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ABSTRACT

The design and implementation of vector quantizers have recently attracted considerable
attention in the speech coding field. Previous work concentrated mainly upon the theoretical
capabilities and asymptotic performance of vector quantizers. Little investigation concerning
the actual implementation of vector quantizers was performed. It was only recently that

practical algorithms have been developed for vector quantizer design.

This thesis presents an investigation into the field of vector quantization. Commencing
with a review of one-dimensional quantizationvtheory, an extension of quantization principles
to several dimensions is presented. This is coupled with a survey of current work in the
field of vector quantization. Based on this discussion, a vector quantizer structure, designed
using the Linde-Buzo-Gray algorithm, is chosen for the block quantization of the residual
signal derived from the linear prediction of speech. The performances of the residual vector
quantizers are evaluated for various block sizes and transmission rates and compared to those
of uniform and Lloyd-Max scalar quantizers. A subjective evaluation of residual-encoded
linear predictive coders using scalar and vector quantizers is made. Finally, a subjective

comparison of the linear predictive coders using vector quantization of the residual to Log-

PCM coders is performed.



SOMMAIRE

La conception et la réalisation 'de quantifieurs vectoriels 4 en ce moment considérablement
attiré ’attention dans le domaine du codage de la parole. Les ouvrages précédents sont
concentrés principalement sur les capacités théoretique et la performance asymtotique de
quantifieurs vectoriels. Peu d’investigations ont été accomplies concernaut la réalisation
actuelle des quantifieurs vectoriels. C’était seulement tout récemment qu’une algorithme

pratique 2 été dévelopée pour la conception de quantifieurs vectoriels.

Cette thése présente une investigation dans le domaine du quantification vectoriel.
Débutant avec une revue de la théorie de quantification 3 une dimension, une extension
des principes de quantification 3 plusieurs dimensions est présentée. Ceci est couplé avec
une étude des ouvrages courants dans le domaine des quantifieurs vectoriels. Basé sur cette
discussion, une structure de quantifieur vectoriel, congue en utilisant 1’algorithme Linde-
Buzo-Gray, est chosie pour la quantification collective des échantillons residuels dérivés de
la prédiction linéaire de la parole. Les rendements des quantifieurs vectoriels résiduels sont
évalués pour des collections de dimensions et de taux de transmission divers et comparés 4
ceux de quantifieurs scalaires Lloyd-Max et uniformes. Une évaluation subjective de codeurs
prophétiques linéaires codés-résiduels en utilisant des quantifieurs vectoriels et scalaires est
faite. Finalement, une comparison subjective des codeurs prophétiques linéaires en utilisant

la quantification vectoriel des résidus des codeurs Log-MPIC est exécutée.
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CHAPTER 1
INTRODUCTION

The main objective of speech coding is to allow the transmission, over a digital channel, of
the highest quality speech possible using the least possible bit rate. Essentially, speech coders
may be divided into two different classes: waveform coders and source coders. Waveform
coders attempt to transmit a good representation of the actual speech waveform. Source
coders attempt to estimate and transmit a linear model of the speech process rather than an
actual waveform. In general, source coders allow lower transmission rates, while waveform
coders typically provide higher quality and more robustness against background noise,
multiple speakers, and speaker variations. Flanagan et al [FLAN79] provide an excellent

survey of the various speech coding systems.

The most common form of source coding is the linear predictive coding (LPC) of
speech. A considerable number of researchers have written about this popular speech coding
technique. Makhoul MAKH75] l{as provided a good review of the subject and Markel and
Gray [MARKY76] discuss LPC techniques in great depth.

In general, LPC systems transmit only a model of the speech Process: no use is made of
the residual, or error, signal. In adaptive predictive coding (APC) systems, the residual signal
is coded and transmitted to the receiver as well as the speech model. Atal and Schroeder
[ATAL70] describe the APC coder and Makhou! and Berouti [MAKH79b] provide a good

survey of developments in APC techniques.

Whether the residual signal is transmitted or not, the linear prediction technique may

be viewed as a two step process. The first step involves the identification of a model for the



speech process. The second step is the compression, or quantization, of the model parameters
and, if present, the residual signal. In general, the compression step directly affects the
transmission rate of the coder and the quality of the reconstructed speech, New methods

are constantly being sought which will allow more effective information compression and

lower transmission rates.

Traditionally, the model parameters and residual samples are quantized individually,
This approach is referred to as scalar quantization. Recently, a new praétical design ap-
proach to quantization has been developed. It involves the simultaneous quantization of
several model parameters or residual samples. For this reason, it is called vector, or block,
quantization. This design approach is diséussed in considerable detai! by Linde et al [LIND8O0,
GRAY802a] and its eflectiveness is demonstrated.

Before studying quantization in several dimensions, an understanding of one-dimensional,
or scalar, quantization is essential. The basic theory of one-dimensional quantization is
reviewed by Gersho [GERS77]. Jayant [JAYAT78] is the editor for a collection of selected
reprints which provide in-depth discussions of various aspects of scalar quantization. Gray
et al [GRAY77) compare various schemes for the quantization of speech reflection coefficients;
the LPC model parameters for the speech process. Lloyd [LLOY82] and Max [MAXB60]
develop an algorithm for the design of optimal one-dimensional quantizers, and which

forms the basis for the vector quantizer design algorithm mentioned previously {LINDS80].

Once an understanding of scalar quantization is obtained, it is thenm necessary to
extend these concepts to several dimensions. A simpie concept of vector quantization is
presented by Huang and Schultheiss [HUANB3) for correlated Gaussian random variables.
Essentially, a transform is found so that the transformed variables are independent. These
independent varizbles may then be quantized individually using scalar quantizers. The
quantized variables are then inversely transformed to provide a quantized output of the
original vector. However, individual‘ quantization of independent variables may not always
produce optimal performance. Newman [NEWM82] shows the optimal property of the
regular hexagonal array for uniform quantization in two dimensions. This optimality cannot

be obtained if the values are quantized independently.



The concept of optimality predominates in the study of vector quantizers and their
properties. Zador [ZADOS82], in a previously unpublished paper, studies the asymptotic
properties of multidimensional quantizers. Gersho [GERS79] extended this work and intro-
duced the companding approach to vector quantization. The block compandor was further
developed by Gallagher and Bucklew [GALL80]. New proofs of the asymptotic theory of
vector quantization were recently developed by Bucklew and Wise [BUCK82]. Gallagher and
Bucklew [GALL82] show some simple proofs on the properties of optimal vector quantizers.
A great deal of the above work was based on a mean-square error criterion. Yamada et al

[YAMABO] extend this to more general distortion measures.

While considerable study has been done on vector quantization theory, it is only
recently that the actual design of vector quantizers has been attempted. The design of vector
quantizers generally involves the use of one of two structures: either a lattice structure or a
random codebook. Gersho [GERS81, GERS82| reviews these basic structures and discusses

the advantages and drawbacks of both forms.

The major advantage of the lattice structure is the ease with which arbitrary encoding
may be performed. Conway and Sloane [CONW8I] present explicit algorithms for quantizing
in four, eight, and twenty-four dimensions and later géneralize the procedures [CONW82b]
to a wider range of lattice forms and dimensions. Essentially an extension of the uniform
quantizer, the characteristics of the lattice structure are important. These characteristics are
listed by Sloane {SLOAS81] and the normalized mean-square error is tabulated by Conway

and Sloane [CONW82a] for various lattice structures.

The major disadvantage of the lattice quantizer arises from the same characteristic
that provides its advantages: its uniform structure. Because of its uniform nature, a large
number of output points are required to effectively cover the input vector space. Areas where
no input vectors lie cannot be eliminated without destroying the lattice structure and thus
the ease of coding. Thus, a large number of output vectors must be coded which in turn
results in a high transmission rate. Furthermore, unless the input sequence is, or can be

transformed to be, uniformly distributed, the lattice structure will not be optimal.



The only effective method for the design of multidimensional quantizers is through the
use of a clustering algorithm. This approach is developed in detail by Linde, Buzo, and Gray
[LIND80] who present algorithms for the design of vector quantizers. A companion paper
[GRAY802] present a theoretical development of the algorithm. The algorithm is extended
to include tree-searched quantizers by Gray et al [GRAY82a, GRAY82c]. The algorithm
generates a random codebook structure which must be searched to find the closest match
to the input vector. The main advantage of the random codebook is that advantages may
be taken of correlations between the elements in the vector. Areas of the input vector
space which contain no vectors may be effectively ignored since no structure is required.
This results in lower transmission rates than may be obtained through the use of a lattice
structure. This also leads to the major disadvantage of the random quantizer. Because no
structure exists, the output vectors must be stored since there is no way of calculating
them. Furthermore, there are no easy algorithms for determining the output vector which
is the closest match to the input vector. Despite these drawbacks, the clustering algorithm
has been applied with some success to the quantization of the linear prediction parameters
[BUZO80, BUZO79, WONG81, WONGB82|, and speech and speech-like waveforms [ABUTS1,
ABUTS2, JUAN82, GRAY82a, MABI81]. This algorithm also forms the basis for the work

presented in this thesis.

One of the major intentions of this thesis is to present a survey of the vector quantization
field. This review includes a discﬁssion on one-dimensional quantization concepts and extends
them to several dimensions. Another purpose of this thesis is to extend the work performed
on the quantization of the linear prediction parameters in LPC systems to include the block
quantization of the residual signal as well. The resulting residual-encoded linear prediction

coder is an attempt to improve the quality of the reconstructed speech while maintaining

moderate (9.6 kbps - 16kbps) transmission rates.

This thesis is divided into six chapters. Chapter 2 discusses quantization theory. The -
theory of one-dimensional quantization is discussed and then extended to several dimensions.
Once the multi-dimensional quantization principles are discussed, different structures for

vector quantizers are presented and compared as to their ease of design and implementation.



Finally, some algorithms are presented for the design of vector quantizers.

Chapter 3 is a review of linear predictive and adaptive predictive techniques. Methods
of coding and transmitting the residual, including methods for improving the quality of the
reconstructed speech, are presented. This is followed by a discussion on the quantization
and coding of the spectral information, i.e. the reflection coefficients or related parameters,

including the use of vector quantizers.

The remaining chapters represent the area of investigation of the thesis. The use of vec-
tor quantizers is extended to the block quantization of the residual signal. The effectiveness
of vector quantization of the residual is investigated and a simulation of a residual-encoded
coder based upon linear predictive techniques is developed. Chapter 4 presents the coder
structure and describes its operation. Chapter 5 contains the experimental results derived
from the simulations. Finally, dhapter 6 presents conclusions drawn from the experimental

results and indicates areas for further investigation.



CHAPTER 2
THE THEORY OF VECTOR QUANTIZATION

2.1 INTRODUCTION

In one-dimensional scalar quantization, the quantizer operates on a single sample value
of an analog signal. The sample is replaced by one of a set of representative values which
best approximate the original value. In vector, or block, quantization, a k-dimensional input
vector is mapped into one of a finite set of k-dimensional representative vectors. The input
vector is replaced by the output vector: which approximates, in some appropriate way,
the original input vector. In either case; a digital codeword can be used to identify the

representative scalar or vector which best:reproduces the original data. .

A quantizer may be viewed as the cascade of a coder and a decoder. The coder identifies
in which partition of the input space the input vector lies and assigns a corresponding
codeword. The decoder takes this codeword and generates the output vector drawn from a
“codebook” or look-up table. For a N-level quantizer, an input vector x = (zo, ..., Zx—1),
where k is the dimension of the vector, is assigned a reproduction vector £ = ¢(x) drawn
from a finite reproduction alphabet ¥ = {y;; ¢ = 1,..., N }. The quantizer, g, is completely
described by the reproduction:.alphabet ¥ together with the partition § = {S;; 1 =
1,..., N} of the input vector space. The sets §; = {x : g(x) =y} consist of input vectors
mapped into the i*! reproduction vector: These are chosen to minimize some distortion

criterion d(x,y;) < d(x,y;) for all j.
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Figure 2-1: Quantizer Decomposition

This decomposition is illustrated in Figure 2-1. A cell assignment function s; is defined
a8 a binary valued function
1, ifx€S;
3;(x) = (2.1.1)
0, otherwise
which is an:indicator function for the set S;. The binary valued variable a; = a4(x) is the ith
element of the binary valued vector a = { @, ...,ap: }. Only a single element of this vector

is non-zero. Thus an N-level quantizer may be expressed as

N N
g{x) = Z Yyisi(x) = Z Vit (2.1.2)
fm1 i=1

..

- -



In order to characterize the structﬁre of the coder and decoder, an index function G
and an address generator function G~! are used. G is a mapping from the set of binary N-
element vectors a to the index set J of integers from 1 to IV and G~ is the inverse mapping.
Specifically, G(a) = 7, if 7 is the largest index i with ¢; = 1 and G~1(5) = (61;,-.., N;)
where 6;; is the Kronecker delta: (§;; = 1, £ = 7, 6;; = 0, otherwise). With these definitions,
the coder C can be represented .as C = G - S such that

C(x) = G(a) = G(51(%), -.., SN(x)) (2.1.3)

and the decoder D is represented as

N
D= Zy;G;-l, (2'1'4)
t==1
so that
D) =v;. (2.15)

In other words, C gives the index of the codeword which lies closest to x while D uses this

index to obtain the representative value for x. The quantizer @ may then be defined as

Q=D-C. (2.1.8)

The reproduction alphabet-of a vector quantizer may be represented as a scattering of
points in k-dimensional space. These points generally lie within the regions S; of the partition
S of the input vector sequence. For example, if a mean-square error criterion is used, these
points become the centroids of these regions. The placement of these points and the geometry

of the partition is of fundamental interest in the theory of optimal quantization.

2.2 ONE-DIMENSIONAL QUANTIZATION

An N-level one-dimensional quantizen g may be defined by a set of N + 1 decision levels
Z0,21,..., 2N and a set of NV output levels.yy, yo, ..., ynv. When an input sample z lies in the

ith quantizer interval S; = {2;_y < z < z;} the quantizer produces the output value



g{z) = y;. The value of y; is usually chosen to lie within the interval S;. The end levels z4
and zn are generally chosen to be the smallest and largest values the input samples may
obtain. For unbounded signals, these become zo — —oco and zn — co. The N output levels
generally have a finite value and if N = 2", a unique n-bit binary word can identify a

particular output level.

For a fixed bit rate transmission, the number of bits necessary to specify a quantizer
level is equal to the smallest integer greater than or equal to log, N. This represents simple
scalar quantization. For a fixed: bit rate, it is only necessary that the total number of bits
per frame be integer valued. For example, in LPC there are several reflection coefficients,
or some other parameters, generated for each analysis frame. Thus, in the anal}sis of a

quantizer, an integer number of bits is not required and the relationship between bits, S8,

and quantization levels, N, is simply

B =1log, N. (2.2.1)

If lossless source coding, such as Huffman coding, is used, the transmission rate need
no longer be fixed. The average transmission rate can then be reduced from logy N to be
arbitrarily close to the quantizer output entropy with little or no loss of fidelity

[GALLS8, Chap. 3|. The quantizer output entropy is denoted by

N-1
H=-Y p;log,p; < log, N bits, (2.2.2)

=0
where p; is the probability that the quantizer output ¢(z) = y;. The upper bound is achieved
if and only if the probabilities. p; are all equal so that p; = 1/N. For a fixed fidelity

criterion, minimizing the entropy minimizes the achievable bit rate [GALL68, Chap. 9], thus

the entropy places a lower bound on the possible bit rate.

2.2.1 UNIFORM AND NONUNIFORM QUANTIZATION

The input-output characteristic of a one-dimensional quantizer resembles 2 staircase.

The quantizer intervals, or steps, may vary in size. The simplest quantizer form is the
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Figure 2-2: Nonuniform Quantizer Modelled Using a Compandor

— uniform quantizer. In the uniform quantizer, the step sizes are identical except for the end
intervals. The output points are located at the mid-point of these intervals. If the step size
is denoted by A, then the maximum error is given by A/2. The end regions, S; and Sy,
are generally unbounded. If the quantization error exceeds A/2 when the input sample falls

within either end region, the quantizer is said to be overloaded.

In general, uniform quantization is not the most effective way to obtain good quantizer
performance. For a fixed number of levels, a nonuniform spacing of decision levels, based
upon the input probability density, can result in lower average quantization error and less
sensitivity to variations in input signal statistics. Bennett [BENN48] modelled the non-
uniform quantizer, as shown in Figure 2-2, as a non-linear compression function F({z),
followed by a uniform quantizer, followed by an inverse expansion function F~!(z). The
combined function of compression, quantization, and expansion is termed companding. It is

simply an equivalent way of viewing the operation of a nonuniform quantizer.

Companding is useful for quantizing speech samples. In general, low amplitude speech
samples occur with greater probability than high amplitude samples. The compandor non-
lincarity is used to spread the low amplitude signal over a larger range of amplitudes while

compressing the high amplitude signals into a smaller range. After uniformly quantizing

- 10 -
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Figure 2-3: A Quantizer Model

the transformed sample, the inverse function is used to produce an approximation to the

original signal.

The companding characteristic F(z) is a monotonically increasing function having odd
symmetry. The nonlinear operation is thus completely invertible. Because of this, there is no
loss of information due to the operation of F(z) itself. The combined effect of the non-linear
function and its inverse, along with the uniform quantizer, is equivalent to the operation of a

nonuniform quantizer whose characteristics are determined by the shape of the compressing

function

2.2.2 A QUANTIZER MODEL

The quantization process can be modelled as in Figure 2-3. A random error, or noise,
component e = ¢{z) — z, dependent upon the amplitude of the input signal z, is added
during quantization to form the output signal. The quantization noise can be categorized
into two forms. The first, granular noise, is bounded in magnitude and occurs when the
input sample lies within the finite region defined by decision levels zy < z < zn—_1. The
amplitude of the noise signal is restricted by the size of the interval the input signal lies

within. The second noise form, overload noise, occurs when the signal lies in one of the end
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regions and is unbounded in amplitude.

For simplicity, quantization noise is modelled as the sum of granular and overload noise
as if they are two distinct noise sources [GERS77). It is usually. convenient to treat the noise
as having a fiat spectral density and as being uncorrelated with the input samples [WIDR56.
Bennett [BENN48] shows that the quantization noise is approximately white if the number
of output lew.rels is large, if the output levels lie close to the midpoints of the corresponding

quantization intervals, and if successive input samples are only moderately correlated.

2.2.3 QUANTIZER PERFORMANCE

A fidelity measure must assign some value to the effects of quantization based upon the
fact that the input and the output of 2 quantizer are not equal. One of the most common

measures is the r** moment of quantization error. The r*! moment is given by

b
M, = Ells— @) = [ lo— o) ple)d. (2.23)

Because of the discrete nature of the quantizer output and the staircase form of the input
output relation, (2.2.3) may be rewritten as
N z3i
D=M, = Z / [z — yil"p(2)d(z), (2.2.4)
T D
where z; and z,—; are decision levels bounding the interval S; corresponding to output level .

yi- When r-= 1 or r = 2, equations (2.2.3) and (2.2.4) reduce to the familiar mean absolute

or mean-square quantization error respectively.

It is often useful to describe the performance of a quantizer by a signal to noise ratio

defined as

SNR = 10log,o(c®/D), (2.2.5)

where o2 is the variance of the input signal and D is the mean-square quantizer error. In
most applications, the number of levels IV is very large so that a high SNR is obtained.
In the case D = M;, the mean-square error, for a:large N each interval S; can be made

quite small with the exception of the overload regions. It is reasonable to approximate the
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probability density p(z) as being constant in S; so that p(z) ~ p(y;) and letting p(z) ~ 0

for the overload regions. In this case, it is found [GERS77] that the quantizer error becomes

1 N-1
D=L pwal (2:28)

i=2
where A; = z; — z,_; is the length of the interval S;. Equation (2.2.8) is based on the -
assumption that sufficient levels exist so that the overload noise is very small in intensity.
This implies that the overload decision levels zo and zn are chosen so that overload noise

is negligible compared to the granular noise.

In the special case of uniform quantization, the intervals S; are of a constant size so

that A; = A. The error becomes

A2 N=1
=3 ; p(yi)A. (2.2.7)
However,
S p(wa ~ [ ple)ds =1 (22.8)
so that
D %23 (2.2.9)

To avoid significant: overload distortion, in speech applications the overload level
TN = —zo.> 40 where o2 is the variance of the signal assuming a mean of zero. If the mean
is not zero, the quantizer should be designed to be symmetrical about the mean. The step
size then becomes A = 80 /(N —2). It is found [OLIV48] that there is a linear increase in SNR
with the number of bits of quantization. If N = 2%, then for an n-bit quantizer, it is seen

that, using equations (2.2.9) and (2.2.5) that

SNR = 6n —7.3 (2.2.10)

for the given step size.

Any nonuniform quantizer can be transformed into a uniform quantizer through a
change of variables [GRAY77]. For convenience, the new variable will cover the interval

[0,1] having quantization output levels

g = (’”‘% i=0,1,.,N—1 (2.2.11)
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and decision levels

. z

= i=01.,N. (2.2.12)

The random variable Z will be related to the original variable z through the transformation
% = F(z). ' (2.2.13)

F(z) is a differentiable monotonically increasing function so that

i’% = f(z) > 0. (2.2.14)

The quantization levels and boundaries are related by

;= F(yd);+=0,1,. . ,N-1 (2.2.15)
and

5:" = F(z.-), 1= 0, 1, veey N. (2-2-16)

The limits on quantization, zg = @ and £y = b are transformed such that

F(zo) = F(a) =0 and F(zn) = F(b) = 1. (2.2.17)

The probability density can be transformed to the new coordinate system using stan-
dard techniques. It should be noted that if z; and z,_; represent the decision levels bounding

an interval and %; and #,-; are the transformed levels then

z: &g
Prizi1 <2< 2] =Pr[z;1 <2< 24] = f p(z)dz = / p(z)dz.  (2.2.18)
ZTi—1 z

feal

The above relationships and their inverses allow any quantizer to be analyzed, at least in

theory, as a uniform quantizer. In practice, the relation F(z) may be difficult to determine.

Based on the preceding model of nonuniform quantizers, it is possible to derive [BENN48]
an approximate formula for the mean-square error. For large N, the curve F(z) may
be approximated by a straight-line segment of slope F/(y;} which is the derivative of F(z)

evaluated at output value y;. Defining f(z) = F'(z) results in

F(z) — F(zi-1) ~ 2V

. A (2.2.19)

fly) = F'(y:) ~
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Then substituting A; from (2.2.19) into (2.2.8) yields

vz Y p(z) ;, :
D=1 /; » TP (2.2.20)

where V is the value of the overload level.

A common compression function used in speech transmission is the u-law characteristic.
This example is a member of the class of “robust” quantizers which are relatively insensitive

to changes in the probability density of the input signal.

To obtain robust performance, the SNR of the‘quantizer should be independent of the

probability density function of the input signal [GERS77]. If the slope of the compressor

curve is chosen to be

|4
then equation (2.2.20) becomes :
| B
D= Wg-? ) (2.2.?2)

and the SNR, defined by (2.2.5), reduces to a constant independent of p(z). By integrating
(2.2.21) for z > 0 to give

F(z) =V +eclog(z/V), (2.2.23)

where ¢ is a constant, it is seen that a logarithmie curve gives the desired robust performance.

The p-law compressor characteristic is of a logarithmic form and is defined as

P(z) = V%%V)— (2.2.24)

for z > 0. The logarithm is shifted in order to avoid complications when z = 0. The

mean-square granular noise can be calculated [GERS77] to be approximately

D _ [log(1 + m)? { 2aV (_‘i)z} 2.2.25)
02-—- IN? I+Mb+}‘¢7 , . (..)

where a is the ratio of mean absolute value to rms value of the input samples.
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2.2.4 OPTIMUM QUANTIZATION

While the robust quantizers described previously limit the quantization error for chang-
ing or unknown probability density functions, in applications where the density function is
known it is natural to seek the best possible quantizer characteristic for that density. The

optimum quantizer is one that minimizes the error for some distortion measure.

There are two main approaches taken to obtain an optimal quantizer. The first is an
algorithmic pr‘ocedure for finding the optimum decision and output levels and is valid for

any number of quantizer levels N. The second approach assumes that N is large and leads

to an explicit solution.

The first approach is the algorithm developed by Lloyd [LLOY82] and Max [MAX60].
For a mean-square error criterion and a quantizer with a fixed number of levels N, the
optimal values for the decision levels z;,s = 1, ..., N—1 and output points y;,1 = 1, ..., N are
to be found. The necessary conditions for optimality are 6btained by setting the derivatives
of D in {2.2.4) with regard to each of these parameters to zero for r = 2. The resulting

conditions then become:

1 - Each output level y; must be the centroid of the interval S; with respect to the

input density p(z).
2 - Each decision level z; must be halfway between the two adjacent output points.

The Lloyd-Max conditions may be summarized in the following equations:

T

zp(z)
— 2.2.26
vi E Ty Pr[z.-..1 <z< z"] ( )
and

!‘i‘% = z;, (2.2.27)

where p(z) is the probability density of the input signal and Pr{z;—y < z < z] is the

probability z lies in the given quantization interval. Generally, the above equations are
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mathematically intractable leading to.the development of approximate formulae for the

commonly used densities.

These conditions do not give the optimum values explicitly since each decision level
z; is dependent upon the adjacent output points y; and y;+; and each output level y; is
the centroid of the region defined by z;—; and z,. However, it is possible to compute these
parameters [MAX60] with an iterative procedure, called the Lloyd-Max algorithm, that

simultaneously satisfies both conditions.

Lloyd [LLOY82] observed that the above conditions, although necessary, were not
sufficient for optimality. He showed this by means of a counter-example of a probability
density function and associated quantizer that satisfied the conditions but was not optimal.
Fleischer [FLEI64] obtained sufficient conditions which, if satisfied, will confirm that the

quantizer is optimal. In particular, if the input density p(z) satisfies the-property that

& logs(a) <0 (2238)

for all z, then only one quantizer exists that satisfies the Lloyd-Max conditions. The converse
is not necessarily true: it may be possible to have a density p(z) that does not satisfy (2.2.28)

and yet a unique optimal quantizer may exist.

The second approach to obtaining an optimal quantizer commences with equation
(2.2.6) which is based on the assumption that N is large. Panter and Dite [PANTS51] found

that the optimal compressor slope f,(z) is proportional to the cube root of the probability

density function:

fo(2) = e[p(z)]3, (2.2.29)

which is an extension of equations (2.2.8) and (2.2.20). By integrating (2.2.29) the compressor

characteristic is obtained:

Fo(z) =¢ /0 =[p(s)]%ds,z >0, (2.2.30)

where c is a constant chosen so that Fo(V) = V, the overload:value.

Optimal quantizers have 2 number of interesting properties. Wood [WOOD®89] derived a
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result which states that the variance of the output of a minimum mean-square error quan-
tizer should be less than the input. This indicates that signal and noise are dependent and
the approximations considered in Section 2.2.2 may not be valid. Bucklew and Gallagher
[BUCK79, GALLBO] extended these results to quantizers other than the Lloyd-Max quan-
tizer. They also showed thai the mean value of the signal is preserved by the quantizing
operation and that the distortion is equal to the difference between the input and output

variances for a mean-square error criterion. For an in-depth development of these results,

the reader is referred to the papers mentioned here.

2.3 VECTOR QUANTIZATION

The extension of scalar quantization to several dimensions can be conceived of in several
ways. A conceptually simple method was developed by Huang and Schultheiss [HUANB3] for
correlated Gaussian random variables. Figure 2-4 illustrates this method in block diagram
form. Essentially, a nonsingular transformation 7" operates on the input vector x to yield
a vector y of uncorrelated random variables. When the input vector x is Gaussian, the
output vector will also have a Gaussian distribution whose samples are therefore not only
uncorrelated, but independent as well. These uncorrelated elements may then be individually
quantized. An inverse transformation 7! is then be used to produce an approximation to

the original input vector.

The above procedure is optimal only if the input samples have a jointly Gaussian
probability distribution [HUANB3]. In general, the input samples will not have this property
and it is difficult to find a simple and practical transformation that makes the samples
uncorrelated. Therefore other methods for vector quantization have been investigated as

discussed in the following sections.
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LINEAR SET OF K NOISE-FREE LINEAR
TRANSFORM LLOYD - MAX DIGITAL TRANSFORM
T QUANTIZERS CHANNEL !

Figure 2-4: Vector Quantizer for Correlated Gaussian Random Variables

2.3.1 PRELIMINARIES

For every finite {or countably infinite) set of points y;,7 =1,..,N in R, a Dirichlet
partition is defined such that each point in S; is closer to y; than to any other point y;, for

all 7 £ 4. S; is thus defined as

Si={x:|x—yq < |lx—y;| for eachj#£1}. (2.3.1)

An optimal quantizer that minimizes the distortion will clearly have a Dirichlet partition.
For k = 2, Figure 2-5 shows an example of a Dirichlet partition. In general, each bounded
Dirichlet region is a convex polytope bounded by segments of {k — 1)-dimensional hyper-
planes. An effective partition for the quantizer would have the property that the unbounded,
or “overload”, regions would make a sufficiently small contribution to the distortion. This
is always possible when E{||x||"] < co. This is simply an extension of the one-dimensional
casc where the quantizer is designed so that the probability of the input sample falling into

either end region is small.

The centroid § of a convex polytope P in R* is the value of y that minimizes the

polytope error D, defined as

Dy = | |lx—y|"dx. (2.3.2)
P
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Figure 2-5: A Dirichlet Partition of the Plane

For r=2, ¢ is simply the usual definition for the centroid of a body with uniform mass
distribution. To minimize the distortion, it is necessary that each output point be the
centroid of the region in which it lies. In the case of a uniformly distributed random vector
x, a quantizer will have a Dirichlet partition defined on the bounded set in R* where p(x) is
positive. To summarize, the two necessary conditions for optimality are:that the partition
be a Dirichlet partition and that the output points be centroids. This is an extension of the
one-dimensional case first developed by Lioyd {LLOY82].

A convex polytope P generates a tesselation if there exists a partition of R*¥ whose
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Figure 2-6: A Partition of the Plane into Hexagons

regions are all congruent to P. For example, all trianglés, quadrilaterals, and hexagons
generate tesselations for k = 2. For N sufficiently large, the optimal quantizer for a
uniformly distributed random veétor on some convex set S approaches a partition whose
regions are all congruent to some polytope P, i.e. the optimal partition is a tesselation of
S [GERS82]. The polytope P in R is said to be in the class of admissible polytopes P* if
P generates a tesselation that is a Dirichlet partition with respect to the centroids of each
region of the partition. In other words, the set of admissible polytopes P* includes only
those which form a tesselation of § and where the centroids are equivalent to the points
which generate the Dirichlet partition. For example, as shown in Figure 2-8, the hexagon is
an admissible polytope for k=2. The center of the hexagon is the centroid, as well as the
point used to generate the Dirichlet partition.In general, the points generating a Dirichlet

partition are not the centroids of their respective regions.

The normalized inertia 7{P) of a polytope P is defined as

--¥lir
17 = [ 25
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where 9 is the centroid and V(P) is the k-dimensional volume of P. This normalization has

the property that

I{aP)=I(P), a > 0, (2.3.4)

where the polytope P = {ax : x € P}. Thus when the size of P is scaled, its normalized

inertia remains unchanged. A coefficient of quantization may then be defined as

1
Clk,r)= P Pienlg" I(P). (2.3.5)

For a uniformly distributed random variable, C(k, r) may be thought of as the mean distor-
tion of the normalized polytope for an rtb power distortion measure. An optimal polytope
P, is an admissible polytope which attains the minimum inertia of all possible admissible

polytopes with the same volume. Thus, from equation (2.3.5),

I(P,) = kC(k,r). (2.3.6)

A classic isoperimetric result is that every convex polytope has a greater moment of
inertia with respect to its centroid than a k-dimensional sphere with the same volume. This

leads to a lower bound on C(k,r) as follows. If B is a unit radius sphere centered at the

origin, then

, k
[ixirax= 23, (27
where V. is the volume of B. The normalized inertia of B is then

k

I(B) = k+r

vk, : (2.3.8)
Using (2.3.8) and (2.3.8), a lower bound on C(k,r) is obtained as
Clk,r) > ——vir*, (2.3.9)
= gy K

An upper bound may be obtained by calculating the normalized inertia of any admissible

polytope in P¥. A simple choice is the k-dimensional cube C' which has normalized inertia

k
= -r., 2.3.10
M) = 2 (2:3.10)
C/(k,r) thus has an upper bound given by
Ck,r) < ] r2"', (2.3.11)
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which is independent of the dimension k.

2.3.2 OPTIMAL VECTOR QUANTIZATION

2.3.2.1 Derivation of the Distortion Integral

Gersho [GERS79] defines the output point density function of a k-dimensional quantizer

as

1 . .
gn(x) = m, ifxeS; for i=1,.,N. (2.3.12)

where V(S;) denotes the volume of the region S;. This is essentially a generalization of the
concept of “‘asymptotic fractional density of quanta” introduced by Lloyd [LLOY82] for the
one-dimensional case. Essentially, a asymptotically small k-dimensional region is found so
that the probability distribution is uniform over the region and equal to the probability of the
centroid of the region. gn(x) = 0 if x is in a region of the partition having infinite volume.
If N is large, gn(x) can be expected to closely approximate a continuous density function
A(x) having unit volume. The fraction of output points located in a fractional volume AV (x)
containing x is then given as A (x)AV'(x). The volume of the region S; associated with output
point y; is then given approximately by

for every bounded region S;. NX(y;) is the number of points per unit volume in the

neighborhood of y; so that the reciprocal in (2.3.13) is the volume per output point.

The distortion may be expressed as

N
D= % ; /s Ilx =yl p(x)ax. (2.3.14)

Then, analogous to the one-dimensional case, the partition is chosen so that the “overload”
distortion is negligible. Then for large N, assuming \(x) is smoothly varying, the probability

density in S; approximates a uniform density given by

p(x) ~ p(yi), x € 8. (2.3.15)
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Substituting (2.3.15) into (2.3.14) gives

. _ A
= % PIRLD /;‘ lIxe =y dx. (23.16)

Since S; may be approximated by a suitably rotated, translated, and scaled optimal polytope

P,, rearranging equation (2.3.3) results in

/&le —yil|"dx = I(B,)[V (S /. (2.3.17)

Equation {2.3.18) may then be written as-

D=+ E Py M (Po)[V (S /. (2:3.18)

twl

Substituting equations (2.3.8) and (2.3.13) into (2.3.18) results in

N
D = N~FC(k,r) ) ply My PV (S)), (2.3.19)

t=]

where 8 =:r/k. Equation (2.3.19) may be approximately expressed by the integral-

D = N~PC(k,r) f [f((y)]ﬁ y. (2.3.20)

The region of integration is actually the union of all the bounded regions of the partition, but,
since the distortion from the overload regions is assumed to be negligible, it may be taken

as the entire k-dimensional space. Equation (2.3.20) is essentially an extension of Bennett’s

one-dimensional formula [BENN48], given in equation (3.2.20), extended to k dimensions.

2.3.2.2 Minimizing the Distortion Integral

Zador [ZADOB82], in an updated transcript of his previously unpublished paper, separated
the description of the quantizer into two parts in order to minimize the distortion in-
tegral. For the first part, the distortion.is minimized over all quantizers for a. uniform
probability density function. For the second part, the distortion is minimized over the
set of compressor functions which determine how the output points of the uniform quan-
tizer are redistributed to take into account the probability density function of the ran-

dom variable. This is essentially. an extension to several dimensions, of Bennett’s [BENN48]
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work on one-dimensional quantizers culminating in equation (2.2.20). The results were

derived for the asymptotic case of a large number of levels (N — oo).

For the first part of the problem, Zador [ZADO82] found that, for large N and an r**

moment distortion measure,

Dy(N) = A(k, )N~ ip(x)llk/ (k+r), (2.3.21)

where r is the moment, & is the dimension, A(k, r) is a function that is dependent only on

k and r and not the random variable, and

e = [ fereed 2322

is called the L, norm of p(x).

For the second part of the problem, Zador [ZADO82] found that
Do(Hq) = B(k,r)e~"/HHa=Hrll, (2.3.23)

where Hg is the output entropy of the quantizer, H(p) is the differential entropy of the

random vector x with probabilty density function p(x), and B(k,r) is a function of k and r

and not the random vector x.

Zador did not obtain A(k,r) and B(k,r) explicitly, but he showed that

Vit < Bik,r) < Alk,r) < T(L+r/R)WVE%, (2.3.24)

k+r

where V; is the volume of a unit sphere in k dimensions and I'(z) is the gamma function. A

derivation of the upper and lower bounds is presented in later sections.

Gersho [GERS79] derives an expression for the minimum distortion D, obtained by the

use of the best quantizer. The minimum distortion is given as

D, = N="1*C(k, )P0k (k4 1) (2.3.25)

where C(k,r) may be taken as equal to Afk,r). In that case equation (2.3.25) becomes

the same as (2.3.21). Since A(k,r) is independent of the probability density of the random
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variable and [p(x). = 1 if p(x) is unity in a bounded region of unit volume and zero
elsewhere, then A(k,r) is determined by the optimal quantizer for a uniformly distributed

random variable. Equation (2.3.25) then becomes
D, = N-"*C(k,r). (2.3.26)

C/(k,r) is called the coefficient of quantization. In general, C(k,r), like A(k,r) and B(k,r),
is unknown. There are two special cases, evaluated by Gersho: [GERS79), for which C(k,r)

is known exactly. These are

_ 1 . .
c(1,r) = — -2 (2.3.27)
and
5
C(2,2) = —. (2.3.28)
36v/3

2.3.2.3 The Lower Bound

Using equation (3.2.20), Gersho [GERS79] obtains a minimum value for D by separating
the quantizer description into two parts as described above. For the first part, Gersho

obtained a2 minimum distortion given as

Dy(N) = C(k, )N "*lp(x) i/ t-+r)- (2:3.29)

with \(x) in (3.2.20) proportional to [p(x)]*/(*+*). This corresponds to Zador’s result, (2.3.21),
if A(k,r) = C(k,r). Since \(x) is proportional to [p(x)]*/(*+r) it may be seen that each term
in (2.3.18) reduces to a constant independent of ¢. This indicates that each region S; of the

partition makes an equal contribution to the distortion for an optimal quantizer.

For the second part of the problem, D is to be minimized subject to a constraint on
the quantizer output entropy Hg. For large N, since p; = p(y;)V(S;) for each bounded set
Sl')

p(ys)
Ho=-) —=>"lo )/ NA(y:

(2.3.30)
== ply:)loglp(y JIAV(y:) + Y p(y:) log[N Ny AV (¥3),



where AV (y¢) = 1/NX(yq).

As in the derivation of the distortion integral, the sums in {2.3.30) may be approximated
by integrals for large N. This results in

Hq =H(p) - f p(y) 1og[NTl(y5]dy, (2.3.31)

where H(p) is the differential entropy of the random vector x.

By rewriting equation (2.3.20) using Jensen’s inequality, D beco_mes
D = C(k,r) / ¢~ Plos[NA(W)]p(y)dy, (2.3.32)
where § = /k. By then applying (2.3.31), Gersho [GERS79] sbtains the result that
D > C(k,r)ePlHa—H) | (2.3.33)

If X(y) is a constant corresponding to a.uniform distribution of output points, equation

(2.3.33) becomes an equality. Thus the solution to the second part of the problem:becomes
Dy(HQ) = C(k,r)e#Ha—Hp)l, ' (2.3.24)

This corresponds to Zador’s result, (2.3.23), if B(k,r) = C(k,r). It can be seen that, for

large N, the optimal quantizer for a constrained entropy is very nearl a uniform quantizer.

From equation (2.3.29) or (2.3.34), it can be seen that Zador’s results are obtained if
C(k,r) = A(k,r) or C(k,r) = B(k, r) respectively. By using these relations and substituting
for C(k,r) from equation (2.3.9), it can be seen that

| 1 r/k
Alk,r) 2 Blk,r) 2 T Vi, (2.3.35)

which corresponds to Zador’s lower bound in equation (2.3.24).

2.3.2.4 The Upper Bound

Gallagher and Bucklew [GALLS82] ﬁrovide a relatively simple derivation of Zador’s
upper bound. They begin by placing at random, N independent uniformly distributed k-

dimensional samples. These will be the quantizer levels. The input signal x is assumed to
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have a uniform distribution over the hypercube. N is assumed to be sufficiently large so
that there is small probability that the input sample is closer to an edge of a hypercube
than to one of the output values. The probability that a particular output level y; is within
a distance p of the input sample x is given approximately by the volume of the sphere B;

of radius p centered about y;. This may be written as
Pr(x € B;] = Vi o, (2.3.36)

where if V; is the volume of the unit radius sphere, then Vip* is the volume of the sphere
with radius p. To compute the probability that the closest output level is within a distance

p of the input sample, classical order statistics is combined with the approach developed by

Yamada et al [YAMAS0].

The probability density f(p) for the distance between the input sample and the nearest

output level is then computed as
7(p) = N[1 = Vi) N =" Vekp* . (2.3.37)

For large values of N, the probability density goes to zero rapidly as p increases. By

construction, p is the distance between the input and output level which may be written as

p=lx—vil. (2.3.38)
Thus,
Bllx~I") = Bllx~yil'; a6 =¥ 0339
= E[o"].
Using equations (2.3.38) and (2.3.39), the distortion D may be written as
1
D= lEm = —/ pTTETINL = Vip¥ ]V 1k Vidp. (2.3.40)
k k hypercube
Letting s = Vjp" and using the fact that s < 1, it is possible to write
1
DL / 8"/*[1— )N ~1ds
Ve
{2.3.41)

N T(+r/E)T(N)
o L (N +1+r/k)’

where I'(.) is the gamma function. For large N, the following approximation may be used:
T'(N)
I‘(N +1+4

A r) ~ Nk (2.3.42)
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Therefore,

_ N="*P(1 4+ r/k)

D 2.3.43
kv (2343
Because D > D,, (2.3.28) may be used to write
I'(1 k
C(k,r) < LA 1/E) (2.3.44)

k
kvy/

which is Zador’s random upper quantization bound.

2.3.2.5 Properties of Optimal Vector Quantizers

For optimal one-dimensional quantizers, it was found [BUCK79, GALLS80] that the mean
of the input equals the mean of the output and that the distortion equals the differences
between the input and output variances for a mean-square error criterion. Bucklew and
Gallagher [GALLB82] generalized these results to a k-dimensional quantizer in what is basi-

cally an application of the orthogonality principle.

The quantizer is designed to minimize the mean-square error defined as

D = L E(lx — q(a)I?). (2.3.45)

In order to investigate the properties of the quantizer, the parameters p; and x; are defined

as follows:

pi = L.p(x)dx (2.3.46)
and .

1
L X = — xp(x)dx, 2.3.47
vi s, p(x) ( )

where the partition 5;,1 = 1,..., N need not be optimal.

To show that a quantizer g,{x) is optimal for a given partition, consider two different

quantizers, defined as g,(x) = x; and ¢(x) = yq, for the same partition S. The expected

error for g(x) is given by

N
Effx — )|} =3 /s (0= %+ x; =y px)dx. (2.3.48)

=1
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From equations (2.3.46) and (2.3.47), it can be seen that

‘/;,(x — x;){x — y:)p(x)dx = 0. (2.3.49)

Using this result, and substituting (2.3.46) and (2.3.47), (2.3.48) becomes
» N
E[llx — q)|?] = Elllx — gox)[I*] + Y pillx: — vill®. (2.3.50)
-
This illustrates that the quantizer g,(x) produces an error no larger than any other quantizer

g(x) for a given partition.

By using (2.3.48) and (2.3.:47), it can be seen that the mean of the quantizer output

equals the mean value of the input. This follows from

N
'}__:1 /;‘ xp(x)dx = /S‘xp(X)dx, (2.3.51)

where the left side is the mean of the output and the right side is the mean of the input. It
can also be easily shown that the quantizer error equals the input variance minus the output

variance. Consider the input variance

Elllx— ][] = E{lx - ao(x) + gu(x) ~ Elx]]1’]
= Efllx ~ gu(xl?] + E{la,0 — EIx?]

where, from (2.3.49), the cross terms are zero. Equation (2.3.52) shows that the input

(2.3.52)

variance is equal to the sum of the quantizer error and the output variance.

2.3.3 LATTICE QUANTIZERS:

A vector quantizer is most easily designed as a set of points which lie upon a lattice in
k-dimensional space. The lattice is a regularly spaced array of points in k-dimensional space.
A lattice may be described [GERS81, GERS82] by a non-singular k X k matrix U such that
if m is any k-dimensional vector (column matrix) of integers, the lattice A is the set of all
vectors of the form Um. The columns of .U are points of the lattice and any other point
is formed by taking a linear combination of these basis vectors with integer coefficients.
The origin is always a lattice point and any translation to another lattice point results in an

identical lattice. The Voronoi cell surroundixig any lattice point x is the set of all points closer
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to x than to any other lattice point. Since each lattice point has an identical enviroment,

the Voronoi cells are all congruent and collectively fill the space without overlapping.

A lattice quantiger is a quantizer whose set of output points is a subset of the lattice A. -
In one dimension, the only lattice quantizer is the uniform quantizer and the Voronoi cells
are equally-sized intervals in R!. A uniform quantizer in k dimensions is defined [GERS79]
as one whose cells are congruent translates of each other, i.e. a lattice quantizer. Thus,

the lattice quantizer is basically an extension of the one-dimensional uniform quantizer to

several dimensions.

In order to characterize lattice quantizers, it is necessary to understand some of their
basic features. Three useful properties are the density of the lattice, the kissing number,
and the normalized moment of inertia. The density of the lattice is defined as the largest
fraction of the space that may be filled with spheres centered about the lattice points that
are of maximum diameter without overlapping. The kissing number is defined as the number
of these spheres that touch the sphere surrounding a given lattice point. The normalized
moment of inertia is the moment of inertia of the Voronoi cell around ‘a lattice point
scaled so that the cell has unit: volume. The first two properties give an indication of the
quality of a particular lattice for quantization. The third property directly determines the
performance of a lattice quantizer if the mean-square error criterion is used. Conway and
Sloane [CONW82a] tabulate the normalized second moment of inertia for various lattices
and Voronoi cells up to ten dimensions. The characteristics of a number of lattice structures

of varying dimensionality are tabulated by Sloane [SLOAS81].

The most interesting aspect of lattices is the ease with which arbitrary encoding may
be performed. Given:an arbitrary point x in k-space, it is relatively easy to identify the
lattice point lying closest to x. Conway and Sloane [CONWSI1] give explicit algorithms
for calculating the nearest lattice point in 4-, 8-, and 24-dimensional lattices. In a later

paper [CONWS82b|, they generalize these algorithms to a wider range of lattice forms and

dimensions.
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2.3.4 COMPANDING IN SEVERAL DIMENSIONS

A lattice quantizer is an elegant and simple method of quantizing in several dimensions.
However, as in the one-dimensional case, a uniform quantizer is not the most effective
method of obtaining good quantizer performance. For a fixed number of quantizer points,
a nonuniform distribution of points in k-dimensional space, based upon the input vector
probability, can result in improved quantizer performance. In a manner analogous to the
one dimensional case, a vector quantizer may be modelled as a block compression function
F(x), followed by a uniform lattice quantizer, followed by a block expansion function F~!(x)
as shown in Figure 3-D. Gallagher and Bucklew [GALL80] describe the block compandor
as follows. F' is a mapping function that maps R' into X*(0,1), where “X*” denotes the
Cartesian cross product in k dimensions. The set X*(0, 1) is a k-dimensional hypercube. The
quahtizer output levels, or points, are then uniformly distributed within this hypercube. The

chosen output level x is the point that lies closest to F(x), where x is the input data vector.

The quantized output is then F~!(x).

Let the quantization error in the hypercube be denoted as & = (¢4, ..., ék)T and impose

the condition that the expected value

El8:8;) = 026y, (2.3.53)

where 4;; is the Kronecker delta. In other words, the elements of the error vector are in-
dependent. It may be shown that, as the number of output points N approaches infinity, the
error vector for an optimal quantizer converges to a k-dimensional, spherically symmetric,
probability density which satisfies condition {2.3.53). Furthermore, for large IV, there are an
infinite number of quantizers which have approximately the same near optimum error and
which may be generated as translations of one another within the hypercube. By making
an arbitrary choice from among this ensemble of near-optimum quantizers for each input
vector x = (21, ..., zx)7, the error vector e may be decoupled from the input so a5 to make
the error vector independent of the input vector. This is analogous to the technique of as-
signing a random time origin to sampling operations in order to model the sampled signals

as wide-sense stationary processes.
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Let the input data be k-dimensional samples from a probability density function
p(x), x € R*. If S, is the support of distribution p(x), then the mapping F, where F =
[Fi(x), ..., Fx(x)]T, maps S, into the hypercube X*¥(0,1) such that F is regular and onto.
Assuming very small distortion, a good approximation to the final error vector in the output

is f~!(x)&, where f~!(x) represents the matrix of partial derivatives of the inverse operator

F~! and & is the error vector in the hypercube.

If the variable in the hypercube is y = F(x), then the probability density for y may be

written as

_ p(F7Yy))
pyly) = W:r(y—))—l (2.3.54)

In several dimensions, the mean-square error is given by

D= / ~lIx — g(x)1*p(x)dx (2.3.55)

Substituting x = F~(y), e = x ~¢(x) = f~'(x)&, and (2.3.54) into equation (2.3.55)

results in

D= f “T[f"‘(l"'1 N (F ) I—E,%F__—’i))—ldy, (2.3.56)

where S, = X*(0, 1), the support of y, is the transformed support of x.

If x = F~!(y), then dx =| f~!(y) | dy. However, By the inverse mapping theorem

1
|77 ) b= . (2.3.57)
| FH(F='(y)) |
Using the above transformations and (2.3.57), equation (2.3.58) becomes
D= f T [F ()]t T (P (x)]L8p(x)dx (2.3.58)

with A71(x) = [I*"’(x)]"lT[F"(x)]"1 a symmetric matrix for any x. Averaging D over the
ensemble of quantizers, the error & is decoupled from the input so as to be treated as an

independent random variable. Consequently,

D= fs ,, tr{ A~ (x)&87 }p,(x)dx, (2.3.59)

_ 89 _



where tr{.} represents the trace of the matrix. Imposing the condition of (2.3.53), equation
(2.3.59) becomes

D= a%/s tr{ A71(x) }p(x)dx. (2.3.60)

Thus the total error is the product of two terms operating independently. If the eigenvalues

of A(x) are denoted as Z\?(x), { =1, ...,k , then (2.3.60) becomes

o2 Z /s ’;‘;E”? (2.3.61)

i a random vector has a uniform distribution over the hypercube and F~=1(.) maps this

vector to a vector in R* with support S, and density | F'(x) |, then

f |F! (x)|dx = f ]] Ai(x)dx = 1. (2.3.62)

Sp =]
The problem becomes one of minimizing.D in equation (2.3.61) subject to the condition
in (2.3.62). Assuming that except for \;(x), all of the \¢(x) are the optimum choice, use
a variational method to optimize )\j(x) subject to constraint (2.3.62). The result is that

Ai(%) = A(x) for all { and the optimum Mx) is given by

_ [ p(x) w
x(x)—("p"rh) . (2.3.63)

Using these eigenvalues, the minimum error Dy,;, is given by

Dmtn = 0% "p“;h) (2.3.64)
where
1/a
Iphe = [ bbrex] 2369

is the L, norm of p(x).

2.3.5 RANDOM QUANTIZERS

When the multidimensional probability density is difficult to transform or unknown,

the only effective method for the design of vector quantizers is through the use of a clustering
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algorithm. The clustering algorithm utilizes the statistics of some training set and takes ad-
vantage of coupling between the elements of the training vectors. Combinations of elements

that occur very infrequently may be eliminated from consideration in the quantizer design.

In scalar quantization, the full magnitude range of each element must be quantized.
Effectively, this is the same as quantizing all possible combinations of elements in the vector.
This would correspond to a uniform vector quantizer with rectangular regions. Performance
would be improved using the lattice structures discussed in Section 2.3.3 but infrequently
occurring combinations are not eliminated. This gives an indication of why cluster designed

vector quantizers require fewer bits than a set of scalar quantizers or lattice quantizers for

equivalent performance.

A main disadvantage of cluster designed quantizers is the complexity of the quantizer
implementation. Since the output vectors are obtained in a random manner, the quantizer
has no natural structure as is the case with lattice quantizers. Therefore, each output vector
must be stored in a codebook and an exhaustive search of the codebook must be performed

in order Lo locate the nearest output vector to the given input vector. This results in costly
| processing time and storage requirements. The processing time may be reduced using a tree-
structured codebook, as discussed in Section 2.4, at the cost of suboptimality and increased

storage requirements.

The clustering approach was thoroughly developed by Linde, Buzo, and Gray [LINDS80].
Essentially an extension of Lloyd’s Method I [LLOY82], the design algorithm is based on the
use of a training set of random vectors generated from a source for which the quantizer is
to be optimized. The algorithm is discussed in greater detail in Section 2.5. A discussion of

cluster designed quantizers follows below.

Given a quantizer g described by a reproduction alphabet Y= {yi¢t=1,..,N}and
partition § = {S;; ¢+ = 1,..., N }, then the expected distortion, D({f’,S}) = D(q), of the
quantizer may be written as

. N
D{Y,S}) = E[d(x,q(x)] = Y Eld(x,y:)lx € )] Prx € 5], (2.3.66)

=1
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where E[d(x,y;}|x € S,] is the conditional expected distortion given x € S; or g(x) = y;. If
the alphabet ¥ is given but the partition is not specified, a partition optimum for ¥ may
be easily constructed by mapping each x into the y; € Y which minimizes the distortion
d(x,y:) for all <. In other words, by choosing the minimum distortion, or nearest neighbour,
codeword for each x, an optimum partition for the alphabet may be generated. In the
case that more than one codeword minimizes the distortion, some tie-breaking rule, such
as choosing the codeword with the smallest index, must be used. The partition, P(}") =
{Pi;; i=1,..,N}, constructed in this way is such that x € P; only if d(x,y:) < d(x,¥;),
for all 5 7 ¢ and thus

D({ Y, P(7) }) = E[;néi)xrl d(x,y)]. (2.3.67)

Equation (2.3.87) implies that, for any partition S,

D({?,S}) > D({?,P()")}) (2.3.68)

and thus, for a fixed alphabet ¥, P(f’) is the best possible partition.

Conversely, given a partition § == {S;; ¢ = 1,..., N}, assume that the distortion

measure and distribution are such that there exists 3 minimum distortion vector %X(S) for

which
E(d(x,%(S))|x € 8] = mgn Eld(x,U)|x € S] (2.3.69)

for each set § with nonzero probability in k-dimensional Euclidean space. Analogous to
the case of the squared-error distortion measure, the vector X(S) will be called the centroid
of the set §. Thus the centroid of a partition is defined as the vector which minimizes
the average distortion of all points in the set § for scme given distortion criterion. If such
centroids exist, then for a fixed partition S, no reproduction alphabet Y can yield a smaller
average distortion than the reproduction alphabet *(S) = {%(S;); ¢ = 1, ..., N } containing
the centroids of the sets in S. This occurs since

N
D({)‘f,s }) = 3" Eld(x,y:)lx € 5] Pr[x € 5]
1=1
N . (2.3.70)
> Z muin Eld{x,U)Ix € S;] Prlx € §}]
=1

= D[{¥(5),5}]
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It may be shown [GRAY80a] that the centroids of (2.3.89) exist for quite general distortion

measures.

For the quantizer to be optimal, it is necessary that it is a fixed point quantizer
[GRAY80a]. If a fixed point quantizer is such that there is no probability on the boundary of
the regions, i.e. if Pr{d(x,y;) = d(x,¥;), 1 # j] = 0, then the quantizer is locally optimum
[GRAY80a]. This is always the case for continuous distributions, but can, in principle, be

violated for discrete distributions.

Since there are no differentiability requirements, the algorithm is valid for purely
discrete distributions. This is of particular importance when a source has an unknown
probability distribution. In this case, the quantizer must be designed using a long training
sequence of the data to be compressed. The training sequence, {xx; ¥ = 0,...,n — 1} may
be used to form the time-average distortion D, defined as |

n—-1

1
D= — > d(xi, gx)), (2.3.71)
i=0
which is exactly the expected distortion Eg, [d(x, g(x))] with respect to the sample distribu-
tion G, determined by the training sequence. In other words, Gy is the distribution that
assigns a probability m/n to a vector x that occurs in the training sequence m times. D, is
then the expected distortion based upon this distribution. Thus the algorithm may be used

on the training sequence to design a quantizer which minimizes the time-average distortion.

If the sequence of random vectors is stationary and ergodic, then as n — o0, G,, goes
to the true underlying distribution F. Thus if the training sequence is sufficiently long, a
good quantizer for sample distribution G, should also be good for the true distribution F
and thus yield good performance on data outside the training sequence. It may be shown
[GRAY80a] that, subject to suitable mathematical assumptions, a quantizer generated by
using a training sequence converges, as the number of training vectors goes to infinity, to
the quantizer generated by using the probability distribution of the data source. It may also
be shown [GRAY80a] that for finite alphabet distributions, such as sample distributions,

the algorithm always converges to a fixed-point quantizer in a finite number of steps.
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2.4 PRACTICAL IMPLEMENTATIONS OF VECTOR QUANTIZERS

A number of factors govern the implementation of vector quantizers in either software
or hardware. These include computational requirements, algorithm complexity, and memory
requirements. The design of a practical vector quantizer generally requires a tradeoff among

these factors usually at the cost of quantizer performance.

There are two basic means of increasing the practicality of vector quantizers. The first
method stems from the structure of the codebook containing the reproduction vectors. The
second is applicable when a parameter is only slightly coupled, or not coupled at all, to
the remaining parameters in the vector. In either case, the quantizer obtained is suboptimal

compared to one where every reproduction vector is checked: the full-search codebook.

2.4.1 TREE-SEARCHED CODEBOOKS

For a2 mean-square distorbtion measure, a full-search vector quantizer requires, for each
input vector, roughly N{k + 1) multiplications, N(2k — 1) additions, and N comparisons;
where N = 2" is the number of quantizer output points, n is the number of bits, and k is
the vector length. The number of calculations required can be seen to increase exponentially

with the number of bits. The processing time required thus becomes impractical except for

the smaller codebooks.

One method of reducing computation time is by using a tree-searched codebook
[GRAYS82a, GRAY82¢]. A tree-searched vector quantizer is most easily visualized as a tree
which is labelled with vectors and is searched by the encoder. A tree of depth L has levels
| = 0 for the root node to ! = L for the terminal ievel. Each node in level (I — 1), I =
1,..., L, has Ny = 2% branches leading to nodes at the next level, where R; is the number of
bits added at level L. The tree structure is then compietely described by an L-dimensional
rate vector R = (R, ..., Rr). Bach node has a &-dimensional vector as a label. For the

non-terminal nodes, these labels may be thought of as “keys” for searching the codebook
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)

Figure 2-7: Encoder for Tree-Searched Codebooks

consisting of the terminal nodes.

A flowchart for a quantizer encoder: using a tree-searched codebook is illustrated in
Figure 2-7. The encoder first examines the source vector and seeks the vector y3, in the
set A= {yp,; by =0,...,281 — 1} of available codewords which minimizes the distortion
measure. The index 8; becomes the first entry in the path map b = (b1, ...,bz) describing
the sequence of nodes followed in the tree. The encoder advances to the node labelled by
tke best codeword. It then views a new collection Y (5;) = {¥s,,b,; b2 = O, ...,2%2 — 1}

and again selects the best codeword. This process is continued until the L'} level is reached,

- 89 -



000

Figure 2-8: A Binary Encoder Tree

where the encoder has selected a final reproduction codeword y3, 5,,....6, € Y (b1, b2, ..., b:—1)

and a path map b = (b4, ..., b).

The quantizer codebook obtained using the tree-searched method may be suboptimal
in the sense that the quantizer structure is constrained to a particular form which may
not be the “best” form for obtaining the closest output point to the input vector. The

tree-searched codebook obtained may be the optimal choice for quantizers which use a

tree-searched codebook.

Figure 2-8 is an example of a binary encoder tree. The codebook at the transmitter is
split into levels. The first-level contains only two codewords and is used to split the data
space into two. Each of these subspaces, or cells, is then also split into two for a total of
four cells at the second level. The process is repeated, each level representing one bit, until
the desired number of bits is obtained. The size of the codebook has been increased but the
savings in calculations are considerable. The number of calculations required is roughly 2n
comparisons, 2n(k — 1) multiplications, and 2n(2k — 1) additions. It is seen that the number

of operations grows linearly with the number of bits as opposed to exponentially for the

full-search case.
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Aside from increased complexity, there is an increase in storage requirements. For an
n-bit quantizer, the number of storage locations required is Nk, the number of output levels

multiplied by the vector length. For the binary tree-search codebook, there must be a total
of

249224 . 42n=09nt1_2

vectors stored or (2™*! — 2)k storage locations required. This is nearly double that required

for the full-search codebook.

It is not necessary to limit the codebook structure to the above two forms. Gray and
Linde [GRAY82a) found that three-level 10-bit codes with (R;, Rz, R3) = (4,4, 2) provided
a useful compromise of quantizer performance, complexity, and calculational requirements.
Wong et al [WONGB81] used a two-level 10-bit code with (R;, Ry) = (5,5) which achieved

an average distortion close to that of a full search codebook but required only 1/186 of the

computations.

2.4.2 PARAMETER SEPARATION

If a parameter is only slightly coupled with the other parameters, some time and storage
savings may be realized by quantizing this parameter separately from the others. If m bits
are assigned to the parameter and n bits to the remainder of the vector, then a total of n+m
bits are required for the quantization of all the parameters. For a full-search codebook, this
would require 2™ *(k+1) storage locations. By separating the slightly coupled, or decoupled,
parameter and quantizing it individually, the number of storage locations is reduced to
2™ +2"k. The saviﬁgs in storage requirements is offset by a decrease in optimality since the

codebook is now constrained to a particular form [BUZ080].
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2.5 ALGORITHMS FOR VECTOR QUANTIZER DESIGN

2.5.1 AN ALGORITHM FOR QUANTIZER DESIGN

Based upon equations (2.3.53) and (2.3.55), Linde et al [LIND80] developed an algorithm
for designing a good quantizer by taking any given quantizer and iteratively improving it.
Essentially an extension of Lloyd’s Method I [LLOY82], the basic algorithm for designing a

vector quantizer is outlired below.

Initialization: Given N, the number of levels, a distortion threshold ¢ > 0, an initial
N-level reproduction alphabet Yy and a training sequence {x;; § =0,...,n — 1}, where n
is the number of vectors in the training sequence, set the iteration m = 0 and the initial
average distortion D_; = oo. The infinite initial distortion ensures the operation of the
algorithm as after each iteration the average distortion is less than or equal to the average

distortion after the previous iteration.
Step 1: Given the reproduction alphabet Y, = {y;; i =1,..., N }, find the minimum
distortion partition P(Yp,) = {S;; ¢ = 1,..,N} of the training sequence: x; € S; if

d(xj,y:) < d(x;,¥k), for all £ 7 i. The distortion measure is denoted by d(x,y) and the y;

are the output alphabet vectors. Compute the average distortion

1 n—1 )
Dy = D({YmJP(Ym) }) = ; Z ynell}l d(Xj,y)
B .‘i=0 m ]

Step 2: Find the optimal reproduction alphabet R(P(Yy,)) = {%(Si); ¢ =1,..,N } for
P(Yy). ®(S,) is the centroid of all training vectors x € S;. Set Y1 = X(P(Yr)).

Step 3: If (Dyp—1 — D}/ Dy < ¢, halt with Yy, as the final reproduction alphabet.

Otherwise replace m by m + 1 and go to Step 1.

This algorithm is illustrated in the flowchart of Figure 2-9.
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Figure 2-9: Flowchart for Vector Quantizer Design

If at some point, there exists a cell S; such that Pr[x € §;] = 0, then the algorithm
assigns a small variation from the centroid of the training set as the output of the cell S;
and the algorithm continues. Thus, if the centroid of the data set is ¥, then the new output

codeword for S; is y; = (1 + 6§)9, where § is some small perturbation factor.

From equations (2.3.53) and (2.3.55), it can be seen that the quantizer distortion, Dy, is
less than or equal to the distortion, Dp—1, from the previous iteration. Thus Step 3 provides
a useful check on the program execution time since it allows termination of the program

when there is no longer any significant improvement in quantizer performance. In practice,
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a second check on the algorithm is provided by limiting the number of iterations. While this
can result in poorer performance, it was found that a limit of fifty iterations affected the

final quantizer performance only slightly whi'e a significant decrease in computation time

was obtained.

Since D,, is nonincreasing and nonnegative, alimit D, must exist as m — co. It can
be shown [GALLS82] that if 2 limiting quantizer Voo, exists, such that Yy, — i’oo as m — 00,
then D({ Yoo, P(Yeo) }) = Doc 20d Voo = #(P(¥so)), i-e. Yoo is exactly the centroid of its
own optimal partition. Thus the set {i’oo, P(i’oo)} is a fixed point under further iterations
of the algorithm. If the distortion threshold ¢ is chosen to be zero and the algorithm halts

for finite m, then such a fixed point has been obtained [GRAY80a].

2.5.2 OBTAINING THE INITIAL QUANTIZER

There are a number of methods for obtaining an initial quantizer for use with the
algorithm of the previous section. One method, for use on sample distributions, is by taking
the first N vectors of the training sequence. This may not be a good approach since it is
desirable that the vectors be well separated and N consecutive training vectors may not be
very disperse. A second method is based upon the use of a k-dimensional uniform quantizer
on a k-dimensional Euclidean cube which includes all or most of the training vectors. A third
technique involves generating quantizers of successively higher rates until a given rate or

performance level is obtained. This technique, described by Linde et al [LIND30, GRAY82a]

is outlined below.

Initialization: Set M = 1 and define Y5(1) = %X(Y'), the centroid of the training

sequence.

Step 1: Given the reproduction alphabet Yg{ M) containing M vectors {ys;i=1,..., M},
“split” cach vector y; into two close vectors y; and y;{1 + &) where 0 < |6 < 1 is
some perturbation scalar. The collection ¥ = {yve, yil+96); ¢ = 1,.,M} has 2M
vectors. Replace M by 2M.



Step 2: If M = N, the desired number of levels, set Y = )A’(M } and halt with Y, the
initial rgproduction alphabet for an N-level quantizer. If not, run the design algorithm on

¥ (M) to produce a good reproduction alphabet Y5(M) and then return to Step 1.

The splitting algorithm starts with a one-level quantizer consisting of the centroid of
the training sequence. This vector is then split into two vectors which serves as an initial
two-level quantizef for the design algorithm. Once a good two-level quantizer is obtained,
each vector is split to form a four-level quantizer which is, in turn, used in the design
algorithm. This iterative process of splitting and quantizer design is continued until the

desired number of levels or quantizer performance is obtained.

A flowchart for the design of a (Ry, ..., BL) tree-searched vector quantizer is depicted

in Figure 2-10.
PM(8)=PM(—-1)x{0,1,.., 28 —1}, £¢=1,..,L

is the collection of all path maps through level £ of the tree. PM(0) is null and “X” denotes

the Cartesian product.
Y(© =Y (), be PM(),
is the collection of all node labels in level ¢, where b = (by, ..., b;) is a path vector and
V() ={yu; b=_(by, .., be); by =0,..,28 —1;..; b, =0,.., 2R —1}

is the set of available labels for the path map. A tree-searched vector quantizer with node
label set N and the encoder of Figure 2-6 in Section 2.4 is denoted by qn. The operation

of the algorithm is as follows:

Initialization: Design (R;) full-search vector quantizer ¥ using the algorithm of Section

2.5.1. Set the first level of the tree-searched quantizer Y (1} = Y and £=1.

Step 1: Given a training sequence { z;; 7 = 1, ...,n } and a tree-searched vector quantizer

Y& = {ys; b € PM(£)}, the set of all node levels at depth £, set the node labels ys,0
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at the next level such that y, o = y;, all b € PM(L). Set the new path map collection
PM'(¢+1) = PM(¢) X {0}, the Cartesian product of the colection of path maps at level
£ with the set of paths leading to the next level. Since at this point there is only a single
branch leading to the next level, the set contains a single element. Initialize the rate at the
next level to R’ = 0 and the number of branch nodes N’ = 2B’ = 1. Set the collection of

node labels
Y(e+1,R)={yy;; bEPM'(£+1)}.
Finally, set £ = £+ 1 and proceed to the next step.
Step 2: The collection of the node labels Y (£, R') is split such that
Yb, i+ N = (1 -+ 5)}'(,,_.,', b: € PM(e - 1), j =90, veey N — 1,

where é is a perturbation scalar. Each node label at level £ is perturbed slightly to create

two nodes in a manner similar to the splitting technique of Section 2.5.2. Set the collection

of path maps
PM'(&)=PM(¢-1)x{0,1,.2N' —1}.

Set the intermediate collection of node labels
Yo(&,R' +1) = {ys;, bE PM'(0)},

the set of “split” node labels. Set the rate R’ = R’ + 1 and replace N’ by 2N'. Set the

iterations m =1 and the initial distortion Dy = oo.

Step 3: Set the node label set
-1
N = U YNOUYn(R),

J=1
the union of all label collections at each level £. Using the encoder scheme of Figure:2-7, find
the minimum distortion partition P(Ym) = {Sy; b € PM'(£)} of the: training sequence:
x;j € S if d(x;,ys) < d(xj,yw) for all b 7% b’ € PM'(¢). Compute the average distortion

n—1

1
Dy =D({Ym, P(¥n)}) = ~ in d{x;,¥s)-
( (Ym)}) njsoy?‘g;m (x5, ¥s)
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Design (R1) Full Search
“Vector Quantizer ¥
Set: ¥(1) =P £=1

e

i
Given: Y{£) = {ys; b € PM(O)}
Set: ys,0 =ys,all b e PM()
PM'(L+1)=:PM(8) X {0}
R=0 AN =2F_
Y(¢+1,B)={ys be PM(t+1)}
=1+1
S
Given: Y(4, R') = {y,, b€ PM(8)}
Set: Yo, 5+N = (l + J)y‘;‘j, allbe PM,(t_ l)’
i=01,.,N'~1
PM'(() = PM(8) X {0,1,..,2N' — 1}
Yo(&, R +1) = {y\, be PM'(f)}
R=R+1 NN=N'" m=1 Dy = oo

Dm=0 7=1
count() = 0, b € PM'(¢)
centroid(b) =0, b € PM'(¢) .

-1
NO = ruUraer)

N

Given: x;, find bl= 70¢) =y,
Set: Dpy = Do + d(x;, 4)
count(b) = count(b) + 1
centroidfb) = centroid(b) + X

i=7i+1

For b€ PM'(2)
If count(b) 7% 0 j>n!

= centroid(b)/co b
¥b = centroid(b)/count(b) ‘]@—{ (Do~ Do)/ Do >>d‘l
If count(b) =0
I N

¥s=(1+ 6)¥bn,...,b¢_1 Ly""(l' R’) ={ys, bE PM'(l)ﬂ
Yoult, R') = {ys, be PM'(8)}

Y& =Y(,K)

r
‘ [ X f

T
Halt with V(L) = Ur
=1

Figure 2-10: Flowchart for Tree-Searched Quantizer Design
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Step 4: If (D=1 —Dy)/ Dy < €, the distortion threshold, continue to Step 5. Otherwise,
replace y3, b € PM'(£) by %(Sp), the centroid of the minimum distortion partition. If

a partition is empty, replace ys by (1 + 6)ys,,...,5,. Set
" Ym(&,R') = {ys; bE PM'(£)}

and return to Step 3.

Step 5: Set Y (&, R') = Y,(£, R'). If R' 5 R, return to Step 2. Otherwise, set PM(¢) =

P M'(£) and continue to the next step.

Step 6: Set the label collection Y (£) = Y (¢, R'). If £ 52 L, return to Step 1. If £ = L,

the final level of the tree, then halt with

the final collection of node labels and Y (L) the final reproduction alphabet.
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CHAPTER 3
THE THEORY OF RESIDUAL ENCODED LPC

3.1 INTRODUCTION

In time series analysis, a signal s,, can be considered as the output of some system with
input u,,. The system is often modelled by the relationship
p q ,
8, = — Z Qj8p—j+ 0O Z brtpr, bo =1, 3.1.1)
i=1 k=0
where aj, 1 < 7 < p, b, 1 € k < g, and the gain o are the parameters of the system.
From equation (3.1.1), it is seen that the output signal, s, can be predicted from' a linear

combination of past outputs and inputs, giving rise to the name linear prediction.

By taking the z-transform of both sides, equation {3.1.1) may then be specified in the

frequency domain. If H(z) is the transfer function of the system, then H(z) is represented

as
g
1+ ) bz ™
H(z)= S(z) =c—F= ) (3.1.2)
U(2) L .
1+ Z a;jz 7
=
where
S(z) = E 82 " (3.1.3)

is the z-transform of s, and U(z) is the z-transform of u,. This is a general pole-zero
model for H(z), where the poles and zeroes are the roots of the denominator and numerator

polynomials respectively.
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There are two special cases of the prediction model of equation {3.1.2) that are of
interest. These are the all-pole and all-zero models. In the former case, by = 0, 1 < k& < gq.
This is known as the autoregressive (AR) model. The all-zero, or moving average (MA),
model occurs when a; = 0, 1 < 5 < p. Because the all-pole model is a good model for

speech, it is of particular interest in the linear prediction of speech and will thus be the

focus of the following discussion.

3.2 LINEAR PREDICTION

In the all-pole model of linear prediction, the output signal s, is given as a linear
combination of past values and some input u, such that
P
8p = — Z 0j8p—j + Olin, (3.2.1)
i=1
where o is the gain factor. The transfer function of equation (3.2.1) becomes

[+

1+ i a,-z‘j

J=1

H(z) (3.2.2)

The problem becomes one of determining, in some manner, the system parameters: the

prediction coefficients a; and the gain o.

Assuming the input %, to be totaily unknown, the signal 8, can be predicted only
approximately from a linear combination of past samples. If the predicted value of the signal
is denoted by &,, where

p
fn=— ) Gjon—j, (3.2.3)

j=1
then the error between the actual value s, and the predicted value 3, is given by
. )
€n = 8 — 8 = 8, + E G;8n—j. (3.2.4)
j=1
The error signal, e, is also known as the residual. The parameters a; are obtained as a
result of minimizing the mean or total square error with respect to each of the parameters.

This is known as the method of least squares.
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3.2.1 OBTAINING THE PREDICTOR PARAMETERS

If the signal 8, is a sample of a random process, then the residual signal, e, is also a
sample of a random process: In the least squares method, the expected value of the square
of the error is minimized. The expected value of the error is given as

2

D=E[d]= Kan + Z a_,s,,-,) } (3.2.5)
=1
D is minimized by setting
8D ' '
— = <7< 3286
3a; 0,1<7<p, (3.2.6)
which results in the normal equations:
P
E a;E[3p—j8n—i] = —E[8p8,—i], 1 <i < p. (3.2.9)
i=1
The minimum mean square error is then
P
Dopin = E[s?,] + Z a;E[8,8n—j]. {3.2.8)
=1

The method of taking the expectations in (3.2.7) and (3.2.8) depends on whether the random
process &, is stationary or non-stationary [MAKH75, MARK?78].

3.2.2 STATIONARY PROCESSES

In the stationary case, the expected value becomes

E[sn—jsn-—i] = R(Z - j); (329)
where

o0
> tnsnti (3.2.10)

n==—00
is the autocorrelation of the process. Under these conditions, equations (3.2.7) and (3.2.8)

are represented by

3" a;R(i - §) = —R(3) (3.2.11)
i=1 -
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and

Dumin = R(0) + z,,: a;R(7). (3.2.12)

J=1

In practice, the signal s, is buffered over a finite interval or is multiplied by some window

function to obtain another signal 3,, which is zero outside some interval 0 < n < N —1s0

that
8pWn, 0<n<N-1
b = .

(3.2.13)
0, otherwise
In this case, the autocorrelation function is reduced to
N—1—i
RE) = > #uinti i >0. . (3.2.14)
n=0
3.2.3 NONSTATIONARY PROCESSES
For a nonstationary process, the expected value of the error signal becomes
El8p—j8n—i] = R(n— j,n—1), (3.2.15)

where R(t,t') is the nonstationary autocorrelation between times ¢ and . R(n— k,n—1) is
a function of the time index n and, since n is arbitrary, without loss of generality » may be

set to zero. In this case, equations (3.2.7) and (3.2.8) become:

P
> a;R(—4,~i) = —R(0,1) (3.2.18)
i=1
and
. P
Dmin = R(0,0)+ Y_ a;R(0, J). (3.2.17)
. i=1

Because nonstationary processes are not ergodic, in estimating the coefficients 6; the
time average cannot be substituted for the ensemble average. However, if the process is
jocally stationary, it is reasonable to estimate the autocorrelation function with respect to

a point in time as a short time average. Then, in a manner analogous to the stationary case,
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& is used to estimate R(—7, —%) in equation (3.2.14), where

N-1
Oij = Y 8n—idn—j- (3.2.18)

n=0

is the covariance of the process. In the covariance method, the error D is minimized over a

finite interval 0 < n < N — 1 so that equations (3.2.7) and (3.2.8) may be written as

)]
Y adji= P, 1<i<p (3.2.19)
j=1
and
b
Dmin = ®o0 + Z a;j®o;. . (3.2.20)
j=1

For proper application of the covariance method, the values of the signal ¢,, must be
known over the range —p < n < N —1: a total of p + N samples. The covariance method

becomes the same as to the autocorrelation method as the range of summation becomes

infinite.

3.2.4 SPEECH SIGNALS

Speech tends to be in the class of locally stationary random processes indicating that
the covariance method would be best for obtaining the predictor parameters. In practice
however, the speech is buffered and windowed thus allowing the autocorrelation method
to be used as given by equations (3.2.12) and (3.2.13). This technique is used in the coder
simulation presented in Chapter 4. In this case, the input speech is buffered to produce
a known frame of data. This data is appropriately windowed and is used to obtain the

predictor parameters using the autocorrelation method.

3.3 CODING AND TRANSMITTING THE RESIDUAL

3.3.1 THE ADAPTIVE PREDICTIVE CODER

Figure 3-1 shows a simple adaptive predictive coding (APC) system that includes a
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linear prediction filter A(z) and a pitch prediction filter B(2). The z-transforms of the input
and reconstructed speech waveforms are given by S(2) and 3(2), respectively. The residual

signal is denoted by E(z) and the quantized residual, £(z) is taken to be

E(2) = E(2) + Q(2), (3.3.1)

where Q(z) represents the quantization noise. From the figure, the following relations my be

determined:
E(2) = 5(2) + [A(2) - 1]8(2) (3.3.2)
and
8(z) = E(2)/A(2). (3.3.3)
Substituting equations (3.3.1) and (3.3.3) into (3.3.2) results in
E(2) = A(2)S(2) + [A(z) — 1]Q(2) (3:3.4)
and
E(2) = A(2)8(2) + A(2)Q(2), (3.3.5)

so that the reconstructed speech signal is given by

-

S(2) = S(=) + Q(2). (3.3.8)
The gain o is chosen such that ¢? is the variance of the prediction residual.
If a pitch prediction loop is added as indicated in Figure 3-2, the reconstructed speech
8(z) is given by

3(2) = R(2)/B(2), (3.3.7)

where R(2) = E‘(z) /A(2) as in equation (3.3.3). The residual E(2) in equation (3.3.2) has an

extra term added which results in
E(2) = S(2) + |A(2) - JR(2) + |B(2) — 1)8(2). (3.3.8)
If the quantizer now adds quantization noise given by Q'(z), equation (3.3.1) becomes

~

E(2) = E(2) + Q'(2). (3.3.9)
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s{z . E
b-? 2 1/0 -+ Quantizer T >

Alz)—1 a—————

Figure 3-1: A Simple Adaptive Predictive Coder
Equations (3.3.7) and (3.3.8) may then be used to derive equations corresponding to
(3.3.4) and (3.3.5):
E(z) = A(2)B(2)S(z) + [A(2) — 1)Q'(2) (3.3.10)
and
E(2) = A(2)B(2)S(2) + A(2)B(2)Q'(2). (3.3.11)

The reconstructed speech signal is then found to be

5(2) = S(z) + Q'(2). (3.3.12)

Comparing equations (3.3.6) and (3.3.12), the only difference is ir. the quantization error.
The addition of the pitch prediction filter generally results in a smaller quantization error

than in a system without the pitch filter [ATAL78]. The use of a pitch prediction filter will

be discussed in more depth below.
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s(z) + E(z) w | Quantizer

<?< Az)-1

B(z)~1

Figure 3-2: Addition of Pitch Prediction Loop

3.3.2 THE CLIPPING PROBLEM

When the input speech is voiced, the residual signal is characterized by a large pulse at
the beginning of each pitch period. The pulse is generally of much greater amplitude than the
remainder of the signal samples in the period. Because the pulse is absent during unvoiced
sounds and it basically occurs only once per pitch period, high amplitude sample values occur
very infrequently. Because of this low probability of occurrence, uniform quantization, using
the 40 method, or even the use of a Lloyd-Max quantizer, results in clipping of the pitch
pulse. This poses a problem, since studies [ATALS80] indicate that accurate quantization
of the high-amplitude portions of the residual, in particular the pitch pulse, is necessary
for achieving low perceptual distortion in the reproduced speech. This problem may be .
alleviated by increasing the number of quantizer levels at the expense of increased bit rate.
Makhoul and Berouti [MAKH793] find that a 19-level one-dimensional quantizer is sufficient
to completely eliminate clipping. Simple coding of the output then requires at least five bits

per sample. In order to lower the bit rate, some alternative to simple coding is used.
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A number of different methods ha?e been proposed to reduce clipping, yet maintain a
low bit rate. Atal and Schroeder [ATALBO] proposed center clipping the residual and then
quantizing the result to several levels. Entropy, or Huffman, coding would then be used to
maintain a low bit rate. A similar scheme was proposed by Makhoul and Berouti [MAKH79a],
except that the centre clipping was not performed. Makhoul and Berouti [MAKH79b] survey
a number of methods for reducing the clipping. Of particular interest is the three-tap pitch
prediction filter, proposed by Atal and Schroeder [ATAL78], since it avoids the complexities

associated with any form of entropy coding.

3.3.3 PITCH PREDICTION

The residual signal displays a marked periodicity whenever the input is voiced speech.
The residual from voiced speech is characterized by a large pulse at the beginning of each
pitch period which represents the excitation of the speech model. Since the pitch period
within a typical voiced sound usually varies slowly over the duration of the sound, each pitch
period can be approximately predicted from the previous one. The excitation pulse may then

be substantially reduced by using a predictor centered at the pitch period [ATAL78].

The pitch prediction filter has three terms since the pitch period may not be an exact
multiple of the sampling interval. The error signal e(n) is thus related to the error at the
previous period, m samples earlier, where m is the pumber of sampling intervals contained

in a single pitch period. This relation may be written as
¢(n) = bie(n — m + 1) + bae(n — m) + bze(n —m — 1), (3.3.13)

where () is the predicted value of e(n) and b;, 7 = 1,2,3 are the filler parameters. The
prediction gain, the reduction in signal energy by inverse filtering, is higher for the three

term filter than for a single term filter at the pitch lag.
The determination of the pitch prediction filter is a two step process. First, an estima-

tion of the pitch is made. Then, using the estimated pitch, an estimation of the three filter

coefficients is made using 2 minimum mean square error criterion.
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A common technique for estimating the pitch period is the maximum correlation method.
This method searches a range of sample delays looking for waveform similarities. The
range of pitch frequencies, for both male and female speakers, is roughly between 50 Hz
and 300 Hz. This corresponds to sample delays of roughly 160 samples and 26 samples
respectively" for speech sampled at 8 kHz.

The maximum correlation method calculates the sample correlation of the residual over

the above range of sample delays. The autocorrelation is calculated as

R(G) = _ e(n)e(n—1), (3.3.14)
n
where n is the range of summation (generally the size of the data frame) and ¢ varies over

the above range of sample delays. The maximum of R(¢) occurs at a pitch period or multiple

thereof.

Once the pitch period is estimated, the filter coefficients are determined by minimizing
the mean square error between e(rn) and é(n) as defined in (3.3.13). The pitch prediction

filter coefficients may then be determined from the matrix equation

1 (1) =276, —r(m —1)
r(1) 1 rfibe|=]| —r(m) |, (3.4.15)
r(2) r(1) 1 Jlbs —r(m+1)

where r(i}) = R(z)/R(0) is 2 normalized sample correlation, by solving a set of Toeplitz

equations.

3.3.4 IMPROVING THE PERCEPTUAL QUALITY

Even though the clipping problem may be eliminated, there remains the granular noise
introduced by the quantizer. Berouti and Makhoul [BERO78] survey a number of methods
for reducing the perceptual distortion caused by this granular noise. Of particular interest

are the use of a preemphasis filter and a noise shaping filter.
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3.3.4.1 The Preemphasis Filter:

Because of the granular noise introduced by quantization, the output speech is percep-
f,ually different from the input speech. Atal and Schroeder [ATAL70] found that the output
noise spectrum is about equal to that of the speech signal at high frequencies. They found
that for frequencies above 500 Hz, the frequency spectrum for voiced sounds decreases with
frequency with an average slope between -8 and -12 dB per octave. The spectrum of the
quantization noise is approximately uniform. The SNR of the reconstructed speech can
thus also falls off with frequency. Therefore, the quality of the reconstructed speech can
be improved by a suitable shaping of the noise spectrum so that the SNR is more or less
uniform over Lhebentire frequency range of the input speech. As a solution, the speech is
preemphasized before the main body of the coder. Then, at the receiver, a deemphasis filter

restores the signal spectrum and, at the same time, deemphasizes the noise spectrum at high

frequencies.

Using preemphasis, the z-transform of the output reconstructed speech may be written

5(2) = S(2) + Q(2)/ P(2), (3.3.18)

where P(z) is the preemphasis filter and Q(z) is the noise due to quantization. The trans-
mitter of a coding system using a preemphasis filter is shown in Figure 3-3, in which A(2)

is the inverse filter derived by linear prediction of the preemphasized speech signal §'(z).
It was found [ATAL70, BERO78] that there was an improvement in quality with the

use of a single-zero preemphasis filter. However, Berouti and Makhoul [BERO78] found that

the one-pole deemphasis filter required at the receiver emphasized the low frequency noise.

This was perceived as a low frequency rumble in the output speech.

3.3.4.2: The Noise Spectral Shaping Filter:

To minimize the effect of the granular noise, the output noise spectrum must be below
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Figure 3-3: An APC Coder with Preemphasis Filter

the signal spectrum at all frequencies. Berouti and Makhoul {BERO78] developed a noise-

shaping filter as described below.

It is required that the output signal 5(z) be such that

5(2) = 8(2) + C(2)Q(2), (3.3.17)

where C(2) is the noise spectral shaping filter. Using a basic APC system for demonstra-
tive purposes, the receiver is the synthesis all-pole filter 1/A(2). The synthesized signal is
thus given by cquation (3.3.3). By substituting for $(2) in (3.3.17) using (3.3.3) and then
substituting for [2(z) using (3.3.1), E(z) is found to be

E(2) = A(2)S(2) + [A(2)C(2) — 1]Q(2). (3.3.18)

Comparing (3.3.18) to (3.3.4), it is seen that the filter C(2) is introduced and may be used

to shape the noise spectrum as desired.

Figure 3-4 shows a possible APC configuration using the noise-shaping filter C(2). While,

in practice, this configuration is not generally used, it allows easy comparison to Figure 3-3
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Figure 3-4: An APC Coder with Noise-Shaping Filter

in which a deemphasis filter is used. The two figures could be made identical if the following

equations are satisfied:

A'(2) = A(2)C(2), (3.3.19)

P(z) =1/C(2), (3.3.20)

and if the same normalization gain is used in both systems.

In practice, equation (3.3.18) is first restructured so that the filters A(z) and C(z) are

decoupled. In order to do this, equation (3.4.18) should be rewritten as
E(z) = 5(2) + [A(2) — 1]E(2)/ A(2) + [C(z) — 1]Q(2). (3.3.21)

An APC system implementing this structure is shown in Figure 3-5.

It is important that the impulse response ¢(n) of the filter C(2) be unity at n = 0. Thus

the filter must be designed such that it operates only on past values of the noise. Therefore,
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Figure 3-5: An APC Coder with Noise Filter Decoupled from the Prediction Filter

where the summation over = may be infinite, as in the case of a recursive filter.

Makhou! and Berouti found [BERO78] that the addition of a first order adaptive all-zero
noise filter initially resulted in an increase in the output noise. However, at the same time
the average bit rate, given that Huffman coding was used, decreased due to a sharpening
of the probability density function of the residual. Therefore, by increasing the average
bit rate back to its original level by decreasing the quantizer step size, the output noise is

consequently reduced compared to an equivalent rate coder without the noise shaping.

In order to maintain an uncomplicated coder structure, a preemphasis filter is preferable.
The number of calculations that must be performed is less than that for the adaptive noise
shaping filter and no parameters need be transmitted. Consequently, for the coder described

in Chapter 4, a preemphasis filter will be used instead of an adaptive noise shaping filter.
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3.3.5 BLOCK QUANTIZATION OF THE:RESIDUAL

Mabilleau and Adoul [MABI81] discuss a coder which block encodes and transmits
the residual signal obtained from the linear prediction of input speech. The predictor used
does not require the resolution needed for LPC, since the residual is to be transmitted. A

codebook of LPC filters is used and contains a fairly small set of filters.

The filter codebook is designed using 2 mean square error criterion. The codewords must
characterize the important features of the residual waveform. The location of the maximum
amplitude within a block is important since it relates to the pitch period in the case of
voiced sounds. Thus the residual wavelorm codebook must contain a range of excitation

impulses for voiced sounds as well as noise waveforms for unvoiced sounds.

As in the one-dimensional case, care must be taken to avoid clipping the important
large-amplitude pitch pulse. Since the high-amplitudes occur with relatively low frequency,
the algorithms of Section 2.5 must be constrained to ensure codewords with excitation
pulses are included in the code_:book. This may be accomplished by using separate voiced

and unvoiced codebooks.
In order to avoid the increase in codebook complexity necessitated by the need for
accurate quantization of the pitch pulse, a three-tap pitch filter may be used reduce the

high-amplitude portions of the residual. This may then be followed by a block quantizer

designed using the algorithms of Section 2.5 for a mean-square error criterion.

3.4 QUANTIZATION OF THE REFLECTION COEFFICIENTS

3.4.1 SPECTRAL SENSITIVITY OF THE REFLECTION COEFFICIENTS

In quantizing the reflection coefficients, it is desirable to find a method that minimizes

the perceptual error of the reconstructed signal. The spectral sensitivity of the reflection
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coefficients has been studied in considerable depth by Viswanathan and Makhoul [VISW75].
Assuming that an accurate representation of the power spectrum minimizes the perceptual

error, the minimization of the maximum spectral error would be a suitable distortion

criterion for quantization.

If AS is the deviation in the spectrum due to a variation Ak; in the reflection coefficient

ki, then the spectral sensitivity of the coefficient k; may be defined as

_6;5'_ = lim
Ok;  Aki—0

AS'
’

an (3.4.1)

which is always positive. The spectral deviation AS can be an arbitrary measure but it

should relate in some proportional manner to the corresponding perceptual effect on the

reconstructed speech.

The spectral sensitivity may be defined as

ﬁg_ = lim
Bk; ~ Aki—0

1 1 " |
—AT.[E; _/;' [log P(k;,w) — log P(k; + Ak.‘,w)ldw”

e loe L for s o 4]

8 Plk; + Ak, w)
the average of the absolute value of the difference between the log spectra under considera-

tion. P(k;,w) is defined as

(3.4.2)
lo

’

= lim
Ak;—0

P(kiyw) = |H(e™)|” | (3.4.3)

the spectrum of the all-pole speech model H(z}). Experimentally, the spectral sensitivity
8(k;) = (85 /8k;) is determined by replacing the integral by a summation and by using a

sufficiently small value for Ak;.

Viswanathan and Makhoul [VISW75] found typical sensitivity curves for the reflection
coefficients as shown in Figure 3-8. Each curve is a plot of one of the reflection coefficients
as it is varied over the range (—1, 1) while the others remain constant. The sensitivity curves

each have the following properties in common.

1j Each sensitivity curve has the same general shape irrespective of the reflection

coefficient plotted and of the values of the other reflection coefficients at which the
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Figure 3-6: Typical Spectral Sensitivity Curves for Reflection Coefficients [VISW75]

sensitivity is plotted. The actual value of the sensitivity, in general, does depend

on the values of the other reflection coefficients.

2) Each sensitivity curve is |J-shaped and even symmetric about k; = 0. Each
curve has large values when the magnitude of k; is close to unity and small values

as k; approaches zero.

These properties are inherent to the reflection coefficients themselves and not to any
particular speech sounds. For example, voiced sounds generally have higher spectral sen-
sitivity than unvoiced sounds because the magnitudes of some of the reflection coefficients
are close to one. Also, in general, pre-emphasis reduces the spectral sensitivity of voiced

sounds by reducing the magnitudes of the reflection coefficients which are close to unity.

- B5 —



3.4.2 QUANTIZATION SCHEMES

There exist a number of methods for the scalar quantisation of the reflection coefficients.
Four common methods, studied in some depth [GRAY77, GRAY76], are uniform quantiza-

tion, uniform sensitivity quantization, equal area or maximum output entropy quantization,

and minimum deviation quantization.

Uniform quantization is probably the easiest to implement since the range of possible
values is divided into intervals of equal length. For a large number of quantization levels and
using the r** moment fidelity measure defined in equation (2.2.3), the uniform quantizer
minimizes the entropy as defined in (2.2.2) [GRAY77]. To fully utilize the minimal entropy

of the uniform quantizer, a lossless source coding, for example Huffman coding, should be

used.

Uniform sensitivity coding, as suggested by Viswanathan and Makhoul [VISW75], in-
volves a change of variables which leads to a constant spectral sensitivity. The change in
variables makes the spectral deviation in the new coordinate system proportional to 2 mean
absolute difference, the first moment M, defined by (3.2.3) with r = 1. Uniform sensitivity
quantization minimizes the maximum spectral deviation bound and minimizes the entropy

for a fixed expected spectral deviation bound when there are a large number of quantization

levels.

Equal area quantization maximizes the entropy for a fixed number of quantization levels.
When the number of quantization levels is small and single-frame, fixed-bit-rate transmission
is used, a smaller expected spectral deviation bound for the reflection coefficients is obtained

than for the previous two quantization methods in the case of the first reflection coefficient

[GRAYT77].

Finally, minimum deviation quantization minimizes the expected spectral deviation
bound for a fixed number of levels. In the case of constant sensitivity, this. minimizes the

mean absolute (first moment M;) quantization error.
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3.4.3 LOG AREA QUANTIZATION -

Because of the sensitivity of the reflection coefficients as their magnitude approaches
one, a nonlinear quantizatio.n that is more sensitive near unity is desirable. By transforming
the reflection coefficient to another parameter using a nonlinear operation, it can be shown
that linear quantization of the transformed parameter is optimal, in the sense of minimiz-

ing the maximum spectral cdeviation, if and only if the parameter has constant spectral

sensitivity behavior [VISW75].

Denoting the transformed parameter as ¢ and the reflection coefficient as &, g is related
to k£ by
g = M(k), (3.4.4)
where M(.) is the nonlinear mapping. The optimal transformation is the one where the
transformed parameter g has constant spectral sensitivity so that
+— == L = a constant, (3.4.5)

where the sensitivity is defined in a manner similar to (3.4.2). The spectral sensitivity may

be written as

35 _ 8Sdk _ 85 [dM(k)

—_— = = 3.4.6
d3 Okdg Ok dk (8.48)
Substituting (3.4.5) into (3.4.6) and rearranging results in
dM(k) 108
=, 3.4.
dk Lok (8.4.7)

Equation (3.4.7) provides the condition for an optimal mapping which may be obtained
by simple integration. Each reflection coefficient may require a separate application of
equation (3.4.7). However, as indicated in Section 3.4.1, eé.ch reflection coefficient exhibits
similar spectral sensitivity properties. Therefore, it is possible to derive a general mapping

that is optimal on the average for all the reflection coefficients.
Viswanathan and Makhoul [VISW75] averaged the sensitivity curves of Figure 3-6 for

the reflection coefficients to produce an averaged spectral sensitivity curve as shown in Figure

3-7.
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Figure 3-7: Averaged Spectral Sensitivity Curve for the Reflection Coefficients (solid
line) and Approximating Analytical Function [VISW75]

Although it is possible, using numerical techniques, to integrate the solid curve in 3-7

to obtain the optimal transform, it is easier to approximate the éurve by a well .speciﬁed

- mathematical function. The function 1/{1 — k2) approximates the average sensitivity curve,
as indicated by the dashed curve in Figure 3-F, reasonably well within some multiplicative

constant. Letting the spectral semsitivity be represented by 1/(1 — k?), equation (3.4.7)

becomes
dM(k) 1
de  L(1—k2) (3.48)
Integrating (3.4.8) results in
1, 1+k

Since L is arbitrary, by using L = 1/2, equation (3.4.9) becomes
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1+k&

M(k) =log1_k.

(3.4.10)

If the speech is modelled using an acoustic tube model, the relationship between the

cross-sectional areas of consecutive tubes may be described [AP] as

A_‘j.i:l = —i i : Apr1=1,1<1<p. ‘ (3.4.11)
) )

Thefefore, (3.4.10) is simply the logarithm of the area ratios thus giving rise to the name

Log Area Quantization.

3.4.4 VECTOR QUANTIZATION OF THE REFLECTION COEFFICIENTS

Buzo et al [BUZOB80] propose a method for the vector quantization of the linear predic-
tion parameters which minimizes the spectral error. Since the various forms of the speech
parameters are related through recursive relations (see, for example [MAKH75, MARK76)),
the output parameter vector may be the reflection coefficients or any other set of parameters.
The distortion measure used is the Itakura-Saito distortion measure. This distortion measure
is selected because it is implicitly minimized when the autocorrelation method is used to
obtain the optimal linear prediction parameters [GRAY80b] but it is generally not used

during the compression, or quantization, step.

From equation (2.2.2), the all-pole speech model transfer function H(2) may be written

H(z) = Jﬁ, (3.4.12)
where
Alz) = zp: a;z7, ag = 1. (3.4.13)

=0

If X(2) is the z-transform of the input signal, then the residual energy resulting from

passing X (2) through the inverse filter A(2) is given by

1 [T e .o
= — X1“1A* 3.4.14
o 27r_ﬂll‘|dw: | ( )
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where

X2 = |X (™)1 and |AJ? = |A(e?)|? (3.4.15)

are the energy density spectra of the input signal and the filter characteristic respectively.
Equation (3.4.14) may be expressed as

a=3 ry(n)rs(n) (3.4.16)

for the purposes of numerical evaluation, where r,(n) is the autocorrelation of the input data
frame and r,(n) is the autocorrelation of the filter parameters. It can be shown [MARK76],

that the optimum H(z) matches the signal X(z) in terms of the 2p+ 1 term autocorrelation

sequence

rp(n) =ry(n), n=10,+1,..,4p, (3.4.17)

where rp(n) is the inverse z-transform of H(2)H(1/z).

- The Itakura-Saito distortion measure may be used to describe the spectral matching

effects of the linear predictor [GRAY80b]. The distortion measure is defined as
w
d(X P HR) = - f [pc/m2 —1n(|X/H|2)— l]dw. (3.4.18)
2ﬂ' —
For the purposes of calculation and interpretation, (3.4.18) may be expressed as
d|X 2 |H?] = ai; +1n(0?) — In{ere) — 1, (3.4.19)

where o is defined in (3.4.12), a in (3.4.14) and

1 L
Qoo = lim ap =-exp [—/ ln|X|2dw]. (3.4.20)
P 27!' —_—

is the limiting residual energy as the number of poles p increases.

Equation (3.4.19) may be shown [BUZO80] to satisfy a form of “triangle equality” so
that

dlIX % |HP] = dIX % |5, ") + d]|H,|*; | H ), (3.4.21)

where Hp is the optimal filter transfer function. Thus the total distortion may be viewed

as the sum of two distortions. The first part is due to the error arising between the actual
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signal and the optimal predicted signal. The second part is due to the quantization of the
optimal parameters. Furthermore, it can be seen that minimizing d[|X|?; |H |?] is equivalent

to minimizing d[|Hp|?; |H|?] since d[|X |2; |H,|?] is a fixed property of |X |2 for a constant p.

Another useful cascading property is-given by
diiX % |HP] = d|X*;0%/|A]°] = d[| X |*; o/ |APP] + d[e; 07 (3.4.22)

which divides the distortion into two parts. The first distortion measure is independent of
the gain parameter o. The second is dependent upon the polynomial A(z) solely through the

residual energy «. This leads to a gain-separated vector quantization scheme as discussed

in a later section.

3.4.4.1 Nearest Neighbor Calculation

To assign a set of speech parameters to a specific codeword, it is necessary to find the
output vector which minimiszes d{|X|?;|H|?] where H is the selected filter characteristic.

Since o, depends only on the speech frame, it is only necessary to find the H(2) = o/A(2)

which minimizes

X2 ] + 1+ 1(0e0) = — + In(0?). (3.4.23)
0-2

For any given speech frame; the residual energy a must be caleculated. This computation

is most efficiently accomplished - {BUZO80] using

4
@ = ra(0)rz(0)+2 Y ra(n)ra(n), (3.4.24)
nm=ml
where
p—n
ra(n) =Y 6ja;4n, n=0,1,..,p. (3.4.25)
J=0

Thus, to minimize (3.4.23), the.right hand side of the equation must be evaluated for each.
codeword, consisting of the gain and reflection coefficients, using the tree- or full-search

algorithms discussed in Section 3.4. The codeword selected is the one that minimizes (3.4.23).
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3.4.4.2 Centroid Calculation

During the design of the codebook, a centroid. calculation must be performed. If the
parameters for the speech frames X;(2),...,XL(z) are all contained in the same quantizer

region, the total distortion for that region is given as

L
D= d|IXi|%;|H?]. (3.4.26)
k=1

This can be written in terms of the average spectrum

L
— 1
XP=; > Ixal? (3.4.27)
k=1
as
D = Ld[|X|%;|H|?] + 4, (8.4.28)

where u is a constant independent of the model H(2) for the cell. Thus to find the centroid of
the region, in the sense of minimizing (8.4:26), it is necessary to model the average spectrum
using standard linear predictive methods. Thus the autocorrelation sequences for each of
the speech frames may be averaged to find an average autocorrelation sequence which may
then be solved to give the parameters of H(z). The constant u is not needed for theses
calculations and simply represents a distortion that will arise, no matter the filter order,

when dissimilar frames of speech are assigned to the same cell [BUZOB80].

3.4.5 GAIN SEPARATED VECTOR QUANTIZATION

If, in order to reduce storége requirements, the gain is separately quantized instead of
with the reflection coeflicients, a suboptimal but memory efficient quantization procedure
may be produced. Equation (3.4.22) illustrates the separation of the distortion into two parts.
The first is dependent only upon the polynomial A(z) and the second depends upon the the
gain and indirectly upon A(z) through the residual energy a. Rather than minimize the

overall distortion, it is possible o minimize (3.4.22) by first finding A(2) and then obtaining

o.
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3.4.5.1 Nearest Neighbor Calculation .

In order to minimize the distortion of equation (3.4.22), first d[|X|?; 0%/|A?] is mini-
mized. Substituting 02 = « in equations (3.4.12) and (3.4.19) gives the equivalent expression
d[|X|?; a/|A]?] = In(e) — In{@eo), (3.4.29)

where In(a.) is a constant for each speech frame. Thus, as in the previous section, output

set of parameters which minimize o may:be found by evaluating (3.4.24) for each output .

vector.

Once the set of predictor parameters and subsequent residual energy o have been

determined, the results may be used in equation (3.4.18) to give
d(e;0%) = % —In(a/o?) -1 (3.4.30)

which is minimized by choosing a value of 02 from the gain parameter codebook.

Since the selection of the gain is a one-dimensional problem, the codebook gain values
may be ordered and compared with a set of threshold values to determine the output. The
threshold values é;, ¢ = 1,...,T — 1, where T is the number of quantizer levels; may be

obtained [BUZO80] by solving

A2 1n(”?+1/"?).

o; = 1 1 (3.4.31)
o? o¥,
It may be more efficient to use the Taylor series expansion of (3.4.31), so that
R 1 262 2% 26%
0'? = -2‘(0?4'(7?_'_1) 1—3—i—§—3‘—rg— y (34.32)
where
2 _ .2
§=Ts1" 78 (3.4.33)
Oit1 + 0§

3.4.5.2 Centroid Calculation

In the gain separated case, two centroids are to be calculated. For the polynomial
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parameters; it is desirable to minimize the total cell distortion as given by (3.4.26). Using

(3.4.22) and (3.4.29), an attempt is first made to minimize the sum of terms

L L
Dy =Y diXil*;o* /1A% = 3 [lne*) - In(ak,)], (3439)
ke=1 komi
where
1 [ '
of = e / | X% |2 1A dw (3.4.35)

is the “optimal” energy choice for the individual speech frames and o, is defined in (3.4.20).
Thus the centroid problem is to choose a set of parameters which minimizes
L i L 1" - .
kglln(a )= kz__:lln[ﬂ /;’-rIXH |A] dw] (3.4.36)
The soiution of (3.4.36) is not a trivial task and instead an approximate and bounding

solution may be found as follows.

Each individual Xj(2) has.an “optimal” model whose gain is given by a’;. Rewriting
(3.4.34) as

L L
Dy =Y In(af/ak) + Y In(ak/ak), (3.4.37)

k=1 k==l
it may be seen that the second summation is independent of the parameters of the polynomial

A(z) and is simply a function of the individual speech frames. The first summation in (3.4.37)
is the product of L and the logarithm of the geometric mean of the ratios o*/ a'; for k =

1,..,L.

D, is approximated by and bounded above by D;, where-

Dz =Lln

1o ok & k) k
i Y ok/ekl+ ) In(a}/ak). (3.4.38)

ke=1 k=1
To minimize Do exactly and thus D; approximately, it is necessary to minimize the arith-

metic mean of the o* /ot ratios. This mean is defined as

L ”
1 Bk _ L / 20 402
= = — dw 3.4.39
L 2 okl =g | KPP, (38.4.39)
where
—_ 1 L
X2 = I 31Xk /ek (3.4.40)
ke=1
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is the normalized average spectrum. Thus the normalized autocorrelation sequences for all

the speech frame in a given cell may be averaged and the result solved for the reflection

cocficients or other parameter set.

Comparing the gain-separated case with the optimal case, it can be seen that the only
difference is in the averaging of the autocorrelation sequences. In the gain separated case,
the autocorrelation sequences must be normalized by the optimal gain coefficients, the a:’;

terms obtained from the residual after passing the the speech frame through its optimal

inverse filter. In the optimal case, this rormalization procedure is not necessary.

Finding the centroids for the gain codebook is somewhat simpler, once the o* for each
frame has been found. A single gain term must be chosen to minimize
L L
Dy = z dla*; 0% = z [a* /o —1n(a* /o) —1]. (3.4.41)
k=1 k=1
This can be minimized simply by taking the arithmetic mean of the individual residual

energies as

2
o7 =

L=

L
3 ok (3.4.42)
k=1
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CHAPTER 4
CODER SIMULATION

4.1 BASIC STRUCTURE

The basic structure of the:coder is shown in Figure 4-1. The sequential input speech
samples are passed through a preemphasis filter. The filter output sequence is parsed
into data frames and temporarily stored within a data buffer. An autocorrelation is then
performed on each individual data frame. The autocorrelation coefficients are quantized and
then an analysis, or inverse prediction, filter is derived from the quantized parameters. The
frame of preemphasized speech saﬁp]es is passed through the analysis filter whose output
is the residual signal. The energy of the residual is calculated and the gain is set equal to
the square root of the result. The gain is first quantized and then used to normalize the
residual signal. Finally, the normalized residual is itself quantized prior to transmission.
The quantized autocorrelation coefficients, gain, and residual signal are then coded and

assembled into a data frame for transmission.

To reconstruct the input signal, the received data frame is decoded to produce the
quantized residual signal, the autocorrelation coefficients, and the gain parameter. The
reconstructed residual is multiplied by the gain parameter. This signal is then passed
through a prediction filter, the inverse of the analysis filter, which is generated from the
decoded autocorrelation coefficients. The output of the prediction filter is a reconstructed
approximation of the original preemphasized speech signal. Finally, the signal is passed

through a deemphasis filter to produce the output speech.
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Figure 4-1: Residual-Encoded Linear Predictive Coder

When pitch prediction of the residual is used, a pitch analysis filter is inserted between
the output of the analysis filter and the input of the normalization process as shown in Figure
4-2. An autocorrelation of the residual is performed using a range of pitch lag values. If the
signal is not periodic, i.e. unvoiced, the filter parameters are set to zero and no filtering takes
place. If the signal is voiced (periodicity is present), the pitch lag is determined and filter
coefficients are derived based on the determined lag value. The pitch and filter parameters

are quantized before passing the residual through the pitch filter.

When the signal is reconstructed, the pitch prediction filter is inserted after the residual

.
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Figure 4-2: Residual-Encoded Linear Predictive Coder with Pitch Prediction Filter

has been multiplied by the gain and before the signal is passed through the linear prediction

filter.

In either case, all the filter parameters are quantized and the filter generated before
filtering of the signal takes place. Similarly, the gain is quantized before normalization is
performed. This procedure has the effect of eliminating quantization errors in the parameters

when they are coded for transmission. The only quantization errors occur during quantiza-

tion and coding of the final residual signal.
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4.2 SIGNAL ANALYSIS AND RECONSTRUCTION

4.2.1 REFLECTION COEFFICIENT CALCULATION

In the calculation of the reflection coefficients, the input data sequence is first multiplied
by a Hamming window of length N. This allows the use of the autocorrelation method for
_obtaining the predictor parameters as discussed in Chapter 2. The first M + 1 terms of
the autocorrelation R{m), m = 0, ..., M are calculated from the windowed data sequence.
The autocorrelation coefficients are quantized before calculating the reflection coefficients
and coded for transmission to the receiver. The reflection coeﬁcients are obtained from
the autocorrelation terms by solving a set of Toeplitz equations using a form of Durbin’s
algorithm [LERO77]. The autocorrelation equations are solved recursively to give a set of

M reflection coefficients.

4.2.2 INVERSE FILTER CALCULATION

The reflection coefficients are used to generate an equivalent set of inverse filter coefficients.
If H(z) is the z-transform of the filter characteristic, then for an all-pole model, H(z)
may be written as

H(z) = A—‘(Tz—), (4.2.1)

where o is the filter gain. The filter coeflicients are-related to the reflection coefficients by
equations which are solved to give M +1 filter coefficients. Designating the filter coefficients

as a; and the reflection coefficients as k¢, the relationship is as follows:

g = 1
ai—l,m; m = 0
a; = Gi1,m + kiGiz1im, m=1,.,i—-1

ks, m=i (4.2.2)

for i =1,..., M. The synthesis filter is then given by

M
Alz) = Ap(z) =) apiz ™" (4.2.3)
=0
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The prediction filter used in the decoder may also be calculated from the reflection

coefficients. Denoting the coefficients of the prediction filter by P;, the prediction filter is
related to the analysis filter by

pi = a,, i=1.,M. (4.24)

4.2.3 PITCH FILTER CALCULATION

When a pitch filter is included, it is calculated using the method outlined in section
3.3.3. Denoting the maximum and minimum lags as Ly, and Lpy;, respectively, Lya:
samples from the end of the previous frame are stored in a data buffer. An autocorrelation
of the residual signal is then performed using sample lags ranging from L,,;, to L;az. The
pitch lag is taken to be the sample lag at which the autocorrelation is maximum. If this
value is below a certain threshold value, the speech is assumed to be unvoiced and the filter
parameters are set to zero. If the value is greater than the threshold, the filter parameters
are calculated by solving the matrix equation in (3.4.15). The resulting values are then

quantized before the residual signal is passed through the filter.

4.2.4 GAIN CALCULATION

In the correlation matching method used, a match between the autocorrelation of the
input sequence and the unit sample response of the inverse filter H(z) is desired at as many
points as possible. The gain ¢ is calculated as a side result of solving the autocorrelation
equations. To determine the M + 1 parameters of the analysis filter, the first M + 1
autocorrelation samples of the filter unit sample response are chosen to exactly match the
first M +1 autocorrelation samples of the input sequence. To match the energy of the input
signal spectrum to the energy of the inverse filter model unit sample response, the gain o is
derived from |

M
o? = E a;R(3). (4.2.5)

=0
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This is termed the prediction error energy and is essentially the energy contained in the

error signal.

A problem of the above method is that it is only applicable to LPC systems. In the
coder presented here, the residual signal is calculated and transmitted for use in the decoder.
Because the data is windowed in order to calculate the autocorrelation and subsequent
analysis filter, there is no longer a match between the data sequence passed through the
analysis filter and the data sequence used to calculate the analysis filter. For this reason,
the energy of the residual signal is not the same as that given by equation (4.1.5). Instead, a

separate calculation must be performed to calculate the energy of the residual signal itself.

4.2.5 RESIDUAL CALCULATION

The residual signal is derived by applying the input signal to the analysis filter. The
filter characteristic is convolved with the input sequence to produce the residual. In usunal
LPC analysis, pitch prediction and a voiced/unvoiced decision is made. In the case of this
coder this is not strictly necessary as the residual itself is coded and transmitted. Inserting a
pitch prediction filter, as indicated in Figure 4-2, would have the effect of “smoothing” the
residual signal by reducing the amplitude of the spikes present at the beginning of each pitch
period at the expense of increasing the number of bits required to transmit the information.

In either case, the residual is normalized by the gain.

Once the residual has been normalized, it is quantized and coded for transmission along

with the quantized gain and reflection coefficients.

4.2.6 SIGNAL RECONSTRUCTION

The synthesis of the output signal is considerably simpler than the analysis of the
original input signal. First the side information and residual are decoded. The decoded

residual is multiplied by the gain and the resulting signal is convolved with the prediction
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filter characteristic to produce an output data frame. The prediction filter is obtained from

the decoded autocorrelation coefficients as outlined in Section 4.2.2.

To reduce the effect of frame boundary discontinuities, the reconstructed signal is mul-
tiplied by a trapezoidal window which is unity between the overlap regions. The trapezoidal
window assigns greater weight to those samples farther from the edge of the data frame.
The samples in the overlap regions of successive frames are added as illustrated in Figure

4-3. It can be seen that the weightings of a given sample in the overlap regions sum to unity.
Since the analysis of individual data frames can result in widely differing LPC
parameters, there can be severe discontinuities at the frame boundaries. Overlapping frames

provides redundant information, at the cost of an increased bit rate, to smooth out the

discontinuities. The extra bits required are due to the samples in the overlap regions which

must be transmitted twice.

4.2.7 PREEMPHASIS AND DEEMPHASIS

Before the speech signal is analyzed by the coder, it is passed through a preemphasis
filter as discussed in Section 3.3.4.1. Similarly, the reconstructed signal must be deem-
phasized to produce the output speech. If the input to the preemphasis filter is given by z;

and the output by a;, then

8; = z; — fzi, (4.2.7)

where 8 is the preemphasis factor. Then, if 3; is the reconstructed signal, deemphasis

produces the speech signal %; given as

3= 8; + BEi1. {4.2.8)

Since # is a constant, it is not necessary to transmit the parameter value.
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4.3 QUANTIZER CALCULATION AND SIMULATION

4.3.1 THE RESIDUAL QUANTIZER

For comparative purposes, three types of quantizers are used for quantizing the residual.
The first is uniform scalar quantization using the 40 quantization range discussed in Section
3.2.3, where 02 is the variance of the input signal and the quantizer is designed symmetrically
about the expected value of the input signal. The second method is a uniform scalar Lloyd-
Max quantizer as described in Section 3.2.4. The final method is vector quantization. The
first two methods are used for comparison with the vector quantizers. It is desirable to study

the effects of varying block lengths and bit rates in the vector quantizers and compare the

gains made over the scalar cases.

Both types of scalar quantizers use full search techniques which are easily implemented
in one dimension. The Lloyd-Max quantizers are obtained from the uniform quantizers by
using the Lloyd-Max algorithm presented in Section 3.2.4 with the uniform quantizer as the
initial quantizer for the algorithm. Both quantizers are developed using a range of bit rates.

This allows comparison of quantizer performance versus bit rates and block lengths between

the scalar and vector quantizers.

The vector quantizer is designed using the quantizer design algorithm deseribed in
Section 2.5.3 using a mean-square error criterion. The quantizer is designed in tree-searched
form because the computation time required for full-search quantizers was prohibitive and
unavailable on the computer. The vector quantizers are designed for a variety of block

lengths.

4.3.2 THE PITCH PARAMETER QUANTIZER

The pitch predictor parameters are quantized using two quantizers. First the pitch is
quantized using a uniform quantizer. Since the range of piteh frequencies, for both male and

female speakers, is between 50 Hz and 300 Hz, the range of lag values for 8 kHz speech is
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chosen to be between 26 and 153 samples. Thus seven bits are needed to code the piteh,

or lag, value. One codeword is used used to indicate that the speech is unvoiced, i.e. no

periodicity is evident.

The three parameters of the pitch prediction filter are quantized as a block using a

tree-searched vector quantizer. The quantizer is designed using the algorithm of Section

2.5.3 for a mean-square error criterion.

4.3.3 THE GAIN QUANTIZER

The quantization of the gain is related to the quantization of the autocorrelation
coefficients, using the Itakura-Saito distortion criterion, as described in Section 3.4.5. In

order Lo make most effective use of the algorithm, the gain is quantized using a Lloyd-Max

quantizer.

4.3.4 THE AUTOCORRELATION COEFFICIENTS QUANTIZER

The autocorrelation coefficients are quantized using a tree-searched vector quantizer.
The quantizer is designed using the algorithm of Section 2.5.3 for the ltakura-Saito distortion

criterion as described in Section 3.4.5.

As discussed in Section 3.4.5, the analysis filter parameters used in the Itakura-Saito
distortion measure are derived from the quantizer output vectors, i.e. the quantized autocor-
relation coefficients. Since the filter parameters used in the coder are also derived from the
autocorrelation coefficients, the output of the quantizer may be the filter parameters instead
of the quantized autocorrelation coefficients. This eliminates the step of calculating the filter

parameters a second time from the quantized autocorrelation coefficients.
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CHAPTER 5
EXPERIMENTAL RESULTS

The simulations of the coders were performed on a VAX-11/780 computer. A large library of
coding routines was available for performing the more common procedures, i.e. digital signal
processing, filtering, windowing, and so forth. An AP-120b array processor was available but

was not used in the simulations or for the generation of the vector quantizers.

Four different simulations were performed. Two coder simulations used a pitch predic-
tion filter while the other two were designed without the pitch filters. In both cases, one
simulation was performed with only the residual signal quantized and in the second simula-

tion all parameters were quantized as well as the residual.

For each simulation, a nurﬁber of residual quantizers were generated. A training se-
quence consisting of successive frames of residual samples, calculated from a single male
speaker, was used for the quantizer design algorithm. Each residual frame consisted of 240
samples. 25,600 vectors were used in the calculation of each quantizer. The block lengths
were chosen to be factors of the frame length in order to avoid overlaps between successive
frames. In order to evaluate quantizer performance, one- to eight-bit/block vector quan-
tizers were calculated for block lengths of 1,2,3,4,5,6,8,10,12,15, and 16 samples. For the
coder simulations, 1-bit/sample and 2-bit/sample vector quantizers were generated. For the
1-bit/sample quantizers, block lengths of 1,2,3,4,5,6,8, and 10 samples were used. Block
lengths of 1,2,3,4, and 5 samples were used for the 2-bit/sample quantizers. In both cases,
it was decided that larger block lengths resulted in codebooks that were too unwieldy and

generation times that were excessive. The generated quantizers were compared to uniform
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Block Size: 1 2 3 4 5 ]
CPU Time (hrimin): 1:37 3:35 4:19 5:01 5:18 5:39

Block Size: 8 10 12 15 16
CPU Time (hr:min): 6:27 6:59 7:24 842 ¢:11

Table 5-1: CPU Time vs. Block Size for 8-bit quantizers

and Lloyd-Max scalar quantizers for performance evaluation.

Once the quantizers were generated, the coder simulations were evaluated. First, coders
using vector quantizers were compared to identical coders using scalar quantization for the
residual signal. Next, in order to obtain'a subjective evaluation of the coder performance,
the coders were compared to log-PCM coders. Listening tests were performed in order to

compare the various coders.

5.1 QUANTIZER GENERATION

The generation of vector quantizers requires large amounts of time. Four sets of quan-
tizers were generated using different training sequences. The training sequences were of
equal length and contained 25,600 vectors. For an 8-bit quantizer, this translates to roughly
100 vectors per quantizer région. Table 5-1 summarizes the average CPU times required to
calculate an 8-bit quantizer for different block sizes. Tables 5-2 and 5-3 contain the average
CPU times required to calculate quantizers at one- and two-bits per sample in the block,
for varying block lengths. It should be noted that the times given are the average times
required by the CPU for processing the quantizer design program. For the larger quantizers,
it was sometimes necessary to wait up to twenty-four hours for program termination, due

to the time-sharing nature of the computing facility.
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Block Size: 1 2 3 4
CPU Time (hr:min):: 0:02 0:18 0:38: 1:30

Block Size: 5 6 8 10
CPU Time (hr:min):: 2:16 3:13 6:27. 9:04

Table 5-2: CPU Time vs. Block Size for 1-bit/sample quantizers

Block Size: 1 2 3 4 5
CPU Time (hr:min): 0:08 1:02: 2:2¢ 5:01 7:03

Table 5-3: CPU Time vs. Block Size for 2-bit/sample quantizers

A number of factors contributed to the quantizer generation time. Two general observations -
can be made: the larger the block size, the longer the generation time for quantizers with
equal number of output levels; and the greater the number of output levels, the longer the .

generation time. Both of these observations are rather obvious and need not be discussed

in any great detail.

Since the quantizer generation algorithm is an iterative procedure, another factor that -
contributes to the generation time is the: number of iterations that take place before the
procedure halts. Table 5-4 shows the average number of iterations required at each:split for
the 8-bit quantizers with varying block sizes. In general, the first “split” at each level of -
the quantizer tree (in this case; the levels correspond to bits.1 and 5) requires the fewest
iterations. Furthermore, there is a general increase in the number of iterations required
as the number of bits at each level is increased. This behaviour is most likely due to the
selection of the initial quantizer in the optimization portion of the algorithm as well as the
distribution of the training sequence. For the earlier splits at each level of the quantizer tree,

the output vectors are few and relatively farther apart. These vectors tend to obtain values
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Bits: 1 2 3 4 5 6 7 8

Block Size
1 10 16 27 20 7 7 12 12
2 20 37 27 38 17 24 34 34
3 14 34 27 41 20 33 31 33
4 33 30 45 32 21 30 36 36
5 14 27 43 40 18 29 38 32
) 12 26 31 40 19 29 34 31
8 18 28 31 40 20 28 31 31
10 16 24 38 39 16 26 29 29
12 18 23 30 36 13 24 29 26
15 15 18 25 48 15 21 26 25
16 15 21 23 31 14 25 27 25

Table §-4: Iterations Required Per Split for Various Block Sizes

which may vary only slightly over successive iterations compared to the distance between the
output levels themselves. Thus, the decrease in quantization error with each iteration is very
small compared to the overall average quantization error which causes the procedure to halt
after only a few iterations. As the number of output vectors at the particular quantizer tree
level increases, the average quantization error decreases and the centroids of the quantizer
regions can vary more over successive iterations in relation to the distance between them.

Therefore, a greater number of iterations can take place before the error difference threshold

is reached.

In order to limit the quantizer generation time, a limit of fifty iterations wa s introduced.
For the 8-bit quantizers, the generation procedure required eight applications of the splitting
algorithm. Each time the splitting algorithm was applied, it was necessary to run the

optimization procedure. Since there were four sets of quantizers and eleven different block
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Iterations . Occurences:: Percent

0-4 0 0

5-9 17 4.83
10-14 32 9.09
15-19 49 13.92
20-24 54 15.34
25-29 87 19.03
30-34 59 18.76
35-39 27 7.87
40-44 ‘19 5.40
45-49 14 3.98

50- 14 3.98

Table 5-5: Frequency of Iteration Number

lengths, the optimization procedure was run 352 times. Table:5-5 shows the distribution of
iterations required before the optimization procedure terminated. As can be seen, less than -
four percent of the time were 50, or possibly more, iterations required and less than twelve
percent of the time were more than 40 iterations required. On the other hand, 15. or more
iterations were required more than eighty-five percent of the time before the optimization

procedure terminated.

Figures 5-1 and 5-2 display the signal to noise ratios (SQNR) versus the iterations for -
a variety of block lengths. Figure 5-1 shows the increase in SQNR at the first level of the
quantizer tree (corresponds to bit 4 in the tables) and Figure 5-2 shows the increase in SQNR
at the second level of the quantizer tree (bit 8). It can be seen the most of the increase in the
SQNR occurs within the first five to seven iterations. In general, the quantizer performance

obtains ninety percent of its final value within five iterations and ninety-five percent within

seven iterations.
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Figure 5-1: Quantizer Performance Without Pitch Prediction

5.2 QUANTIZER PERFORMANCE

Figures 5-3 and 5-4 display vector quantizer performance for residual quantizers. For -
the results of Figure 5-3, the cader used:to derive the residual traii\i:ng sequence did not
include a pitch prediction filter. For the:results of Figure 5-4, the coder includes a pitch

prediction filter. In both cases, vector quantizers of dimensions ranging from one to sixteen -

are compared to one-dimensional uniform and Lloyd-Max quantizers. For each block size,

one to eight bit vector quantizers were calculated.

The uniform quantizers were designed: using the:4o method as discussed in Section 2.2.3,

where o2is the variance of the training sequence. One-bit to eight-bit uniform quantizers were -

calculated. According to the theory, the signal-to-quantization-noise ratio shouldiincrease

at roughly 6 dB/bit. It can be seen from:the graphs that the theory breaks down at the

four-bit uniform quantizer. This is not entirely unexpected since the model presented in

Section 2.2.3 is very approximate.
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Figure 5-2: Quantizer Performance: With Pitch Prediction

The Lloyd-Max quantizers were designed, using the Lloyd-Max algorithm [MAXB80],
from a 250-point tabulated distribution obtained from the training sequence. Because of
this, a maximum of seven bits could be assigned to the Lloyd-Max quantizer and at seven

bits, there is less than two distribution values for each output level.

Table 5-8 displays the bits/sample of the vector quantizers for varying block sizes and
bits/block. Since a single one to eight-bit codeword is used to represent each output vector,
the number of bits/sample is obtained by dividing the number of bits in the codeword by
the number of samples in the block. Table 5-7 lists the transmission rates, corresponding
to Table 5-6, for the residual signal. It should be noted that these rates are onily for the

residual: the coding of the other parameters will add to these values.
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Bits/Block: 1 2 3 4 5 8 7 8

Block Size

1 1 2 3 4 5 6 7 8

2 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
3 333 667 1.000 1.333 1.667 2.000 2.333 2.667
4 025 050 075 1.00 125 150 175 2.00
5 020 040 060 080 100 120 140 1.60
6 0.167 0.333 0.500 0.667 0.833 1.000 1.167 1.333
8 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000
10 010 020 030 040 050 060 070 0.80
12 0.083 0.167 0.2560 ©.333 0.4i7 ©0.300 ©$.285  0.567
15 0.067 0.133 0.200 0.267 0.333 0.400 0.467 0.533
16 0.063 0.125 0.188 0.250 0.313 0.375 0.438 0.500

Table 5-6: Bits/Sample for Various Block Lengths and Bits/Block

Since the vector quantizer design algorithm is a variation of Lioyd’s Method I, a comparison
of vector quantizers, with block length one, to Lloyd-Max quantizers is desirable. From
Figures 5-3(a) and 5-4(a), it can be seen, in both cases, that the performances of both
quantizers are very close for the one to six-bit quantizers, with the Lloyd-Max quantizer
performing slightly better. At seven bits, the Lloyd-Max quantizer shows a drop in perfor-
mance compared to the vector quantizer. This probably occurred because there were not

enough points in the tabulated distribution used to generate the Lloyd-Max quantizer.

As can be seen from the graphs, the vector quantizers performed better than the uniform
quantizers at equivalent bit rates. Compared to the Lloyd-Max quantizers, the difference in
performance is not as great. These results indicate that the use of vector quantizers for

the residual signal can result in some improvement in performap~e over scalar quantizers at

equivalent bit rates.
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Bits/Block: 1 2 3 4 5 8 7 8

Block Size

1 8000 16000 24000 32000 40000 48000 56000 64000
2 4000 8000 12000 16000 20000 24000 28000 32000
3 2667 5333 8000 10667 13333 16000 18667 21333
4 2000 4000 6000 8000 10000 12000 14000 16000
5 1600 3200 4800 6400 8000 9600 11200 12800
6 1333 2667 4000 5333 6667 8000 9333 10667
8 10006 2000 3000 4000 5000 6000 - 7000 8000
10 800 1600 2400 3200 4000 4800 5600 6400
12 667 1333 2000 2667 3333 4000 4667 5333
15 533 1077 1600 2133 2667 3200 3733 4267
16 500 1000 1500 2000 2500 3000 3500 4000

Table 5-7: Residual Bit Rates for 8kHz Sampled Speech

Figures 5-3 and 5-4 seem to indicate an improvement over scalar quantization at
equivalent bit rates. It then becomes desirable to compare vector quantizers of equivalent
bit rates. Figures 5-5 and 5-6 compare the performances of four different quantizers with
varying block lengths. In Figure 5-5, one-bit was assigned for every sample in the block
while in Figure 5-68, two bits were assigned. This translates to a residual bit rate of 8 kbps
and 16 kbps respectively for 8 kHz sampled speech. In the first figure, there is roughly a
2.5 dB gain, in all four examples, as the the block length varies from one to ten samples. In

the second figure, there is a 2.5 dB gain in performance as the block size varies from one to

five samples.

From the theory, an increase in the SQNR as the block length increases indicates that

there is some correlation between the samples in the block. This increase in SQNR with
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vector quantizers take advantage of this redundancy.

5.3 EFFECT OF QUANTIZING PARAMETERS

the same number of bits.

- 100 -

block size thus indicates that, despite attempts to remove redundant information: through

the use of a prediction filter, there still remains redundancy in the residual signal. The

As can be seen from the Figures 5-5 and 5-8, quantizing the coder parameters results in
a drop in the SQNR for the residual quantizer. Since the parameters are quantized before
they are used, the output residual signal is not minimal for the set of parameters, as would be
the case if the parameters were unquantized. Thus, there is greater variance in the residual -

signal compared to the unquantized case which then results in greater quantizer error for
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5.4 EFFECT OF PITCH FILTERING

As can be seen from Figures 5-5 and. 5-8, the addition of the pitch filter did:little to
change the quantizer performance. As can be seen from the figures, the addition of the :
pitch filter actually seemed to cause a drop in the performance of the residual quantizer. :
The actual loss in the SQNR increased as the block length increased. At one-bit/sample,
the loss ranged from less than 0.1 dB at a block length of one, to 0.5 dB, in the: extreme
case, at 2 block length of ten. At two-bits/sample, the loss ranged frqlm about 0.2 dB at a2

block length of one, to about 0.25 dB at a block length of five:

The loss in quantizer performance may possibly:be attributed to a combinationof three -
causes. First, the addition of the pitch prediction. filter Temoves some:of the redundant -
information in the residual signal. Thus isuccessive samples in the pitch filtered: residual
are more independent and the correlation:between samples in a block, which is used by the

vector quantizers, is reduced. Secondly, the pitch filter reduces the amplitude of the “spikes”
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present at the beginning of each pitch period while not significantly affecting the remainder
of the signal. Thus the signal power is not affected significantly in comparison to the power
before quantization. Finally, unless the pitch period is a multiple of the quantizer block size,
samples in successive pitch periods will not lie at the same position in each block. This may

cause the characteristics of the residual signal to be noticeably affected..

Because the residual samples may be more independent due to the pitch filter and
beeause the signal power is not significantly affected, a greater quantizer error may occur
due to less correlation between samples with a corresponding decrease in SNR. Further
quantization errors may be introduced if corresponding samples in successive pitch periods
vary their position within each block to be quantized. Because of the limited number of

output vectors, a variation in the position of the sample can result in noticeable differences

in the quantization error.

5.5 SUBJECTIVE EVALUATION

A group of seven untrained listeﬁers, four male and three female, was used to sub-
jectively evaluate the reconstructed speech. The evaluation process was divided into four
parts. In the first part, the listeners were asked to cbmment on the characteristics of the
reconstructed speech. In the second part, the listeners were asked to compare reconstructed
speech from residual-encoded linear predictive coders using either scalar or vector quan-
tization of the residual signal. In this case, no quantization was performed on the other
parameters of the coder, i.e. the gaip, the predictive filter parameters, and, if present, the
pitch filter parameters. This was done in order to obtain a subjective evaluation of the

residual quantizer performance as opposed to the performance of the coder itself.

In the third part, the coder, with all parameters quantized and using vector quantiza-
tion, was compared to a log-PCM coder. This was done in order to compare the subjective
quality of the reconstructed speech from the linear predictive coder to that produced from

a standard 'and well understood coding system. This then produces an indication of the
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possible savings in transmission bit rate for subjectively equivalent speech quality.

Finally, in the last part of the evaluation, the listeners were asked to compare the linear
predictive coders with and without the inclusion of a pitch prediction filter. From this, an

indication may be obtained as to the desirability of including a pitch filter in the coding

system.

Upon listening to the reconstructed speech, the listeners all found it to be “mufled” and
“low pitched”, i.e. there was a lack of high frequency components. This lack of high frequency
components characterized the coder for 8 kbps and 18 kbps (1-bit/sample and 2-bit/sample)
residual transmission rates. It remained unaflected as the quantizer block length was varied.

Despite the muffled quality, the listeners found the speech readily understandable.

In comparison to log-PCM speech, using a transmission rate of 32 kbps, the listeners
found there was less “static”, or “crackling” noise in the linear predictive coder. They also
found that there was less hiss introduced by the linear predictive coder. However, they found
there was more high frequency components in the log-PCM speech, i.e. it was not as “low

pitched”, although there was more noise present.

Tables 5-8 and 5-9 show the subjective evaluations of the linear predictive coder without
the pitch prediction filter, while Table 5-10 and 5-11 are for the coder with the pitch
prediction filter included. In both cases, the use of vector quantizers for the residual is
compared to the use of scalar quantizers, either uniform or Lloyd-Max. In the tables, the
first of each pair of numbers represents the number of listeners who preferred the speech
generated with the use of a vector quantizer. The second value represents the number
of listeners who preferred the speech reconstructed using a scalar quantizer. The vector
quantizers had block lengths of one to five samples with two bits assigned to each sample
in the block. These quantizers are compared to uniform and Lloyd-Max quantizers of two

to four bits/sample.
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Vector Quantizer ' Uniform Quantizer: Bits/Sample
Block Length | 2. 3 4
1 7/0 9/5 0/7
2 7/0 3/4 0/7
3 7/0 8/t . 07
4 7/0 7/0 0/7
5 7/0 7/0 0/7
Table 5-8: Subjective Comparison of Vector and Uniform Secalar Quantizers {No Pitch .
Prediction) |

Vector Quantizer | Lloyd-Max  Quantizer: Bits/Sample

Block Length 2 3 4
1 7/0 0/7 0/7
2 7/0 0/7 0/7
3 ' 7/0 0/7 0/7
4 7/0 0/7 0/7
5 7/0 2/5 0/7

Table 5-9: Subjective Comparison of Vector and Lloyd-Max Scalar Quantizers (No
Pitch Prediction)

As can be seen from the tables, for botls the pitch filtered and non-pitch filtered speech,
the vector quantizers were preferred over: the two-bit uniform quantizer. When compared
to the three-bit uniform quantizer, the vector quantizers of block lengths three to five were

unanimously preferred in the coder without pitch prediction. For vector quantizers:of block
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Vector Quantizer } Uniform Quantizer: Bits/Sample
Block Length 2 3 4
1 7/0 2/5 0/7
2 7/0 3/4 0/7
3 7/0 8/1 . 0/7
4 7/0 6/1 0/7
5 7/0 6/1 0/7

Table 5-10: Subjective Comparison of Vector and Uniform Scalar: Quantizers (With
Pitch Prediction)

Vector Quantizer | Lioyd-Max Quantizer: Bits/Sample
Block Length 2 3 4
1 7/0 0/7 0/7
2 7/0 0/7 0/7
3 7/0 0/7 0/7
4 7/0 0/7 0/7
5 7/0 1/8 0/7

Table 5-11: Subjective Comparison of Vector and Lloyd-Max Scalar Quantizers (With
Pitch Prediction)

lengths one and two, more people preferred the uniform quantizer. In the case of the coder
with pitch prediction, more people preferred the vector quantizer over the three bit:uniform
quantizer, except for the one-dimensional vector quantizer where the opposite was true.

For both coders, the four-bit uniform quantizer was unanimously preferred over all vector

quantizers.

For the Lloyd-Max quantizers, the vector quantizers were unanimously preferred in
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most cases over the two-bit Lloyd-Max quantizer. The only exception was in the case of the
one-dimensional vector quantizer in the coder with the pitch prediction filter. The three-bit
Lloyd-Max quantizer was unanimously preferred in'most cases over the vector quantizers.
The only exception in this case occurred for the five-dimensional vector quantizer in the
coder without pitch prediction. In all cases, the four-bit Lloyd-Max quantizer was preferred -

over the vector quantizers.

From Figures 5-3 and 5-4, it may be seen that the performances of the vector quantizers
of the different block lengths and two-bits/sample in the block generally fell between that
of the two-bits/sample and three-bits/sample Lloyd-Max quantizers. The range of quantizer -
performance was between two-bits/sample and four-bits/sample in the case of the:uniform

quantizer. There seems to be a correlation in this case between quantizer performance and

subjective preference.

Tables 5-12 and 5-13 compare the coder with no pitch filter and using vector quantizers
of 1-bit and 2-bits respectively for each sample in the block, to a log-PCM coder of varying .

bit rates. The procedure is repeated in Tables 5-14 and 5-15 for the coder with the pitch
prediction filter included.

In general, the linear predictive coder was preferred over the three-bits/sample log-PCM
when vector quantizers with one-bit/sample in the the block were used. When compared to
4-bit/sample log-PCM, more people preferred the linear predictive coder when the vector
quantizers with larger block sizes were used. The opposite was true for the smaller block

sizes. Finally, the five-bit log-PCM coder was unanimously preferred in most cases over the

linear predictive coder.

For the two-bit/sample in the block vector quantizers, the linear predictive coder was : .

unanimously preferred over the 4-bit log-PCM coder. The linear predictive coder-and the
five-bit log-PCM coder were judged about the same with more people preferring the linear
predictive coder when the vector quantizers had the larger block lengths. In all cases, the

6-bit log-PCM coder was preferred unanimously over the linear predictive coder.

- 106 -



LP Code'rl Log-PCM Coder: Bits/Sample
Block Length 3 4 5
1 5/2 2/5 0/7
2 4/3 3/4 0/7
3 7/0 5/2 0/7
4 6/1 4/3 0/7
5 6/1 4/3 0/7
6 7/0 7/0 0/7
8 7/0 7/0 0/7
10 7/0 6/1 0/7

Table 5-12: Comparison of Log-PCM and Linear Predictive Coder Using 1-bit/sample
for Residual (No Pitch Prediction)

LP Coder Log-PCM Coder: Bits/Sample
Block Length "2 3 4
1 7/0 3/4 0/7
2 7/0 3/4 0/7
3 7/0 3/4 0/7
4 7/0 5/2 0/7
5 7/0 4/3 0/7
Table 5-13: Comparison of Log-PCM and Linear Predictive Coder Using 2-bit/sample

for Residual {(No Pitch Prediction)
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LP Ccder Log-PCM  Coder: Bits/Sample
Block Length 3 4 5
1 - 5/2 3/4 0/7
2 4/3 3/4 0/7
3 7/0 5/2 1/6
4 6/1 4/3 0/7
5 6/1 4/3 0/7
6 5/2 4/3 0/7
8 6/1 5/2 0/7 -
10 7/0 6/1 2/5

Table 5-14: Comparison of Log-PCM and Linear Predictive Coder Using 1-bit/sample
for Residual (With Pitch Prediction)

LP Coder Log-PCM  Coder: Bits/Sample
Block Length 2 3 4
1 6/1 3/4 0/7
2 7/0 3/4 0/7
3 7/0 4/3 0/7
4 7/0 7/0 2/5
5 7/0 5/2 0/7
Table 5-15: Comparison of Log-PCM and Linear Predictive Coder Using 2-bit/sample

for Residual (With Pitch Prediction)
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Block | Block Length (Coder with pitch filter)

Length 1 2 3 4 5 6 8 10
1 0/7 0/7 - - - - - .
2 6/1 1/6 0/7 - - . - .
3 - 5/2 1/6 0/7 - - - .
4 . . 7/0 16 o/1 - .-
5 - - - 7/0  0/7 0/7 - -
6 - - - - 5/2 2/5 - -
8 - - - - - - 0/7 -
10 - - - - - - - 07

Table 5-186: Comparison of Coders With and Without Pitch Prediction (1-bit/sample
for Residual)

Block
Length

Block Length (with pitch filter)
1 2 3 4 5

0/7 07 - . -
6/t  0/7  0/7 - -
- 7/0 0/  0/7 -
- - 6/1 0/7 0/7

- 5/2  0/7

Table 5-17: Comparison of Coders With and Without Pitch Prediction (2-bit/sample
for Residual)

From the above results, it seemns that as the block lengths of the vector quantizers increase,

the output of the linear predictive coder subjectively improves. This may be compared to

the increase in quantizer performance with block length when compared to Figures 5-5 and

5-6.
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Tables 5-16 and 5-17 compare the linear predictive coders with and without the pitch
prediction filter. In Table 5-16, vector quantizers with one-bit/sample in the block are used
in the coder. For the results in Table 5-17, the quantizers have two-bits/sample in the block.
From the tables, it may be seen that, in general, the speech from the coder with pitch
prediction was preferred over that without the filter. However, the difference in quality,
although noticeable, was small and, in most cases, the listening test had to be repeated
several times before a decision could be made. Since the addition of the pitch filter added
17 bits/frame to the transmission rate, the loss in quality due to the exclusion of the pitch

filter may be acceptable in terms of reducing the bit rate.
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CHAPTER 6
CONCLUSIONS

It has been shown that the procedure of generating vector quantizers can be very time
consuming. A number of factors have been shown to affect the time required to generate
each quantizer. The most obvious of these factors are the number of levels in the quantizer

and its block size, i.e. the number of elements in the vector.

The number of iterations at each “split” of the quantizer generation algorithm also affect
the quantization generation time. Obviously, the greater the number of iterations required,
the longer it takes to generate the quantizer. If some manner of reducing the iterations could

be found, there would be a consequent reduction in the quantizer generation time.

The number of iterations required is related to the error difference threshold and to
the initial quantizer used in the design algorithm. If a more accurate initial quantizer could
be found, the number of iterations required for the algorithm to “settle down” would be
reduced. Since the algorithm is of a random nature, determining a more accurate initial
quantizer would be difficult in practice. This leaves the use of a larger error difference
threshold. If a larger threshold value was used, the number of iterations would be less since
the quantizer error would have to be reduced by a greater amount each iteration. The

drawback behind this, however, is, that by increasing the error difference threshold, the

quantizer error is increased.
1t was found that, with an error difference threshold of 0.0001, the optimization procedure

required forty, or more, iterations to terminate only twelve percent of the time. On the

other hand, fifteen, or more, iterations were required eighty-five percent of the time be-
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fore termination occurred. By comparing the quantizer performance at each-iteration, it
was observed that the greatest increase in the signal-to-quantization-noise ratio occurred
within the first few iterations. In general, the SQNR obtained ninety percent of it final
value within five iterations, and ninety-five percent within seven iterations. Thus by ac-
cepting a relatively small decrease in quantizer performance by limiting the maximum
number of iterations to seven, the quantizer generation time could be reduced, on the

average, by more than seventy-five percent.

It has been demonstrated that, at equivalent bit rates, vector quantizers perform as well,
or better, than scalar quantizers. In comparison to the uniform quantizers, considerable gains
in performance are obtained. These gains are not as great when compared to the Lloyd-Max
quantizers. This is hardly surprising since the Lloyvd-Max quantizers perform considerably

better than the corresponding uniform quantizers.

In particular, when the one-dimensional vector quantizer was compared to the Lioyd-
Max quantizer for varying bit rates, it was observed that the performances of the quantizers
were very close. This verifies the operation of the vector quantizer design algorithm. Since
the vector quantizers are designed using a variation of Lloyd’s Method I and the Lloyd-Max
quantizers are designed using the Lloyd-Max algorithm, a variation of Lloyd’s Method II, it
is expected that the two quantizers would perform similarly. Since the performances of the
two quantizers were so similar, this demonstrates that the vector quantizer design algorithm

will produce a quantizer at least as good as a scalar Lloyd-Max quantizer of equivalent bit

rates.

When the output bit rate was held constant and the vector quantizer block length
was increased, it was observed that the quantizer performance increased. This indicates
that there remains some correlation between samples in the residual signal of attempts to
remove redundant information through linear predictive techniques have been made. This
correlation between samples may thus be used to improve the coder performance through

the use of vector quantizers while maintaining the same transmission rate.

Since the quantizers were designed in a random manner through clustering, the quan-
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tizer performance may not have been as good as possible. This is inherent to the design al-
gorithm itself and depends upon the choice of initial quantizer. Since there is no “intelligence”
applied in the splitting algorithm there is no control over the selection of the initial quan-
tizer. A further problem is introduced through the use of the tree structure for the quan-
tizer. The tree structure constrains the output points to particular regioms of the data
space at all levels below the first level of the tree. This constraint becomes fnore restric-
tive the deeper one travels in the tree structure. This occurs because, at the first level, the
data space is divided into a number of regions. The next level only subdivides these regions
without attempting to improve the region definition. This continues to the lowest level
of the tree. Thus if, for some reason, a region defined near the top of the tree has only a few

points, the final set of output points will not reflect the true distribution of the data space.

When 2 subjective comparison of the coder using vector quantizers was made to the
coder using scalar quantizers, at equivalent bit rates, it was found that the listeners generally
preferred the coder which used the vector quantizers. When compared to the Lloyd-Max
quantizers, it was found that two-bit/sample vector quantizers were preferred more than two-
bit, but less than three-bit, Lloyd-Max quantizers. In comparison to the uniform quantizers,
the range of preference ran from two-bit to four-bit uniform quantizers. In general, as the
block length increased, the preference increased. This was further born out by comparisons
between the vector quantizers. The quantizers with larger block lengths were preferred over
the quantizers with the smaller vector sizes. Thus the use of vector quantizers results in
a perceptual improvement as well as a quantitative improvement in comparison to scalar

quantizers.

When compared to log-PCM speech, the linear predictive coder, both with and without
pitch prediction, were seen to result in substantial savings in transmission rates for equiv-
alent perceptual quality. The range of preference for the linear predictive coder with one-
bit/sample for the residual was between three- and four-bit log-PCM. For 8 kHz sampled
speech, this corresponds to transmission rates of 8.6 kbps for the linear predictive coder
without pitch prediction, 9.2 kbps with pitch prediction as compared to between 24 kbps

and 32 kbps for the log-PCM coder. For two-bits/sample for the residual, the range of
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preference was between four- and five-bit log-PCM or 16.8 kbps (17.2 kbps) as comparea to
a range of 32 kbps to 40 kbps. Thus it can be seen that perceptually equivalent speech may
be produced at considerably lower bit rates through the use of linear predictive techniques

and vector quantization of the residual.

It was found that the addition of the pitch prediction filter improved the perceptual
quality of the speech only slightly. Since an extra 600 bits/second are required to transmit
the pitch information, it is doubtful that the perceptual improvement is worth the extra bits.
Instead, it would probably be more useful to distribute the bits among the other parameters
of the coder.

It was also observed that the addition of the pitch filter affected the performances of the
residual vector quantizers. In general, the pitch prediction caused a reduction in the SNR
of the vector quantizers. The addition of pitch prediction tends to reduce the correlations
between subsequent samples. Since the vector quantizers depend upon these correlations for
their gains in performance, the addition of the pitch filter can cause a loss in quantizer

performance which becomes more apparent as the block length increases.

6.1 Suggestions For Further Work

There is a wide range of topics for further investigation. First among these is an
extension of the work to multiple speakers. Since the quantizers were: generated from a
training sequence derived from a single speaker, the quantizers match the characteristics
of that speaker. Because of this, the quantizers may not perform as well with different
speakers since the characteristics wil be different. It would be useful to determine to what
extent multiple speakers would affect quantizer performance, especially in the presence of

both male and female speakers..
Another topic of interest would be to observe the effect of splitting the residual codebook

into two codebooks containing vectors representing voiced and unvoiced residual signals. It

would then be possible to allocate the number of quantizer output vectors to each codebook
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in such a way sa to maximize performance while maintaining a relatively low bit rate.
Since the voiced residual signal generally has greater amplitude as well as a “spike” at the
beginning of each pitch period, the voiced codebook would contain vectors matching these
characteristics. For unvoiced residual signals, the waveform is generally of a random nature.
In this case, a relatively small selection of random vectors may be sufficient. Thus, a greater
number of vectors could be assigned to the voiced codebook in order to allow more variation

while relatively fewer vectors could be used where the residual is relatively random.

Another afea of investigation would involve improving the coder design. The present
work involved the use of a very simple coder. It would be intéresting to observe the effect of
different coder configurations or different coding techniques upon the perceptual quality of
the reconstructed speech. In particular, different methods for generating the vector quantizer
should be investigated. For example, the generation of the initial quantizer could be done in
a different manner. Another concept would be the imposition of certain constraints upon the
quantizer structure and performance. It would be interesting to see the effect of constraining
the maximum error (except in.the overload regions). This is equivalent to ensuring the
centroids are never more than a given distance apart. It would also be possible to ensure
that the centroids are not too close as well, since this would have the effect of giving a more
uniform coverage to the signal space. Finally, a combination of quantizer structures may
be investigated. By using a lattice quantizer at the top level of the codebook tree, it would
be possible to constrain the maximum error as well as to decrease the search time for the

closest matching codeword.

Finally, it would be of interest to compare the coder with prediction to the coder
without the pitch filter at equivalent bit rates. It has been shown that the coder with the
pitch filter was only slightly preferable to that without pitch prediction. Since the inclusion
of the pitch filter requires an extra seventeen bits per data frame, by ecliminating the pitch
filter and redistributing the bits among the other data in the frame, a better comparison
of the two coders could be made. For instance, the extra bits could be used to increase the
number of levels in the codebook thereby allowing a better approximation to be made of

the residual signal. If the coder with the pitch filter was still preferable, then it may be
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concluded that the insertion of the pitch prediction filter is desirable.
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