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ABSTRACT 

This study presents a tap-leakage adjustment algorithm 
- - 

to control the tap drifting problem in an adaptive echo 

canceller. A nonrecursive transversal filter structure and 

stochastic gradient adaptation algorithm are first studied. 

On the basis of these studies, the effect of tap drift when 

the input spectrum does not cover the full band is presented. 

The tap-leakage algorithm, which has been used in fractional 

spaced equalizers and speech coding is introduced. In this 

thesis, the tap-leakage algorithm is applied to an echo 

canceller. In addition, a least-squares lattice filter is 

proposed to overcome slow convergence problems due to 

narrowband inputs. Finally, the simulation results of the 

stochastic gradient, tap-leakage and least-squares lattice 

algorithms are studied. 
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CHAPTER 1 

INTRODUCTION 

Most telephone connections generate echoes. In 

Fig.1. la, a typical telephone connect ion is shown; although 

simplified, it is a good model to illustrate the echo problem. 

The connection contains two-wire portions on both ends (the 

local loops to the subscriber premises) which serve for 

bidirectional communication. The use of the same two wires 

for transmission and reception results in a saving in .wire and 

local switching equipment. In the middle of the connection is 

the four-wire portion (carrier systems for medium to long-haul 

transmission). In this portion, a separate path is necessary 

for each direction of transmission. There are two reasons for 

using separate paths in long-distance communication. First, 

long circuits require repeaters for amplification, and 

amplifiers are unidirectional devices. Second, due to reasons 

of economy, most long-distance transmission are multiplexed. 

Multiplexing requires that signals in the two directions be 

sent in different slots. 

A device that accomplishes the interfacing between the 

two-wire portion and the four-wire portion is called a hybrid 

coupler. Echoes are the result of impedance mismatches in the 

hybrid coupler. Since, a large number of different local 

loops can access to the hybrid coupler, it is not likely that 



a fixed balancing impedance can match all the impedances of 

the local loops. As a result, transmitted energy from A can 

leak through the coupler at B and transmits back to form an 

echo, as shown in Fig.l.1~. Another echo mechanism as shown 

in Fig.l.ld results in the receiver at B receiving a delayed 

echo of the message from A. 

TELEPHONE A 
IMPEDANCE 

COUPLER COUPLER 
1 

ECHO OF A'S SIGNAL j 4 

Fig. 1.1. Sources of echo in telephone network; 

l.la, model for long-distance circuits; 

l.lb, talker speech path; l.lc talker echo path; 

l.ld listener echo path. 



Echo suppressors have been accepted as the conventional 

methods to combat echoes since the early days of long-distance 

telephone (Sondhi, 1 and Mitchell, 2 1 .  However, an echo 

suppressor introduces its own problem by chopping speech 

sounds and impairing conversational interruptions. Because of 

these distortion effects, researchers have proposed a new 

technique of echo cancelling recently and this has been proved 

to be subjectively superior to the conventional echo 

suppressor technique. 

The idea of an echo canceller was first proposed by 

Kelly, Logan [3] and Sondhi [ 4 ] .  An echo canceller is 

basically a combination of filter and subtractor as shown in 

Fig.l.2. The filter compensates the echoes by synthesizing a 

replica of the system response of the echo channel. If this 

synthesis is exact, then the inputs to the subtractor will be 

equal, and the residual echo from the subtractor will be 

completely null. Because the impulse response to the 

synthesized channel is initially unknown and may vary with 

time, the canceller must be an adaptive filter. 



NO ECHO 

INPUT SIGNAL 
FROM 
FAR END 

Fig. 1.2. General configuration of an echo canceller. 

> 

The adaptive filter used here in the illustration can be 

characterized in two ways. First, a filter has a finite 

number of internal parameters which can be used to control the 

transfer function of the filter. There are many ways to 

construct a filter with a transfer function which depends on a 

finite set of parameters. What is meant by structure of the 

filter is the particular configuration of realizing the 

filter. Second, an adaptation algorithm monitor the external 
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changing environment and controls the filter transfer function 

by varying the aforementioned filter parameters. Two commonly 

used filter structures to be discussed in the future chapters 

are the transversal and lattice structures. Once a filter 

structure has been chosen, an adaptation algorithm must also 

be chosen. Two approaches to the adaptive filtering 

algorithms are the stochastic qradient (SG) and 

least-squares (LS) techniques. The adaptive filter structure 

which underlies almost all echo canceller designs is the 

nonrecursive transversal filter adapted according to the 

stochastic adjustment algorithms [Sondhi 1, Weinstein 5, 

Gritton 6, Messerschmitt 71. The SG algorithm is largely due 

to the work of Bernard Widrow [8], who is one of the authors 

of the tutorial paper [widrow et a1 9, "Adaptive Noise 

Cancelling"]. 

1.1 Main Concerns 

The main concerns in this project are the effects of 

adding input energy spectrum (e.9. broadband, such as speech, 

and narrowband, such as tones) to the echo cancellers that 

utilizes the transversal filter structure adapted according to 

the SG algorithm. When' input energy covers only a narrowband, 

two problems will occur. First, the filter will not have a 

unique optimal solution set of filter parameters (or tap 



coefficients). Instead, there will be a continuous drifting 

effect away from the optimal solution. The parameters can 

reach very large values. When the input energy is changed to 

broadband suddenly after running the filter under the 

narrowband input for a ,  long time, the drifting effect will 

cause the echo canceller a degradation in the performance 

(namely an increase in the cost function : the mean-square 

error). A tap-leakage adjustment algorithm can be used here 

in order to prevent the tap coefficients from reaching large 

values. This adjustment algorithm is being used in other two 

research areas : fractional spaced equalizers by Gitlin [lo] 

and ADPCM speech coding by Atal [ll], In addition, the rate 

of convergence of the adaptation algorithm will be slowed 

down. An alternate echo canceller' design using lattice 

structures adapted to the least-squares algorithm can be 

employed to speed up .the rate [Honig, 121. 

1.2 Organization 

Chapter 2 will study the nonrecursive transversal filter 

structure of the echo canceller and the differences between 

the speech and data echo canceller designs. Chapter 3 will 

discuss the stochastic gradient (SG) algorithm in detail. In 

order to understand this algorithm, two other algorithms are 

studied as steping stones, namely : the minimum mean-square 



error (MMSE) and steepest descent algorithms. These are 

followed by discussions of the convergence properties of the 

SG algorithm. Chapter 4 will emphasize on the problems on the 

echo canceller when different input energy types are used. 

Chapter 5 will present a tap-leakage adjustment algorithm to 

deal with the problem that the tap coefficients can drift to 

large values. Chapter 6 will present the least-squares 

lattice canceller to cope with the second problem of the rate 

of convergence. The simulation results of the algorithms 

discussed in Chapter 3, 5, and 6 will be included in Chapter 



CHAPTER 2 

ECHO CANCELLATION 

2.1 Echo Cancellation in Speech Transmission 

Echo cancellation is used to combat the echo for both 

speech and data transmission. The requirements for speech and 

data transmission are quite different, so this section will 

concentrate on speech and the next section will deal with 

data. 
/ 

An echo canceller is basically a combination of an 

adaptive filter and subtractor. The adaptive filter gradually 

adapts its impulse response to the impulse response of the 

hybrid channel (or the echo channel). Thus, the filter 

synthesizes a replica of the echo and when subtraction has 

taken place between the echo and the echo replica, a very 

small residual echo will remain. In order to effectively 

cancel these echoes, it must be assumed that the echo channel 

is linear and time-invariant (or slowly varying), can be 

completely specified by its impulse response (or equivaiently 

its transfer function). The typical filter structure in most 

of the echo canceller design is the transversal filter 

structure as shown in ~ig.2.1. The fiiter contains n 

adjustable tap coefficients and (n-1) delay elements. The 



output from the echo channel, d(T) is a superposition of the 

near-end possible signal with the undesired echo signal. The 

reference input y(T) consists of the far-end signal alone. 

Fig. 2.1. Echo canceller for one direction of transmission. 
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where C are the filter coefficients. Since the transfer 
j 

function of the echo channel is not known in advance, it is 

necessary to adapt the filter coefficients C of the 
j 

cancellation filter. The adaptation algorithms which try to 

minimize a cost function of the residual uncancelled echo, 

e(T), will be studied in detail in the next chapter. 

I f  y(T) is bandlimited to the frequency range 

I f l  < f , and T is chosen to be the corresponding 
m a x  

Nyquist interval ( t = 1/(2f ) , a bandlimited filter will 
m a r  

be obtained for which c 's are Nyquist rate samples of the 
J 

impulse response. Thus nt must be chosen to be larger than 

the longest echo path that needs to be accommodated. Speech 

signals on the telephone network have little energy above 

4000 Hz., so T is approximately chosen as 125 ps. Thus 120 

tap coefficients are required for a duration of 15 ms in the 

echo path. 

In practice, it is necessary to cancel the echoes in 

both direction of a trunk. Thus, two adaptive transversal 

filters are necessary, as shown in Fig.2.2. It is desirable 

to position the cancellers in a split configuration, with the 



four-wire long delayed portion in the middle. The reason is 

that the number of tap coefficients for each of the 

transversal filters depends on the length of the impulse 

response of the echo channel, which is relatively short, and 

also on the transmission delay between the canceller and the 

hybrid channel. In the split configuration, each canceller 

can be as close to the hybrid as possible to minimize the 

transmission delay and thus minimize the number of 

coefficients used. 

ABBREVI A T 1  ONS 
H : H Y B R I D  
F : F I L T E R  

LONG 
DELAY 

CHANNEL 

Fig. 2.2. Split echo canceller configuration for two 

directions. 



2.2 Echo Cancellation in Data Transmission 

Echo cancellation technique is also used in full duplex 

data transmission as shown in Fig.2.3, For half-duplex 

transmission, echoes create no problem. This is because 

transmission is in one direction only and there is no receiver 

on the current transmitting end to be affected by the echo. 

In full-duplex transmission, the data signals are transmitted 

in two directions simultaneously. Echoes from the data 

signals in one direction can interfere with the data signals 

in the opposite direction. An alternate method other than 

echo cancellation that can be used to separate the two 

directions of transmission is by using two non-overlapping 

frequency bands. However, this method has the disadvantage 

that the bandwidth is doubled relative to the bandwidth 

required in the echo cancellation method. 

Although basically the data echo canceller is similar to 

the speech echo canceller (transversal filter with tap 

coefficients updated according to some adaptation algorithm to 

minimize a cost function of the error) there are several 

significant differences. The first difference is in the 

placement of the canceller. Unlike the voice echo cancellers 

which are considered as part of the telephone network, a data 

echo canceller would be located at the data set. This is 

because a local hybrid is needed at each data set in order to 



DATA 
XMI T . 

/pd RCVR . 

ABBREVI AT1 ONS 
F : FILTER 
H : HYBRID 
XMIT : TRANSMITTER 
RCVR : RECEIVER 

Fig. 2.3. Echo canceller for full-duplex data transmission. 

separate the transmit and receive directions. The echoes due 

to the local mismatch in speech communication can be 

classified as sidetones and are harmless. However, for data 

transmission, the early echoes are worse than the long delayed 

echoes that arrives after the round-trip delay in the 

four-wire circuit. The necessity of placing the echo 

canceller at the data set gives rise to the second difference 

between speech and data transmission. The time span over 



which echoes arrive is much larger for the latter because 

there exists a long-delayed echo. This problem is dealt with 

by splitting the transversal filter into two filters separated 

by a bulk delay. The third difference is that the data 

symbols have much simpler scati~tical properties to quantify. 

Sequences of data symbol (eg. - +1 for binary sequences) may be 

assumed to be sequences of independent and identically 

distributed variables. The fourth difference is that data 

signals in both directions are present almost all the time, 

thus the near signal becomes an important issue during 

adaptation. Finally, there are significant problems of time 

recovery, synchronization and equalization exist in the data 

cancellation that do not exist in speech cancellation. 

Full-duplex data transmission has arisen in two 

important applications. The first application is in the 

switched public telephone network and the second application 

is in the digital subscriber. loop. The configuration for the 

former case is shown in Fig.2.3 . While the configuration for 

the latter is similiar to Fig.2.3 except the two-wire 

subscriber loop is present in between the two local hybrid 

instead of having the four-wire circuit. The subscriber loop 

can use baseband transmission, while the voiceband data set 

always uses passband transmission. For data transmission over 

a private leased line, echo cancellation is not necessary. 

This is because leasing a four-wire private line is only 



slightly more expensive than leasing a two-wire line. 

A discussion of the details of full-duplex data 

transmission is beyond the scope of this report. The tutorial 

papers written by Sondhi [I] and Messerschmitt [7] can 

further the study on the subject. Three possible 

configurations for a data-driven echo canceller have been 

proposed by Mueller [13], Falconer [14] and Weinstein [15]. 

Recently, Werner [16].has written a paper to study the effects 

of channel impairments on the performance of a data-driven 

in-band echo canceller. 
1 



CHAPTER 3 

APPLICATION OF STOCHASTIC GRADIENT ALGORITHM 

TO ECHO CANCELLATION 

Minimum Mean-Square Error Solution 

This chapter will present three adaptation algorithms 

for adapting the echo canceller constructed from a transversal 

filter structure. The starting point will be the discussion 

on the minimum mean-square error (MMSE) algorithm. This 

algorithm is built on the unrealistic assumptions that the 

input signals d(T) and y(T) are wide sense stationary 

discrete-time random processes with known autocorrelation and 

power spectrum. Although this algorithm is not practical, it 

can act as a starting point for the next two algorithms : the 

steepest descent algorithm and the stochactic gradient ( S G )  

algorithm (also called the least-mean-square (LMS) algorithm), 

the former algorithm still preserves the unrealistic 

assumption while the latter assumes nonstationary and unknown 

statistics. 

It will be useful to define a vector notation for the 

column vector of n tap coefficients for the echo canceller 

transversal filter, 



In addition define a vector of the present and (n-1) past 

input samples 

Hence the error signal of the echo canceller can be written as 
-. 

The MMSE approach to the problem attempts to minimize 

the cost function : the mean-square error(MSE) E[e2(T)].The 

mean-square error can be formulated from Eq.(3.1) 

where 



Here A is called the autocorrelation matrix for the input 

process with the elements being the autocorrelation 

coefficients 

The autocorrelation matrix - A has several important 

characteristics that make Eq.(3.2) become a quadratic form in 

the coefficient vector - C and therefore there exists a unique 

minimum solution for the coefficient vector - C. At this point, 

several properties of the autocorrelation matrix are 

considering. [~aykin, 171 

Property 1 The autocorrelation matrix - A is symmetric, that is 

Eq.(3.4) represets the matrix - A and its transpose is the same 



Property 2 The autocorrelation matrix - A is Toeplitz, that is 

the i, j element is a function of (i-j). 

The Toeplitz property of - A is a direct consequence of the 

assumption that the input random process is stationary. 

Indeed, if the input is stationary and is sampled at T, the 

matrix - A  must be Toeplitz. Conversely, if the matrix - A  is 

Toeplitz, the input must be stationary. 

Property 3 The autocorrelation matrix - A  is positive 

semi-definite. 

Proof : Let - X  be an arbitrary n-by-1 vector. Define the 

scalar random vakiable : 

The mean-square value of the random variable b equals the 

quadratic form - - -  X ' A  X  as shown by 

Since 



follows that 

Accordingly, the autocorrelation matrix is positive 

semi-definite. In practice, there will always be some noise 

added to the matrix - A at all frequencies. Assume that the 

noise is white with noise variance u 2 ,  then the noise matrix 

is u21 - and is positive definite. Hence when the noise is 

added to the input matrix A ,  the quadratic form satisfies the 

condition that 

then the matrix - A will be positive definite. 

It remains to find the optimal coefficient vector, 

C . Completing the square in Eq.(3.2) - 
0 P t 

- 1 
P'A P + - -  - 

As - A is positive definite, the third term is non-negative and 

can be minimized by choosing 



With this choice, the resultant minimum mean-square error 

becomes 

In order to find C , it requires the solution of a 
o p t  

system of linear equations. However, since the 

autocorrelatibn matrix is Toeplitz, the Levinson-Dur-bin 

algorithm can be used to solve these equations. A good 

description on this algorithm can be found in Chapter 2 of 

Proakis [18]. 

In the context of the echo canceller for voice 

(described in Chapter 2), the matrix - P can be determined and 

the optimal coefficient vector - C can be further simplified 
o p t  

as follows : Assume the discrete-time channel characteristics 

is h and write the desired input to the canceller in the form 
i 



ADAPTIVE 
FI LTER 

CHANNEL < z(T) 

1 

d ( T )  

Fig. 3.1. Echo canceller with near-end possible signal 

plus echo and noise. 

where z(T) is the near-end possible signal plus echo and 

noise. In addition, define the vector for the echo impulse 

response within the range that can be cancelled by the 

n-coefficient transversal filter 



Let 

- - 

be the uncancelable portion of the desired input; that is, the 

echo response with delays too large for the n-coefficient echo 

canceller plus the near-end signal and noise. Then the 

desired input can be written as 

Substituting Eq.(3.17) into Eq.(3.3), then 

and from Eq.(3.13), the optimum n-coefficient echo canceller 

becomes 



For the special case when v(T) and Y(T) are uncorrelated then 

i.e., the echo canceller just replicates the first 

n-coefficients of the discrete-time channel characteristics. 

Before going onto the next section, it is valuable to 

study the principle of orthogonality. In order to find the 

optimal solution for the mean-square error in Eq.(3.2), it can 

be differentiated and set to zero. 

~t is legitimate to interchange the order of expectation and 

differentiation as both operations are linear. Eq.(3.21) 

states that for the optimum filter, the error signal and any 

of the inputs are uncorrelated (orthogonal). The result is 



known as the principle of orthogonality. As the MSE is a 

quadratic function of the coefficients, there exists a unique 

optimal coefficient vector and Eq.(3.21) is a necessary and 

sufficient condition on the optimality of the coefficients. 

3.2 Stochastic Gradient Algorithm 

In the preceding section, in order to solve for the 

optimum MMSE coefficient vector, it is necessary to solve for 

the system of linear equations in Eq.(3.19). If the 

autocorrelation matrix is Toeplitz, one possible. solution to 

solve for it is by the use of Levinson-Durbin algorithm. 

However, the most widely used practical algorithm for 

adaptation of an echo canceller is the stochastic gradient 

(SG) algorithm. 

As a starting point, the ensemble statistics of the 

reference input y ( T )  is assumed to be known again and a 

steepest descent algorithm is just derived before the study of 

the stochastic gradient algorithm. The steepest descent 

approach is to develop a recursive procedure whereby 

appropriate corrections are applied to the filter coefficients 

which guarantee convergence to the optimum coefficient vector 

(since the output mean-square error, MSE, given by Eq.(3.2) is 

a quadratic form in the coefficient vector C, there exists a 



unique minimum). The recursive procedure starts from an 

arbitrary point an the MSE surface and continuous adjusting 

the coefficient vectors iteratively until the minimum point of 

the MSE surface has been reached. Given the present 

coefficient with index corresponds the iteration 

number for the iterative algorithm for solving a system of 

linear equation, successive corrections to C(T) are made by 

subtracting off term proportional the error gradient 

V {E[~~(T)]). Thus the resultant tap' vector should be close 
C 

to C . Explicitly, the approach is 
0 P t 

where 4 is the proportionality constant or step size. The 

reason why the approach works is that error gradient is a 

vector in the direction of the maximum increase of the error. 

Moving a short distance (i.e. with small step size) in the 

negative direction of the gradient should then reduce the 

error. However, moving too far in that direction might result 

in overshoot away from the optimum and divergence will occur. 

At the minimum point of the MSE surface, the components 

of the error gradient vector 



are simultaneously zero. Accordingly, the principle of 

orthogonality has stated that for the minimum MSE, the error 

signal and the input signal are uncorrelated. 

Fig.3.2 shows the illustratioh of -the steepest descent 

algorithm for the second order case. The contours in the 

plane of filter coefficients of constant MSE have an 

elliptical shape. The negative of the gradient points in the 

Fig. 3.2. Illustration for steepest descent algorithm. 

- 27 - 



maximum decrease of the MSE. With a small step size, the MSE 

is reduced incrementally. With a large step size, overshoot 

may occur, to a point where the MSE will become larger and 

instability will occur. 

Now concerning the case when the underlying statistics 

are not known in advance, then the expectation operator in 

Eq. (3.22) will become troublesome part. The principle behind 

the stochastic gradient (SG). algorithm is to neglect the 

expectation operator. As a result, the deterministic error 

gradient vector is replaced by a random stochastic estimate 

vector 

Note that this estimate is unbiased because its expected value 

is exactly the same as the actual gradient vector of 

Eq.(3.23). 

The stochastic gradient algorithm changes the filter 

coefficient vector along the direction of the gradient vector 

estimate as follows 



where 

T = iteration number that corresponds to the sample 

number (or time index) of the given input data. 

C(T) = filter coefficient vector before estimation. - 
C(T+l) = fi'lter coefficient vector after estimation. - 

8 = step size parameter. 

e(T) = error signal at the T-th iteration. 

Y(T) = tap input vector at the T-th iteration. - 

The difference between the stochastic gradient algorithm 

in Eq.(3.25) and the steepest descent algorithm in Eq.(3.22) 

is that in the latter case, the coefficient vector follows a 

predictable trajectory, while in the former case, the 

trajectory is noisy and stochastic. This random fluctuation 

is the cost of using the time average in place of ensemble 

average. Hence, due to the fact that a noisy estimate of the 

error gradient is used to adapt the filter, the coefficients 

will have some asymptotic variance that causes the asymptotic 

MSE to be greator than the minimum MSE obtained from an 

optimum fixed coefficient filter. 



3.3 Convergence Properties of the SG Algorithm 

The convergence of the stochastic gradient (SG) 

algorithm can be analyzed in two ways. The first way is to 

determine analytically how the average of the coefficient 

vector trajectories converges to the optimum. The second way 

is to determine analytically how the -ensemble average of the 

mean-square error trajectories converges to the optimum. 

Notice that .in both cases, the coefficients and the 

mean-square errors are fluctuating due to the presence of the 

stochastic terms, thus only the average trajectories are 

determined in this section. In other words, the analysis here 

does not represent the particular coefficient vector 

trajectory or mean-square error trajectory that converge to 

the optimum. 

3.3a The average trajectory of the coefficient vector 

In order to analyse the convergence behavior of a given 

data adaptive algorithm, the given data is often assumed to be 

wide-sense stationary random process with known 

autocorrelation functi-on statistics (though this is 

unrealistic). Hence in Eq.(3.25), the expectation of the 

coefficient vector should be taken, i.e. 



where - I is the identity matrix. To facilitate the analysis, 

an approximation can be made that the coefficient vector is 

independent of the input data samples. This approximation is 

valid when $ is small, which gives rise to the slow trajectory 

of C(T) and makes the coefficient vector and the input data 

samples approximately uncorrelated. In this way, Eq.(3.26) 

becomes 

I f  this algorithm is simply iterated for some arbitrary 

initial guess C(l), it will converge to C as in Eq.(3.13). 
0 P t 

If a mean coefficient-error vector is defined as 

then subtract - C from both sides of Eq.(3.27), it gives 
0 P t 



As the optimum coefficient vector is given by Eq.(3.13) 

(repeated here for convenience) 

then Eq.(3.29) can be further simplified as 

Iterating Eq.(3.30), then one can get 

In determining whether this mean coefficient-error 

vector approaches zero, several important properties of the 

matrix - A are again investigated. The matrix is symmetric, 

Toeplitz and positive definite. The last property implies 

that the matrix has positive real eigenvalues and is 

invertible. - A can be written as 





Accordingly, rewrite Eq.i3.35) as 

- 
Since - V is diagonal, Eq.(3.37) can be written in component 

form as 

where u is the j component of g.  The mean coefficient-error 
j 

vector, 

will decay exponentially to zero as long as the condition 

( 1 - $ A  1 - 4  V = I, ...., n 
i 

is satisfied. Since the eigenvalues are distinct and can be 

ordered from the smallest eigenvalue, A to the largest 
m i n  

eigenvalue, A , the condition becomes 
m a r  

. o  < $ < 2/A . 
m a x  



In other words, the stochastic gradient algorithm 

converges in the mean, i.e. E[c(T)] - approaches C as the 
0 P t 

number of iteration, T I  approaches infinity when the step size 

satisfies the condition (3.39). 

Notice that with the choice of 8 [Gersho, 1 9 1  to be 

8 - - 
opt A + A 

m a x  m i n  

eigenvalues converge at the same fastest rate i.e. 

proportional to 

/A 
max min 

max min 

This rate will be increased when A /A is decreased. 
m a x  m i n  

Thus the parameter k /A , is seen to be of fundamental 
m a x  m i n  

importance; it is called the eigenvalue spread. The 

eigenvalue spread has a minimum value of one, and can be 

arbitrary large. The larger the eigenvalue spread, the slower 

the convergence of the gradient algorithm. 

I t  is instructive to relate the eigenvalue spread to 

the power spectrum of the reference random process. From a 



classical result of Toeplitz theory that 

min S(w) < A < max S(w) 
w - j w 

where S(w) is the power spectrum. The eigenvalues depend on 

the order of the matrix n, as n - m, then 

A - max S(w) 
max w 

X - min S(w). 
min w 

This follows that when the amplitude of the spectrum is almost 

flat (close to white noise), then the eigenvalue spread is 

close to one and results in fast convergence. 

One final point that can be studied from the 

derivation is the time constant. From Eq.(3.38), the time 

constant associated with the j-th normal mode (time for 

E[z(T)] - to decay to Z(l)/e ) is 

This shows that the convergence of the mean coefficient 

vector is limited by the smallest eigenvalue X , which 
m i n  



produces the largest time constant T . 
m i n  

3.3b The ensemble average trajectory of the MSE 

In this section, the output mean-square error for the 

deterministic steepest descent algorithm will be studied 

first. Subsequently, the average mean-square error of the 

stochastic gradient algorithm will be touched slightly in the 

later section. 

In section 3.1, it has already shown that with optimum 

tap coefficient vector, C , the minimum mean-square error 
o p t  

E is obtained as Eq.(3.14), (repeated here for convenience) 
m i n  

- 1 
E = E [ ~ ~ ( T )  1 = E[d2(~)] - - -  P'A - P. 
m i n  m i n  

Hence the expression for the mean-square error in Eq.(3.2) can 

be rewritten as 

Although the quadratic form on the right hand side of 

Eq.(3.43) is quite informative, it is desirable to diagonalize 

the autocorrelation matrix - A and thus the new expression for 
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the mean-square error becomes 

Now let the M-by-1 vector g denote the transformed coefficient 

error vector. 

U(T) = g [ g ~ )  - c 1.  - - 
o p t  

Substitute Eq.(3.45) into Eq.(3.44), the MSE becomes 

where U (T) is the i-th component of the transformed 
i 

coefficient vector. To determine the MSE for a coefficient 

vector C, Eq.(3.46) says that the components of this vector in 

the direction of the eigenvector are found, square the 

components and multiply- hy the corresponding eigenvalue. This 

implies that the MSE increases most rapidly in the direction 

of the eigenvector corresponding to k and most slowly in 
m a x  



the direction corresponding to k . This can be understood 
m. i p 

with the help of Fig.3.3. Eq.(4.46) illustrates that the 

contours of equal MSE are elliptical in shape with the axes in 

the direction of the eigenvectors. The eccentricity of these 

contours is directly related to the eigenvalue spread. 

Fig.3.3 depicts the ca,se of a second order coefficient vector 

with X > X , then the major axis of the ellipse is in the 
2 1 

direction of M - and the minor axis is in the direction of M - . 
1 2 

The MSE increases more slowly in the direction of M - . 
1 

WITH LARGE 
EI GENVALUE SPREAD 

Fig. 3 . 3 .  Contours of equal MSE. 



The above derivation of the MSE is for the deterministic 

steepest descent algorithm. In the case of the stochastic 

gradient, it is necessary to ensemble average over the filter 

coefficients. Thus 

€(TI = E + r E[U'(T)I 
m i n  i i 

i=l 

Ideally speaking, the SG algorithm is convergent, i.e. 

irrespective of the initial conditions 

Lim E(T) = E 
T-00 min 

The curve obtained by plotting the MSE, versus the number 

of iterations, TI is called a learning curve. However, in the 

practical case for the SG algorithm, it relies on a noisy 

estimate for the gradient vector, with the result that 

the coefficient vector executes small fluctuation about 

C . Hence, even after a large number of iterations, - 
o p t  

the actual value of €(a) is greater than E which is called 
m i n  

excess mean-square error. In addition, the learning curve 

consists of very noisy decaying exponentials, and only the 

ensemble average of the noisy learning-curves can be computed. 

Thus the average MSE denoted by E[E(T)] is used to describe 

the dynamic behavior of the SG algorithm. 



The mathematical evaluations of the excess MSE and the 

average MSE are outside the scope of this paper. Further 

study can be found in Ungerboeck [20], Gitlin [21] and Honig 

[221 



CHAPTER 4 

EFFECTS OF USING DIFFERENT INPUT SPECTRUM 

ON THE ECHO CANCELLER 

4.1 Conditions 

This sect 

for Unique Tap Values 

ion will determine the conditions under which 

the filter coefficients of an echo canceller are unique. In 

section 3.1 and 3.2, the existence of unique filter 

coefficients to the MMSE problem and the argument for the 

convergence of the steepest descent and stochastic algorithm 

depended of the nonsingularity of the autocorrelation matrix 

A .  - There are times when the autocorrelation matrix - A  beomes 

singular and results in nonunique tap setting. Since - A  is 

always positive semi-definite, - A  can only be singular when one 

or more of its eigenvalues are zero. In section 3.3, 

Eq.(3.41) has shown that when the spectrum of the reference 

input vanishes at some frequencies, there would possible be 

one or more zero eigenvalues. 

A  condition for - A  to be singular is the vanishing of the 

quadratic form - X ' A - X  - - for any nonzero test vector 5, i.e. A  is - 
singular when 

X ' A  X  = 0 ,  - - -  



as this condition implies that A is positive semi-definite but 

not positive definite. Eq.(4.1) can be expressed in summation 

format and taking into consideration that the components of A 

are given by Eq.(3.5) (repeated here for convenience) 

Thus Eq.(4.1) becomes 

Defining the power spectrum of the reference random process as 

the Fourier transform of the autocorrelation function 

Substituting (4.3b) into (4.2), and get 



where 

is the Z-transform of the vector 5 .  Since the integrand of 
, 

Eq.(4.4) is nonnegative, the integral #becomes zero when the 

integrand is identically zero. 

Hence, this is the condition for - A to be singular. Since x(z) 

is an (n-1)-th order polynomial in z, it has at most (n-1) 

zeros. Thus (4.5) cannot be satisfied (i.e. A is nonsingular) 
j w 

as long as the spectrum S(e ) is nonzero at n or more 

frequencies. For example, if n is equal to three and if the 

input signal consists of a sinusoid, here the spectrum of the 

sinusoid is only nonzero for two frequencies. Thus, Eq.(4.5) 

is satisfied, and A will be singular and the MMSE solution 

will not be unique. This can be understood intuitively, as a 

sinusoid has only 2 parameters, the amplitude and phase of a 



sinusoid, and transversal filter has 3 degrees of freedom 

(filter coefficients). There is thus one degree of freedom 

left over sfter the filter transfer function is adjusted at 

the two frequencies. This happens in the echo canceller 

context, as the transversal filter has 3 or more taps usually 

and when the input is a periodic sine wave, (i.e. sending a 

tone as a training sequence in the voice channel) the filter 

coefficients may become nonunique and the ' transfer function 

can assume any values at the frequencies other than the 

particular frequencies of the input sinusoid. This 

nonuniqueness situation will cause some problems and will be 

discussed in the next section. 

4.2 Problems Created By a Singular Input Matrix 

An input signal that does not cover the full bandwidth 

is a legitimate concern in echo cancellation. This will give 

rise to an ill-conditioning or singularity problem of the 

input autocorrelation matrix A .  In practice, there will 

always be some noise added to the matrix A at all frequencies, 

and thus - A will become positive definite too. As a symmetric 

positive definite matrix implies nonsingularity, it can be 

conside.red that where there is noise present, the input matrix 

A is still nonsingular. However, for vanishing small noise - 
case, the input matrix - A can become singular and thus the 



study of ~ G W  a singular matrix A affect the performance of the 

adaptive filter is still significant. 

Two important problems will arise as a result of this 
- 

singularity. First, as the tap coefficients become nonunique 

and owing to the random component in the algorithm's 

correction term, there will be a continuous change of the 

filter coefficients about the optimum solutions. This 

phenomenon is called tap drifting problem. When the taps have 

drifted for a while, and at this moment when the input energy 

is changed to white noise, the errors in the tap coefficients 

will cause the echo canceller an increase in the MSE suddenly. 

In addition to this degraded performance, in most analog and 

digital implementation, there is always a maximum value for 

each tap coefficient register. Sometimes, tap drifting may 

result in overflow in the tap coefficient register. These tap 

drifting effects will be studied in detail in the following 

paragraphs. Second, the distribution of the eigenvalues of - A 
will affect the rate of convergence of the adaptive filter to 

the optimum setting. Since some small eigenvalues in the 

matrix will increase the eigenvalue spread, the larger the 

eigenvalue spread of the autocorrelation matrix, the slower 

the convergence of the filter coefficients. The problem of 

the rate of convergence will be dealt with in Chapter 6 by 

using a new kind of adaptive structure and adaptation 

algorithm. 



The random tap drifting problem can be understood with 

the help of the illustration in Fig.4.1. The two axes 

correspond to the amplitudes of the coefficients of a second 

order filter and the shaded area represents the region where 

the coefficient registers have been saturated, i.e. either one 

REGIONS WERE 
REG1 STERS 
SATURATE 
/ 

Fig. 4.1. Contours of equal MSE'and tap convergence. 



of the coefficient values has exceeded - C . During 
m a  x 

adaptation, the tap will shift from C initially and converge 
1 

to the optimal coefficient vector - C . 
o p t  

In practice, due to the random component in the 

algorithm's update term, the fluctuation of the filter 

coefficients about the optimum will continue. The fluctuation 

of the coefficients in the direction of the eigenvector 

corresponding to the minimum eigenvalue will tend to be larger 

(as shown in Section 3.3b). Eq.(3.42) of Section 3.3a has 

shown that the settling time of the stochastic gradient 

algorithm is limited by the smallest eigenvalue. Since the 

time constant depends on (l/#L), as the eigenvalue get 

vanishing small, the time constant will become very large. 

As the tap coefficients keep fluctuating, there is a 

probability that the taps will become so large that one or 

more registers will saturate. The main reason why the 

saturation occurs is the presence of a bias component in a 

digital implementation that can drive the tap to a large 

value. A typical mechanism for such a bias is the two's 

complement type of quantizing characteristic. To quantify the 

discussion, the bias is denoted by a time invariant vector &, 

and the adjustment algorithm becomes 



again define the coefficient error vector as 

Subtracting - C from both sides of ( 4 . 6 ) ,  then 
0 P t 

and thus the steady-state mean tap error satisfies 

If 1 and M - denote the i-th eigenvalue and eigenvector of A,  
i i 

then 

Clearly, if there is a small eigenvalue whose eigenvector is 

not orthogonal to K, then the steady-state tap error can be 

quite large. 

Now assume the echo canceller has been trained under a 
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narrowband input for a long time, there has been a significant 

increase in the tap coefficient error already. The tap 

coefficients registers can be considered as not being 

overflowed yet. If suddenly, the input has been changed to 

white noise, then the echo canceller will have an increase in 

the MSE suddenly. This can be explained with the help of the 

illustration in Fig.4.2. The contour maps for the white noise 

NARROWBAND 
INPUT 

WHITE INPUT 

Fig. 4.2. Contours of equal MSE for narrowband input and 

white input. 



and narrowband input are drawn. They both have the same 

optimum coefficient vector, C Assume that the MSE 
0 P t 

contours are arranged in the order E < E < E < E . The 
1 2 3 4 

point - C corresponds to the coefficients that have been 
a 

reached after running the narrowband input for a long time, 

the MSE is just E . However, when white noise is input, 
2 

the MSE corresponds to this coefficient vector at C has 
a 

increased immediately to E . 
3 

One way to deal with this tap drifting problem is to add 

some noise to the input signal and thus making the input 
/ 

matrix - A nonsingular with large eigenvalues. Usually, the 

noise cannot be depended alone and alternate ways have been 

proposed. There are two methods to cope with the case that 

the tap coefficients have been drifted beyond the maximum 

value of the coefficient registers. One is the use of the 

saturation mathematics which maintains the coefficients on the 

boundary of the allowed region. A second method, that would 

be studied in detail in the next chapter, is to put a leakage 

term in the adjustment algorithm that tends to force the 

coefficients toward the origin, thus keeping the coefficients 

smaller. 



CHAPTER 5 

THE TAP-LEAKAGE COEFFICIENT 

ADJUSTMENT ALGORI THM 

The reason to employ the tap-leakage adjustment 

algorithm is to prevent the tap coefficients from drifting to 

large values. The idea of the algorithm is to use a leakage 

term to decrease the magnitudes of the tap coefficients. Now 

this chapter will help to study the algorithm in detail. 

5.1 Tap-Leakage Algorithm 

The tap-leakage adjustment algorithm is being used in 

several important applications of adaptive filters in 

communication such as ADPCM coder system for telephone 

transmission [ ~ v c i  et a1 23, Nishitani et a1 2 4 1  and 

fractional spaced equalizers (FSE) to enhance modem 

performance [Giltin 101. In the former case, the algorithm is 

added to the conventional ADPCM encoding scheme in order to 

improve the stability and robustness to transmission error. 

In the latter case, the fractional spaced equalizers will 

generally have many sets of tap values even though each set 

gives nearly equal values of mean-square error and the 

algorithm helps to prevent the biases that cause register 



overflows. However, in both applications, the adjustment 

algorithms result in some small degradation in the performance 

of the adaptive filters. 

Instead of minimizing the mean-square error, the 

algorithm control large-tap build up by minimizing the 

augmented cost function 

where E [ ~ ~ ( T ) ]  is the MSE and p is a suitably chosen small 

constant. . The function J ascribes a quadratic penalty to the 

magnitude of the tap vector. The stochastic gradient 

algorithm corresponding to minimizing (5.1) is 

Since the taps are adjusted adaptively, p cannot be 

interpreted as a Lagrange multiplier. The use of Lagrange 

multipler would be appropriate if J is minimized in ,a 

deterministic manner by using the true gradient. If the 

gradient of E [ ~ ~ ( T ) ]  with respect to - C(T) is not available, p 

must be chosen beforehand by using some knowledge of the 



system parameters. Similar to the cases of speech coding and 

FSE, when - C(T) is chosen to minimize the augmented cost 

function J via the SG algorithm, there is a degradation in the 

minimum attainable steady state MSE. In other words, there 

will be an increase in the steady state MSE as a result of 

controlling the tap drifting problem. Apply the expectation 

operator to both sides of Eq.(5.2) and again assume that the 

input data sample is independent the coefficient vector, 

then 

with 

~q.(5.3) becomes 

E[c(T+~) I = - diag(@p) - PA)E[C(T)] - + @A, (5.4) 

where diag(c) is a diagonal matrix with the elements c. For 
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stationary signals, the long term coefficient estimation is 

given by 

but 

thus 

The difference between C and - C ( m )  can be further 
o p t  

illustrated by the decomposition of the matrix - A in terms of 

its n positive eigenvalues : 

where M is an. orthonormal modal (nxn) square matrix with 

MM1 = I - - 



Eq.(5.6) can be written as 

If the leakage term is sufficiently small with respect to 
i 

and if the matrix - A is not too ill-conditioned, i.e. if the 

dynamic range of the input signal spectrum is not large, then 

take the approximation that 

then substitute this into Eq.(5.7) 

Recall that with the optimal set of coefficient, this leads 

to the minimum MSE, E . While the introduction of the 
m i n  

leakage term gives rise to an increase in the MSE. The 



increase in magnitude is given by 

Eq.(5.8) can be rewritten as 

substitute this into Eq. (5.9) 

Now the increased MSE grows only as the square of the leakage 

term, p, while the eigenvalue distribution and the range that 

the taps can wander can be favorably altered, by employing a 

small value of p .  



5.2 High Frequency Compensation 

In 1979, Atal and Schroeder [ll] wrote a paper to 

discuss methods for reducing the subjective distortion in 

linear predictive coders for speech signals. While they were 

discussing about prediction based on spectral envelope, they 

found similar problem of having nonunique solution of the 

predictive coefficients and thus causing hig.h power gain to 

the predictor.   he reason was that the convariance matrix of 

the speech signal had missing components rejected by a 

low-pass filter. The missing high frequency components 

produced some low eigenvalues of the matrix and thus made the 

matrix nearly singular. In order to avoid this 

ill-conditioning of the matrix, they added another matrix 

proportional to the convariance matrix of high-pass filtered 

white noise, i.e. 

= *  + X E  P I 

i j i j  m i n  i - j  

where X is a small constant (in the range 0.01-0.1), c 
m i n 

is the minimum value of the mean-square prediction error, P 
i 

is the autocorrelation of the high'pass filtered white noise. 

Ideally the high frequency compensation should be the filter 

complementary to the low-pass filter used in the .sampling 

process. 



This paper is actually very similar to the tap-leakage 

algorithm. In fact if the additional matrix is just a matrix 

of white noise, the method used by Atal et a1 is just the same 

as the tap-leakage algorithm. This can be shown by taking the 
- 

new autocorrelation matrix as 

where p is a noise variance and it resembles the product 

A c . The identity matrix represents the autocorrelation 
m i n  

matrix corresponding to white noise. Now concerning about the 

equa t ion 

the stochastic component can be written as 

Now instead of taking the right hand side of (5.13) as the 

stochastic component, this expression is replaced by using a 
N 

new autocorrelation matrix.&, thus 



Then the new stochastic component becomes E[e(T)g(T)] - pIC(T) - 
and in this way, the tap coefficients are updated under a new 

equation, 

As a result, Eq.(5.15) is the tap leakage formula with leakage 

term p. 

So far it has been proved that the method used by Atal 

et a1 is very similar to the tap-leakage algorithm and they 

are the same in fact if the additional matrix is just a matrix 

of white noise. The remaining work is to determine under 

which situations should an additional matrix of white noise or 

high frequency compensation be used. Two situations are 

mentioned as follows :- 

Case (1) Constraining the magnitude of the tap vector 

Concerning about this objective, the cost function is 
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given already in the previous section, i.e. 

Now 

J = E[~~(T)] + p - C1(T)C(T). 

let us minimize J in a deterministic manner by using the 

true gradient, then p can be interpreted as a Lagrange 

multiplier. Hence, taking the derivative of the cost function 

with respect to C(T) and set the expression to zero. It 

becomes 

and hence 

Eq.(5.17) has shown that an additional matrix of white noise 

with diagonal elements p should be used in this situation. p 

is chosen to set C1(T)C(T) - to any desired value. 



Case (2) To minimize the eigenvalue spread 

Recall that in the previous case, the matrix - A has been 
perturbed to 5 + PI. - The corresponding eigenvalue spread has 

become (A + p )  / (A + . Though this has improved the 
m a x  m i n  

eigenvalue spread from the original A / A , it could be 
m a x  m  i n  

further improved. to A / (A + . While the leakage 
m a x  m i n  

term is just used to prevent the vanishing small A in the 
m  i n  

denominator, it does not increase the A in the numerator. 
m a r  

This can be achieved by using an additional matrix which is 

proportional to the complementary matrix - A (i.e. for 

low-pass filtered white noise matrix, the additional matrix 

would then be a high frequnecy compensation) Recall in the 

previous section, with a fixed leakage p ,  the long-term tap 

coefficient is given by Eq.(5.5), i.e. 

If - A is being diagonalized as 

then - C(m) can be written as 



The increased magnitude in the MSE would be 

- C(m) l ' A [ C  - Cb)]. = [ C  - - E - E  
m i n  o p t  o p t  

Hence p should be chosen to make - C(m) as close to - C as 
o p t  

possible in order to minimize the increase in the MSE in 

Eq.(5.19) and p is used in Eq.(5.'18) to prevent small 

eigenvalues in - A that will cause the problem of singularity. 

Now instead of using just a diagonal matrix with all elements 

p ,  a matrix - N is used, i.e. 

then the tap coeficients are updated under a new equation, 

where k is a suitably chosen constant, and 



Assume - N can be diagonalized as 

This assumption can be valid when the order of the matrix - A is 

high, the matrix. - A which is Toeplitz would then be 

asymptotically equivalent to a circulant matrix, and all 

circulant matrices have the same set of eigenvectors 

 ray 251. In this way M - can be known beforehand and P are 
i 

just arbitrary constants to be determined. Now with - N being 

diagonalized as in Eq.(5.21), then 

I f  p are chosen to be zero when X are large and P are 
i i i 

chosen to be a small positive number p when A are small, then 
i 

C ( w )  is closer to C - - and the increase in the MSE in 
0 P t 

Eq.(5.19) is smaller. In this case, the perturbed matrix A - 

would then have the largest eigenvalue A and the smallest 
m a x  

eigenvalue ( A  + 1) and the additional matrix - N is also 
m i n  

complementary to the autocorrelation matrix - A. 



CHAPTER 6 

APPLICATION OF LEAST-SQUARES LATTICE 

ALGORITHM TO ECHO CANCELLER 

6.1 Idea of Least-Squares Approach 

Although the computational simplicity of the SG 

algorithm make it the predominant adaptation algorithm in the 

echo cancellers, it has paid the price of being slow in 

converging to the optimum solution, especially when its input 

matri,x have a large eigenvalue spread. The situation is even 

worse when some eigenvalues are vanishing small as mentioned 

before. The slow convergence is mainly due to the fact that 

the gradient algorithm has only a single adjustable parameter 

for controlling the convergence rate, i.e., the step size 8 .  

In order to obtain faster convergence, it is necessary to 

design some complex algorithms which involve more adjustable 

parameters. In particular, if the matrix A is (nxn) and has n 

eigenvalues, it is much better to use an algorithm that 

contains n parameters, one for each of the eigenvalues. The 

optimum selection of these parameters to obtain faster 

convergence is the main concen of this chapter. 

In deriving faster convegence, a recursive least-squares 

( R L S )  approach is adopted. This appoach is called 



least-squares since it minimizes the sum of squares of an 

error signal rather than the mean-square error as in the MMSE 

algorithm. That is, the performance index. in this algorithm 

is expressed in terms of a time average instead of an ensemble 

average. This ovecomes the problem of not knowing the 

statistics of the input signals. In addition, in this 

approach, the computation of new coefficient estimate utilizes 

all the past information available as compared with the SG 

algorithm which utilizes only the instantaneous sample value. . 

Because the LS approach makes better use of the past 

information, its start up is expected to be faster [~ueller, 

26 1 

The time-average weighted square error to be minimized 

will be 

where w is a casual window function. This window function 
1 

is intended to ensure data far in the past receive a lot less 

attention than recent input samples so that the filter can be 

operated in a nonstationary environment. One such form of 

window that is commonly used in practice is the exponential 

window defined by 



where 7 is a positive constant less than unity. 

Now define a time-average autocorrelation matrix at 

sample T as 

Notice that this matrix is now non-Toeplitz. Define a cross 

correlation vector estimate as 

In terms of these estimates, it is easy to show that Eq.(6.1) 

can be minimized (eg. differentiating (6.1) with respect to 

C(T) and set it to zero) by the choice - 

As long as the window function can be written recursively, 
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both the autocorrelation and crosscorrelation estimates can be 

written respectively as 

Consider the error at time T being defined as 

With Eq.(6.5), Eq.(6.8) becomes 

Eq.(6.9) can be further simplified with the help of Eq.(6.7) 

as 



Eq.(6.10) is almost identical to the coefficient updating 

formula of the stochastic algorithm except that the constant 

scalar step size 4 is replaced by the inverse of the 

autocorrelation matrix estimate. This modification is the 

main source of the improved convergence performance of the RLS 

algorithm. Since the inverse of the correlation matrix has 

the effect of decorrelating the successive tap inputs, it 

makes the algorithm self-orthogonalizing. Because of this 

property, the algorithm is essentially independent of the 

eigenvalue spread of the input matrix. This algorithm is 

known as the Kalman/Godard algorithm. Despite its superior in 

tracking performance, the algorithm has two disadvantages. 

One of the disadvantages is its computational complexity, as 

0(n2) operations are necessary to compute the inverse of - B(T). 

The second is its sensitivity to roundoff noise that 

accumulates due to the recursive computations. The latter may 

cause instabilities in the algorithm. One way to improve the 

computational efficiency is by using the fast Kalman algorithm 

[Falconer and Ljung 2 7 1 .  



6.2 Least-Squares Lattice Filter 

Another alternative to solve the problems of 

computational complexity and instability is by applying the 

RLS algorithm on the lattice filter structure. The lattice 

filter is order-recursive and as a consequence, the number of 

sections it contains can be readily increased or decreased 

without affecting the parameters of the other sections. In 

contrast, the coefficients of a transversal filter obtained on 

the basis of the MSE or LS criterion are interdependent. Thus 

the Kalman algorithm discussed before is recursive but not 
/ 

recursive in order. However, the least-squares lattice 

algorithm is recursive both in order and in time. 

Notice in Fig.6.la that the lattice filter can be 

partitioned into two stages : stage 1 produces . a  set of 

uncorrelated backward prediction error b (T), which are then 
m 

normalized by their respective power and correlated with 

e (T) in stage 2. The forward and backward errors f (T) and 
m m 

b (T) are usually called the residuals. The decoupling among 
m 

stages of the lattice is due to the orthogonality properties 

of the residuals [~roakis 181. 

The mathematical derivation of the LS lattice algorithm 

is quite lengthy. A readable account of the derivation is 

given by Satorious [ 2 8 ] ,  Mueller [26] and Schicor [29]. 
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Fig. 6.la. Least-Squares lattice filter 

Fig. 6.lb. Detail description of the self-orthogonalization 
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A summary of the LS lattice algorithm is given below. 

(1) Start with the initial condition 

where r is an a priori estimate of the prediction-error 

variance. 

(2) For each instant of time, T = 1 2 , .  compute the 



( 3 )  Compute the various order updates in the following 

sequence 

b 
e (T) = e (T) - h (T-l)b (T)/R (T-1). 

m + l  m m  m m 



CHAPTER 7 

COMPUTER SIMULATIONS 

. The operation of the SG, tap-leakage and LS lattice 

algorithms described in the previous chapters were simulated 

on a digital computer. Fig.7.1 represents the system model 

used. The equivalent discrete-time channel characteristic 

used to generate the convergence results was selected from 

[~roakis 181 with coefficients 10.304, 0,.903, 0.304). The 

channel had an eigenvalue spread (ratio of largest-to-smallest 

eigenvalues of channel correlation matrix) of 21. A small 

amount of uncorrelated Gaussian noise (noise variance = 0.001, 

the SNR was equivalent to 30 dB) was added to the output of 

the channel. Two different input bipolar sequences y(T) were 

used, namely the highly correlated sequence (eg. +1 -1 +1 -1 

+1 -1 . . . I  and random sequence of +1 and -1 to represent the 

periodic and white input data respectively.. In all 

simulations, 11-tap filters were used for both the transversal 

and the lattice filter structures. The tap values are set to 

zero initially. 

For the stochastic gradient and the tap-leakage 

algorithms, the tap coefficients were updated with the 

following parameters. The step size, $ was chosen to be 0.02 

in the transversal filter as this choice of $ resulted in 



approximately the same MSE as that of the lattice filter. In 

the tap-leakage algorithm, p was chosen to be 0.1. This is 

reasonable, as the suitable values of the leakage terms 

suggested by Atal [ll] were in the range of 0.01 - 0.1 in 

order to limit the degradation in the MSE. 

In chapter 5, another tap-leakage algorithm has been 

proposed to minimize the eigenvalue spread. A high frequency 

compensation of the autocorrelation matrix - A was used. 

Concerning this high frequency compensation, it should ideally 

be the filter complementary to the autocorrelation matrix - A. 
However, satisfactory results can be obtained with the 

high-pass filter [0.5(1 - 1/z)I2. For this filter, the 

autocorrelatons are p = 3 / 8 ,  p = -1/4, p = 1/16 and 
0 1 2 

p = 0 for i > 2. The constant k in the tap updated equation 
i 

could be chosen in order to match the MSE for the tap-leakage 

'algorithm with p equal to 0.1. 

In the lattice filter simulation, €-was set to 0.001 ( a s  

additional simulations revealed that the start up performance 

of the lattice filter is highly insensitive to the choice of 

E ) ,  and 7 was set close to one as the channel used is time 

invariant. In the transversal and lattice filter simulations, 

the minimum MSE was obtained by setting the optimal 

coefficient vector to be identical to the impulse response of 

the time-invariant channel. 
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Fig. 7.1. System model for computer simulations. 
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Results 

(1) Convergence properties of the transversal filter 

Fig.7.2 shows the learning curve for the 11-tap 

transversal filter. The first half of the input sequence 

consists of periodic data and the second half consists of 

random data. It can be observed that there is a sudden 

increase in the MSE during the transition period. This has 

justified the symptoms predicted in chapter 4 as a result of 

tap drifting effect. Note also that the rates of convergence 

are not the same for these two input signals. It takes more 

iterations for the filter to converge to near the optimum MSE 

for the periodic input. This shows that the rate of 

convergence of the SG algorithm is dependent on the eigenvalue 

spread of the input. The periodic data has higher eigenvalue 

ratio and thus causes this slow convergent rate. Simulation 

results in Fig.7.3 shows the amplitudes of the tap coefficient 

after running the'filter under both periodic and white inputs 

for 200 iterations. The tap coefficients that have been 

trained with white data are very close to the optimum 

solutions (the impulse response of the channel). While the 

alternative set of tap coefficient vector is a poor match to 

the unit impulse response of the echo channel. 



It remains to examine if there is-an increase in the MSE 

when the input data is changed from white to periodic. This 

can be tested by using an alternate input sequence of periodic 

and white data, and the result is illustrated in Fig.7.4. 

This figure shows that there are only increases in the MSE in 

the first and third transitions (while the input sequence 

changes from periodic to white) but there is no increase in 

the second transition (when the input sequence changes from 

white to periodic) This shows that there is no drifting effect 

away from the optimum tap coefficients when the data covers 

the full spectrum. 
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(2) Adjustment properties of the tap-leakage algorithm 

Fig.7.5 depicts the magnitudes of the tap coefficients 

after running the transversal filter under the periodic input 

for 200 iterations. Two cases, with or without tap-leakage 

algorithm, can both be observed in this figure. The magnitude 

of each tap and the sum of squares of the tap coefficients 

have been reduced with the tap-leakage adjustment algorithm. 

However, there is an increase in the MSE as a result. 

with fixed with high freq. 
p = 0.0 leakage cornpensat ion 

p = 0.1 k = 4.667 

C'C I - -  

Table 7.1 Comparison of the tap-leakage algorithms 

MSE 

Table 7.1 gives the comparison of the two tap-leakage 

algorithms (the one with fixed leakage term and the one with 

high frequency compensation). It shows that when k is 

adjusted to set the MSE equal in these tap-leakage algorithms, 

the sum of squares of the coefficients are reduced in both 

cases and the fixed leakage term has reduced the sum to the 

0.014774 

I 

0.0030706 0.014774 



minimum value for a given excess MSE as predicted in Chapter 

5. Moreover, the eigenvalue spreads are compared numerically 

between A,  A + PI - and - A + kk?, with p equal to 0.1 and k equal 

' to 4.667. Simulations results show that the eigenvalue spread 

of - A is 21.73, the fixed leagkage term has reduced the spread 

to 11.49 and the high frequency compensation matrix has 

further reduced the spread to 2.57. This has confirmed that 

the additional high frequency compensation can help to 

minimize the eigenvalue spread of the autocorrelation matrix. 

The tap-leakage algorithm has been proved to be superior 

in preventing the tap coefficients from drifting to very laige 

values. However, when this algorithm is used again for the 

alternate input sequence of periodic and white data, Fig.7.6 

shows that the increase in the MSE in the third transition is 

even higher. The reason is that as drifting has caused errors 

in the coefficients, the tap coefficients will have a chance 

to be either too large or too small in value. However, in 

this example, the random fluctuation has brought a decrease in 

the magnitude instead of an increase. Hence, the tap-leakage 

algorithm, which is originally designed to force the 

coefficients further towards the origin has thus caused a 

further increase in the MSE. 
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(3) Convergence properties of the LS lattice algorithm 

Fig.7.7 reveals the convergence properties of the 

least-squares lattice filter when the first half of the input 

sequence is periodic and the second half is random data. The 

lattice filter is much superior in the rate of convergence as 

compared with the transversal filter. The result of the 

simulation shows that the lattice filter converges in about 10 

to 20 iterations, independent of the eigenvalue spread. In 

addition, the learning curve exhibits a similar increase in 

the MSE during the transition. However, due to this fast 

convergent rate, the filter can bring the MSE down to the 

optimum again in a short time after the transition. 

In Fig.7.8, an alternate input sequence of periodic and 

white data is used again to show that there is no increase in 

the MSE when the input energy changes from broadband to 

narrowband. The result of this simulation has justified this 

.because there are only increases in the first and third 

transitions but none in the second one. 
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CHAPTER 8 

CONCLUSIONS 

This study has presented various adaptation algorithms 

for adapting the echo canceller constructed from both 

transversal and lattice filter structures. The stochastic 

gradient algorithm constructed from transversal filter is the 

main concern here. The SG algorithm is based on gradient 

search techniques using a stochastic approximation to the MMSE 

gradient, whereas the MMSE criterion applies only to the 

stationary case and the SG algorithm can be applied in more 

realistic nonstationary environment. The existence of a 

unique solution to the MMSE problem and the convergence of the 

SG algorithm depended on the nonsingularity of the input 

autocorrelation matrix. When the autocorerelation matrix is 

singular, that is, when the input signal is just a narrowband 

signal, two problems will occur. First, the tap coefficients 

can assume any values other than the optimum coefficients, and 

the errors'in the coefficients will grow with time. When the 

input is changed back to wideband data, the errors in the 

coefficients (either being too large or too small) will cause 

the echo canceller an increase in the MSE suddenly. Sometimes 

the magnitudes of the coefficients become too large that one 

or more registers will saturate. Second, the matrix will have 

high eigenvalue ratio that will slow down the rate of 



convergence of the SG algorithm. 

In order to prevent the saturation in the first problem, 

a tap-leakage algorithm is applied onto the tap coefficients. 

Leakage can be applied to the coefficients in two ways. When 

a small constant leakage term is added to every diagonal 

elements of the autocorrelation matrix, the sum of squares of 

the coefficients will be decreased. When the input 

autocorrelation matrix is slightly increased by adding a 

matrix complemenatry to the input matrix, the sum of squares 

of the coefficients will be decreased (though the sum will not 
/ 

be as small as the previous method) and the eigenvalue spread 
, . 

will be decreased more compared with the first method. In 

both methods, the bias introduced on the coefficeints leads to 

an increase of the error signal power, and thus in order to 

maintain an acceptable level of performance, the leakage term 

should be kept small. It  has been found that even though the 

tap-leakage algorithm can help to prevent the tap coefficients 

from saturation, it cannot help to prevent the sudden increase 

in the MSE when the input energy has changed from narrowband 

to wideband. This is because the drifting might causes a 

decrease of magnitudes of the coefficients from the optimum 

C . - The leakage term introduced has furthered the 
o p t  

decrease of the magnitudes and thus caused a larger increase 

in the MSE. 



The rate of convergence problem occured in the SG 

algorithm can be solved by adopting the LS algorithm. The LS 

algorithm minimizes a time average criterion instead of 

ensemble average criterion as in the SG algorithm. The LS 

algorithm has been proved that it can outperform the SG 

algorithm in convergence as the LS algorithm converge 

independent of the eigenvalue spread. Though the LS algorithm 

based on transversal and lattice filter structures are similar 

in convergence performance, the lattice filter structure will 

offer significant advantage of simplifying the computational 

complexity that occurs in the alternate structure. 

In the simulation results, the superior convergence 

properties of the LS lattice filter can help to lessen the 

problem of having an increase in the MSE when the input data 

changes from sinusoidal to white. This sudden increase can be 

brought down to near the optimum value again in a short time. 
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