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Abstract 

This thesis studies adaptive filters for the case in which the main input signal is not 

synchronized with the reference signal. The asynchrony is modelled by a time-varying delay. 

This delay has to be estimated and compensated. This is accomplished by designing and 

investigating joint delay estimation and adaptive filtering algorithms. First, a joint maxi- 

mum likelihood estimator is derived for input Gaussian signals. It is used to define a readily 

implementable joint estimator, composed of an adaptive delay element and an adaptive fil- 

ter. Next, two estimation criteria are investigated with that structure. The minimum mean 

squared error criterion is used with a joint steepest-descent adaptive algorithm and with 

a joint least-mean-square adaptive algorithm. The general convergence conditions of the 

joint steepest-descent algorithm are derived. The joint LMS algorithm is analysed in terms 

of joint convergence in the mean and in the mean square. Finally, a joint recursive least 

squares adaptive algorithm is investigated in conjunction with the exponentially weighted 

least squares criterion. Experimental results are obtained for these different adaptive algo- 

rithms, in order to verify the analyses. The results show that the joint algorithms improve 

the performance of the conventional adaptive filtering techniques. 



Sommaire 

Cette thkse examine d'une faqon ddtaillde le problhme de synchronisation entre le signal 

principal et le signal de rkfdrence utilisCs par un filtre numdrique,adaptatif. Le manque de 

synchronisme est reprksentd par le modGle mathkmatique d'un ddlai temporel variable dans 

le temps. Ce ddlai doit 6tre estimd et corrigd. Cette t2che est accomplie en concevant et 

en ktudiant diffdrents algorithmes effectuant conjointement une estimation de dklai et le fil- 

trage adaptatif. Un estimateur conjoint, bas4 sur le crithre de maximum de vraisemblance, 

est ddrivk en premier lieu en utilisant un signal d'entre'e Gaussien. Cet estimateur est utilisd 

comme base pour ddfinir une forme d'estimateur conjoint facilement applicable, compos6e 

d'un ddlai adaptatif et d'un filtre adaptatif. En second lieu, cette structure est alors ktudihe 

en utilisant deux critkres d'estimation. Le critkre d'erreur quadratique moyenne est utilisd 

avec un algorithme adaptatif conjoint B descente maximale et avec un algorithme adapta- 

tif conjoint LMS. Les conditions gdnkrales de convergence sont ddrivdes pour l'algorithme 

conjoint fi descente maximale. L'algorithme conjoint LMS est analysd en termes de conver- 

gence des moments du premier et second ordres. Finalement, un algorithme conjoint de 

moindres carrds rdcursifs (RLS) B ponddration exponentielle est utilis6 avec le crit6re des 

moindres carrds. Des rksultats expCrimentaux sont obtenus pour vdrifier les ddrivations ana- 

lytiques. Les rdsultats montrent que les algorithmes conjoints amdliorent les performances 

des techniques conventionelles de filtrage adaptatif. 
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Chapter 1 Introduction 

1.1 Conventional Adaptive Filtering versus Delay Estimation 

Adaptive digital signal processing has become an important part of many systems in- 

volving unknown components or nonstationary subsystems. Adaptive digital filters, under 

different forms, are commonly used in channel equalization [I], echo cancellation [2], noise 

cancellation [3], system identification [4], spectral analysis [5] and in many other signal 

processing tasks [6] .  Much research related to adaptive filters is concerned with the con- 

vergence, the tracking and the computational complexity of the adaptive algorithms [7]. It 

is almost always assumed that the two main digital inputs to the algorithm, the adaptive 

filter input signal and the reference signal, are synchronized in time, i.e. that they are the 

sampled versions of two continuous signals, with the sampling clock being the same for 

both. 

But in some adaptive filtering applications, this assumption is not true. A sampling 

rate difference makes the input and reference signals jointly nonstationary, and the two 

sequences used in the adaptive filter experience a changing relative delay. The reference 

system, if it is linear, can then be modelled as a reference linear filter in series with a time- 

varying delay. This delay decorrelates the two signals as the time index increases. In some 

other forms of adaptive system modelling, the unknown system has an impulse response 

that can be explicitly modelled as a pure time delay in series with a linear filter. Exam- 

ples of such systems occur in geophysical exploration [8], echo cancelling [9] or multipath 

communications [l]. 

The ability of an adaptive filter, operating at  or above the signals Nyquist rate, to 

model a delay between the filter primary input and its reference, makes it a very versatile 

signal processing tool and, in many cases, the designer does not need to consider any other 



delay compensation scheme. The adaptive filter essentially models the delay by shifting its 

impulse response by the proper amount. The use of a simple adaptive filter, to identify the 

reference system, implies that the combination of the delay and the filter will be modelled 

by the adaptive system, without any explicit separation between the delay and the filter 

estimates. In some cases this is sufficient, but it can also happen that the estimate of 

interest is the delay value, as in delay estimation over an unknown channel, or that the 

channel impulse response is wanted, as in channel identification with an unknown delay 

(these different interpretations are indeed very similar and are most often related to the 

perspective of the user). 

Even if a separation between the delay estimate and the channel estimate is not required, 

a simple adaptive filter might require a number of filter weights, of which many may have 

no effect upon the final model (because they are used only to delay the input signal), but 

increase both the computational complexity and the weight vector misadjustment, resulting 

in an increased mean squared error. For a given misadjustment, such a large number of 

weights has usually the effect of reducing the convergence speed of the adaptive filter and 

its tracking capability [lo]. In the case of a time-varying reference delay, the sampling rate 

evolution can even be rapid enough to prevent the tracking by a conventional adaptive filter 

[ l l ] ,  [12]. For some applications, it is therefore imperative to have some appropriate means 

to  "center" the impulse response of the adaptive filter within a finite time window. 

The separation of the estimation task, between a delay estimator and a linear filter esti- 

mator, has been given very little attention in the adaptive filtering literature. The exception 

is in the field of clock or timing recovery used in conjunction with adaptive equalizers, in 

data communication systems [13]. In digital channel equalization, for example, the receiver 

input signal (or a filtered version of it) is sampled and passed through an adaptive filter (the 

equalizer). The reference signal is the demodulated data stream or a locally remodulated 

version of it. Due to channel delay distortion or some other nonstationary channel effects, 

the sampling phase has to  be synchronized with the locally generated reference signal. Some 

form of equalization strategies will compensate for this sampling error, as in fractionally 

spaced equalizers (FSE), by adjusting their taps to  model the corresponding delay [14]. 

But this scenario explicitly assumes that the sampling period has been recovered, and that 

only the clock phase has to  be tracked (this implicitly means that a form of carrier phase 

recovery is performed independently from the equalizer). 

There are other applications in which the difference in sampling rates, between the 

adaptive filter input and its reference signal is implicit. A particular example of such an 

application is the enhancement of speech in the presence of interfering music and noise [12]. 



An adaptive noise canceller is used to model the channel through which the speech and the 

interference are transmitted, and its output is subtracted from the composite signal, in order 

to  obtain the enhanced speech. But, due to  different recording media, there is a difference 

in sampling rates between the discrete composite signal and the interference signal. The 

signal decorrelation caused by this difference renders the noise canceller useless after a few 

seconds of operation, and methods to  "realign" the canceller input and its reference signal 

are essential. 

The study of such methods is the subject of this thesis. Since time delay estimation is 

an inherent part of the algorithms considered in the next chapters, conventional methods to 

perform such a task are reviewed in the next section. Section 1.3 addresses briefly the subject 

of conventional adaptive filtering. The main thesis objectives are given in Section 1.4, where 

the estimator structure that is favoured all along the work is introduced. Joint estimation 

algorithms involving adaptive filters are discussed in Section 1.5. 

1.2 Conventional Delay Estimation 

The signal model, virtually always assumed in the delay estimation literature, is com- 

posed of two received noisy signals, one being a delayed and scaled version of the other, with 

additive noise processes uncorrelated with each other. As in most estimation problems, both 

open-loop and closed-loop methods have been proposed for time delay estimation. Most 

of these methods make use, either explicitly or implicitly, of the cross-correlation between 

the received signals or a filtered version of them. In the generalized correlation method, as 

discussed by Knapp and Carter [15], the two received signals are first filtered by different 

filters, and one output is delayed with respect to the other. The resulting signals are cor- 

related together, for different values of delays, until a maximum in the cross-correlation is 

obtained. This configuration is used with different filter combinations, each one emphasiz- 

ing a different characteristic of the signals. Assuming that all the signals are stationary and 

Gaussian, Knapp and Carter derive the filters giving the maximum likelihood (ML) open- 

loop delay estimator for a constant delay. These results are generalized, for time-varying 

delays, by Stuller [16] and by Champagne et al. [17]. 

For time-varying delays, Meyr and Spies [18] propose the use of the ML estimator in a 

closed-loop configuration. Using a small error signal assumption, the system is analyzed by 

convertingit into a mathematically equivalent delay-locked loop, bearing a great resemblance 

to the conventional phase-locked loop. The delay-locked loop is composed of a delay error 

generator, an integrator and a loop filter. Messer [19] analyzes the same type of closed-loop 



configuration for different kinds of delay error generator, all based on the cross-correlatio 

approach. 

Closed-loop adaptive techniques using the minimum mean squared error (MMSE) o 

the least squares (LS) criteria have been proposed by many authors. The basic configuration 1 adopted by these researchers is the system identification one. In this structure, one signal 

is processed by an adaptive system and the output is compared to the other signal, in order 

to  produce the error signal for adaptation. The conventional adaptive transversal filter 

was proposed for the modelling of the delay and attenuation experienced by the reference 

signal. This method relies on the fact that a pure time delay can be imposed on a band- 

limited continuous lowpass signal by passing this signal through a lowpass filter with a 

frequency response constant in amplitude and linear in phase [20]. This frequency response 

corresponds to a sinx/x impulse response and can be approximated by a digital finite 

impulse filter (FIR) of appropriate length. The least-mean-square (LMS) algorithm has 

been studied by Reed et al. [21] and Krolik et al. [22] for static delays and by Feintuch et 

al. [23] as well as by Youn and Carter [24] for time-varying delays. Chan et al. [25], [26] 

have considered the RLS algorithm. In these methods, the adaptive filter converges to the 

Wiener solution and a subsequent interpolation algorithm determines the delay estimate as 

the peak location of the adapted impulse response. This delay estimator is biased because 

of the finite interpolation process between the adaptive filter coefficients [27]. Note that in 

these methods, the adaptive filter converges t o  a solution that is a function of the input 

signal autocorrelation. 

In the above adaptive method, the adaptive filter identifies the channel impulse response 

(the sinx/x function) and the delay estimate is obtained by measuring the displacement 

of this response. Therefore, in order to estimate a scalar parameter, the whole weigh1 

vector must be estimated and processed. Adaptive approaches, in which the delay value is 

directly estimated, have also been proposed. These use the basic identification configuration 

described above, with the exception that the conventional adaptive transversal filter is 

replaced by an adaptive delay element. The delay is adapted directly, until the MMSE 01 

the LS solution is reached. The LMS delay adaptation algorithm has been studied by Ettel 

and Stearns [28], for integer delay values, and by Messer and Bar-Ness [29], for fractions! 

delay values. 

Instead of the MMSE criterion, Smith and Friedlander [30] consider the weighted LS 

criterion and the Gauss-Newton adaptation method for a fractional delay element. The3 

claim that the method is better suited than the LMS algorithm for time-varying delaj 

tracking. 



The delay estimations methods based on the use of a delay element are conceptually 

simpler than those based on the adaptive transversal filter, but they show one major draw- 

back; the algorithm is not guaranteed to converge to the delay corresponding to the global 

minimum of the performance surface, since this surface is not in general unimodal with re- 

spect to the adaptive delay value (it depends on the input signal autocorrelation function). 

This implies that in the case of a cold start of the algorithm, an acquisition procedure is 

necessary to bring the delay value in the vicinity of the global minimum and allow this 

minimum to be tracked by the algorithm. 

1.3 Conventional Adaptive Transversal Filtering 

Traditionally, the subject of adaptive transversal filtering has been divided into two 

subclasses, referring to the two most popular estimation criteria used in the adaptation 

algorit hm [7]. The gradient-based algorithms (steepest-descent and LMS), make use of 

the MMSE criterion, while the recursive least squares (RLS) algorithm is based on the LS 

criterion. 

The steepest-descent algorithm is based on the conventional nonlinear programming 

method bearing the same name [31]. In this method, the adaptive weight vector is updated 

using a scaled version of the gradient of the mean squared error function, with respect to 

the weight vector. The MSE function is defined as the expected value of the squared error 

between the filter output and the reference signal. This function is quadratic with respect 

to the weight vector, and its gradient is linear. The computation of the gradient requires 

the input signal autocorrelation matrix, as well as the cross-correlation vector between this 

input and the reference signal. In practice, these values have to be estimated if the SD is to 

be applied. The LMS algorithm is an attempt to simplify the gradient estimation, in which 

it is assumed that the MSE function is replaced by the squared error function. This gives 

a gradient vector estimate that is equal to minus twice the input signal vector multiplied 

by the error, which reduces considerably the algorithm's complexity. The LMS adaptation 

algorithm is therefore a stochastic gradient algorithm that is simple and reliable, and that 

has been used in many adaptive signal applications. A major problem related to the SD 

algorithm is its slow convergence properties, which are related to the magnitude of the 

smallest eigenvalue of the input signal autocorrelation matrix, as well as to the eigenvalue 

spread [6]. Methods to speed up the convergence have been proposed. In these methods, a 

form of whitening of the input signal is performed or used, in order to lower the eigenvalue 

spread. 



The above gradient-based methods are implemented, most of the time, in the time do- 

main, although various frequency-domain method have been proposed [32]. The advantage 

of this stmcture is that, for filters with a large number of coefficients, the use of fast Fourier 

transforms to convert the different signals in the frequency domain (where the adaptation 

and the filtering are accomplished) reduces dramatically the computational complexity of 

the algorithm. 

The LS-based estimation has for goal the minimization of the (weighted) sum of squared 

error over a window of increasing length. The weight is selected to be less or equal to one, 

which practically limits the memory of the algorithm and allows the tracking of nonsta- 

tionary systems and signals. The computation of the LS solution essentially involves the 

inverse of the deterministic input signal autocorrelation matrix, which is obtained under a 

form of time average. This inverse can be computed recursively in time, and gives rise to 

the recursive LS (RLS) algorithm. Because this algorithm makes use of the matrix inverse 

at each iteration, which is equivalent to an input whitening, its convergence rate is typi- 

cally an order of magnitude larger than that of the LMS algorithm [7]. The RLS algorithm 

is computationally involved and different forms of "fast" algorithms have been proposed. 

The drawback of these efficient methods is their inherent computational instability on finite 

word length processors. 

As far as tracking possibilities are concerned, the RLS algorithm, although it converges 

faster, does not seem to be superior t o  the LMS algorithm for filters of low order [33], [34]. 

1.4 Thesis Objectives 

The main objective of the thesis is to obtain and analyze some adaptive structures 

that would allow one to estimate separately the delay and the channel that link together 

two observed signals. Since conventional adaptive filter theory is fairly well understood 

and since its application gives good practical results, the new adaptive structures retain 

as much as possible the forms of the well known adaptive systems. In particular, the 

conventional estimation criteria, the minimum mean squared error criterion and the least 

squares criterion, are the main concerns of this thesis. In addition, the steepest-descent , 
least-mean-square and recursive least squares adaptation algorithms constitute the core of 

the work, as in traditional adaptive filtering theory [7]. 

These joint time delay and adaptive filtering algorithms are composed of an adaptive 

delay element [29] operating in conjunction with a conventional adaptive transversal filter. 

The delay element is essentially a delay line (implementing the integer part of the delay) 



in series with an interpolation filter [35] (implementing the fractional part of the delay 

by resampling the input signal). These new adaptive structures meet two fundamental 

objectives: first, the structure of the investigated joint estimation algorithms, although 

simple and seemingly ad hoe, follows a pattern that suggests itself in a rigorous derivation 

of the maximum likelihood joint estimator (see Chapter 2); second, the joint MMSE or 

LS estimators extend the capabilities of existing adaptive delay estimators or adaptive 

transversal filters. 

Hence, the analysis of joint algorithms, as presented in this thesis, has as an objective the 

extension of the existing adaptive filtering and/or adaptive delay estimation theories. It is 

desired to  derive the critical system parameters that govern both the convergence conditions 

and the steady-state performance of each of the joint algorithms. This theoretical objective 

motivates much of the research. Practical considerations, under the form of simulations, 

are also provided and discussed. 

1.5 A Survey of Joint Algorithms Involving Adaptive Filters 

Most of the work dealing with joint algorithms and involving a form of adaptive 

transversal filter was performed in the field of digital communications, where the adap- 

tive filter considered is a channel equalizer. Kobayashi [36] looks at the problem of deriving 

simultaneous adaptive estimation and decision algorithm for carrier modulated data trans- 

mission systems. He seeks a joint estimator for the carrier phase, the bit timing and the 

symbol recovery for different forms of modulated signals. He considers the joint maximum 

likelihood estimator for which he defines a steepest-descent algorithm that searches the ML 

performance function. 

Chang [37] considers the joint optimization of automatic equalization and carrier acqui- 

sition for BPSK signals, using the MMSE criterion and a joint steepest-descent algorithm. 

He studies the location and magnitude of the stationary points of the MSE function and finds 

that there is no local minimum or maximum and an infinitude of global minima, located A 

radians apart. He also derives necessary convergence conditions for the joint algorithm. Fal- 

coner addresses the same problem, for two-dimensional-modulated suppressed-carrier data 

signals, proposing the joint LMS carrier phase recovery and adaptive equalization algorithm 

[38], [39]. The algorithm is studied in order to establish the convergence bounds, as well as 

the response to different carrier phase excitations. 

Qureshi studies a joint timing recovery and adaptive equalization algorithm in [13], for 

partial-response systems. He proposes a joint LMS algorithm and discusses its practical 



implementation. Previously, he had considered a gradient-directed search of the error pro- 

duced a t  the output of the adaptive equalizer, in order t o  find the optimum position of the 

reference tap [40]. 

The different forms of adaptive equalizers-based joint algorithms presented above rep- 

resent the basic knowledge in the field and are expanded upon in this thesis. In particular, 

Qureshi's work is generalized in Chapter 3 and 4 (see also [41]). The convergence conditions 

and bounds are considered in details for general joint delay estimation and adaptive filtering 

algorithms. 

Recursive least squares adaptation algorithms, for the same kind of general joint adap- 

tive system, are proposed in Chapter 5 and are also discussed in [42]. 

1.6 Thesis Organization 

The thesis is organized as follows. The subject of the next chapter is the structure of 

joint time delay estimation and adaptive filtering algorithms. The problem of estimating 

the time delay and the correlation function between two received signals is introduced in 

this chapter. A mathematical model is initially discussed, and a possible form for the joint 

maximum likelihood estimator, for the time delay and the correlation function between two 

observed Gaussian signals, is presented. The joint MMSE and LS algorithms, as studied in 

the subsequent chapters, are then introduced. The objective of this brief theoretical chapter 

is twofold. First of all, the structure and interpretation of an optimum (in the maximum 

likelihood sense) processor, as derived in Appendix A, is discussed. This represents by itself 

an interesting exercise in estimation theory and the general results are new. The second 

objective of Chapter 2 is to highlight the motivation for simpler and more practical joint 

estimator structure, as studied in the subsequent chapters. 

Joint, gradient-based, MMSE time delay estimation and adaptive filtering algorithms 

are studied in Chapters 3 and 4. The MMSE theory, for joint estimation, is reviewed in 

Chapter 3 as a function of the different variants of the joint adaptive structure, and the 

joint steepest-descent algorithm is studied. In this algorithm, the derivative with respect 

t o  the delay and the gradient with respect t o  the weight vector are computed exactly. The 

convergence of the joint steepest-descent algorithm, from an arbitrary point, is studied. 

Then, the delay tracking properties are investigated, in general terms, and as functions of 

the system parameters. 

The joint LMS algorithm, in which both the adaptive delay element and the adaptive 

filter are adapted using a stochastic gradient approximation, is studied in Chapter 4. The 



convergence, from arbitrary initial conditions, is considered again, followed by an analysis 

of the conditions of convergence, in the mean and in the mean square, of both the estimates. 

The excess MSE and the misadjustment expressions resulting from the stochastic gradient 

approximation are derived for different variants of the joint adaptive structure. 

The subject of Chapter 5 is the application of the recursive least squares algorithm 

(RLS) in the adaptation of the joint adaptive structure. A new form of RLS algorithm, 

in which the adaptive filter is adapted recursively, both in time and in the optimum delay 

direction, is derived. This chapter has a structure that is slightly different than the structure 

of Chapter 4, since it is mainly oriented toward the derivation of the joint LS algorithm, 

which is much more complicated than the joint SD or LMS algorithms. The excess MSE 

and misadjustment, caused by the finite memory of the algorithm, are also computed. 

Following these theoretical chapters, Chapter 6 is more practically oriented. It presents 

and discusses the implementation of the joint LMS and LS algorithms and present numerous 

simulation results. The goal of the chapter is to confirm the applicability of the joint algo- 

rithms in different situations, and to verify the different theoretical results of the previous 

chapters. 

Finally, Chapter 7 summarizes the thesis, discusses the contributions and gives some 

future research avenues. 



Chapter 2 
Joint Time Delay Estimation 

and Channel Identification 

2.1 Introduction 

The problem of estimating the time delay and the correlation function between two 

received signals is presented in this chapter. A mathematical model for the two signals 

is introduced. A form for the joint maximum likelihood estimator, for the delay and the 

correlation function, is derived, assuming Gaussian signals. Next, joint delay estimation 

and adaptive filtering algorithms, as studied in the subsequent chapters, are discussed. The 

goal of this chapter is to present the joint estimation problem in mathematical terms and 

to discuss the relative merits of the estimation algorithms based on different criteria. 

2.2 The Mathematical Model 

Two discrete signals, yl(n) and y2(n), are assumed to be available to the joint estimation 

algorithm. The mathematical model for the generation of these signals is 

where s(n) is the transmitted stationary f signal and D, is a delay, possibly time-varying. In 

addition, CD,,h(n)(-) is an unknown linear operator, taking the form of a filtering operation, 

with the filter impulse response h(n), of a delayed by D, version of the input signal. The 

signals vl(n)  and v2(n)  are zero-mean stationary noise processes, assumed uncorrelated with 

Unless otherwise stated, stationarity means stationarity in the wide sense. 



each other, as well as with s ( n )  and C D n , h ( n ) [ ~ ( n ) ] .  A block diagram corresponding to the 

mathematical model (2.1)  is illustrated in Fig. 2.1. Note that all the discrete signals defined 

above are assumed to be the sampled versions, with sampling period T, of continuous-time 

signals that are strictly bandlimited to the frequency range -1 /2T  < f < 1 / 2 T .  

vz ( n )  
Fig. 2.1 Mathematical signal model 

It is assumed that L D n , h ( n ) [ ~ ( n ) ]  can take the two following forms: 

' L n , h ( n ) [ ~ ( ~ ) ]  = h(n)  @ s(nT - D n ) ,  (2 .2)  

corresponding to the filtering of a delayed version of s ( n )  or 

l K , h c n I ~ s ( n ) l  = h( t )  '8 ~ ( t ) l t = n ~ -  D, (2.3) 

corresponding to a filter followed by a delay. Note that the operator '8 is the convolution 

operator. The form of (2.2)  is defined as a Type I system and the form of (2.3)  as a 

Type I1 system. Note that because h(n)  and s ( n )  are the sampled version of h( t )  and s ( t ) ,  

L$ h( [ s (n)]  is also given by 
n ,  n) 

The Type I and Type I1 system models can be represented by the block-diagrams of Fig. 2.2. 

In the joint estimation problem, it is required that both the time-varying delay Dn and the 

reference filter h(n),  or its inverse h - l ( n ) ,  be estimated t. 

The mathematical model presented in this section will be used, in Sections 2.3 and 2.4, 

to derive the structures of joint estimators based on the maximum likelihood criterion [43] 

and on the minimum mean squared error and least squares criteria [7] .  
- - 

Note that the inverse of any linear filtering operation h(n)  is denoted as h-'(n).  Therefore h ( n )  8 
h-'(n)  = 6(n).  



s(n) 4 Dn 1 Line- 
Filter h(n)  

(b) 
Fig. 2.2 System models of interest; (a) Type I model, (b) Type 11 

model 

s(n) 

2.3 The Joint Maximum Likelihood Estimator For a Type I System 

The ML estimator has been derived by a few authors, for the identification of a pure 

delay between two Gaussian signals [15], [16], [17]. New results, concerning the generaliza- 

tion of the pioneering work appearing in these articles, are presented in this section. The 

derivation of these results, mainly concentrated in Appendix A, is accomplished by using 

basic tools in estimation theory [43]. The resulting form of the joint ML estimator provides 

the motivation for simpler and more practical joint estimator structures, as presented in 

Section 2.4 and studied in the subsequent chapters. The ML estimator for a finite observa- 

Linear 
Filter h(n)  

tion time is presented in the next subsection and its extension for long (infinite) observation 

interval is discussed in Subsection 2.3.2. 

2.3.1 The Joint ML Estimator for Finite Observation Interval 

. 

The parameter estimation model of (2.1) is utilized with CD,,h(n)[s(n)] given in (2.2). 

The signal s(n) is assumed to be the sampled version of a continuous-time sample function 

s(t), from a stationary zero-mean Gaussian random process with an autocorrelation function 

defined as &,(T). The discrete-time noise processes vl(n) and v2(n) are sampled version of 

zero-mean statidnary continuous-time Gaussian noise processes, assumed white with power 

spectral density N,/2 W/Hz. Hence, the discrete-time noise processes have the following 

autocorrelation functions 

Dn -'b(,,h(n)[s(n)l 



with 6 ( k )  defined as 
1 for k = 0 

S(k) = 
0 otherwise. 

For the analysis, the reference delay Dn and the reference filter h(n) are also assumed to be 

constant with time. Note that the assumption of equal noise variances, although seemingly 

artificial, is a common one in the delay estimation literature. Furthermore, in the case of 

the derivation of the ML receiver, it simplifies considerably the computations. 

The objective is to derive an estimator producing the estimates of D and h(n), defined 

respectively as d and w(n), that maximizes the likelihood probability of the observed signals 

yl(n) and y2(n), over a certain discrete-time interval [nl, n2]. In order to  perform this task, 

the mathematical model of (2.1), given some values d and w(n), is expressed in the following 

where the vectors are defined as 

~ ( 4  = [;;;;;I 

The vector w is defined as the assumed reference filter weight vector, whose components 

are the samples of the impulse response w(n). The ML estimation problem is therefore the 

same as computing and maximizing the likelihood probability of the received vector y(n), 

given the parameters d and w, over an interval [nl,n2]. Since all signals are Gaussian, 

this is equivalent to the computation of a log-likelihood function t(d, w). The derivation of 

this likelihood function is given in Section A.l of Appendix A, using a vector form of the 

Karhunen-Ldve decomposition [43]. The final form of this function is found to be the sum 

of a noncausal term ey(d, w) and a bias term tB(d, w). Therefore, 

and 



In (2.12), Q2(n, mld, w) is the matrix impulse response of the noncausal linear MMSE point 

estimator of s(n(d, w), from the received vector y (n), given the parameters d and w [43]. It 

is given by the solution of the "normal" equation 

for n l  5 n 5 n2,nl 5 m 5 7x2. The matrix es(kld, w) is the covariance matrix of the 

vector s(n)d, w), defined as (s(nld, w) is zero-mean) 

where H denotes complex conjugate transpose. In (2.13), X;(d, w) is the i th eigenvalue of 

*s(kld, w). 

The form of the joint ML estimator, based on the above definitions, is given in Fig. 2.3. 

It is a noncausal processor, and a causal estimator can be obtained by delaying the matrix 

impulse response and the input vector by a value equal to the estimation interval N = 

n2 - n l  + 1, as shown in Fig. 2.4. The response Q2(n - N, mld, w) is defined over nl  + N 5 

n 5 n2 + N,nl 5 m 5 n2 and the bias term has to be delayed accordingly. Note that 

the form of Figs. 2.3 and 2.4 is only one. possible realization of the ML estimator and that 

other structures are possible [43]. The form of Figs. 2.3 and 2.4 is similar to the canonical 

realization number 1 of [43] and [16]. 

yl (n) &(n)  ' 1 - Linear MMSE 6 E n ,  
[ ( d l  w )  

estimator - 
y2(n) _ Q 2 ( n l  mid,  w )  

Fig. 2.3 Blockdiagram of the noncausal joint maximum likelihood 
estimator (canonical realization number 1) 

The computation of the likelihood function can be expressed in a more appealing form 

by assuming that the observation time is long compared to length of the impulse response 

of the receiver. This is done in the next subsection. 



y l ( n )  
Linear MMSE 
estimator 

Y"") , 
Q2(n  - N ,  mid, w) 

* 

Fig. 2.4 Blockdiagram of the causal joint maximum likelihood 
estimator (canonical realization number 1) 

2.3.2 T h e  J o i n t  ML Est imator  for   on^ Observation Interval 

The assumption of long (infinite) observation interval simplifies the computation of the 

likelihood function l(d, w) by allowing the use of time-invariant filters and frequency domain 

relationships. This assumption is of practical importance because if the observation time is 

long compared with the time necessary for the system transients to die out, the estimator 

performs close t o  optimum [44]. The assumption of infinite interval is only used to solve 

the integral equations of the form of (2.14). The resulting receivers are still used over the 

interval [nl , n2] t . 

2.3.2.1 T h e  Func t ion ly (d ,w) fo r  Long Observa t ionIn te rva l  

Note that Champagne et al. [17] use a dimensionality reduction technique that eases the solution of 
the integral equation, in the case of pure time-delay estimation, and leads to a signal processor form 
that computes exactly the ML pure time-delay estimator over an arbitrary observation interval. 

- 15 - 



with I representing the 2 x 2 identity matrix. 

Taking the Fourier transform and solving, the frequency domain solution is the matrix 

transfer function given by 

~ ~ ( e j ~  Id, w) = +,(ejwld, w)i$(Pwld, w). (2.18) 

Solving the above equation and using the result in (2.12) gives, after some manipulations 

(see Section A.3 in Appendix A) 

&(d, w) =1/2No C[+nlw)  B yi(nT - d)lydn) 
n 

+ 112NO C [ ~ ( n l w )  8 cw(n) 8 Y ~ T  - d)lyi(n) 
n 

+ WNO C [ W w )  8 w(n) 63 yl(n)ly;(n) 
n 

+ 1 / 2 ~ 0  C [ q n l w )  8 44 8 yz(n)lyi(n), 

where 

and F[-] is the Fourier transform operator. 

2.3.2.2 Approximate Joint Maximum Likelihood Receivers 

A possible realization of the receiver, based on (2.19) is illustrated in Fig. 2.5. This 

receiver is suboptimal, but the approximation becomes better when the observation interval 

increases. 

The open-loop estimator operates as follows: for each possible value of d and w(n) in a 

range of values, the likelihood l ( d ,  w) is computed over the interval [nl , nZ] , 
using the processor of Fig. 2.5. The estimate (B, 6) is the pair corresponding to the likeli- 

hood maximum, over the range of values considered. In open-loop operation, the estimator 

is therefore conceptually made of a number (possibly infinite) of receivers operating in par- 

allel. Every one of these parallel receivers effectively computes the likelihood of a certain 

couple. By quantizing the range of possible solutions, the number of receivers is reduced 

from an infinity to a finite number (although very large in the case of a multicomponent 

vector w) [43]. 



Fig. 2.5 Blockdiagram of an approximate noncausal joint maximum 
likelihood receiver 

2.3.2.3 Adaptive Maximum Likelihood Estimation 

-- The open-loop estimator described above can, in theory, be made adaptive in several 

ways. This is desirable because the number of parallel receivers, in the open-loop estimator, 

would dearly be too large for any practical channel h(n). Iterative search procedures, 

based on different forms of descent algorithm, can be used for the computation of local 

solutions [31]. These algorithms can also form the basis of suboptimum processors, for 

on-line estimation of D and h. 

Consider the noncausal joint ML receiver of Fig. 2.5. This receiver computes the like- 

lihood function for a block of data, which is assumed large compared to  the time necessary 

for the system transients to  die out. It makes use of noncausal filters, i.e. at  any iteration 

n, the output of the receiver is function of future input data. The estimation can be of 

the block type, in which the likelihood function is computed for fixed blocks of data and 



the estimated values updated on a block-by-block basis. Within the ith block, the values 

of D and h can be estimated by performing an exhaustive search independent of the values 

estimated in the previous blocks, or by performing a limited search, based on some of the 

information obtained previously. Since the likelihood function for the ith block, denoted 

di) (d ,w) ,  is generally multimodal with respect to both d and w, the latter procedure is 

preferable. Because di) (d ,  w) is a random variable, the search should perform a form of 

average over the blocks. The update formulas can take the form of a general joint algorithm 

where the functionals f(-) and g(.) are updating directions. These functionals may be 

defined, for example, as 

j(w('), di)(d,  w)) = max E[di)(d,  w)] for w E Rw(i + 1) 
W 

(2.26) 
g(d('), di)(d,  w)) = max E[di)(d, w)] for d E Rd(i + I), 

d 

where the parameter ranges Rw(i f 1) and Rd(i f 1) are defined in relation with w(') and 

d(i) respectively, in order t o  narrow down the range of possible values for (d('+l), w('+l)). 

The information from the previous block is therefore utilized to  limit the range of parameter 

search in the actual block. 

Another definition for the functional could be 

f ( ~ ( ~ 1 ,  di)(d,  w)) = w(') + p vw ~ [ t ( ~ ) ( d ,  w))] 

g(d('), di)(d,  w)) = d(') + (Y 
a ~ [ d ~ ) ( d ,  w))] 

a d  7 

where p and a are small positive gain factors. This algorithm is a form of block joint 

steepest-descent algorithm applied on the likelihood function [31]. Note that the derivative 

information is added to  the previous estimate value since the objective function di)(d,  w)) 

must be maximized. 

The receiver of Fig. 2.5 can be made causal by delaying the two input signals by a 

suitable number of samples. In this case, the likelihood function at iteration n, denoted 

&(d, w), can be computed by using data only available a t  this time, and a sample-by-sample 

search can be performed. It can be of the form 

where a joint steepest-descent search is used to update the estimates at every iteration. This 

algorithm should converge asymptotically to  a solution corresponding to  a local maximum 



of the objective function. It has also the potential to track the variations of the parameters 

with time. 

Another form of adaptive ML estimator can be based on an hybrid system, in which 

a coarse open-loop block search is first performed and is followed by a closed-loop search, 

around the values estimated in the open-loop search [43]. 

2.3.3 Discussion 

Different forms of the joint maximum likelihood estimator, for time-invariant reference 

delay and filter, have been derived in the above subsections. Every one of these forms is, 

without exception, difficult to implement. They involve the solution of integral equations, 

and the number of components in the vector w complicates even more any joint open-loop 

estimator. A closed-loop (adaptive) estimator reduces considerably the latter problem, at  

the expense of introducing convergence inaccuracies (convergence to local solutions). A 

hybrid system appears to be the best solution, at  least conceptually. But the complexity 

inherent to the receiver of Fig. 2.5, and the computation in real time of the bias term remain 

problematic. 

Nevertheless, the structure of the ML receiver is of interest. First of all, note that if 

the reference filter is absent, the receiver reduces to a cross-correlation receiver identical 

to the ML estimator for pure time delay estimation. When the reference filter has to be 

estimated, the joint ML receiver performs three distinct functions. First, it delays and 

filters the received signal yl(n) before it correlates it with yz(n). Secondly, it performs 

two extra correlations, in the lower two branches of the receiver. Finally it computes and 

adds the bias term. Considering only the first function, the form of the receiver is that 

of a delay element in cascade with a group of filters, both applied on one of the received 

signals, followed by a comparison (correlation) with the other received signals. This form 

is appealing and can be retained in other types of joint estimators. 

It seems therefore appropriate to  consider simpler joint estimators based on different 

criteria and exhibiting the aforementioned form. These more practical estimators are the 

subject of the next section, as well as the main subject of this thesis. 

2.4 The Joint MMSE and LS Estimators 

Taking into considerations the .previous discussion, a form for the joint adaptive es- 

timators, based on the MMSE or the LS estimation criteria, is readily obtained. It is 



composed of an adaptive branch, with an adaptive delay element connected in cascade with 

and adaptive filter, and of a reference branch used to generate an error signal. The adaptive 

branch is either in Type I or in Type I1 configuration, and is used to estimate jointly the 

reference delay D, and the reference filter h(n),  or their inverses. If the reference branch 

is estimated, the configuration is the cancellation one, illustrated in Fig. 2.6. If the inverse 

of the reference branch is desired, the equalization configuration, as shown in Fig. 2.7, is 

used. In terms of adaptive delay and filter, Figs. 2.8 gives a detailed form of a Type I 

joint estimator in cancellation configuration. Note that the cancellation of a certain Type 

of system (I or 11) is always performed by an adaptive system of the same Type, while 

the equalization is accomplished with the other Type. In the rest of this thesis, whenever 

it is question of a certain Type of configuration performing a certain task (cancellation or 

equalization), the system to cancel or equalize (the reference system) is of this Type and it 

is implicitly assumed that the adaptive system has the proper structure. If it is clear that 

a specific branch or system (adaptive or reference) is used, then the Type applies to this 

specific system. 

Fig. 2.6 System identification (cancellation) configuration 

These joint time delay estimation and adaptive filtering algorithms may be used in 

any application where both the reference delay and filter must be estimated. They may 

also find some applications in different areas of adaptive signal processing, especially in 

the enhancement of already existing techniques involving adaptive filters. The addition 

of an adaptive delay element to  the usual adaptive filtering operations can improve the 

conventional adaptive parameter estimation techniques that would otherwise be of limited 

usefulness. In order to  appreciate this fact, an adaptive filtering application, in which the 

input signal and the reference signal exhibit a different sampling rate, is considered in the 

next subsection. 



Fig. 2.7 Inverse filtering (equalization) configuration 

. - 

Adaptive y(n> 
D. 

Filter w ( n )  
- 

J 
el + X 

- 

Reference 
;- D, yz(n) = r (n )  

Filter h(n)  . 
Fig. 2.8 Type I systems in cancellation configuration 

2.4.1 T h e  Sampling R a t e  Difference Problem in Adaptive Filtering 

An adaptive system in which the input signal and the reference signal exhibit a different 

sampling rate may take different forms. One of these possible configurations is given in 

Fig. 2.9, where noiseless conditions have been assumed. The input signal s(n) and the 

reference signal rl(n) are sampled at the same rate. A time-variant sampling rate conversion 

is applied on rl(n), i.e. the uniformly sampled signal rl(n) is ideally interpolated and 

resampled with a nonuniform sampling period T1(i) = TX(i) ,  for 1 5 i 5 n and X(i) a real 

number. 

In such a system, the input signal autocorrelation matrix R, defined as 



- 

Fig. 2.9 Adaptive system with sampling rate conversion 

r'(n) = r(nT) 

is constant for a stationary input signal. The cross-correlation vector pn, defined as 

Pn = E[s(n)r*(n)l 

1 

Adaptive 

algorithm 
4 

? 

Sampling rate 

Conversion X(n) 

= dsr  [ ( n  - l )T - C ~ ' ( i ) ] ,  
i= 1 

s(n) = s(nT) 
- 

~ ( n )  = r(Cy='=l T1(i)) 

- - 

where &(r) is the continuous complex cross-correlation function between the jointly sta- 

tionary continuous signals s ( t )  and r ( t )  and T 1 ( i )  is the reference branch sampling period 

at  the i th  sampling instant. The continuous cross-correlation function is defined as 

d s r ( 7 )  = E [ s ( ~ ) T * ( ~  - T ) ] ,  (2.34) 

and, for wide sense stationary signals, is a function of r only [45]. Equation (2.33) can be 

written as 
n 

FIR 
Adaptive Filter 

w, (Length: M)  

is a function of time. This is the case since the ( I  + l ) th  component of p, is given by 

E [ s ( n  - l ) r * ( n ) ]  

, E[s (n  - M + l ) r * ( n ) ] ,  

(2.31) 
7 



which shows clearly the dependence of p on n. If X(i) = 1 for all i ,  there is no sampling rate 

conversion and p is not time-varying. This shows that even if the sequences s(n) and r(n) 

are individually stationary (when X(i) is a constant for all i), they are not jointly stationary 

when the sampling period ratio X is different from one. 

Using the notation of [7], the output of the adaptive filter is defined as 

The MSE function, defined as En = ~ [ l e ( n ) l ~ ] ,  is then of the form 

where c$,,(O) is the reference signal variance. Considering Wiener filter theory [43], the 

weight vector minimizing the MSE at  time n is [7] 

The MMSE weight vector is obviously time varying, i.e. the quadratic performance surface 

is time-variant. Because the matrix R is constant, its eigenvalues and eigenvectors are 

constant and the quadratic performance surface is constant in shape, but varies its position 

with time. If, for example, the sampling rate ratio X is constant and different from one, 

and if it is assumed that & ( T )  + 0 as T -t m, then limn,, p, = 0 and wopt(n) -t 0 as 

n -+ oo. This particular case illustrates the limiting situation where the filter input and 

the reference signal are totally decorrelated and the adaptive filter is virtually useless. A 

similar situation happens when the adaptive filter time span is larger than the maximum 

time lag for which the filter input and the reference signal are correlated. 

This decorrelation between s(n) and ~ ( n )  is equivalent to a time-varying delay, which 

can be computed as follows. Assume that for some integers M and K ,  the following relation 

is true 

i.e. ~ ( n )  and s(n) are time-aligned a t  time KT. Then, for n = h' + I, r (n )  is 

and s(n) is 

s ( K  + I )  = s ( K T  + IT). 



Then r(n)  lags s(n) by the time-varying value D, = T(1- '& X(1T + i)). An additional 

adaptive delay element, connected in Type I or in Type I1 configuration with the adaptive 

filter, can therefore make viable the original adaptive solution by compensating for the 

sampling rate difference. An adaptive system, in cancellation mode and corresponding to a 

Type I configuration, is illustrated in Fig. 2.10. Note that the reference branch in Fig. 2.9 is 

of Type 11. Note also that if the reference delay D, is constant with time (i.e. the sampling 

rates are the same), the two types of systems are equivalent t. 

Fig. 2.10 Type I adaptive system with sampling rate conversion 
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2.4.2 Discussion 

1 

The form of joint MMSE or LS estimators that is favoured in this thesis has been 

introduced. It has the advantage to  be very simple since it essentially mimics the form of 

the operator .LD,,,(,)(.). Its basis is the conventional adaptivefilter, using the MMSE or the 

algorithm 

LS estimation criteria. The combination of an adaptive delay element and an adaptive filter 

Adaptive 
algorithm 

constitutes by itself a joint delay estimation and channel identification technique that can 

4 

s(n)  = s(nT)  - 

be compared to  any other form of such joint estimator, in particular the joint ML estimator 

! 

w dn 

t If the sampling rates are different, the sampling rate conversion is equivalent to a linear time-variant 
system and such systems are not, in general, commutative. Types I and I1 are therefore not equivalent 
in this general case. 

Adaptive e(n> 

Filter w, . 

- Sampling rate 
Conversion X(n) - 

- h(n)  



derived in Section 2.3. But it constitutes also an improved version of the conventional 

adaptive filter, which increases its potential utility. 

2.5 Summary 

Three structures for performing joint time delay estimation and channel identification 

have been presented. A mathematical model for the received pair of signals has been 

introduced. The joint maximum likelihood estimator for Gaussian signals has been derived 

and its limited practical utility discussed. The ML estimator has been used to  specify 

a simpler joint estimator structure, composed of an adaptive delay element operated in 

conjunction with an adaptive filter. The MMSE and the LS estimation criteria are well 

suited for that new structure. It was finally noted that the joint delay estimation and 

adaptive filter algorithm can also be considered as an enhanced version of the conventional 

adaptive filter. 



Chapter 3 

Joint Time Delay Estimation and Adaptive 

Minimum Mean Squared Error Filtering: 

The Joint Steepest- Descent Algorithm 

3.1 Introduction 

This chapter presents an analysis of joint delay estimation and channel identification 

based on the minimum mean squared error (MMSE) performance index, when the chan- 

nel identification is specifically performed by an adaptive transversal filter and the delay 

estimation is accomplished independently from this filter, by an adaptive delay element. 

A joint steepest-descent algorithm is investigated here and a joint LMS algorithm will be 

considered in Chapter 4. 

The principal contributions of these two chapters are the generalization of existing 

gradient-based time delay estimation without the reference filter h(n),  and the analysis of 

a new joint algorithm for the synchronization of the input and the reference signals used 

by an adaptive filter. The joint steepest-descent and LMS algorithms are generalizations of 

joint clock phase recovery and adaptive equalization based on MMSE phase tracking. This 

generalization is based on the facts that the sampling period and the sampling phase are 

tracked, and that the signals considered are general and not limited to data signals. These 

joint algorithms assume generally that the input signal and the reference signal fed to an 

adaptive filter are not sampled with the same clock period. They also allow the tracking of 

time-varying delays, in the reference path, by a process separated from the adaptive filter, 

which itself is free to perform the task of modeling the linear filter h(n) or its inverse. The 

material presented here and in Chapter 4 expands upon the work published in [13] and [29]. 



The chapter is structured as follows. Some general theoretical concepts are presented 

in Section 3.2. In particular, the minimum mean squared (MSE) function is derived in 

general terms and a derivative-based search of its minimum, with respect to the adaptive 

delay, is discussed. These general concepts are then applied in Section 3.3, where the 

joint SD algorithm is considered in some details. Finally, the theoretical results derived in 

Sections 3.2 and 3.3 are applied to some special cases in Section 3.4. 

3.2 General MMSE Theory 

R e c d  that the model studied is (see Section 2.2) 

Recall also that, depending on the problem at hand, the operator cDnlh(,)[s(n)] can take 

the form of the filtering of a delayed version of s(n) or the form of a filter followed by a 

delay. The former configuration is defined as a Type I system and the latter as a Type I1 

system. These two definitions also apply to the joint adaptive estimator. Note that the two 

types of systems are equivalent if the corresponding delay is constant with time. 

The adaptive filter is a transversal filter, with a weight vector w, of length M. The goal 

of this filter is to estimate the impulse response h(n) or its inverse. It is desired that the 

reference delay value D, be estimated separately from the adaptive filter, by an adaptive 

delay element d, cascaded with the filter in Type I or Type I1 form. In joint MMSE 

delay estimation and adaptive filtering, the mean squared error surface is searched by both 

the adaptive filter estimation algorithm and the delay estimation algorithm. In system 

identification (cancellation) scenarios, yl(n) is filtered by an estimate of )CDn,h(n)[s(n)] 

and the resulting signal is subtracted from y2(n), in order to form the error signal. In 

inverse filtering (equalization), y2 (n) is passed through an estimate of C-Dn, I(,) [s(n)] 

and compared to  yl(n). This was illustrated in Figs. 2.6 and 2.7. 

3.2.1 The Mean Squared Error Function 

In general, the output of the adaptive branch can be defined as y(n) and the reference 

signal as ~ ( n ) .  Then the error signal is defined as 



and the MSE function, a t  time n, as 

The joint estimation can be thought of as taking place in a vector space made of a weight 

vector subspace and a delay subspace. The two subspaces are not orthogonal, which implies 

that the two estimation processes are not independent (because the adaptive filter can model 

a reference delay). 

The MSE function, for all possible combinations of configurations (cancellation or equal- 

ization in Type I or Type II), can be represented by a general expression. In order to do so, 

define as u(n) the input to  the adaptive branch, whether this branch is in Type I or Type I1 

configuration. The output of the adaptive branch is y(n) and the reference signal is r(n) .  

This is illustrated in Fig. 3.1. 

Adaptive 
Filter w ( n )  

('4 
Fig. 3.1 General model for (a) a Type I adaptive system and for (b) a 

Type I1 adaptive system 
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Assume also that a correlation function cbab(n, m), betweer wo discrete signals a(n) 

and b(m), is defined in terms of the correlation function betweeri . :;e continuous signals a( t )  

and b ( t )  as 

= 4,b(nT + An,mT + Am), 

where An and Am are the delays imposed on the continuous signals at iterations n and 

m t. 

The MSE function can then be represented by either one of the following equivalent 

eauat ions 

where Re[-] is the real value operator, &, (n, m) and dyy (n, m) are respectively the a u t e  

correlation functions of the reference signal and the adaptive branch output, by,(n, m) is 

the cross-correlation function between this output and the reference signal, R, is the au- 

tocorrelation matrix of a delayed version of the adaptive branch input u(n) and pn is the 

cross-correlation vector between the same delayed input and the reference signal. Finally, 

wdn is a delayed version of the weight vector w,. 

The autocorrelation matrix and the cross-correlation vector are then expressed as 

where u, is the equivalent vector of delayed input samples, stored at  iteration n, in the 

adaptive filter delay line. For a Type I adaptive system, this vector is 

For a Type I1 system, u, is 

Similarly, the weight vector is given by 

W, = w(nT) Type I 
Wdn = (3.10) 

W,T-& = w(nT - d,) Type 11. 

t The difference between a discrete and a continuous correlation function is not explicitly denoted oth- 
erwise than by using discrete or continuous time arguments. 



Note that, as with all signals and systems, the adaptive filter transfer function is assumed 

strictly bandlimited t o  - x  < w < n. The vector w(nT - d,) is therefore obtained by resam- 

pling a t  nT - d, the continuous version of w(nT). Note also that the above relationships 

are true if the output of the adaptive branch is defined as 

Some other variations of Type I and I1 adaptive systems, for which the MSE function 

form of (3.5) applies, can also be defined. For example, a modification of a Type I system 

is one in which the delay d, propagates instantaneously through the adaptive filter delay 

line, i.e. where u, is represented as in (3.9). In Type I1 configuration, it is possible 

to transfer the adaptive delay to the reference branch. For the cancellation of a Type I1 

configuration, this means that a negative delay d, is applied in the reference branch, instead 

of a positive delay d, in the adaptive filter branch. Such a system is illustrated in Fig. 3.2 

and is called a Type II-DRB (delay in reference branch) system. For the equalization of 

a Type I configuration, the adaptive delay can be made positive in the reference branch, 

instead of being negative in the adaptive branch. These particular adaptive Type II-DRB 

configurations have the advantage that wd, = w, and will be preferred in practice. The 

Type I1 adaptive system with a delay in the adaptive branch is called a Type II-DAB 

adaptive system. Note that a signal s(n) that enters a delay d, always becomes s(nT - d,), 

and it is the sign of d, that indicates if the signal is retarded (positive sign) or advanced 

(negative sign). Finally, note that a negative delay is always implemented as a portion of a 

positive reference delay, and corresponds to  a decrease of this reference delay. 

Reference 
ir 

Filter h(n)  

Fig. 3.2 Type I1 systems, with negative delay, in cancellation 
configuration 



The two forms of t,, given in (3.5), reflect the nature of the joint estimator operation. 

In the weight vector subspace, associated to  the first equation of (3.5), the MSE function 

is a quadratic surface [7]. The one-dimensional delay subspace is naturally linked to  the 

correlation functions of the second equation of (3.5). The MSE function is not, in general, 

unimodal with respect to d,. In order to see this, note that t, depends on correlation 

functions that  vary according to the adaptive filter and the operator C[s(n)], as well as 

to the autocorrelation function of the signals v(n) and ~ ( n ) .  All of these functions are 

multimodal with respect to their time argument, which in turn causes the MSE function to 

behave similarly with respect to d, and produces a multitude of local extrema. 

3.2.1.1 The MSE Function for Specific Configurations 

The MSE function is explicitly derived below, for the two Types of joint adaptive 

configurations. The resulting expressions are instructive in that they show the relationship 

between the adaptive filter coefficients and the different correlation functions involving the 

time-varying delays. Note that the derivations are performed as functions of the general 

signals u(n), y(n) and ~ ( n )  defined above, and apply to  both the system identification 

(cancellation) and inverse filtering (equalization) configurations. 

Type I Adaptive Configuration 

Using the second equation of (3.5), the MSE function is 

where w,, is the i th component of the adaptive filter weight vector w, at time n. 

Type 11-DAB Adaptive Configuration 

The MSE function is 

where w(,~-d, , ) i  is the i th component of the delayed adaptive filter. 

Note the effect of the adaptive delay in these two configurations, in particular in the 

Type I1 structure, where the adaptive filter coefficients are directly affected by the delay. 



T y p e  11-DRB Adapt ive  Configuration 

In a modified Type I1 structure, as shown in Fig. 3.2, the delay is applied on the 

reference signal only and the MSE function is of the form 

The above expressions will be applied, in the subsequent sections, to the mathematical 

model of (3.1), used in the cancellation and equalization configurations. 

3.2.2 Derivative-Based Delay Estimation 

As argued in Subsection 3.2.1, the MSE function is multimodal with respect to the 

delay d, (consider (3.12) to (3.14)). This causes a problem in the search for the minimum 

of en with respect to d,. In closed-loop estimation, this phenomenon leads to false lock 

problems, as in phase-locked loops. These problems are generally solved by designing an 

acquisition procedure, in which the delay estimate is varied until the algorithm falls in its 

tracking region, near the MSE global minimum. Once in tracking mode, the estimation 

algorithm can compute the derivative of the MSE function with respect to the delay value, 

and generate a correcting signal that brings the loop into lock. This is the essence of most 

closed-loop MMSE methods proposed for the simple signal model in which 

A general form of the derivative-based delay estimation algorithm can be such that dn is 

updated using a function f (-) of the previous delay estimate values, as well as a function of 

the MSE surface. This form can be expressed as 

where 7n(.) represents the MSE function or an estimate of it at time n and g(.) is a func- 

tional that effectively computes a form of derivative of y,(*), with respect to  d,. Note that 

7n(.) is a function of n not only through d,, but also through w, and h(n). The form 

of (3.16) is motivated by existing recursive optimization algorithms [31] or recursive sys- 

tem identification algorithms [4]. Assume that f(.) and g(.) are real coefficients difference 



equations of the form 

Then, dn is updated using a filtered version of the previous estimate values, as well as a 

filtered version of the previous derivatives. This form is 

In a first-order algorithm, co = 1, a0 = a and all the other coefficients are zero. This 

transforms (3.19) into the steepest-descent or the LMS algorithm, having the form 

A common assumption in the analysis of tracking algorithms is that the estimate is 

close to the opt2mum value, which allows the linearization of the tracking loop [46], [29]. 

The Taylor expansion of yn(d,), around dn = On, is 

where the dot denotes the derivative with respect to  d,. Assuming that On is close to a 

minimum (local or global) of the MSE function estimated by yn(dn), the higher terms are 

neglected and the error function can be expressed as 

This approximation is used in order to linearize the delay estimation algorithm. In delay 

tracking conditions, the linearized general algorithm is obtained by combining (3.19) and 

(3.22), and assuming that jn(On) a 0 t. It is given by 

t Note that this assumption is true when y,(dn) is the MSE function and On is a minimum, but that it 
can be false if a stochastic approximation of the MSE function is used. 
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The linearized first-order algorithm is 

which can be written as 

Equation (3.25) models the behaviour of a first-order delay-lock loop [46]. The variations of 

On represent the variations of the minimum tracked by the loop and ?,(On) represents the 

loop delay error generator characteristic for that minimum [19], i.e. the function of On by 

which the loop error is multiplied. At iteration n, (3.25) approaches the closest minimum 

On if 11 - cryn(On)l < 1, i.e. if 

3.2.2.1 A Restricted Class of First-Order Delay Tracking Algorithm 

The expression (3.25) is a linear difference equation with time-varying coefficients, which 

makes difficult any convergence and stability studies. It is a function of the variations with 

time, of both the error function yn(.) and the value On. A restricted class of problem 

allows the derivation of useful results. In this class, i t  is assumed that the function yn(On) 

is constant. This assumption implies that the delay error generator characteristic is not 

influenced by the adaptive or reference filters changing characteristics, nor it is by On. 

Then, the first-order difference equation has for solution 

Equation (3.27) converges if 11 - a71 < 1, i.e. for 

The time constant of delay adaptation can be defined by fitting the geometric ratio 1 - aj; 
to  an exponential with time constant rdel 

x 1 - l/rdel. 

The time constant of delay adaptation is therefore 



3.2.3 Discussion 

Some general results have been established in this section. The effect of the adap- 

tive delay on the MSE function was shown to be dependent on the structure used in the 

estimation. If a Type I adaptive system (delay in front of filter) is such that the delay 

d, propagates instantaneously through the adaptive delay line, or if the adaptive delay is 

transferred t o  the reference branch in a Type 11-DRB adaptive configuration (delay after 

filter), then simplified expressions result. By using a truncated Taylor expansion of an esti- 

mate of the MSE function, it is possible to obtain general results about the adaptive delay 

steepest-descent algorithm. In particular, by restricting the second derivative of the MSE 

function estimate to  be constant, the gain factor range insuring convergence of the adaptive 

delay SD algorithm can be computed, as well as the algorithm time constant. This special 

case is not too restrictive and is applicable to  systems in which the reference filter h(n) 

varies slowly, in tracking mode. These results will be used in the subsequent sections with 

the function yn(.) specific to the joint steepest-descent algorithm. 

3.3 The Joint Steepest-Descent Algorithm 

The simplest joint derivative-based algorithm is the first order one, which is composed 

of the usual steepest-descent (SD) adaptive filter, of the form 

and of the SD adaptive delay algorithm, expressed as 

Note that (3.31) is just equation (3.20) with 

The combination of (3.30) and (3.31) allows some extra flexibility in the application of 

the joint SD algorithm. Define <{dn7 wdn) as the MSE function for specific values of the 

adaptive delay and weight vector. Then the adjustments of d ,  and w, can be based both 

on (idn,  wdn), giving the following form of joint SD algorithm 



The adaptive weight vector can be adjusted before the delay adaptation, producing the 

algorithm 

or the delay element can be adjusted before the filter adaptation, giving 

The algorithms of (3.33) to (3.35) can be generalized even further by allowing repeated 

adaptations on the same input data, which is referred to as data reuse [47]. This offers a large 

number of possibilities for the alternation of the two adaptive processes. The algorithms 

(3.33) to (3.35) will be the only ones considered in this chapter and the algorithm (3.33) 

will be referred to most of the time, when the expression "joint SD algorithm" is used. The 

two special forms of (3.34) and (3.35) will be called the joint alternate algorithms. 

The convergence of the joint SD algorithm is considered in the next subsection. Then, 

Subsection 3.3.2 treats of the delay tracking properties of the algorithm. 

3.3.1 Convergence of the Joint SD Algorithm 

A necessary condition for a specific dn and w, to be a stationary solution of the algo- 

rithms (3.33) to  (3.35) is that both of the following equations be satisfied [37] 

This condition is general and applies to any type of adaptive structure. Note that the first 

equation of (3.36) is in fact a necessary and suficient condition for convergence. This is so 

because fn is quadratic with respect to wd,, which implies that there is a unique minimum 

in wd,, for a given value d,. When the first equation of (3.36) is satisfied, this unique 

solution is attained, and any further modifications of d, will increase &,. This is the case 

because the adaptive filter models both the relative delay and the reference filter in the 

minimum MSE sense. Then, this solution corresponds also to  a minimum with respect to 

d,. The sufficiency of the condition is due to  the uniqueness of the minimum with respect to 

wd, . A better idea of the convergence properties of the joint SD algorithm can be obtained 

by assuming a particular Type I or Type I1 structure. 



3.3.1.1 Convergence Results for Particular Structures 

Assume an adaptive Type I configuration in which the delay d ,  propagates instanta- 

neously through the adaptive filter delay line, or an adaptive Type 11-DRB configuration in 

which the adaptive delay is applied to the reference branch, as in Fig. 3.2. In this case, the 

first equation of (3 .5)  is such that the input signal autocorrelation matrix is constant and 

the adaptive weight vector is not function of the delay d,.  Furthermore, assuming that the 

reference filter is stationary, q5,,(nT - d, ,  nT - d,) = &,(0) and is not function of d,. The 

necessary condition of (3.36) reduces to 

i.e. the weight vector solution is the Wiener solution when the delay d ,  is such that w, is 

orthogonal to p, or the product w f p ,  is purely imaginary. Note that the solution of (3.37) 

is not unique, which constitutes one of the most important characteristic of the joint SD 

algorithm. This shows again the need for an acquisition algorithm that brings the estimates 

close to their global optimum, before any tracking algorithm takes over. 

The cross-correlation vector p, is a function of the cross-correlation function between 

the delayed input signal and the reference signal. Its components are in fact the samples of 

the corresponding continuous cross-correlation function. This forces the vector p, to follow 

a path, in the weight vector subspace, specified by the cross-correlation function and makes 

the weight solution R - ~ ~ ~  a member of a specific subset of the weight vector subspace. In 

order to see the nature of the solution in the delay subspace, express the MSE function as 

where the reference filter has been assumed stationary. 

If the first condition of (3.37) is respected, the MSE function becomes 

The second condition of (3.37) is respected if dn is a minimum of t o (d , ) ,  which is function 

of the cross-correlation between the delayed input signal and reference signal. 

Therefore, in order to be a stationary solution, the couple (dn, w , )  must be such that 

d, is a minimum of eo(dn) and w, is given by R - ~ ~ ,  . The convergence toward this solution 

can be interpreted by considering a small-signal representation of p,. First, note that 



Using this expression, the joint gradient algorithm of (3.33) can be expressed as 

If the gain constant a is small, the change from dn to dn+1 is likely to be small also and 

then &(-jT f dn+l) (the ( j  + l)th component of pn) can be approximated as 

for 0 5 j 5 M - 1. Note that the plus sign applies to the Type 11-DRB case and the minus 

sign to the special Type I assumed here (the delay propagates instantaneously through the 

adaptive filter delay line). Then, pn+l can be approximated as 

Using the second equation of (3.41), equation (3.43) becomes 

and the joint algorithm is then approximately 

The interpretation is that, as d, is modified, p, moves along a predetermined path (deter- 

mined by &(dn)), changing the location of the performance surface minimum, trying to 

reach the point where the adaptive filter does not need to compensate for any delay. This 

point is attained when w, equals R ' ~ ~ , .  

These results give a qualitative description of the convergence behaviour of the joint 

SD algorithm, independently of the way the two adaptation processes are alternated (i.e. 

they apply to  algorithm (3.33), as well as to the algorithms (3.34) and (3.35) with minor 

modifications, as long as the special Type I or Type 11-DRB structures assumed at the 

beginning apply). More rigorous results, that apply to the alternate joint algorithms of 

(3.34) and (3.35), are given next. 

3.3.1.2 A Condition of Convergence for the Jo in t  Alternate  Algorithm 

If the adaptation factors p and a are chosen sufficiently small, the process always 

reaches a limit point [48]. In what follows, a condition on p and a is given, that ensures 

convergence of the joint alternate algorithms of (3.34) and (3.35), for both Types of systems. 



This condition is derived in [37] for joint carrier phase acquisition and adaptive equalization, 

in digital communications. It is reformulated here for the problem at hand. This condition 

is general in that it establishes the stability range for the two adaptation factors such that 

the MSE is reduced a t  each iteration, for both Type I and Type 11 systems, no matter 

how the two adaptive processes are alternated (i.e. data reuse can happen). It is also 

important because it confirms that, with the right parameters, the joint SD algorithm 

converges eventually to  a stationary point. The condition does not strictly apply to the 

joint SD algorithm of (3.33), but it gives useful indications about the convergence of this 

algorithm as well. 

First, assume that the adaptation factors can be time-variant and denote them as p, 

and a,. Express the MSE as an explicit function of d, and wd,, i.e. as [id,, wdn}. Define 

a stationary point of t{d,, wdn} as a solution (d,, wdn) of the necessary condition (3.36). 

It is said that [{d,, wd,} converges to  a stationary point if, for every E > 0, there is an N 

such that 

for all n > N .  

The decrease in MSE due to  the nth adjustment is denoted by A[, and is defined as 

The quantity A&, approaches zero when the partial derivatives of condition (3.36) approach 

zero. A stronger statement that may sometimes hold is that "At, approaches zero only 

when the partial derivatives approach zero" [37]. Mathematically, this statement means 

that for every 6 > 0, a 6 > 0 can be found such that 

The following lemma is stated and proven in [37]. 

Lemma. If Atn > 0 for all n and A&, approaches zero only when the partial derivatives 

approach zero, &, must converge to a stationary point. 

This lemma provides a mean for determining the adaptation factors pn and a,, since 

the MSE will converge t o  a stationary point if the adaptation factors can be determined 

such that Atn > 0 for all n and A&, approaches zero only when the partial derivatives 

approach zero. The next proposition establishes the gain factors range for the above lemma 

to  be true. It is an adaptation of proposition 2 of [37]. 



Proposition 3.1. Let the set of positive integers be divided arbitrarily into two disjoint 

subsets n l  and n2, each containing an infinite number ofpositive integers. Let a, = 0 when 

n E ~ 1 ,  and p, = 0 when n E ~ 2 .  Let X,,,(n) be the maximum eigenvalue of the signal 

autocorrelation matrix R, and $,, the delay value closest to d,, for which t{d,, wdn) is 

minimum. The MSE will converge to a stationary point if 

for n E ~ 1 ,  and 

for n E ~ 2 .  In (3.501, the constant 6 is 1/T in the case of a Type II-DAB adaptive system, 

and zero otherwise. The notation [dn61 means "the closest integer larger than d,6". 

Proof: Consider first the condition n E q. In that case, a, = 0 and dn+l = d,. 

This situation corresponds to the usual adaptive filter convergence case, in which the MSE 

function (, is a quadratic surface in the weight vector subspace, with a unique minimum with 

respect to wd,. Then, equation (3.50) with 6 = 0 is the usual condition for convergence, 

at  iteration n, of the adaptive transversal filter using the SD adaptation algorithm [6]. 

In the case of a Type 11 adaptive branch with the delay after the adaptive filter, (3.50) 

with 6 = l / T  is the stability condition for integer delayed adjustments [49]. Since the 

performance surface is quadratic, Atn approaches zero only when the gradient w.r.t. w, 

approaches zero, and the lemma ensures that a stationary point is reached. Note that if 

n E ~1 for M consecutive iterations, where M is the adaptive filter order, the autocorrelation 

matrix and its eigenvalues become time-independent in a Type I adaptive system. 

In the other situation where n E n2, /.in = 0 and the adaptive filter stays stationary. 

Then, from (3.5), and for a stationary reference filter 

and the variations of (, w.r.t . dn are function of both the autocorrelation q+,y (n, n) of the 

adaptive filter output and of the cross-correlation function by, (n, n) between this output 

and the reference signal. This function is generally multimodal w.r.t. d, (see Section 3.2.1). 

It is therefore difficult to  give a very precise idea of the delay tracking algorithm without 

knowing the actual value of d,. Assuming a Taylor expansion of 6, around 29,, the minimum 

closest to the actual value of d,, the MSE function evaluated at  d, = 9, is constant and 

the restricted class analysis of section 3.2.2.1 holds. Then (3.51) results from (3.28), with 



= ({fin, wdn), and Atn  approaches zero only when the derivative of the MSE function 

w.r.t. d, approaches zero. 

This proposition states that, for any Type I or Type I1 structures, d, and w, may be 

adjusted in any alternating fashion, and the MSE will converge to a stationary point if p, 

satisfies (3.50) during the adjustment of w,, and a, satisfies (3.51) during the adjustment 

of d,. The above condition is important because it confirms that, with the right parameters 

used in alternation, the MSE is reduced at each iteration and the joint SD algorithm 

converges eventually to a stationary point. Therefore, the algorithms of (3.34) and (3.35) 

can be used to track the variations of the reference system, if conditions (3.50) and (3.51) 

are satisfied. As for the algorithm of (3.33), the conditions of the theorem do not insure 

convergence, but they constitute a reference point for the selection of the proper adaptation 

constants. 

3.3.1.3 Excess Mean Squared Error 

The minimum MSE, given a certain value of d,, was defined in (3.39) as eo(dn). Denote 

the absolute MMSE as emin and define it as 

where p(D,) is the cross-correlation vector evaluated for d, = D,. Therefore, emin is the 

MSE for perfect cancellation or equalization by the joint adaptive structure. In steady- 

state conditions, any divergence from this perfect behaviour gives a MSE function greater 

or equal to (,in, 

The ( j  + l)th component of p, is given by &(-jT f d,). Assuming steady-state 

conditions, &,(-jT f d,) can be approximated closely by the first three terms of its 

Taylor series expansion around the value d, = D,, i.e. 

where the dot denotes, as usual, the derivative with respect to  d,. Then, expressing it as a 

function of d,, the cross-correlation vector can be approximated as 



Using (3.55) in (3.39) gives 

Assuming that dn is close to Dn , the last two terms of (3.56) can be neglected. Furthermore, 

the expression - ~ R ~ [ ~ ~ ( D ~ ) R ; ' ~ ( D ~ ) ]  represents the derivative of [,(dn) evaluated at its 

minimum, which is zero. Therefore to(dn) is approximately given by 

to(dn) x h r ( 0 )  - pH ( ~ n ) ~ , l p ( ~ n )  
(3.57) 

- (dn - ~ n ) ~  [ ~ e [ ~ ~ ( ~ n ) ~ i ' p ( ~ n ) ]  + pH (Dn)R;'p(Dn)] , 

and the excess MSE, defined as 

Note that from (3.53), 

Combining the results of (3.59) and (3.60), the excess MSE is 

Note that if the joint algorithm has converged near a local solution dn = On, then the excess 

MSE from that local minimum is given by 

where 
9 Wept = K1p(dn).  (3.63) 

The possibility of an excess MSE can be explained heuristically in the following way. For 

a finite-length adaptive filter of order M, the weight vector subspace is of dimension M. The 

delay subspace is always one-dimensional, irrespective of the value M. The adaptive filter 

attempts to model a time delay by shifting in time its weights by a corresponding amount. In 



order to  perform this operation without MSE increase, the weight vector subspace dimension 

has also t o  be increased by the same amount. If it is not, the adaptive filter algorithm seeks 

a compromise, within the fixed weight vector subspace, between reference filter modelling 

and delay modelling. This vector space view shows the inefficiency of the adaptive filter, 

in term of delay modelling, since the filter attempts to model a one-dimensional parameter 

(the delay) with a multi-dimensional component (the time shift in the weight vector). 

3.3.1.4 Discussion 

The convergence of the joint SD algorithm is not easy to characterize. By specializing 

the study to two special classes of adaptive systems, the convergence can be studied in 

qualitative terms. In these classes of systems, the only delay-dependent term is the cross- 

correlation function given by &,(n, n) = wfpn. The joint algorithm is then transformed 

to the one of (3.45). In this case the MSE function, as expressed in the adaptive weight 

vector subspace, is constant in shape (because the autocorrelation matrix is constant). The 

joint adaptive algorithm is such that the instantaneous MSE moves on the surface of the 

"bowl-shaped" MSE function, according to the adaptive weight vector, and the minimum 

of this bowl is modified, according to the delay d ,  (since p, is function of this delay). The 

adaptive process converges when the first equation of (3.37) is verified. 

As for the condition of convergence of the joint alternate algorithm given in Proposi- 

tion 3.1, it provides some indications about the parameters that play a role in the joint 

algorithm convergence. In particular, if the MSE is close to its global minimum, the con- 

vergence bound for an is 2/tmi,. This second derivative influences also the excess MSE, as 

shown in the previous subsection. 

3.3.2 T h e  Delay Tracking Proper t ies  of t h e  Algorithm 

The delay tracking properties of the joint SD algorithm are specifically studied in this 

subsection, with a special attention given to the cancellation and equalization structures in 

both Type I and Type I1 mode. The MSE function, for these configurations, is first con- 

sidered. Then the SD delay tracking algorithm, as a constituent of the joint SD algorithm, 

is studied in details. The tracking mode assumption implies that both the reference filter 

h(n) and the reference delay D, are varying slowly. 

3.3.2.1 T h e  MSE Function for Specific S t ruc tures  

In order to  specify the MSE function for specific structures, the expressions of (3.12) 

to  (3.14) are used with the proper value for u(n) and r (n)  defined as in Figs. 2.6 and 2.7. 



Therefore, u(n) = yl(n) and r(n) = y2(n) in cancellation configuration, while the inverse is 

true for the equalization configuration. Using the mathematical model of (3.1) and recalling 

that  the noise processes are uncorrelated with every other signal, the following expressions 

for tn in cancellation configuration are obtained. 

Cancellation Configuration-Type I (delay before filter) 

Cancel la t ion Configuration-Type 11-DAB (delay after filter in adaptive branch) 

Cancellation Configuration-Type 11-DRB (delay after filter in reference branch) 

For the alternate Type I1 structure of Fig. 3.2, the MSE function is 

Similar expressions are obtained for the equalization configurations. 

In tracking mode, it is assumed that the adaptive filter has fully adapted to the charac- 

teristics of h(n) and is at least as long as the impulse response h(n). For high signal-to-noise 

ratios, the i t h  adaptive filter coefficients wn,, at iteration n, is approximately of the form 

System identification (cancellation) 
wi i  w (3.67) 

Inverse filtering (equalization), 

where h(i) is the G h  weight of the reference path filter, and is constant. In delay tracking 

mode, the only part of tn that is of importance is the delay-dependent one. Define this 



quantity as vn. Then, from (3.64) to (3.66), 

Type I1 (3.69) 

h - ' ( i ) h ( j ) ~ 3 s ( - j ~  - iT - Dn-j f dn) Type I (3.70) 

h - ' ( i )h ( j )bss ( - j~  - iT - Dn - dn- i )  Type 11, (3.71) 

where ph(k) is the deterministic autocorrelation of the reference filter impulse response and 

is defined as 

i 

Note that in expressions (3.69) and (3.70), the plus sign in front of dn applies when the 

adaptive delay is transferred in the reference branch. 

It is interesting t o  compare the above delay-dependent terms, especially when i t  is 

assumed that the reference delay D, varies slowly. In this case, it can be assumed that 

both Dn and dn are approximately constant over M samples (the filter time span), i.e. in 

both the reference and the adaptive filter delay lines, all the samples are approximately 

influenced by a constant delay. Then, the type of structure does not affect vn, which is now 

of the form 

Comparing (3.73) and (3.74), it is noticed that the cancellation configuration is influenced by 

the form of both the deterministic autocorrelation ph(n) and the input signal autocorrelation 

dSs(r), while the equalization configuration is a function of only +s3(r). Since dSs(r)  

exhibits a maximum at T = 0, viE) has a global minimum at  d, = k D n .  In the cancellation 

scenario, the characteristics of the delay tracking loop are functions of the reference filter 



h(n), but because of the definition of ph(n), there is a single global minimum corresponding 

to dn = F D ~  (ph(n) has a maximum at n = 0). The two expressions of (3.73) and (3.74) 

are used next to characterize the SD descent delay tracking algorithm. 

3.3.2.2 The SD Delay Tracking Algorithm 

The results obtained in Subsection 3.2.2 are utilized in the following, in order to analyse 

the delay tracking portion of the joint SD algorithm. Therefore, y,(d,) = (, and 0, = D,, 

for the cancellation configuration and 0, = -D,, for the equalization structure. It is also 

assumed that the adaptive filter has fully adapted to the time- invariant reference impulse 

response h(n) ,  and that d, = f D,. Because of this assumption, the error is minimum and 

the corresponding MSE is equal to the MMSE (,in (see Subsection 3.3.1.3). Then in = tmi, 
and is constant with time, which allows the use of the results of Subsection 3.2.2.1. Making 

use of (3.28) and (3.29), the stability range for a is 

and the time constant of delay adaptation is 

Tighter or more explicit bounds for a can be easily obtained for particular cases. 

Bounds in High Signal-to-Noise Rat ios  Conditions 

The derivative of a bandlirnited continuous-time signal can be obtained from the samples 

of that signal by using a wideband differentiator with frequency response given by [50] 

" (C) Then, for the cancellation configuration, 4y, (n,  n) can be expressed in the frequency do- 

main, with d, = d and D, = D, as (see equation (3.73)) 

where ~ ( e j ~ )  is the transfer function of the reference filter and @,,(ejw) is the power 

spectral density of the signal s(n).  

Defining the maximum value of the input signal power spectral density @,,(eJW) as 

@,,,, the cross-correlation function is, when d = y D ,  



But 

where the prime denotes the derivative with respect to the continuous-time correlation 

argument. Then 
.' ( C )  
&r (n, n) 5 @maxP;(o). (3.81) 

.. (C)  Noting that, for slowly varying delays, Emin = -SRe[4yr (n, n)], (3.75) becomes 
-1 

O < a <  Cancellation. 
@maxRe[~"(O)] 

Using the same type of development for equalization, (3.75) becomes 

O < a <  
3~~ Equalization. 

@maxr2  

The following proposition has therefore been established. 

Proposition 3.2. In tracking mode and in high signal-to-noise ratios conditions, a sufficient 

range of convergence for the delay gain factor is 
-1 

0 < a  < 
@maxRe [P" (O)] 

for the cancellation configuration and 

for the equalization configuration. 

Bounds for White Signals 

Assume that the input signal and the noise signals are white with respective power 

spectral densities ass, ui, and o;,. Then, it can be shown that the optimum impulse 

response of the adaptive filter, in steady-state conditions, is 

where a noncausal system, with an infinite impulse response, is assumed for the equalization 

case. Then, using a development analog to the high SNR one, the following double derivative 

for the cross-correlation functions are of the form 

The bound of (3.75) can then be written with Lin = -2~e[&,~(n,n)]. Note that these 

bounds for white signals reduce to the previous ones if the signal-to-noise ratios are high. 



Relation Between the Adaptive Delay and the Adaptive Filtering Processes 

In general, it is desired that the compensation for the reference delay, in the adaptive 

branch, be performed by the adaptive delay element alone. Since the adaptive filter can 

potentially adapt to the reference delay, the time constant of adaptation of the delay element 

should be smaller than the time constant for the adaptive filter. The time constant ~j of 

the j th  mode of adaptation of the normalized adaptive filter weight vector is [7], 

where X j  is the j t h  eigenvalue of the input signal autocorrelation matrix R. 

The adaptation time constant of the j th  mode of the MSE function, as a function of 

the adaptive weight vector, is 

i.e. the MSE function converges twice as fast as the adaptive weight vector when the delay 

element is assumed fixed. The fastest influence of the adaptive filter on the MSE curve 

therefore has the time constant 

A speed of convergence constraint can be applied on the adaptive filter, in order to restrict 

the influence of any reference delay variations on its behaviour, i.e. the condition that the 

adaptive delay time constant should be much smaller than (T,,),~, is imposed. Assuming 

that the adaptive delay element settles down after 5 time constants, an upper bound on 

or, using equation (3.89), 

Equations (3.76) and (3.90) give a lower bound on the delay adaptation factor a ,  i.e. 

This gives a relation between the adaptation factors, p and a, of the coupled processes, 

when the constraint is applied. Equations (3.82) and (3.83) can be combined with (3.91) in 

order to obtain the following proposition. 



Proposition 3.3. Assuming that the adaptive delay elemen t has a time constant five times 

smaller than the time constant of the fastest adaptive filter mode of adaptation, then the 

delay element gain factor satisfies the following conditions 

2 O ~ h a x  -1 < cr < Can cellation 
Jmin @maxRe[p; (O)] 

and 
20PXmax < a <  

3T2 
Equalization. 

L i n  @maxn2 

Adapt ive  Delay Response t o  a Reference Delay S t ep  

The use of the linearized version of the adaptive delay equation (equation (3.25), with 

y, = t,) assumes implicitly that the main lobe of the MSE function (the main lobe is 

defined as the region between the two inflexion points, U1 and U 2 ,  located on each side 

of the global maximum at d, = D,) can be closely approximated by a quadratic function 

of d, (i.e. the higher terms in (3.21) are neglected). In addition to the fact that this 

approximation becomes worse as d, gets further away from D,, it is also limited by the 

width of the main lobe of the MSE function. The main lobe has a width defined as I U1 - U21 

and, assuming that the adaptive delay element tracks perfectly D,, the maximum allowable 

input delay step is 

since, for slowly varying delays, the MSE function is symmetric with respect to D, (see 

equations (3.73) and (3.74)). If Amax is larger than the main lobe width, the adaptive delay 

is likely to converge to a local minimum of the MSE function. In general, the main lobe 

width a is function of both the reference filter and the input signal autocorrelation function, 

as shown in (3.73). Assume that 9,,(ejw) is white with unit variance and that the reference 

filter is an ideal lowpass filter, i.e. 

- 7 r < w < n  
~ ( e j " )  = 

otherwise. 

Then, from (3.73), the delay-dependent part of the MSE function is 

for which the main lobe is symmetric and approximately 2 samples wide. For a coloured 

input and a non-flat filter, the main lobe is likely to be of larger width, and the following 

proposition has been established. 



Proposition 3.4. For any type of configuration in tracking mode and for slowly varying 

delays, a conservative upper bound on the maximum allowable instantaneous reference 

delay deviation is on the order of one sample (or T seconds). H 

In order to  see the effect of a delay step on the adaptive delay, assume that at iteration 

n = 0, a constant delay of A samples is applied in excess of Do, i.e. the reference delay D, 

is 

D, = Do + A 

for 0 < n. Assume also that A is lower than one, and that (3.92) or (3.93) are satisfied. The 

adaptive delay value, in excess of Do, is given in (3.27), with y = tmin and On-e-l = A,  

Equation (3.97) can be written as 

which, if the algorithm converges, tends toward d ,  = A when n + w. 

In summary, the response of the joint SD algorithm with linearized delay equation, 

when the time constant of delay adaptation is much smaller than the time constant of the 

filter adaptation, is such that the delay element compensates completely for the delay step, 

after a transient period. 

Adaptive Delay Response to a Reference Delay Ramp 

The reference delay is assumed to  be of the form 

where A is the slope of the delay ramp, in samples/sample. 

Assuming that conditions (3.92) or (3.93) are satisfied, an analysis similar to the one 

given for the delay step shows that, after a transient period, the delay element value is 

and lags the input by 
A 

lag = -. 
a&nin 



Using (3.76)  in (3.100) gives 

lag z A u l .  

This lag error constitutes the residual error that the delay element cannot cope with. 

It appears as a constant delay at  the input of the adaptive filter and can therefore be 

compensated for by the filter, after a transient period t. 

The maximum allowable slope in the input delay is dictated by the width of the main 

lobe of the MSE function. In order to d o w  continuous tracking of the input, the delay 

element lag error must be smaller than the maximum allowable input delay step, defined in 

(3.94), i.e. 

1% < Amax 

The slope of the input ramp must also be such that the delay change occurring over one 

sample is less than A,,,, i.e. such that 

The following proposition is then established. 

Proposition 3.5. An upper bound on the maximum allowable input slope is 

From the conservative upper bound derived in Proposition 3.4, a conservative upper bound 

on the s l o ~ e  is 

Note that these bounds can be very loose. This is so because they make use of the 

maximum allowable input step (A,,) to bound the input change over one sample. Since the 

adaptive delay algorithm does not allow for a perfect correction in a one sample time, further 

input change by Am= will bring the adaptive loop out of its tracking range. Therefore, the 

bound of (3.104) can correspond sometimes only to a gross indication of the value of the 

input slope. 

t Note that if the adaptive delay element were not present, the adaptive filter would face a nonstationary 
delay, which would produce an excess MSE that increases with time. The combination of the adaptive 
delay and the adaptive filter results in a fixed excess MSE. 



Adaptive Delay Response to a Sinusoidally Changing Reference Delay 

Assume that the reference delay is of the form 

D, = Do + A sin(27rnlP) 0 < n, 

where A is the waveform amplitude and P is its period, both expressed in samples. Assume 

again that conditions (3.92) or (3.93) are satisfied. 

With D, = A sin(27rn/P), the linearized delay equation becomes 

dn+i = (1 - aLin)dn  + CZA~,;, sin(2anlP). (3.106) 

After some manipulations, the solution is 

d, = cr~j,~, sin(27r/P){2(K1J cos[2n(n - 1) /P+ 01 + K2(1 - cr&)n-l)~,(n - 1) (3.107) 

where 
$xlP 

K1 = 
2 j  sin(27r/~)(ej2"lP - (1 - at,;,)) 

K2 = (1 - Gmin) 
(1 - atmi,)2 - 2(1- a h i n )  cos2n/P + 1 ' 

the variable 0 is the phase of K1 and US(n) is the unit step function defined as 

Equation (3.107) shows that after a transition period, the steady-state delay is 

Using (3.108) and (3.111), the magnitude of this sinusoidal waveform is 

If P is assumed large, compared to the time constant rde l ,  the denominator of (3.112) is 

approximately equal to at,;, and I x A. The steady-state delay solution is then 

Therefore, if (3.92) or (3.93) are satisfied, the delay element follows closely the reference 

delay, with a phase lag (27r/P - n/2 - 8) and a slightly smaller amplitude. The steady-state 

difference between Dn and d ,  is sinusoidal and influences the adaptive filter behaviour. In 

steady-state, the adaptive filter coefficients therefore vary sinusoidally. 



3.3.2.3 Discussion 

Recall the main assumptions used in Subsection 3.3.2 for the study of the delay tracking 

properties of the joint SD algorithm: 

1. The signal-tenoise ratios are often assumed high enough such that the adaptive filter 
Wiener solution is approximately equal to the reference filter h(n) or its inverse. 

2. The adaptive filter has fully adapted to the Wiener solution. 

3. The delays D, and d, vary slowly such that the samples across any filter delay line 
are affected by the same delay. 

4. The reference filter is time-invariant. 

5. The second derivative of the MSE function, when evaluated at d, = D,, is constant 
and equal to tmi,. 

6. The adaptive filter time constant of adaptation is much smaller than the adaptive 
delay time constant. 

The first and second assumptions were essentially used to simplify the study of the delay 

tracking algorithm. The first one is not necessarily true in practice, but it simplifies the 

analysis and gives useful results. The second assumption is justified, since one is interested 

primarily in perfect delay tracking, which happens when the Wiener solution is attained. 

The results obtained using this assumption, essentially the restricted convergence ranges of 

Proposition 3.2, are therefore significantly useful in the application of the delay tracking 

algorithm. The third and fourth assumptions are also used for the sake of simplicity and are 

not necessarily true in practice. In particular, the function of the adaptive filter is to track 

the variations of the reference filter. When this happens, assumption 5 is hardly justified 

and assumption 6 limits the tracking ability of the adaptive filter. But when the reference 

filter variations are slow, compared to the reference delay variations, h(n) is quasi-stationary 

over a limited period of time, and both assumptions 5 and 6 are justified. In fact, the last 

three assumptions are intimately linked, since practical considerations justify assumption 6, 

which itself supports assumptions 4 and 5. 

In practice, the adaptive filter is expected to compensate for some of the reference delay 

variations. But the effect of these compensations, in the adaptive delay vector space, is to 

change the minimum location, without affecting significantly the second derivative of &, at 

this minimum. The results obtained with assumption 5 are therefore of importance, since 

assumption 6 should be met in practice. 

A major problem could nevertheless happens in the case of a practical finite-length 

adaptive filter. In this case, the joint algorithm could converge to a stationary solution for 



which the MSE is higher than the optimum that could be achieved if the adaptive delay d,  

models perfectly D, (i.e. the excess MSE is nonzero). This could be so because, if dn # Dn, 

the adaptive filter converges to a solution where the optimum weight vector is shifted, in 

order to compensate for delay difference, and modified to obtain the MMSE corresponding 

to this shift. If the adaptive filter is of infinite length and noncausal, all such solutions reach 

the same MMSE, but if the filter length is limited, so is its modelling capability and the 

MMSE is then at  least as large as for the optimum solution. The difference between the 

MMSE and the actual MSE is the excess MSE, as defined in Subsection 3.3.1.3. 

3.4 Application of the Joint SD Algorithm 

In this section, the results derived for the SD delay tracking algorithm are specialized 

to some specific cases. The application of the algorithm, for the tracking of the reference 

branch variations, is governed mainly by four expressions. These equations are (3.50), 

(3.75), (3.76) and (3.61) and are reproduced next. 

sin [ K 
o < p <  

xmax(n) 2(2 rdn61 + 1) I 

3.4.1 The Function €,in in Cancellation Configuration 

The function Emin is examined in some detail in this subsection, since it is used in every 

expression of importance in the SD delay tracking algorithm. The investigation is limited 

to real signals and systems in cancellation configuration. 

From (3.73), (3.74) and (3.78), Emin is given by (for the high signal-to-noise ratio case) t 

For white input and noise processes, kin is of the form 

' This equation applies to both the cancellation and the equalization scenarios. For the latter one, 
H(eJW) is simply taken to be unity for -r < w < x .  



If the reference branch signal-to-noise ratio is high enough, note that the integral of (3.114) 

is approximately equal to -2&!,(0), where the prime denotes the derivative with respect to 

the correlation argument. In this case, 

-293s ( 0  White processes 

The quantity imin can be approximated by different numerical methods [51]. A simple, 

although not very reliable one, is obtained by differentiating twice Stirling's formula for 

polynomial approximation of the function $,,(T). This gives 

for a small constant k. 

Bandlimited Reference filter 

Assume that the reference filter is limited to  the range -wl 5 w 5 w l .  Then, because 

the function w2 is positive and because of the real system assumption, (3.114) can be 

transformed, using the mean value theorem, to 

and (3.115) to 

where 8 is a real constant between zero and one. For a large reference branch signal-to-noise 

ratio 

Note that, from (3.115) and (3.119), 



and for large reference branch signal-tenoise ratios 

3.4.2 Discussion 

The results of Subsection 3.4.1 can be used in practice, for determining the gain factor 

a ,  the time constant rdel and the excess MSE eex. For a high reference branch signal-to-noise 

ratio, tmi, can be approximated directly, using (3.117), by measuring the reference signal 

power and its autocorrelation a t  a small lag. The quantity can also be upper-bound by the 

value 2@ssn2~,,(0)/(@3. f U;,)T~, obtained with w l  = s in (3.120). Equations (3.118) to  

(3.120) also show that {,;, is proportional to the reference filter bandwidth, to the input 

signal power and to ~ ~ ( 0 ) .  Therefore, these three parameters limit both the gain factor and 

the time constant, and increase the excess MSE. This is illustrated in Table 3.1, where oc 

means proportional to and (oc)-l denotes inversely proportional to. 

Table 3.1 Critical parameters in the joint SD algorithm 

3.5 Summary 

Joint time delay estimation and adaptive MMSE filtering, using the steepest-descent 

algorithm, has been studied in detail in this chapter. The MSE function was shown to 

be dependent on the form of the joint structure, and the evolution of the joint algorithm 

estimates was investigated qualitatively. The conditions of convergence of the joint SD 

algorithm were investigated, when the adaptive delay element and the adaptive filter are 

adapted alternatively. The excess MSE was derived, in order to express how well the joint 

algorithm tracks the optimum solution. When the reference delay is assumed to evolve 



slowly, the adaptive delay adaptation factor and time constant are shown to  be inversely 

proportional to the second derivative of the MMSE. Some bounds on the reference delay 

variations were derived, in order to allow proper delay tracking. Finally, some details were - 

given about the practical application of the joint SD algorithm. The material presented 

in this chapter shows the possibilities and limitations of the joint time delay estimation 

and adaptive filtering algorithm based on the MMSE criterion, when a steepest-descent 

algorithm is used. It is useful in the design of more practical algorithms in which the 

gradient and derivative have to be estimated, and is of importance in the application of the 

joint LMS algorithm presented in the next chapter. 



Chapter 4 

Joint Time Delay Estimation and Adaptive 

Minimum Mean Squared Error Filtering: 

The Joint Least-Mean-Square Algorithm 

4.1 Introduction 

In order to implement the joint steepest-descent algorithm presented in the previous 

chapter, the MSE gradient with respect to the adaptive weight vector and the MSE deriva- 

tive with respect to the adaptive delay both have to  be estimated. This can be accomplished 

in various ways, in particular by approximating the derivatives with difference equations 

[6] ,  or by approximating the MSE function 5, = ~ [ l e ( n ) l ~ ]  with the instantaneous squared 

error 7, = le(n)I2, and by applying the SD algorithm. This last option corresponds to the 

least-mean-square (LMS) algorithm [lo] and is the subject of this chapter. 

Consider a cancellation configuration. In order to derive the LMS algorithm, rewrite 

the error in equation (3.2) as e(n,dn), where the dependence on the delay estimate is 

denoted explicitly. In a Type I adaptive system, it is assumed that the delay d, propagates 

instantaneously into the adaptive filter delay line and the error can be expressed as 

where the adaptive branch output y(n, d,) is defined as 

and u(nT - d,) is the delayed vector of input samples defined in equation (3.9). In a Type I1 

structure, the adaptive delay can be located in either the adaptive branch or the reference 



branch and the error can take two forms. If the delay element is in the adaptive branch, 

the error is defined as 

where 
H y(nT - dn) = - dn). 

If the delay is in the reference branch, the error is 

In the adaptive weight vector subspace, it is well known that the LMS algorithm is 

given by 

W n + l  = W n  + 2 ~ e * ( n ?  dn)un, (4.6) 

where un is the vector of delayed input samples, defined in equations (3.8) or (3.9), and 

the error e(n,  d,) is any of the errors in (4.1) to (4.5). In the adaptive delay subspace, the 

derivative estimate is given by 

I -2Re e*(n, d,) [ ay(n7 adn dn)I 
Type 1 

- 4 a(e(n,dn)12 = -2Re e*(n,d,) [ ay(nT - dn) 
v d n < n  - ] Type 11-DAB (4.7) 

adn adn 
dr(nT - d,) I Type 11-DRB, 

adn 

corresponding to  the three cases considered previously. The LMS adaptive delay algorithm 

is obtained by using the result of (4.7) in the SD adaptive delay algorithm, defined in 

equation (3.31). 

The purpose of this chapter is to study the behaviour of the three forms of the joint 

LMS algorithm, defined by 

where (4.7) is used to define the derivative estimate. The only type of algorithm considered 

is the one corresponding to equation (3.33). In order not to obscure more than necessary 

the derivations, all signals and systems will be considered real in the analyses. 

This chapter is mainly theoretical and addresses mostly the behaviour of the joint LMS 

algorithm in steady-state conditions. The convergence of the algorithm, from arbitrary 



conditions, is considered first in Section 4.2. The analysis of the joint algorithm, in steady- 

state conditions, is performed in Section 4.3 for the Type I and the Type I1 (DAB and DRB) 

adaptive systems in cancellation configuration. The analyses presented in this section are 

for convergence in the mean and in the mean square, of both estimates d, and w,. The 

excess MSE and misadjustment are also considered for the three algorithms. A discussion 

of the results of Section 4.3 is then presented in Section 4.4 and their application in some 

special cases is considered in Section 4.5. 

The main contributions of this chapter are the generalizations of LMS time delay esti- 

mation, and the extension of LMS adaptive filtering to the situation where the filter input 

signal and the reference signal experience different sampling rates. New results are derived 

about the convergence, in the mean and the mean square, of the two portions of the joint 

algorithm, as well as about the excess MSE and the misadjustment of the joint algorithm. 

4.2 Convergence of the Joint LMS Algorithm Using the ODE Method 

The convergence study of recursive stochastic algorithms is a difficult task and has been 

only pa r t i dy  successful. One type of algorithm has been analysed in some depth by Ljung 

[52] and is of the form 

where @(n) denotes the vector estimate a t  iteration n, y(n) denotes a matrix gain sequence, 

+(n) is a regression vector (a  data vector indicating a gradient search direction) and ~ ( n )  

represents an estimation error. The joint algorithm (4.9) is equivalent to (4.8) with the 

following definitions 

c(n) = e(n, d,). 



and 
2u(nT - d,)  

2u(nT - d n )  
Type 11-DAB 

2y(nT - d,)  

Type 11-DRB. 
- 2i.(nT - d,)  . ['+' I 

Note that it is explicitly assumed that the adaptation factors p, and a, are function of 

time. 

The matrix R ( n )  in (4 .9)  allows for the possibility of a Newton step, in which case R ( n )  

is chosen as (531 

Ljung proposes in [52] an approach that relies on relating the asymptotic trajectories of the 

algorithm of (4 .9)  and (4.15) to the solutions of a system of ordinary differential equations 

(ODE), when the gain matrix is of the form 

This form of the gain matrix is restrictive since it corresponds to infinite memory for the 

adaptive algorithm, and therefore does not allow the tracking of time-varying parameters. 

But the application of Ljung's approach is nevertheless instructive since it relates formally 

the joint LMS algorithm to the joint steepest-descent algorithm. 

A heuristic discussion about the method, based on the material presented in [53] and 

141, is given in Appendix B. The method has been called the ODE approach and is used 

here to assess the convergence of the joint LMS algorithm. Define 

where BD(r) is the mapping of B(n), using the following transformation 



and the expected value is taken over the input random variables. Then, the associated ODE 

The following theorems are given in [53] and proven in [52] .  

Theorem 4.1. Let D ,  denote the stability domain for B(n) such that the dynamical systems 

giving rise to $ ( n )  and ~ ( n )  are stable. Subject to the boundedness conditions B(n) E D, 

and ($(n) (  < C infinitely often a.s., where C is a random variable, and to the Lyapunov 

condition requiring the existence of a positive twice differentiable function V whose time 

derivative along the s o h  tions of (4.20) satisfies 

d V  - 5 0 ,  for O D  E D s ,  R >  0 
d r  

(4.21)  

then either (i) 

lim 8 ( n )  E Dc w.p.1 
n + w  

(4.22) 

where 

D , =  { ~ D , R P D  E (4.23) 

or (ii) { 8 ( n ) )  has a cluster point on the boundary of D,. 

Theorem 4.2. The trajectories of the ODE (4.20) are the asymptotic paths of the estimates 

generated by the algorithm of (4.9) and (4.15). 

Consider (4.13) and (4.14) for a certain value 8 .  Then, from (4.17) ,  and for a Type I 

system 

The same result is obtained for the two other forms of (4.14).  Considering the M S E  function 

as a function of BD(r) ,  its derivative with respect to  r is 



where (4.20) and (4.24) were used and R(n) = I. 

Assuming that the observed signals are generated by stable dynamical systems and 

that the boundedness conditions of Theorem 4.1 are satisfied (if they are not satisfied, 

the algorithm is not of practical interest), then the function V can be taken to be the 

MSE function since its time derivative is given by (4.25) and is negative. Therefore, from 

Theorems 4.1 and 4.2, the vector 8(n) converges to locally stable stationary points of the 

MSE function, since f(BD(r)) has to  be of squared magnitude zero when B(n) E Dc which, 

from (4.24), is true only when the necessary condition of (3.36) of Chapter 3 is respected. 

Therefore, by using the ODE method, it is shown that when the adaptation factors p,, 

and a, both tend to zero, the joint LMS algorithm converges to a local minimum of the MSE 

function, like the exact version of the joint steepest-descent algorithm. This result, even if 

it does not apply directly to algorithm (4.8), is important by itself since it shows that if the 

adaptation factors are chosen sufficiently small, the estimates produced by the algorithm 

will be, on average, close to a stable stationary point of the MSE function. Furthermore, 

the above result shows that if the gain factors are constant but small, convergence cannot 

be attained in the sense that there exists an integer N such that B(n + 1) = B(n) for N 5 n, 

but the difference between the parameter estimate and a stable stationary point will be 

small as n becomes large and can be made smaller by decreasing the gain factors. 

Therefore, the ODE met hod, although applicable in a restrictive context, can justify, 

at  least partially, the assumption of convergence of the joint LMS algorithm to solutions 

close to  those of the joint steepest-descent algorithm. 

4.3 Analysis of the Joint LMS Algorithm in Steady-State 

The quality of the joint LMS algorithm can be studied by considering the quality of 

the two estimates that it generates. The delay and weight vector estimates being random 

variables, the joint algorithm can be analysed in terms of convergence in the mean and 

in the mean square of either estimate. Because of the coupling between the two adaptive 

processes, the gradient noise will affect the delay tracking and the derivative noise will itself 

influence the adaptive filter. These mutual effects can be included in the delay variance and 

weight noise vector correlation matrix, in steady-state conditions. The bounds for p and a 

will be determined, for both types of convergence, and for the three forms of joint algorithms 

defined by (4.7) and (4.8). In every case, the analysis of the delay estimator is performed 

first. Then the weight vector estimator is considered and finally the two analyses are 

combined together, to obtain some misadjustment expressions for the joint LMS algorithm. 



Such a separation of the analysis is artificial, but it allows the determination of tractable 

results. 

In the course of the analyses, in addition to the general real signals and systems as- 

sumption mentioned in the introduction, the following assumptions are used: 

1. The input and noise signals are zero-mean Gaussian random processes. The noise 
signals are also assumed to be white noise processes. 

2. The adaptive system is in steady-state and the reference system is stationary, i.e. the 
reference delay is constant a t  D, = D and the reference filter is also fixed in time. 

3. Independence theory holds, i.e. the zero-mean input data vectors are uncorrelated 
with each other and with r(k). Then 

E[u(n)uT(k)] = 0 for k = 0,1,.  . . , n - 1 
(4.26) 

E[u(n)r(k)J = 0 for k = 0,1, .  . . , n - 1. 

The terminology independence theory is common in the analysis of adaptive algo- 
rithms (see [7] for example). 

4. In steady-state, the adaptive weight vector w, can be expressed as 

Wn = W o p t  + Vn (4.27) 

where wept is the optimum Weiner solution given by 

W o p t  = ~ - l ~ n l d , = ~  

and rl, is a noise weight vector. 

5. In the analysis of the delay estimator, the vector 9, is a zero-mean Gaussian vector, 
uncorrelated with the data vectors (because of (4.26)) and such that 

E[qiqj] = 0 for i # j. (4.29) 

The noise vector correlation matrix, defined as 

Kv = E [ V ~ V ~ I ,  (4.30) 

is therefore diagonal with the values E[$(n)] on the main diagonal. 

6. The system is in cancellation configuration. The results can be extended in a straight- 
forward manner to the equalization case. 

7. When the signal-tenoise ratios are assumed high, the adaptive filter Wiener solution 
is approximately equal to the reference filter (in practice, this amounts to SNR's 
greater than 10 dB). 

Note that Assumption 3 can hardly be justified in practice, but has been used with 

success in the analysis of stochastic algorithms [7]. The noise vector properties stated in 

Assumption 5 are of the same kind and will prove to be useful in the analyses. Note in 

particular, that Kv was found to be approximately equal to &i,I in [6], for the LMS 

algorithm. The use of the central limit theorem supports the Gaussian assumption about 

qn. This assumption is also commonly used in the analysis of the LMS algorithm [22], [27]. 



4.3.1 The Joint LMS Algorithm in Type I Configuration 

As mentioned in the introduction, it is assumed that u, = u(nT - d,), i.e. that any 

adaptive delay modification is reflected on every sample of the adaptive filter delay line. This 

simplifies the analyses by making the input signal autocorrelation matrix time-invariant and 

by making the adaptive filter output equal to 

The joint LMS algorithm is then of the form (for real signals) 

wn+l = Wn + 2pe(n, d,)u(nT - d,) 
T dn+l = dn + 2ae(n,dn)wni(nT - d,). 

4.3.1.1 Analysis for the LMS Delay Estimator in Steady-State 

The LMS delay tracking algorithm, in (4.33), is analyzed in terms of convergence of the 

delay estimate, in the mean and in the mean square. The following analysis parallels and 

extends that of Messer [29]. 

For d, = D, the output of the adaptive branch can be expressed as 

T y(n, D) = wTPtu(nr - D) + qnu(nT - D). (4.34) 

The first term on the right is defined as the optimum output ?(n), since it represents the 

adaptive branch output for perfect modelling in the MSE sense. The second term on the 

right is defined as the output steady-state noise ~ ( n ,  D). Define e,,in(n, D) as the error 

between the optimum adaptive branch and the reference branch, i.e. 

and the corresponding MSE as (also given in equation (3.53)) 

Note that because of Assumption 5, the steady-state noise output is zero-mean and uncor- 

related with i (n)  and r(n). In effect, 

E [ i ( n ) ~ ( n ,  D)] = E [ W : ~ ~ ( ~ T  - D)~:U(~T - D)] 

= W ; ~ , E [ ~ ( ~ T  - D ) u = ( ~ T  - D)]E[q,J 

= 0 



and, 

The approximation of equation (3.22) in Chapter 3 can be used with rn (dn)  = e2(n l  d,) 

and 0, = D (for real signals). Then 

and 
y n ( D )  = 2k2(n,  D )  + 2e(n, D)E(n, D )  

= 2jr2(n, D )  - 2e(n,  D)&(n ,  D ) .  

In (4.39) and (4.40), the dot and double dot denote respectively the first and second deriva- 

tive with respect t o  d,. Therefore, using equation (3.22), the MSE estimate can be approx- 

imated as 

~ n ( d n )  = e2 ( n ,  dn)  

x e2(n ,  D )  - 2(dn - D)e(n ,  D)jr(n, D )  + (dn - ~ ) ~ [ . j 1 ~ ( n ,  D )  - e ( n ,  D)y(n, D ) ] .  
(4.41) 

The derivative estimate is then (for real signals) 

= -2e(n, D)y (n ,  D )  + 2(dn - ~ ) [ y ~ ( n ,  D )  - e(n ,  D ) Y ( ~ ,  D ) ] .  

If the derivative noise Nn is defined as 

then, combining (4.42) and (4.43), the derivative noise is expressed as 

and represents the error between vdnln and d&/ddn,  when dn = D.  Defining the quantity 

G n  = l / 2 k  

= G2(n, D )  - e ( n ,  D)&(n,  D ) ,  

equation (4.42) can be expressed as 

and the LMS delay tracking algorithm is therefore approximately expressed as 



Convergence in the Mean of the Delay Estimate 

Take the expected value on both sides of (4.47), and rearrange. The result is 

The following proposition simplifies expression (4.48). 

Proposition 4.1. d, is uncorrelated with the derivative noise N,  and its rate of change Gn. 

I 

Proof: From (4.47), i t  is seen that d, is a function of dn-l, Gn-1 and Nn-1. But, from 

(4.44) and (4.45), G,-i and Nn-1 are functions of r (n  - 1) and y(n - 1). The delay d, 

is then a function of r(n - 1 - 2 )  and y(n - 1 - i), for i = 0,1,  ..., n - 1. But G, and 

N, are functions of r(n) and y(n). From (4.32), the vector w, is a function of u(nT - 

T - d,-l), u(nT - 2T - d n - n ) ,  . . . , u(-do). In steady-state, d,-; x D and because of 

Assumption 3, w, is approximately uncorrelated with u(nT - d,). This fact allows the 

following computation, for k = 1,2,. . . , n, 

E[y(n)y(n - k)] = ~ [ w r u ( n ~  - d , ) ~ : - ~ u ( n ~  - kT - d,-k)] 

T = E [ u ~ ( ~ T  - d,)]E[~,w,-~u(nT - kT - dn-k)] (4.49) 

= 0, 

since u(n) is zero-mean. If the signal portion of r(n) is obtained by filtering u(n) with an 

FIR filter of length equal to  the adaptive filter length and since the noisy portion is white, 

then Assumption 3 implies that E [ T ( ~ ) T ( ~  - k)] = E[r(n)y(n - k)] = 0, for k = 1,2,. . . , n. 

Therefore d, is uncorrelated with G, and N,. 

Equation (4.48) becomes 

In Appendix D, E[Gn] is found to be 

and 

E[Nn] = 0 

because 
a 2  

EINnl = -E[emin(n, ad, dn)]ldn=D 



Then (4.50) simplifies t o  

Note that, for a Type I or a Type 11-DAB adaptive system, 

The second term on the right is zero and the quantity Emin is 

This result is also valid for aType 11-DRB adaptive system. Using the results of Appendix C, 

(4.56) can also be expressed as 
lmin = -2&(0) 

z - 2 4 3 0 )  

for high signal-to-noise ratios 1. Note that because of orthogonality principles [7] 

Therefore, (4.54) can be written as 

which shows the same form as the SD delay tracking algorithm of (3.25) with j;,(On) = tmin 
and On = D. 

Equation (4.59) converges if 11 - atmi,/ 5 1, and from the above derivations, the 

following proposition emerges. 

t Note that d:+(O) = d&(O) when the input and the noise signals are white. 

- 68 - 



Proposition 4.2. In steady-state conditions, the delay estimator, given by the LMS delay 

tracking algorithm operating jointly with an adaptive filter in Type I configuration, is an 

unbiased estimator if 

Note that, in interpreting Proposition 4.2, it is important to keep in mind that the result 

is true if no false lock happens, i.e. if no noise samples force the delay estimate to lock on 

a local solution, or if the adaptive filter does not compensate a t  all for the delay reference. 

In this case, the first order linearized model leading to  (4.47) applies and Proposition 4.2 

can be used. 

Convergence in the Mean Square of the Delay Estimate 

Subtract the value D from each side of (4.47) and rearrange. This gives 

Square each side of (4.61) and take the expected value 

Use Proposition 4.1, which states that d ,  is uncorrelated with G, and N,. Equation (4.62) 

simplifies to 

E[(dn+l - D ) ~ ]  = E [ ( ~ - ~ c Y G ~ ) ~ ]  ~ [ ( d n  - D ) ~ ]  - 2aE[(1 -2aG,) Nn] E[(dn- D)] + a2 E[N:]. 

(4.63) 

It can be shown that E[(1 - 2ctGn)Nn] = 0 (Appendix D) and, defining the time-varying 

delay estimate variance v, as 

vn = E[(dn - D ) ~ ] ,  (4.64) 

equation (4.63) simplifies t o  

Equation (4.65) indicates that there is convergence in the mean square sense if 

I E[(1 - 2 ~ ~ G n ) ~ l l  5 1. (4.66) 

Using the result of (4.51), the expected value is equal to 

E [(I - 2 a ~ , ) ~ ]  = 1 - 4 a E  [G,] $ 4a2 E [G:] 
(4.67) 

= 1 - 2a&, + 4a2 E [ G ~ ] .  





where the quantity E [Gi] is given in (4.68). 

Because, in steady-state, the expected values in (4.65) are time-invariant, the steady- 

state delay estimate variance is given by 

us, = lim v, 
n+cu 

- - a2 E [N;] 
1 - E[(1 - 2aGn)2] 

where E [ N ~ ]  can be shown to be (Appendix D) 

Note that the steady-state variance is approached at the fastest rate when the quantity 

E[(1 - ~ c Y G , ) ~ ]  in (4.65) is minimum. This happens when the adaptation constant is 

which is one half the maximum adaptation constant allowed by (4.73). 

4.3.1.2 Analysis f o r  t h e  LMS Adapt ive  Fi l ter  i n  S teady-Sta te  

As with the LMS delay tracking algorithm, the LMS weight vector adaptive algorithm 

of (4.32) can be analyzed in terms of convergence in the mean and the mean square of the 

weight vector estimate. 

Convergence i n  the M e a n  of  t h e  Weight  Vector  E s t i m a t e  

Take the expected value of each side of the first equation of (4.32). The result is 

E[wn+~]  = E[wn] + 2/~E[e(n,  dn)u(nT - dn)] 
(4.77) 

= E[wnl + 2p(E[r(n)u(nT - d,)] - E[u(nT - d n ) u T ( n ~  - d,)~,]). 

From equation (3.7), the second expectation on the right hand side of (4.77) is equal to p,. 

But the cross-correlation vector is a function of the delay d,, which is a random variable in 

the joint LMS algorithm. Therefore, p, is now a conditional expectation, conditioned on 

d, and E[r(n)u(nT - d,)] is equal to  E[p,], with the expectation taken with respect to the 

adaptive delay value. 

From (4.32), it is noticed that  the estimated weight vector w, is a function of the past 

input vectors U ( ~ T - T - ~ , , ~ ) ,  ~ (nT-2T-d , -~) ,  . . . , u(-do). Assuming that independence 



theory holds, since dn,i z D in steady-state, the weight vector w n  is uncorrelated with 

u(nT - d , )  and the third expectation on the right hand side of (4 .77)  can be expressed as 

E [ u ( n T  - d n ) u T ( n ~  - d n ) w n ]  = E[u(nT - d n ) u T ( n ~  - d , ) ] E [ w n ]  
(4 .78)  

= RE[wn]. 

Therefore, (4 .77)  can be expressed as 

In order to  compute E[pn], express p, as a function of d, ,  as in equation (3.54). This 

expression is 

Therefore, because the delay estimator is assumed unbiased and in steady-state, the ex- 

pected value of the cross-correlation vector is 

E[pn] z P(D) + l l ~ s s i i ( D )  
(4 .81)  

= Rwopt + l l ~ s s i i ( D > ,  
where v,, is the steady-state delay estimate variance, and equation (4 .28)  was used. Using 

(4 .81)  in (4 .79)  gives 

This equation can also be expressed as 

Therefore, E[wn]  converges to wept + l / 2 v , ~ - 1 $ ( ~ )  if the gain factor p is smaller than 

the inverse of the maximum eigenvalue of R [7 ] .  This can be formalized in the following 

proposition. 

Proposition 4.4. In steady-state conditions, the weight vector estimator, given by the adap- 

tive filter LMS algorithm operating jointly with a mean square convergent delay tracking 

algorithm in Type I configuration, converges in the mean if 
1 

O < p < -  (4 .84)  
Xmax ' 

where A,, denotes the maximum value of the input signal au tocorrelation matrix R. The 

weight vector estimate experiences a bias given by 

Note that the convergence condition of (4 .84)  is identical to the usual condition for 

convergence in the mean of an LMS adaptive filter [7]. 



Convergence in the Mean Square of the Weight Vector Eetimate 

The weight noise vector correlation matrix K,(n + l), at iteration n + 1, is computed 

in this section and a condition for its convergence, in the matrix norm sense, to a finite 

steady-state value is established. From equations (4.27) and (4.32), the noise vector can be 

written as 

Then, K9(n + 1) can be expressed as 

The four terms of equation (4.87) can be evaluated individually as follows: 

1st term. 



where the last step follows from the Gaussian and independence assumptions and can be 

carried out in details as in [54] (see also [7] ,  pp. 221-224). 

2nd term. 

where (4.81) and (4.85) were used. But note that the vector b is proportional to the 

delay estimate variance v,,. Assuming that this variance is small, then the second term is 

approximately zero since it is proportional to the square of the variance. 

3rd term. 

The third term of equation (4.87) is the transpose of the second term and is therefore 

approximately zero. 

4th term. 

4 p 2 ~ [ ( u ( n ~  - d n ) r ( n )  - u(nT - d n ) u T ( n ~  - dn)wopt)  

( u ( n T  - d n ) r ( n )  - u ( n T  - d n ) u T ( n ~  - d , ) ~ , ~ t ) ~ ]  

= 4 p 2 ~ [ u ( n ~  - d n ) r ( n ) r ( n ) u T ( n ~  - d,)] 

- 4 p 2 ~ [ u ( n ~  - dn)uT(nT - d n ) w o p t u T ( n ~  - dn) r (n ) ]  
(4.90) 

- 4 r 2 ~ [ u ( n ~  - d n ) ~ ( n ) w & p , u ( n ~  - dn)uT(nT  - dn)]  

T + 4 p 2 ~ [ u ( n ~  - dn)uT(nT  - d n ) w o p t w ~ p t u ( n ~  - dn)u  ( n T  - dn)] .  

Reasoning as in [7] ,  the four expectations of equation (4.90) are found to be 

E[u(nT - d n ) r ( n ) r ( n ) u T ( n T  - dn)]  z R&r(O) (4.91) 

E [ u ( n T  - dn)uT(nT - dn)wOptuT(nT - d n ) r ( n ) ]  z; R E [ ~ ~ ] w ~ ~ ~  (4.92) 

E [ u ( n T  - d n ) r ( n ) w T p t u ( n ~  - d n ) u T ( n ~  - d,)] z R W : ~ ~ E [ ~ , ]  (4.93) 

T E [ u ( n T  - dn)UT(nT - dn)woptu,ptu(nT - d n ) u T ( n ~  - dn)]  z R W ~ ~ ~ R W . ~ ~ .  (4.94) 



Using (4.81), the fourth term is given by 

4 / . i 2 ~ [ ( u ( n ~  - dn)r (n )  - u(nT - d n ) u T ( n ~  - dn)wop t )  

(u(nT - d , ) r (n )  - s ( n T  - d n ) u T ( n ~  - d n ) ~ o p t ) T ]  

T = 4 p 2 g [ 4 r r ( 0 )  - wOptRwopt - 1 h v s s ( j T ( ~ ) w o p t  + w,Ttj i(D))]  
(4.95) 

= 4p2R[<rnin + &ninvss/2] 
where [,in is the minimum MSE attainable as defined in (4.36),  and its second derivative 

with respect to the delay, when dn = D ,  is defined in (4.57) and can take the form 

because 
T T w o p t p ( D )  = E[woptii(nT - D ) r ( n ) ]  

= -<min/2. 
Collecting the four terms, the time evolution of the weight-error correlation matrix is 

K,(n + 1) = &(n) - ~ P [ K , ( ~ ) R +  RK,(n)]  + ~ P ~ R ~ ~ [ R K V ( ~ ) ]  + 4p2R[<min + gminvss/2]. 

(4.98) 

Except for the term involving the delay estimate variance, equation (4.98) is identical to the 

one for an adaptive filter operating alone ( [ 7 ] ,  equation (5 .74)) .  In order to have convergence 

in the mean square of the weight vector estimate, the correlation matrix must stay bounded 

in some sense. The norm of this matrix can be used with that effect. 

The norm of a matrix A, denoted by IIAll, is the number defined by [55] 

It can also be shown that 1 1 ~ 1 1 ~  is equal to the largest eigenvalue of the product A~ A [55]. 

When A is an autocorrelation matrix, the norm IlAll is then equal to the largest eigenvalue 

of A. Note that the definition based on the largest eigenvalue is not necessarily unique. 

Proceeding as in [7], equation (4.98) is first expressed in normal form by using the 

unitary similarity transformation 

R = Q A Q ~ ,  (4.100) 

where Q is a unitary matrix with the orthonormal eigenvectors of R as columns and A is 

a diagonal matrix with the corresponding eigenvalues on the main diagonal. Using this 

transformation in (4.98), with 

~ ( n )  = Q ~ K ~ Q ,  ( 4 . 1 0 1 )  



gives 

Because the matrix Q is unitary, the norm of K,,,(n) is equal to  the norm of X(n). 

Therefore, the weight vector estimator converges in the mean square if and only if the largest 

eigenvalue of the matrix X(n), when n tends to  infinity, is finite. Since an autocorrelation 

matrix is always nonnegative definite [7], the largest eigenvalue of X ( n )  is finite if and only 

if the trace of K,,,(n), which is equal to the trace of X(n), is finite. A recursive equation for 

the diagonal element of X(n) can be obtained by proceeding as in [7], pp. 229-230. The 

relation is 

with the x;(n)'s being the diagonal elements of the matrix X(n), the Xis being the eigen- 

values of the input signal autocorrelation matrix R and the M x M matrix B has elements 

defined as 
(1 - 2 p ~ ; ) ~  i = j  

bij  = 
4p2 X,X j i f  j .  

Since the matrix B is symmetric, a unitary similarity transformation similar to that de- 

scribed in (4.100) can be found such that 

where the matrix C is diagonal with elements that are the eigenvalues of B. Therefore, 

(4.103) converges t o  its steady-state component 

if and only if the eigenvalues of matrix B all have magnitude less than one. It is demonstrated 

in [7] that this is the case if and only if the parameter p satisfies the condition 

Therefore, if the delay estimate variance v, is finite, the trace of the weight-error correlation 

matrix Kv is finite and the condition for convergence in the mean square is given in the 

following proposition. 



Proposition 4.5. In steady-state conditions, the weight vector estimator, given by the adap- 

tive filter LMS algorithm operating jointly with a mean square convergent delay tracking 

algorithm in Type I configuration, is convergent in the mean square if 

where X i  is the ith eigenvalue of the M x M input signal autocorrelation matrix R. 

This condition for convergence in the mean square sense is identical to  the one for an 

adaptive filter operating alone. 

From the similarity transformation of (4.lOl), with the matrix Q being unitary, the trace 

of the matrix K7(n) is equal to  the trace of the matrix X(n). Then, from the definitions of 

the vector x(n) in (4.104), the following is true 

where X,, is the steady-state version of X(n) and xi(,) is the ith element of the correspond- 

ing steady-state version of x(n). The elements of the vector xSs can be found from (4.107), 

or by letting n tend to  infinity in (4.103). The result is that every component of x,, is equal 

to  [71 

Therefore, 

If the adaptation constant p is small enough to make 

then (4.111) can be written as 

where tr[Kh] is defined as the trace of the weight-error correlation matrix specific to the 

adaptive filter and is given as 

tr[K\I = ~ M 6 m i n .  (4.113) 



4.3.1.3 Excess Mean-Squared Error and Misadjustment with the Joint LMS 
Algorithm 

The steady-state MSE, for the joint LMS algorithm, is first computed and the excess 

MSE is deduced. Then, a misadjustment expression is derived. From equation (3.5), the 

steady-state MSE function is 

Qs = drr(0)  + ~ [ w ; f ~ w n ]  - 2~[w; fpn] .  (4.114) 

Equation (4.27) transforms (4.114) into 

T 
<ss = dm(0) + w ~ ~ ~ R w ~ ~ ~  + E[T~RIID] + ~ ~ [ S R w o p t ]  - 2wzPtE[pn] - 2E[q;pn]. (4.115) 

The use of (4.81) gives 

T Gs = drr(0) + w,ptRwopt + ~ [ $ ~ q n ]  - 2 ~ ~ ~ ~ ~ w o p t  - uSsw&$(~)  - bvss$(D) 
T b ( O )  - ~ ~ ~ t R ~ o ~ t  - ~ s s ~ o p t i ( D )  + ~ [ q z ~ t ) , ]  (4.1 16) 

= tmin + vss$min/2 + ~[$M'n]r  

where the expression &r(0) - w ~ p t ~ w o P t  is explicitly defined as Cmin, the expression 

w F p t p ( ~ )  is replaced by its equivalent given in (4.97) and the steady-state delay variance 

vss is assumed small. The last term of (4.116) can be expressed as 

~ [ ~ 3 r ) , l  = tr[RKv1 

= t r [AXss] 

= xTxss. 

Combining (4.107) and (4.117) gives 

which can be shown to be equal to  [7] 

Use (4.119) into (4.116) gives the final expression for the joint MSE function 

The excess MSE is then 

Jex = Qs - Jmin 



where the excess MSE specific to the adaptive delay element is defined as 

the excess MSE specific to the adaptive filter is defined as 

and the cross-product excess MSE is defined as 

Note that the expression for & is equal to the expected value of the excess MSE given in 

(3 .61) .  This expression is also valid for pure LMS delay estimation [29] and the expression 

for <Ex is valid for an adaptive LMS filter operating without an adaptive delay [7]. 

The misadjustment is defined as the ratio of the excess MSE to (,in. Therefore, the 

misadjustment expression is 

where the misadjustment specific to the adaptive delay element is defined as 

the misadjustment specific to the adaptive filter is defined as 

and the cross-product misadjustment is defined as 

4.3.2 The Jo in t  LMS Algorithm in  T y p e  I1 Configuration: Delay in Adapt ive 
Branch  

The particularity of the Type 11-DAB configuration is that the adaptation is a func- 

tion of the delayed adaptive filter (see equation (3 .10)  and equations (3 .33)  to (3 .35)  in 

Chapter 3 ) .  The adaptive branch output is given in (4 .4)  and the corresponding joint LMS 

algorithm is 
wn+l = w n  + 2pe(n, d n ) u ( n T  - d n )  

where e(n, d,) is given in (4 .3) .  



4.3.2.1 Analysis for the LMS Delay Es t ima to r  in S teady-Sta te  

Because the output of the adaptive branch is given by (4.4), the output steady-state 

noise ~ ( n ,  D )  is given by 

x(n,  D )  = V;T-DU(~T - D),  (4.130) 

and the derivative of ~ ( n ,  D) with respect to the delay is a function of the derivatives of 

both T)TT-D and u(nT - D). This fact does not affect, for the most part, the derivations 

of the convergence conditions presented in Subsection 4.3.1.1. Proposition 4.2 is unchanged 

and Proposition 4.3 still holds with E [ G ~ ]  given by 

The steady-state delay variance is still given by (4.74) with 

Note that equations (4.131) and (4.132) reduce t o  (4.68) and (4.75) when the adaptive 
(4) weight vector is not a function of the delay (g5;iqi (0) = 40iqi (0) = 0). 

The second derivative g5;iqi(0) can be approximated by Stirling's formula 

It is shown below that +wli(l) x &.isi(0), which, when used in (4.133), implies that 

g5;i,,i(0) 0. This result can be heuristically explained by noting that if p is small (as 

it is in practice), the correction made to the weight vector is small (see equation 4.129), and 

the autocorrelation of the noise vector components is approximately constant around a lag 

of zero. Therefore, the results of Subsection 4.3.1.1 can be used without any modifications, 

unless the adaptation factor p is such that the approximation (obtained from (4.172)) 

is not true. 
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4.3.2.2 Analysis for the LMS Adaptive Filter in Steady-State 

Some complications appear in the analysis of the LMS adaptive filter. From (4.129), 

the weight vector adaptation is performed according to 

Wn+l = Wn + 2pe(n, dn)u(nT - dn) 
T 

(4.135) 
= wn + 2p[r(n)u(nT - dn) - u(nT - d n ) ~  (nT - 

This type of algorithm has been analysed for a constant integer delay [49], [56].  The use 

of a fractional and stochastic delay complicates greatly the problem. In order to  simplify 

the analysis, it will be assumed, throughout Subsection 4.3.2.2, that the reference delay 

D, = D / T  is an integer. 

Convergence in the Mean of the Weight Vector Estimate when D* is an Integer 

Taking the expected value on each side of (4.135), making use of the independence 

assumption and using (4.81), the following equation is obtained for the update of the average 

weight vector 

Use the similarity transformation of (4.100) and define the normalized error vector En and 

the normalized cross-correlation vector c(d,) as 

Equation (4.136) then becomes 

Note that the expected values are taken over the input data, which amounts to expectations 

taken jointly over the adaptive weight vector and the adaptive delay. Denote an expected 

value with respect t o  the weight vector as Ew[.] and an expectation taken with respect to 

the delay as Ed[-]. Consider w,(d,) as a function of d,. If the delay steady-state variance 

is s m d ,  w,(d,) can be represented approximately as 

Since the delay estimate is unbiased, the expected value of wn(dn) with respect to  d, is t 

Ed[wn(dn)] wn(D), (4.140) 

Note that in order to be consistent with previous results, a term proportional to the delay variance vss 
should be present. But in a first analyis, this term is neglected in order to avoid expressions containing 
derivatives of the weight vector 



and 

Equation (4.138) then becomes 

Denoting the i th  component of Ew[E,] as Eni, the transfer function between pvssZi(D) and 

Then (4.142) converges if and only if, for each i, all of the roots of the characteristic 

polynomial 

C ( z )  = zD*+l - zD* + 2pXi (4.144) 

lie within the unit circle. This is exactly the result obtained in [49] and the bound on p is 

found to  be 
X 

sin [ ] . o < p < -  
Amax 2(2D* t 1 )  

Using the final value theorem [57], the steady-state value of the i th  error vector component 

Ess ,  = lim 
z-1 zD*+l - zD* + 2pX; 

which indicates that there is a bias on the weight vector estimate identical to the one in 

(4.85). The following proposition characterizes the convergence in the mean of the weight 

vector. 

Proposition 4.6. In steady-state conditions, the weight vector estimator, given by the adap- 

tive filter LMS algorithm operating jointly with a delay tracking algorithm in Type 11-DAB 

configuration, converges in the mean if 

A 
s in [  - 1 ,  o < p < -  

A,,, 2(2D* + 1) 

where A,, denotes the maximum value of the input signal autocorrelation matrix R and 

D* = D / T  is the mean of the delay estimate. The weight vector estimate experiences a 

bias given by 

b = l / z v s s ~ - ' h ( ~ ) .  (4.148) 



Convergence in the Mean Square of the Weight Vector Estimate when D ,  is 
an Integer 

From (4.135), the weight noise vector is 

Using the assumptions and the procedure of Subsection 4.3.1.2, the weight noise correlation 

matrix K q ( n  + 1)  is found to be similar to  (4.98)  and is of the form 

which is obtained through an argumentation similar to the one of (4.139) to  (4.141), and 

K D l ( n )  is defined as 
T 

K ~ * ( n )  = E[%ln)ln~-&,l, (4.152) 

for D, an integer. Note in particular, that (4.150) is equal to (4.98)  when D ,  = 0. 

Then, using (4.149), the matrix K g ,  ( n )  is given by 

where (4.152) is used and the term of the form of (4.89)  is neglected for a small delay 

variance. Applying (4.153) successively, the following result is obtained. 

K g , ( n )  = K 9 ( n  - D , )  - 2 p ~ , R K ? ( n  - D , ) .  (4.154) 

Then 

Kl(n - D,)  = K B ( n  - D, - 1 )  - 2 p R K T ( n  - D ,  - 1 )  

= K B ( n  - D ,  - 1)  - alrRK;(n - D ,  - 2 )  t 4 p ' ~ ~ K l ( n  - D, - 2 )  
n-D.-1 

(4.155) 

= ( - 2 j i ~ ) ~ K T ( n  - D* - 1 - i ) ,  
i=o 

where 
K B ( n )  for i  even 

K?(n) = { 
K;(n )  for i odd. 



Using the result (4.155) and the definitions of (4.100), (4.101)' (4.104) and (4.105) in (4.150) 

gives the following recursive equation for the diagonal vector x(n) of the normalized corre- 

lation matrix X(n); 

In order to obtain a bound on p that insures convergence of this equation, it is easier to 

use (4.157) in the computation of the quantity F(n), defined as 

which can be shown to be equal to ~ ~ x ( n )  (see equation (4.117)). The quantity ((n) is a 

constituent of the excess MSE (see (4.116)) and must therefore be finite in order to have 

convergence in the mean square. 

In order to  simplify the results, assume that the eigenvalues A, are nearly equal t and 

that the average eigenvalue is denoted as 1 (this assumption was used with success in [56]). 

Then, premultiplying both sides of (4.157) by and using the definition of (4.158) results 

in 

{(n + 1) =i(n)  - 4 p X $ ( n ~  - D )  + 4 p 2 t r [ ~ 2 ] { ( n ~  - D) 
n-D*-1 

t 4g2tr[~2][tmin t <min~s. /2]  + 8 p 2 ~ * X 2  (-2pi)i i(n - D* - 1 - i). 

Taking the z-transform and rearranging gives 

The characteristic polynomial is 

In order for (4.159) to be stable, the characteristic polynomial must have all its roots within 

the unit circle. Jury's test [58] establishes four necessary and sufficient conditions for the 

characteristic polynomial to  have such roots. The first condition is 

This situation is desired in practice to insure reasonable convergence speed of the LMS adaptive filter. 
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which reduces to  
2 2 2Xtr[R ]p + ( 20 , j 2  + t r [ ~ ~ ]  - 2 i2 )p  - i < 0. (4.162) 

This equation represents an upward parabola in p with a negative minimum. The positive 

range of values of p for which the equation is negative is 

which is identical to the bound defined in [56]. In this article, it is shown that the second 

and third conditions of Jury's test hold when this bound is used. The fourth condition 

cannot be verified analytically, but it is never violated in the simulations performed in [56] 

and it is therefore conjectured that it is true. 

Because i ( n )  = ~ * x ( n ) ,  the above stability range is also applicable to the convergence 

of x(n) given in (4.157). The steady-state value of t ( n )  is obtained by applying the final 

value theorem to (4.160). For p i  << 112, the result is 

where 1 is an M x 1 unit vector, i.e. it has a l l  its elements equal to 1 and the second 

equation is obtained by assuming nearly equal eigenvalues. Then 

The convergence in the mean square is therefore formalized in the following proposition. 

Proposition 4.7. In steady-state conditions, the weight vector estimator, given by the adap- 

tive filter LMS algorithm operating jointly with a mean square convergent integer delay 

tracking algorithm in Type 11-DAB configuration, is convergent in the mean square if 

where Xi is the i th  eigenvalue of the M x M input signal autocorrelation matrix R, /\ is the 

average eigenvalue and D* = D / T  is the mean of the delay estimator. 

From (4.165), the trace of the correlation matrix is 

Note that if D, = 0, (4.167) reduces to (4.111), when the eigenvalues are nearly equal. 



Approximation of q5:i, (0) 

In order t o  compute the approximation of (4.133) for k = 1, the diagonal elements of 

the cross-correlation matrix Kl(n) must be available. From (4.155), this matrix is given by 

n-1 

= X ( - 2 p ~ ) i ~ f  (n - 1 - i ) ,  
i = O  

from which the normalized diagonal vector can be obtained. It is given by 

and x(n) is defined in (4.104). The j th  component of xl(n) can be expressed as (using 

(4.154) with D, = 1) 

xlj(n) = xj(n - 1) - 2pXjxlj(n - I). (4.171) 

Assuming that  the conditions of convergence are respected, the steady-state value of xlj(n) 

is 

which is approximately equal to x j (m)  when the condition of (4.134) is respected. There- 

fore, q+,+(l) is approximately equal t o  &iqi(0), and q5;,si(0) is approximately zero. 

4.3.2.3 Excess Mean-Squared Error and Misadjustment with the Joint LMS 
Algorithm in Type XI-DAB Configuration 

Proceeding as in Subsection 4.3.1.3, the MSE function is 

From (4.117) and (4.164), the last term of (4.173) is given by 



Therefore, the excess MSE has the same form as for the Type I configuration and is given 

by 
d f 

cex = e x  + CX + (ex, (4.175) 

The misadjustment has the form 

where the different terms are trivially related to the corresponding excess MSE terms of 

(4.175) to  (4.178).  

4.3.3 The Joint LMS Algorithm in Type I1 Configuration: Delay in 
Reference Branch 

A Type II-DRB system in cancellation mode is illustrated in Figure 3.2 of Chapter 3. 

This type of configuration simplifies considerably the analysis of the Type I1 system and 

makes i t  more practical since i t  avoids the delay between the filter adaptation and the error 

signal. The negative delay -d ,  is implemented in practice by introducing a fixed delay 

before the adaptive filter. The error signal is given in (4.5) and the corresponding joint 

dn+i = dn - 2ae (n ,  d , ) i (nT  - d, ) .  

4.3.3.1 Analysis for the LMS Delay Estimator in Steady-State 

Because of the adaptive delay location, the output of the adaptive filter is independent 

of dn.  But the optimum adaptive filter output F(n) is still a function of d, = D and the 

noisy output is defined as 

~ ( n ,  D )  = + ( n )  + x(% D ) ,  (4.181) 

where 
T i ( n )  = w,,,u(nT) 



and 
T ~ ( n ,  D )  = ~ n u ( n T ) l d , = - D .  (4 .183)  

The Taylor approximation of y n ( d n )  = e 2 ( n ,  d , )  is still used with 

+ n ( D )  = 2e(n,  D ) + ( n T  + D )  
(4.184)  

?,(D) = 2 f 2 ( n ~  + D )  + 2 e ( n ,  D ) ? ( n T  + D ) .  
Defining 

Nn = 2 e ( n ,  D ) + ( n T  + D )  (4.185)  

and 

G, = t 2 ( n ~  + D )  + e ( n ,  D ) T ( ~ T  + D ) ,  (4 .186)  

the approximate LMS delay tracking algorithm is (compare to equation (4 .47) )  

Convergence in  t h e  Mean of t h e  Delay Es t imate  

Proceed as in Subsection 4.3.1.1, i.e. take the expected value of (4.187).  Note that 

Proposition 4.1 holds and that 
E[Gn] = -&(D) 

E[Nn] = 0 , 
as in (4 .51)  and (4.57). Then Proposition 4.2 applies in the present case, i.e. the condition 

of convergence in the mean is 
2 

o < a < - .  
t m i n  

Convergence i n  t h e  Mean Square of t h e  Delay Est imate 

Apply the procedure of Subsection 4.3.1.1. Note that E [ ( 1  - 2 a G n ) N n ]  = 0 again. 

Then the same mean square analysis applies and Proposition 4.3 is valid with 

The steady-state delay estimate variance is still given by (see (4 .74))  

where E [ N ~ ]  can be shown to be 



4.3.3.2 Analysis for t h e  L M S  Adapt ive  Fi l ter  i n  S teady-Sta te  

Combining the first equation of (4.180) and the error definition of (4.5), the LMS 

adaptive filter algorithm is 

The mean and mean square analyses, based on (4.193), give the same results as those of 

Subsection 4.3.1.2, with D replaced by -D, and Propositions 4.4 and 4.5 are valid in the 

present case. 

4.3.3.3 Excess Mean-Squared E r r o r  a n d  Misad jus tment  w i th  t h e  Jo in t  LMS 
Algori thm 

The results of Subsection 4.3.1.3 apply integrally, with the obvious changes in E [ G ~ ]  

and [N:] according to (4.190) and (4.192) (for the computation of v,,). 

4.4 Discussion 

As pointed out in Chapter 3, the joint steepest-descent algorithm and its stochastic 

counterpart, the joint LMS algorithm, represent the generalizations of either the conven- 

tional SD (LMS) delay tracking algorithm [29] or the conventional SD (LMS) adaptive 

transversal filter algorithm [lo]. It is therefore not surprising to  find that all the results of 

Subsections 4.3.1.1,4.3.2.1 and 4.3.3.1, about the delay algorithm, degenerate to the results 

of [29] when the signals are properly interpreted, and that the results of Subsections 4.3.1.2, 

4.3.2.2 and 4.3.3.2 come down to the LMS adaptive filter results, when the delay D and the 

variance are set equal to  zero. 

Another point t o  note is the fact that, as long as the delay estimation algorithm is 

convergent in the mean square (v,, is finite), the conditions for convergence of the LMS 

adaptive filter, in the mean and in the mean square, are identical to the usual conditions for 

a similar adaptive filter operating alone or with a fixed delay element, i.e. the convergence 

depends on the eigenvalues of the input, signal autocorrelation matrix. Note also that, 

because of the adaptive delay element, the weight vector estimate is biased. 

As equations (4.73) and (4.74) suggest it, the convergence of the LMS adaptive delay 

element depends on c,;,, E[G:] and E [ N ~ ] ,  for the three types of systems. Using (4.57) 

and the fact that  

tmin  = &(O) - dii(0) 7 
(4.194) 



equations (4.69) and (4.75) can take the form t (Types I and 11-DAB) 

- 44uU(0)4:~(0)tr~[~,l, 

and equations (4.190) and (4.192) become (Type 11-DRB) 

Equations (4.195) t o  (4.198) indicate that the convergence of the LMS adaptive delay ele- 

ment depends on the input signal power 4,,(0) and the minimum MSE [,in in the Types I 

and 11-DAB, as well as on the reference signal power &(O) in the Type 11-DRB case. 

The expression (4.74) (valid for the three types of systems) for the delay estimate vari- 

ance is complicated by the presence of the adaptive filter-related terms. The delay estimate 

variance is also encountered in the excess MSE and misadjustment expressions, like (4.121) 

and (4.125). Once the delay variance is computed or fixed, these two quantities are seen to 

be functions of two terms specific to the adaptive delay element and to  the adaptive filter, 

respectively, and of a cross-product term (note that the delay specific term being function 

of us,, it is indirectly function of the adaptive filter). Note that the expressions for <,d, and 

are identical to  those obtained for the respective adaptive algorithms operating alone 

[29], [7]. The cross-product terms <,d and M~~ are essentially the result of gradient and 

derivative estimation noise in the two adaptation processes. For stationary input and refer- 

ence processes, the estimation noise in one adaptive algorithm is increased by the gradient 

estimation noise present in the other adaptive system. Therefore, the total misadjust men t 

M is not merely the sum of the adaptive delay element and adaptive filter misadjustment 

expressions M~ and M ~ ,  but also includes a term due to  the joint estimation noise. Note, 

however, that the cross-product misadjustment Mdf is equal to the product of M~ and 

Mf,  which makes i t  a second-order term that can be, in practical situations, one order of 

magnitude smaller than the individual terms. 

Note that these expressions are ezact for white input  and noise signals. 



The results obtained in this chapter are based on a number of assumptions, as listed 

a t  the beginning of Section 4.3. These assumptions may seem restrictive, but they can 

be justified as follows. The Gaussian assumption is a common one and has been used 

in most of the more involved analyses, as in [59], [60] or [7]. The whiteness assumption 

in the noise processes is more specific, but it is often met in practice and is used only 

in the proof of Proposition 4.1. Assumption 2 about the stationarity of the reference 

signal is used to  limit the analysis to the effects of the gradient and derivative noises on 

the steady-state behaviour of the joint algorithm. The excess MSE and misadjustment 

caused by the tracking lag, in the case of nonstationary reference signals, was therefore not 

considered in the analysis. The independence assumptions 3 and 5 are also common in the 

analysis of stochastic algorithms. The zero-mean Gaussian assumption about the weight 

noise vector (Assumption 5), when the adaptive delay element is considered, is clearly 

wrong in view of the bias in the adaptive noise vector (see Proposition 4.4). But practical 

considerations ask for a small delay variance, in which case the weight vector bias is also 

small and Assumption 5 almost valid. Finally, the assumption of high signal-to-noise ratio 

is used, as in Chapter 3, to  simplify the results and obtain useful indications about the 

algorithm. 

4.5 Application of the Joint LMS Algorithm 

The applicationof the various results obtained in this chapter is not an obvious task, 

due mainly to the complexity of the different formulas and to the relationships among them. 

But as shown above, the different bounds are functions of the input and reference signals, 

and can therefore be estimated. 

Note that  if p and [,in are small, the quantity tr[Kq] is approximately zero and E[G;] m 
3/4&,, for a Type I system (see (4.195)). In this case, convergence in the mean square 

happens for 

which is 113 of the upper bound for convergence in the mean (see Proposition 4.2). 

In order to  use the convergence bounds on a and p ,  it is necessary to know the delay 

estimate variance v,,, which itself is a function of a. Since, in practice, a certain variance is 

desired or desirable, v, can be used as a design variable that is fixed a priori. The different 

quantities which are functions of this variance are then computed more easily. 

A Type I system design procedure, for the determination of a and p in high signal-to- 

noise conditions, can take the following form 



Assume an acceptable delay steady-state variance v,,. 

Estimate tmi,, &u(0) and its derivatives (proceed as in Section 3.4.1, in particular 
equation (3.117)). 

Compute tr[Kv], E [ G ~ ]  and E [ N ~ ] ,  as functions of p,  using equations (4.111), (4.195) 
and (4.196). 

Obtain a relationship between a and p,  using equation (4.74). 

Use equation (3.91) of Chapter 3 to get a second relationship between a! and p and 
solve for these two factors. 

Verify that the convergence bounds, for both a and p,  are satisfied. 

Similar procedures can be described for the two other types of systems. Because of 

the assumptions used, these design procedures are useful only if they are used with caution 

to  obtain approximate information about the algorithms. More results concerning the 

applicability of the procedures are given in Chapter 6. 

The different bounds developed in Chapter 3 are useful in the application of the joint 

LMS algorithm. In particular, note that the conditions for convergence in the mean of the 

delay estimator in Type I or Type 11-DRB (equation (4.60)) is the same as the stability range 

for the SD delay estimator (equation (3.75)). Then the tighter bounds of Proposition 3.2 

(equations (3.82) and (3.83)) can be used to predict the convergence in the mean of the 

delay estimator. The other results of Subsection 3.3.2.2 can also be use with profit in the 

application of the joint LMS algorithm. 

Finally, note that the analysis and the results obtained for the Type 11-DAB adaptive 

system (Subsection 4.3.2) are the least appealing and realistic ones. These results should 

mainly be considered as indicative of the fact that a Type 11-DRB configuration is more 

attractive and should be preferred. Nevertheless, practical situations may dictate the choice 

of a Type 11-DAB form, in which case the theoretical results could be of interest. 

4.6 Summary 

Joint time delay estimation and adaptive MMSE filtering, using the least-mean-square 

algorithm, has been studied in details in this chapter. The differences between three Types 

of joint algorithms (I, 11-DAB and 11-DRB) were established, and in the Type I case, it was 

assumed that the delay d, propagates instantaneously into the adaptive filter delay line. 

The ODE method was used to  show that when the adaptation factors a and p both tend 

toward zero, the joint LMS algorithm converges to a local minimum of the MSE function, 



like the exact version of the joint steepest-descent algorithm. This supports the fact that, 

when the factors are small, the joint LMS algorithm converges to  solutions close to those 

of the joint SD algorithm. 

The three types of joint LMS algorithm were studied in steady-state conditions, when 

the reference signal is stationary. It was established that the adaptive delay element con- 

vergence bounds are governed by the input signal power and the second derivative of the 

MSE function at its minimum in a Type I system, and by the same quantities, plus the 

reference signal power, in the Type 11-DRB case. In these two types, the adaptive filter 

convergence bounds were found t o  be given by expressions identical to those obtained for 

an adaptive filter operating alone. It was also found that the delay estimate is unbiased, 

while the weight vector estimate is biased by a quantity proportional to the delay estimate 

variance. It was also argued that a Type 11-DRB adaptive system should be preferred to 

a Type 11-DAB system. A design procedure for the choice of the adaptation factors was 

discussed, and it was pointed out that the results of Subsection 3.3.2.2 could be used with 

profit, in the application of the joint LMS algorithm. 

The material presented in this chapter shows explicitly the complexity of the analysis 

of stochastic joint algorithms, and could be seen as an  attempt to  unify the analyses of 

LMS adaptive delay and adaptive filter algorithms, as well as a unification of the analyses 

of different types of joint LMS delay estimation and adaptive filtering algorithms. 



Chapter 5 

Joint Time Delay Estimation and Adaptive 

Recursive Least Squares Filtering: 

Fast Transversal Filter Algorithms 

5.1 Introduction 

The third joint time delay estimation and channel identification method proposed in 

Chapter 2 is based on the combination of an adaptive delay element and an adaptive filter, 

as used in Chapters 3 and 4, and the least squares (LS) estimation criterion. Using the 

notation of the previous chapter, the prewindowed form of this method is based on the 

minimization, with respect to both the adaptive delay and the adaptive filter weight, of the 

sum of ezponentially weighted error squares &(n), defined as 

where /.l is a constant positive weightingfactor close to, but less than one [7]. Note that the 

memory of any algorithm based on the criterion (5.1) grows with n. Strictly speaking, this 

type of algorithm is therefore not completely suitable for tracking nonstationary reference 

signals, since it never completely 'Lforgets" the past data. But for P lower than one, the 

tracking capabilities are generally acceptable [61]. 

A joint LS algorithm can take a form similar to  the joint SD algorithm of Chapter 3, 

i.e. the delay adjustments can be based on explicit error derivative measurements and 

the filter adaptation can rely on the recursive least squares (RLS) algorithm. In such a 

philosophy, the two adaptation processes are based on independent computations, and one 

algorithm does not use any information processed by the other algorithm (each adaptive 



system acts as if the other system was not present). This philosophy can be applied to any 

type of adaptive configuration, as defined in Chapter 3 (Type I, 11-DAB or 11-DRB). But 

the particularity of the RLS adaptive filter algorithm is that it computes the true solution of 

the LS problem at  each iteration, which typically insures a rate of convergence an order of 

magnitude faster than the simple SD or LMS algorithms [7]. This characteristic can prevent 

the use of an independent delay estimation algorithm, as in the joint MMSE algorithm of 

Chapter 3. This is so because the adaptive filter converges so quickly that it will model 

by itself the most part of any reference delay before the adaptive delay loop can converge. 

In most occasions, the joint LS algorithm must therefore intimately link the two adaptive 

processes. 

Another problem with the use of the RLS adaptive filter algorithm is its inherent com- 

putational complexity (the LS solution involves in fact the inversion of the input signal 

autocorrelation matrix). The use of a fractional delay element involves an additional com- 

plexity that is not welcome. 

These problems can be partially circumvented by using an integer delay element that 

is not updated only in the direction of the least squares solution, as in a gradient-type 

algorithm, but that selects a value that truly minimizes & ( n )  at each iteration, within a 

finite set of possible delay values. This type of joint algorithm computes the two estimates 

such that they correspond to the joint LS solution at each iteration. 

In this chapter, two new joint delay and reference filter tracking algorithms of this kind 

are proposed. One is based on the Type I configuration (the adaptive delay is located before 

the adaptive filter) and the other assumes a Type 11-DRB adaptive system (the adaptive 

delay is located in the reference branch). Define the integer time delay as a time lag and 

denote it by e. Then, the error e(i, d;) in (5.1) can be expressed as 

e ( i , d ; )  = e ( i , t )  

H = ~ ( i )  - w (n)u(i - t) Type I, (5.2) 

= ( + ) - wH(n)u() Type I1 - DRB. 

For an adaptive filter with a given number of taps M, define the minimum sum of weighted 

squared errors iM(n)  as 

iM(n)  = min C(n), 
w(n),t 

where the minimization with respect to e is accomplished over a finite set of lag values. 

Then, for a given value of e, define the minimum sum iMo(n, l )  as (compare with the 

definition of to(&) in equation (3.39)) 

iMo(n,e) = min &(n). 
w(") 



The weight vector for which this minimum is attained is defined as i L ( n ) .  If the adaptive 

delay d,  is not equal to the reference delay D,, for all i, the sum of errors iMo(n,d,) 

is not minimum with respect to  d,, unless the adaptive filter length is large enough to 

accommodate both the modelling of the reference filter h(n) and the reference delay (i.e. 

M is large enough such that the delayed optimum adaptive weight vector is not truncated). 

The RLS algorithms derived in this chapter exploit the data structure in order to 

compute the adaptive weight vector and the lag value, within a finite set, corresponding to 

the joint LS solution. In order to  perform such a task, the sum of squared errors iMo(n, L) 

is computed for each value of! in the set of interest, and the delay value corresponding to 

the lowest value is retained. The set of possible delay values is chosen to be {L - 1, l ,  L +  1). 

The joint LS lag estimation and adaptive filtering algorithms can be cast into the 

following general algorithmic form 

1. Apply the Recursive Least Squares (RLS) algorithm in order to obtain i L ( n )  and 

i ~ o ( ~ , ~ )  

2. Adapt 1 by using derivative information from iMo(n,L) and update w&(n) and 

i ~ o ( ~ ,  (1. 

Conceptually, the first part of the algorithm can be implemented by using any of the 

computationally efficient forms of the RLS algorithm, and the second part can be imple- 

mented as a gradient search, with respect to  L, of iMo(n, l ) .  The gradient can be given, for 

example, by 

if i ~ o ( n , l  f 1) < iMo(n,L) and iMo(n, + 1) < iMo(n,L - 1) 
aiMo(n, !) 

at if iMo(n, e - 1) < iMo(n,  l) and iMo(n, c - 1) < iMo(n,  l + 1) 

otherwise, 
(5.5) 

and the lag value updated as 

where (.) denotes a form of time average and w is a positive constant t . 

The constant m is taken to be equal to one in the rest of the thesis. It is explicitly shown in the lag- 
update equation in order to relate this equation to the SD delay adaptation algorithm of the previous 
chapters. 



Another form of lag update can rely on a time average of the sum of squared errors, 

i.e. the derivative can be implemented as 

and the lag value updated as 

!=eta  a i ~ o ( n ,  e) 
ae - 

This form of joint RLS algorithm is significantly different from the joint LMS and 

SD algorithms, since it relies on the ability of the adaptive filter to model a delay. The 

integer delay (lag) estimation is performed by extracting the time shift information from 

the adaptive filter, in order to keep it "centered" to the nearest sample. The fractional part 

of the reference delay is still modelled by the adaptive filter. Note that e does not carry 

a time index because, in the RLS algorithm, it is assumed that the signals are stationary 

within the memory of the algorithm (defined by P ) ,  which implies that L applies to  all the 

previous data. Note also that when t  is updated, i L ( n )  must also be corrected, in order 

to obtain the joint solution of (5.3). 

In order to  compute (5.5) or (5.7), the optimum weight vectors for lags e + 1 and l - 1 

must be available. This extra information can be obtained by computing the RLS algorithm 

two more times, in a parallel fashion. This implies an increase in both the computation 

count and in the storage requirement. Another method of doing the same thing consists 

in applying the RLS algorithm once, and in deriving the extra information from this single 

application. This method is made possible by using a set of lag-recursive relations, for 

the two types of adaptive system considered in (5.2), that allow the exact computation 

of eMo(n,t f I), iMo(n, l  - I), +G1(n) and * k l ( n )  from the knowledge of *&(n) and 

iMo(n,t). These lag-recursive relations are derived in this chapter as functions of variables 

encountered in the different forms of fast transversal LS adaptive filters [62], [61], and are 

naturally appended to these algorithms. The original form of the lag-recursive relations was 

derived by Kalouptsidis et al. [63] and is extended in the next sections. 

The main contributions of this chapter are twofold. Firstly, a new geometrical derivation 

of the lag-recursive equations, for both iMo(n , l )  and *L(n),  is performed in Section 5.3. 

The relations derived in [63] are based on a fixed block of data, while their on line coun- 

terpart was first presented in (421. The second contribution is the description of a new 

joint time delay estimation and adaptive RLS filter, in Section 5.4. The effects of the delay 

estimation on the RLS algorithm, in steady-state conditions, are considered in Section 5.5. 



Finally, note that every explicit derivation prese'nted in this chapter is for a Type II- 

DRB adaptive system configuration in cancellation mode, of the form of Figure 3.2. The 

reason for this fact is that the Type 11-DRB system is the most practical of the two forms. 

An integer-value adaptive delay element before the adaptive filter (as in Type I) implies 

that  the whole set of RLS filter recursions is function of l (for a list of these recursions, see 

Appendix F), and that this entire set has to  be updated in the case of lag update. This 

increases considerably the algorithm computational complexity. In practice, it is preferable 

to  assume that a slowly varying reference delay is present in the reference branch and to use 

a Type 11-DRB adaptive system in all cases. The lag-update relations for a Type I adaptive 

system will be given and discussed, but they are not the main focus of the chapter. 

5.2 Background Theory 

In this section, some definitions and notational conventions are presented, along with 

some geometrical considerations. This background material is used, in the subsequent 

sections, to  derive the lag-recursive relations and to  link them to existing fast transversal 

filter (FTF)  algorithms. Some shift invariance properties and common recursions used in 

the RLS algorithm are discussed in Appendix E. The FTF algorithm that will be considered 

is discussed in Appendix F. 

5.2.1 Notation and Definitions for a Type 11-DRB Configuration 

In the prewindowed weighted recursive least squares adaptation algorithm for adaptive 

transversal filters of order M, the index of performance to be minimized, a t  iteration n ,  

and for a lag l in the reference data, is 

where the a posteriori estimation error is defined by 

with 
u M ( i )  = [u( i ) ,  u(i - I), . . . , u(i - M + l ) lT 

(5.11) 
&(n) = [w:M(n),w;M(n), a 1  w&M(n)lT. 

Note that the prewindowed method assumes that the data is zero prior to iteration n = 1 

[7]. Define also the a priori estimation error a M ( i , l )  a s  



Another set of vectors can be defined in the complex vector space Cn of order n. The 

n-vectors U(n) ,  De(n) and ~ b ( n )  are defined as 

~ ' ( n )  = [ ~ ( n  + I ) ,  r(n + e - I ) ,  . . . , r ( t+  l)lT (5.14) 

z-ju(n) = [u(n - j ) ,  u(n - j - I ) ,  . . . , u(1), 0 , .  . . , OIT E Cn. (5.16) 

Then, the matrix A(nli, M )  is defined as 

and the vector subspace spanned by the columns of A(nli, M )  as S(nli, M).  

The deterministic autocorrelation matrix is defined as (using the notation in [7]) 

and the deterministic cross-correlation vector with lag .t as 

The least squares weight vector at iteration n, for lag t ,  is 

and the corresponding minimum of squared errors is 

Note that the data is assumed such that the deterministic autocorrelation matrix is non- 

singular. 

Denote the optimum weight vector for the one-step forward linear predictor of order m 

as a,(n). This vector minimizes the sum of weighted forward a posteriori prediction-error 

squares, defined as 
n 



where 
H fm(i) = ~ ( i )  - am(n)um(i - 1). 

The forward a priori prediction-error ~ ~ ( i )  is defined as 

Similarly, the optimum weight vector for the one-step backward linear predictor of order m is 

the vector bm(n) that minimizes the sum of weighted backward a posteriori prediction-error 

squares, defined as 
n 

with 

Then the backward a priori prediction-error +,(i) is defined as 

f Define the vectors Ey-l(n) and ~ h - ~ ( n )  as 

5.2.1.1 Shift Invariance Properties 

In a geometrical framework, it is noted that the subspace S(nl0, M - 1) can be expressed 

either as 

or as 

S(nJ0, M - 1) = S(nl0, M - 2) $ z - ~ + ' u ( ~ ) ,  (5.31) 

where the operation $ stands for the direct sum operation. Note also that 

S(nJ1, M - 1) = span{z-lu(n), z - ~ u ( ~ ) ,  . . . , r -MS1~(n )}  

and that 
~ ' ( n )  = [r(n - 1 + l f I) ,  r(n - 1 f 1), . . . , r(t + l)lT E Cn 

(5.33) 
= [ ~ ( ~ + ' ) ~ ( n  - 1) ~ ( l +  l)lT. 



5.2.2 Notation and Definitions for a Type I Configuration 

In the Type I configuration, the notation is complicated by the fact that the adaptive 

filter input u(n) is a function of the delay I. The input data vector is 

e uM(i) = [u(i - I ) ,  u(i - 1 - I ) ,  . . . , u(i - M + 1 - ! ) lT (5.34) 

and the errors are defined as 

Note that, as in Chapter 3, each input sample in u h ( n )  experiences the same delay I. The 

data vector is not a function of I and is 

All the quantities defined in Subsection 5.2.1, and that are functions of u(n), are now 

functions of I. These quantities are ~ ~ ( n l i ,  M) ,  ~ ~ ( i z l i ,  M) ,  @ L ( n ) ,  f'L(n), f&(i), vh(i), 
~ & ( n ) ,  b&(i), +$&(i) ,  EG&) and E$&). 

5.2.3 Geometrical Considerations 

This subsection presents some definitions and considerations about projection operators 

in a Hilbert space. This projection operator formalism is used to derive geometrically the 

lag-recursive relations. 

First, an inner product is defined in Cn (Cn exhibits an increasing dimensionality n). 

The inner product between two arbitrary vectors x and y is 

H < x , y >  = x  Wny 
n 

where the weighting matrix is 

Defining the norm of a vector x as 



each n-dimensional vector in Cn with finite components has a finite norm and Cn is a 

Hilbert space [2] t. Denote the projection of a vector x onto a subspace S as PSx. The 

orthogonal projection of x onto subspace S is written as 

and is the error vector between x and its projection on S. The projection of the vector y 

on the vector x is 

Two order updates for the projection operators are useful. They are based on the fact 

that the vector space spanned by a subspace S and a vector x not in S, denoted S U {x}, 

can be decomposed as [2] 

S U {x) = S $ {pix), (5.42) 

where the notation {v) denotes the vector space spanned by v.  Since S and {pix) are 

two orthogonal subspaces, the following order updates can be derived from geometrical 

considerations 

Psu{x}Y = PSY + P{~,)Y (5.43) 

I 
P;~(,]Y = psy - P{p;xp (5.44) 

The linear least-square estimate of De(n), given the vectors U(n), 2-lU(n), . . . , ~ - ~ + l ~ ( n ) ,  

is defined as the linear combination of those vectors which is closest to De(n) in the LS sense 

[2]. The optimum weight vector dvL(n) is therefore the vector minimizing the norm of the 

error vector  EL(^), i.e., for a Type 11-DRB adaptive system, the vector whose coefficients 

minimize 
M 

f (n )  = [[E(M(n)l12 = [ [ ~ ' ( n )  - wf&(n)r-( '- ')~(n)ll?. (5.45) 
i=l 

The optimum LS estimate DL(n) is the projection on the subspace S(nl0, M - 1) of the 

vector ~ ~ ( n )  [2]. Then, from (5.45), the following two projection equations emerge 

Note that  

' Strictly speaking, a Hilbert space is an inner product space that is complete [64]. The vector space Cn 
satisfies this condition, i.e. every Cauchy sequence of vectors converges in Cn. 



5.3 Geometrical Derivation of Lag-Recursive Relations 

For a fixed block of data, it is possible to derive a series of recursions that compute 

the least sum of squared errors and the optimum LS weight vector a t  every possible lag, 

from the current values a t  lag t. These recursions are derived, using vector and matrix 

manipulations, in [63]. 

Fast RLS adaptive filter algorithms can be derived using geometrical arguments. Cioffi 

and Kailath [61] derive the fast transversal filter using a geometrical method and Alexander 

[65] gives a tutorial review of the same subject. Another very good geometrical derivation 

is found in [2] and will be relied upon in this section. Lag-update relations are similarly 

derived in this section, for on-line computations of iMo(n,  t +  l) ,  gyo(n, l - l ) ,  i+(M1(n) and 

i g l ( n )  from eM0(n, t )  and i & ( n ) .  In order to  perform this new derivation, the projection 

operator formalism presented in Section 5.2.3 is used. 

A first series of recursions, in term of the lag l, is derived for the computation of 

iMo(n , t  + 1) and iMo(n , l  - I), from iMo(n, t ) .  A second series allows the computation of 

ikS1(n)  and +Z1(n) ,  from *&(n). An alternate derivation is given in Appendix G and is 

based only on matrix manipulations. 

The lag-recursive relations are first derived for a Type 11-DRB system, because the 

derivation is simpler and gives results more readily applicable in practice. The lag-updates 

for a Type I configuration can be derived the same way. They are given and discussed in 

Subsection 5.3.2. 

5.3.1 Derivation for a Type 11-DRB Configuration 

The derivation is first performed for the sum of squared errors. It is followed by a 

similar derivation for the LS weight vector. 

5.3.1.1 Recursions for the Error 

Using (5.30) and (5.44), (5.47) can be expressed as 

EL(") = ~ ; ( n ~ l , M - l ) ~ ' ( ~ )  - P{p&nll,M-L)u(n)) De(n). 

Then, making use of (5.32) and (5.33), 



Furthermore, the order M - 1 optimum LS one-step forward prediction of u(n) is obtained 

through the projection of the vector U(n) on the subspace S(nl1, M - 1) and the forward 
f error prediction vector EM-1(n) is given by 

Equation (5.48) can then be written as 

E(M(~)  = ~ z l ~ ( n  - 1) - PEl ( ~ ' ( n ) .  (5.51) 
M-1 n) 

Using (5.41), the following expression is obtained 

From the definition of the inner product (5.37), it is found that 

f e Define vM,l (n)  as the complex conjugate of the inner product of the forward error predic- 

tion vector and the desired response vector, i.e. 

Also, referring to (5.22) and (5.28), it is seen that (using (5.37) and (5.39) for the norm 

Then, (5.52) can be written as 

Using (5.56) in (5.51) gives 

and taking the squared norm on both sides of (5.57), and because the vectors ~ & ( n )  and 

P'M-l(n) 
De(n) are orthogonal (see (5.30), (5.48) and (5.51)), 



which is the first recursion of interest. It gives i ( M - l j o ( n  - 1, l + 1 )  in terms of i M o ( n ,  0 .  
A relation linking 4 M - l ) 0 ( n ,  e + 1) to i M M . ( n ,  P + 1)  can be derived in a similar way. 

First, write (5.47) for ! t 1 

Then use (5.31) and (5.44) to write (5.60) as 

then 

~ e +  M 1 ("1 = ~(M+ll(~) - ' ~ " , _ , ( n )  DL+' ( n ) .  (5.64) 

Proceeding as in (5.52) 

b(t+l)* which, defining V M - l  ( n )  as 

can be written as 
b(e+l)* 

V M - 1  ( 4  b ~,$t-~(,p~+l(n) = BM-l (n )  EM-&+ 

Then, (5.64) becomes 

and taking the squared norm on both sides of (5.68),  and using the orthogonality of E Z 1 ( n )  

and E & - ~  ( n )  gives 

which is the third required recursion. It links ( ( M - l ) o ( n , l  + 1) to i M o ( n , l  t 1 ) .  



Pictorially, these derivations can be performed with the help of Figures 5.1 and 5.2. 

The subspaces S(nl1, M - 1) and S(nl0, M - 2) are represented as one-dimensional vector 

spaces. Then, the subspace S(nl0, M - 1) is the two-dimensional vector space spanned/ 

by U(n) and S(nl1, M - 1) or the one spanned by z - ~ + ' u ( ~ )  and S(n(0,  M - 2). ~ h e l  
f vector EM-l(n) is orthogonal to  S ( n 1 ,  M - 1) and links the latter to U(n), while E$(n) 

is orthogonal to S(nl0, M - 1) and joins ~ ' ( n ) .  The error vectors ~ $ - ~ ( n )  and ~ $ i ~ ( n )  

are similarly represented in Figure 5.2. Then, the orthogonal equations (5.51) and (5.64) 

are obvious from the figures. 

Finally, a time update recursion is necessary for e(M-l)o(n - 1,1+ 1). This recursion is 

common and can also be derived geometrically, although it requires more work than for the 

above recursions [2]. It is derived using matrix manipulations in Appendix G and involves 

both the a priori and a posteriori estimation errors. The recursion is 

Collecting (5.59), (5.70) and (5.69), the recursions for computing iMo(n , l  + 1) from 

i ~ o ( n , e )  are 

Using the above expressions in reverse order gives the backward computation of the error. 

5.3.1.2 Recursions for the LS Weight Vector 

Figures 5.1 and 5.2 can also be used to perform the derivations of the weight vector 

recursions. From Figure 5.1, the following equation is obtained I 



. q&4 = ~$:l(n - 1) - PEh-l(n,~%4 

Fig. 5.1 Geometrical interpretation of (5.51) 

~ e + l  M (4 = ~ e +  &I(") 1 - ~p~-~(,p'+'(n) 

Fig. 5.2 Geometrical interpretation of (5.64) 



and 
(e+i)* 

A ( n  - 110, M - 2 ) w M - l  ( n  - 1) = P S ( n - l l o , M - 2 ) ~ ' ( n ) .  (5.79) 

Using (5 .52)  in (5.77) and noting that 

the following expression is obtained 

This equation can also be written as 

where Lv] , v -~  stands for the vector made of the hf - 1 last components of the vector v.  

Equating similar terms, the following recursion is obtained 

along with 
f e  " M - l ( 4  

7 i f M  ( n )  = 
F M - ~ ) '  

Equation (5.83) is the recursion linking *$(n) to i (MtL1(n - 1). 

Similarly, from Figure 5.2, the following is obtained 



Write (5.85) as 

where [ i h ( n ) l  M - l  is defined as the (M - 1)-vector corresponding to the first components 

of +L(n)  and 6 k M ( n )  is the M ' ~  component of the same vector. Equating similar terms, 

the following equations are obtained 

Then, by combining these two equations, a recursion linking $$Al(n) and i g l ( n )  is 

obtained. It is 

The recursion necessary to link (5.83) and (5.89) is a common time update recursion and 

involves the Kalman gain vector gM-1(n) and the a posteriori estimation error eM (n,  l +  
1) and is [7] 

w$ll(n) = w%Al(n - 1) - .D-lgy-l(n)eM-l(n, L + 1). (5.90) 

Collecting (5.83), (5.90) and (5.89), the set of recursions for the upward weight vector 

computation is 

Using the upward recursions in reverse order, the following two downward recursions are 

obtained 



5.3.2 Lag Recursions for a Type I Configuration 

Following a procedure similar to the previous one, the following set of lag-update re- 

cursions for the error and for the LS weight vector can be obtained. 

5.3.2.1 Recursions for the Error 

Using the above expressions in reverse order gives the backward computation of the error. 

5.3.2.2 Recursions for the LS Weight Vector 

Using the upward recursions in reverse order, the following two recursions are obtained 

Note that the main difference in the lag-update relations between the two types of 

systems lies in the fact that no time-update equations as (5.72), (5.75) or (5.92) is required 

in the Type I relationships. 



5.3.3 Discussion 

R e c d  that the on-line lag-update recursions can also be derived using matrix manip- 

ulations, as it is performed in Appendix G. It is interesting to relate the properties of each 

of the two approaches. For the matrix manipulations derivation of Appendix G, the key 

equation is the shift invariance (E.4) given in Appendix E in which a lag I cross-correlation 

vector is partitioned in terms of a I + 1 cross-correlation vector. In the geometrical ap- 

proach, the key equation is (5.33) and relates a lag I desired response vector to a lag I + 1 

desired response vector. In both cases, the lag e + 1 vector is given for time n - 1 and 

involves ( M  - 1)-order prediction (see (E.4) and (5.49)). Therefore, time update and order 

update relations are necessary steps in the lag update, for a Type 11-DRB adaptive system 

configuration. In the case of a Type I system, the key relations are 

since 

and 

since 

ue(n - 1) = ue+l(n). 

These relations show that, in the Type I case, M - 1-order predictors are still required, but 

that the time n - 1 is not involved anymore. 

The geometrical derivations give a picture of how the ( M  - 1)-order predictors get 

involved in the algorithm. Considering Figures 5.1 and 5.2, if an initial relation starting 

with E(M(n) (or iMo(n,t))  is required, it is natural to express it as a function of ~ $ l ~ ( n )  
f and Er-l(n). Similarly, it is natural to express the required vector E(MC1(n) in terms of 

E $ ~ ~ ( R )  and ~ h - ~ ( n ) .  This gives a relation involving the error for the current lag t 
and another involving the error for the updated lag t + 1. The relation linking these two 

equations nicely involves the time update of E 2 I l ( n  - 1) in the Type 11-DRB case and no 

time update in the Type I case. Such nice and simple interrelations between the variables 

of the algorithm do not seem to exist for M-order predictors. 

Note that the lag-recursive relations, for both the errors and the weight vectors, mostly 

involve parameters and quantities that are computed by the FTF algorithm (see Ap- 

pendix F). One major difference resides in the order of the predictors, which is M - 1 



in the lag-recursive equations. But the FTF can be redefined easily for (M - 1)-order 

predictors, as indicated in the next section. 

5.4 Joint Time Delay Estimation and Adaptive RLS Algorithms with 
the Lag-Recursive Relations in Type 11-DRB Configuration 

Based on the error and weight vector recursions developed in the previous section, dif- 

ferent variants of joint time delay and FTF algorithms can be obtained. These algorithms 

are composed of three distinct computational phases. The first phase is essentially the pre- 

liminary computations phase of the FTF algorithm, given in equation (F.l) of Appendix F 

for M-order predictors. In the joint algorithm, this order is changed to M - 1. The second 

computational phase involves the computation of the current weight vector i L ( n )  and the 

computation of the three errors iMo(n, l) ,  iMlio(n, l f 1) and iMo(n, 1 - 1). These com- 

putations are performed by using the lag update recursions for the error and the weight 

vector. In the joint algorithms considered in this chapter, the computation of *kl(n) and 

cM0(n, l - 1) is first performed, using the usual FTF equations. Then the upward lag recur- 

sions for both the error and the weight vector are used twice, in order to get the errors for L 

and e+ 1 and the weight vector for l. These successive applications of the upward recursions 

produce the least number of computations, compared for example to the application of the 

upward and downward recursions on the error and weight vector at lag 1. This choice also 

simplifies the third computational phase, which involves a decision on the lag update and 

the computations of the new corresponding variables. 

The joint algorithm is given only for a Type 11-DRB configuration, since the corre- 

sponding algorithm for a Type I system can be expressed in a straightforward manner. 

Note however that when the lag gets updated in the latter system, the variables involved 

in the preliminary computations phase have to be updated also. This produces a seri- 

ous increase in the computational complexity and makes the joint Type I system not very 

appealing in practice. 

Schematically, the preliminary and error computations phases of the algorithm can be 

represented as in Figure 5.3, where six parallel digital filter are represented. The top three 

filters are essentially the same as the ones used in the conventional fast transversal filter [61], 

[7], except for the difference in predictors order (compare Figures 5.3 and F.l). The fourth 

filter is for the computation of tMo(n,e- 1) and i k 1 ( n -  1). Notice that $Y-l)a(n - I,!) 
is also obtained from that filter, using (5.71) and (5.84). A fifth filter, with weight vector 

+ ~ & - ~ ( n -  1) obtained from (5.91), is used to obtain V E - ~  (n), from which iyo(n, l) ,  w$(n) 



and &M-l)o(n, t f 1) are computed. Finally a sixth transversal filter, with weight vector 
+f+l M - l ( n  - I), is used in the computation of vM-l b ( l + l )  (n) and Zdbo (n ,~  + 1). 

The joint algorithm, based on Fig. 5.3, is given in the next subsection. Parts a)  and 

b) of this algorithm correspond to the figure, while part c) constitutes the lag update 

section. The decision about this update may involve the time average of the sum of squared 

errors, as indicated in Section 5.4.1, or another form of average. Note that in the case of 

positive update, in (5.113), only a simple transfer of information from t + 1 quantities to 

t ones and the reinitialization of certain variables, are required. In the case of negative 

update, in (5.114), some intermediate computations, involving O s l ( n )  and 0k2 (n ) ,  are 

necessary. These quantities are used with some of the backward lag-recursive relations, in 

the computation of the new values of vG1(n )  and eM,(n, t - 1). 

Fig. 5.3 Interpretation of the lag 1 - l , t  and 1 + 1 error 
computations, in terms of transversal filters 



5.4.1 The Joint Algorithm for a Type 11-DRB Configuration 

a) Preliminary Computations 

Extra recursions for update smoothness 

@e- i ( n )  = ,Od(il(n - 1) + uM(n)re(n + L - 1) 

e ' i2 (n)  = ,f30'i2(n - 1 )  + uM(n)r*(n + L - 2) 

Lag L - 1 computations 



Lag l computations 

Lag L + 1 computations 



5.4.2 Discussion 

The originality of the joint LS algorithm presented in Subsection 5.4.1 resides in the 

serial computations, from - I), of all the necessary errors and weight vectors for lags 



.l and .l + 1. One consequence of this serial approach is a reduction in the memory needed 

t o  store the different quantities of interest. The lag-update recursions append themselves 

nicely to  the FTF  algorithm of the form given in Appendix F. Note however that two 

extra recursions (equations (5.109)) are necessary to ensure update smoothness when the 

lag is updated from l to  .l - 1 (equations (5.114)). In this case, the quantities B(il(n) and 
f (l-') & ~ ~ ( n )  are necessary to update ~ $ - ~ ( n )  and to  compute vy-l- (n) (necessary to update 

,$- 1 (n)). Note also that 8k1(n) ,  & i2 (n )  and vy b(e+l) (n) must be reinitialized in the case 

of lag update (in equations (5.113) and (5.114)). These reinitializations constitute the only 

approximations of the joint LS algorithm and are justified by the limited memory of the 

algorithm (defined by 0). Furthermore, the reinitialization of the cross-correlation vectors 

does not involve any of the algorithm's internal variables since the input signal u(n) and 

the reference signal ~ ( n )  are the only variables used in these computations. 

In contrast, the application of three parallel versions of the RLS algorithm, one for 

each possible lag, requires the initialization of both the sum of squared errors and the 

weight vector, when the lag is updated. The initialization must be done assuming zero 

input data. This typically introduces an error in both of these quantities because their 

computation involves the internal variables yM(n) and gM(n) (see equations (5.110)), that 

were obtained from a totally different set of initial conditions (non-zero input data). In 

order t o  allow a smooth transition in the case of lag update, two extra parallel branches, 

one for .l + 2 and one for l - 2, must be computed, which gives a final parallel algorithm 

involving five branches. This algorithm requires a fair amount of memory in order to  store 

all the previous values of the variables used in the errors and weight vectors computation 

(equation (5.110)). 

At the start of the joint algorithm, the internal variables of the FTF are initialized 

exactly as proposed by Cioffi [61], and the extra error and correlation variables are initialized 

to zero. 

Finally, i t  is a custom with fast RLS algorithms to establish their computational com- 

plexity and t o  compare it to other types of algorithms. The complexity of the joint LS 

algorithm can be compared here to the that of the simple FTF algorithm. As in [7], this 

complexity is measured by the number of operations required to perform one iteration of the 

algorithm. An operation is either a multiplication, a division or an additionJsubtraction. 

It is further assumed that all signals are real-valued. The operation count of the joint RLS 

algorithm of Subsection 5.4.1 is presented in Table 5.1, along with the counts for the simple 

FTF algorithm and for the parallel application of five RLS algorithms, in FTF  form and in 

LS lattice form. These figures concern only the first two phases of the algorithms, i.e. the 



preliminary and the errors and weight vectors computations phases. This choice reflects 

the fact that in tracking mode, the lag update is expected to  be performed after many 

iterations, and therefore does not increase the computational count significantly. 

I Number of operations per iteration 

Algorithm 

Multiplications I Divisions ( Additions/Subtractions 

Simple 

FTF  

Parallel ( FTF I 15M+14 I l7 1 
Joint 

LS (5.4.1) 

Table 5.1 Comparison between the computational complexities of the 
ordinary FTF algorithm, the joint time delay and FTF 
RLS algorithm of Section 5.4.1 and the parallel FTF and 
Lattice algorithms. 

7M+6 

This table shows that the joint algorithm is twice as computationally involved as the 

F T F  algorithm of Appendix F (with (M - 1)-order predictors). It also shows that the 

parallel F T F  algorithm and the joint LS algorithm are about as computationally intensive 

and that the lattice-based parallel algorithm is much more computationally involved. 

16M+17 

5.5 Analysis of the Joint LS Algorithm in Steady-State 

9 

The convergence of the two estimates produced by the joint LS algorithm is studied in 

this section. In so doing, Assumptions 1 to 7 of Section 4.3 are retained, with the reference 

delay D being equal to  an integer number of sampling periods. 

6 M t 3  

16 

5.5.1 The Joint LS Algorithm in Type II-DRB Configuration 

16M+2 

The algorithm is studied in two phases; the adaptive delay estimate is considered first, 

followed by the adaptive filter analysis. The results are then used to obtain the excess 

MSE produced by the joint algorithm. The next section does not give a full analysis of 



the LS delay estimation, but it points out the factors that influence the estimate mean and 

variance. The adaptive filter analysis, in Subsection 5.5.1.2, is more complete. 

5.5.1.1 Considerations about the LS Delay Estimator in Steady-State 

Considering the joint algorithm of Section 5.4, the delay estimate is obtained by com- 

paring the three random variables ( iMo(n, t  - I)) ,  ( iMo(n, t ) )  and ( iMo(n , t  t 1)). A 

typical form of the function (iMo(n, d n ) )  is illustrated in Fig.5.4. It has a minimum equal 

to (iMo(n, D)) and was obtained with the system parameters described in Section 6.2. 

Delay value d ,  - D (samples) 

Fig. 5.4 Minimum sum of squared errors versus the continuous delay 
d,,  p = 0.9 

Assuming that  the adaptive delay is initially equal to the value t ,  the probability of 

staying at this value is given by 

and the probability of going from f to f + 1 or t - 1 is given respectively by 



Because the variables iMo(n , l )  are obtained from a first order difference equation 

(equation of the form of (5.70)), the transitions from one delay value to the other can 

be represented as a Markov chain [66].  The corresponding state-diagram has a state for 

each possible delay value and the transition probabilities are computed as in (5.115) to 

(5.117). The transition probability matrix is a band matrix, with nonzero entries on the 

main diagonal and on the two adjacent diagonals. The transition probabilities are functions 

of the input signal and noise statistics. Assuming, as in Chapter 4, that the MSE function 

has a symmetrical global minimum at  dn = D, and that there is no occurrence of false lock 

on any local minimum, then the delay estimator is unbiased and its variance is a function 

of the steady-state probabilities of being in the different states. 

5.5.1.2 Analysis for the LS Adaptive Filter in Steady-State 

From equation (F.2), the weight vector is updated as 

w h ( n )  = w&(n - 1) + ~ - ' g ~ ( n ) e ; ~ ( n ,  e), (5.118) 

where the Kalman gain vector is given in (E.16) and the error is defined in (5.10). Using 

the matrix recursion (E.13), the weight vector upda.te can be expressed as 

w&(n) = @ i G ( n ) i M ( n  - l ) ~ & ( n  - 1) + @;'(n)uM(n)r*(n + l) .  (5.119) 

Convergence in the Mean 

Take the expected value on each side of (5.119) and assume, as in [33], that @M(n) is 

independent of uM(n) and r*(n + 1) l. Assume also that, in steady-state, +;'(n)+ ( n  - 
1) x I. Then 

From (5.18), the expected value of the deterministic autocorrelation matrix is 

t This is an assumption difficult to justify, but its use by 

P31. 

Eleftheriou and Falconer leads to useful results 



The expected value of the matrix inverse is then 1341 

- 1  
E[@i1(n)]  = R-'L 

pn - 1' 

and (5.120) becomes 

P - 1  
~[*&(n ) l  = P E [ & ( ~  - I ) ]  t R-' ~ [ p n ]  

= ,PE[~&(o)] + R-' E [ ~ , ] .  

Because ,d is lower or equal to one, the above equation converges to 

lim ~ [ + & ( n ) ]  = R - ' E [ ~ ~ ]  
n--roo 

= wept + ~ / Y I ~ ~ R - ~ ~ ( D ) ,  

where equation (4.81) was used and the delay estimator is assumed unbiased. 

The weight vector is therefore biased, with a bias vector given by 

as in the joint LMS algorithm. 

Convergence in the Mean Square 

Rearrange (5.119) as 

and subtract the vector eM(n)wOpt from each side of (5.126)' where 

The following update equation for the weight noise vector is then obtained 

where the error is defined as 

The weight noise correlation matrix is then 

K d n )  = E ~ M  (n)%%)l 

= p 2 ~ [ + & ' ( n ) i M ( n  - l ) qM(n  - l )&(n - l ) i M ( n  - l ) i&l (n)]  

+ p ~ [ * & l ( n ) * ~ ( n  - l)r)M(n - l )uE(n)*G (n)eo(n, 

+ , d ~ [ e X n ,  P & ' ( n ) u ~ ( n ) & ( n  - V M ( ~  - l)*&w 

+ E[le0(n, l)12*i1(n)u~(n)uk(n)$(n)l .  



Using the assumptions leading to  (5.120), the second and third terms of (5.130) are ap- 

proximately zero, because, by orthogonality principles, E [uM (n)eE(n, e ) ]  sz 0 [33]. The 

correlation matrix is then of the form 

It is shown in 1331 that the last expectation of (5.131) can be written as 

E [+&'(n)R,$(n)] = E[I&' (~)R+&'(~)R]R- '  

x ( 1  - P ) ? E [ ( I  - P ( ~ ) ) ' ] R - '  (5.132) 

x ( 1  - + E [ p 2 ( n ) ] ) ~ - ' ,  

where P ( n )  is a zero-mean fluctuation matrix that manifests the fluctuations of the product 

+ G 1 ( n ) R  around the identity matrix I ,  and is defined as 

where & M ( n )  is assumed to be a Hermitian perturbation matrix such that (using equa- 

tion (5.121)) 

Note that the entries s;j of the matrix S = E [ p 2 ( n ) ]  can be computed as [33] 

where T i j  and R;j represent respectively the entries of R and R-l 

The expectation of the error squared in (5.131) is 

where (,,(t) is defined in equation (3.39) and the expected value in the right hand side is 

taken with respect to the delay value. Collecting (5.131), (5.132) and (5.136), the update 

equation for the correlation matrix is 

Letting n tend to  infinity and using equation (3.579, the steady-state weight noise correlation 

matrix is 

Kg x -(I + ~ [ p ~ ( n ) ] ) ~ - ' [ ~ m i n  + l~vsse , in] -  (5.138) 
1 + P  



5.5.1.3 Excess Mean-Squared Er ro r  and Misadjustment  wi th  t h e  Jo in t  LS 
Algorithm 

Proceeding as in Subsection 4.3.1.3, the excess MSE is given by 

The last term of (5.139) is given by 

which gives, using (5.138), 

For Gaussian signals, the trace in (5.141) was computed, in [33], to be 

and (5.139) becomes 

Therefore, equation (4.121) applies with t,d, defined as in (4.122) and 

The misadjustment expression is like equation (4.125), i.e. 

where M~ is as in (4.126) and 

and 



5.5.2 The Jo in t  LS Algorithm in Type I Configuration 

The steady-state considerations of Subsection 5.5.1.1 apply in the Type I case and, 

since the delay is assumed to be transferred to every sample of the adaptive filter line, 

the above results of the filter analysis are also valid here. Therefore, the excess MSE and 

misadjustment expressions of Subsection 5.5.1.3 can be used in the study of the joint LS 

algorithm in Type I configuration. 

5.5.3 Discussion 

The analyses performed in this section have a goal slightly different from the similar 

analyses of Chapter 4. In the joint LMS algorithm of the previous chapter, the adaptation 

factors a and p influence directly the stability, as well as the steady-state properties of 

the algorithm (the excess MSE and the misadjustment). The first goal of Section 4.3 is 

the determination of the ranges of values that both the adaptation factors can take, while 

producing estimates whose mean and variance are finite in steady-state conditions. The 

excess MSE and misadjustment expressions are useful in determining the quality of the 

estimates and follow easily from the stability analysis. 

In the present section, there is no such stability ranges, since the LS algorithm is inher- 

ently stable, when infinite precision arithmetic is used. The weighting factor P influences 

the convergence speed and the precision of the estimation, and its range of value is usually 

between 0.9 and 1.0. The goal of this section was therefore to determine the quality of the 

joint estimation, by deriving excess MSE and misadjustment expressions. This is why the 

discussion about the delay estimate mean and variance, performed in Subsection 5.5.1.1, is 

only qualitative. The analysis of the adaptive filter given in Subsection 5.5.1.2 is mainly 

useful in the computation of the excess MSE. Note however that the expressions obtained 

for the mean and correlation matrix of the weight vector are similar to those obtained in 

Chapter 4. In particular, the weight vector is biased by the same vector in both cases and 

both the correlation matrices are functions of the expression + (compare 

equations (4.110) and (5.138)). Note also that (i, has again a form identical to the form 

for a filter operating alone [33]. 

As for the expressions (5.143) and (5.147), they show again that the misadjustment is a 

function of three terms, one more specific to the adaptive delay, one related to the adaptive 

filter and finally one equal to the product of the first two terms. 
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5.6 Summary 

Joint time delay estimation and adaptive RLS filtering, using a fast transversal filter 

implementation, has been considered in this chapter. The philosophy adopted here was 

fairly different than the orientation of the previous chapters, since the most part of the 

sections was devoted to  the derivation and description of a new form of LS algorithm. This 

joint delay estimation and LS adaptive filtering algorithm allows the efficient computations 

of the current optimum weight vector, and of the optimum integer delay (lag). 

A set of lag-recursive relations was derived geometrically, for the computation of both 

the LS weight vector solution and the minimum sum of squared errors. These relations are 

functions of the same internal variables used in the fast transversal adaptive filter, and the 

lag-recursive relations are appended t o  a form of FTF algorithm, to produce the joint LS 

algorithm. The order of the predictors used in the FTF algorithm must be M - 1, if the 

adaptive filter order is M. The lag-recursive relations were also used to  derive a lag-update 

algorithm, which was used to  adapt the integer delay estimator. 

The delay estimate behaviour was considered qualitatively and the steady-state weight 

error correlation matrix was derived. Finally, the excess MSE and misadjustment were 

found to be functions of the term [tmi, + 1/~v,,~,;,], as in the joint LMS algorithm. 

The material presented in this chapter is mainly theoretical, although the final joint LS 

algorithm of Section 5.4.1 can be implemented as such. More practical considerations are 

given in the next chapter where numerous simulation results are given. 



Chapter 6 

Experiment a1 Results: 

The Joint LMS Algorithm 

and the Joint RLS Algorithm 

6.1 Introduction 

So far, the work presented in this thesis has been analytical. Chapter 3 served the 

purpose of investigating the theoretical behaviour of the joint steepest-descent algorithm. 

In particular, the possibility of convergence to a multitude of stationary points has been 

demonstrated. The role of the second derivative of the MSE function, in the stability of 

the delay tracking portion of the joint algorithm, was derived. Some bounds, useful in the 

practical application of the joint SD algorithm, were derived and discussed. In the present 

chapter, the properties of the SD algorithm are illustrated with practical examples and the 

stability bounds are computed. 

The joint LMS algorithm was presented in Chapter 4 as a stochastic implementation 

of the joint SD algorithm. Its analysis was performed for joint convergence in the mean 

and in the mean square. Some theoretical bounds on the two gain factors involved in the 

algorithm were derived and the expressions for the excess MSE and the rnisadjustment of 

the joint algorithm were obtained. A design procedure, for the determination of the two 

gain factors, was presented. The bounds and the excess MSE are computed in the following 

sections, and the critical parameters used in the design procedure are illustrated. 

In Chapter 5, the focus was given to the derivation of some lag-recursive relations and to  

the definition of a new form of RLS algorithm. The joint algorithm is fairly complicated and 

no theoretical study was performed about its behaviour. The expressions for the excess MSE 



and the misadjustment were obtained. The joint RLS algorithm is implemented integrally 

as derived and its practical behaviour is studied in the actual chapter. 

This chapter is therefore structured as follows. In Section 6.2, an experimental set-up 

is defined for the simulations of the joint algorithms. In particular, the reference filter that 

is used in most of the simulations is described, and the implementation of the algorithms 

is discussed. Then the results of Chapters 3 and 4 are investigated in Section 6.3, and the 

joint RLS algorithm is simulated in Section 6.4. A hybrid joint algorithm is briefly discussed 

in Section 6.5.2. This algorithm is made of an LMS adaptive delay algorithm and an RLS 

adaptive filter algorithm. 

6.2 Experimental Set-Up 

All the simulations were implemented in a system identification (cancellation) config- 

uration (see Figs. 2.6, 2.8 and 3.2). Unless it is otherwise specifically noted, the noiseless 

input signal s(n) is a zero mean and white Gaussian process, as are the two noise sources. 

All the signals and systems are real. 

Unless otherwise noted, the reference filter is a 21- tap lowpass transversal filter, with a 

3dB bandwidth approximately equal to 0 . 7 ~ .  Its impulse response and its transfer function 

are illustrated in Figs. 6.1 and 6.2. This choice is somewhat arbitrary and is dictated by 

the ease the filter can be implemented in the actual simulations. Some results with a more 

realistic filter are presented in Sections 6.5.1 and 6.5.2. 

The reference filter can be made time-varying by changing its amplitude and/or phase 

response with time. A very specific reference filter nonstationarity is simulated. The varia- 

tions of the filter amplitude and phase responses are constant over the whole filter frequency 

range. This implies that no frequency selective nonstationarity is applied and that the ref- 

erence transfer function is of the form 

where ~ ( e j ~ )  is the stationary reference filter transfer function and ~ ( n ) e j ' ( ~ )  is a frequency 

independent time-varying gain. 

The cases simulated are for linearly and sinusoidally varying amplitude and phases of 

the form 

with 

f (n) = S - n S = slope, 



Normalized time (samples) 

Fig. 6.1 Reference filter impulse response h(n) 

Normalized Frequency (Hz) 

Fig. 6.2 Reference filter transfer function H ( e j w )  



f (n) = sin(2nnl P )  P  = period. 

Note that when both the amplitude and the phase are time-varying, they experience the 

same kind of nonstationarity (linear or sinusoidal). 

The delays are implemented as follows. Consider a sequence s(n)  and its delayed version 

s(nT - D), where D is a constant. It is desired to obtain s (nT - D) by passing s(n) through 

a time-invariant filter whose impulse response is [67] 

This impulse response is infinite in time and must be truncated and delayed if it is to 

be implemented as a causal transversal digital filter. Since the function ijd(n) approaches 

zero as n increases, the truncation can take place with minimal effects [67], [26]. It is also 

shown experimentally in 1671 that the modelling error is largest a t  D / T  = 0.25 and that it 

is lower than 1 percent for an impulse response in excess of 60 weights. 

Therefore, the fractional part of both the adaptive delay d, and the reference delay D, 

are implemented using a delayed 75-tap version of (6.1), i.e. 

sin ~ ( n  - 37 - DIT)  
gd(n) = n(n - 3'7 - D / T )  

0 < n 5 74. 

In order to allow for integer delays, the shift register on which gd(n) is applied has a length 

N larger than 75. By sliding the 75-tap impulse response along the shift register, an overall 

delay of A+ D / T  samples can be obtained, where A is an integer number comprised between 

zero and N - 75, and D/T is a rational number lower than one. The delay of 37 samples 

introduced by gd(n) is fixed and is taken into consideration in the simulations. 

The adaptive negative delay -d,, present in the reference branch of the Type 11-DRB 

cancellation configuration (Fig. 3.2), is implemented by applying a fixed delay Df on the 

adaptive filter input signal u(n) and by redefining the adaptive delay as Df - d,. 

6.3 Results with The Joint LMS Algorithm 

The first part of this section is devoted to a discussion about the simulation implemen- 

tation. Then the general results obtained in Chapter 3 for the joint SD algorithm, and their 

application in the joint LMS algorithm are considered. The specific results of Chapter 4 

are investigated in Subsection 6.3.7. 



6.3.1 Simulation of the LMS Algorithm 

The joint LMS algorithm in Type I configuration, given in equations (4.32) and (4.33), 

is simulated according to the blockdiagram of Fig. 6.3. The derivative of the adaptive filter 

output, with respect to  the delay d,, is given by 

It is implemented by passing the delayed input signal derivative through a replica of the 

adaptive filter. This derivative can be obtained from u ( n )  with a filtering operation. The 

following development, analog to the one performed in [13],  leads to  the derivative filter 

impulse response. 

The continuous signal u ( t )  can be obtained from the sequence u ( n )  by the interpolation 

operation [20] 
sin.lr(t - nT)/T 

U ( t )  = C u(n)  x ( t  - n T ) / T  . 
n 

The derivative of u ( t )  with respect to t is then 

and the derivative of u ( t )  with respect to d, is 

Therefore, using (6.5) and (6.6), 

- F u ( j )  [ cos r ( n T  - iT  - jT - d n ) / T  sin a ( n T  - i T  - jT - - 
n T - i T - j T - d n  

dn) lT]  . (6.7) 
x ( n T  - iT - j T  - d n ) 2 / T  

Equation (4.33) can then be implemented as 

L 
dn+l = dn - 2rre(n) C wnig(n - i), 

where q(n) is the output of the derivative filter with impulse response 

cos x ( n T  - d n ) / T  sin x ( n T  - i d (n )  = - 
nT - dn x ( n T  - d n ) 2 / T  ' (6.9) 

As with the delay elements simulation, this impulse response has to be truncated and 

delayed in order to obtain a causal filter response. The truncation window is again of length 

75 and the derivative filter is implemented with weights 

cos x ( n  - 37 - d n / T )  sinx(n - 37 - d n / T )  - 0 5 n 5 74. 
bd(n)  = T ( n  - 37 - d, /T)  T x ( n  - 31 - d n / T ) 2  

(6.10) 



By assuming that the sampling period is T = 1, both the impulse responses gd (n )  and bd(n)  

can be easily adapted t o  the variations of d,. 

The Type 11-DAB and Type 11-DRB configurations can be implemented in a similar 

way by applying the derivative filter directly on the adaptive filter output or on the reference 

signal. Note the difference between the Type I and Type I1 implementations. In the former, 

the derivative filter being located before the adaptive filter replica, the derivative applies 

only to  one sample in the filter delay line, as does the adaptive delay in the adaptive branch. 

In the latter, the derivative being taken on the adaptive filter output, all the samples of the 

delay line are implicitly derived. 

I Reference 
D n  

Filter h(n)  
s(n) 

7 4  (12) 

Fig. 8.3 Blockdiagram of the simulation of a Type I configuration 

The systems parameters needed t o  apply the analytical results of the previous chapters 

are obtained as follows. The deterministic autocorrelation corresponding to  the reference 

filter of Fig. 6.1 is shown in Fig. 6.4. The value ph(0) corresponds to the maximum in 

this figure. From this function, the second and fourth derivatives p i ( 0 )  and p p ) ( ~ )  can be 

found. These values are 
ph(0)  = 0.6661 

 pi(^) = -0.9753 

p r ) ( ~ )  = 2.6508. 

The minimum MSE tmi, and its second and fourth derivative are also necessary in the 

application of the results of Chapters 3 and 4 .  The MMSE is given by equation (4.194) and 



Normalized time (samples) 

Fig. 8.4 Reference filter deterministic autocorrelation function ph (n) 

for white signals and equal noise variances this equation can be expressed as 

where pwOp,(k) is the deterministic autocorrelation of the optimum filter, for a given signal- 

tenoise ratio. This optimum filter is given in equation (3.84) for the cancellation scenario 

considered in this chapter. Combining (3.84) and (6.12), the following expression for the 

MMSE is obtained 

where SNRl is defined as 
9 3 s  SNRl = -. (6.14) 
4 1  

The second derivative is given in equation (3.115) as 

and the fourth derivative can be derived in the same way as 



The derivative of the input signal is also necessary for the application of the results of 

Chapter 4. For white signal processes, it can be derived to be 

where j = J-? and the sampling period is taken to be one. Finally, unless otherwise noted, 

the input signal power spectral density is 
1 

which implies that the maximum eigenvalue of the input signal autocorrelation matrix is 

6.3.2 Multiple Convergence Points  a n d  Excess 

(6.19) 

M S E  

The presence of multiple convergence points is first illustrated. The reference delay is 

fixed at  a certain value and the adaptive filter is allowed to adapt to this condition, while 

the adaptive delay is frozen (a = 0.0). The optimum weight vector is then obtained for the 

reference delay fixed at 0, 0.5, 1.0 and 1.5 samples and the MSE function cn is measured, 

as a function of the relative delay D, - d,, using these different weight vectors. The results 

are given in Figs. 6.5 and 6.6. It is first noted that the MSE function exhibits a well defined 

minimum at d, = 0, for each case. This shows that the condition vw& = 0 implies 

@,/ad, = 0, as pointed out in Subsection 3.3.1. Furthermore, each of these minimum 

corresponds to  the function &,(d,), with d ,  = 0, defined in equation (3.39) as 

&(d*)  = &alwn=~-lp. (6.20) 

The value of the MSE function at each of these minimums corresponds to the excess MSE 

defined in equation (3.58). Note that, in none of these cases can the excess MSE be ap- 

proximated by equation (3.61), because the relative delay is too large. 

6.3.3 Delay Tracking Bounds 

As derived in Chapter 3, the stability bounds involved in the joint SD algorithm are 

functions of the quantity For the white signals case, &in is given in (6.15). Using 

(6.11) and (6.18), Table 6.1 can be computed, where am, is defined as 



Fig. 6.5 

Relative delay D, - d, (samples) 

The MSE function for different fixed reference delays D,; 
continuous curve: D, = 0.0, large dashes curve: D, = 0.5, 
medium dashes curve: D,, = 1.0, small dashes curve: 
D, = 1.5 

Relative delay D, - d, (samples) 

Fig. 6.6 Expanded view of Fig. 6.5 



Table 6.1 Values of gmin and a,,, = 2/& for different 
signal-tenoise ratios 

Note that, because white signals are used, the bound (3.82) of Proposition 3.2 is equal to 

a,,, for infinite SNR. Note also that this value of cr corresponds to a safe upper bound, since 

all other values are superior to it for finite SNR's. This value is also used in Proposition 3.3, 

in order to define a range of values for alpha such that the adaptive delay is five times faster 

than the adaptive filter. The range of values, determined with equations (3.92) and (6.19), 

is illustrated in Fig. 6.7 as a function of p.  The computations were performed for a SNR 

of 0 dB and for an infinite SNR. The allowable range for a is to the left of the dashed 

curves and below the continuous curve. Note that for high SNR's, Proposition 3.3 states 

that cr should be larger than 1.0, when p = 0.1 and that a value a = 0.1 is sufficient when 

ob 
0 0.4 0.8 1.2 

Adaptive filter gain factor p 

Fig. 6.7 Range of a satisfying Proposition 3.3 



6.3.4 Delay Tracking Simulations i n  Type I 

For the joint LMS algorithm in Type I configuration, Proposition 4.5 (equation (4.108)) 

states that a condition on p ,  for convergence in the mean square in noiseless conditions, is 

(all the eigenvalues are equal to A,,,) 

It is found experimentally that p should be below 0.4 for convergence of the adaptive filter in 

noiseless conditions. This is well below the bound for convergence in the mean established in 

Proposition 4.4 (equation (4.84)), which indicates that p should be lower than l/Xmax = 12. 

Similarly, the theoretical bound for convergence in the mean of the adaptive delay, in 

noiseless conditions, is found to be much larger than the bound found in practice. The 

theoretical a,,, given in Table 6.1 is 12.3, while it is found experimentally that an a  

superior to 0.9 makes the algorithm unstable in noiseless conditions. These experiments 

indicate that for p's larger than 0.1, it is not possible for a to meet the lower bound 

established in Fig. 6.7 and still produce a stable algorithm. 

6.3.4.1 Adaptive Delay Response t o  a Reference Delay S tep  

Based on these results, four combinations of a and p are first simulated, when a unit 

delay step is applied in the reference branch. Note that white signals and noiseless conditions 

are assumed. The results are given in Figs. 6.8 to 6.1 1. Figs. 6.8 and 6.9 illustrate cases 

where the lower bound of Proposition 3.3 is not respected. In both cases, the adaptive 

delay element has a time constant too large to allow close tracking of the reference delay 

variations. For a fairly large adaptive delay gain factor, Fig. 6.8 shows that the behaviour 

of the delay adaptation algorithm is that of a higher order system. This implies that the 

first order approximation made in equation (3.24), based on the truncation of the Taylor 

expansion of equation (3.21), is not totally right in this case. When a  is well within the 

bound of Proposition 3.3, as in Fig. 6.10, the adaptive delay element follows closely the 

reference delay. Note the higher variance in the delay value when a  is larger. Finally, 

Fig. 6.11 illustrates a smooth delay adaptation case. 

It was established in Proposition 3.4 that a reference delay step of one sample consti- 

tutes a safe upper bound for adequate delay tracking of such variation. This bound was 

determined from the width of the MSE function around its minimum. On Fig. 6.5, it is seen 

that the main lobe width is on the order of 4 samples, i.e. twice as wide as the width used 

in Proposition 3.4. It is therefore expected that the adaptive delay can cope, in the actual 
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Fig. 6.8 LMS Adaptive delay response to a reference delay unit step; 
dashed curve: reference delay; p = 0.1, cr = 0.5 

iteration number 

Fig. 6.9 LMS Adaptive delay response to a reference delay unit step; 
dashed curve: reference delay; p = 0.1, a = 0.1 
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Fig. 6.10 LMS Adaptive delay response to a reference delay unit 
step; dashed curve: reference delay; p = 0.01, a = 0.5 

iteration number 

Fig. 6.11 LMS Adaptive delay response to a reference delay unit 
step; dashed curve: reference delay; p = 0.01, cr = 0.1 



simulation, with a reference delay step of 2 samples. The response of the delay estimator, 

for five different reference delay steps, is shown in Fig. 6.12. As long as the reference delay 

is within 2 samples, the delay tracking is indeed adequate. But for a step of 2.2 samples, the 

tracking is less accurate and the time constant is significantly larger. This last behaviour is 

due to the decrease in the MSE second derivative, as the operating point of the algorithm 

gets further away from the global minimum. 

iteration number 

Fig. 6.12 LMS Adaptive delay response to different reference delay 
step; dashed curves: reference delays; p = 0.01, a = 0.5 

From equation (3.76), it is seen that the time constant of delay adaptation is given by 

Using the value of Imin for infinite SNR, the time constant is on the order of 12 samples 

for a = 0.5 and around 60 samples for a = 0.1. These figures are largely confirmed by 

Figs. 6.10 and 6.11. The learning curves, corresponding to these two figures, are shown in 

Figs. 6.13 and 6.14. These curves were obtained by averaging 10 different error curves. 

Since Proposition 3.3 is true in these cases, the error curve is mainly influenced by 

the delay adaptation. The time constants of the learning curves is therefore approximately 

equal to the delay time constant. Fig. 6.13 shows a time constant approximately equal to 

15 samples, while the time constant in Fig. 6.14 is on the order of 60 samples. These results 

confirm the figures computed above with the help of (6.23). 
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6.3.4.2 Adaptive Delay Response to a Reference Delay Ramp 

In processing an audio surveillance tape, it was found in [12] that an adaptive noise 

canceller can face both linearly and sinusoiddy changing reference delays. These variations 

are essentially caused by the differences in the rotating speed of the recording devices used 

in the surveillance and in the processing. 

The adaptive delay responses to a linearly changing reference delay are presented in 

Figs. 6.15 and 6.16. The reference slope is 0.01 samplejsample, exceeding the linear vari- 

ations measured in [12]. This slope is also well below the upper bound on the maximum 

allowable value computed using Proposition 3.5. Fig. 6.15 illustrates the case where the 

adaptation speed constraint of Proposition 3.3 is satisfied. The delay element is seen to 

track very well the delay reference variations. When the constraint is not satisfied, a frac- 

tion of the delay variations is compensated for by the adaptive filter, which causes an 

increasing error between the adaptive and the reference delays, as shown in Fig. 6.16. Note 

also that in this particular case, the adaptive filter cannot track properly such a rapid ref- 

erence delay variation and the joint algorithm does not perform satisfactorily after 2000 

iterations. The corresponding learning curve is shown in Fig. 6.17. 

iteration number 

Fig. 6.15 LMS Adaptive delay response to  a reference delay ramp of 
0.01 samplejsample; dashed curve: reference delay; 
p = 0.01, a = 0.5 

6.3.4.3 Adaptive Delay Response to Sinusoidal Reference Delay Variations 

The maximum amplitude and period of the sinusoidal variations that can be tracked 
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Fig. 6.16 LMS Adaptive delay response to  a reference delay ramp of 
0.01 sample/sample; dashed curve: reference delay; 
p = 0.01, a! = 0.1 

Fig. 6.17 

- 
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iteration number 

Learning curve for a reference delay ramp of 0.01 
sample/sample; p = 0.01 and a = 0.1 



are functions of the time constant of adaptation (see Subsection 3.3.2.2). Furthermore, it is 

argued in the same subsection that, as long as the adaptive delay has a much smaller time 

constant than the adaptive filter, the former tracks closely the sinusoidal variations if 

For cr = 0.5 and imin = 0.1626 (SNR1 = oo in Table 6.1), the above approximation is 

precise to 1% if the period P is about 500 samples, and to 0.27%.if the period is 1000 

samples. Figs. 6.18 and 6.19 illustrate the delay tracking for these two cases. Note that the 

tracking is slightly better for the 1000 period case, because the maximum rate of reference 

delay variations is smaller. Fig. 6.20 illustrates the case where some of the reference delay 

variations are compensated by the adaptive filter. The resulting adaptive delay response 

shows a reduced amplitude and a phase lag with respect to the reference. 

iteration number 

Fig. 6.18 LMS Adaptive delay response to a sinusoidal reference 
delay variation, period = 500 samples, amplitude = 1 
sample; dashed curve: reference delay; p = 0.01, cr = 0.5 

0.3.4.4 Adaptive Delay Response in Noisy Conditions 

The above simulation results were obtained in noiseless conditions and show the delay 

tracking ability of the joint algorithm. When noise is present, the delay estimation is less 

accurate and the variance of the estimator is increased. This is illustrated in Figs. 6.21 to 

6.23, for the three types of reference delay variations considered above. The signal-to-noise 

- 143 - 
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Fig. 6.19 LMS Adaptive delay response to a sinusoidal reference 
delay variation, period = 1000 samples, amplitude = 1 
sample; dashed curve: reference delay; p = 0.01, a = 0.5 

iteration number 

Fig. 6.20 LMS Adaptive delay response to a sinusoidal reference 
delay variation, period = 1000 samples, amplitude = 1 
sample; dashed curve: reference delay; p = 0.01, a = 0.1 



ratio was 10 dB in each of the two noise sources present in the system. The delay tracking 

is seen to be satisfying, even for this fairly low SNR. The degradation for lower SNR's is 

gentle, and the delay tracking still takes place at 0 dB. 

6.3.4.5 Adaptive Delay Response wi th  a Nonstationary Reference Fi l ter  

The purpose of the adaptive filter is to track the variations in the reference filter. In 

audio surveillance tape analysis, it is likely that these variations are slow, as noticed in 

[12]. Therefore, a gain factor p on the order of 0.01 is well above what is necessary in that 

kind of experiment ( p  = 10'1° was used in [12]). Depending on the kind of reference filter 

variations, the adaptive delay can be influenced in a more or less adverse fashion. Consider 

a reference filter which experiences phase and amplitude variations that are both linear. 

Since the variations simulated are constant across the whole frequency range, the amplitude 

variations correspond to a simple scaling of the reference filter impulse response. The phase 

variation is more problematic since it changes the shape of the impulse response. These 

variations incur some modifications in the quantity &;,, which causes the delay tracking 

characteristics to  change also. As an example, linear amplitude and phase variations were 

simulated, while the reference delay was kept fixed. The adaptive delay response, for a 

linear variation of 0.001 sample/sample, is shown in Fig. 6.24. This figure shows that the 

adaptive delay reacts to the variations in the reference filter. The corresponding adaptive 

filter impulse response, after 1000 iterations, is given in Fig. 6.25. It shows the variations 

in the impulse response that cause the peculiar behaviour of the adaptive delay. 

6.3.5 Delay Tracking Simulations i n  Type I1 

In order to compare the behaviour of the Type I and the Type I1 configurations, the 

adaptive delay response was simulated for a reference unit delay step, when p = 0.01 and 

cr = 0.5, in Type 11-DAB and Type 11-DRB mode. The results, for noiseless conditions, are 

illustrated in Figs. 6.26 and 6.27. Note that the short reference impulse response of Fig. 6.1 

is used. These figures should be compared to  their Type I counterparts, in Figs. 6.10 and 

6.11. Note first of all, that there is no overshoot in the Type I1 case, when a = 0.5. The 

first order approximation of equation (3.24) is therefore more realistic in this case. Note 

also how well the adaptive delay tracks the reference delay in the Type 11-DAB case, even 

for a = 0.1. This last characteristic is related to the fact that the convergence speed of 

the adaptive filter is reduced by a delay in Type 11-DAB configuration [49]. Intuitively, 

this fact can be explained by noting that the delay reduces the maximum gain factor p for 
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Fig. 6.21 LMS Adaptive delay response to a reference delay unit step 
in noisy conditions, SNR = 10 dB; dashed curve: reference 
delay; ,u = 0.01, a = 0.5 

iteration number 

Fig. 6.22 LMS Adaptive delay response to a reference delay ramp of 
0.01 sample/sample in noisy conditions, SNR = 10 dB; 
dashed curve: reference delay; p = 0.01 and a = 0.5 
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Fig. 6.23 LMS Adaptive delay response to a sinusoidal reference 
delay variation in noisy conditions, period = 1000 samples, 
amplitude = 1 sample, SNR = 10 dB; dashed curve: 
reference delay; p = 0.01, a = 0.5 

convergence in the mean (see equation (4.145)), which itself reduces the maximum speed of 

convergence. Furthermore, the location of the delay after the adaptive filter "delays" the 

effect of any filter modifications on the error signal, which tends to slow down the speed of 

convergence. The time constant of delay adaptation is therefore mainly due to the adaptive 

delay time constant, and is similar to that of the Type I case. 

In Type 11-DRB configuration, this speed reduction in the adaptive filter does not exist, 

and the filter compensates for a portion of the delay when a = 0.1, as in the Type I case. But 

note in Fig. 6.27 that there is alag between the reference delay modification and the adaptive 

delay initial reaction. This is due again to the delay between the modification and its 

appearance in the error signal. Also, it is noticed that this lag reduces the delay convergence 

speed. Finally, the Type I1 configurations were simulated for linear and sinusoidal reference 

delay variations, in noiseless and noisy conditions. The results are similar to the ones for 

the Type I cases. 

6.3.6 Discussion 

The results presented in Subsections 6.3.1 to 6.3.5 establish the typical behaviour of 

the joint SD and LMS algorithms and make use of most of the conclusions of Chapter 3. 
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Fig. 6.24 LMS Adaptive delay response to linear phase and 
amplitude variations in the reference filter; variations of 
0.001 sample/sample; p = 0.01, a = 0.5 

Fig. 6.25 Adaptive filter impulse response after 1000 iterations for 
the reference filter variations of Fig. 6.24 
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Fig. 6.26 LMS Adaptive delay response to a reference delay unit step 
in Type 11-DAB configuration; long dashed curve: reference 
delay; medium dashed curve: p = 0.01, (Y = 0.5; continuous 
curve: p = 0.01, a = 0.1 

400 600 

iteration number 

Fig. 6.27 LMS Adaptive delay response to a reference delay unit step 
in Type 11-DRB configuration; long dashed curve: reference 
delay; medium dashed curve: p = 0.01, a = 0.5; continuous 
curve: p = 0.01, a = 0.1 



All the relations involving gmi, were computed using the true value of this parameter. In 

practice, it can be estimated by various means, one of them being the use of equation (3.117). 

Note however that this method can be the source of large errors. Better methods can be 

devised with the help of least-squares polynomial approximation or Chebyshev (min-max) 

polynomial approximation [51]. 

6.3.7 Steady-State Results 

The results of Chapter 4, for the joint LMS adaptive algorithm in Type I and Type I1 

configurations, are considered more closely in this subsection. The expected values E[G:] 

and E [ N ~ ] ,  which are used in the convergence bound for a and in the steady-state delay 

variance v,,, are first computed for a Type I and a Type 11-DRB configurations. Then these 

quantities are used in determining a as a function of p and v,,. Finally, the excess MSE is 

computed for different practical cases. 

6.3.7.1 Convergence Bounds and Gain Factors 

The expressions for E [ G ~ ]  and E[N:], for white input and noise signals, are given by 

equations (4.195) to (4.198). These quantities are functions of tr[K,J, which is given in 

equation (4.111). This equation shows that tr[K,J is proportional to p and v,,. Since E [ G ~ ]  

and E[N:] are proportional to  tr[K,J, these expectations are also proportional to p and v,,. 

For a Type I system, it is found that E[G;] and E[N:] are approximately constant for v,, 

and p lower than 0.01. For the Type 11-DRB case, the two expectations exhibit a fairly flat 

response for values of v, lower than 1.0 and for values of p lower than 0.1. This smaller 

sensitivity in the latter case reflects the fact that the trace operator appears only once in 

the Type I1 expectation expressions. 

The expression (4.74) can be used, as suggested in the design procedure of Section 4.5, 

to obtain plots of a versus v,, and p. Figs. 6.28 and 6.29 show the theoretical behaviour of 

a as a function of p,  for both types of systems and for three different values of steady-state 

variance. The gain factor a increases with us, and for a typical variance of 0.01, the value of 

a is approximately constant with p, and is around 0.5. This indicates that, for low variance, 

the adaptive filter does not influence much the noisy behaviour of the adaptive delay. The 

upper bound on a for convergence in the mean square (equation (4.73)) is illustrated in 

Figs. 6.30 and 6.31 for the same conditions. The delay variance does not influence much 

this upper bound, which is approximately constant for p < 0.01. 

The theoretical behaviour of a as a function of v,, and for two different signal-to-noise 

ratios, is illustrated in Figs. 6.32 to 6.35. The gain factor a is seen to be proportional to the 



Adaptive filter gain factor p 

Fig. 6.28 Theoretical curve of a versus p for a Type I system; SNR = 
10 dB; s m d  dashes curve: v, = 0.001, large dashes curve: 
v,, = 0.01, continuous curve: v,, = 0.1 

Adaptive filter gain factor p 

Fig. 6.29 Theoretical curve of a versus p for a Type 11-DRB system; 
SNR = 10 dB; small dashes curve: v,, = 0.001, large dashes 
curve: us, = 0.01, continuous curve: v, = 0.1 



Adaptive filter gain factor p 

Fig. 6.30 Theoretical curve of a,,, versus p for a Type I system; 
SNR = 10 dB; small dashes curve: v,, = 0.001, large dashes 
curve: v,, = 0.01, continuous curve: v,, = 0.1 

Adaptive filter gain factor p 

Fig. 6.31 Theoretical curve of a,, versus p for a Type 11-DRB 
system; SNR = 10 dB; small dashes curve: us, = 0.001, 
large dashes curve: v, = 0.01, continuous curve: v,, = 0.1 



variance for lower values of v,,. For higher values of us,, a is limited by the upper bound 

for mean square convergence. 

The design procedure of Section 4.5 is based on plots similar to those of Figs. 6.28 and 

6.29. In this particular case, these plots show that, for a given variance, p can be chosen 

over a large range without affecting the behaviour of the delay estimation. This fact was 

already noticed in the simulations. 

6.3.7.2 Excess Mean Squared Error 

A major result from Chapter 4 is the expression for the excess MSE at the output of 

the joint LMS algorithm. For all types of joint algorithms, the expression is of the form 

or, in term of misadjustments, 

These results are verified for a Type I system by computing the theoretical value oft:,, using 

equation (4.123)' and by obtaining t,d, as well as fex by simulations. The results, for five 

different combinations of a and p,  are presented in Table 6.2. The corresponding measured 

total misadjustment M is obtained from teX by dividing by <,in, while the theoretical 

total misadjustment Mth is obtained using equation (4.125). This table shows the good 

agreement between the measured and the theoretical quantities. Note that the cross-product 

term M d M f  being a second order component, its effect is therefore small or negligible, as 

can be seen from the fact that tex is always approximately equal to the sum of & and &. 

Table 6.2 Excess mean squared errors and misadjustments for 
different combinations of a's and p's 



Delay steady-state variance vss 

Fig. 6.32 Theoretical curve of cr versus vSs for a Type I system; 
p = 0.01; continuous curve: SNR = 10 dB, dashed curve: 
SNR = 20 dB 

Delay steady-state variance vsS 

Fig. 6.33 Theoretical curve of a versus v, for a Type 11-DRB 
system; p = 0.01; continuous curve: SNR = 10 dB, dashed 
curve: SNR = 20 dB 
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Delay steady-state variance vss 

Fig. 6.34 Theoretical curve of a,,, versus vss for a Type I system; 
p = 0.01; continuous curve: SNR = 10 dB, dashed curve: 
SNR = 20 dB 

Delay steady-st ate variance vs, 

Fig. 6.35 Theoretical curve of a,,, versus us, for a Type 11-DRB 
system; p = 0.01; continuous curve: SNR = 10 dB, dashed 
curve: SNR = 20 dB 



The total misadjustment, for a Type I system, is illustrated in Fig. 6.36 as a function 

system. The misadjustment for the latter system is essentially constant with respect to the 

delay, while it is a function of D in the former case. This figure shows that for a delay 

lower than 9 samples, the adaptive filter alone produces a smaller relative error, but for 

larger delays, the misadjustment due to the coupled adaptive processes is inferior to the 

misadjustment produced by the single filter. 

of the steady-state delay D, for an adaptive filter operating alone and for a joint adaptive 

so - 
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Delay D 

Measured misadjustment for a Type I system versus the 
steady-state delay D, SNR = 10 dB, p = 0.01, cr = 0.5; 
continuous curve: adaptive filter alone, dashed curve: joint 
adaptive system 

It was noted theoretically in Chapter 4 that, in a Type II-DAB system, the excess MSE 

is increased by the presence of the adaptive delay after the filter (see equations (4.177) and 

(4.178)). This result is confirmed in practice in Fig. 6.37 where the total measured excess 

MSE is illustrated as a function of the steady-state delay D. 

6.4 Results with the Joint RLS Algorithm in Type II-DRB 
Configuration 

The behaviour of the sum of squared errors &,(n,d) with respect to d and ,O is first 

investigated in this section. The numerical stability of the algorithm is discussed in Subsec- 



Delay D 

Fig. 6.37 Measured excess MSE for a Type TI-DAB system versus the 
steady-state delay D, p = 0.01, cr = 0.5 

tion 6.4.2. The trackingproperties of the algorithm are then considered in Subsection 6.4.3, 

where the simulations results are given for different channel characteristics. 

The only configuration simulated with the joint RLS algorithm was the Type 11-DRB 

one. The algorithm of Subsection 5.4.1 was essentially implemented integrally, except for 

an extra set of computations used to  stabilize it numerically. 

6.4.1 The Sum of Squared Errors 

In order to verify the behaviour of the sum of squared errors, when there is a nonzero 

relative delay A between the reference delay D and the adaptive integer delay l ,  the sum of 

squared errors is first obtained as a function of A and is illustrated in Figs. 6.38 and 6.39. 

Note that the adaptive system is in steady-state prior to  time n = 0 and that the delay 

difference is applied at  n = 0. 

It is noticed that after a transient period of approximately 200 iterations, iMo(n,C) 

takes an average value that increases with the absolute value of A. Note also that the 

randomness in iM0(n, l )  is due to the input signals stochastic behaviour. The steady-state 

expected value of iMo(n, d) versus A = D - d is given in Fig. 6.40. Note that the oscillatory 

behaviour of ~ [ i ~ , ( n ,  d)] is due to the oscillations in the reference filter and in the input 

signal autocorrelation (see the expressions for the MSE functions in equations (3.64) to 

(3.66)). Note also that in this particular case, as long as the relative delay is smaller than 



2 samples, a delay adaptation based on iMo(n, e - I), iMo(n, l )  and iM,(n, t + 1) has the 

potential to bring the relative delay to zero. But for a larger initial relative delay, it is also 

possible that, because of the oscillations in ~ [ i ~ , ( n ,  d)], the delay adaptation algorithm 

locks on a false value. 

Iteration number 

Fig. 6.38 Minimum sum of squared errors versus time, for different 
relative delays A and for ,O = 0.97; the lowest curve is for 
A = -1, the middle curve is for A = 2 and the upper one if 
for A = 6. 

Another interesting characteristic of iM,(n,!) is its behaviour with respect to P.  From 

equations (5.1) and (5.4), it is seen that the memory of the algorithm is proportional to P. 
This implies that when the forgetting factor increases, the number of significant terms in 

iMo(n, e) also increases, causing the value of the sum to grow. This illustrated in Figs. 6.41 

and 6.42 for three values of P.  The measured expected value and variance of iM,(n ,  l ) ,  in 

steady-state and for a relative delay of two sample, are shown in Figs. 6.43 and 6.44. 

6.4.2 Numerical Stability 

It is well known that the FTF implementation of the RLS algorithms is inherently 

unstable, when a finite word length machine and a forgetting factor /3 lower than one are 

used 1681. This phenomenon is due to the instability of the system through which the finite 

precision error is propagated. Since the introduction of the different forms of the fast RLS 

algorithms, several methods were proposed to stabilize their behaviour. 
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Fig. 6.39 Fig. 6.38 on a vertical log scale 

Relative delay D - d (samples) 

Fig. 6.40 Minimum sum of squared errors versus D - d, P = 0.97. 
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Fig. 6.41 Minimum sum of squared errors versus time, for different 
values of ,f3 and for a relative delay of two sample; the 
lowest curve is for p = 0.9, the middle is for ,B = 0.94 and 
the upper one is for ,f3 = 0.98. 
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Fig. 0.42 Fig. 6.41 on a vertical log scale 



Fig. 6.43 

Fig. 6.44 

Forgetting factor P 

Measured expected value of the minimum sum of squared 
errors versus @. 

Forgetting factor /3 

Measured variance of the minimum sum of squared errors 
versus @. 



Lin suggested the monitoring of a specific variable, in the fast algorithm, which is shown 

by simulations to  become negative when the algorithm diverges [69]. This rescue device 

is therefore used to decide upon when the algorithm should be reinitialized, such that the 

finite precision error accumulation is zeroed. Eleftheriou and Falconer used a periodic restart 

procedure in which the fast algorithm is interrupted and restarted at periodic intervals, with 

a parallel LMS algorithm taking over for the reinitialization period [33]. More recently, some 

researchers proposed more fundamental modifications to the algorithm such that the error 

propagation mechanism is directly stabilized. Slock and Kailath introduced redundancy 

in the algorithm, which allows the feedback of numerical errors and the "correction" of 

such errors in a channel coding manner [70]. Benallal and Gilloire applied some control 

principles to the linear system governing the error propagation, such that the system is 

stabilized without changing the theoretical form of the overall algorithm [71]. 

The focus of the present research being on the joint delay estimation and adaptive 

filtering capabilities of the algorithms, it was felt that only a rather crude stabilization 

mechanism was necessary in the simulations. Therefore, a periodic restart procedure was 

introduced, in which a parallel version of the FTF algorithm was periodically started, and 

its resulting parameters transferred to the main FTF algorithm after a number of iterations 

large enough to ensure convergence. This parallel periodic restart procedure is reminiscent 

to the method used by Eleftheriou and Falconer, although more computationally involved. 

It was felt that this method would interfere the least into the other aspects of the joint 

algorithm. 

In the simulations performed, it was noticed that the joint algorithm becomes unstable 

after 600 to  700 iterations, especially for lower values of P.  The restart period was therefore 

fixed to  500 iterations for most of the simulations. The parallel algorithm begins 200 

iterations before the transfer of the newly computed intermediate variables. 

The resulting behaviour of the sums of squared errors is illustrated in Fig. 6.45, where 

iM, (n , t  - 1) is plotted for 3000 iterations and P = 0.92. The algorithm is therefore 

seen to be stabilized by the parallel restart procedure. The behaviour of the error in the 

parallel implementation is illustrated in Fig. 6.46, where the sum of squared errors is seen 

to experience a sudden increase every 500 iterations and settles down well within the 200 

iterations period allocated before the transfer of information to  the main algorithm. These 

two figures illustrate that the stabilization procedure performs as expected and that the 

simulation results obtained in the next section are illustrative of the potential of the joint 

algorithm. 
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Fig. 6.45 Behaviour of iM,(n,l - 1) with parallel restart every 500 
iterations, j3 = 0.92. 
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Fig. 6.46 Behaviour of the parallel i M , ( n , t  - 1) with parallel restart 
every 500 iterations, @ = 0.92. 



6.4.3 Tracking Properties 

The tracking properties of the joint RLS algorithm are simulated in this section. In 

order to perform the lag-update decision (Part c of Subsection 5.4.1) the time average of 

the sum of squared errors must be computed. This is done by accumulating the sum of 

squared errors over 50 iterations. 

The adaptive delay responses to a linearly changing reference delay are presented in 

Figs. 6.47 to 6.49. The reference slope is 0.01 sample/sample, as for the joint LMS algorithm 

case. The noiseless case is shown in Fig. 6.47, and the results for SNR's of 30 dB and 20 

dB appear in the two other figures. Except for a granular-type of noise, the adaptive delay 

tracks well the reference delay. Note that the forgetting factor /3 was set to 0.92, in order to 

allow good tracking. The results for a sinusoidal reference delay are illustrated in Figs. 6.50 

to 6.52. Adequate tracking is again demonstrated in this case. 

6.4.4 Discussion 

The simulations of the joint RLS algorithm presented in this section indicate that the 

development of Chapter 5 leads to a potentially very useful algorithm. By averaging the 

minimum sums of errors over 50 samples, and by comparing three of these sums of errors, 

the delay tracking is very good in all cases for SNR's as low as 20 dB. Below this value, 

the performances degrade very quickly. But for each application, there is an optimum 

strategy for delay estimation, and the particular one chosen here is fairly empirical. This 

simple method shows that the joint RLS algorithm can-keep the adaptive filter impulse 

response approximately centered in many different kinds of scenarios. It indicates also that 

if rapid adaptation to  the reference filter is required and that computational complexity is 

a secondary issue, the conventional RLS adaptive filter can be favorably enhanced by the 

delay estimation based on the lag-recursive relations. 

6.5 Results for a Reverberant Room Reference Impulse Response 

In order to test the joint LMS algorithm in a more practical context, an impulse response 

typical of a reverberant room is used in the reference filter. This response is 200-tap long 

and is generated using the method proposed by Allen and Berkley [72]. It simulates the 

behaviour of a 6 metres by 6 metres room with a height of 3 metres. The reflection coefficient 

of the walls is 0.8, the sound source is assumed located about 0.5 metre away from one of 

the corners and the location of the receiver is about one metre from the same corner. 



Fig. 6.47 Tracking of a linearly changing delay; dashed line: reference 
delay, continuous line: adaptive delay, P = 0.92, noiseless 
conditions 
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Fig. 6.48 Tracking of a linearly changing delay; dashed line: reference 
delay, continuous line: adaptive delay, ,kl = 0.92, SNR = 30 
dB 
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Fig. 6.49 Tracking of a linearly changing delay; dashed line: reference 
delay, continuous line: adaptive delay, P = 0.92, SNR =20 
dB 
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Fig. 6.50 Tracking of a sinusoidally changing delay; dashed line: 
reference delay, continuous line: adaptive delay, ,B = 0.92, 
noiseless conditions 
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Fig. 6.51 Tracking of a sinusoidally changing delay; dashed line: 
reference delay, continuous line: adaptive delay, P = 0.92, 
SNR = 30 dB 
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Fig. 6.52 Tracking of a sinusoiddy changing delay; dashed line: 
reference delay, continuous line: adaptive delay, P = 0.92, 
SNR = 20 dB 



The corresponding impulse response is given in Fig. 6.53. Note that the response is not 

symmetrical with respect to any point, as is the 21-tap response of Fig. 6.1, and that it 

exhibits three large reflection peaks as well as five smaller ones. 
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Fig. 6.53 Impulse response of the reverberant room 

6.5.1 Results with the Joint LMS Algorithm in Type I 

The joint LMS algorithm, with a 200-tap adaptive filter, is first simulated with a white 

and a coloured input Gaussian signal, in noiseless conditions. Then a digitized speech 

segment input is used with a normalized form of the adaptive delay algorithm. For the 

Gaussian input case, it is noted that the adaptive filter gain factor p has to be lower than 

that for the short impulse response, otherwise the algorithm is unstable. This is predicted 

in Proposition 4.5, which states that, for convergence in the mean square, p must be lower 

than the inverse of the trace of the input signal autocorrelation matrix. With an adaptive 

filter that has an order of magnitude more coefficients, it is expected that the maximum 

on p be consequently smaller. In practice, i t  is found this maximum must be around 0.01. 

This value is used in the simulations, which prevents the adaptive filter from tracking fast 

channel variations, in particular fast reference delay nonstationarities. 



6.5.1.1 White Gaussian Input 

The delay tracking of the joint algorithm is shown in Figs. 6.54 and 6.55, for a reference 

delay ramp and a sinusoidal reference delay in noiseless conditions. 

The delay tracking is seen to  be good. Note the different behaviour of positive and 

negative delay tracking, especially in Fig. 6.55. This difference is related to the fact that 

the reference impulse response is not symmetrical with respect to any of its points. In order 

to appreciate the effectiveness of the joint algorithm, the learning curve corresponding to the 

joint algorithm facing a linearly changing delay (corresponding to  Fig. 6.54) is illustrated in 

Fig. 6.56, and the learning curve corresponding to the adaptive filter coping alone with the 

same linear reference delay is illustrated in Fig. 6.57. As before, these curves were obtained 

by averaging 10 error curves. Note the scale difference between Fig. 6.56 and Fig. 6.57. It 

is obvious from these figures that the joint algorithm generates a MSE lower than the MSE 

for the single adaptive filter. This is also the case for a sinusoidal reference delay, as it is 

illustrated in Figs. 6.58 and 6.59. Note that there is a factor of 10 between the vertical 

scales of these two figures. 

It is also interesting to compare the adaptive filter impulse response, in the joint al- 

gorithm, to the reference one. The former one is illustrated in Fig. 6.60 for the case of a 

reference delay ramp in noiseless conditions and after 1000 iterations. Note the algorithm 

error that is superimposed on the reference filter estimate. This error is responsible for a 

portion of the steady-state MSE generated by the algorithm. 

6.5.1.2 Coloured Gaussian Input 

In order to  generate a coloured Gaussian input, a white Gaussian signal is passed 

through a filter with a non-flat transfer function. The selected frequency response is illus- 

trated in Fig. 6.61. It exhibits in-band amplitude variations on the order of 10 dB. 

The delay tracking, by the joint algorithm, of a reference delay ramp and a sinusoidal 

reference delay is illustrated in Figs. 6.62 and 6.63 in noiseless conditions. The adaptive 

delay is again seen t o  be adequate. 

6.5.1.3 Speech Input 

The segment of digitized speech used for the experimentations is illustrated in Fig. 6.64. 

It is part of a speech data  file sampled a t  8 kHz. This segment was selected such that a large 

range of amplitude variations is present over its span. The dashed line indicates the range 

of data used for initializing and training the different algorithms, and the range actually 
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Fig. 6.54 LMS Adaptive delay response to a reference delay ramp of 
0.01 sample/sample and for a 200-tap reference impulse 
response; dashed curve: reference delay; p = 0.01, a = 0.02 

used for delay tracking. The data up to the dashed line is used for training and the rest i 

used for tracking. 

Because of larger input data spectral variations, which translate into a larger eigenvalue 

spread, the adaptive filter gain factor has to be lowered. A value of p = is used. The 

input signal variations prevent the adaptive delay algorithm to perform properly when the 

input amplitude decreases too much. The algorithm of equation (4.33) is therefore modified 

into the normalized form 

2cwe(n, d , ) w : i ( n ~  -- d,) 
dn+l = d ,  + I1 un 1 1 4  7 

where the square of the input power is defined as 

A fourth power is needed for amplitude normalization, since the error and the input vector 

are each proportional to the amplitude, while the weight vector is proportional to its square 

(see equation (4.32)). 

Once normalized, the adaptive delay can track more adequately the reference delay 

variations, even when the amplitude is reduced, as it is the case around the 2500'~ iteration 

on Fig. 6.64. Note however that the adaptive delay gain factor a has to be increased by four 
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Fig. 6.55 LMS Adaptive delay response to a sinusoidal reference 
delay variation and for a 200-tap reference impulse 
response; dashed curve: reference delay; p = 0.01, cr = 0.02 
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Fig. 6.58 Learning curve for the joint algorithm facing a reference 
delay ramp of 0.01 sample/sample (corresponding to 
Fig. 6.54); p = 0.01, a = 0.02 
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Fig. 6.57 Learning curve for the single adaptive filter facing a 
reference delay ramp of 0.01 sample/sample (note the scale 
difference with Fig. 6.56); p = 0.01 
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Fig. 6.58 Learning curve for the joint algorithm facing a sinusoidal 
reference delay (corresponding to Fig. 6.55); p = 0.01, 
cr = 0.02 
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Fig. 6.59 Learning curve for the single adaptive filter facing a 
sinusoidal reference delay; p = 0.01 (note the factor of 10 
compared to the scale of Fig. 6.58) 

Fig. 6.60 Impulse response of the adaptive filter in the joint 
algorithm, after 1000 iterations, when the reference delay is 
a ramp of 0.01 sample/sample and p = 0.01, a = 0.02 
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Fig. 6.61 Filter transfer function for coloured input generation 

orders of magnitude, in order to compensate for the division by the fourth power. Therefore, 

a = 1000 is used in the delay tracking simulations of a delay ramp and a sinusoidal delay. 

The results are illustrated in Figs. 6.65 and 6.66. Note that the tracking is good as long 

as the input amplitude is large, but that it becomes less accurate when the input samples 

size drops (around iteration 1400 on Figs. 6.65 and 6.66). Despite these problems, the 

normalized adaptive delay algorithm performs far better than the ordinary LMS algorithm 

of equation (4.33) when the input amplitude experiences large variations. 

6.5.2 Results with a Joint Hybrid LMS Delay - RLS Filter in Type 11-DRB 

The joint RLS algorithm has been tested with the long reference filter impulse response 

used in Section 6.5.1 and illustrated in Fig. 6.53. Both the delay estimator and the adaptive 

weight vector give unsatisfactory results. By using the RLS adaptive filter alone, it was 

found that the filter could not track any of the linearly or sinusoidally changing reference 

delay that the shorter filter could easily follow before. This result was unexpected, since 

the tracking time constant of the RLS algorithm was derived to  be [73], [33] 

which is independent of the number of adaptivefilter coefficients. But in practice, it appears 

that the RLS adaptive filter is slowed down by an increase of its time span. Even a decrease 
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Fig. 6.62 LMS Adaptive delay response to  a reference delay ramp of 
0.01 sample/sample, for a 200-tap reference impulse 
response and a coloured input; dashed curve: reference 
delay; p = 0.01, a = 0.02 
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Fig. 6.63 LMS Adaptive delay response to  a sinusoidal reference 
delay variation, for a 200-tap reference impulse response 
and a coloured input; dashed curve: reference delay; 
p = 0.01, a = 0.02 
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Fig. 6.64 Speech segment used for simulations; the dashed line 
indicates the range of data used for delay tracking 

of the weighting factor fi  does not allow adequate tracking t. This is disastrous for the joint 

RLS algorithm derived in Chapter 4, since the delay estimation is based on the tracking, 

by the adaptive filter, of the delay reference variations. 

In order to make the RLS adaptive filter solution viable, even in the presence of rapid 

reference delay variations, a hybrid adaptive system has been tested in Type 11-DRB con- 

figuration. The delay estimation is performed by an adaptive delay element working in 

conjunction with an LMS adaptation algorithm of the form 

d,+i = d ,  - Pae(n)+(nT - d,). (6.26) 

The adaptive filtering is performed with the fast RLS algorithm of Appendix F. The joint 

hybrid algorithm is therefore of the form of equation (4.180), with the obvious change in 

the weight vector adaptation. 

The hybrid algorithm has been tested with a white Gaussian input and a speech input. 

During these tests, the numerical stability problem appeared again. It could not be solved 

as before, by the implementation of a parallel restart algorithm, because of the way the 

error signal is used in the LMS delay algorithm of (6.26). Recall that in the parallel restart 

algorithm, a parallel RLS algorithm is started from scratch on a regular basis, and its 

t In fact, reducing the weighting factor increases the tendency for the RLS algorithm to become nurner- 
ically unstable [68]. 
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Fig. 6.65 Normalized LMS Adaptive delay response to a reference 
delay ramp of 0.01 sample/sample, for a 200-tap reference 
impulse response and a speech input; dashed curve: 
reference delay; p = a = 1000 
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Fig. 6.66 Normalized LMS Adaptive delay response to a sinusoidal 
reference delay variation, for a 200-tap reference impulse 
response and a speech input; dashed curve: reference delay; 
p = a = 1000 



internal variables, as well as its weight vector, are transferred to the main RLS algorithm 

before numerical problems happen. This process, although very smooth, is not totally free 

of transition errors. The weight vector, before and after the transfer, is slightly different, 

which cause a certain jump in the error signal. This error burst is usually big enough to 

disturb greatly the LMS delay estimation and to  cause the joint algorithm to lose track 

of the right estimates. Note that this problem did not appear in the joint RLS algorithm. 

No investigations were performed to find ways to overcome the instability problem, as it 

appears to be a fundamental limitation of the fast implementations of the RLS adaptive 

filter algorithm. The results given about the joint hybrid algorithm were therefore obtained 

before the instability appeared, and are good enough to illustrate the behaviour of the 

algorithm. 

6.5.2.1 White Gaussian Input 

The delay tracking by the joint hybrid algorithm is shown in Figs. 6.67 and 6.68, for a 

reference delay ramp and a sinusoidal reference delay in noiseless conditions. 

Note the lag between the application of the reference delay and the response of the 

adaptive delay. This phenomenon was already noticed for the joint LMS algorithm in 

Type 11-DRB. Note also that the difference between the reference delay ramp and the 

adaptive delay increases with time, and that the sinusoidal adaptive delay variations have 

an amplitude smaller than the reference delay variations. These discrepancies between the 

reference and the estimate delays are due to  the adaptive filter action. Since the adaptive 

delay takes care of the biggest part of the reference delay, the variations seen by the adaptive 

filter are reduced accordingly, and they can be in part tracked by the RLS algorithm. The 

dramatic improvement of the joint hybrid algorithm over the single adaptive RLS filter, 

when rapid reference delay variations occur is illustrated by the learning curves of Figs. 6.69 

and 6.70. Note the scale difference between these two figures. 

6.5.2.2 Speech Input 

The segment of speech used is again the one shown in Fig. 6.64. The RLS adaptive 

filter algorithm is essentially not unaffected by the eigenvalue spread of the input signal 

autocorrelation matrix 171, but the adaptive LMS delay has to be normalized as in Sec- 

tion 6.5.1. The results are illustrated in Figs. 6.71 and 6.72 for a reference delay ramp and 

a sinusoidal delay respectively in noiseless conditions. Note that, as in the case of the joint 

LMS algorithm with normalized delay, the delay tracking is good, but that the amplitude 

variations are nevertheless detrimental to the delay estimate quality. 
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Fig. 6.67 LMS Adaptive delay response to a reference delay ramp of 
0.01 sample/sample when the RLS adaptive filter has 200 
coefficients; dashed curve: reference delay; ,O = 0.92, 
a = 0.02 
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Fig. 6.68 LMS Adaptive delay response to a sinusoidal reference delay 
variation when the RLS adaptive filter has 200 coefficients; 
dashed curve: reference delay; ,f3 = 0.92, a = 0.02 
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Fig. 6.69 Learning curve for the joint hybrid algorithm facing a delay 
ramp of 0.01 sample/sample; ,Ll = 0.92, a = 0.02 
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Fig. 6.70 Learning curve for the single adaptive filter facing a 
reference delay ramp of 0.01 sample/sample (note the scale 
difference with Fig. 6.69); ,Ll = 0.92 
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Fig. 6.71 Normalized LMS Adaptive delay response to a reference 
delay ramp of 0.01 sample/sample when the RLS adaptive 
filter has 200 coefficients; dashed curve: reference delay; 
p = 0.92, a = 2000 
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Fig. 6.72 Normalized LMS Adaptive delay response to a sinusoidal 
reference delay variation when the RLS adaptive filter has 
200 coefficients; dashed curve: reference delay; /I = 0.92, 
cr = 2000 



6.6 Summary 

Numerous experimental results about the joint LMS and the joint RLS algorithms were 

presented in this chapter. A typical reference filter was chosen, and white signals were 

utilized in most of the simulations. The joint LMS algorithm was considered first. The 

non-unique convergence property of the algorithm was illustrated and the theoretical delay 

tracking bounds were computed. Based on these results, the delay tracking capabilities 

of the algorithm were investigated, for a reference delay step and for a linearly and a 

sinusoidally changing reference delay. Both the Type I and the Types I1 configurations 

were considered, in noiseless and noisy conditions. The two types were compared together 

and it was found that the Type 11-DAB tracks better the reference delay variations, while 

the Type 11-DRB retards the adaptive delay response. 

The theoretical results of Chapter 4 were computed and showed good agreement with 

the simulations. The tracking capabilities of the joint RLS algorithm were simulated for a 

short adaptive filter length. Both linearly and sinusoidally changing reference delays can 

be tracked, in noiseless and noisy conditions. 

The joint LMS algorithm, with a typical reverberant room 200-tap impulse response, 

was simulated in Type I configuration, with white, coloured and speech inputs. A normal- 

ized LMS adaptive delay algorithm was used in the last case. The delay tracking charac- 

teristics are found to be adequate, even in these more practical examples. Finally, a joint 

hybrid algorithm, made of an LMS adaptive delay and an RLS adaptive filter, was consid- 

ered when the number of coefficients in the filter is large. In this case, it was found that 

even the RLS algorithm cannot cope properly with rapid reference delay variations. The 

joint RLS algorithm is therefore not appropriate, and the addition of an LMS delay element 

allowed the use of the filter in these adverse conditions. 



Chapter 7 Conclusions 

7.1 Summary 

The work reported in this thesis represents a contribution to the subjects of adaptive 

time delay estimation and adaptive filtering. The conventional model used in time delay 

estimation is first enlarged, in order to include an unknown linear reference filter. The 

joint estimation problem is then formulated as a combined estimation of the delay and the 

reference filter. Two types of combined systems are to be estimated; the Type I system, 

in which the reference delay is located in front of the reference filter and the Type I1 

configuration, where the delay follows the filter. 

Three estimation criteria are first considered. The maximum likelihood (ML) estimator, 

for a finite observation interval and Gaussian signals, is derived in terms of a two-dimensional 

noncausal linear MMSE point estimator and of a bias term. This joint estimator is then 

specialized to the long observation interval case. The result is a new joint open-loop esti- 

mator involving time-invariant filters, which can be made causal and used as a suboptimal 

receiver for finite observation intervals. Closed-loop forms of this receiver are introduced 

and discussed. It is concluded that the form obtained for the ML estimator is not well 

suited for a practical application. But this form is instructive in that it is composed of a 

delay element, in series with a group of filters derived from the estimate of the reference 

filter. The structure of the joint MMSE and LS estimators is then introduced. It retains 

the delay-filter form of the ML estimator, and is composed of an adaptive delay element in 

series with an adaptive filter. The estimation criterion is used to minimize a function of the 

squared error between the joint adaptive system and the reference system outputs. 

The first derivative-based joint algorithm considered is the Steepest-Descent (SD) algo- 

rithm. In this algorithm, the adaptive delay element is adjusted in the direction opposite to 



the derivative of the MSE function with respect to the delay. The filter adaptation algorithm 

is the conventional SD algorithm, in which the filter response is adapted in the direction 

opposite to the gradient of the MSE function with respect to weight vector. The MSE 

function is derived and is shown to be related to both the adaptive filter and the reference 

filter impulse responses, as well as to the input signal power spectral density. This typically 

causes the performance surface to be multimodal with respect to the adaptive delay value. 

A closed-loop derivative-based delay estimation is therefore subject to convergence to local 

solutions. In the weight vector subspace, the convergence is unimodal since the MSE func- 

tion is quadratic with respect to the weight vector. It is shown that when the gradient with 

respect to the weight vector is zero, this corresponds to a necessary and sufficient condition 

for convergence of the joint SD algorithm. This implies that the joint algorithm suffers also 

from non-unique solutions in the joint weight vector-delay vector space. 

The joint SD algorithm being composed of two adaptation algorithms, the alternation 

of the two processes changes the convergence characteristics. For a joint algorithm which 

alternates its two components in any fashion, simple conditions for convergence on the two 

gain factors p and a are found. The bound on the filter gain factor p is identical to the one 

for the usual SD adaptive filter. It is equal to the inverse of the maximum eigenvalue of 

the input signal autocorrelation matrix. The bound on the delay gain factor is shown to be 

such that a must be smaller than twice the inverse of the MSE function second derivative, 

evaluated a t  the closest minimum. If the delay value is close to the optimum solution, 

than a must be smaller than twice the inverse of tmi,. It is also derived that, in tracking 

conditions, this second derivative is also inversely proportional to the delay time constant 

of adaptation. It is demonstrated that the gain factors can be related to each other by 

applying a constraint on the relative speed of convergence of the two adaptive processes. 

The constraint is such that the adaptive delay is faster than the adaptive filter. 

The joint Least-Mean-Square (LMS) algorithm is then presented as a stochastic im- 

plementation of the joint SD algorithm. This algorithm is defined by replacing the MSE 

function by the squared error in the SD algorithm. Three versions of the joint LMS algo- 

rithm are shown to  be of interest. The Type I configuration mimics the reference system of 

the same type. The Type 11-DAB form reproduces the Type I1 reference system where the 

delay is located directly after the filter. The Type 11-DRB estimates a Type 11 reference 

system by using a negative adaptive delay in the reference branch. It is shown, by using the 

ODE method, that if the adaptation factors are time-variant and both tend toward zero, 

the joint LMS algorithm converges to a local minimum of the MSE function, like the exact 

version of the joint SD algorithm. This result confirms the conjecture that if the adaptation 



factors are small enough, the joint LMS algorithm and the joint SD algorithms tend to 

similar solutions. 

Using a series of commonly made assumptions, the conditions on each gain factors, 

for convergence in the mean and in the mean square, are derived for the three types of 

configurations. It is found that the bounds on a and p,  for convergence in the mean 

of the LMS estimates, are identical to the bounds for the SD estimates in every type of 

configuration. The bounds on a ,  for delay convergence in the mean square, are functions of 

the ratio between tmi, and E[Gi], a quantity that is a function of the input signal power, 

the second derivative Li,, the reference power and the variance in the adaptive filter weight 

vector estimate. The LMS delay estimate is shown to be unbiased and its variance is derived 

to be a function of tmi, and E [ G ~ ] ,  as well as afunction of the variance of the delay derivative 

noise estimate. The weight vector estimate is shown to be biased by a vector proportional 

to the delay estimate variance and inversely proportional to the input signal autocorrelation 

matrix. In Type I and Type II-DRB configurations, the condition for convergence in the 

mean square of the weight vector estimate is found to be identical to the usual condition for 

a single adaptive filter, i.e. p must be lower than the inverse of the trace of the input signal 

autocorrelation matrix. For the Type II-DAB, the condition is more complicated, but it is 

also identical with and without the adaptive delay. In all the configurations, the trace of 

the weight noise vector correlation matrix is found to be proportional to  the MMSE, to the 

second derivative of the MSE function at  its minimum and to the delay estimate variance. 

The expressions for the excess MSE and for the misadjustment associated to the joint LMS 

algorithm are derived. In every type of configuration, these expressions are shown to be 

equal to the sum of three terms; a term specific to the delay estimate, a term specific to 

the adaptive filter and a cross-product term related to both estimates. The cross-product 

rnisadjustment is equal to  the product of the two specific misadjustments. Among the 

three types of joint configurations, the Type II-DAB is found to be the less appealing. The 

location of the delay, after the adaptive filter, limits the tracking ability of the filter by 

reducing the stability bound on p,  and increases the excess MSE. 

For faster tracking of reference variations, the joint recursive least squares algorithm 

is presented. It is based on the least squares (LS) estimation criterion and minimizes 

the sum of exponentially weighted squared errors, with respect to both the integer delay 

estimate, defined as the "lag", and the weight vector. Because of the short convergence 

time of the RLS filter algorithm, the delay estimation and the adaptive filtering parts of 

the joint algorithm have to  be intimately linked to  each other. This task is done by first 

computing the RLS adaptive filter, and then by "extracting" the delay information from 



the resulting error and weight vector. Two joint RLS algorithms are derived and exploit the 

data structure, in order to compute the adaptive weight vector and the lag value, within a 

finite set, corresponding to the joint LS solution. In order to perform such a task, the sum of 

squared errors is computed for each value of the integer delay estimate in the set of interest, 

and the delay value corresponding to the lowest value is retained. This is accomplished by 

using a series of lag-recursive relations that d o w s  the efficient computation, based on the 

LS solution for the current lag, of the sum of squared errors for other values of the lag. These 

lag-recursive relations are derived, for both a Type I and a Type 11-DRB configurations, 

by using a geometrical approach, and are appended to the fast transversal filter (FTF) 

adaptive filtering algorithm, in order to form the joint RLS algorithm. This new algorithm 

is composed of three distinct phases. The first one involves the update of the forward and 

backward linear predictors used in both the FTF and in the lag-recursive relations. The 

second phase involves the use of the lag-recursive relations, in order to compute the current 

optimum weight vector and to derive the sums of squared errors for the lags comprised in 

the set of interest. The third computational phase involves a decision on the lag update and 

the computations, in the case of update, of the new corresponding variables. This last task 

is made easier by the use of some of the lag-recursive relations. This new joint algorithm 

exploits fully the lag recursions in order to allow the serial computation, from a single set 

of stored weight vector and error variables, of the information necessary for the decisions 

about the lag update. 

The analysis of the joint RLS algorithm shows that the delay adaptation process is 

characterized by a discrete-time Markov chain, which renders the analysis difficult. Under 

the assumptions used in the analysis of the joint LMS algorithm, the LS delay estimator 

is shown to be unbiased, while the weight vector estimator is biased by the same quantity 

found in the joint LMS algorithm. The weight noise vector correlation matrix is found to 

be proportional, as  in its joint LMS counterpart, to the MMSE, to the second derivative of 

the MSE function at its minimum and to the delay estimate variance. The expression for 

the excess MSE is derived to be also composed of three terms, bearing a form very similar 

to the form found in the LMS algorithm. 

The joint LMS and RLS algorithms are then simulated. The experimental set-up is 

that of a system identification (cancellation) configuration. Spectrally white signals, as well 

as coloured and speech inputs are considered. A short reference impulse response is used, 

as well as a longer one, typical of a reverberant room. The delay estimation of time-varying 

reference delays is illustrated, for both linearly and sinusoidally changing conditions and for 

noiseless and noisy cases. For the short reference impulse response, the LMS adaptive filter 



can compensate for some of the reference delay variations, while for the long response, the 

adaptive delay allows a considerable reduction of the mean squared error. For the case of a 

speech input, a normalized form of the LMS adaptive delay is introduced, in order to cope 

with the large input amplitude variations. In the joint RLS algorithm, the delay estimation 

allows the adaptive filter to stay "centered" and to better model the reference filter. For a 

long adaptive filter impulse response, a hybrid LMS delay-RLS filter is defined and reduces 

considerably the mean squared error. 

The analyses and the simulations of the joint LMS and RLS algorithms demonstrate 

the ability of the joint techniques to improve upon the performances of the conventional 

methods, when there is a relative delay between the main input and the reference signal. 

In general, the joint algorithms produce a lower mean squared error between their outputs 

and the reference signal. Furthermore, they allow the use of adaptive filters with a smaller 

number of coefficients. 

7.2 Contributions 

This thesis has contributed to the theories of delay estimation and of adaptive digital 

filtering, as well as to the field of joint adaptive algorithms. The major contributions of this 

work can be summarized as follows: 

The joint maximum likelihood estimator for a reference delay and a reference filter 
has been derived for Gaussian signals, using both a finite and an infinite observation 
interval. This estimator has been used to define the structure of the joint MSE and 
LS adaptive estimators. 

The joint steepest-descent and least-mean-square adaptive algorithms, composed of 
an adaptive delay element and of an adaptive transversal filter, have been analysed 
[4l]. These algorithms constitute the generalizations of existing gradient-based time 
delay estimation algorithms without reference filter. They can also be regarded as 
upgrades of the conventional S D  or LMS adaptive filter algorithms, since they allow 
the synchronization, in a general framework, of the input and the reference signals 
used by an adaptive filter. The joint LMS algorithm has been implemented and 
tested under various conditions. 

The interaction between the LMS adaptive delay and the LMS adaptive filter esti- 
mates has been derived for three types of delay and filter arrangements. The joint 
excess MSE expression was shown to be a function of three terms; one term specific 
to the adaptive delay, one term specific to the adaptive filter and one cross-product 
term related to both estimates. Experiments have confirmed the form of the MSE 
expression. 

An existing set of block-based lag-recursive relations has been extended to a set 
of on-line relations. A new geometrical derivation has been used to obtain and 



interpret these relations. This set of relations allows the serial computation, from 
an initial value of the RLS solution a t  a certain lag, of the LS weight vector and the 
corresponding sum of squared errors for other lag values. These relations have been 
verified by simulations. 

5. A new type of joint adaptive delay and adaptive filter RLS algorithm has been 
designed by appending the lag-recursive relations to the fast transversal RLS filter 
algorithm and by using a serial computation of the critical parameters used for lag 
update [42]. This algorithm has been implemented and tested for different conditions. 

6. The joint RLS algorithm has been shown to produce an excess MSE bearing a great 
resemblance with the excess MSE produced by the joint LMS algorithm. 

7. For applications where large adaptive filters are required, the joint algorithms have 
been shown to produce a significantly lower mean squared error. A hybrid joint 
algorithm, formed of an RLS adaptive filter and an LMS adaptive delay, has been 
successfully implemented for that purpose. 

7.3 Future Work 

The following points could constitute the basis for future research. 

It has been assumed, throughout this thesis, that the delay estimate is close enough 
to the global minimum of the MSE function such that convergence to this minimum 
happens. This assumption, although common in the delay estimation literature, is 
not necessarily true in practice. Some form of delay acquisition procedure is necessary 
and should be studied. The LS estimation criterion could be used for that purpose by 
observing a block of input signal, and by applying an algorithm similar to the joint 
RLS algorithm, for an extensive set of possible lags. This optimum lag algorithm has 
been proposed in [63] and could constitute a parallel processor of the form proposed 
in [43, p. 2791, for minimum searching of a multimodal function. 

2. The problem of multitude convergence points and false lock of the delay estimator 
has to be studied and solved. One solution is to periodically realign the adaptive filter 
input and reference by acquiring a delay estimate close to the optimum. This could 
be done off-line, by using a procedure similar to the one proposed for acquisition. 

3. In the joint SD or LMS algorithms, a higher order delay loop could be used to speed 
up the convergence rate. 

4. Data reuse could be implemented in the joint SD or LMS algorithms by repeating one 
of the two adaptive processes on the same input vector, as proposed in Section 3.3. 

5. The joint SD and LMS algorithms could merge in some manner the two adaptive 
processes. For example, the interpolator implementing the fractional delay element 
could be incorporated into the adaptive filter. This would create a new class of joint 
adaptive algorithm. 

6. The possibility of implementing a computationally efficient joint RLS algorithm with 
a fractional delay estimator could be investigated. 



7. The numerical stability of the RLS adaptive filter algorithm has to be reconsidered, 
in light of its influence on the delay estimation. 



Appendix A. Derivation of the Joint Maximum Likelihood Estimator 
For a Type I System 

Based on a vector mathematical model, the form of the joint ML estimator, over an 

interval [nl, n2], is derived. The likelihood probability and the likelihood function are 

computed in Section A.1. The likelihood function is shown to be the sum of a noncausal 

term ty(d, w) and a bias term tg(d, w). As noticed in Section 2.3.1, the function ly (d, w) 

is expressed in terms of MMSE estimation. The MMSE estimator necessary to compute 

ty(d,w) is explicitly derived in Section A.2. The function ly(d,  w) is computed for long 

observation intervals in Section A.3. The material presented in this appendix is an extension 

of the work reported by Stuller in [16]. The extension is done for a reference branch including 

a linear filter, and the results are given here for discrete-time signals and systems. Most of 

the derivations follow closely Stuller7s procedures, and it would make the reading easier if 

his article would be consulted from time to time. 

A.l  Derivation of The Log-Likelihood Function 

The derivation is based on the mathematical model of equations (2.7) to (2.10). These 

equations are reproduced here for convenience. 

Based on these vector definitions, the log-likelihood function is derived as in Stuller. First 

of all, the received vectors y(n) is expressed as an infinite-dimensional vector y, using 

the discrete-time normalized vector eigenfunctions f;(nld, w) of the input signal covariance 

matrix @ss(kld, w), over an observation interval [nl , n2], i.e. 

where 



The covariance matrix is defined as 

and the normalized vector eigenfunctions are 2 x 1 column vectors satisfying the equations 

"2 1 for i = j 
fF(nld, w)fj(nld, w) = 

n=nl 0 for i # j. 
Note that Xi(d, w) is the scalar eigenvalue associated with E;(nld, w). It is assumed that the 

covariance matrix OS(kld, w) is a positive definite function, i.e. that [43] 

for any vector f(n) with finite energy over [nl , n2] t . In this case, all the eigenvalues are 

real and strictly positive numbers, and the set of eigenfunctions is a complete orthonormal 

set over the interval [nl , n2], i .e. 

8 2  N 
lim [x(n) - rif (n/d,  w) = 0, 

N 4 m  n=nl i=l I 
for any finite energy deterministic vector function x(n) over [nl, n2] and 

N 
lirn E [(u(n) - Z uifi(nld, w) = 0, 

N + m  1=1 'I 
for any finite energy random function u(n) over [nl,  n2]. 

Therefore, all the information present in y(n) is present in the vector y~ = 

[yl, y2,. . . , yN] for N tending to  infinity. Given the parameters d and w, the y;'s are 

independent zero-mean Gaussian random variables with variance 

' A finite energy vector function x(n) over [nl, nz] is such that 



The joint probability density function of the pi's, for 1 5 i 5 N,  and given the parameters 

d and w, is therefore 

The likelihood function lb (d ,  W )  is obtained by taking the logarithm of py,(D,W(yNld, w), 

when N tends toward infinity, and by making use of equation (A.6), which gives 

Define the inner sum as Q(n, m(d,w), for nl < n < n2, nl < m 5 722. This function can be 

expanded as 

2 2 00 

= -b(n -m)I  - - w, f;(nld, w)fr(mld, w), 
NO No C (-1 &(d, W) + No12 

~ - 

(A.16) 

for nl < n < n2,nl 5 m 5 n2. Defining the function Q2(n,mld,w)as 

00 

w, ~ ( n ~ d ,  w)f!(mld, w), Q2(n'mld'w) = C &(d, W) + N O D  
i=l 

for nl 5 n 5 n2, nl 5 m 5 n2, the likelihood function of (A.15) can be written as 

1 
- - 2 yH(n)y(m)b(n - m). 

n=n1 m=nl 

The likelihood of (A.18) can be simplified by dropping the last term and adding the term 

l n [ m ]  since none of these terms depends on the estimates. This finally gives the desired 

likelihood function 

e(d, w) = t y ( d ,  W) + e ~ ( d ,  w), (A.19) 



where 

and 

In (A.20), Q2(n, mid, w) is is the matrix impulse response of the 

point estimator of s(nld, w), from the received vector y(n), given 

[43]. It is given by the solution of the "normal" equation 

noncausal linear MMSE 

the parameters d and w 

n2 

5 ~ 2 ( n ,  mld, w) + Q2(n, kid, w ) k ( k  - mid, w) = k ( n  - mid, w), (A.22) 
2 

k=nl 

for nl 5 n 5 n2, n l  < m 5 n2. The form of the estimator is given in Fig. A.1. 

Fig. A.l Blockdiagram of the noncausal joint maximum likelihood 
estimator (canonical realization number 1) 

A.2 Derivation of Entries of Q2(n, m)d, w) 

The form of the entries of Q2(n, m(d, w) are derived, for an observation interval [nl ,  n2], 

by using Stuller's constructive method [16]. The first step in the derivation of Q2(n, mld, w) 

is to  noncausally transform the received vector y(n) into a new vector r(n). The transforma- 

tion is linear and invertible and, by the reversibility theorem, does not affect the performance 

of the system [43]. Its role is to transform the received vector, assuming the parameters 

d and w, into a 2 x 1 vector r(n) in which the second component does not depend on the 



transmitted signal s(n) and the first component does. A transformation that accomplishes 

this task is 

Therefore, the vector r(n) takes the explicit form 

where 

n1 - [ d / T ]  _< n < nl 

nl I n  < n2 - Ld/TJ (A.23) 

nz - Ld/TJ 5 n 5 np. 

Note that c&[.] is defined as (for a Type I reference system) 

where w-'(n) is the impulse response of the inverse filter corresponding to w(n), i.e. 

At this point, the noncausal linear MMSE point estimate i(n(d, w) from r(n) is wanted. 

A variant of Stuller's theorem [16] is invoked to perform this task. 



Theorem. Assume a signal model of the form of equation (A.l) ,  with 

No ~ [ v ( n ) v ~ ( m ) ]  = -I6(n - m). 
2 

Assume that the linear invertible transformation of equation (A.23) is applied on y(n) and 

gives r(n). Then, the discrete-time noncausal linear MMSE point estimator of s(n) from 

r(n), n l  - [d/T] 5 n 5 n2, conditioned on the parameters d and w, is given by the system of 

Figure A.2, where f (n,  mld, w) is the impulse response of the noncausal linear MMSE point 

estimator of q ( n )  from z2(n) and g(n, mld,w) is the impulse response of the noncausal 

linear MMSE point estimator of s(n) from s(n) + t l (n )  - i l (n ) .  

The proof of this theorem is identical, mutatis mutandis, to  the proof given in [16]. 

Fig. A.2 Structure of the discrete-time noncausal linear MMSE point 
estimator of s(n) from r(n), n l  - LdITJ 5 n 5 722, 

conditioned on the parameters d and w, as defined in the 
Theorem. 

The outputs of these two linear MMSE estimators are given by 

and 

From the orthogonality principle [45], the following conditions are met by the above esti- 

mators 

and 

E,[(s(n) - i(n))(s*(m) + zl+(m) - if (m))] = 0, 



for nl - Ld/TJ 5 n 5 n2 and nl - LdITJ 5 m n2. From equations (A.25), (A.26) and 

(A.27), the following expected values are obtained 

$pw-l(n - m )  nl - Ld/T] I n , m <  nl 

E [ l ( n ) z i ( m ) ]  = 5 [ 6 ( n  - m )  + pw-l(n - m)] nl 5 n,m < n2 - Ld/T](A.32) 
8 

N o  -6(n - m)  
2 n2 - IdlTJ I n,m 5 n2 

where pw-l(k) is the deterministic autocorrelation of the inverse filter w-l(n) and is defined 

as [45] 

A.2.1 The Estimator f(n, mld, h)  

Combining equations (A.28), (A.30), (A.33) and (A.34), it is found that f (n, mid, w) 

must satisfy 

nz - LIIT] - 1 

f(n, kld,w)[6(k - m )  + p,-~(k  - m)] = 6(n - m )  - pw-l(n - m) ,  (A.36) 
k=nl 

for nl 5 n < n2 - Ld/TJ and nl < m < n2 - LdlTJ. For a finite interval [nl - Ld/TJ, n2], 

equation (A.36) can be put in matrix form by defining the deterministic autocorrelation 

matrix 

and the deterministic cross-correlation vector 

6(n - n l )  - pw-l(n - n l )  

(A.38) 

6(n - n2 + Ld/T] + 1 )  - p,-l(n - n2 + [d/T] + 1 )  



Define also the estimator vector 

Equation (A.36) then becomes 

and its solution is 

F(n) = ( I t  ~ , ) - ' ~ b , ( n ) .  (A.41) 

Note that the inverse in (A.41) exists since w(n),  and therefore p , - ~ ( n ) ,  is assumed invert- 

ible. Note also that the estimator impulse response is independent of the delay d. Defining 

the i j t h  element of the matrix ( I  t Rp)-l  as 0i j ,  f (n ,  mld, w )  can be expressed as 

A.2.2 The Estimator g(n, m(d ,w)  

From equations (A.29) and (A.31), the linear MMSE estimator g(n, mld, w) is the so- 

lution of 



for n l -  LdITJ 5 n 5 n2 and nl  - Ld/T] I rn 5 n2. Using equations (A.28), (A.29), (A.30), 

(A.32) and (A.33) in equation (A.43), g(n, mJd, w) is the solution of 

for nl  - [$/TI 5 n 5 n2 and nl  5 m 5 n2 - [d/TJ - 1. Note that all the terms in (A.44) 

involving f(k,mlw) are zero for m outside [nl,n2 - Ld/TJ - 11. Using equation (A.36) in 

equation (A.44) simplifies the result to 

A.2.3 Explicit Entries of Q2(n, mJd, w) 

From Figure A.l, the following relations, involving the entries q;j(n, m(d, w), are found 



By solving equations (A.36) and (A.45),  the linear M M S E  estimator f ( n ,  m ( w )  and 

g(n, mid, w )  are obtained. From Figure A.2, the following input-output relations are found 

and 

Define the following functions 
n2-  Ld/TJ - 1  

b(n, m l d 7 ~ )  = g(n, i ld ,w) f  (i, mlw) (A.49) 
i=nl 

nl+Ld/TJ-1 
pl(n,  mid, w )  = g(nT, iT - d(d,  w)w-'(i  - m )  (A.50) 

i=nl 

p2(n, mJd,  w) = g(nT, iT - dld, w)w-'(i - m )  (A.51) 
i=nl+Ld/T]+l 

nz-1 

a(n, mid, w )  = b(nT, iT - dld, w)w-'(i - m ) .  (A.52) 
i=nl+Ld/TJ 

Using equations (A.26),(A.49) to (A.52) and performing a change of variables, equa- 

tion (A.47) becomes 



Comparing equations (A.46) and (A.53) and using (A.48), the explicit forms for the 

qij (n, m(d, w)'s are 

A.3 The function ey(d, w) for a Long Observation Interval 

The function ly(d,  w), when n l  4 -m and n2 + oo, is computed in this section 

by using the results derived in Section A.2. Because the function p,-~(n) is invertible 

(the reference impulse response w(n) is assumed invertible), the time-invariant functions 

f(n1w) and g(nJw) are solutions of equations (A.36) and (A.45) respectively. Then, using 

equations (8.49) to (A.52) in equations (A.54) to (A.57), and neglecting the terms involving 

Ld/Tj, (because of the large observation assumption) the entries of the matrix impulse 

response Q2(nld, w) are also time-invariant and are given by 

From equation (A.20), and from the above definitions of the matrix entries, when nl 4 - cm 
and n2 + oo, the likelihood ly (d, w) is given by 



Note that the first two terms of equation (A.59) can be written as 

Define 

Use definitions (A.61) and (A.62) and equation (A.60) in equation (A.59) in order to get 

When n l  -+ -oo and n2 -. oo, equations (A.36) and (A.45) become respectively, in 

the frequency domain, 

and 
No m8,(ejw) = G(ejW) [m,.(ejw) + -{1 4 - F(ejw)}] . (A.65) 

Note that winV(ejw) is the Fourier transform of w-l(n) and is defined as l / w ( e j w ) .  

From equation (A.64), the Linear MMSE estimator f (nlw) has the following frequency 

response 

From equations (A.65) and (A.66), the linear estimator g(n(w) has the following frequency 

response 

The impulse responses wl(nlw) and G(nJw) can then be expressed as 



where F-'[.] is the inverse Fourier transform operator and cw(n)  is defined as 

Note that 

From equations (A.68) and (A.69),  equation (A.63) can then be written as 

(A. 70) 



Appendix B. The Ordinary Differential Equation (ODE) Method 

A heuristic discussion on the development of the ordinary differential equations associ- 

ated with equations (4.9) and (4.15) of section 4.2 is presented in this appendix and can be 

found in [53] or in [4]. 

Assume a recursive parameter vector estimation method of the form of equation (4.9), 

but with a scalar gain sequence y (n), i.e. 

Assume that the parameter vector B(n) approaches 8(n - 1) asymptotically (subject to 

regularity conditions such as stability, stationarity, etc.). Express B(n + N )  as 

where equation (B.l) is used. Suppose that R-l(k) in equation (B.3) is fixed to be R-l(n) 

for the interval N. Using the law of large numbers, the summation of the terms 4(k)c(k) 

can be approximated by E[$(k)~(k)] and equation (B.3) can be approximately written as 

where the expected value E[$(k)c(k)] is defined as f(@(n)). Define the compressed time 

scales: 
n 

Changing the time scale from n to r and mapping 8(n) into BD(r), equation (B.4) becomes 

Asymptotically, when A r  becomes small, (B.6) reduces to 



which is approximately the first equation associated with (B.l) and (B.2). The second 

equation, given by 

is heuristically obtained in a similar way. Note that the case of a matrix gain sequence ~ ( n )  

is comprised in the above derivations when ~ ( n )  = 7(n)I. 



Appendix C. Cross-Correlation of Differentiated Random Processes 

The relations derived in this appendix are obtained using the theory of linear systems 

with stochastic inputs. The results presented below are often used in the analyses and 

follow the examples given in reference [45], pp. 237-239. 

Consider two stationary complex random processes x ( t )  and y ( t ) .  Their cross- 

correlation d Z y ( r )  is defined as 

where r is defined as 

r = t l  - t 2 .  

It is assumed that the two random processes are delayed by the same delay d ,  i.e. 

x ( t l )  = ~ ( t  - d )  

y ( t 2 )  = y( t  - r - d ) .  
In the following sections, the derivative with respect to the delay d and with respect to 

r are denoted as follows 

C.1 Cross-correlation of x ( t )  and y ( t )  

Because of the linearity of the differentiation operator, the following is true 

Noting that 

Therefore 



C.2 Cross-correlation of x ( t )  and y( t )  

Using the same type of development as above, we have 

Then 

C.3 Cross-correlation of k ( t )  and y( t )  

Using the results of the last two sections 

the desired cross-correlation is 

C.4 Cross-correlation of x ( t )  and y ( t )  

From the double application of results (C.6), we have 

C.5 Cross-correlation of x ( t )  and y(t)  

From the double application of results (C.7), we have 

E [ ~ ( t l ) ~ * ( t 2 ) 1  = &(r)  

= dJ:y(.). 



Appendix D. Some Expected Values For a Type I Adaptive System 

The expected values necessary in the computations of Section 4.3.1 are derived in this 

appendix. The results of equations (4.34) to (4.38) and those of appendix C are used in the 

following derivations. 

D . l  Expected Value of Gn 

The quantity G, is defined in (4.45) and its expected value is 

E[Gn] = E[jr2(n, D )  - e(n ,  D)Y(n, D) ]  

= E [ i 2 ( n ,  D)]  - E[e(n ,  D)y(n,  D)] .  

From (4.34) to (4.38) and appendix C, we have 

E [ i 2 ( n ,  Dl1 = E[(~.; . (n) lad* + x ( n ,  q 2 1  
= ~ [ ( a i ( n ) / a d ~ ) ~ ]  + ~ [ i ~ ( n ,  D) ]  

= -q5yi(0) + E[k2 (n ,  D)] .  

The quantity ~ [ ~ ~ ( n ,  D) ]  is expressed as 

~ [ k ~ ( n ,  D)]  = E [ ~ T ~ ( ~ T  - D ) ~ T ~ ( ~ T  - D)] 

= E[C C qi (n )u i (n l  - D )  y (n)Gj(nT - D)]  
i  j P . 3 )  

Since the input vector and noise vector components are assumed to be formed of Gaussian 

random variables, we have [66] 

E[qi(n)Gi(nT - D)q j (n )c j (nT  - D)]  = E[q;(n)u,(nT - D)]E[%(n)u j (nT  - D)]  

+ E[ui(nT - D)7)i(n)]E[qi(n)uj(nT - D)]  (D.4) 

+ E[u;(nT - D)uj(nT - D)]  E[q i (n)q j (n)] .  

Every correlation of a noise vector component with an input sample is zero and, from 

assumption 5 of Section 4.3, 

E[qi(n)qj(n)]=O for i # j .  

Therefore, equation (D.3) simplifies to 

~ [ j i ~ ( n ,  D)]  = ~ [ i r t ( n ~  - D ) ]  ~ [ $ ( n ) ]  
i 



The sum of the variances of the noise vector components is equal the trace of the correlation 

matrix of qn, defined as 

K ,  = ~ [ s l n v : l ,  (D.6)  

and (D .5 )  can be written as 

Then, equation (D.2)  is 

~ [ j r ~ ( n ,  D ) ]  = -+Fi(0) - & , ( 0 ) t r [ K V ] .  (D.8)  

The second component of E[Gn] is 

where the last two approximations come from the high signal- tenoise ratios assumption. 

From ( D . l ) ,  E[G,] is then 
E[Gn] = -+>(o)  

z -+&(o),  
for high signal-to-noise ratios. 

D.2 Expected Value of ( 1  - 2aGn)Nn 

From equations (4.44) and (4.45), the expected value is written as 

E [ ( 1 -  2aGn)Nn]  = E[Nn] - 2aE[Gn Nn] 

= 4 4 ( j r 2 ( n ,  D )  - e(n,  D)Y(n, D ) ) ( e ( n ,  D ) Y ( ~ ,  D ) ) ]  ( D . l l )  

= 4 a ( ~ [ i ~ ( n ,  D)e (n ,  D ) ]  - E[jr(n, D)fi(n, ~ ) e ~ ( n ,  D ) ] ) .  

All the random variables involved in ( D . l l )  are assumed zero-mean Gaussian and from the 

fact that E[Nn]  = -2E[e(n,  D)y (n ,  D ) ]  = 0 ,  we have 



= 0. 

This last result follows from the autocorrelation property that states [74] 

which forces the first and third derivatives of the autocorrelation to be zero at  T = 0.  

The final result is then 

E [ ( 1  - 2aGn)Nn] = 0. (D.15) 

D.3 Expected Value of G i  

From equation (4.45), this expected value is written as 

WiI = E[(jr2(n,  D )  - e (n ,  D)Y(n ,  w21 
(D.16) 

= E[!14(n, D ) ]  - 2E[!12(n, D)e (n ,  D ) y ( n ,  D ) ]  + E [ e 2 ( n ,  ~ ) j i ~ ( n ,  D ) ] .  

From equation (4.34), the first term of (D.16) is expressed as 

E[!14(n, D)]  = E [ ( a i / a d n  + x ( n ,  D ) ) ~ ]  

= ~ [ ( a ? / a d , ) ~ ]  + 4 ~ [ ( a i / a d , ) ~ x ( n ,  D ) ]  + 6 ~ [ ( d i  / d d n ) 2 i 2  ( n ,  D ) ]  ( D .  17) 

+ 4 E [ ( a i / a d n ) x 3 ( n ,  D ) ]  + E [ x 4 ( n ,  D ) ] .  

Since a i l a d ,  and ~ ( n ,  D )  are assumed to be zero-mean independent Gaussian random 

variables, the second and fourth terms on the right of (D.17) are zero. The first term is [45] 

E [ (a i /adn)4]  = 3 ( ~ [ ( d i / d d , ) ~ ] ) ~  
(D.  18) 

= 3($$+(0))~. 

The third term is 

6 ~ [ ( a i / a d , ) ~ x ~ ( n ,  D ) ]  = 6 ~ [ ( 8 i / a d , ) ~ ]  E [ x 2 ( n ,  D ) ]  
(D.19) 

= 64;+(0)6:,(0)tr[K,1 

where the result of (D.7) was used. 

From a development analog to equations (D.3) to (D.7) and assuming that ~ ( n ,  D )  is 

Gaussian, the fifth term of (D.17) is found to be 

E [ x 4 ( n ,  Dl1 = 3 ( E [ x 2 ( n ,  



Collecting the results of (D.18), (D.19) and (D.20), we have 

The expected value E[jr2(n, D)e(n, D)y(n, D)] in the second term of (D.16) is computed as 

follows 

Jqjr2(n, Dl%(% Dl1 = E [ Y ~ ( ~ ,  D)IE[e(n, D ) Y ( ~ ,  Dl1 

+ 2E[jr(n, W n ,  D)IE[jr(n, D)G(n, D)1 

where equations (D.8) and (D.9) were used. The third term of equation (D.16) is computed 

as follows 

E[e2(n, 0 ) i 2 ( n ,  D)] = ~ [ e ~ ( n ,  D ) ] E [ G ~ ( ~ ,  D)] + 2E2[e(n, D)ij(n, D)] 

= E[(r(n) - y(n, ~ ) ) ~ ] ~ [ ( d ~ i / a d :  + ~ ( n ,  D))'] 

+ 2(4:'+(0) - dy+(o) - 4':,(0)tr[~,])~ (D.23) 

= ( d r m  - d++(O) + duu(o)tr[~,l)(4$)(o) + dl?(o) t r [~, l )  

+ 2(4$(0) - d!+(o) - 4~,(0)tr[K,])~.  

Collecting equations (D.21), (D.22) and (D.23), the final result is 

D.4 Expected Value of N: 

Using equation (4.44) and the results (D.23), (D.8), this expected value is 

E[N~] = 4 ~ [ e ~ ( n ,  D)jr2(n, D)] 

= 4E[e2(n, ~ ) ] ~ [ i ~ ( n ,  D)] + 8 E 2 [ ~ , ]  

= -4(4rr(0) - 4++(0) + 4uu(o)tr[K,]>(4!+(0) + 4;u(o)tr[K,]). 



Appendix E. Shift Invariance Properties and Common Recursions in 
the LS algorithm: Type 11-DRB 

E.l  Shift Invariance Properties in the LS a1gorithm:Type 11-DRB 

Based on the definitions of Subsection 5.2.1, the following shift invariance properties 

can be established 

Using (E. l )  in (5.19) 

where 

Also, 

where 

and 

n 

&(n) = z ~ . - ~ u ( i  - M + l)r*(i  t L).  
i=l 



since uM-1(0) = 0 in the prewindowed method. The following shift invariances can also be 

established [7] 

where 

n 

r%-,(n) = C ~ " - ' l u ( i  - M + 1)12 (E. 11) 
i=l 

f0 ~ ~ - ~ ( n )  = C~"-'~u(i)l~. (E. 1 2 )  

E.2 Common Recursions 

The two following recursions are easily derived 

Using the matrix inversion lemma, the following recursion is obtained [7] 

Define 



The following recursion can be derived using the above shift invariance properties [7] 

where aM-lCn) is the optimum weight vector for the one-step forward linear predictor of 

order M - 1 and can be obtained as 

and FM_l(n)  is the corresponding minimum value of the sum of weighted forward a poste- 

riori prediction-error squares defined as 

i= 1 

with 

Another recursion analog to (E.19) is 

where bM-1(n) is the optimum weight vector for the one-step backward linear predictor of 

order M - 1 and can be obtained as 

and BM-l(n) is the corresponding minimum value of the sum of weighted backward a 

posteriori prediction-error squares defined as 
n 

with 

Using (E.10), (E.12) and (E.22) in (E.21), the following expression is obtained 

and using (E.9), (E.ll) and (E.26) in (E.25), 



Appendix F. Basic Fast Transversal Filter Algorithm 

The basic form of the fast algorithm considered in the thesis is given in this appendix. 

Its derivation is not performed here, since it can be found in many textbooks ([i'] or [2] for 

example). The algorithm presented has been chosen because it exhibits the same basic inter- 

mediate variables as those appearing in the matrix-based derivation given in Appendix G. 

In fact, the most part of the relations and recursions appearing in the fast algorithms are 

derived in Section G.3.  The FTF algorithm that is favored is the fast a posteriori error 

sequential technique (FAEST) of Carayannis et al. [62]. As with the FTF of Cioffi and 

Kailath [61], the algorithm can be interpreted as a parallel bank of four transversal filter; 

two for the forward and backward linear predictors aM(n - 1) and bM(n - I), one for the 

Kalman gain vector gM+l(n) and one for the actual adaptive weight vector i L ( n  - 1). 

This is illustrated in Figure F.1. Note that it is assumed that a Type 11-DRB adaptive 

system is used. The modifications of the FTF algorithm in order to accommodate a Type I 

system are straightforward. 

" M ( ~ , I )  

e,& 4 
i ~ o ( ~ , ~ >  

Fig. F.l  Fast Transversal Filter Interpretation 

The algorithm is usually separated into two distinct phases; the Kalman gain vector 

time updating, which is accomplished through the first three transversal filters, and involves 

the orthogonalization of the input signal with the forward and backward predictors of order 

M, and the least squares FIR filter time updating, which is performed recursively using the 

updated Kalman gain vector. 



Time updating of the gain vector t 

qM ( n )  = u(n) - a 5  ( n  - l )uM ( n  - 1 )  

Time updating of the LS FIR filter 

The notation [vl, stands for the vector made of the rn first components of the vector v and Lvj, for 
the vector made of the m last components of the vector v. 
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Appendix G. Matrix-based Derivation of the Error and Weight 
Vector Recursions: Type 11-DRB 

It is assumed that the least squares weight vector i $ (n )  and the corresponding least 

error squares iM,(n, e) are available at iteration n. It is desired to compute, from these 

values, the least error squares for e - 1 and e + 1, and the least squares weight vector 

corresponding to the lowest error. Recursions for the error are first developed, followed 

by similar recursions for *k l (n )  and i$'(n). The derivations follow closely the ones 

presented in [63] for a fixed-length block of data. 

G.l Recursions for t h e  Error 

The least squares error, for lag e in the reference path, can be expressed as [7] 

where 
n 

h ( n ,  e) = ,@lr(i + !)12 

Use of (E.4) and (E.19) in (5.20) gives 

Noting that 

is the first component of i$(n) ,  (G.3) can be written as 

Use of (E.4) and (G.5) in (G.l) gives 



Write id(n,e) as 

Use of (G.4) and (G.7) in (G.6) gives 

Therefore, from (G.8), a first recursion on the least error squares is 

In order to obtain a relation involving i(M-l)o(n - 1, t+  l ) ,  extend (G.l) to e + 1 and M - 1 

Using (E.14) and (E.18) to express + 2 i l ( n )  

+ ~ - ' i G - ~ ( n  - l ) ~ ~ - ~ ( n ) r * ( n  + l t 1) - ~-~g~-l(n)g$-~(n)u~-l(n)~*(n + e + 1) 
Y M - I ( ~ )  

(G. l l )  

Using (E.16) and (E.17) and after some manipulations, (G.ll)  simplifies to 



Using (E.14) and (G.12) in (G.lO) and noting that 

gives, after some manipulations, 

where v is defined as 

Note that +M(n) is Hermitian symmetric, i.e. 

which implies that +;'(n) is also Hermitian symmetric [7]. This, in turn, implies that 

+kl (n) is positive semi-definite with real eigenvalues. Then 

is real if ,B is real. Therefore, (G.14) simplifies to 

Using (E.18) and (5.20) in (G.18) gives 

which is the second recursion required. It d o w s  the computation of i(M-l)o(n, l+  1) from 

i(M-l)o(n - 1, ! t I), while (G.10) allows the computation of i(M-l)o(n - 1, l + 1) from 

iMo(n,l) .  All is required is a relation linking ((M-l)o(n,! + 1) to iMo(n,e + 1). 

This relation can be obtained by first computing a relation similar to  (G.5) with the 

help of (E.2) and (E.23) in 

w',+'(n) = #il(n)&J1(n). (G.21) 



This gives 

Noting that (using (E.24)) 

equation (G.22) can be written as 

(G.24) 

Now, use (E.2) and (G.24) in (G. l )  for e + 1 

Using (G. l )  in (G.25) gives 

This expression can be written in a different form by noting that 



Define 
n 

b ( t + l )  
V M - ~  ( n )  = C ~ ~ - ' b ~ - ~ ( i ) r * ( i  + l + 1). 

i=l  

Then (G.26) is written in the form 

This last expression is the third necessary error recursion. Collecting (G.9), (G.20) and 

(G.29), the recursions for computing i M o ( n , l  + 1) from i M o ( n ,  l )  are 

Using the above expressions in reverse order gives the backward computation of the error; 

G.2 Recursions for the LS Weight Vector 

The recursions for the upward weight vector computation were all derived in the pre- 

vious section on error recursions. The recursions for downward computations are obtained 

by applying the upward recursions in reverse order. 

G.2.1 Recursions for the upward weight vector computation 

The first recursion on the weight vector is obtained from (G.5) and can be written as 

where L+k(n)]M-l is defined as the (M - 1)-vector corresponding to the last M - 1 

components of w b ( n ) .  



The second and third recursions are given by (G.12) and (G.24) respectively. The set 

of recursions is therefore 

G.2.2 Recursions for t h e  downward weight vector computation 

Use the upward recursions in reverse order. The corresponding set of recursions is 

where [+$(n)l M-l is defined as the (M - 1)-vector corresponding to the first components 
f (!-I) of *$(n), 6 L M ( n )  is the M ' ~  component of the same vector and VM-l (n) is defined as 

G .3 Auxiliary recursions 

Some auxiliary recursions necessary in the error and vector recursions are developed in 

this section. 

o Recursion for g ~ ,  1 (n) 

Use (E.19) and (E.l) in (E.16) 



Now use (E.1) and (E.23) in (E.16) 

1.e. 

g ~ - l ( n >  = r g ~ ( n ) l  M-1 + S M M ( ~ ) ~ M - I ( ~  - 1)- (G.41) 

Equations (G.39) and (G.41) are the recursions for g M _ l ( n ) .  

o Recursions for FM - ( n )  and BM - (n )  

The recursions for FMel (n )  and B M d l  ( n )  are [7] 

and 

where qM-1(n)  and +M-i (n )  are respectively the forward a priori prediction error and the 

backward a priori prediction error defined as 

o Recursions for the forward and backward predictors 

For the forward case, use (E.18) and (E.lO) in (E.20) 



Using (E.16), (E.17) and (E.20) and after some manipulations, the recursion for the forward 

predictor is 

The recursion for the backward error is obtained in a similar way and is 

o Recursions for yM (n) and y ~ - ~ ( n )  

In order to establish recursions for yM(n) and ~ ~ - ~ ( n ) ,  the following identities are 

necessary [7] 

Then, using (E.17) and (G.39) 

Also, 

= Y M - I ( ~ )  +- ~ - l g ~ ~ ( n ) @ h - ~ ( n ) .  

o Recursions for vAf(n) and #(n) 
f From (G.38), urn (n) is defined as 

Then, using (E.14) and (G.55) in (G.54), 



Using ( E . l )  and (E.4), 

H v c ( n )  = pv ie (n  - 1 )  + [ u ( n )  - am(n - l ) u m ( n  - l ) ] r * ( n  + t )  
-1 H - P gm(n  - l)#,C1(n - l ) f m ( n )  

= Pvhe(n - 1 )  + vm(n)r*(n  + 0 
- b-'g:(n - 1)8(,f1(n - 1 )  fm(n) .  

Using the definition of gm(n),  (see equation (E.16)), (G.56) can be written as 

But using (E.14), the second term in brackets is equal to r*(n  + t )  - e&(n - 1, t f 1 )  and 

(G.57) becomes 
f e fe vm (n )  = Pvm ( n  - 1)  + q,(n)eh(n - 1, t + 1). (G.58) 

Similarly, the recursion for v K ( n )  is found to be 

o Recursion for i k ( n )  

A recursion on w&(n)  is obtained by starting from (5.20) and proceeding as in the 

derivation of (G.12). It is 

Now, the a priori estimation error is 

and the a posteriori estimation error is 

Then 

& ( n )  = w L ( n  - I )  t P-lgM(n) 
e b ( n ,  el (G.63) 

T M ( ~ )  ' 

It can be shown that [7] 
Q M  ( n ,  

e M ( % t )  = 7 M ( n )  9 

and therefore 

+&(n) = i&(n - 1 )  + p - l g M ( n ) e L ( n ,  l ) .  

o Recursion for iM, (n ,  L )  

The recursion for the minimum error is [7] 
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