1< o am

It is apparent that any zero of H,,(f) within the Nyquist range will be a pole of C().
One very important phenomenon occurs when dips in amplitude occur in H.,(f).
Note that although H(f) may have no zeroes (or near zeroes) in |f| < 1/2T, H.(f)
may have zeroes because of the superposition of terms such as H(f +4/T) exp(52nri/T)
in H,(f). Note that sampling phase affects H,,(f): certain choices of r can cause
dips in H.,(f), resulting in a C(f) which has large peaks. This in turn can give
rise to very large values of tap coefficients which may cause problems in practical
realizations. These large values of tap gains may cause severe noise enhancement at
certain frequencies, increasing the probability of error. Thus, there should be a good
means of sampling phase control:in the system in.order to overcome the problem

of sampling phase dependence on the performance of a T-spaced equalizer.

IV.2.3 The Minimum Mean Square Error of an Infinite T-Spaced Equalizer

From the previous chapter, we have the following equation for the minimum

 Inean square error,

2 —_ -

Hmt’n = idlz - E‘HC’OP‘

the first term can be expressed as

+
3

|Feg(£)?®@aalf) df, (4.8b)

=
I
R -
b —

»|
<1

and the second term, as
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+3F

/ Heol IF* oo ) exp(257 f1)®0a)C(N) &f. (1.9)

HI'—

Taking the difference of equations (4.7) and (4. 8) we arrive at,

o T RPeal)
P =F | He,(1)Pelf) + 0% & (4.10)

P
T

For the noiseless case, the above equation shows that an infinite length optimum

equalizer gives zero mean-square error. It can be- easily observed that once there
is moise introduced by the system, its significance is highly dependent on r, the
sampling phase which is in the |Heqo(f)[* term.v For some values of r, a null or near null
may be introduced in H,,(f) within the Nyquist range at some frequencies and by

Eq.(4.10) this may cause a large value for the integrand and thus a large minimum

mean-square error.

IV.3 Properties of T/2-spaced Equalizer.

IV.3.1 The frequency Response of the T'/2 Equalizer

We will start from the same expression for the optimal coefficients, namely,

AC=a
where the elements of A métrix, and a \(ector are given by Eq.(3.29) to (3.34). We
will make the following deﬁniﬁ;ions in order to derive an expression for the infinite
T/2 equalizer: Let {cx} , k = —oo to +oo represent the gains of an infinite T-spaced

equalizer, and let di for all k but k = 0 , be the gains of additional taps inserted

between the c;’s. Then the frequency response of the T/2-spaced equalizer is:
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C(f) = e(f) + d(f), | (4.11)
where:
(N & Sexenpliznizey), (4110
and:
i) & zk:dk expli2nf(2k + 1)—2'-). (4.115)

By using the same steps as in the:previous analysis for the T-spaced case, we come

up with (for H,, =H,, ) :

o(f) = —2Feuld) Peald) H(Dexpla2nr)
Baclf) | [Heg( D) + | Heg NP | + 02

The bracketed term in the denominator is equal to the folded power spectrum of

(4.12)

the overall response only when H{f) is bandlimited to |f| < 1/2T, then we may write,

P oo itm e ®ualf) Fulf)
o) = B esi2nI") 3oy TBG+ /0 + )P +HG -y +es 1)

The above equation can be viewed as in two parts, the first being the matched
filter, and the other which combats the intersymbol interference. The matched filter
is matched to the overall:-frequency response of the system up to the equalizer, for
the maximization of signal-to-noise ratio at the sampling instants.

A comparison of the C(f)’s for the T/2 case and the conventional case indicates
that, there can be no poles caused by the denominator of C(f) within the Nyquist
range by the sampler timing offset 7. In.fact, the denominator of C(f) does not
depend on r and can be:expressed in terms of the folded power spectrum of the

unequalized channel for systems bandlimited to 1/T.
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1V.3.2 The Autocovariance Matrix and its Eigenvalues

Just as in the conventional case one can show that the eigenvectors and the

eigenvalues of an infinite 7/2-spaced equalizer are given by [Qureshi and Forney,

1977]:

V() = L. & Higl) exp(=g2n S ), Higl1),

L. (1) exp(i2n] 3), £H 21 exp(2esT), ], (4.14)

and the corresponding eigenvalues, when {+) holds;

Mf) = (HegNP + 1Hoo (NI, (4.15)
and when (-) holds;

Mf)=0. (4.16)

For H(f) bandlimited to |f| < 1/2T, \(f) can be expressed as the folded power

spectrum, i.e.

A =XIEG - PP, | )

and for |f| < 1/T,

N7) = (= )P + P + 18 + PP (a.15)

We see that a constant folded power spectrum in the T/2 case has the sa‘me‘eﬁ'ect as
a constant folded spectrum in the conventional case: in both cases it is possible, by

a judicious choice of the step size to have the taps gains reach their optimal values
in one iteration.
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Here, once again we observe that the eigenvalues are not dependent on the
sampling timing offset, r, whereas in the T-spaced equalizer the eigenvalue spread is
subject to change with r. Therefore we should expect the convergence of the infinite

length fractionally-spaced equalizer to be independent of sampler offset.
IV.3.3 The Minimum Mean Square Error of an Infinite T/2-Spaced Equalizer

In this section we will derive an expression for the minimum mean-square error

for a T/2 equalizer. By applying the similar procedure for the T equalizer case, the

mean-square error is given by:

W = 770 5 - 3G
min
=EZ"‘*”J' u‘*uf— Z QiCs opt — z akdy ope’ (4.19)
i g

even k odd k

can be expressed as:

+ar

B, =25 / |Feg(f)* ®aalf)
T @uald) [Heal 1P + [Hegl1)2] + 02

df. (4.20)

It is seen here that mean-square error is not influenced by the sampling offset,

r. A comparison of the mean-square error expressions of the equalizers shows that,

lemin {-Iz < |emin le

i.e. the 7/2 equalizer performs better than the conventional case. It is also indepen-

dent of r. The simulation results in this thesis, as well as in [Qureshi and Forney,

1977}, [Ungerboeck, 1972 and [Ungerboeck, 1976] show these results clearly.
g



IV.4 Properties of HTE.

A hybrid type of equalizer was first introduced in [Nattiv and Kabal, 1980].
In their work they have aeﬁned the Hybrid Type Equalizer (HTE) as a T-spaced
equalizer with some additional intermediate taps inserted around the reference tap.
As these inserted taps had 7/2 spacing with the adjacent itaps, it is expected to have
many of the benefits of a 7/2 equalizer, and have a wider time span compared to a
conventional équalizer with the same number of taps. This will enable the equalizer
to eliminate the intersymb‘ol interference due to the channels with long impulse-
responses. As additional ‘taps are introduced to the T-spaced equalizer, the hybrid
equalizer will resemble tﬁat of a pﬁre T/2-equalizer. With the proper placement of

taps it is also expected that the hybrid type equalizer will avoid nulls, or near nulls

" in the Nyquist range.

It will be shown in a later chapter that, the number of taps are related to the
final mean-square error. In other words, minimum achievable meah-squa.re error
in steady-state is dependent on the number of taps, i.g.'for larger N, beyond a
certain value, the mean-square error will be slightly larger due to the adaptation
fluctuations introduced by each tap. A hybrid equalizer reduces the complexity, as
well as using less number of 'ta.ps the excess mean-square error term is minimized. It, ‘
is expected that the hybrid equalizer will be advantageous for both of these reasons. -

In the following sections a summary of the work carried out by Nattiv [Nattiv,

and Kabal, 1980] will be presented.

IV.4.1 The Optimal HTE

In thé approach used to study the hybrid type equalizer, Nattiv considered the

overall system to be made up of a T-spaced, and a T/2-spaced part. In other words
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the equalizer has been split into three sections, ones having T and the other having
T/2 spacing. An example with the partitioning of three is shown in the following

figure (Figure 4.1). From this approach we have,

Yk = Vi1 + Yr2 -+ Vi3, ' (4.21) -

where:

—N,

Yer = 3 CiZk—i

i==—No (4.22)

A -
= Tk

2N,

o= 3, dizp
ima—2N1+1 - (4.23)

A =p—
= dek—dl

Ns

pa= 3. eithi

jom Npp 1 : (4.24)
A e
= e Th—dy—ds

For this configuration the desired output can ‘aga.in be defined as,

dk = El{?kr

where f; are the samples of the overall impulse response. The mean-square error is,

(el = (y*x — ¥ F2*)yr —aT f2) ' o (425)
Inserting the equations (4.31) to (4.33) into the mean-square error expression (i.e.

Eq.(4.34)), and differentiating the final form with respect to the tap coefficients,

¢ky dx, and e one obtains the following set of ecjuations for the optimum hybrid

equalizer,
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The elements of the above matrix can be identified simply from the square error
term, which are the auto- or the cross-correlation tgrms of the subsections.

The most ‘importa.nt.v result is that the autocovariance matrix of the hybrid
transversal equalizer can be derived from the matrix of T/2 case by deleting those
Tows a.nd columns which are not used in the hybrid model. The similar manupulation
also holds for the a vector of the above equation.

For the frequency response ‘of the hybrid transversal equalizer the equations
are very complicated, and no compact form can be reached for practical purposes.
However, the resulting equations show that as the number of additional taps are
increased, the properties of the hybrid equalizer gets closer and closer to that of
T/2-spaced equalizer.

- In the next chapter we will introduce the convergence phenomenon, as well as
some algorithms used for the adaptive equalizers. Thén, we focus on the mean-

square-algorithm, and discuss the convergence properties of the equalizer types

discussed above.
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~ CHAPTERV
CONVERGENCE PROPERTIES of the TRANSVERSAL EQUALIZERS

V.1 The Recursive Algorithms for Cdrnpﬁt.ing the Tap Gains

In this chapter we will introduce some of the techniques by which the tap
coefficients are adjusted, and fhen analyse the steepest descent algorithm. In the
* rest of the chapter we will analyse the rate of convergence of the conventional
equalizer and discuss for the fractionally spaced and hybrid equalizer cﬁses.

The adaptation of the transversal ﬁiter to the channel.response and the source
sign:‘il is realized at the receiver by an iterative procedure to adjust the tap weights.

The general adaptation method can be modelled by:

Cr+1 = Cr — Sk : (5.1)

where the Sy is a vector of tap gain increments. There are various algorithms that
achieve adaptation. Many transversal filter equalizer update algorithms are based
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on the steepest descent, or gradient technique, which minimizes the mean-square

error between the equalizer output and the transmitted data symbols, given by

(3.15);

lexl? = (uk — d) W s — 4°5) (59

One algorithm invokes the minimization of least square the objective of which is
to determine the coefficient vector which minimizes the weighted sum of the squared

errors of past received signal vectors [Mueller, 1981], in other words it minimizes

- - 2 ‘
Ex,._kldk—-o,, zk| . (5.3)

Setting the derivative of the above equation to equal to zero yields the discrete time

Wiener-Hopf equation,

A Cpn=an ' : (5.4)

in the iterative form,
Apn = Ne-nTn T*n+ XAl
k (5.5)

=\ A + E,, 5*,‘

and

Op = Nap—t +Zn d*a | (5.6)

A positive definite identity matrix Al is included to ensure posiﬁive definiteness of

A=n for all n.

Since the above two equations can be written recursively, the updated coefficient

can be found iteratively as follows,
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51; =v5n—1 +gn E:u (5'7)

where g¢,, is the Kalman gain defined as

=47 E | (59)

This form leads to the Kalman, the fast Kalman, and the adaptive lattice algorithms
where in all cases the same cost function is minimized. The difference is in the
manner and the complexity with which it is achieved. [Mueller, 1981]

In their work O.S. Kosovych and R.L. Pickholtz [9] proposed a new algorithm
to improve the convergence rate, némely overrela;J(ation iterative technique. Where

their method determines the coefficient value for all i, at the (k + 1)t iteration

acording to

€5 (k+1) = Ci (k) — —[ Z a-: €5 (k+1) + E aijcs (k) — i (5.9)
! j=—N J=i o

where v is the rela.xatlon factor. In matrix form we have,

Cx+1 = Cx — w(D — wE)"}(AC} — g) (5.10)

where E and D are the diagonal and strictly lower triangular matrices. Here the
inverse of the A matrix is never computed if the above equation is used (5.9). All of
the coefficients are updated brior to the reception of the next training pulse. This
is a departure from gradlent techniques since they use only the previous values.

As another example, the works carried out by T. J Schonfeld and M. Schwartz, |
minimized the mean-square error by using varla.ble step sizes after a specified
number of iterations. The so called First-Order and Second-‘Ofdef algorithms use a
optimally determined step si?e in order to achieve minimum mean-square error.

-} -



These and other papers on the various algorithm on the convergence of adaptive
equalizers can be found in the references [16] to [22]. In the following section the

steepest descent algorithm will be studied using a constant step size parameter.

'V.2 The Steepest Descent Algorithm

This section concentrate on the steepest descent technique to solve Equation

(3.15) iteratively to find the optimal tap values. The convergence and the stability
of the method will be discussed.

V.2.1 Performance Surface

The ‘adjustmen.t algorithm attempts to find the minimum of the mean-square
error as a function of the tap weights. First, one begins by choosing an initial
set; Qf values for the set {en} of tap gains. The gradient vector is measured, and
the next guess is obtained from the pfesent'sté,te of weights by making a change
in the tap vector in the direction of the negative of the gradient vectér (in the
opposite direction of the gradient vector). If the mean error square is reduced with
each change in the weighf- vector, the process will converge _t;o a stationary point
rega.fdless _(_)f the initial choice.

In Figure 5.1a view of a two-dimensional (two tap) quadratic pei'formance
surface is shown. The mean-square error.is shown as a,lon;g' the z-axis and the
_other coordinates are the two tap coefficients. The'éllipses in the ﬁg_ures correspond
contours of constant mean-square error, spaced at equal increments. The gradienf
must be orthogona,l to these contours everywhere on the surface. In the following
figure ( Figure 5.1a ) the series of small steps of the tap coefficients incremented
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Figure 5.1 Steepest Descent Method.
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by the discussed algorithm is shown, where the initial point is picked up for zero
tap weights, and the small ﬁcrements form a smooth curve. Figure 5.1b is a similar
plot for a largér step size where convergence is more oscillatory, where as in Figure
5.1c a much larger step size is used, the stability of the equalizer is lost (stability
criteria will be discussed later in the chapter). From the starting point, each si;ep is
taken normal to the error contour. It will be shown later that the weights undergo
goemetric traﬁsients in convérging towards the surface minimum.

Trom the above discussion we can set the following equation as a different form

of equation (5.1),

Crt1 = Cr + 810k (5.11)

where s; is a parameter controlling the step size and g; - is the gradient vector,

- 9} '
where
er =dp — Y (5.13)

[

Now the tap coefficient .a.djusment algorithm is of the form,

Cre1 = Cr + ApElexri] ’ ’ (5.14)

Which can also be ‘written as

6k+1 = 61; + Ak(Aék - E) ) (5.15) .
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where A; is the step size parameter (equal to 2s:), A is the correlation matrix of

the inpﬁt sequence (on the assumption of rx and dx are stationary sequences). The

solution is

Copt = A'02. _ (5.16)

The conditions for convergence of the taps can be derived easily after the following

coordinate transformation.

V.2.2 Coordinate Transformation

In order to decouple the tap coefficient adjusments'we will define the transfor-

mation,

lIe>

ce&pc  G.17)

where P is an orthonormal matrix which diagonalizes A. This transformation is

.equivalent. to a rotation of the coordinate system,

A=PA P (5.18)

and A is the diagonal matrix of the eigenvalues of ); of A . Then,

1 : Ck+1 = Cr — A[AC — Pa) (5.19)

In Figure 5.2 a feedback model for this adjusment algorithm is shown. The optimum

decoupled weight vector can be written as,

Cope = A"'Pa : (5.20)
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Figure 5.2 Feedback Model for the Tap
Coefficient Adjusment.
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We will also define the tap coefficient error as,

>
- \I

- Copt

|

V.2.3 Convergence and Stability of 4 and C

From equation (A.L3) which is reﬁea.ted here,

[elf = CHAC — a7 C — CHa* +|di[*

we get

W = leoptl2 + ’;;{A ':k

In the iterative form suitable for adaptive equalizer,

g1 = by — AxAegrs.

Defining

e = C'-,T;opt re — dx,
we have,

ek = €k opt + ’?Ik' k-
Note that,

k _ ey =0,

-

(5.21)

(5.22)

(5.23)

(5.24)

(5.45)

(5.26)

(5.27)



which leads to

e = Teopel® + Abg. ~ (5.28)

We will also restrict ourselves to a constant step size i.e. Ay = A. This gives us for

each j, j=1,..., M, the z-transform of the ;’th tap weighting error as

: ’ z hg
- Hylz)=— ar; - (629)

The limit as k oo of |H;(k)| is zero if and only if all of the poles.of Hj(z) are wifhin

the unit circle in the complex z-plane.

If : -

Jim |hjx)| = 0 : (5.30)
then,

Jim Ci = Cupt (5.31)

The criteria for the convergence and the stability can be derived as follows. For
‘the positive definite autocovariance matrix 4, we have uTAu > 0, for all u. Then -

from Eq.(5.15) by subtracting C,,. from both sides

ACisy = AC, — AAAC
k+1 k= AAAC (5.32)
— (I - AA)AC, o

Making use of the coordinate transformation and the definition in Eq.(5.21),

Frer = (I — ARy (5.33)
For each of the decoupled components
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Bikr1) = (1= AN)hgpy t=1.,N (5.34)

where ); is the ith eigenvé.lue of A. For convergence,

hig+1) < [1— ANilhix) (5.35)

for all £ and i, which leads us to choose the step size acording to

I1—AN| <L (5.36)

Considering the maximum and the minimum values of the eigenvalues, and choosing

a step size of,

2
A= —m-—— .
xA"l"l + x—'1mmu (5 37)
we get,
Xa -2
1_ Axm"" — maz min )
I ‘ xAmaw + XA"I;'I < 1 (5 38)

Therefore a step size in the proper range will lead to convergence of the mean tap
values in the limit. Convergence in the mean does not depend on the number of
taps. If the mean square convergence is considered, stability does depend on the
number of taps{Mazo]. The convergence rate and stabilty is directly related to the
choice of A. Relating this to the channel response, if the channel response is flat

(the spread of the eigenvalues of the A matrix is small) the convergence will be fast.
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V.3 Excess Mean-Square Error (¢3)

The measurement of noise in the recursive algorithm discussed above has a
mean-square error value that is proportional to the step size parameter (A). The
noise in the tap updating procedure due to the use of estimates rather than thg
true value of the gradient components causes random fluctuations in the tap gains -
about their optimal values. This leads to an increase in the mean-square error af
the output of the receiver. Thus the steepest descent algorithm will converge to
¢2.;, + €4, in the mean-square sense, where ¢} is the variance of the measurement
noise.

The increase of MSE above the minimum achievable mean-square error due to
the estimation noise has been named “excess mean-square error”, [Widrow 1966).
Since the amplitude of‘ the random fluctuations of the -'t:?,p gains increase with an
increase in the value of the step size, one has to be careful in choosing this parameter.
A large step size will give a rapid adaptation, yet result in a higher excess MSE.

At any instant, using the set of {c.}’s we can write,

€2 = e2;, +(C — Copt)TA (C — Cope). (5.39)

Using the coordinate transformations introduced earlier we have,

e =cli+d M ICn—Cr opl®. (5.40)
n

Where ), are the eigenvalues of A. The average of the increase in the MSE due to

random fluctuations of the tap gains about their optimum values is given by;

A= Mn|Cr—Cr opef? = (5.41)
. -n .
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Complete derivation of the computation of excess MSE using the signal and

system parameters can be found in [Proakis and Miller, 1969]. The excess mean-

square €rror is

a=AN e,.;,,(2<1>..a+<l>nn) (5.42)

Note that excess MSE is directly proportional to the nur’ =r of taps and the step

size. This result is collaborated in our simulation results presented in the next

chapter.
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CHAPTER VI
RESULTS
This chapter is devoted to simulation results. The comparison of the equalizers
on the basis of their convergence propertigs follows the description of the methodol-

ogy used. A study of the dependence of the step size and the number of equalizer

taps is included.

VI.1 Description of the Simulation

"The digital adaptive fractional-tap equalizer was simulated using a computer
program. The program takes in the fraction of the symbol spacing, T/N, the overall
system response (including the reference.point), then the desired channel response
(exi)ressed in terms of the impulse response) is ent’éred. The following transmission
and equalizer characteristics are also enfered: signal-to-noise ratio, size of input al-
phabet (only a binary alphabet is used for this particular study), number of taps, the
subscript of reference tap (the program enables the user to change the particular
hybrid tap configuration), and the proportionality constant used in incrementing
the tap coefficients. Note thét in order to keep the excess mean-square error ap-
proximately constant for configurations with different numbers of .t:‘«mps the step.size |

is made to vary with number of taps. Also, the number of training and transmitting
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symbols are specified.

With the above input values, the program computes the.channel autocovariance
matrix A and finds its eigenvalues. The optimum tap coefficients are calculated by
solving the simultaneous equations of (3.18). The optimum MSE is found using the
calculated optimum tap values. The tap coefficients are initialized (normally all
zero or to the optimal values for checking purposes), the symbols and the noise
components are generated using random number generating routines using the
system time base to randomize the starting point. Every sample value is convolved
with the overall system response, summed up with ‘the noise component a.nd‘passed
through the equalizer. The output of the equalizer is decoded and the taps are
updated using the steepest descent method. All the relevant data, such as the
particular hybrid tap settings, eigenvalues, optimal tap values, and the errors at
the output are stored for further analysis. Also, the output MSE after every ten
iterations, the calculated MSE using the optimal tap coefficients, the convergence
of the reference tap values, were utilized for plotting the necessary graphs.

Another program was also set up in order to find the optimal tap placings for the
hybrid configuration, where all the possible hybrid configurations were generated,
the optimum MSE was calculated, and for each additional tap, the minimum and
maximum MSE’s along with the particular tap configuration used were recorded.
The results were used in choosing the placement of the additional taps.

The results displayed in this thesis are the oﬁtputs of the simulations using the
two different channels which are selected from the pai)ers [Ungerboeck],[Proakis.
In the rest of the chapter the channel responses will be referred as one (I) shown in
Figure 6.1a, and the other (II) in Figure 6.1b. These channel responses have been

interpolated in order to obtain the intermediate samples.
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V1.2 Comparison of the Equalizers

In Figure 6.2, the relation between the minimum achievable MSE obi;a'med by
directly solving (3.16) and the time span of the transversal equalizer is displayed for
a T/2-spaced equalizer. One should notice that the practical adaptive equalizers have
a higher MSE because of the excess mean-square error due to the noisy estimates in
the tap updating algorithm. This excess men—sqﬁa.re error is a function of the step
size parameter and the number of taps. We shall discuss these two points later in
this chapter. A similar plot was obtained for channel (II). These results show that
an equalizer time span of 10T ( 20 taps ) gives good results for both cha.nhéls (I) and
(1) . | o

When different number of additional taps are inserted between the taps of the
T-spaced equalizer, it has been observed that the particular placement and the
number of additional t#ps play a considerable role in thé minimum MSE. The best
and the worst MSE limits for every combination of the same number of additional
taps were calculated, and a plot is obtained for an equalizer spanning 107 with
-zero to ten additional taps. Although it seems that every additional tap reduces
the MSE, it should be apparent that the best placement of the ‘additional taps is a
major concern. Since in most practical applications this information is not available,
a reasonable conjecture is that additional taps should be placed around the refereﬁce
tap. To test this, wé have calculated the mean-square error when the additional taps
were clustered around the reference tap. In Figure 6.3, these results are plotted for
channels (I) and (II) respectively. The optimum and worst case tap placements are
given in Tables 1 and 2. It can easily be observed that the mid-taps are very good
approximations for the optimal hybrid equalizer configurations for both channels. |

Therefore placing the additional taps around the reference tap seems to be a good

choice.
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Channel (I)

Number of MSE Tap Placements (*)
Additional Taps (in dB) (Hybrid T/2 taps)
1 Best MSE= -47.4 CCO0010CCO

Mid Tap MSE= -47.4 CoOCOtQoCCOC

Worst MSE= -35.3 cocCcoocoCcCcOOt

2 Best MSE= -60.4 C0110C000CGO

Mid Tap MSE= -55.0 OCcCCO0i+110O00CO

Worst MSE= -35.5 1 cCcoCCQOCOi

Z Rest M3E= -65.3 ct110001CCC

Mid Tap MSE= -59.2 CCOt111000CC

Worst MSE= -37.8 1 100C0O0GCCO1

4 Best MSE= -69.C ciri11c0t1to0cCQO

¥id Tap MSE= -60C.1 CCCi1111C0CO

Worst MSE= -3G.7 11 C10¢C CC1

5 RBest MSE= -71.2 111301 00CC

Mid Tap MSE= -66.6 OCt1 111 1C00

Worst M3SE= -41.73 11 Cc1000C0C1 1

6 Best MSE= -T71.4 [T A B R G I 0 C

Mid Tap MSE= -66.0 OCCcCi 111 11CG¢C

Worst MSE= -42.1 t101CCO 11

7 Rest MSE= -71.4 i1t1 1111 00C¢C

Mid Tap KSE= -T71.32 ct+11t1t11 41 1C¢C

Worst FSE= ~43.73 i1 1 C1C1 11

g Pest MSE= -71.4 11 111100

Mid Tap MSE= -71.3 1114111110

Worst MSE= -51.2 1101 C1 1111

9 Rest MSE= -T71.4 2 S T s S T SR B O

Mid Tap MSE= -71.4 t1T 1111111 C

Worst MSE= -£3.8 1101111111

1C Best MSE= -T71.5 (Y Y Tt 111

Mid Tap MSE= -71.5 L T T T T T SO B

Worst HSE= =-71.5 1 T T T O S SO A B

Table 1 Minimum MSE Limits and Optimum Tap Placements (I)

(*) The notation indicates the placement of
additional taps betweent the T spaced ones.

’

A “17 indicates the presence of an additional tap.
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Channel (II)
Number of
Additional Taps

10

MSE
(in dB)
Best MSE=
Mid Tap MSE=
Worst MSE=
Best MSE=
Mid Tap MSE=
Worst MSE=
Best MSE=
Mid Tap MSE=
Worst MSE=
Best MSE=
Mid Tap MSE=
Worst MSE=
Best MSE=
Mid Tap MSE=
Worst MSE=
Best MSE=
Mid Tap MSE=
Worst MSE=
Best MSE=
Mid Tap MSE=
Worst MSE=
Best MSE=
Mid Tap MSE=
Worst MSE=
Best MSE=
Mid Tap MSE=
Worst MSE=
Best MSE=
Mid Tap MSE=
Worst MSE=

-84.2
-83.6
-7705

"84'4
—84-4
-80.6

-8404
-84n4
-84.4

Tap Placements (*)
(Hybrid T/2 taps)

o ~00 SO0 =w0OO
o o o ©oo0o
- o o o
= - - o
= - - o =0
- - -

- - o

OO0 000 o
o o
o o

o
@]
—
—x
—
-y
- O
@]

-_— L —-—
-— —
—
[ JEnw N —-—
e v w
i -— O-—-b
—. —_— -—
o —==0 =0O0
00 =0

-

—_

o
-k
SN =
PR URFIRY
—
FRCQErY
O -

L T T T A O S B
P11 11t
1111113111

Table 2 Minimum MSE Limits and Optimum Tap Placements(II)

(¥*) The notation indicates the placement of
additional taps betweent the T spaced ones.
indicates the presence of an additional tap.

A

’1’
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Vi.2.1 On the Convergence of the T-Spaced, T /2-Spaced and HTEs

The correctness and the accuracy of the simulation methodology was checked by
comparison with the theoretical expectations and with the results of similar simula-
tion carried out by [Ungerboeck] and [Proakis|. The convergence of the adaptive
transversal equalizer was studied using a signal-to-noise ratio of 30 dB which is a
realistic value for the existing telephone channels [Lucky, Salz, Weldon]. A step size
of 0.05 was used for a 20 tap equalizer, and the step size parameter is increased
as the number of taps is reduced. Later in the chapter we will justify the inverse
proportionality of the step size to the total number of vtaps.

In this section, the time span of the equalizer is kept at 10T, and additional
taps are inserted in the conventional T-spaced transversal equalizer. As can be seen
the hybrid and the full 7/2 equalizer have a tendency to reduce the MSE even
after 2000 iterations. An important factor to be noticed is that after the first 20
iterations the equalizer is ready for decision feedback equalization, as the error
rate reduces drastically at this point. In the T-spaced case, the optimum MSE is
reached in about 400 iterations for both channels. The fractional 7/2 case has a

'much smaller minimum achievable MSE. In order to see the hybrid effect, only one
tap was inserted in the T-spaced equalizer (Figure 6.4). But when three or four
taps are inserted (the placement of which are explained above) the hybrid equalizer
performs essentially as well as the T/2 equalizer, except with a slight offset MSE (see
Figure 6.5). The results indicate that the convergence rate of the hybrid equalizer
is similar to that of the 7/2-spaced equalizer, particularly with respect to the initial
decrease of the mean-square error. The performance of the hybrid equalizer falls
in between the conventional and T/2 equalizer. For the channels simulated in our
experiments it is seen that three-additional-tap hybrid equalizer performs nearly as

well as the T/2 case, which has seven more taps than the latter.
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Figure 6.4 Comparison with one additional tap.
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Figure 6.5 Comparison of the three cases.
a- T Spaced Equalizer

b- Hybrid Equalizer with three additional taps
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VI.3 The Excess-MSE(e4 ) and the Stability Limits

V1.3.1 Minimum MSE versus Number of taps

In this section, we show that, as the number of taps are increased, the noise
due to fluctuation of the additional taps increases the MSE. One of the reasons
for this phenomenon is the tap coefficient updating algorithm. The tap fluctuations
aboat their optima.l values in the tap updating procedure are due to the use of
noisy estimates rather than the true gradient components. This leads to an increase
in the mean-square error at the output of the receiver. As the optimum MSE is
approached, the 'a.mplitude of the fluctuations increases. The above mentioned effect
is shown in Figure 6.6(a,b,c) where 20, 40 and 50 tap equalizers were simulated, and
5000 training iterations were carried out to determine the steady state excess MSE
for a constant step size. The ﬂuctuations are most noticable in steady-state when
these plots are studied. From the simulations it is apparent that the excess MSE is

nearly proportional to the total number of taps.
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VI1.8.2 Effects of Step Size on Excess-MSE and Stabllity

' The step size is a major concern for the optimization of the system. Although, a
fast convergence is fealized with a larger step size, the fluctuations (excess MSE) are
considerably more at the later portion of the operation. If the step size is large (the
‘a.bsolute gize is determined by the number of taps and the channel noise level) it has
been observed that the e_ﬁualizer is unstable, and that it diverges from the optimal
values after a few iterations (Figure 6.7). This represents a serious breakdown for
a decision-directed operation where the equalizer is in the receiving stage. In the |
following figures only the step size of the equalizer has been changed. In the first part
of Figure 6.7 a step size of 0.05 has been used and resulted in a smooth convergé_nce
and a steady minimum MSE. In the other two cases step sizes of 0.10 and 0.15 were
used. Although this results in a faster rolloff in the beginning, larger step size gives
rise to a higher steady-state mean-square error as well as the fluctuations about the
optimal tap values have large peaks compared to the step size of 0.05 case.

The same simulation is also éa.rried out when the number of taps were changed
from 20 to 30 to 46 in order to see the constraint on the step size for stability. As
seen in Figures 6.8 and 6.9, it can be observed that for different number of taps‘ the
- equalizers show the following results; (i) For a larger number of taps the step size has
to be smaller for a smooth performance, (ii) The equalizers with fewer number of
taps can use a much larger step size giving a more rapid adaptation. The maximum
step size is determined by the total number of taps which is determined by the
.stability limit.

The simulations carried out in thié chapter have been done using the two
channels. The results for channel II have not been included as they show similar
. trends. In the next chapter, we present a general summary of the thesis as well as

the conclusion derived from the theory, expectations and results.
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SUMMARY and CONCLUSION

In this thesis we introduced a.generalized digital transmission system and then
studied the optimization of such a system. A receiver optimization strategy is chosen
because the channel characteristics and the behaviour of noise is in general unknown.
Thus we started analysing the receiver and came up with a suboptimal realizable
receiver. This involves a low-pass filter, a transversal filler and a decision unit.
Once the form of the system is known, the low-pass filter and the decision unit
are placed in the receiver. We have concentrated on the transversal filter section
of the receiver. The weighted sums of the past and future samples (relative to the
reference tap) of the signal are available at the output of the transversal filter.
The elimination of intersymbol interference caﬁ be handled once the tap weights
of the transversal filter are derived. Inorder to find these tap coefficients we have
selected to minimize the mean-square error. This led to a derivation of a generalized
equalizer model which has arbitrary tap positions. This analysis was used when the
particular equalizers were studied, the T-spaced, T/2-spaced and the hybrid cases.
‘We have tried to extract the properties of the above mentioned equalizers considering
their frequency responses, the autocovariance matrix and their eigenvalues, and the

mean-square error. For each case the equalizer is assumed to be infinite.

The algorithms that can be applied to find the tap coeflicients iteratively were
introduced. The steepest descent method was discussed and used in the simulations.

The convergence, the stability constraints were also discussed. The dependence of
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the number of taps as well as the step size to the convergence behaviour of the
equalizer was shown. One of the variables namely the excess mean-square error was
derived to prove some results.

The simulation results éhowed the benefits and the limitations of the three
equalizers studied. It has been observed that the step size is an important factor in
stability and the convergence of the equalizers. When a small step size is used, the
convergence to the optimum tap settings is reached very slowly, and the fluctuations
around the minimum mean-square error is small. A larger step size gives rise to a
faster adaptation yet it has a considerable excess mean-square error at the steady
state. It is also apparent from the simulations that the number of taps has an
important role in the performance of the adaptation behaviour of the equalizers.
The step size and the number of taps are directly related in the performance.
When the number of taps is large, the excess mean-square error increases, and for
particular conbination of step size and number of taps, it is éhown that the equalizer
is unstable. Which in turn shows the inverse proportionality between the step size
and the number of taps. The superiority of the hybrid type equalizer comes into
effect at this moment. Since the coﬁvergence rate depends on the step size, one can
obtain larger step sizes than T/2 case since in has less number of taps for the same
timespan.

Therefore the final word we will state is that the hybrid equalizer has most of
the properties of the 7'/2 spaced equalizer in terms of convergence, and superior in
terms of stablity. Also having less number of taps reduces the excess mean-square
error as well as the complexity of the system. Although we have not studied the
effects of the sampling phase when a hybrid equalizer is used, the study by Nattiv

shows that it is much less dependent compared to the conventional equalizer.
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APPENDIX

A.1 The Derivation of Equation (3.16)

We start from the mean of the square error, as.in equation (3.15)

et l® = vk — dx) We® — d&*). ARy

" Making use of the vector notations defined in the related sections, one obtains

(*)

lex|* = (CHz* — di*) (z7CT —d). (A.12)

By defining the following matrix and vector

A =
A = o> zf,

a =, di¥,

the result of the above mean-square error term is of the following form

Jexl. =CHA C—alC~CHa*+|&|, (A.13)

All of the vectors in the above equation are complex, i.e. C = Re{C} + iIm{C}. To
minimize the mean-square error J¢|’ term with respect to ¢ , we have to differentiate

it with respect to Relcx] and jIm[ck] for every k. We define complex functions that,

* |]¥ is the conjugate-transpose operation.

- -



Bel> | . Bleal’

4] _— = ACT - C*AT —aT —a* + j(@* —a +CTA - C*4) (A.1.4)
8Re{C} ~ 8Im{C}

= 2Re(AC) — 2Re(a) + j(—2Im(a) + 2Im(C A))

=24AC - 2.  (ALS)

Setting the derivative to zero,

2A6°Pg - 2& =0

Then, 5,,. =A"la a.nd the minimum mean-square error can be written as

et i = 14" — 37 e __ (A.1.8)

-5 —



A.2 The derivation of Equation(3.20)
The input signal to the receiver is

2(t) = Y _ anh(t — nT) + n(t). (A2.1)

Inserting the above equation in (3.17) we get

Anp= 302 aa; W(k= Dy =i+ D)T] W(k—Di—j+ 1)T]

' , . (A.2.2)
+n*((k = D& + 2)T] ni(k — Dy + 3T}
Using the definitions
Qu(t—]) é a.*.- aj,
A r ;
®nn[(Dk — D))T] = n*[(k — Di — )T Inl(k — Dy — 35)T].
and letting m =4~ 7 and n = k- j, we get the following
Mg = 3 aatm) Kl =~ Da s 1)
" . (A.23)

h{(n = Dy + Z)T] + ®nnl(Dx — DT].
The derivation of equation (3.20) is shown above. Equation (3.21) can also be derived

using the same steps starting from Eq. (3;18).
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A.3 The derivation of Equation (3.25)
Starting with the transform definition

oo
wo = | B() explaanst) d, (43.)

we substitute it in equation (A.II-3). By using this substitution and by carrying out

the integrations first and then summing over m and n, we come up with

+o00  p+too v | '
4= f_ ) f_ . EDEO)E @autm) oolitefm)

> exp(j2rn(h — f)T) exp(—j2n(f — N)7) exp(j2x fDxT) exp(—j2xADiT)] dX df + 0%k,

(A.32)
Define the data source power spectrum as
Paulf) & T ualm)expliznsmT), (433)
also
S exp(—2n(f ~NTn) = £ 360~ F— %). (4s4)

Using the above equations, if the integration is carried out on successive intervals

of length 1/T, we come up with

1 [* ,
At =7 | Ha)* Ho(1) @eald) a1, (4.35)
which is equation (3.25), where
By & S H( + F)exs(—g2n(f + D)DiT)expljzn T), (A:26)

~ is the Nyquist equivalent for H(f) exp(j27r 1)

L.



A.4 Proof of Theorem 1

Proof:

Assume that )4 is an eigenvalue of A matrix, and that u is its corresponding

eigenvector. By definition

li>
8|
L)

*
ot

Note that
uTA u=x, ufu
Inserting the definition for 4, we have
Wiz * zlu =M uly,

which can be put in the following form,

ﬁz - -—
|zF u] =Xxa u"u.

Now, defining

which gives,

lg[? = M auu.

(A.4.1)

(A.4.2)

(A4.3)

(A4.4)

(A.4.5)

(A4.8)

When the z-transform of ¢, , Q(7) is computed around the unit circle in the z-plane

then

Q(f) = U(f) Xegl)

For X_,(f) defined as before

-8 -

(A.4.7)



Xeglf) =2 X(f +5/T). (448)

By using Parseval’s theorem and Eqn. (2.9),

i
mP=o [ U BN df

s (A.4.9)

+3r

= [ viear.
Since we welfe'given that .
m < |H () < M.

We get

m<i <M. (4.4.10)
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