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ABSTRACT

This thesis describes the development of a transform cod-
ing algorithm for the digital archiving of audio signals.
The storage of both speech and music is considered. Si-
lence deletion and signal bandwidth estimation are em-
ployed to provide a continuously variable bitrate, adap-
tively matched to the characteristics of the input signal.
The economic and operational feasibility of replacing a
traditional analog archive with a coder-based digital sys-
tem is examined. A floating point Fortran simulation
shows that the proposed archiving algorithm ofters aver-
age storage savings of 75% over 16 bit linear-PCM sys-
tems.




SOMMAIRE

Cette these décrit le developpement d’un algorithme adap-
tif pour 'archivage numérique par transformée des sig-
naux auditifs. L’archivage de la parole et de la mu-
sique y est traité. L’élimination des intervalles silen-
cieux, et I’estimation de la largeur de bande des signaux
d’entrée sont utilisés afin de fournir un débit binaire vari-
able et continue, en s’adaptant, aux caractéristiques du
signal d’entrée. Le potentiel économique et opérationnel
du remplacement des archives analogiques traditionnelles
par un tel archivage numérique avec codeur, est examiné.
Une simulation en Fortran a point flottant a montrée que
I’algorithme d’archivage proposé, offre une économie de
stockage de 75% sur les systémes PCM (linéaire & 16
bits).
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Chapter 1 Introduction

1.1 The Mass Storage of Audio Signals

This thesis presents an adaptive transform coder designed for the mass storage

of digital audio signals.

Advances in optical storage technology are now producing the low cost media and
devices needed to make such storage attractive relative to archiving via traditional
analog magnetic media. The recent success of compact audio disks demonstrates
the current demand for economical, high quality, éompact, and durable digital audio
storage. Such digital storage offers many advantages over previously available ana-
log methods. Compact disk technology however, is designed to capture high fidelity
music, and is not ideal for all audio sources. For instance, compact disk’s 705.6 kb/s
bitrate is much higher than that required to store speech signals. In fact, recent
advances in speech coding have produced sophisticated algorithms that remove re-
dundancies from speech and allow for the storage or transmission of speech at reduced

bitrates, with no apparent reduction in quality.

The objective of this work is to develop an adaptive coding algorithm that re-
sponds efficiently to wide variations in source material {ype and ﬁdelitg — deleting
silent intervals, and varying the storage bitrate as the bandwidth and characteristics

of the source material change.



Specifically, the archiving algorithm will be designed to meet the needs of a large
museum audio archive collection. Such collections are found in the museums of major
cities around the world, and are typically 50% speech and 50% music — comprised of
interviews with artists and dancers, political dissertations, native songs and dances,

and other ethnic selections of interest provided by ethnomusicologists. '

The collections are held on a wide variety of storage media, including wax cylin-
ders, shellac and vinyl disks, wire spools, cassettes, and various vintages of reeled
tape. Thus, the source material varies in quality and fidelity over a wide range. A

typical museum collection could easily contain 10,000 to 20,000 hours of material.

Each selection is copied onto modern % inch analog magnetic reel-to-reel tape

before presentation to the public. These % inch tape copies must currently be re-
recorded every 5 to 8 years due to the aging (print through, binder degradation, etc.)
of the analog storage medium. This is a time consuming and expensive task, and
great interest is being shown throughout the audio archiving field in the potential

economies to be realized through digital optical stora.ge'.

The a.rc.hiving algorithm presented in this work will be derived from an existing
speech coding algorithm, developed for the efficient fixed rate transmission of nar-
rowband speech: The Adaptive Transform Coder. An economic analysis will show
the feasibility of replacing existing analog archives with a digital system using the
proposed variable rate archiving algorithm. Simulation results will show that the al-
gorithm provides very high quality representations of both speech and music signals,

at storage savings of 68-87% over 16 bit linear PCM systems.

1.2 Scope and Organization of the Thesis

In Section 2, the need for an adaptive audio coding algorithm is outlined, with
specific reference to the requirements of a museum audio archive collection. It is
shown that the algorithm must respond efficiently to both speech and music, over

a wide range of signal fidelities. Design criteria for the coder are developed, mass

2.



storage media are explored, and an economic analysis is performed on the proposed

digital archiving system.

Section 3 examines the state of the art in speech coding research. Background
information is given on basic coder types, and t‘he development of the final coding
algorithm is traced from waveform coder to frequency domain coder to adaptive trans-
form coder. Background is also given on the components of the adaptive transform
coder. At each stage of development, choices are made from the background options
presented. The rationale for each choice, based on the results of published research,

and on the design criteria of Section 2, is explained.

Using the background information of Section 3, the final variable rate archiving
algorithm is described in Section 4. Emphasis is placed on the changes made to the

standard ATC algorithm to achieve a variable bitrate, and to achieve silence deletion.

In Section 5, the results of a floating point Fortran simulation of the algorithm
are given. These results show reductions in storage space ranging from 68-87%, over
16 bit linear pulse code modulation (PCM) ;ﬁoding, depending on the source material
used. The results of performance comparisons between the variable rate archiving
algorithm and both the CCITT standard wideband coder [1], and a basic log-PC'M

coder [2], are also presented in this section.

Conclusions, and suggestions for modifications to, and real time implementation

of, the algorithm are given in Section 6.

1.3 Survey of Related Work

Yery little information on coding for the purpose of archiving audio signals has
beef; published. The present work has thus been based on the wealth of information
available in the speech coding literature. While most of this work is tailored towards
narrowband (0-4 kHz) speech coding for toll quality transmission over telephone
lines, interest has recently been shown in wideband (0-8 kHz) speech coding, variable

rate speech coding, and in coding for speech storage. These latter topics are strongly
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related to the present work, and have provided much of the basic background research

upon which the high quality audio archive coder was built.

Several general surveys of speech coders exist [3,4,5]. These proved useful in
choosing an appropriate algorithm for audio archiving, even though such was ob-
viously not their original purpose. More specific works exist on frequency domain
coding [6], and adaptive transform coding [7] — both of which provided information

useful in the development of the final archiving algorithm.

Past research on the variable rate coding of speech, although potentially of great
use in the present work, is concentrated on applications in telephone transmission
networks. Such applications are based mainly on achieving variable bitrate through
bit allocation amongst multiple users on a network [8,9,10]. This is of little ﬁse in an

archiving application.

More useful information on achieving variable rate coding is available in the speech
coding literature on dynamic bit allocation [11,12,13]. Such procedures, permit the
allocation of quantization noise throughout the frequency spectrum in a way that
takes full advantage of any masking effects the signal being coded may offer, and can
be easily modified to allocate bits in a way that meets the spectral requirements of

the input signal, rather than meeting an arbitrary fixed bitrate criterion.

A very limited amount of work also exists in the speech coding literature on the
variable rate coding of speech for storage [14]. Such research is the closest in spirit to
the present work, and is directly applicable — requiring only modifications to account

for non-speech waveforms, and for variable bandwidth material.

Thus, the coding of audio for archiving is a relatively new field, lacking existing
literature. The introduction of economical mass storage media such as the optical
disk, and the continuing drop in cost of computing power has however spurred in-
terest in this area, particularly in the coding of speech for storage. The variable
rate audio archiving algorithm presented in this work has thus been based on related

work in the speech coding literature. Relevant results have been drawn from general
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coding, wideband coding, and variable rate coding literature to assemble an adaptive
archiving algorithm based on previous research, but meeting the unique needs of a
general purpose audio archive. Further details are given in the coding background

information of Section 3, and in the specific algorithm description of Section 4.



Chapter 2 Design Principles

2.1 Design Motivation

As outlined in Section 1, audio archive collections are currently held on% inch
reel-to-reel analog magnetic tape media, which are subject to degradations due to
aging, and must be regularly re-copied. Technological evolution has caused, and is
continuing to cause, drastic reductions in cost, and great improvements in the capa-
bilities of computing, optical storage, and digital signal processing devices. This three
part evolution has sparked great interest in the audio archiving field in digital audio
storage. Such digital storage, via longer-lived storage media, shows .great potential

for reducing the cost of re-copying collection material.

The following sections (2.2, 2.3, 2.4) will show that an optical disk based digital
archive, in conjunction with the variable rate archiving algorithm proposed in Section

4, form an attractive and economically feasible alternative to analog audio archiving.

2.2 Algorithm Design Criteria

Given the special needs of the audio archive, and the greater flexibility for com-
pression that audio storage offers over audio transmaission, this section will outline
the coder design criteria to be followed as the variable rate archiving algorithm is
developed (sections 3 and 4). Emphasis is placed on those design elements which

differ from standard practice in speech coding.

-6-



The traditional approach in the coding (or digitization) of any analog waveform,
is to low-pass (anti-alias) filter the input signal at the highest frequency component
of interest, fc, in the signal, and then to sample the filtered signal at frequency fs;
where fs is generally slightly larger than 2f.. This approach has been used with
great success in the coding of fixed bandwidth speech and music. In an archive
application however, variable fidelity material from mixed sources must be coded (eg.
material from a compact disk [20-20,000 Hz], versus material from a wax cylinder
[200-2,000 Hz]). This would require changes in f; and fs before, and perhaps during,
the coding of each selection. These changes would be made by non-technical library

personnel who would not necessarily fully understand the parameters being set.

It was thus decided that an automated approach was preferred. In this work, f¢
and fs will be fixed at:
fe = fe
fs = f.;u
where, f! and f. are the settings which would traditionally be used to code the
highest bandwidth signal in the collection! . To reduce the inefficiencies that would
otherwise result from over-sampling narrow bandwidth signals, the coding algorithm
must therefore automatically adapt to ch#nges in signal bandwidth, and not code
non-existent high frequency signal components. The coding algorithm must effectively
exploit the fact that a given signal of bandwidth f;, has the same intrinsic information

content, whether it is sampled at f; = 2, or fs > 2f}.

Criteria important to the design of such an audio archiving algorithm include:

‘1) Variable rate coding

— the coder must adjust to the bandwidth of the source — storing only the
information required to accurately reproduce the signal. This implies a
variable rate coding scheme.

! Thus, to cover the entire range of human hearing, one would set, for example:

fi = 20, 000Hz;
fi = 44,000Hz.

In the coding algorithm simulations of Section 5, the values f! = 7,500 Hz, and f, = 16,000 Hz were
used, due to practical limitations. .



2) High quality

~ to meet the needs of an audio archive, the decoded signal must be indis-

tinguishable from the original. The quality of a modern }1 inch reel-to-reel

analog tape deck, running at 19 cm/s (7% ips), must be realized.

3) Realistic coding complexity

- to be of practical use, the final coding and decoding algorithms must be
implementable, in real time, on existing digital signal processing devices.

4) Uneven coder/decoder workload

- the decoding of the signal (i.e. the retrieval of the signal from storage for
playback) will occur more frequently!, and at more work stations than the
encoding (i.e. the storage) of the signal. In fact, it is likely that only
one coding/storage—capable station will be required. An algorithm that
reduces complexity in the decoder at the expense of increased complexity
in the encoder is therefore desirable to reduce archiving costs.

5) No limits on coding delay

- since all coded material will simply be stored for later retrieval, any reason-
able delays introduced by the coding algorithm (eg. for buffering, window-
ing, or filtering) will not be noticed.

6) Economic feasibility

- the cost of implementing the coder must not exceed the cost of the extra
storage space that would be required if the coder were not used.

2.3 System Design

In this section the potential hardware design of a digital archiving system, to be
used in conjunction with the variable rate coding algorithm, is examined. Specifically,
this section will discuss potential media to be used for the storage of audio selections
after coding, and the equipment to be used in conjunction with the coder to locate,
retrieve, play, and record specific selections from the collection. This equipment will
of course be required, in addition to the coding algorithm, to form a working digital
audio archive. It will be shown that an optical storage system in conjunction with
the proposed variable rate archiving algorithm, offers an attractive and economically

feasible alternative to traditional analog archiving.

! Except for the initial digitization of an existing analog collection.
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2.3.1 Mass Storage Media

At the heart of the digital archiving system is a mass storage device (Figure
2.1). It is this device which holds audio selections after processing by the variable

rate coding algorithm, and is responsible for the secure and efficient storage of all

selections in the collection.

Admin. Maintnce.
Station Station
—— 1
Controller —— 2
Cylinders L4
Spools . :
R di Storage . 1, 1
Reels —e ecor. ng £ Coding De-coding Retrieva .
Station
Cassettes
Disks o
Source
Material
Mass —e{ N-1
Storage
Device N
Playback
Stations

Figure 2.1 A Digital Archiving System

As previously stated, the traditional archive storage device is a high quali'{y %
inch reel-to-reel tape deck, recording collection material on 7% inch analog magnetic

reel-to-reel tapes.

In Table 2.1, the % inch reel tape media is compared to four potential digital

replacements: 5% inch floppy diskette, hard disk, 12 or 13 cm WORM (Write Once
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Medium Storage | Storage Access Capacity Cost of Cost of Cost of
Type Format Mb Hrs | Medium | Storage/Mb | Drive
% Inch Reel Tape | Analog | Magnetic | Sequential | 115.2 | 0.5 $5 $0.043 $3500
Floppy Diskette Digital | Magnetic | Random 1.2 | 0.0052 $2 $1.67 $250
Hard Disk Digital | Magnetic | Random 40 0.174 — $50.00 $2000
12/13 cm WORM | Digital | Optical Random 600 2.6 . $75 $0.17 $3500
30 cm WORM Digital | Optical Random | 2000 8.7 $200 $0.10 $7500

Table 2.1 Archive Storage Media

Read Mvostly) optical disk, and 30 cm WORM optical disk?.

One potential digital medium noticeably absent from Table 2.1, and now becoming
quite popular, is the CD-ROM (Compact Disk Read Only Memory). Although the
CD-ROM appears cost competitive at $500 per drive, and $5-$50 for a 600 Mbyte
optical disk, its high mastering cost ($10,000 per disk) makes it unsuitable for audio

archive applications, where very few copies would be required of each disk.

In order to choose the optimum archival storage medium from those presented in

Table 2.1, one must consider the following factors:

e Media Cost/Mbyte

e Physical Storage Cost

¢ Maintenance Costs

e Drive Cost/On-line Mbyte
e Durability

e Security

¢ On-line Capacity

o Longevity

e Speed of Access

Much interest is currently being shown throughout the audio archiving field in
optical disk storage. Optical disk is in many ways an ideal medium for archiving.

As can be seen from Table 2.1, the cost of storage per megabyte (Mb) of the optical

! The figures in Table 2.1 are representative of state of the art equipment commercially available at

the time of writing. An average 64 kb/s coder bitrate was used to perform the megabyte(Mb)/hours
capacity conversions.
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media is not significantly higher than that of traditional analog magnetic tape; and
this price differential will likely decrease as WORM disks begin to be mass produced.
In addition, optical media do not suffer degradations due to aging to the same extent
as analog tape — thus eliminating the expense of periodically re-copying collection

material.

The optical disk also outperforms analog tape in the areas of durability, secu-
rity, physical storage cost, and drive cost per on-line megabyte. Optical disks are
much less susceptible to damage than analog tapes, providing resistance to breakage,
jamming, and stray magnetié ﬁeld-s. 'The WORM disk, being a write-once medium,
can not be changed or erased once written — providing high security against unau-
thorized, or authorized but incorrect, changes to archive material. WORM disk is a
much more physically compact form of storage than analog magnetic tape, providing
approximately 35.5 times the physmal storage capacity ( Mb/m3) of 1 7 inch reel tape.
This reduces stack shelving requirements, and other related physical storage costs.
The high storage density of optical disk also leads to a higher on-line data capa;‘.ity
than analog tape, for an equivalent number of drives. Related to on-line capacity,
is an optical disk’s drive-cost/on-line-megabyte advantage: $5.8/Mb for optical disk
(13 cm), ve.rsus $34.7/Mb for analog magnetic tape (4l inch reel). Finally, optical

disk allows random access to archive selections, versus analog tape’s slower sequential

aCCess.

Also included in Table 2.1 for comparison purposes are the traditional digital
(computer) data storage devices: Hard disk, and Floppy diskette. Although ideal for
general computer data storage, these devices are unsuitable for archive use due to

their lower capacities, and high costs.

Thus, using the factors above as decision criteria, it is clear that optical disk is a
logical choice as a digital replacement medium for % inch reel-to-reel analog magnetic

tape.

Although the 12 or 13 cm and 30 cm optical disks are more or less equally attrac-

tive for use in archiving, manufacturers are presently showing much greater interest
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in the 12 or 13 cm format. Thus, the economic feasibility analyses of Section 2.4, will

be based on the use of a 13 cm WORM optical disk storage device.

2.3.2 System Configuration

In this section, the components required in addition to the mass storage device,
and the variable rate archiving algorithm, to form a digital archiving system, will be
introduced. The goal of this section is not to provide a detailed system design, but
to give an overview of the state of the art equipment and devices currently available
commercially, and demonstrate the potential for assembling a digital archiving sys-

tem. The economic feasibility of the proposed system will be examined in Section

2.4.

10,000 hour
analog } inch reel
tape collection

1 inch
reel-to-reel
analog

tape deck

Amplifier

Loudspeaker
Monitor

Figure 2.2 Analog Archive

The existing analog archive configuration is given in Figure 2.2. To duplicate the

functions of this system digitally, three modules are envisioned:

1) A control module to interface with the user, performing cataloging and

indexing functions (i.e. providing the mechanism through which the user

.12
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locates and chooses the selection of interest). The control module would
also oversee the retrieval and storage of selections from/to the optical disk

for playback/storage.

2) A numerically intensive calculation module, to implement the variable rate

archiving algorithm.

3} An audio module to perform analog to digital (A/D), and digital to analog
(D/A) conversions, and to condition the signal before recording, or playback.
The audio module would also include microphones, speakers, headphones,

and their associated amplification circuitry.

Many specialized digital signal processing (DSP) devices exist to perform the
functions of module 2. These DSP devices are essentially specialized microprocessors
designed to pérform very fast additions, multiplications, and shifts, through the use
of_pa,rallel architectures. One line of such devices, the TMS 3207 series by Texas
‘Instruments, has been assembled by several manufacturers onto IBM-PC compatible
plug-in circuit boards, in conjunction with A/D and D/A converters, memory, and
clock signals (a list of such manufacturers is provided in Appendix B). The addition
of anti-aliasing filters, and appropriate audio amplifiers to such a plug-in circuit board
would meet the needs of module 3. Since IBM compatible WORM optical disk drives

also exist, one convenient choice to perform the functions of module 1, is an IBM-PC

compatible computer.

It is therefore possible to base the digital archiving system on an IBM-PC com-
patible controller equipped With a plug-in TMS320 DSP card, and connected to an
IBM-PC compatible 13 cm WORM optical disk drive. Such a system is shown in
Figure 2.3.

The system of Figure 2.3 could be expanded to include multiple user stations,
and to provide increased storage capacity through additional WORM disk units by
the addition of a high speed Local Area Network (LAN). The LAN would link user

stations to the appropriate WORM disk unit, and could also provide access to a
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optical disk collection
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Figure 2.3 Digital Archive

centralized collection-index data base. Maintenance/Diagnostic, and Administration

units could also be connected to the LAN as required by system growth.

In practice, the user would use the PC keyboard and screen display, to select the
item of interest from the central cross-referenced collection index. A link would then
be established over the LAN to transmit the required audio data from optical disk
storage, to the appropriate user station. Throughout the playback process, a two
way communications link between the user station and the system contrpller would
remain open to enable the user to stop and start the playback, to fast forward or

rewind, or to perform filtering, enhancement, or other real time processing functions.
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2.4 Economic Feasibility

In this section, a brief economic feasibility analysis is performed on replacing the
analog archive system of Figure 2.2, with the digital archive system of Figure 2.3. The
feasibility of coding the audio data before storage is then examined. Two statements

are proven:

1) Digital archiving using optical disk storage is an economically viable alter-

native to traditional analog archiving;

2) For the forseeable future, optical storage costs and densities will remain at
the point where coding of the signal before storage is highly desirable in an

archiving application.

2.4.1 Analog vs. Digital Archiving

The following economic analysis is based on the small, single-user-station archive

systems of Figure 2.2 (analog), and Figure 2.3 (digital).

A static 10,000 hour collection is assumed. The study period is 10 years. During
this time it is assumed that the analog reel tapes must be replaced and re-recorded at
the 5 and 10 year marks. The digital and analog systems are compared on a present
worth basis, assuming an average interest rate of 10% per annum. The components
presented in figures 2.2 and 2.3 are all commercially available at the present time.
State of the art, cost effective equipment was chosen in each case. Details are provided

in Appendix A.

Cash flow diagrams for the analog and digital systems are presented in Figure

2.4a and Figure 2.4b respectively. From these diagrams, the present worths are:
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1 5 10years
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. 185k 100 k 100 k
100 k 60 k 60 k

— PW = 265k —

(a) Analog System

1 5 10years
1 )
T 1

2.595 k

3.5k

267 k

— PW = 273k —

(b) Digital System
Figure 2.4 System Cashflows

Analog System

PW = ($100k + $3.5k) + (P/F, 10,5)($100k + $60k) + (P/F, 10, 10)($100k + $60k)
= $104k + (0.62092)($160k) + (0.38555)($160k)
= $265k

bigital System
PW = $2.595k + $3.5k + $267k
= $273k

where, the notation (P/F,i, N) denotes that P is the present worth of a future amount

F, at a point N compounding periods into the future, given an interest rate of i%

per compounding period [15].

The present worth figures show that the digital system is approximately 3% more
costly than the analog system over the 10 year study period. This simple feasibility

-analysis however, does not take into account the following factors:

o . The digital system provides a storage medium that is 35 times more compact

than the analog system, thus greatly reducing shelf space and other physical
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storage costs. These savings were not included in the analysis.

Over the long term, due to the costs of re-copying analog tape, the digital
system becomes increasingly attractive. For instance, over a 20 year period,

the digital system is 16% less costly than the analog system.

The cost of WORM optical disk drives and media will likely drop as these
devices leave their introductory phase, and begin to be commonly mass

produced.

The digitaﬂ system offers benefits such as random access to stored material
(versus sequential access for the analog system), greater on-line storage ca-
pacity (2.6 times larger) than the analog system, and other benefits such
as the potential for variable playback speed or other signal processing or

enhancement functions, that are not easily assigned a monetary value.

The collection is assumed static in the study above, but would typically be
growing at about 10% per year, in a true archive. At the end of the 10 year
study period, the collection would thus be roughly 2.5 times larger than it
was at year 1. The costs of re-copying this extra material would quickly
outweigh the lower storage costs per megabyte in the analog system, thus

making it less economically desirable.

Given the small cost differential between the analog and digital systems, and

the other factors above, it is clear that digital archiving is a feasible alternative to

traditional analog archiving, both from an economic and operational point of view.

2.4.2 Coding vs. Straight Storage

An important goal in the development of the variable rate coding algorithm was

to ensure that the cost of implementing the coder did not exceed the cost of the

extra storage space that would be required if the coder were not used. This goal has

been achieved. The test file data in Section 5.5 show that the proposed variable rate

archiving algorithm reduces a linear-PCM bitrate of 256 kb/s (16 kHz sampling rate

at 16 bits per sample) to an average rate of 59.2 kb/s.
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The only additional cost associated with coding, is the DSP board required at

each user station to perform the required coding/decoding calculations.

Using the cost data of Appendix A, and the bitrates above, and considering the
single user digital archive system presented in Figure 2.3, it can be shown that coding
is advantageous, and will continue to be of benefit until the cost of a 13 cm optical
disk falls well under $1. The va..ria,ble rate archiving algorithm reduces the number of
optical disks required by 76.8%, which in the case of a 10,000 hour archive provides
savings of 11,808 disks, or §885.6 k. This more than offsets the $2.6 k cost of the
required DSP board.

“At the current cost of a 13 cm optical WORM disk ($75), an archive would have
to contain less than 30 hours of material for coding to be un-economical. For large
archives there is little doubt that the cost of optical WORM disks will never fall to

the point where coding is not warranted.

In addition to directly reducing the amount and cost of the storage media required, -
coding will also reduce the physical space needed to store a given amount of archival

material. In addition, coding will allow each drive to provide more data on-line.

It is quite clear that any digital archive of practical size will benefit from coding.

2.5 Design Summary

It has thus been shown that digital archiving is an economically feasible alter-
native to traditional analog archiving, and is one which can be implemented using
commercially available components. It has also been shown that the coding of audio

signals before storage is highly desirable from an economic standpoint.

Design criteria for an appropriate archival coding algorithm have been given. This

algorithm will be developed in sections 3 and 4.
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Codihg Algorithm
Chapter 3 |
Background

Using the design criteria of Section 2, this section will provide general audio
coding background, and will outline the choices made from the vast array of existing

speech coding research, to form the variable rate archiving algorithm of Section 4.

3.1 Audio Coding ‘

Coders are used, in general, to remove redundancies from an audio waveform,
and thus to allow efficient transmission or storage of its coded bitstream. Efficieney

in this context, denotes the goal of the highest possible signal quality. at the lowest

possible bitrate.

The extent to which these redundancies exist is clearly illustrated by considering
that the English language contains only 40 phonemes. At an average length of 80 ms
per phoneme, the information content of speech can thus theoretically be transmitted
at less than 100 bits/second. However, a basic coding algorithm in wide use through-
out the North American telephone system, log-PCM, requires 64,000 bits/second to
transmit long distance (“toll”) quality speech. This 640:1 difference in bitrate clearly
shows the potentially great gains to be made through efficient coding in the case of
speech. This comparison is not quite fair, since the 64,000 bit/s signal carries more
than just the pure “information content” of speech; it does show .however, that speech

is a highly redundant signal.
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Increasing the bitrate of a coded signal improves the accuracy of the the signal
representation, and thus improves the fidelity of the decoded signal. To increase
coding accuracy without an increase in bitrate, the complexity of the coder must
be increased so it can more efficiently exploit signal redundancies. This increase
in complexity implies increased hardware needs and larger computational capacity,

resulting in increases in the cost of implementing the coding algorithm.

Thus, in choosing the appropriate coding algorithm for a particular application,
tradeoffs must be made amongst three interrelated factors: bitrate, complexity, and
cost. These tradeoffs will be discussed in this section in the context of a coding

algorithm suitable for audio archiving.

As outlined in Section 2, the audio archives of concern in this work are composed
of both speech and music — typically equal quantities of each. Although there is a
vast amount of ongoing research into speech coding [3.,16], virtually no work at all

has been specifically tailored towards music.

’

Fortunately, speech and music have similar properties, and intelligent choices from

the available array of speech coding options lead easily to an algorithm suitable for

both sources.

In understanding these properties, the spectogram is an invaluable tool. In Fig-
ure 3.1, a wideband spectogram of the spoken phrase “She burns toast” is given. The
spectogram i§ a three dimensional plot, presenting frequency on the vertical axis,
time on the horizontal axis, and intensity as the darkness of the display. Thus, a
large amount of energy persisting in a certain frequency band for a long period of

time will appear as a dark horizontal bar.

Speech waveforms can be broken down into two broad categories, both of which
are visible in Figure 3.1: sibilants (voiced speech) and fricatives (un-voiced speech).
Sibilants (phonemes such as /e/, /i/, /m/, /w/) use the periodic vibrations of the
~vocal cords as their sound source. The line spectrum produced by the vocal cords is

shaped by the vocal tract (tongue, teeth, lips, palate, etc.) to produce a spectrum
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Figure 3.1 Audio Spectogram: “She Burns Toast”

containing resonances. Such resonances are known as formants, and appear in Figure
3.1 as a vertical series of roughly horizontal bars, such as those seen between the

18,000-22,000 sample mark of Figure 3.1, corresponding to the “oa” in “toast”.

In Figure 3.2, the spectogram of a series of piano notes shows the same formant
structure. In this case, the spectrum is formed by a vibrating steel string source, and
is shaped by the piano cabinet; however, the piano spectrum is remarkably similar to

that of the voice sibilant, the major differences being:

e greater energy in the high frequency formants than seen in voice spectra;
e purer and more clearly defined formants than seen in voice spectra;

e very sudden spectrum changes; the piano notes have a much faster attack

than voice phonemes, and often a much longer sustain.
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Figure 3.2 Audio Spectogram: Piano

The majority of non-percussive (and some percussive) instruments exhibit similar

strong formant spectra (eg. the trumpet of {17]).

The second speech category, fricatives (phonemes such as /{/, /s/, /v/, /h/), use
turbulent air flow as a sound source, which is again spectrally shaped by, in this
case, the upper vocal tract. This results in a broadband high pass spectrum such as
that seen at the 0 — 2800 sample mark of Figure 3.1, corresponding to the “sh” of
“she”. Again, a musical equivalent to the fricative exists as seen in Figure 3.3 — the

spectogré,m of a cymbal crash.

Thus, speech and music are quite similar, in that they are to a large extent both
derived from, and relatively well-modeled by, line spectrum and white noise sources

spectrally shaped by a resonant cavity.

At this point, a decision can be made between two broad classes of coders: Wave-
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Figure 3.3 Audio Spectogram: Cymbal

form coders, and Source coders (also known as Vocoders).

Waveform coders are designed to reproduce, as precisely as possible, a given
audio waveform. They reconstruct the signal on a sample by sample basis, and after
estimating, transforming, or predicting a signal value, will generally transmit or store

the difference between the estimate and the original signal (the residual).

Source coders, on the other hand, assume an audio source model, and code the
signal in terms of the parameters of that model. If the model does not accurately
match the source involved, coding will be poor. If it does match well, great economies
in storage and transmission can be realized. Residuals are not transmitted or stored
in this case. Coding is also not performed on a sample by sample basis. Large blocks

of code may be processed before determining model parameters.

In speech applications, source coders can achieve much lower bitrates than wave-
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form coders while maintaining speech intelligibility, but source coders tend to perform
poorly under non-ideal conditions (i.e. with background noise), are often speaker de-

pendent, and tend to sound artificial.

Given the design criteria of Section 2.2, and the needs of the audio archive, it is
clear that a waveform coder is required. No single model could accurately describe
the wide variety of source material to be coded. Archiving also requires high quality

and robustness. Thus, a waveform coder is the natural choice.

3.2 Time Versus Frequency Domain Coders

Given that a waveform coder is required, a second broad choice may now be made

between time and frequency domain coders.As shown in Table 3.1, many algorithms

of each type exist.

Time Domain Frequency Domain

Pulse Code Modulation (PCM) Sub-band Coder (SBC) ‘
Log-PCM (Log-PCM) Adaptive Transform Coder (ATC)

Adaptive PCM (APCM) ' Time Domain Harmonic Compression (TDHC)

Differential PCM (DPCM)

Adaptive Differential PCM (ADPCM)
Delta Modulation (DM)

Adaptive DM (ADM)

Adaptive Predictive Coder (APC)

Table 3.1 Time vs. Frequency Domain Coding Algorithms

Time domain coders act directly on the digitized speech samples to either directly
quantize the source (PCM, Log-PCM, APCM), or to quantize the source via a pre-
diction process (DPCM, DM, ADM, ADPCM, APC). More efficient coders will adapt

parameters to match the current statistics of the signal being coded (APCM, ADM,
ADPCM, APC).

Frequency domain coders operate in the frequenéy domain via digital filtering
(SBC), or through- a mathematical transform (ATC, DHC). All of the frequency

domain coders in Table 3.1 adapt parameters to match source statistics.

- 24 -



Many other coders have been described in the literature (an up-to-date summary

is provided in [4]); only the most common are presented in Table 3.1.

Given the design criteria of Section 2.2, and the wide variations in fidelity of
typical archive material, a frequency domain coder was clearly indicated. Such a
coder could efficiently sense the bandwidth of the material being recorded, and adjust
its bitrate accordingly. Only the information required to accurately reproduce the

original signal would thus be stored, leading to great economies in archive storage

space.

Two frequency domain algorithms from Table 3.1 were considered to be ade-
quately researched, and particularly well suited for use in an audio archive application:

the adaptive transform coder, and the sub-band coder.

It was decided that the adaptive transform coder could provide the high fre-
quency resolution required for variable fidelity archiving, at a lower complexity, and
with less numerical calculation, than the sub-band coder. Both of thf; latter two
factors would be significant in achieving criterion 3 of Section 2.2 — that of phys-
ical implementability on existing processors. The adaptive transform coder (ATC)
algorithm was therefore chosen as the basis for the variable rate archiving algorithm

presented in Section 4.

It is interesting to note that the Comité Consultatif Internationale de Télé-
graphique et Téléphonique (CCITT) is currently standardizing a wideband (64 kb/s)
sub-band coding algorithm with the same bandwidth as that used during the simula-
tion testing of Section 5 [1]. This algorithm was designed with different goals in mind,
however, having a fixed rather than a variable bitrate, and being designed specifically

for fixed bandwidth speech!, with music as only a minor consideration.

A comparison made in Section 5.7 between the CCITT sub-band coder, and
the variable rate archiving algorithm of Section 4, shows that the silence deletion

~and variable bitrate properties of the proposed algorithm allow it to outperform the

! Provision is also made for the transmission of up to 16 kb/s of data.
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CCITT coder for narrowband signals, and to provide the higher quality required in

an archiving application (albeit at an increased bitrate) for wideband signals.

3.3 The Adaptive Transform Coder

In this section, the operation of the traditional adaptive transform coder (ATC)
will be described, and an archive-optimized collection of its variations assembled,

based on research published in the speech coding literature.

The modifications made to the traditional ATC coder to provide variable rate,

are given in the detailed algorithm description of Section 4.

3.3.1 General

Early work on tra.nsform' coding was performed by Campanella and Robinson [18],
and by Wintz [19], in the early 1970’s. The adaptive transform coder, in the form to
be used in this work, was introduced by Zelinski and Noll in 1977 [7], and has been

modified and improved since then by several others {6, 20, 21].

-

An overview of the ATC coding scheme is given in Figure 3.4.

In ATC coding, it is the fransform coefficients which are quantized and stored,
rather than the time domain signal samples themselves. The ATC coder also adapts
its quantization parameters to the short term statistics of the input signal. This
results in a much higher quality than could be achieved by a fixed parameter coder,
but requires that the parameters be stored as side information along with the main

transform coefficient bitstream.

As shown in Figure 3.4, audio signal samples are collected into blocks by the in-
put buffer before processing. A smooth spectrum estimate of the input signal is then
made based on each block of input samples, as described in Section 3.3.4, and stored
via the side information bitstream. The buffered data block is also transformed (typ-
i(;ally using a discrete cosine transform), and quantized to form the main information

bitstream. Each transform coefficient has a separate quantizer, individually adapted
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Figure 3.4 ATC Coder Overview

to the statistics of that coefficient. The individual quantizer step-sizes and bit allo-
cations are derived from the smooth spectrum estimate. The main information and
side information bitstreams are then multiplexed (MPX), and written to the mass

storage medium.

When decoding the signal, a similar but reversed process is used. The side and
main information bitstreams are de-multiplexed, and the smooth spectrum estimate
is recovered from the side information. This allows the quantizer step-sizes and bit
allocations to be re-generated, and thus the transform coeflicients to be recovered from
the main information bitstream. The decoded output samples are then available after

inverse transforining the recovered transform coefficients.

3.3.2 The Transform Algorithm

The first step in assembling an efficient transform coder is the choice of an ap-
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propriate transform algorithm.

The efficiencies of the transform coding approach rely on transforming the input
signal into a set of uncorrelated coeflicients in the transform domain. These coef-
ficients may then be quantized individually with independent quantizers optimally
suited to the statistics of each particular coeflicient, with no loss in overall coder
performance. Independent quantization also allows quantization error (noise) to be
spread throughout the frequency spéctrum in the manner least offensive to the hu-
man ear. This can reduce the perceived effects of quantization noise. Thus, the

performance of a transform coding scheme is dependant on:

o eflicient quantization of the transform coefficients (requiring intelligent bit
allocation and quantizer step-size calculation strategies);

o an efficient de-correlating transform algorithm.

Quantization of the fransform coefficients will be discussed in Sections 3.3.5 to 3.3.7.

De-correlation of the inpu.t signal before quantization is a way of exploiting signal
correlations (redundancies) to achieve a higher signal to noise ratio after quantization
than would have been possible with st1"aight quantization of the time domain signal.
Thus, using the same average number of bits per sample in each case, a signal quan-
tized after transformation will be of higher quality than the same signal quantized

without transformation.

For a perfect de-correlating transform, the theoretical gain in signal to noise ratio

to be made by quantizing after transformation, Gy, has been shown to be {7, 22]:

where, X(k), for 0 < & < N—1 are the transform coefficients; and, N, is the length

of the input signal block.
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The gain is thus the ratio of the arithmetic and geometric means of the trans-
form coeflicients. Signals with “peaky” spectra (i.e. signals possessing strong reso-
nances/formants) thus will benefit more from transform coding than signals with flat

spectra (i.e. white noise, where Gp¢o=1, and no gain is achieved).

Previous work has shown that the transform algorithm required to provide total
de-correlation of the transform coefficients is the Karhunen-Loeve Transform (KLT),
[7]. The KLT algorithm, however, is dependent on signal statistics, and the derivation
of its transform matrix elements is a complex process. In addition, no fast algorithms
exist for the computation of KLT transform coefficients. The KLT thus fails to
meet Criterion 3, of Section 2.2 (i.e. the requirement that the coding algorithm be
implementable in real time, on existing digital signal processing devices), and a less

numerically intensive transform of roughly equivalent performance must be chosen.

Such an algorithm is realized in the Discrete Cosine Transform (DCT). Studies
of several algorithms (the Karhunen-Loeve, Walsh-Hadamard, discrete slént, discrete
Fourier, and discrete cosine transforms) have shown, that the DCT approaches the
performance of the KLT for large block sizes (on the order of 128 samples), [7].
The Discrete Fourier Transform (DFT) also approaches the performance of the KLT,
though not as rapi.dly (the signal to noise ratio (SNR) performance of the DCT is 4
to 5 dB higher than the DFT at 128 samples/block [7]).

Other work has shown that the DCT produces fewer boundary effects than the
DFT, leading to reduced “click” and “burbling” distortion at the block rate [6]. Fi-
nally, the DCT can be shown to have the same spectral envelope as the DFT spectrum
[6]. The DCT spectrum is thu/s’ directly related to the true frequency properties of

the input signal, and facilitates spectral noise shaping via efficient bit allocation.

The DCT is, for these reasons, the transform of choice in the traditional adaptive

transform coder, and has been chosen for use in the variable rate archiving algorithm

of Section 4.



The N-point discrete cosine transform of an input signal, (=), is given by [23]:

N-1

2n + 1)k
X(k)=c(k) > z(n) cbs[glg—]v)—w] for 0<E<SN-L; (3.1)
n=0 )
and the inverse transform given by:
1 N1 2n + 1)k
z(n) = + k{:o X(k)c(k)cos[g%]v)-l—] for 0<n<N-I; (3.2)

where in both cases,
(k)—{l’ for k£ = 0;
A=AV, for1<k< N-1.

3.3.3 Windowing

An important consideration in the spectral processing of an input signal on a
block-by-block basis, is how best to window each input block. An adaptive transform
coder, in processing a signal block is in effect performing a short-time spectral analysis
of the input signal at the time of the block. In taking a short-time dat:/a block, the
“infinite length” input signal, z(n), has been multiplied by a rectangular analysis

window, w(n), of the form:

0, for —co < n <0 .
w(n) = { 1 for0<n<N-1; (3.3)
0 for NV <n < e;

where, N, is the length of the input block.

Letting the discrete Fourier transform (DFT) of z(n) be X(k), and the DFT of
w(n) be W(k), where the DFT, as usual is defined as:

N-1 —72nnk ’
X(k)= > =z(n)e N for 0 <k< N-1; (3.4)
n=0

the DFT of the input block, w(n)z(n), will be X(k) * W(k) [24], where x denotes
circular convolution. Thus, the magnitude of the DFT of the input signal block
provides not the spectrum of the “true” input signal, but the spectrum of the input .
signal convolved with the spectrum of the window, w(n). For optimal frequency

resolution, the window w(n) should thus ideally be chosen such that its spectrum is a

- 30 -



single impulse at a radian frequency of w = 0. This would however, result in a window
of infinite length in the time domain, and the window would no longer provide the
desired “sample” of local signal characteristics. Window design thus involves tradeoffs
between time and frequency domain performance. Many compromise window designs

exist in the digital signal processing literature [25, 26].

All windows except the rectangular win'dow of Equation (3.3) require overlap-
ping of adjacent input blocks, and a corresponding increase in bitrate, during signal
synthesis. At low bitrates, it has been shown in the speech coding literature [26],
that windowing reduces distortion due to block end effects. Given the high quality
required for archiving however, no significant end effects are expected, and windowing

will not provide benefits to the same extent.

Windowing however, also reduces spectral smearing. This is an important con-
sideration in archiving, where narrowband signals will often be over-sampled. If these
signals were to spread beyond their original bandwidths, bits will be assigned need-

lessly to extraneous high frequency components.

An ideal window for speech archiving would therefore offer an appropriate com-
promise between the zero-overlap rectangular window, and the superior frequency
resolution and resulting decrease in spectral smearing offered by smoother windows.
Such a compromise is conveniently found in the adjustable form of a cosine rolloff

window (See Figure 3.5).

This window has therefore been chosen for use in the variable rate archiving algorithm

of Section 4. The cosine rolloff window, w(n), is given by:

1

2[1 < — )} for0<n< M-1;

cos M1

w(n) = 1 | for M <n< N-M-1; (3.5)

- 1 _M<n< Ly

. Y for N—M <n< N-1;
2[1—cos —J

M+1
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Figure 3.5 Cosine Rolloff Window

where the parameter M can be varied to control the number of samples which overlap

between successive blocks.

3.3.4 The Smooth Spectrum Estimate

As outlined in Section 3.3.1, the adaptive transform coder requires that a compact
description of the input signal spectrum be stored once per block as side information.
To meet this requirement, the assumption is made that the input signal spectrum
can be approximated by a smooth spectrum curve. This smooth spectrum estimate
can be stored much more compactly than the original spectrum, and will be used by
both the coder and the decoder to calculate adaptive bit allocations and quantizer

step-sizes, and thus to quantize/reconstruct the transform coefficients.

To preserve the efficiency of the ATC coding scheme, the amount of information
required to store the spectrum estimate must be kept as small as possible. Three
methods for generating a space efficient smooth spectrum estimate have been pro-

posed in the ATC literature:



1) The Log-Average Estimate [7};
2) The Linear Prediction Estimate [6];
3) The Homomorphic Estimate [20].

The Log- Average estimate was proposed by Zelinski and Noll in their introductory
paper on ATC coding, [7], in 1977. As shown in Figure 3.6, this scheme averages a

group of neighbouring spectral values to produce a single value representative of the

entire group.

The spectral curve to be averaged is composed of the transform coefficients

squared, ‘lecv (Figure 3.6a):
ot =log [XZ(_k)] for 0 <k < N—1; (3.6)

where, X (k) is the set of transform coefficients (Equation (3.1)), and N is the trans-
form block length. The curve is then split into small segments, and representative
average basis valﬁes, &2, (Figure 3.6b), are calculated, quantized, and stored as side
information. In the ATC schemevof [7], a 128 point transform was represented by 16
basis values of 62. Thus, groups of 8 coefficients were averaged, and through coarse
quantization, the total side information bitrate was held to 2 kb/s (2 bits/basis value
at an 8 kHz sampling rate). The final smooth spectrum estimate, 52, (Figure 3.6c¢)

is then derived by linearly interpolating between the basis values 52

Although the Log-Average method is effective and simple, more efficient spectrum
smoothing techniques have been developed since its introduction. One such technique
is based on Linear Predictive Coding (LPC). This technique uses an ‘autoregressive

model to simulate the spectral behaviour of the input signal.

In the LPC approach, advantage is taken of the fact that speech, and as outlined
in Section 3.1, music signals, are characterized primarily by resonances [27]. Thus,

an all-pole signal model is used, with a transfer function of the form:

H(z) = ¢ ; (3.7)

NP
1- 5 a(k)- 7%
k=1 .
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Figure 3.6 The Log-Average Spectrum Estimate
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where, the a(k) are a set of linear prediction coefficients, G is a scaling factor, Np is the
number of predictors used, and z is the complex domain variable of the_ mathematical
z-transform [28,29], which maps a discrete sequence z{n) onto X(z) such that:
X(z)= ) =z(n)-z7™
n=—00
The response of H(z), calculated as: | H(z)| at z = €/, is the desired smooth

spectrum estimate.
Pole-zero signal models, with transfer functions of the form:-
Nq

1+ b(1)- 27"
=1

N, ;

1- 5 a(k)-=7F

k=1

H(z)=G-

(3.8)

provide superior performance relative to the all-pole model of Equation (3.7), but do
so at the expense of greatly increased complexity.” For the all-pole model, optimal
values (in the sense of achieving a minimu;n mean square prediction residual error) of
the coeflicients a(k) can be found through the solution of a set of linear equations. In
addition, efficient recursive algorithms exist to find this solution!. The full pole-zero
model however, generally requires the solution of a set of non-linear equations. All-
pole models have been proven adequate for speech coding, since speech production is
a fundamentally all-pole process. Although archive material other than speech may
well contain significant zero content, the transfer function of Equation (3.7) will be

used in this work, to minimize complexity.

The first step in producing the LPC smooth spectrum estimate is to find the

values, a(k), which satisfy as exactly as possible, the Np-pole prediction equation:

#(n)= Y a(k) z(n—k) for 1<n<N. (3.9)

The input signal z(n), is thus to be predicted from a weighted linear combination of

its past values.

! For example, the Levinson/Durbin recursion of equation set (3.12)
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Since no real world signal will conform exactly to the impulse response of the
Np-pole filter, exact values for a(k) will not exist, and compromise values, optimum

in some sense, must be found.

One such compromise involves minimizing the mean square difference between

the predicted value of the input signal #(n), and its true value z(n). This requires

that [30]:

for a minimum of E[{m(n) — m(n)}z},

= [E{[w(n) - aé(n)lz}] =0,

for all predictor coefficients ay. Thus,

_EF{An)—iUﬂ}-é%{—ﬂnﬁ]:O;

E“MM—i@ﬁ-dn;m}:m ,

and,

where E[y] denotes the expected value of y.

Thus the orthogonality principle! holds, and it can be shown [30] that optimal

values for a(k) are chosen if:

N, _
i)=Y alk) (|5 - k1), 0<j<N-L; (3.10)
k=1

where r(7) is the autocorrelation function of the input signal, calculated as:

1 N-1
i) =% > z(n)-z(n+j) 0<n<N-L (3.11)
n=0

Although optimal values of a(k) can be calculated from Equation (3.10) through

straightforward matrix manipulations, or through a triangular matrix decomposition

! For a minimum mean square error, the prediction coefficients must be chosen so that the resulting
prediction error, is orthogonal to the data used to calculate the coefficients.
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[31]; as indicated above, an eflicient recursive algorithm introduced by Levinson and

modified by Durbin exists [27].

Solution by Levinson/Durbin recursion expresses predictor coefficient values for
a system model of order 7, in terms of predictor coefficient values for a model of order
1—1. The recursion begins at ¢+ = 1 and continues step by step until z = N, using

the following set of equations:

He) = 2i-1)
aili) = —h(3) - (3.12)
ails) = ai-1(5) + k(i) - ai-1(i = ) for 1<j<i-l;

()= [1- k5] i -1)

The process is initialized by setting €2(0) = 7(0), so that k(1) = —r(1 /r(O) The

final set of optimized predictor coefficients is given by:

a’Np(j) . 1 S] < Np-

. . . . Vs “
At each stage of the recursion, the current mean square prediction error €*(z), is

produced as an intermediate result. Another intermediate result is the set:
k(z) 1 <1< Np;

of reflection coefficients (also known in the statistical literature as partial correlation
coefﬁcients)..The k(i) are restricted numerically to the range —1 < k(i) < +1, and
are thus convenient to quantize. For this reason, it is traditionally the set k(z) that
is quantized (usually after a non-linear transformation) and sent as side information,

rather than the predictor coeflicients a(k).

Given a set of predictor coeficients a(k), the smooth spectrumﬂ estimate (to be

realized as the response | H(z) | of Equation (3.7)) can now be found via the following

three step process:
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1) The response, d(k), of the denominator of H(z) is found through a 2N-point
DFT of the sequence da'(k):

d(k) = | DFT[d(k)] |;

where, . for b — 0
, or k=0;
a'(k) =< —a(k), for 1 <k < Np;
0, for Np+1 <k <2N-1;

the DFT is performed as given in Equation (3.4); and N represents the
length of a block.

2) The response, V(k), corresponding to H(z), is found by inverting d(k):
| 1
V(k) = — <k<N-1.

3) V(k) is scaled so that the total energy of the true spectrum X2(k) equals
the total energy of the smoothed estimate v(k), (i.e.) so that:

N-1 N-1
S X3k =Y w(k).
k=0 k=0
Then,
v(k) = G- V(k), 0<k<N-1; - (3.13)
where,

N-1
Z X“(k)
G = sz_Ol (3.14)
2. V(k)
k=0

and, X(k), is the set of DCT transform coefficients (Equation (3.1)).

The final smooth spectrum estimate is thus v(k).

A modification to the LPC estimate procedure as described to this point, was

proposed by Tribolet and Crochiere in 1979 [6]. This enhancement adds a pitch model

to represent pitch striations in the speech spectrum. For archiving purposes however,

it was not clear that the pitch striations present in speech would also occur to the
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same extent in other audio signals. It has also been shown, [26], that improvements
due to the pitéh model are often speaker dependent. Thus, due to the complexity
added by the pitch calculations, this enhanced linear prediction procedure was not

considered in the present work.

The third smooth spectrum estimating procedure proposed in the ATC literature
uses a homomorphic vocoder model to develop a cepstral spectral estimate. In this
approach, published by Crochiere and Cox in 1981 [20], a pseudospectrum, c¢(n), of
the input signal is calculated once per blo¢k as the inverse SDFT of the sequence

X'(k), derived from the transform coefficients, X (k), as:

X'(k) = log| | X(k)]] for 0<hk<N-I;
ce(n) = SDFT—l{X’(k)}.

The SDFT (Symmetric Discrete Fourier Transform) of an N-point sequence z(n), is
defined as the 2N-point DFT of the sequence z'(n), where:

:c'( )_{x(n), for 0 <n < N;
n= z(2N —n), for N+1<n <2N-1.

Thus, the SDFT is a real to real transform.

A cepstrum approximation, ¢'(n), is then formed by retaining the first 10 to 14
values of ¢(n), and discarding the rest. The c'(n) values are quantized and stored
as side information. To recover the smooth spectrum estimate, the sequence c¢'(n)
is padded with zeros and SDFT’d to produce a smoothed version of the original log
magnitude spectrum X'(k). In [20], X'(k) is used directly to logarithmically quantize

the transform coeflicients, and to compute the quantizer step-sizes.

There are thus three spectrum smoothing methods potentially suitable for use
in an audio archive fransform coder. For coder bitrates in the range 9.6 — 16 kb/s,
the homomorphic and LPC methods have been found to be clearly superior to the
log-average scheme [6, 20]. Above this range very little work has .been done, but
reports of similar performance (6], and of slightly improved performance for the LPC

over the log-average scheme [26] can be found.
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Despite its increased complexity over the log-average method, the LPC scheme
was chosen for use in the variable rate algorithm of Section 4, for the following reasons:

o The LPC physical model is based on resonances, which provides a storage

framework closer to the physical mechanism of speech and music production
than the other models;

¢ The LPC model provides the best fit of any of the options presented above,

in areas of high spectral energy (i.e. near formants), where the signal must

be encoded most accurately;

e The use of reflection coeflicients provides a highly eflicient means for storing

the LPC spectrum estimate;

e The LPC method has been well researched in the speech coding literature

and efficient methods have been developed for its implementation;

e The LPC method, using the final prediction error (FPE) criterion intro-
duced in Section 4, is conveniently adjustable to the variable bitrate scheme

required for archiving.

3.3.5 Bit Allocation

The allocation of bits amongst the transform coefficients is of major importance
in ATC coding. This allocation controls the distribution of quantization noise in the

frequency domain, and thus the perceptual quality of the coder.

3.3.5.1 Optimal Bit Assignment

In order to determine an optimal bit assignment, it is generally assumed that the
transform coefficients can be approximated by an independent identically distributed
Gaussian source. As outlined in Section 3.3.2, this assumption is reasonable if the
coder transform (in this case the DCT) efficiently de-correlates the input signal sam-
ples. Hence, the transform coefficients are viewed as a column vector of V samples

taken from a continuous source, which are to be individually quantized in a way that
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minimizes the overall mean square error incurred in quantizing the block. Given this
assumption, results from rate distortion theory show that the optimal bit assignment

for a Gaussian source is [22]:

(3.15)

where,

b(¢) is the optimal number of bits to be assigned to transform coeflicient X(1);

o2(7) is the variance of transform coefficient X (i), which will be approximated

by: o2(1) ~ X2(1);
D is the average mean square distortion incurred in quantizing the block;

B is the total number of bits available for quantizing the block;

N is the length of the block.

Is

Given that the mean square distortion incurred in quantizing transform coeflicient

i is d(7), it can be shown, that for a minimum overall block mean distortion [32]:
D = d(7) for 1<i1<N;
and,
1 N
D=—% d().
N; (4)

Thus the distortion incurred in quantizing each transform coefficient must be equal,

to achieve a minimum distortion level for the block.

The optimal bit assignments thus take the form [7]:

. B 1 X3
b(e) = N+§10g2 )

; (3.16)




or equivalently,
bi) = = + =1 |x26)] - REEY |x2(5) (3.17)

Note that the optimal bit assignment thus sets the number of quantizer levels assigned
to coefficient 7, proportional to the variance of coefficient :. Equation (3.17) is thus
attempting to assign equal step sizes to each quantizer, and allowing more quantizer

levels for coefficients with larger variances.

~ The bit assignments of Equation (3.17) will generally be non-integer, and may
even be negative. A procedure based on Equation (3.17) which provides optimal bit
assignment when the b(7) are constrained to be integers, has been proposed in [33].
This method is based on the mean square error distortion, e(z), resulting from the
quantization of a Gaussian distributed coeflicient with an ¢ bit optimum quantizer
(see Equation (3.19)). The values e(z) are tabulated in [34]. An array of differential

distortion values, e4(7), is derived from e(z) as:
eqli) = efi) - e(i+1) :

where i ranges from 1, to the maximum number of bits to be assigned to any one
coeflicient, bmax. The ey(z) thus represenf the decrease in quantization distortion
that would occur if 7 + 1 bits were to be used rather than i bits to quantize a unit
variance source. In practice, bit assignment is an iterative search procedure, where
the marginal returns
R(3) = X2(5) - e {b(i)]

are calculated for each transform coefficient, X(7) before assigning each bit; and,
b(z) is the number of bits currently assigned to coefficient X(7) at the time of this
calculation. The coefficient with the largest value of R(:) is then assigned a bit, its.
R(7) value updated, and the search procedi!lre continued. The iterations continue
until all bits have been assigned. This procedure assures that at each stage, bits are
assigned to the transform coeflicient that will benefit most (in the sense of showing
the largest decrease in quantization distortion) from an additional bit: This ensures

that a global minimum mean square error will be achieved for the block.
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Although this integer-optimized procedure works well, it is also time consuming
due to the search of N marginal return values that must be performed before the

assignment of each bit.

A reduced-iteration, rounded form of bit assignment based on Equation (3.17)
has thus been adopted for use in the variable rate algorithm of Section 4. Test results
show that this compromise solution reliably provides bit assignments similar to that
of the integer optimized method, with considerably less computation. Further details

are provided in Section 4.3.3.

3.3.5.2 Spectral Noise Shaping

Although the bit allocations of Section 3.3.5.1 are optimal in the mean square error
sense, they will not necessarily lead to the highest quality coded signal as perceived
by human listeners. In fact, it is known that shaping the quantization noise spectrum
to take advantage of the masking eflects of the input signal will result in a higher

I3

perceived coded signal quality [6], without an increase in bitrate.

Such spectral noise shaping can be achieved through the use of a bit assignment
weighting factor, generally resulting in a revised bit allocation equation of the form
(from Equation (3.17)):

b(i) = = + %logz [Xz"-(i)} - % % logs [Xz"(j)} . (3.18)

S

The weighting factor u, takes on values in the range:

0<u<1.

For v = 1, the bit allocation is identical to that of Equation (3.17), and the
‘quantization noise spectrum is flat. For u = 0, the bit assignment is constant, and
the noise spectrum exactly follows that of the input signal. This revised bit allocation

will be used in the variable rate algorithm of Section 4.
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3.3.6 Quantizer Step Size Adaptation

As outlined in Section 3.3.1, the ATC coder quantizes each transform coefficient
individually with a quantizer adapted on a block-by-block basis to the short-term
statistics of each coeflicient. In high quality ATC coding, it is reasonable to quantize
the transform coefficients with a probability density function (PDF)-optimized uni-
form (linear) quantizer based on work published by Max,-[34]. This work examined
the tradeoffs to be made between granular and overload distortion when choosing an

optimum quantizer step-size.

In [34], the optimum (in the sense of producing -a. minimum mean square quantiza-
tion error) step-size, §(2), is given for a unit variance source; where ¢ is the number of
bits to be used in the quantization. Values of (i) are given for various source PDF’s.
Measurements made of ATC transform coefficients show they tend to be Gaussian
distributed in speech [7]. It is reasonable to assume, given the comparisons presented
in Section 3.1, that the Gaussian approximation holds as well for music. Thus the
optimized Gaussian Max step-size values listed in Table 3.2 were chosen for use in E

the variable rate algorithm of Section 4.

# Bits/coefficient | Optimum Step-size
i 5(2)
1.5956
0.9957
0.5860
0.3352
0.1881
0.1041
0.0569
0.0308

-1 | O {0 |

0]

Table 3.2 Optimum Quantizer Step-Sizes

Given then that the number of bits to be used, b(k), in quantizing transform
coefficient k 1s derived from Equation (3.18), and the variance estimate, v(k), is

known from Equation (3.13), the quantizer step-size, A(k), to be used in quantizing -



coeflicient & is therefore drawn from Table 3.2 as:
A(k) = Q -v(k)-8[b(k)]. (3.19)

The loading factor @, was proposed by Tribolet and Crochiere in [6], as a way of
directly controlling the granular/overload noise distribution. By altering () around
the Max-optimum value of 1.0, a greater proportion of overall quantization distortion
can be allocated to the overload (@ < 1), or granular (@ > 1) modes. This permits
compensation for the possibility that the minimum mean square error step-size is not
necessarily the step-size which leads to minimum perceived distortion. Alterations to
@ can also compensate to some extent for transform coefficients which are not well

modeled by a Gaussian source.

3.3.7 Quantization of Main and Side Information

Both the main and side information bitstreams must be quantized before being
multiplexed and written to the mass storage medium. The ATC coder, as realized in

this work,. has in total, four parameters to quantize: ‘

1) the transform coefficient set, X(k);
2) the reflection coefficient set, k(z);
3) the predictor count, Np;

4) the block scaling factor, V.

Quantization of the transform coefficients has been fully discussed in sections

3.3.5 and 3.3.6.

The block scaling factor is quantized as a base 2 value, consisting of a by, bit

mantissa, and a b bit exponent. The values chosen for the parameters be, and by,

are given in Section 5.2.

The predictor count, being an integer value between 1 and Npax, is directly .

quantized using by, bits. The value chosen for by is given in Section 5.2.

Quantization of the reflection coefficients is a much more difficult problem which

has received much attention in the speech coding literature. Two popular reflection
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coefficient transforms — log-area ratios, and inverse-sine functions — were compared
to linear quantization in [35]. These transforms attempt to remove the sensitivity
to quantization that reflection coefficients exhibit as they approach +1 or -1, by
transforming the coefficients in a fashion that expands the region near 1. A linear
quantization can then be performed on the transformed coefficients with reduced
spectral sensitivity, and the resulting values inverse transformed [36]. In [35], it
was shown that log-area ratios and inverse-sine functions perform similarly. Both

improved upon linear quantization.

Many other methods have been proposed for representing the smooth spectrum
estimate [36,37]. Only one method, recently receiving much attention, has been shown

to outperform the log-area quantization of reflection coefficients.

This is the so called Line Spectrum Pair (LSP) rﬁethod, which has shown a 30%
reduction in side information bitrate in a 9.6 kb/s multi-pulse linear predictive coder
[38]. LSP however, in order to determine the LSP parameters, requires that the roots

.of two equations, each of order Np/2, be found!. For values of Np < 8, non-iterative

solutions exist. For higher order models, a trial and error search must be performed.

For use in an audio archive application where the complex musical spectra found
in the test files of Section 5.3 often require large (> 12) numbers of predictors for
an accurate spectral estimate, it is clear that log-area ratio (or inverse-sine function)
quantization is preferable to the more complex LSP method. Log-area quantization

has been chosen for use in the variable rate algorithm of Section 4.

The log-area transform function, f(z), is given by:

1
flz) = 1og[1+—$} for a<gz<b (3.20)
—T
where,
a> —1I;
b< +1.

! Where N, is the number of predictors used to model the system.
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Histograms are available in the speech coding literature which allow optimal
choices of a and b for the quantization of each reflection coefficient. [35]. The number
of bits required to quantize each coefficient based on fixed spectral deviation limits,
haé also been published [35]. This data, in conjunction with histographic analyses of
the music files of Section 5.3, was used as a guide in setting the log-area quantizer

ranges and bit allocations given in Section 5.2 (Table 5.2).

3.4 Summary

A frequency domain waveform coder has therefore been shown to be appropriate
for use in audio archiving. In particular, the adaptive transform coder has been cho-
sen. Input signal blocks will be smoothed with a cosine rolloff window, and a compact
estimate of the input signal spectrum will be formed through linear prediction, and

stored using a set of log-area quantized reflection coeflicients.

The coder will be based on a non-adaptive discrete cosine transform. Transform
coefficients will be quantized using a linear Max quantizer, optimized for a Gaussian
source. Optimal bit allocations will also be calculated assuming a Gaussian source,

then rounded to the nearest integer. Spectral noise shaping will be performed through

an exponential weighting of each transform coefficient’s variance estimate, during the

bit allocation process.
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The Variable Rate
Chapter 4
- Archiving Algorithm

In this section, the traditional Adaptive Transform Coder as presented in Section
3, 1s modified to meet the needs of a general audio archive. In particular, methods

are presented for achieving variable bitrate through:
1) Silence Deletion;
2) Signal Bandwidth Estimation;
3) Signal Order Estimation.

These modifications will enable the variable rate archiving algorithm to greatly reduce

required audio storage space for the variable fidelity, and variable source material

found in a typical archive.

4.1 Algorithm Overview

Figure 4.1 is a block diagram of the variable rate archiving algorithm. The source
signal z(n) is sampled at a rate fs after suitable anti-alias filtering, and buffered into

blocks of length N. The input signal block is then windowed (Equation (3.5)) by a

cosine rolloff window, w(n):
zy(n) = z(n) - w(n) for 0<n< N-1. (4.1)

After windowing, the input signal block is pre-emphasized to boost weaker high fre-

quency components. This results in'a reduced high frequency noise level for the coder,
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and a decrease in spectral dynamic range, which minimizes quality degradations due
to spectral spillover effects. The pre-emphasized signal, z'(n), is obtained from z,(n)
via:

z'(n) = zy(n) — azy(n - 1). (4.2)
Each sample is then normalized by dividing by the mean energy of the block, V,

where:

(4.3)
:l:"(n) = —

The mean energy scaling factor V', is quantized and stored once per block as side

for 0<n<N-1.

information using a base 2 representation with a b,, bit mantissa and b, bit exponent.

The normalized block of samples z'(n) is then transformed using a DCT (Equa-
tion (3.1)) to provide a set, T'(n), of transform coefficients:
N-1

" , (2214 V)mn
T(n) = T (n)-clr) -cos|————1,
(n) g (m) - (i) - cos [ ]

for 0<n<N-1. (4.4)
Side information in the form of a smooth spectrum estimate which is used by both the
coder and the decoder to derive bit allocations, b(n), and quantizer step-sizes, A(n),
is calculated once per block and multiplexed with the main information bitstream
before being written to the mass storage medium. The main information bitstream
is composed of transform coefficient quantizer levels, L(n), from which the decoder
reconstructs the quantized transform coefficients, 7'(n), using the side information.
The quantized transform coefficients are then inverse transformed by the decoder, and
scaled to produce the decoded 6utput Asignal y'(n). This signal is then de-emphasized
to give:

y(n) =y (n) + ay'(n - 1). (4.5)

The first M values of the sequence y(n) are then added to (overlapped with) the last
M values of the previous block, and the first N—M samples of y(n) written to the

output buffer (the last M samples of y(n) will be added to the first M samples of the
next block, and written to the output buffer at that time).

- 49 -



Lndilno

Bo_igO unyjuod|y ' 2IN31]

{u)h

(u),A

00D ke b &

siseqdwos-aiy = d
1oxafdin =
¥ CHILH XdW
_ xoidnpw-aq = XJWNA
" wiofsuel} SUISOD IS = I0da
| siseydurs-s(y = a
l
A d . e
N (u)y N (u)y
*sozig d29§ *saatig da3g
Iazyuend) RELILTH:1iTe)
-uoned’o|ly 1g ‘uonedoly Nd
ojur ‘opu] .
AP 2pt
PiS q ql 'S
1
A\ u)
(u)w XdWap— 3 I ] xaw (w)v
(v)e H d {u)g
‘oju] M ‘ojuy
Nb urepy urepl Nb
e ] A
AX 1-1oda b v b ioa 2x E\;
A | . u — .
{u),, (v} " (u)7 NOIgaw ()7 ” (u)L {u),= (u),=
m 4ODVIOLS "
— SSYI —
Y o) b
|
I
I
. ]
|
wpodwq | JIopoduy
i

ILNdNI

(u)=

. 50 -



Y

4.2 The Side Information Bitstream

The side information bitstream is used to store a smooth spectrum estimate which

is used by both the coder and the decoder to calculate bit allocation and quantizer

step-sizes.

4.2.1 The Smooth Spectrum Estimate

As outlined in Section 3.3.4, the smooth spectrum estimate is fully specified by a

set of reflection coeflicients:
k(2) 1 <1< Np;

where Np is the number of predictors used to generate the spectrum estimate. Equiv-
alently, Ny is an estimate of the order of an appropriate autoregressive signal source
model. The determination of Np based on the latter interpretation will be discussed
in Section 4.2.2. The reflection coefficients are found through a Levinson/Durbin
recursion (eqﬁation set (3.12)). This requires an estimate of the autocorrelation func-
tion of the input signal. Sﬁch an estimate could be derived through the computation
of Equation (3.11). This however, would giire the autocorrelation function related to
the “true” spectrum of the input signal. What is actually required for a smooth esti-
mate of the DCT spectrum, is the autocorrelation function, r(n), of the time sequence
which has a power spectrum equal to that given by the block transform coefficient
variance sequence T-z(n). Since the inverse discrete Fourier transform (DFT™!) of a
power spectrum provides the required autocorrelation coefficients, r(n) can be calcu-

lated as:

r(n) = Re{DFT™![T}(n)]};
where, T22(n.) is a conjugate symmetric sequence of length 2N formed from T23(n) as:

Re T2('n.) , ‘ for 0 <n < N-1;
Re{T(n)} = { }

9

Re{T-“(.‘ZN - n)}, for N<n <2N—1;

- 571 -



[m{Tzz(n)} - Im{Tz(n)} — 0, for 0<n<2N-I

{Re and Im denote the real and imaginary parts respectively of a complex sequence).

Although this real-to-real inverse DFT procedure provides the desired result, an
equivalent and more elegant solution [39], is to calculate r(n) directly as a circular

autocorrelation of the input time domain sequence z"(n):

12N L-n TP, 1% n "
r(n) = 5 Z z (1) (H—n)-{-z Z [:1: (i)z (n—1—1t)+z (N—n+1i)z (N—l—i)].
1=0 =0

This direct approach was chosen since it avoids the use of the inverse DFT, and
the squaring of the transform coeflicients, which in an actual digital signal processor

implementation, would lead to unnecessary loss of accuracy through truncation errors.
| In addition, only the first few values of r(n) need be calculated, making the direct
calculation approach more numerically efficient than an inverse DFT. Specifically,
onlvy-the first Niax values of 7(n) are calculated, where Nyyax is the maxirr}um number
of poles to be used in the predictor calculations (Np < Nmax). The limit Npyay is set

using a prior: knowledge of the signals to be codeﬂ, as outlined in Section 5.2.

4.2.2 Signal Order Estimation .

In producing a smooth spectrum estimate through the linear prediction process,
an autoregressive model of the input signal source is formed. An important consid-
eration in linear predictive analysis is the determination of the number of predictors
needed to adequately model the audio source. This is equivalent to determining the
order of the audio source. Simply increasing the number of predictors without bound
will obviously result in a constantly increasing estimate quality; but t}}ére is however,
a point of diminishing return, where the improvement resulting from'the addition of

further predictors is not worth the extra bits required to store those predictors.

In speech coding, the human vocal tract is generally considered to be well modeled

by a fixed number (8-12) of predictor stages (36, 4]. Thus', real-time variations in
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model order are not comsidered. In a variable rate archiving application however,
where many different signal sources will be encountered (human voice, drums, piano,
etc.), variation of model order to match the characteristics of the audio source, is a

reasonable way to achieve an improved quality:bitrate ratio.

To find research on model order estimation (also known as system identification),
one must turn to the mathematical, statistical, and control literature. A vast array
of model order estimation techniques exist [40]. Since order estimation was not a
main consideration of the current work, a basic technique proposed by Akaike [41]
was chosen for implementation. Known as the final prediction error ( FPE) criterion,
this technique attempts to balance model bias against mean square prediction error

in a systematic fashion. The FPE criterion given by:

+ 1 N
FPE(i) = [1+l]+v }{ ]-e? for 1<i< Nmax;  (4.6)

where, : ‘

e;“) 1s the current prediction error (Equation (3.12));
N is the transform block length;

Nmax 1s an upper limit on the range. of model orders considered feasible given
a priort knowledge of the signals to be coded;

1 1s the orde_r of the model;

1s calculated at each stage, 1, of the Levinson/Durbin recursion. The array FPE(2) is
then searched for a mimmum, and Ny is set equal to the value of the index : which

gives a minimum of FPE(7):

FPE(j) = min{FPE({)} for 1 <i < Nmax;
(4.7)
Np = j.
This procedur.e is repeated once per block to adaptively match the spectrum estimate

to the statistics- of the input signal. The value N, is quantized and stored once per

block via the side information bitstream as a bp bit quantity.
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4.3 The Main Information Bitstream

The main information bitstream, using the bulk of the ATC coder total bitrate,
carries the quantized transform coefficients. The procedures used to perform the
required quantizations at a variable rate adapted to the statistics of the input audio
signal, and in a way which prevents any perceived distortions, will be presented in

this section.

4.3.1 The Banldwidfch.Estimate

Two fundamental factors influence the modifications which must be made to the

traditional speech-specific ATC algorithm for archive use:

o the presence of varied audio sources (i.e. sources other than the human
vocal tract must be considered);

e the potential variations in fidelity (Bahdwidth) of these sources (eg. vari-
ations due to recordings made on modern, versus older vintage recording
devices).

’

In Section 3.1, the basic similarity between the spectra of speech and music was

shown. The fundamental assumptions of this section are:

o for a given signal bandwidth, speech and music can be coded with equivalent
quality using roughly equivalent mainstream bitrates;

e for constant quality, the coder bitrate required is directly proportional to
the bandwidth of the input signal.

The bitrate goal for a signal block is thus set based on an estimate of the bandwidth
of that block. " |

This estimate is formed by finding the transform coefficient T2(j), where

T%4) < VA

R ; <3 < N-—1. 4.9
< 106 for j<i<N-1 (4.9)

The value j is thus the block index at which the signal power spectrum drops (and

remains) below A% of the total energy of the block!. The block bandwidth estimate

! The block length, N, also represents the total energy of the block in Equation (4.9), due to the nor-
malization performed on the time domain input sequence, z"/(n}), using Equation (4.3); and due to the

- 54 -



is thus:

fmax = ]2.]5; Hz; (4.10)

where f, is the frequency at which the input signal was sampled. A damped signal

bandwidth estimate, fj, is then updated once per block, using the block bandwidth

estimates:
ﬂ'fd+(1—,3)'fn1ax, for fmax<fd;
fd = fmax, for fmax > fd; (4.11)
fis for fmax > 0.95L;

where, 3 1s a damping factor whose value was determined empirically as given in

Section 5.2.

This provides immunity to extraneous high frequency noise bursts, and allows fy
to rise quickly to the true bandwidth of the input signal, while still permitting long
term bandwidth tracking.

A bitrate goal, Gy, for each block is then determined directly from fj, via the

linear relation:

Gy=v fj+d kb/s. C(412)

The total mainstream bit allocation, B, for the block, required to meet the Gy

bitrate goal, is thus:
N -Gy
fs

B = bits. (4.13)

This bit allocation will be modified as described in Section 4.3.2 to achieve silence

deletion, and then applied as described in Section 4.3.3, to quantize the transform

coeflicients.

fact that for the DCT (which is a unitary transform):

N-1 Y
Z z”z(n) =N Z T?(n).
‘n=0 n=0
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4.3.2 Silence Deletion

In an archiving application, silence deletion is an attractive way to reduce audio
storage requirements. The effective coding of silent periods at the beginning and end
of each selection, as well as internal silences such as those found in question/answer
format interviews, can provide large reductions in average signal bitrate with no
perceived decrease in quality. A graduated silence deletion is used in this work rather
than a threshold cut-off approach. Rather than simply deleting all blocks with a total
energy less than the threshold value, research on the characteristics of the human ear
suggests a graduated approach, where coder distortion is allowed to increase as the
signal level decreases. This distortion is less easily detected by the human ear at
low levels, resulting in no perceived reduction in quality [42]. This gradual reduction
in bitrate avoids sudden changes in signal quality as signal level drops, and allows

bitrate savings to begin well before simple thresholding occurs.

Silence deletion can thus be achieved through a bitrate multiplier, p, of the form:

’

p= 3 (4.14)

T

where V is the mean energy of the block (Equation (4.3)), and 7 is a threshold factor,

set as .described in Section 5.2.

The number of bits, B', which will be allocated to quantize the transform coeffi-

cients can thus be drawn from Equation (4.13) as:

B' = pB. (4.15)

Similarly, the number of predictor coefficients which will be used to generate the

smooth spectrum estimate can be drawn from Equation (4.8) as:

N, = pNp. (4.16)

Both B’, and N;'7 are rounded to the nearest integer. To avoid premature deletion of

the spectral estimate, NI'J is not allowed to drop below 1, until B’ < 10.
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4.3.3 Bit Allocation

The number of bits, b(i), to be used to quantize transform coefficient T (i) is

obtained from equations (3.18) and (4.15) as:

»

BI N-1 :
b(i) = = + l1og;2 [T2)] - L 3 logs [T2%(j)] for 0<i< N-1. (4.17)
2 2N =

N
Each allocation, b(%), is then rounded to the nearest integer, b;(z), and the cal-
culations of Equation (4.17) are performed again, this time considering only those
coefficients which were assigned b(:i) > 0 bits during the first iteration. This brings
the realized block bit assignment much closer to the goal B'1. After the second itera-
tion, a series of tests is performed on b;(¢) to prevent negative, and to limit positive,

bit assignments. The final allocations, bf(¢), are given by:
bf(z) = LbZ(Z)J for 0 < 1 < N——l; (418)

subject to,
bp(i) = § bi(e), if 1< bi(i) < bmax; :

. where bpax is an upper limit on the number of bits which may be assigned to any

one transform coefficient, and |z| denotes the nearest integer to z.

4.3.4 Quantizer Step-Size Adaptation

The optimum step-size for each transform coefficient quantizer, is calculated once

per block from Equation (3.19) as:
A(R) = Q - v(k)- 5[bf(k)] 0<k<N-1. (4.19)
The quantizer output level, L(k), for transform coefficient T'(k), is calculated

using a uniform quantizer with step-size A(k). The set of quantizer levels L(k), is

written to the storage medium, along with the side information.

! The second iteration provides the greatest benefit in the case of signals with large negative bit allocations
{eg. narrowband over-sampled signals). These negative values are rounded up to zero, resulting in an
over-assignment of bits to the other transform coefficients in the block. The second iteration eliminates
these negative values, and thus reduces the degree to which bits are over-assigned.
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4.4 Post Filtering

During testing, it was found that after coding narrowband signals which had been
over-sampled, high frequency noise appeared beyond the bandwidth of the original

signal, resulting in a noticeably distorted reconstructed signal.

Filtering the decoded signal at its original bandwidth before playback removed all
traces of distortion, with no noticeable decrease in signal quality. It is presumed that
this distortion is the result of windowing,I and block end effects, which allow small
amounts of energy to propagate to frequencies beyond the bandwidth of the original
signal. Since there is no signal energy in this region to provide masking, even small

amounts of noise will cause considerable perceived distortion.

This problem does not occur in traditional speech coding where speech signals,
whether narrowband or wideband, are usually critically sampled at 8 kHz or 16kHz

respectively.

T;) reduce the effects of this distortion, a digital lowpass filter was included in the
decoding algorithm. The cut-off frequency of the filter was adaptively adjusted to
match the sign.al bandwidth estimate fy, of Equation (4.11). The cut-off frequency,
fc, was damped and set to float slightly above f; by:

f :{ﬂ"'fc‘}‘(l—lb)'fd'l-l-, fOI'defc;
¢ fq-1.1, for fq > fc;

where f. is updated once per block, and ¢ is a damping factor whose value was

(4.20)

determined experimentally as given in Section 5.2.

A finite impulse response (FIR) filter based on a Blackman window design, and

with Ny taps, was used (see [43]). Such a filter produces an output sequence y¢(n),

from the un-filtered sequence y(n), via:

N—1
yi(m)= 3 k(i) yln —i); (4.21)
=0
where the set h(7) of filter coefficients is calculated once per block as:
: . 211 4mi | — :
A(i) = [0.42 ~ 0.5 cos( N:1 )+ 0.08 cos N:’_ll) sin(:E; - Z; for 0<i< Ny—1;
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and,

_Nt—lo
a=—;
_ e
w= g

This filtering operation was performed on each block before the output samples were

written to the output buffer for playback.

4.5 Algorithm Bitstream Summary

All parameters and data values multiplexed and written by the variable rate

archiving algorithm to the mass storage device are summarized in this section.

4.5.1 Main Bitstream

. The main information bitstream is composed entirely of transform coeflicient
quantizer levels, L(k), representing the quantized transform coefficients. N values of
L(k) are stored for each block. The number of bits used to store each value L(k) is

calculated from the side information using Equation 4.18, and will vary from block

to block.

4.5.2 Side Bitstream

The side information bitstream carries 3 parameters:

1) The reflection coefficients, k(z) (Equation (3.12)), which specify the smooth

spectrum estimate. Np values of k(i) are stored.

2) The block scaling parameter, V, (Equation (4.3)), which holds the mean
/ energy of the block. Quantization is realized via a be bit exponent, and a

bm mantissa, once per block.
3) The number of predictors used to form the smooth spectrum estimate, Np.

Ny is derived by the coder from the autocorrelation function of the input

signal using Equation (48), and 1s stored once per block, as a by, bit quantity.
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Algorithm
Chapter 5
' Simulation Results

5.1 The Simulation Process

The variable rate archiving algorithm proposed in Section 4 was tested through
a 32 bit floating point Fortran simulation. The Fortran simulation provides an exact
sample of the quality that would be obtained by a dedicated digital signal processing

implementation of the variable rate algorithm, with the following exceptions:’

e the simulation does not run in real time:

e internal calculations in the simulation are performed using a somewhat
greater accuracy than would likely be practical in a dedicated real-time
implementation.

Each of the test signals described in Section 5.3, was low pass (anti-alias) filtered,
and then analog to digital (A/D) converted at sampling frequencies of 8-20 kHz,
using a 16 bit linear quantizer. The resulting digital files were then stored for use as
input to the coder, on the disk drives of the mainframe computer (Digital Equipment
Corp. VAX 8600) used to perform the simulation. The coder then processed each
digital input file, and stored an output‘ file on the disk. Data could then be drawn
from the input and output files, D/A converted, low pass filtered, and played back to

monitor the distortions caused by the coding and decoding process.
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In this way, using the test files of Section 5.3, the coder parameters of Section
5.2 were determined, and the test results of Section 5.5 were produced. A panel of

listeners, as outlined in Section 5.4 was used to rate the quality of the coder.

Two benchmark comparisons are provided in sections 5.6 and 5.7 between the
variable rate archiving algorithm, and a log-PCM and CCITT standard sub-band

coder, respectively.

5.2 Coder Parameters

Throughout sections 3 and 4, many parameters were presented during the de-
velopment of the variable rate coding algorithm. The values determined for these

parameters will be given in this section. These values were set based on:

1) information available in the speech coding literature;

2) the results of simulation test runs using the speech and music files of Section

5.3,

’

The parameter values chosen and the equations in which they appear are sum-

marized in Table 5.1.

Parameters used in the quantization of the reflection coefficients are listed sepa-
rately, in Table 5.2. In both cases, parameters were adjusted to achieve a coded signal
that was not perceptibly different! from the original signal. In cases where settings
directly affected coder bitrate (eg. N, M,a;,b;,bmax, @, etc.), pa,rametér values were

adjusted just beyond the point where perceptible distortions disappeared.

Parameter values could not be adjusted independently. Thus, the figures pre-
sented in Tables 5.1 and 5.2 represent the compromise set reached for the simulation

runs of this work, and not necessarily the only, or optimum, parameter configuration.

Block sizes of N = 32 to 2,048 samples were used during testing. It was found

that at a 16 kHz sampling rate, block sizes of greater than N = 256 samples, produced

! A panel of un-trained listeners was used, as described in Section 5.4, ‘to define the point at which
differences became perceptible. ’
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Parameter Reference
Symbol | Function Value Units Equation

N Transform Block Length 256 samples —
fs Sampling Frequency 16.0 kHz 4.10
I Anti-ahas Cut-off Frequency 7.5 kHz —
M Adjacent Block Overlap 32 samples 3.5
« Pre/De-emphasis factor 0.7 — 4.2
b. Scaling Factor Word length (exponent) 4 bits 4.3
b, Scaling Factor Word length (mantissa) 12 bits 4.3

Npax | Limit on Predictor Coefficient Count 18 predictors 4.8
A Block Bandwidth Limit 5 percent 4.9
B8 Bandwidth Damping Factor 0.99 — 4.11
v Linear Bitrate Multiplier 0.0072 kb 4.12
¢ Linear Bitrate Offset 15.42 kb/s 4.12
u Spectral Weighting Factor 1.0 — 4.17

biax Limit on Bit Allocation 10 bits 4.18
N, Number of Taps in Post Filter 128 taps 4.21
Q Quantizer Loading Factor 1.0 — 4.19
P Post Filter Damping Factor 0.999 — 4.20
b, Predictor Count Word Length 4 bits —
T Silence Deletion Threshold Factor 1000 — 4.14

Table 5.1 Archiving Algorithin Parameters

Coeflicient | g, b; Bit
Index, 1 Allocation

1 -0.99 | 0.900 9

2 -0.70 | 0.999 9

3 -0.90 | 0.850 8

4 -0.80 | 0.970 8

5 -0.80 | 0.850 8

6 -0.80 } 0.850 T

7 -0.80 | 0.850 T

8 -0.80 | 0.850 T

9 -0.70 | 0.800 6

10 -0.70 { 0.700 6

11 -0.60 | 0.600 6

12 -0.60 | 0.600 5
13-18 -0.60 { 0.600 4

Note: See equation {3.20)

Table 5.2 Reflection Coefficient Quantization Parameters

unacceptable noise levels, especially with files containing sharp transients, such as

the piano selection (File 8, Section 5.3). The block size was thus fixed at N = 256
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samples, to achieve adequate time domain resolution, while maintaining the lowest

possible side information bitrate.

It was found as expected, that the cosine rolloff window (See Figure 3.5) reduced
spectral smearing. The window was of the most benefit in over-sampled signals (eg.
files 2, 5, 7, and 12), reducing somewhat, the level of extraneous high frequency
spillover energy, and consequently reducing bit allocations in the high frequency re-
gion. The effect was not great however, even with large overlaps (M = 128). Thus,
to provide the lowest possible bitrate, while still gaining some windowing benefit, a

compromise overlap of M = 32 samples was chosen.

The predictor coeflicient count was limited to a maximum of 18 predictors. For
over-sampled signals, and musical signals such as the piano with its numerous high
energy formants, or the jazz selection with its complex wideband spectrum, 18 predic-
tors were often required to provide an accurate spectral estimate. Setting Nmax > 18
increased the coder bitrate with little audible increase in quality. Setting Npmax < 18
audibly increased coder distortion, particularly on the piano, jazz, and over-sampled
signals. Although this distortion increase could be balanced by finer quantization of
the transform coeflicients, the required increase in the main information bitstream was
greater than the reduction realized in the side information bitstream. A compromise

limit of Npax = 18 predictors, was thus chosen.

The linear bitrate .factors, v and ¢, were determined empirically, based on the
average bitrate required to code a given input signal to the point where it was indis-
tinguishable from the original. This bitrate requirement was compared to the average
bandwidfh of the signal in question, and the above process repeated for each of the
12 test files of Section 5.3. A line of best fit was calculated (using linear regression) to
relate average signal bandwidth, to minimum required bitrate. This line is specified

by the values determined for v and ¢, through equation (4.12).

The damping factors 8 and ¥ were adjusted through listening tests until changes
in block bandwidth estimate, and filter cut-off frequency, were slowed to the point

where they became inaudible.
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Spectral weighting of the bit allocation was found to have very little audible
effect, due to the already high quality .of the coder. Thus,.no spectral weighting was
employed, and u = 1. -

Any change in the quantizer loading factor @, from the value @ = 1, was found to
produce audible distortion in all test files. Thus ) was not changed from its optimum

Max—quantizer value of Q = 1.

The predictor count word length was set to 4 bits. This allowed 16 of the 19
possible predictor assignments to be stored. Thus the number of predictors used
to form the smooth spectrum estimate was restricted to members of the set Np =
{0,1,2, 3,4, 5,7,9,10,11,13,14,15,16,17,18}. Optimal predictor counts produced by

the FPE criterion were increased to the next set member if necessary, before storage.

5.3 The Simulation Test Files

Twelve audio files were used to test the performance of the variable raje archiving
algorithm. Speech and music selections, of varying fidelity were chosen in order to

accurately represent the contents of a typical audio archive.

A description of each test file is provided in this section.

File 1

Sampling Frequency: 8,000 Hz

Anti-alias filier cutoff frequency: 3,500 Hz
File length (samples): 16,018

File length (seconds): 2.0

Sample size: 16 bits (linear quantizer)
File mean: -1.829

File standard deviation: 1,951.8
Maximum sample value: 10,363

Minimum sample value: -8,281

Contents:

Narrowband female voice: “Happy hour is over”.

File 2

Sampling Frequency: 16,000 Hz
Anti-alias filter cutoff frequency: 3,500 Hz
File length (samples): 25,790
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File length (seconds): 1.6

Sample size: 16 bits (linear quantizer)
File mean: -8.75

File standard deviation: 2,152.9
Maximum sample value: 8,149
Minimum sample value: -9,125
Contents:

Narrowband over-sampled female voice: “Happy hour is over”.

File 3

Sampling Frequency: 14,000 Hz
Anti-alias filter cutoff frequency: 7,000 Hz
File length (samples): 28,000

File length (seconds): 2.0

Sample size: 16 bits (linear quantizer)
File mean: -1.82

File standard deviation: 1,952.0
Maximum sample value: 10,253
Minimum sample value: -8,342

Contents:

Wideband female voice: “Happy hour is over”.

File 4

Sampling Frequency: 8,000 Hz

Anti-alias filter cutoff frequency: 3,500 Hz
File length (samples): 30,976

File length (seconds): 3.9

Sample size: 16 bits (linear quantizer)
File mean: -25.0

File standard deviation: 1,209.4
Maximum sample value: 7,748

Minimum sample value: -8,843

Contents:

Narrowband male voice: "The birch canoe slid on the smooth planks”.

File 5

Sampling Frequency: 16,000 Hz
Anti-alias filter cutoff frequency: 3,500 Hz
File length (samples): 27,045

File length (seconds): 1.7

Sample size: 16 bits (linear quantizer)
File mean: -0.14

File Standard deviation: 1,462.3
Maximum sample value: 8,941

Minimum sample value: -12,899
Contents:

Narrowband over-sampled male voice: “Happy hour is over”.
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File 6

Sampling Frequency: 14,000 Hz

Anti-alias filter cutoff frequency: 7,000 Hz
File length (samples): 28,000

File length (seconds): 2.0

Sample size: 16 bits (linear quantizer)
File mean: -1.6

File Standard deviation: 1,523.0
Maximum sample value: 16,108

Minimum sample value: -10,195

Contents:

Wideband male voice: “Happy hour is over”.

File 7

Sampling Frequency: 16,000 Hz

Anti-alias filter cutoff frequency: 7,000 Hz
File length (samples): 19,642

File length (seconds): 1.2

Sample size: 16 bits (linear quantizer)
File mean: -1.14

File Standard deviation: 4,296.6
Maximum sample value: 6,410

Minimum sample value: -6,416

Contents: ;

400 Hz. tone.

File 8

Sampling Frequency: 16,000 Hz
Anti-alias filter cutoff frequency: 7,000 Hz
File length (samples): 148,699

File length (seconds): 9.3

Sample size: 16 bits (linear quantizer)
File mean: 1.96

File Standard deviation: 2,829.3
Maximum sample value: 15,622

Minimum sample value: -12,207
Contents:

Solo pianist (wideband).

File 9

Sampling Frequency: 16,000 Hz
Anti-alias filter cutoff frequency: 7,000 Hz
File length (samples): 161,710

File length (seconds): 10.1

Sample size: 16 bits (linear quantizer)
File mean: 1.18

- File Standard deviation: 2,854.8
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Maximum sample value: 18,176
Minimum sample value: -16,976
Contents: -

Pan pipes, bombo, and gourd (wideband)

File 10

Sampling Frequency: 16,000 Hz
Anti-alias filter cutoff frequency: 7,000 Hz
File length {samples): 125,744

File length (seconds): 7.86

Sample size: 16 bits (linear quantizer)
File mean: 4.9

File Standard deviation: 995.9

Maximum sample value:6,535

Minimum sample value: -3,883

Contents:

Small jazz group {(wideband).

File 11

Sampling Frequency: 20,000 Hz

Anti-alias filter cutoff frequency: 7,500 Hz
File length (samples): 100,743

File length (seconds): 5.0

Sample size: 16 bits (linear quantizer)
File mean: 0.75

File Standard deviation: 723.61
Maximum sample value: 4,335

Minimum sample value: -4,268

Contents:

Small jazz group, with male and female vocalists (wideband).

File 12

Sampling Frequency: 20,000 Hz

Anti-alias filter cutoff frequency: 3,500 Hz
File length {samples): 102,597

File length (seconds): 5.13

Sample size: 16 bits (linear quantizer)
File mean: 0.96

File Standard deviation: 721.65
Maximum sample value: 4,339

Minimum sample value: -4,116

Contents:

Small jazz group with male and female vocalists (narrowband, and over-sampled).
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5.4 Test Methodology

As outlined in Section 2.2, the variable rate archiving algorithm was designed to
duplicate the quality of a modern % inch analog reel-to-reel tape deck. This, in effect,
required that there be no perceptible differences between the original and the coded
versions of each input signal. In Section 5.2, the coder parameter values chosen to
achieve this high quality level were listed. In Section 5.5, the results of simulatibn runs
using these parameter values are given. In this section, the procedures used to confirm
that the original and coded versions of the test signals were indeed imperceptibly

different are given.

A panel of un-trained listeners was assembled, and presented with a series of audio
trials. The twelve test files of Section 5.3 were randomly organized into a series of
comparison tests. Listeners were presented with a sequence of two audio signals, and
asked to rate the signals as being:

1) Identical;

2) Definitely Different; or
3) Possibly Different.

The two signals presented to the listener were drawn randomly from one of the

following pairings:

¢ Original Signal versus Coded Signal;
o Original Signal versus Original Signal:
e Original Signal versus Purposefully Degraded Signal.

The listener was, of course, not aware of the true nature of the signals being rated.
The addition of Original vs. Original, and Original vs. Degraded signals to the test

permitted the detection of any listener biases which might exist.

Listeners were allowed to hear each comparison twice, before assigning a similarity
rating. A total of 10 listeners were presented with 40 comparison trials each, for a

total data base of 400 trials. The trials were spread out evenly amongst the 12
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test files, in random fashion. All listening tests were performed using loudspeaker
monitors, in a controlled acoustic environment. The actual questionnaire used during

testing is included in Appendix C. The results of the tests are given in Section 5.5.1.

5.5 Simulation Results

In this section, the results of the archiving algorithm Fortran simulation will be
given. In Section 5.5.1 it will be shown that with two exceptions, test files passed
through the coding algorithm were indistinguishable from the corresponding original

ﬂl_es in over 98% of test trials considered.

In Section 5.5.2, the average bitrates required to store the test files of Section 5.3
are given. It is shown that the variable rate archiving algorithm offers an average

storage saving of 75% over the original linear-PCM files, and 63% over log-PCM coded
files.

5.5.1 Comparison Test Results

Coder comparison test! results show that in 89.9% of all test trials, the signal
processed by the archiving algorithm, was judged to be indistinguishable from the
original signal. This is an average figure, calculated using all twelve test files>. Per-

centage details, for each individual test file, are given in Table 5.3.

The table shows that for 10 of the 12 test files, listeners rated the coded signals
as identical to the original signal in more than 90% of all trials. With two of the 12
test files however, the archiving algorithm gave a poorer than average performance.
For File 2 (Narrowband over-sampled female speech), listeners often reported a faint
low frequency buzz, and indicated on average, that the archive-coder processed s.igna,l

and the original signal were identical only 33.6% of the time. Similarly, in the case

! See Section 5.4 for Comparison Test details.

% See Section 5.3 for test file details.
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File | Contents B, % Rated Identical
1 | Narrowband Female Speech 100
2 | Narrowband Over-sampled Female Speech 33
3 | Wideband Female Speech 91
4 | Narrowband Male Speech 100
5 | Narrowband Over-sampled Male Speech ' 100
6 | Wideband Male Speech 100
7 | Wideband Over-sampled 400 Hz Tone 100
8 | Wideband Piano 100
9 | Wideband Pan Pipe, Bombo, and Gourd 100

10 | Wideband Jazz group 92
11 | Wideband Jazz Group (Male & Female vocalists) 100
12 | Narrowband Oversampled Jazz Group (Male & Female vocalists) 33

Table 5.3 Comparison Test Ratings

of File 12 (Narrowband over-sampled music), a faint shimmering distortion was de-
tected at the start of the file, resulting in identical ratings in only 33.2% of all trials.
The performance of the archiving algorithm was thus found to be somewhat signal
dependent. Further testing showed that the perceptible distortions heard in files 2
and 12 were due to spectral estimation and silence deletion errors respectively. These

problems will be discussed in the conclusions of Section 6.

Thus, excluding files 2 and 12, the archiving algorithm showed very good perfor-

mance; achieving on average, an identical rating 98.1% of the time.

The tests performed to detect listener bias produced the expected results. When
two original signals were compared, listeners rated them identical 96.8% of the time.
Signals that were purposefully degraded were rated different than the original 92.3%
of the time. Thus listeners showed themselves to be quite capable of distinguishing

high quality from low quality signals, under the test conditions used.

It can therefore be concluded, that the archiving algorithm 1is, in general, provid-

ing the high quality signal representations réquiréd in an audio archiving application.
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5.5.2 Storage Requirements and Average Bitrates

In Table 5.4, the average bitrates required to store each test signal are compa.fed
for equivalent quality linear-PCM, log-PCM, and archiving algorithm coded signals.
The totals show that on average, the archiving algorithm provides storage savings of

more than 75% over linear-PCM, and more than 63% over log-PCM coders.

File | Contents Average Bitrate (kb/s)
Arxchiving | Linear- | Log-

Algorithm PCM | PCM

1 | Narrowband Female Speech 44.4 128 88

2 | Narrowband Over-sampled Female Speech 42.7 256 208

3 | Wideband Female Speech 66.3 224 154

4 | Narrowband Male Speech . 41.7 128 80

5-| Narrowband Over-sampled Male Speech 43.8 .256 192

6 | Wideband Male Speech 66.0 224 126

7 | Wideband Over-sampled 400 Hz Tone 31.2 256 192

'8 | Wideband Piano 76.1 256 160

9 | Wideband Pan Pipe, Bombo, and Gourd 77.9 256 112

10 | Wideband Jazz group 81.3, 256 144
11 | Wideband Jazz Group (Male & Female vocalists) ) 96.4 320 160

. 12 | Narrowband Oversampled Jazz Group (Male & Female vocalists) 41.6 320 220
Average 59.2 240 153

Table 5.4 Coder Bitrate Results

The average bitrate results also show that the archiving algorithm adjusted well
to the needs of each input signal. Bitrates ranged from 31.2 kb/s for the simplest
signal (the 400 Hz tone) to 96.3 kb/s for the most complex (wideband jazz group with
multiple vocalists). In addition, the algorithm demonstrated its ability to efficiently
code over-sampled signds. Whether sampled at 8 kHz, or at 16 kHz, the same 3500
Hz bandwidth femalg voice segment was stored at essentially the same bitrate (44.4
versus 42.7 kb/s for files 1 and 2 respectively). Both of these rates, as expected, were
significantly lower than the measured storage rate for the wideband (7 kHz) version
of the same female voice seglﬁent: 66.3 kb/s (file 3). Similar results were obtained

for male speech (files 4, 5, and 6), and for music (files 11, and 12).
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5.6 Comparison With Log-PCM Coder

For benchmarking purposes, a comparison was performed between the variable
rate archiving algorithm, and a basic p-law log-PCM coder. The standard p-law

curve was used [2]:
loge(1+ - || /2max)
loge(1 + p)

For each file, the number of bits used to log-quantize each sample was adjusted

(5.1)

¢(z) = Tmax

until the log-PCM and variable rate archiving coders produced signals of equivalent

qualityl.

File | Contents bits
1 | Narrowband Female Speech 11
2 | Narrowband Over-sampled Female Speech 13
3 | Wideband Female Speech 11
4 | Narrowband Male Speech 10
5 | Narrowband Over-sampled Male Speech 12
6 | Wideband Male Speech -
7 | Wideband Over-sampled 400 Hz Tone L 12
8 | Wideband Piano . 10
9 | Wideband Pan Pipe, Bombo, and Gourd : 7

10 | Wideband Jazz group
11 | Wideband Jazz Group (Male & Female vocalists) 8
12 | Narrowband Oversampled Jazz Group (Male & Female vocalists) 11

Table 5.5 Log-PCM Comparison Results

Based on the current bit allocation, b;, the values of u, and zpax in Equation
(5.1) were set as follows:
p=2% -1
Tmax = 96 _ 1.
The comparison results are summarized in Table 5.5. The number of bits, b;, required
to quantize each sample was thus found to range from 9 to 13, depending on the nature

of the source signal. The variable rate archiving algorithm produced an average (over

! Equivalence was determined using listening tests similar to those described in Section 5.4.
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the 12 test files of Section 5.3) storage saving of 63.3% over a log-PCM coder of -
equivalent quality.

5.7 Comparison With CCITT Wideband Coder

The Comité Consultatif Internationale de Télégraphique et Téléphonique (CC-
ITT) is currently standardizing a wideband (7 kHz bandwidth) 64 kb/s sub-band
coding algorithm [1]. Although designed for speech coding (and up to 16 kb/s of
data transmission), with music processing as only a minor counsideration, the CCITT
algorithm provides roughly the same signal bandwidth as the variable rate archiving
algorithm tested in Section 5.5. A comparison of the two algorithms thus provides a

second useful benchmark.

File | Contents % Rated Identical | Average Bitrate (kb/s)
Archiving | CCITT | Archiving CCITT
Coder Coder Coder Coder
1 | Narrowband Female Speech 100 20 44.4 |, 64 |
5 | Narrowband Over-sampled Male Speech 100 58 43.8 64
6 | Wideband Male Speech 100 17 66.0 64
7 | Wideband Over-sampled 400 Hz Tone 100 8 31.2 64
8 | Wideband Piano 100 17 76.1 64
10 | Wideband Jazz group 92 18 81.3 64

Table 5.6 CCITT Comparison Results

Table 5.6 shows the similarity ratings (i.e. the degree to which the coded sig-
nal was rated indistinguishable from the original), and the bitrates required by the
archiving coder, and the CCITT coder, to process 6 test files from Section 5.3. The
tallqle shows that in 3 out of 6 cases, the archiving algorithm was able to provide
hi’éher signal quality at a lower bitrate than the CCITT coder. In the other 3 cases,
the archiving algorithm increased its bitrate by up to 27% over that of the CCITT
coder; however, the similarity ratings show that this increase was clearly necessary

to maintain high signal qualﬁity.

- 73 -



Chapter 6 Conclusions

In this work, the unique coding needs of an audio archive have been examined. A
variable rate adaptive transform coding algorithm has been developed to meet these
needs, and a Fortran simulation has been run on a series of 12 audio test files, to

examine its performance.

"The Fortran simulation shows that the proposed archiving algorithm provides a
high quality processed signal that listeners find indistinguishable from the original
signal in 89.8% of the test cases considered. The algorithm adjusts well to the band-
width and complexity of the input test signals, varying its bitrate from 31.2 to 96.3
kb/s, as required, to maintain high quality. These bitrates are reasonabie for a high
quality coder given the current state of the art in coder research. Test results also
show that the algorithm performs equally well on speech and music signals, providing
average storage savings of ‘75% over a 16 bit linear-PCM coder, and 63% over an

equivalent—quality log-PCM coder.

A comparison between the archiving algorithm and the proposed CCITT standard
wideband coder [1], shows that the archiving algorithm consistently provides higher

quality, at bitrates ranging from 31.2-81.3 kb/s, versus the CCITT coder’s fixed
bitrate of 64 kb/s.

Algorithm performance was found however, to be somewhat dependent on the
nature of the input signal. In 2 out of 12 test files, listeners reported small audible

distortions in approximately 66% of all trials.

-7 -



The first distorted segment occurred in File 2 (narrowband over-sampled female
speech). Testing showed that it was due to errors in the FPE sigﬁal order estimation
procedure. Although the introduction of the FPE criterion during coder development
led to reduced bitrates over the fixed predictor count approach used to that point,
it is clear that the basic FPE technique chosen is not always able to produce ade-
quate results. A more complex signal identification method appears to be required,
to produce a consistent high quality estimate. Alternatively, a return to the fixed
predictor count approach would provide the required quality, but at an average side

information bitrate increase of approximately 15% for the test files of Section 5.3.

The second distorted segment was heard in File 12 (narrowband over-sampled
music). Testing showed this was due to unwanted silence deletion during a low volume
section at the start of the file. Improvement to the archiving algorithm is also required
in this area, to provide a consistent high quality output. Changes to the silence
deletion threshold factor 7, a lo-ga.rithmic deletion curve, a threshold cut-ol"f approach,

or a block look-ahead capability, should be’considered in future implementations.

Neglecting the above two files however, the archiving algorithm produced a signal
rated indistinguishable from the original 98.1% of the time. The archiving algorithm,
with the improvements suggested above, thus shows great potential for storage savings

in an audio archiving application.

6.1 Considerations For Real-Time Implementation

A prime consideration in the development of the variable rate archiving algorithm,
as outlined in the design criteria of Section 2.2, was that it be implementable in real-

time on existing digital signal processing (DSP) devices.

It has been shown in the speech coding literature that the adaptive transform
coder can be implemented in real-time [20]. In [20], the homomorphic spectrum esti-
mate procedure (Section 3.3.4) was used, rather than the linear prediction approach,

but both are of similar complexity. Powerful DSP chips exist today which can in
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many ways out-perform the array processor used in [20], (eg. the TMS 320C30 by
Texas Instruments, which can perform a 256 point DFT in approximately 1.5 ms

versus the array processor’s 3.28 ms requirement).

It thus appears that real time implementation of the variable rate algorithm
proposed in Section 4 is feasible. The sampling rate required for archiving will however
be much higher than for the narrowband speech system of [20]. Fortunately, in
archiving, coding and decoding operations are never performed simultaneously, as is

required in a transmission application, such as [20]. This cuts real-time requirements

in half.

Should implementation in real-time prove difficult at the sampling rates required,

several options exist:

1) The Use of Multi-processors
- systems have, for example, been constructed using multiple TMS 32010

chips that offer increased real-time capacity [44].
2) The Use of a Log-Average Spectrum Estimate

— results published in the speech coding literature indicate that at the high
bitrates required in archiving, the Log-Average estimate procedure of Sec-
tion 3.3.4 may be able to equal the performance of the LPC estimate with
significantly less numerical calculation. '

3) The Use of a Fixed Predictor Count

- using a fixed number of predictors to form the smooth spectrum estimate
for each block, will eliminate the FPE criterion calculations.

4) The Use of Efficient DCT Algorithms

- mnew methods for efficiently calculating the DCT have been proposed [45],
~ which could lead to reductions in real-time requirements.

6.2 cher Considerations

Two other considerations are worthy of note at this point. During development

of the archiving algorithm, it became apparent that although all design criteria of
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Section 2.2 had been met, Design Criteria 4 (Uneven coder/decoder work]o;Ld) was
not satisfied to the extent originally envisioned. In fact, the proposed archiving
algorithm has a basically even workload, with the decoder performing all funct'ions
of the encoder except the computation of the signal autocorrelation and reflection
coefficients, and the computation via the FPE criterion, of the number of predictors
to be used to form the smooth spectrum estimate. Future work on the proposed
algorithm, should address this issue, perhaps through the use of vector quantization

of the side information.

Secondly, a somewhat arbitrary decision was made in Section 3.2 to persue de-
velopment of an adaptive transform coder, over a sub-band coder. Modification of
a sub-band coding algorithm to provide a variable bitrate could lead to interesting
results. Such an approach would eliminate the prediction error problems encoun-
tered in the ATC approach, and could provide better rejection of extraneous high

frequency noise in over-sampled signals through the deletion of entire high frequency

sub-bands.
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Appendix A.
- Analog/Digital Archiving Equipment

The equipment presented in figures 2.2 and 2.3, and the costs presented in figures

2.4a and 2.4b, are based on the following:

Figures 2.2 and 2.4a

Revox B 77 % inch Reel-to-Reel Tape Deck.
Cost: $3500.

Tape speed used for arc}iiving:-lg‘cm/s.

Ampex 456 } inch reel tape (1.5 mil).
Reel Size: 18 cm (7.5 inch).
Tape Length: 366m (1200 feet).
Cost: 35/reel. '

A 10,000 hour archive collection consists of 20,000 tapes.

Labour costs {weighted): $30/hr.

Time required to copy one tape: 0.1 hr. ‘

Figures 2.3 and 2.4b

Fujitsu NM2505A 13cm WORM Optical Disk Drive.
Capacity: 300 Mb/side (2 data sides).
Cost: $3500.

Best MKII IBM PC/XT Compatible Computer.

with: 20 M hard disk, and 640 k floppy disk drives.
Cost: $2595.

Loughborough TMS32020 DSP Board.
with 16 bit D/A and A/D converters.
IBM PC plug-in compatible.
Maximum sampling frequency: 50 kHz.

Cost: $2595, including development software.

13cm WORM Optical Disk (300 Mb/side).
Cost: $75.
A 10,000 hour archive collection counsists of 3,552 disks, @ 59.2 kb/s.
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The cost of audio amplifiers (common to both the analog and digital systems)
was not included. The cost of fixed anti-aliasing filters for the digital system was
neglected. Labour costs in year 1, are assumed identical for the analog and digital

systems, and are not included in Figure 2.4.

Year 1 costs for the analog system (Figure 2.4a) include: analog tape deck, and
magnetic tape. In years 5 and 10, costs include: magnetic replacement tape, and
labour costs. For the digital system (Figure 2.4b), year 1 costs include: optical disk
drive, IBM PC/XT compatible computer, and optical disks.

- 82 .



Appendix B.
DSP Card Suppliers

The following suppliers manufacture IBM PC compatible plug-in digital signal

processing products, based on the Texas Instruments TMS320 series of digital signal

PIocessors:

1) Atlanta Signal Processors, Inc.

770 Spring- Street
Atlanta, Georgia, USA. 30308.
(404) 892-7265.

2) Loughborough Sound Images Ltd.

The Technology Centre

Epinal Way, Loughborough, Leicestershire

UK. LE11 0QE. :
(509) 321843.

3) Microcraft Corporation

P.O. Box 513
Thiensville, Wisconsin
"USA. 53092.

(414) 241-8144.

4) OROS SA

Chemin des Prés
ZIRST - 38240 Meylan
France.

(33) 76 90 62 36. | -

5) Sky Computers, Inc.

Foot of John Street
Lowell, MA

USA. 01852.

(617) 454-6200.
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Appendix C.

. Comparison Test Questionnaire
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Coder Comparison Test

Instructions

Thank you for offering/agreeing to take the coder comparison test. You are about
to hear 40 pairs of audio files. Each pair will consist of an original version of the input
signal followed by a coded version of the same signal. Your task is to indicate on the
following pages whether or not the two versions sound identical, definitely different,

or possibly different.

For each signal, the original-version vs. coded-version comparison will be repeated
twice. After hearing the comparison for the second time, please circle the appropriate
similarity description to the right of the signal name.

e Circle Identical if you hear no difference between the original and the coded

versions of the signal.

e Circle Definite Difference if you are absolutely certain you hear a differ-

ence (even a small one) between the two versions.

e C(ircle Possibly Different if you are almost certain there is a difference,
but can’t be 100% sure.

The test will start with two example signals: Tone 1, and Tone 2. The examiner
will stop the tape after these example signals to see if you have any questions. Re-
member to listen to each original-signal vs. coded-signal comparison twice, before
circling a responce. You will have 4 seconds to draw your circle before the next signal

on the list is played. The test will take 18.3 minutes.

Please listen carefully.

Thank you.
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Example Signals:

Tone 1

Identical

Possible Difference

Definite Difference

Tone 2

Identical

Possible Difference

Definite Difference

Jazz

Identical

Possible Difference

Definite Difference

Piano

Identical

Possible Difference

Definite Difference

Male Voice (Low fidelity)

Identical

Possible Difference

Definite Difference

Male Voice (High fidelity)

Identical

Possible Difference

Definite Difference

Pipes

Identical

Possible Difference

Definite Difference

Tone

Identical

Possible Difference

Definite Difference

Male Voice (Low Fidelity)

Identical

Possible Difference

Definite Difference

Male Voice (High fidelity)

Identical

Possible Difference

Definite Difference

Female Voice (High fidelity)

Identical

Possible Difference

Definite Difference

Piano

Identical

Possible Difference

Definite Difference

Jazz

Identical

Possible Difference

Definite Difference

Male Voice (Low fidelity)

Identical

Possible Difference

Definite Difference

Female Voice (Low fidelity)

Identical

Possible Difference .

Definite Difference

Female Voice (High fidelity)

Identical

Possible Difference

Definite Difference

Female Voice (Low fidelity)

Identical

Possible Difference

Definite Difference

Jazz

Identical
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Male Voice (Low fidelity)

Identical

Possible Difference

Definite Difference

Music (Low fidelity)

Identical

Possible Difference

Definite Difference

Music (High fidelity)

Identical

Possible Difference

Definite Difference

Pipes

Identical

Possible Difference

Definite Difference

Tone

Identical

Possible Difference

Definite Difference

Female Voice {Low fidelity)

Identical

Possible Difference

Definite Difference

Male Voice (Low fidelity)

Identical

Possible Difference

Definite Difference

Female Voice (Low fidelity)

Identical

Possible Difference

Definite Difference

Piano

Identical

Possible Difference

Definite Difference

Female Voice {Low fidelity)

Identical

Possible Difference

Definite Difference

Male Voice {Low fidelity)

Identical

Possible Difference

Definite Difference

Male Voice (High fidelity)

Identical

Possible Difference

Definite Difference

Music (High fidelity)

Identical

Pbssible Difference

Definite Difference

Music (Low fidelity)

Identical

Possible Difference

Definite Difference

Jazz

Identical

Possible Difference

Definite Difference

Tone

Identical

Possible Difference

Definite Difference

Male Voice (Low fidelity)

Identical

Possible Difference

Definite Difference

Female Voice (Low fidelity)

Identical
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Male Voice (High fidelity)

Identical

Possible Difference

Definite Difference

Female Voice (High fidelity)

Identical

Possible Difference

Definite Difference

Piano

Identical

Possible Difference

Definite Difference

Music (High fidelity)

Identical

Possible Difference

Definite Difference

Tone

Identical

Possible Difference

Definite Difference

Jazz

Identical

Possible Difference

Definite Difference
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