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Abstract 

The purpose of this thesis is to examine techniques of efficiently coding Linear 

Predictive Coding (LPC) coefficients with 20 to 30 bits per 20 ms speech frame. 

Scalar quantization is the first approach evaluated. In particular, experiments 

with LPC quantizers using reflection coefficients and Line Spectral Frequencies 

(LSF's) are presented. Results in this work show that LSF's require significantly 

fewer bits than reflection coefficients for comparable performance. The second ap- 

proach investigated is the use of vector-scalar quantization. In the first stage, vector 

quantization is performed. The second stage consists of a bank of scalar quantizers 

which code the vector errors between the original LPC coefficients and the compo- 

nents of the vector of the quantized coefficients. 

The new approach in this work is to couple the vector and scalar quantization 

stages. Every codebook vector is compared to the original LPC coefficient vector to 

produce error vectors. The components of these error vectors are scalar quantized. 

The resulting vectors from the overall vector-scalar quantization are all compared to 

the input vector and the closest one selected. For practical implementations, methods 

of reducing the computational complexity are examined. The second innovation into 

vector-scalar quantization is the incorporation of a small adaptive codebook to the 

large fixed codebook. Frame-to-frame correlation of the LPC coefficients is exploited 

at no extra cost in bits. Simple methods of limiting the propagation of error inherent 

in this partially differential scheme are suggested. 

The results of this thesis show that the performance of the vector-scalar quant i -  

zation with the use of the two new techniques introduced is better then that of the 

scalar coding techniques currently used in conventional LPC coders. The average 

spectral distortion is significantly reduced as is the number of outliers. 



S ommaire 

L'objectif de ce mdmoire est d'examiner les techniques efficaces de codage les 

coefficients & prddiction linkaires (CPL) qui varient de 20 & 30 bits dans une trame 

de parole de 20 ms. 

On prockde au dibut & l'dvaluation de la mdthode de quantification scalaire. 

Particulikrement, les expdriences obtenues par les quantificateurs CPL qui utilisent 

les coefficients de &flexion et Lignes de Frdquences Spectrales (LSFs) sont prksen- 

t4es. Les rdsultats de ce travail montrent que l'approche LSF ndcessite moins de 

bits que si on utilise la mdthode & coefficient de rdflexion pour une mgme perfor- 

mance. La deuxiGme approche consiste & l'utilisation des mdthodes de quantification 

vectorielle-scalaire. Dans la premikre &ape, la quantification vectorielle a kt6 kalisie. 

La deuxi6me &ape consiste ii l'utilisation des quantificateurs scalaires qui codent les 

vecteurs d'erreur entre les CPL coefficients originaux et les 616ments des vecteurs des 

coefficients quantifiis. 

La nouvelle approche dans ce travail est de combiner les &tapes de quantifica- 

tion vectorielle et scalaire. Chaque vecteur dans le livre de code est cornpar6 au 

vecteur originale. La diffkrence gCnkre les vecteurs d'erreur. Les 616ments de ces vec- 

teurs d'erreur sont des scalaires quantifiks. Les vecteurs rdsultants de la quantification 

vectorielle-scalaire sont compards aux vecteurs d'entrde. Le vecteur qui rdalise le mini - 

mum d'erreur est alors choisi. Lors de l'dlaboration de l'algorithme de rdsolution or1 a 

essay4 de rgduire la complexiti du modile. La deuxikme innovation en quantificatior~ 

vectorielle-scalaire est l'inclusion d'un petit livre de code adaptive dans le l iv re  ( I t ,  

code fixd. D'un intervalle & un autre la correlation des coefficients CPL est csploi- 

tk sans aucun ajoiit de bits. Des mdthodes simples de limitation de la propagatiorl 

d'erreur normalement dans le schgma diffdrentiel sont suggdrdes. 

Les rksultats de ce mkmoire montrent que la performance de quantific-at ~ O I I  

vecotrielle-scalaire avec l'usage des deux nouvelles techniques introduits cb%t I I N - I I .  

leurs que les techniques de codage scalaire frdquemment utlisdes en codeu rs ( ' I '  I .  

conventionnels. La distorsion du spectre moyenne a Ctd nettement rCduite a i n ~  ( 1  

les nombres des erreurs au del& de 2 dB. 
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Chapter 1 Introduction 

In communications, speech coding is the method of transforming speech into a 

form suitable for transmission. The goal is to achieve good quality reconstruction 

of the transmitted voice at the receiver under the imposed constraints of the design 

of the speech coding system. These constraints can vary from system to system 

but typically include bit rate, complexity and robustness to channel errors. Speech 

coding systems can be divided into two categories; waveform coders and source coders. 

Waveform coders code the speech directly and reconstruct it as accurately as possible 

at the receiver on a sample-by-sample basis. Source coders, on the other hand, model 

the speech process and identify the key components of the speech based on this 

model. These parameters are sent to the receiver which uses the same speech model to 

reproduce the speech. Emphasis is placed by source coders on the perceptual quality 

of the synthesized speech rather than on matching the speech waveform directly. 

In this work, a component of a speech coding technique is examined that can be 

used for either waveform coders or source coders. 

A speech model, based on the physiology of the human speech organs, is usecl to 

help represent the speech signal in an economical form. Simplifications are made so 

that a linear model can be derived. The model is based on the output speech beillg 

a linear combination of past speech in addition to an input excitation. For any gi\ c.11 

segment of time, the model can be represented by a fixed number of paramcltc,~.s. 

These terms, called the Linear Predictive Coding (LPC) coeficients, can be dcr i~ ,cd  

for short segments of speech using some well-known techniques. The LPC coeffic-1c.11 t 



can be represented in several domains. The representations are related to each other 

through mathematical transformations. The reason for the interest in the different 

representations is that the particular mathematical as well as perceptual properties 

associated with a particular one can be exploited in speech coding. 

Considerable investigation has been carried out into the use of LPC coefficients for 

the coding of speech because they provide an accurate and economical representation 

of relevant speech parameters. For low bit rate speech coders in particular, using 

LPC coefficients has proven to be a popular technique. A good basic review of the 

subject has been done in an article by Makhoul [3] as well as in a book by Markel 

and Gray [4]. 

The first step of a speech coder using LPC coefficients is to divide the discrete 

input speech into segments of 10 to 30 ms. Each segment consists of between 100 and 

300 data points depending on the sampling rate used to discretize the speech. An 

analysis of this data is performed to produce the LPC coefficients for the frame of 

data points. When calculating the LPC coefficients for a particular frame of speech, 

an overlap of the adjoining frames is used to smooth the transition from the set of 

LPC coefficients in one frame to those in the next. 

After the LPC coefficients have been obtained, the next step is to filter the speech 

input using the inverse filter determined from the LPC coefficients. The coding of the 

LPC coefficients and the residual speech from the inverse filter are two separate speech 

coding tasks. The goal is to have both signals reproduced as faithfully as possible 

at the receiver so that the original speech signal can be reproduced by filtering the 

residual speech with the LPC coefficients. The different nature of the residual signal 

and the LPC coefficients result in very different strategies in coding the two. Methocls 

of coding the LPC coefficients will be considered in this work. The diagram of the 

simulation model for studying the coding of LPC coefficients is shown in Fig. 1.1. 

Since only the coding of LPC coefficients is investigated in this work, the residual 

signal is passed directly to the receiver without any coding and thus without any 

degradation. Therefore, the effects of quantizing the LPC coefficients can be isolat t d  

from the effects of the coding of the residual signal. In a complete coder, considt>ral 
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Fig. 1.1 Quantization of LPC coefficients. 

effort is expended on efficiently representing the residual. The LPC Analysis block 

determines the LPC coefficients and inverse filters the input speech signal to produce 

the residual signal. The Quantizer block codes the LPC coefficients. The quantized 

LPC coefficients are given to the LPC Synthesis block which uses them to filter 

the residual signal and produce the output speech. The effectiveness of the LPC 

coefficient quantizer is evaluated by comparing the quality of the output speech to 

the input speech. Comparisons are made by listening to the speech as well as using 

quantitative measures that compare the accuracy of the spectrum of the output speec tl 

to that of the input speech. There are two basic approaches to quantizing the [.PC' 

coefficients. The first, scalar quantization, quantizes the LPC coefficients individrrall~ 

while the second approach, vector quantization, quantizes the LPC coefficients as a 

vector. 

The first method of quantizing LPC coefficients that should be considered is sca l nr 

quantization. Typically, non-uniform quantizers are used which are based un 111t. 

probability distributions of the coefficients. Factors that affect the scalar quarlt Izntlt  ~ I I  

are the number of coefficients, the representation used for the LPC coefficie1113. nri(l 

the distribution of bits used for the number of quantization levels for each cot4fic-rt.;~r 

The number of coefficients used is referred to as the order of the LPC model. T t w r t  I *  

a trade-off between the accuracy of the LPC model and the number of bits a \  a]  1.t ' I : ( *  
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for the coding the coefficients. As the order approaches infinity, the model should 

match the original speech perfectly. However, this would require an infinite number 

of bits to code the coefficients. What is required for efficient coding is a sufficient 

order to represent all formants in the lower end of the spectrum. In narrowband 

coding with the speech sampled at 8 kHz, an order of ten is typically used. A smaller 

order starts to have a large increase in error while increasing the order does not give 

a significant gain in performance. The error is defined as the difference between the 

speech spectral envelope of the original speech and of the LPC model. A graph of 

the energy of the error from the LPC model normalized by the speech energy versus 

the order is given in Fig. 1.2. As can be seen, the error decreases dramatically as 

the LPC order is increased to eight. Increasing the LPC order to more than eight 

provides only modest decreases in the energy of the error. 

Unvoiced Speech 
-------- Voiced Speech - 

- 
I 

I 

4 - " '-. -. .- 
8 

'8.' 'L- 

2 - ------_ --. - 
% *------__-__-_____ -----_ 

O L  I t I 

0 4 8 12 16 20 

LPC Order 

Fig. 1.2 Graph of the energy of the error from the LPC model 
normalized by the speech energy versus the order of the 
model [I]. 

Through transformations, the LPC coefficients can be represented in several do- 
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mains. Each domain requires different coding strategies. For example, most domains 

require an uneven distribution of bits to the coefficients. Two representations of the 

LP C coefficients that are frequently used for scalar quantization are the reflection 

coefficients and the Line Spectral Frequencies (LSF's). Ghitza and Goldstein [5] have 

proposed a good method of coding reflection coefficients while articles by Kang and 

Fransen [6], Crosmer and Barnwell [7], Soong and Juang [8] as well as Sugamura and 

Farvardin [9] present varied approaches to coding LSF's. 

In vector quantization, the set of LPC coefficients are considered together as a 

vector when coding them. Training data is used to construct a collection of represen- 

tative vectors called a codebook. To code an input LPC vector, the vector is compared 

to the vectors in the codebook. The index of the codebook vector that is the closest 

to the input vector is transmitted to the receiver. The receiver uses the index to 

retrieve the closest vector from its codebook. The advantage of vector quantization is 

that it exploits the correlation that exists between the individual coefficients. Scalar 

cluant ization cannot easily take advantage of this correlation. Two good reviews of 

vector quantization have been done by Gray [lo] and Makhoul, Roucus and Gish [ I l l .  

The disadvantage of vector quantization is the memory required to store the code- 

book and the number of computations used in comparing the input vector to each 

codebook vector. Both memory and number of computations increases as the size 

of the codebook increases. Hence there is a practical limit to the size of the code- 

book. One method to exploit the advantages offered by vector quantization without 

incurring the above mentioned practical problems is to use vector-scalar quan t i x -  

tion. In this approach, a two stage coding scheme is used. First, the input speech 

frame is vector quantized using a small sized codebook. From this vector quantization 

stage an error vector results. In the second stage of quantization, the components of 

the error vector are individually scalar quantized. Examples of speech coders using 

vector-scalar quantization can be found in articles by Ozawa [12] and Phamdo and 

Fasvardin [13]. 

Distortion measures are a method of comparing two sets of speech data ancl 

determining the amount of difference between them. Researchers have taken differtmt 



approaches to try to quantify the perceptual difference between two speech segments. 

The goal of each distortion measurement is to detect differences between the speech 

segments that are perceptually noticeable to the human ear. Most of the measures 

examined in this research are based on the spectral envelope of a short frame of speech. 

These methods make use of the LPC coefficients for easy computation. Further, these 

spectral envelope distortion measures are designed to detect the perceptual differences 

between speech files as discernable by the human ear. The book by Quackenbush, 

Barnwell and Clements [14] provides a good summary of the distortion measures 

developed by different researchers. 

Distortion measures can be used for two different purposes. The first is their 

use in vector quantization. The LPC coefficients basically represent the spectral 

envelope of a small segment of speech. In vector quantization, a large number of 

pre-determined spectral envelopes are stored by using their LP C coefficients. The 

distortion measure is used to decide for each input segment of speech which of the 

stored spectral envelopes is the closest perceptually. The second use of the distortion 

measures is to evaluate the overall performance of speech coders. For instance, the 

performance measure can be constructed by averaging the spectral envelope distortion 

values from each speech frame. The performance of the speech coder can then be 

evaluated and compared to other speech coders. 

1.1 Overview of Thesis 

The goal of this thesis is to study coding techniques of LPC coefficients. The 

second chapter of this thesis examines the mathematics of a linear speech model. 

Several representations of the LPC coefficients resulting from the speech model are 

introduced. These represent ations are predictor, reflection and cepstral coefficien ts 

a.s well as LSF's. In Chapter Three, several distortion measures are studied. Their 

effectiveness in comparing speech coders and in vector quantization are evaluated. 

The basic approaches to quantizing LPC coefficients, scalar and vector quanti- 

zation are investigated. Several methods of coding reflection coefficients and LSF's 

using scalar quantization are examined in Chapter Four. 



In the first part of Chapter Five, the method of vector quantization is examined. 

In the second part of the chapter, vector-scalar quantization is studied. Two new 

techniques in vector-scalar quantization are introduced and evaluated. The first new 

approach is to couple the vector and scalar quantization stages. The input LPC co- 

efficient vector is compared to every codebook vector. From these comparisons, error 

vectors are determined. The components of these error vectors are scalar quantized. 

The resulting vectors from the overall vector-scalar quantization are all compared to 

the input vector to determine the closest one. For practical implementations, methods 

to reduce the computational complexity are suggested. 

The second innovation investigated is the incorporation of a small adaptive code- 

book to the large fixed codebook. The self-training part of the codebook is based on 

the previous quantized input vectors. In one approach the adaptive codebook con- 

sists of a simple buffer of a small number of previously quantized input vectors. In 

another approach, several methods of constructing the prediction of the next input 

vector are made based on the previous quantized input vectors. Both approaches 

exploit the frame-to-frame correlation of the LPC coefficients. In this manner, in- 

creased performance is achieved with the vector-scalar quantization at no extra cost 

in bits. This hybrid between differential and non-differential coding offers a form of 

backward adaptivity (no extra side information) without incurring extra delay. The 

non-differential portion of the codebook can handle abrupt changes in vector val- 

ues resulting from onsets and change in speakers. Simple methods of limiting the 

propagation of errors inherent in this partially differential scheme are suggested. 

Finally, Chapter Six presents conclusions on the coding techniques of LPC coef- 

ficients analysed in the thesis. Areas for further investigation are proposed. 



Chapter 2 Speech Model 

The speech signal has special characteristics which result from its nature of pro- 

duction. Speech is created by airflow starting from the lungs, passing through the 

vocal tract and then exiting through the mouth and nostrils. It is in the vocal tract 

where most of the changes to the airflow occur to produce speech. The vowel tract 

consists of speech articulators. One important feature of the speech production pro- 

cess is that everybody has the same system of producing speech which only differs in 

the smaller details. A second important feature is that the articulators are relatively 

slow varying. Speech coders take advantage of these features by using a simple model 

that corresponds to the basic speech production process. The dynamic model can be 

represented by a small number of slow-varying parameters. The difference between 

the model and an individual's speech need then only be coded. In this chapter. orlc 

speech model will be developed mathematically. 

The most widely used speech model used in source coding is based on the discrctr. 

speech signal s(n) being the output of a system with an input u(n). This model rll;i!. 

be writ ten mathematically as follows [3], 

The model shows that the output speech signal, s(n), is a linear combination of I,n.-t 

speech signals as well as past and present input signals. The name linear prt41c.t l o r 1  

is used to label this equation to show the signal s(n) is predictable from a I I I W . ~ I  

combination of past inputs and outputs. Eq. (2.1) can be transformed t o  1 Iw : 



domain and used to solve for the transform function of the speech model, 

The use of this model for speech coding is called Linear Predictive Coding (LPC). 

For simplicity, most speech coders consider only the poles from the model, simplifying 

Eq. (2 .2)  to 

H ( z )  = 
G 

P (2 .3)  
1 + C a)"-)  

k=l 

The effect of the lost zeroes is reduced as the number of poles used increases. There are 

trade-offs in determining how many poles to use in the speech model. The variables 

a k  are called the predictor coefficients while G is the  gain of the transfer function. 

The usual approach is to inverse filter the speech s ( n )  with the transfer function 

The predictor coefficients, ak, are only one way to represent what are termed the 

LP C coefficients. There are several transformations, both linear and non-linear, of 

the predictor coefficients that will result in different sets of coefficients. 

The output of the filter called the error or residual signal is 

P 
e(n) = s ( n )  + aks(n  - k ) .  

k=l 

Some speech coders transmit only the LP C coefficients, voiced/unvoiced decisions 

and pitch while others transmit both the coefficients and the error signal in a coded 

form. 

2.1 Predictor Coefficients 

The major task in source coding is to obtain the predictor coefficients and the gain 

to minimize the error signal. Several techniques have been developed to determi~~e 



the predictor coefficients; two of which are the classical least-squares method and 

the lattice method [I]. Two possible approaches to the least-squares method, the 

autocorrelation approach and the covariance approach, will be examined here. 

The autocorrelation least-squares method multiplies the speech signal by a time 

window, typically a Hamming window [I], 

The window limits the speech signal to a finite interval, 0 5 n  5 N-1. The energy 

in the residual signal is then 

The least-square method minimizes this energy by differentiating the energy with 

respect to ak, k = 1,2,3, .  . . ; p  and setting the equations to zero. 

The resulting equation will be 

x(n - i )x (n)  = 2 a k  x(n - i )x(n  - k ) ,  i  = 3 ,  . . (2 .9)  
n=-OC) k = l  k=-oo  

The autocorrelat ion function of the time-limited signal x(n) is defined as 

The term R(0) is equal to the energy in x(n). It should be noted that R(i) is an even 

function such that 

R(i) = R(-i). 

Substituting the autocorrelation function into Eq. (2.9) results in 

The predictor coefficients can then be determined. The minimum residual energy is 

then 



1 

Setting the gain, G, to E:ii, will match the energy of the synthesized speech to the 

energy of the original windowed speech [I]. 

In the covariance least-squares method for determining the predictor coefficients, 

the error signal e(n) is windowed rather than the speech signal s(n). The error in the 

residual signal is then 

The error is minimized over a finite interval 0 5 n < N-1 as determined by a 

rectangular window function w(n) to reduce Eq. (2.14) to 

Differentiating the residual energy with respect to ak, k = 1,2,3, . . . , p and setting 

the equations to zero will result in the set of equations given by 

N-1 p N-1 
s(n  - i)s(n) = x ok x s(n - k)s(n - i). (2.16) 

n=O k=1 n=O 

The covariance function of s (n)  is defined by 

N-1 
4(i, k) = x s(n  - lc)s(n - i). 

n=O 

Substituting the covariance function into Eq. (2.16) results in 

The predictor coefficients can once again be solved for and the gain G can be set to 

the square root of the resulting residual energy. 

2.2 Reflection Coefficients 

The reflection coefficients are an alternative representation of the LPC c o ~ f  li - 

cients. The reflection coefficients arise as an intermediate variable when solving f o ~  



the predictor coefficients in the autocorrelation method from Eq. (2 .12 )  using what is 

called the Levinson-Durbin recursive procedure [3 ] ,  [15]. The procedure is as follows: 

for i  = 1 , 2 , 3  ,..., p, 

Eo = N O ) ,  
i -  1 

R ( i )  - u ~ - ~  ( k )  R ( i  - k )  
k=l ki = 

Ei- 1 
9 

a i ( i )  = k i ,  

The reflection coefficients are the ki's while the predictor coefficients are then 

The reflection coefficients can also be derived in this approach even if the predictor 

coefficients were determined using the covariance method. The reflection coefficients 

are used to construct the lattice form of the inverse filter A ( z ) .  The lattice form filter 

corresponds to an acoustical tube model of the vocal tract with the ki coefficients 

representing the reflection coefficients at the boundaries of the impedances in the 

acoustical tube. An important property of the reflection coefficients is that from the 

Levinson-Durbin algorithm their magnitude will always be less than unity [3]. The 

filter A ( z )  is considered stable when all its roots are inside the unit circle, Ikl = 1. 

An unstable filter can cause loud, undesirable sounds to appear in the output speech 

[I]. A stability test of a filter is thus the requirement that 

This is a simple but important test. When quantizing LPC coefficients, inacc11racic.s 

occur which might result in an unstable filter in the receiver. For example, the firlito 

wordlengt h of digit al'computers may result in some reflection coefficients that enrrcrl 

unity. 



If the predictor coefficients are known, the reflection coefficients can be determined 

by the following backward recursion [3] for m = p, p- 1, . . . ,3,2. 

With this backward recursion, predictor coefficients can be checked for stability by 

converting them to reflection coefficients and then using the reflection coefficient 

stability test. 

2.3 Line Spectral Frequencies 

Line Spectral Frequencies (LSF's) are another representation of the LPC coeffi- 

cients. LSF's have shown to be a useful representation for speech coding of the LPC 

coefficients. To determine the LSF's the following polynomials are used; 

Soong and Juang [8] have shown that if A ( z )  is minimum phase (corresponding to a 

stable H(z)), all the roots of P(z )  and Q(z) lie on the unit circle, alternating between 

the two polynomials as w increases. The LSF's correspond to these angular posit ions. 

The value of the LSF's can be converted to Hertz by multiplying by the factor f S / 2 : :  

where fs is the sampling frequency. The roots occur in complex-conjugate pairs a r ~ ( l  

hence there are p LSF's lying between 0 and T .  There are two extraneous roots at 

w = 0 and w = n that lie on the unit circle ( z  = 1, z = -1). Kang and Franscw 

have developed an iterative approach to finding the roots on the unit circle ba-scd 

the all-pass ratio filter 

The phase spectrum of this filter is determined. The LSF's correspond to t tw I r t ,  

quency when the phase response takes on a value which is a multiple of T .  
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A second method of determining 

makes use of the two polynomials; 

'(') and G ( 4  = 1 + z-' 

G(z) = P(z)  and 

the LSF's proposed by Kang and Fransen [2] 

Q ( 4  
H ( 4  = I - 9 p even, 

Q ( 4  
(2.24) 

H(z) = 1 - *-2' p odd. 

These polynomials are of degree 2p and may be expressed in terms of their coefficients 

where 1 = m = ~ / 2  for p even and 1 = (p+1)/2, m = (p-1)/2 for p odd. The 

polynomials G(z) and H(z), 'by removing their linear phase, can be expressed as 

where 
1 

d ( w )  = 2 C gi C O S ( ~  - i), 
i=O 
m 

H'(w) = 2 C hi cos(m - 2 ) .  

i=O 

The LSF's correspond to the local minimum of the power spectra of the polynomials 

G1(w) and H1(w). 

Soong and Juang [8] have developed a procedure to determine the LSF's by ap- 

plying a discrete cosine transformation to the coefficients of G(z) and H ( z ) .  The 

roots, corresponding to the LSF's, are found by searching along the w = [0, n] range 

iteratively for the changing sign in the polynomials G(z) and H(z). 

Another method by Kabal and Ramachandran [16] makes use of Chebyshev poly- 

nomials 

The function x = cosw maps the upper semicircle in the z-plane to the real interval 

[-1,+1]. The polynomials G1(w) and H1(w) can be expanded using the Chebyshw 



polynomials as follows, 
1 

The roots of these Chebyshev expansions will give the LSF's after the inverse 

transformation w = arccosx. The roots are determined iteratively by searching for 

sign changes of the Chebyshev expansions along the interval [-1,+1]. 

2.4 Cepstral Coefficients 

Another representation of the LPC coefficients is the set of cepstral coefficients. 

The cepstral coefficients, ck, are defined from the Taylor series expansion [17], 

Recall that 

So that 

P 
or A(r) = with a0 = 1. 

k=O 

Differentiating Eq. (2.32) with respect to z will give, 

k=O 

Differentiating the right hand side of Eq. (2.30) with respect 

Combining the two sides will result in 

J 

to z will give, 



Multiplying both sides through 

Equating the coefficients of the 
D 

by z gives the polynomial in z-' 

polynomials gives the convolutional form 

j a j  = - x a k ( j  - k ) ~ ~ - ~ ~  j = 1,2,3, .  . . ,OO, (2.37) 
k=O 

which can be re-written as 
P 

Solving for cj  and using that ag = 1, 

where a j  = 0 for j > p and c j  = 0 for j < 1. An infinite number of cepstral coefficients 

results from the predictor coefficients. It has been found that limiting the cepstral 

coefficients to three times the number of predictor coefficients is sufficient to provide 

a good representation of the speech spectrum [17]. 

2.5 LPC Coefficients in Speech Coding 

LPC coefficients are important for many speech coders. The LPC coefficients 

represent the spectral envelope of the speech in a compact form. Hence efficient 

speech coding can by achieved by coding the LPC coefficients and the residual signal. 

The residual signal results from removing, by digital filter, the spectral envelope from 

the speech signal. 

As a result of the different properties associated with each representation of LPC 

coefficients, various quantization strategies have been developed. Chapter Four ex- 

plores scalar quantization techniques for some of the representations of LPC coeFfi- 

cients. In another chapter, vector and vector-scalar quantization of the LPC cocffi- 

cien ts are examined. 

LPC coefficients are also used for spectral distortion measures. Since only a small 

number of LPC coefficients are needed to represent the spectral envelope, compariso~is 

between two spectral envelopes can be made with a minimal number of computations. 

The next chapter studies distortion measures and their importance in speech co(linq. 



Chapter 3 Distortion Measures 

Distortion measures play an important role in speech coding. One use of the dis- 

tortion measures is to evaluate the performance of speech coding systems. The sound 

quality of a given speech coder is a qualitative measure and can best be evaluated by 

the human ear. However, extensive perceptual performance testing of speech coders 

is time consuming while quick comparisons are required in the early stages of design. 

In source coders, where emphasis is placed on the preservation of the perceptually im- 

portant speech-model parameters, distortion measures based on the spectral envelope 

are more meaningful than traditional SNR and segmental SNR measures. 

For LPC coders that use vector quantization for the coding of the LPC coefficients, 

distortion measures play a critical role. The LPC coefficients model the spectral 

envelope of the speech for a short frame of data. For a given LPC vector, the best 

matching spectral envelope is selected from the vector quantization codebook. What 

constitutes the best match is the perceptually similarity of the codebook vector to 

the given vector. Hence quantitative distortion measures are required to evaluate the 

perceptually closeness between two spectral envelopes. 

In this chapter, various spectral distortion measures will be introduced and their 

effectiveness evaluated. The distortion measures are the root-mean-squared (RAIS) 

log spectral distortion measure, Itakura-Saito spectral measure, log-area ratio mea- 

sure, weighted Euclidean cepstral distances and weighted Euclidean LSF distances. 

Comparisons are also made with SNR and segmental SNR measurements. The s l m -  



tra to be compared can be modelled in the z-domain as follows; 

where 

g, g' are the gains, 

The original speech or the reference speech is represented by the spectrum S ( z )  while 

the output of the speech coder is represented by the spectrum S1(z). 

3.1 Spectral Envelope Distortion Measures 

3.1.1 R M S  Log Spec t ra l  Dis tor t ion Measure  

The RMS log spectral distortion measure is defined by the equation 

where 

One efficient method of implementing the RMS log spectral measure is to use 

the cepstral coefficients of the speech spectrum [17]. The cepstral coefficients for 

the spectrum can be calculated directly from the predictor coefficients. Although 

an infinite number of cepstral coefficients result from the predictor coefficients. i t  

has been found that limiting the cepstral coefficients to three times the nurnbcr 

predictor coefficients is sufficient to calculate an accurate distortion measure [ 1 71. 

Once the cepstral coefficients are obtained, the RMS log spectral distortioil r l l cB , i  

sure is simply calculated as follows; 

The multiplicative factor 101 ln(10) changes the measurement value to decibel \.a1 ! ~ t -  
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Another approach to evaluating Eq. (3.3) is to compute the spectral envelopes 

from the sets of predictor coefficients using the Fourier transform. The RLS measure 

can be calculated by subtracting the two spectra in the decibel domain. This method 

is sometimes referred as the average spectral distortion (SD) [9]. It is often used in 

the literature to compare speech coders. Distortion values less than 1 dB are said to 

be undetectable to the human ear. 

3.1.2 Itakura-Saito Distortion Measure 

The Itakura-Saito measure generally corresponds better to the perceptual quality 

of speech than does the RMS log spectral measure [18]. Hence, its use to evaluate 

the performance of speech coders is valuable. The Itakura-Saito maximum likelihood 

spectral distance is defined as 

where V(8) is defined in Eq. (3.4) [17]. 

The residual energy S results from passing the original signal through the filter 

A'(z)  while the residual energy cr is obtained by passing the original signal through 

the filter A(z) .  Using, 

gives 

For equal gains the Itakura-Saito measure in decibels is, 

To calculate the residual energies S and a, the predictor coefficients of each spec- 

trum are required. From the predictor coefficients of the spectrum s ( ~ ) ,  the reflection 

and correlation coefficients can be determined. From the predictor coefficients of the 



spectrum S1(z), the error and autocorrelation coefficients can be determined. With 

these four sets of coefficients from the two spectra, the following formulation can be 

used to solve for the Itakura-Saito distortion measure [17], 

where 
k ( i )  is a reflection coefficient of S(z), 

rx (i) is a correlation coefficient of S(z), 

r,(i) is an autocorrelation coefficient of S1(z). 

An alternate to evaluating Eq. (3.6) is an introduction of a weighting term; 

The goal of the weighting term is to improve the relationship between the Itakura- 

Saito measurement and the perceptual discrimination of the human ear. Two sugges- 

tions for the Itakura-Saito weighting are given references [19, 201. These weighting 

schemes have not been investigated in this work. 

3.1.3 Log-Area Ratio Measure 

The log-area ratio measure has been used by some researchers in the evalua- 

tion of vector quantizers. The definition is given below and its performance will be 

investigated in the next section; 

3.1.4 Weighted Euclidean Cepstral Distance 

As shown earlier, the RLS distortion makes use of the Euclidean cepstral distance, 

Ncep 

DCEP = C (ci - c : ) ~ .  



The introduction of a weighting term in the Euclidean 

investigated by several researchers; 

The first weighting scheme to be examined is referred to as 

cepstral distance has been 

(3.14) 

quefrency weighted ceps tral 

distance [21] or root-power-sum (RPS) distance measure 1221. The equation is as 

follows; 

Whereas the Euclidean cepstral distance measure corresponds to the distance between 

the two log spectra represented by the cepstral coefficient vectors [17], the above 

weighted cepstral distance measure corresponds to the distance between the two log 

The motivation for this weighting scheme is to place emphasis on the formant peaks 

of the spectral envelopes. 

The second weighting scheme used with the Euclidean cepstral distance involves 

the variance of the cepstral coefficients [23], 

The variances of the coefficients are calculated from a set of training vectors. 

A third weighting scheme uses bandpass liftering with the following liftering win- 

dow which has had success in speech recognition experiments [24], 

The number of cepstral coefficients that result from the predictor coefficients is 

infinite and hence must be limited. In the weighting schemes DCEPRPS and DC E P v .  

it is suggested by the authors to limit the number of cepstral coefficients to the order 

of the LP analysis [22, 231 while for the DCEPL weighting schemes the limit is on(, 

and half times the original order [24]. 



Although the three weighting schemes are computed quite differently, their results 

are very similar. On examining the weighting values for an LP analysis of order ten, 

it is seen that weight values are comparable for the schemes DCEPRPS and DCEPV 

(Fig. 3.1). The next section will investigate the performance of all three schemes. 

Cepstral Coefficient Index 

Fig. 3.1 Coefficient weighting values for three cepstral distance 
schemes. 

3.1.5 Weighted Euclidean LSF Distance 

Due to the relationship between LSF's and the spectral envelope, two weighting 

considerations arise for the weighted Euclidean LSF distance measure; 

Fig. 3.2 shows two spectral envelopes for a 20 ms frame of speech. Superimposed o n  

to these graphs are the positions of the LSF's for those frames of data. 
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Frequency (Hz) 

Frequency (Hz) 

Fig. 3.2 Spectral envelopes of two 20 ms frame of speech with 
the positions of the LSF's superimposed. 



The first important characteristic of the LSF's is that they are spread out in the 

frequency range between 0 and 4 kHz (for speech sampled at 8 kHz). The sensitivity 

of the human ear to speech sounds decreases as the frequency of the sound increases 

above a value of 2 kHz. Hence the LSF's can be weighted such that for high frequencies 

a lower weight is given. 

The second important characteristic of the LSF's is that near the peaks in the 

spectral envelope, the LSF's are closer together. The peaks correspond to formant 

frequencies in speech and hence are considerably more perceptually important to 

human speech intelligibility than the valleys of the spectral envelope. Advantage can 

be taken of this physical characteristic of the human ear by weighing LSF's near the 

formant frequencies more than the LSF's in the spectral valleys. 

Three weighting schemes for LSF's will be considered which taken into account 

the two above mentioned characteristics of the LSF's. The three weighting schemes 

are labelled DLSF1, DLSF2 and DLSF3. The weighting factor is broken into two 

separate weights representing the frequency sensitivity weight and the envelope peak 

weight; 

For the first term of the weighting factor, wfsk, the weighting schemes model the 

hearing sensitivity to frequency differences curve as shown in Fig. 3.3. 

The curve for wfsl is taken from reference [2] while wfs2 is a simple straight line 

approximation to the hearing curve. Both weighting schemes wfsl and wfs2 were 

found to insufficiently weight the higher frequencies and hence the three piece line. 
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Fig. 3.3 Curve of human hearing sensitivity to discriminating 
frequency differences based on the 'just noticeable 
difference' of a single tone [2]. The curves for three 
weighting schemes are superimposed on the figure. 

wfs3, was created. The equations for the three weights are; 

f 1  for l i  < 1000 HZ, 

wfsl = -0.5 j = ( i i  - 1000) + 1 for li 2 1000 HZ, 

for I ;  < 1000 Hz, 

3 
wfsg = 0.95 - - { 10000 

(li - 1000) for 1000 < li < 2500 Hz, 

2.667 [ 0.5 - m ( l i  - 2500) for li 2 2500 HZ. 

For the second term of the weighting factor, wepk, there are two approaches 

to determining if LSF's fall near formant frequencies and hence require increased 

weighting. The first approach in the scheme DLSFZ uses the group delay function 

(D) of the ratio filter [2]. LSF's near formants have larger group delays than LSF's 

- 25 - 



in spectral valleys. The function to calculate the weighting function wepl is; 

1 
Di for Di < 1.375 ms, 

wepl = 
for Di 2 1.375 ms. 

The value Dm, is the largest group delay assigned to the LSF's. The second approach 

to determining if LSF's fall near formants is to examine the distance between a LSF 

and its two neighbouring LSF's. The closer together LSF's are together, the more 

likely they are to fall near a formant (see Fig. 3.2). 

The two weighting functions wep2 and wepj model the relationship between the 

LSF's and formants by the following equations; 

The value of d; is the distance between the li and its closest neighbour (Ei-l or l i+ l ) .  

3.2 Comparison of Distortion Measures 

The most important question that arises from examining the many distortion 

measures in the previous section is which measure is the most useful. The two main 

purposes of the distortion measures in this work is their use in evaluating the perfor- 

mance of speech coders and their use in selecting vectors from a codebook in vector 

quantization. In vector quantization, the codebook consists of a set of LPC vectors. 

These LPC vectors represent spectral envelopes. The distortion measure is used to 

select which spectral envelope in the codebook best perceptually matches the spect ral 

envelope to be coded. Thus there is considerable importance of the distortion mca- 

sure to correspond to the perceptual error between two spectral envelopes as hcnril 

by the human ear. 



3.2.1 Distortion Measures in Evaluating the Performance of Speech 
Coders 

The use of the distortion measures used for studying the performance of speech 

coders is first examined. All the distortion measures discussed in the previous section 

as well as SNR and segmental SNR calculations were evaluated by taking three sets 

of six versions of a speech file. The six versions differ by the amount of error that 

has been introduced to the spectral envelope of the original speech file. The spectral 

envelope was distorted by altering the values of the LPC parameters. These files 

were ranked by the distortion measures by comparing them to the original speech 

file and evaluating their error. The speech files were also ranked by human listeners. 

The rankings by the distortion measures and the human listeners are compared to 

determine the performance of the distortion measures. The six distorted sentences 

varied considerably in their degradation (from SNR of 16 dB to -9 dB) so as there 

was no disagreement amongst the human listeners as to their order of preference of 

the sentences. 

A summary of the distortion measures to be tested are given in Table 3.1. The 

results of the distortion measures are shown in Table 3.2. The number errors cor- 

responds to the minimum number of switches required to properly order the speech 

files as defined by the human listeners. 

Generally, the distortion measures performed quite poorly in ranking the distorted 

speech files in order of human preference. This is somewhat surprising considering the 

wide range of distortion introduced to the files. One argument is that the distortion 

measures are not designed to handle such a wide range of distortion levels. However. 

they were not able to distinguish differences amongst files that have high distortiori 

levels nor files that have low distortion levels. 

It is seen that SNR and segmental SNR only performs well for the case of low 

corruption in the spectral envelopes with a few errors in the high corruption case. .An 

explanation is that in the low corruption case, the reproduced speech waveform at 

the receiver is very similar to the original waveform and hence the SNR methods arc 

appropriate in measuring the small differences between the waveforms. For the I ~ i q l ~  



I Distortion Measure ( Abbreviation ( 
RMS Log Spectral 

Average Spectral Distortion 

Itakura-Saito 

RLS 

SD 
IS 

Log- Area Ratio LPG-KGH 

Euclidean Cepstral 

I Segmental signal-to-~oise Ratio 1 SEGSNR I 

DLAR 
DCEP 

Weighted LSF Scheme 2 

Weighted LSF Scheme 3 

Signal-to-Noise Ratio 

Table 3.1 Summary of the distortion measures that are tested. 

DLSF2 

DLSF3 

SNR 

corruption case, the SNR methods cannot distinguish between large waveform errors 

that cause considerable perceptual error and the large waveform errors that have low 

perceptual impact on the quality of the speech. The spectral envelope distortion 

measures on the other hand have the potential to evaluate the perceptual impact of 

large errors in the spectral envelope. 

An important point when evaluating speech coders is that not only is the averagc 

distortion measure critical but so is the maximum errors that occur. One large error 

in one frame of data can ruin the sound quality of an entire sentence. Hence t h e  

amount of large errors that occur must be monitored. Thus the use of the distort i o n  

measures averages is not the ideal method of evaluating the performance of sl)c.i.c-11 

coders as shown by their results in the previous table. As mentioned earlier. I ( 1 1 3  

is often used as the boundary for transparent quality speech when using the avcragc3 

spectral distortion. In addition, the number of frames of speech that have distort i o l ~  

between 2 dB and 4 dB and those with values greater than 4 dB are used i l l  tht* 

evaluation of the performance of speech coders. 



Measure Speech Set #1 Speech Set #2 Speech Set #3 

Human 1 , 2 , 3 , 4 , 5 , 6  1 , 2 , 3 , 4 , 5 , 6  1 , 2 , 3 , 4 , 5 , 6  
RLS 3 , 1 , 2 , 6 , 4 , 5  3 , 4 , 1 , 5 , 2 , 6  1 , 4 , 5 , 2 , 3 , 6  

IS 3 , 1 , 2 , 6 , 5 , 4  2 , 4 , 1 , 5 , 3 , 6  1 , 4 , 5 , 2 , 3 , 6  
DLAR 1 , 2 , 3 , 4 , 5 , 6  2 , 3 , 1 , 4 , 5 , 6  1 , 3 , 4 , 2 , 5 , 6  
DCEP 3 , 1 , 2 , 6 , 4 , 5  3 , 4 , 1 , 5 , 2 , 6  1 , 4 , 5 , 2 , 3 , 6  

DCEPRPS 2 , 1 , 3 , 6 , 4 , 5  2 , 4 , 1 , 5 , 3 , 6  2 , 5 , 4 , 1 , 3 , 6  
DCEPv 2 , 1 , 3 , 6 , 4 , 5  2 , 4 , 1 , 5 , 3 , 6  2 , 5 , 4 , 1 , 3 , 6  
DCEPL 3 , 1 , 2 , 6 , 4 , 5  3 , 4 , 1 , 5 , 2 , 6  2 , 4 , 5 , 1 , 3 , 6  
DLSFl 2 , 1 , 3 , 6 , 4 , 5  3 , 4 , 1 , 2 , 5 , 6  1 , 4 , 3 , 2 , 5 , 6  
DLSF2 2 , 1 , 3 , 6 , 4 , 5  3 , 5 , 1 , 2 , 4 , 6  2 , 5 , 3 , 1 , 4 , 6  
DLSF3 1 , 2 , 3 , 5 , 4 , 6  2 , 3 , 1 , 4 , 5 , 6  2 , 3 , 4 , 1 , 5 , 6  

SNR 1 , 3 , 4 , 2 , 5 , 6  1 , 2 , 3 , 4 , 5 , 6  1 , 2 , 3 , 4 , 5 , 6  
SEGSNR 1 , 2 , 5 , 3 , 4 , 6  1 , 2 , 3 , 4 , 6 , 5  1 , 2 , 3 , 4 , 5 , 6  

Table 3.2 Results of distortion measures for three sets of six 
distorted speech files as compared to the evaluation of 
the files by human listeners. The six files of each set 
are listed in order of preference of the human 
listeners. The ranking of each distortion measure are 
shown. The # errors corresponds to the number of 
positioning errors. 

3.2.2 Distortion Measures in Selecting Codebook Vectors 

Ultimately, the performance of speech coders can be evaluated by extensive hu- 

man perceptual evaluations. In the operation of selecting spectral envelopes from a 

codebook a mathematical method is needed. In particular, a relatively computation- 

ally efficient method is required since a large number of spectral envelope comparisons 

must be made for each frame of speech. This restriction rules out the distortion mea- 

sures SNR, segmental SNR and the average spectral distortion since they required a 

factor of computations greater than the other distortion measures based on the LPC 

coefficients. 

Fig. 3.4 shows a diagram of the use of the distortion method in selecting spectral 



envelopes (represented by LPC vectors) from the codebook. The input speech is 

divided into frames of around 20 ms in length. For these frames, the spectral envelope 

is calculated. The distortion measure is used to select the perceptually closest spectral 

envelope from the codebook. 

Residual Signal 

Envelope 

I t 

1 Envelope 

Frame of 
C 

Codebook n 
Fig. 3.4 Diagram of vector quantization (VQ) of LPC vectors. 

The VQ stage chooses the closest spectral envelope 
from the codebook to the original vector by using a 
distortion measure. 

Speech analysis ~ ~ ~ ~ t r ~ l  A Spectral 
VQ 

- Synthesis Speech 
- LPC 

To evaluate the effectiveness of the distortion measures in codebook vector selec- 

tion, the set-up as shown in Fig. 3.4 is used with the only variable being the distortion 

measure used. The codebook of spectral envelopes always remains the same. The 

output speech is evaluated by human listeners. 

The variation in performance of the quantizers using different distortion measures 

basically fell into three rough categories based on human perceptual tests; good, 

satisfactory and poor. Table 3.3 shows the classification of the measures for codebook 

selection. Segmental SNR and SNR values averaged over three speech files are given 

for the performance of the speech coders using the different measures in codebook 

selection. 

From the results, it can be seen that there is a 2.5 dB difference between the best 

distortion measure and the worst, a relatively large amount. There is not much of a 

difference moving from one measure to the next within the same category. The last 

Original 
C 

LPC Quantized Output 



I Quantizer Category I SEGSNR I SNR 

VQ-DLSF3 

VQ-DLSF1 

VQ-RLS 

VQ-DCEP 

VQ-DCEPL 

VQ-DLAR 
VQ-DLSF2 

VQ-IS 

VQ-DCEPV 

VQ-DCEPRPs 

Satisfactory 1 3.8 1 2.6 

3.2 1.4 
Poor 1 3.0 1 0.2 

Table 3.3 Results of distortion measures in selecting spectral 
envelopes from codebooks for vector quantization. 
Quantizers are the same except for the distortion 
measure used for codebook selection. 

two distortion measures, DLSF3 and DLSF1, are based on weighted LSF differences. 

The satisfactory measures are RLS, DCEP and DCEPL while the remaining five 

distortion measures performed poorly in the vector quantizer. 

Another consideration as to which distortion measure to use in codebook vector se- 

lection is the domain of the codebook LPC vectors. Although LPC coefficients can be 

transformed from one representation to another, it is more computationally efficient 

if the distortion measure uses the same coefficient representation as the codebook. 

The DLSFl and DLSF3 lend themselves to LSF codebooks while the RLS, DCEP 

and DCEPL can be used with cepstral codebooks. 



Chapter 4 
Scalar Quantization of 

LPC Coefficients 

Most LPC coefficient coders use scalar quantization which codes each LPC co- 

efficient independently from the other coefficients. The representation of the LP C 

coefficients used plays an important role in the quantization process. Some repre- 

sentations lend themselves better to quantization than others by being less sensitive 

to quantization errors that affect the constructing of the LPC filter. It has been 

shown that it is better to quantize reflection coefficients than predictor coefficients 

[I]. Another LPC coefficient representation that has good quantization properties are 

the Line Spectral Frequencies (LSF's) [6]. They have shown to be closely related to 

the formant frequencies in speech. Reflection coefficients have been the most popu- 

lar representation of the LPC coefficients for scalar quantization in past years while 

considerable recent work has focused on the use of LSF's. In this chapter, scaiar 

quantization of reflection coefficients and LSF's are studied. 

4.1 Scalar Quantization of Reflection Coefficients 

Many scalar quantizers using reflection coefficients have been developed. The 

majority of these use the non-linear log-area transformation; 

This direct transformation of the reflection coefficients expands the region ticas 

lkil = 1 which has a high spectral sensitivity [I]. The approach is to construct n 



uniform quantizer in the log-area domain and then convert the quantization levels 

back to the reflection domain. The result is a non-uniform quantizer in the reflection 

domain with fine quantization around the (kil = I region. Also, it has been shown 

that the first reflection coefficients are perceptually more important than the last 

coefficients. Hence, more quantization levels are given to the first coefficients. 

To guarantee a stable synthesis filter, the reflection coefficients should all have a 

magnitude less than unity [I]. Errors in quantization can lead to coefficients with a 

magnitude greater than unity. A simple technique to ensure a stable synthesis filter 

is to reduce any of the reflection coefficients that are greater than unity to a value 

less than unity. 

Three quantizers using reflection coefficients were tested; LPC-K43, LPC-K40 

and LPC-K24. They each quantized the reflection coefficients separately using pre- 

determined tables. 

The important characteristics of the quantizers are summarized in Table 4.1. 

Table 4.1 Scalar reflection coefficient quantizers. 

Quantizer 

LP C-K43 

LPC-K40 

The first two quantizers are non-uniform in spacing in the reflection tiolna i 11. 

using uniform spacing in the log-area ratio domain. The number of quantizi~~g I ( ~ \ . v I ~  

of each coefficient are chosen to achieve good perceptual results. The distrib~l t im ( , I  

bits for the LPC-K43 and the LPC-K40 quantizers are based on histograms of r I l n l 1 J .  

frames of speech data and are shown in Table 4.2 and Table 4.3. The quantization 

levels for LPC-K24 were developed by Ghitza and Goldstein [5] using a distort iw 

measure based on just-noticeable-differences in the spectral envelope and arc l i ~ ~ ~ . ~ l  

in the appendix of their article. 
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No. Coef. 

8 

10 

No. Bits 

43 

40 

Frame Size 

150 

150 

Overlap 

25 

25 



Performance of the quantizers are shown in Table 4.4, Table 4.5 and Table 4.6. 

The average spectral distortion measure is used for evaluation as well as the SNR and 

segmental SNR (SEGSNR) measures. The average spectral distortion, maximum 

spectral distortion as well as the percentage of outliers are tabulated. The outliers 

are the errors of frames that are greater than 2 dB in one case and greater than 4 dB 

in the second case. For test data, the following five sentences which were high quality 

recorded with a sampling rate of 8kHz are used; 

CANM8 - The red canoe is gone. (Male) 

HAPF8 - Happy hour is over. (Female) 

PROM8 - We watched the new program. (Male) 

TOMF8 - Tom's birthday is in June. (Female) 

PBlM8 - Aimez-vous des petits pois? (Male) 

The first quantizers, LPC-K43 and LPC-K40, are similar in bit rate but LPC- 

1x40 outperforms LPC-K43 significantly. This shows the effects of the number of 

coefficients and the assignment of bits on the performance. LPC-K24, with 24 bits 

per frame, performed well for the small number of bits it uses. The large errors that 

resulted for a few frames in the sentence PROM8 for LPC-K24 resulted from the 

quantizers unable to match the first and third reflection coefficients adequately in the 

word 'watched'. 

I Pole I No. levels I Minimum Level I Maximum Level I 

Table 4.2 LPC-K43 quantizer bit distribution, uniform in the 
log-area domain between the limits listed. 



I Pole I NO. levels I Minimum Level I Maximum Level I 

Table 4.3 LPC-K40 quantizer bit distribution, uniform in the 
log-area domain between the limits listed. 

Table 4.4 Performance of Reflection Quantizer LPC-K43. 

LPC-K43 
SD - AVE 

SD - MAX 

% > 2 dB 

% > > d B  

SNR 

SEGSNR 

PROM8 

0.67 

2.75 

CANM8 

0.56 

2.28 

2.80 

0 

8.68 

16.73 

LPC-K40 
SD - AVE 

Table 4.5 Performance of Reflection Quantizer LPC-K40. 

HAPF8 

0.74 

2.50 

SD - MAX 

% > > d B  

% > 4 d B  

SNR 
SEGSNR 

Overall 

0.78 

2.77 

TOMF8 

0.73 

2.66 

4.63 

0 

4.48 

17.32 

CANM8 

0.53 

PBlM8'  

1.20 

2.77 

1.41 

0 

0 

13.15 

14.98 

4.63 

0 

7.94 

15.45 

HAPF8 

0.56 

1.07 

0 

0 

10.68 

13.90 

2.78 

0 

5.95 

15.67 

PROM8 

0.57 

1.48 

0 

0 

13.86 

14.95 

23.75 

0 

6.62 

8.17 

TOMF8 

0.61 

7.72 

0 

6.73 

14.67 

2.35 

0.93 

0 

12.09 

13.42 

PBlM8 

0.83 

Overall 

0.62 

2.04 

1.25 

0 

15.51 

10.39 

2.35 

0.44 

0 

13.06 

13.53 



PBlM8 I Overall 
-- 

SD - AVE 1.35 1.45 1.85 1.68 

SD - MAX 2.62 2.84 7.51 7.10 

% > 2 dB 10.19 14.81 21.30 25.93 

% > 4 d B  0 0 6.48 2.78 

SNR 2.33 3.05 2.81 4.19 

SEGSNR 5.93 6.05 4.83 5.39 

Table 4.6 Performance of Reflection Quantizer LPC-K24. 

4.2 Scalar Quantization of Line Spectral Frequencies 

LSF's were first introduced by Itakura [25] in 1975. Their use as LPC coefficient 

coding parameters is useful due to the direct relationship between the LSF's and the 

formant frequencies. For example, higher order line-spectra need only be quantized 

coarsely since they have low perceptual impact on the quality of speech. 

The first method of quantizing the LSF's is to quantize them directly on a one- 

to-one basis. The first quantizer to examine is the one given by the U.S. government 

in the draft of Federal Standard 1016 [26]. This 34 bit quantizer has the quantization 

levels shown in Table 4.7. Although not perceptually perfect the results are fairl\.- 

good as shown in Table 4.8. 

Three quantizers were constructed using 21 bits; LSF-GOV21, LSF-DIS21 and 

LSF-MIX21. The first, LSF-GOV21, is a direct reduction of levels from the LS F- 

GOV34 quantizer with a few minor changes. In the second quantizer, LSF-DIS2 1 .  

the quantization levels are based on the statistical distribution of LSF's taken from 

the analysis of 20 sentences spoken by 2 male speakers and 2 female speakers (see 

Appendix A). These speakers are different from the test speakers. 



LSF Bits 

4 

Quantizer output levels (Hz) 
100, 170, 225, 250, 280, 340, 420, 500 

210, 235, 265, 295, 325, 360, 400, 440, 

480, 520, 560, 610, 670, 740, 810, 880 

420, 460, 500, 540, 585, 640, 705, 775, 

850, 950, 1050, 1150, 1250, 1350, 1450, 1550 

Table 4.7 Quantization output levels for LSF-GOV34. 

LSF-GOV34 I CANM8 I HAPF8 I PROM8 1 TOMF8 I PBlM8 I Overall 

Table 4.8 Performance of LSF Quantizer LSF-GOV34. 

SD - AVE 
SD - MAX 
% > 2  dB 

% > 4 d B  

SNR 
SEGSNR 

It was found that the quantizer LSF-DIS21 performs well on the training sen- 

tences and poorly on the test sentences. The reason is that not all the sets of spectral 

envelope parameters of the test sentences are represented in the training sentences. 

Thus some values of LSF's are quantized poorly. For example, in the LSF-GOi'L' I 

0.79 

1.71 

0 

0 

11.27 

12.17 

0.90 

1.72 

0 

0 

6.53 

10.92 

0.91 

2.59 

0 

0 

10.71 

11.81 

0.85 

1.70 

0 

0 

4.78 

9.81 

0.77 

1.13 

0 

0 

12.06 

9.91 

0.85 

2.59 

0 

0 

9.07 

10.92 



quantizer, the fifth LSF has a quantization range of 1100 to 2250 Hz while the LSF- 

DIS21 quantizer has a more restricted range of 1230 to 1860 Hz. Thus when the test 

sentences have the fifth LSF with values near 2400 Hz, the LSF-DIS21 quantizer has 

significant errors. On the otherhand, as a result of the smaller range, the LSF-DIS21 

quantizer has finer quantization for the average LSF. Table 4.9 shows an example 

of a set of LSF7s that has values outside the range of the quantizers. The resulting 

LPC envelope for the quantized coefficients is shown in Fig. 4.1. Table 4.10 shows an 

example of a set of LSF7s with values within the range of both quantizers. Fig. 4.2 

shows the resulting LPC spectral envelopes. In the first case, the LSF-GOV21 quan- 

tizer with its wider range better represents the LSF7s while for the LSF's within the 

range of both the quantizers, the LSF-DIS21 quantizer performs better. In designing 

the quantization levels, there is a trade-off between having small quantization levels 

for the average LSF and having a large quantization range. 

The LSF-MIX21 quantizer was a mixing of the LSF-GOV21 and LSF-DIS21 quan- 

tizers, taking the wider range of quantization from the former and the quantization 

levels for the middle range of LSF's from the latter. The quantization levels for these 

three coders are shown in Tables 4.11, 4.12 and 4.13. The results of these quantizes5 

are shown in Tables 4.14, 4.15 and 4.16. The quantizers LSF-GOV21 and LSF- h l I S 2  1 

have comparable performances while LSF-DIS21 performed the best. These results 

indicate that better overall performance can be achieved by designing the quantlnsl 

based on histograms of test data. Using histograms, the quantizer has small qrlarl- 

tization levels for the average LSF values and an overall narrow quantization range 

Hence, unlike the other two quantizers, the LSF-DIS21 quantizer had some out l i c m  

greater than 4 dB. 



I LSF # I Original LSF I LSF-GOV21 1 LSF-DIS21 1 

Table 4.9 LSF's for the sentence PROM8, frame 12. 

Frequency (Hz) 

Fig. 4.1 LPC spectral envelopes for PROM8. 



LSF # 1 Original LSF ( LSF-GOV21 ( LSF-DIS21 

Table 4.10 LSF's for the sentence PROM8, frame 13. 

Fig. 4.2 LPC spectral envelopes for PROM8. 
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Table 4.11 Quantization output levels for LSF-GOV21. 

LSF 

1 

2 

3 . 

4 

Table 4.12 Quantization output levels for LSF-DIS21. 

Bits 

2 

3 

3 

3 

LSF 

1 

2 

Quantizer output levels (Hz) 

100, 225, 340, 500 

210, 265, 360, 440, 520, 610, 740, 880 
420, 500, 585, 755, 900, 1150, 1350, 1550 

620, 720, 880, 1080, 1370, 1570, 1770, 1970 

Bits 

2 

3 

Quantizer output levels (Hz) 

74, 164, 243, 338 

229, 275, 307, 344, 386, 433, 504, 637 



Table 4.13 Quantization output levels for LSF-MIX21. 

LSF 

1 

Bits 

2 

LSF-GOV21 

SD - AVE 

SD - MAX 

% > 2 d B  

Table 4.14 Performance of LSF Quantizer LSF-GOV21. 

Quantizer output levels (Hz) 

75, 175, 270, 375 

SD - AVE 1.51 1.53 2.03 

SD - MAX 1 3.01 / 2.61 1 7.73 

CANM8 

2.18 

3.65 

59.26 

L 

I SEGSNR 1 7.72 / 6.69 1 7.47 

SNR 

SEGSNR 

2.35 

4.19 

TOMF8 1 PBlM8 I Overall 

HAPF8 

2.20 

3.13 

68.52 

1.92 

3.42 . 

Table 4.15 Performance of LSF Quantizer LSF-DIS21. 

0.86 

3.20 

PROM8 

2.11 

3.99 

50.00 

TOMF8 

2.18 

3.05 

69.44 

2.41 

3.96 

3.28 

3.47 

3.62 

5.53 

PBlM8 

2.23 

3.08 

68.75 

Overall 

2.18 

3.99 

63.19 



SD - AVE 

SNR 2.07 1.87 

SEGSNR 1 4.75 1 4.46 

SD - MAX 

% > 2 d B  

PROM8 I TOMF8 1 PBlM8 I Overall 

Table 4.16 Performance of LSF Quantizer LSF-MIX21. 

3.03 

38.89 

4.2.1 Correcting LSF Cross-Overs 

3.12 

34.26 

To guarantee a stable synthesis filter, the LSF's values must be in ascending 

numerical order. This well-orderness is described by the equation 

Due to quantization, the LSF's occasionally end up crossing over and then the well- 

orderness is not preserved. Thus, after unquantizing the LSF's, cross-overs must be 

checked for and corrected. The better the quantization, the fewer cross-overs should 

occur. 

The problem of LSF's crossing over in the LSF-GOV34 quantizer is minimal as 

there are enough quantization levels to prevent cross-overs from happening more than  

a few times throughout the five test sentences. However, for the quantizers using 21 

bits and hence fewer quantization levels, cross-overs are a significant problem. Three 

approaches to correcting the cross-overs are examined. 



One approach to correcting the LSF's cross-overs is to switch the positioning of 

the LSF's so there is no longer a cross-over as shown in Fig. 4.3. For example, the 

two original LSF's li and li+1 are well-ordered but their quantized versions 1; and 

li+l are not well-ordered such that 1; > The positioning of 1; and can be 

switched so as the quantized LSF's are then well-ordered. 

(a) original 
LSF's 

li li+l 

(b) quantization 
levels 
for li 

(c) quantization JL 1 

levels 
for li+i * f 

Ij+l (k) ':+l(k+') 

(d) quantized 
LSF's s t  

1:+ 1 
J 

1; 

Fig. 4.3 Correcting LSF's by switching position. 



A second approach to correcting the LSF's cross-overs is to change the quanti- 

zation level selected for the LSF's. For example, consider one LSF that is found to 

fall between two quantization levels represented by the index j and quantized as li(j) 

while the next LSF is represented by index k and quantized as l;+l(k) as shown in 

Fig. 4.4. Note that each LSF coefficient has its own quantizer comprised of different 

levels. If it is found that ((j) > li+l(k) then the index for 1, could be reduced by 

one to j-1 and then represented by a lower LSF ((j-1) so that l;(j-1) < lj+l(k). 

Alternatively, the LSF la+l could be represented by the next higher quantization level 

so that l:(j) < li+l(k+l). 

(a) original 
LSF's 

f 

(b) quantization 
levels 
for li af ((j-1) li Li l i ( j+l )  

(c) quantization 
levels 
for li+l 

(k) C+l @+'I 
(d) quantized 

LSF7s t t = 

1: 
f c+ 1 

(e) lowering first 
quantized 
LSF 

j 
( f )  increasing second 1 

quantized 
LSF 

1; 
f :+ 1 

Fig. 4.4 Correcting LSF's by changing quantization index. 



A third method of correcting cross-overs is illustrated in Fig. 4.5. In this approach, 

the intersection of the boundaries of the quantization level chosen for each LSF is 

determined. Use is made of the fact that the second LSF could not have been less 

than the lower boundary of the first LSF nor could have the first LSF have been higher 

than the upper boundary of the second LSF due to the well-orderness principle. The 

quantized LSF's, 1; and are selected to be in the intersection of the boundaries 

in the correct order. The other two methods to not take advantage of the constraints 

on where the original LSF's must lie. 

(a) original 
LSF's t 1 - 

li li+l 
f 

(b) quantization 
levels 
for li Itltlti / i ( j - 1 )  l; ( j  ) ( ( j t l )  f 

(c) quantization 
levels 
for li+l 

'a1 ( k )  l : + l ( k + l )  

(e) intersection of 
quantization 
levels - f 

(d) quantization 
levels choosen 

( f )  corrected 
LSF's 

, 

Fig. 4.5 Correcting LSF's by spacing them in boundary of 
quantization levels. 

for LSF's - J 



A small illustrative example showing the potential areas of cross-overs between 

the first and second LSF is shown in Fig. 4.6. If the vector of the original LSF's 

falls in a given quantization region, the centroid of the region (indicated by a dot) 

is transmitted. Due to the well-orderness of the original LSF's, no region completely 

below the line ll = l2 will be chosen. Therefore, only the quantization regions labelled 

1, 2, 3 and 4 can be selected and cause a cross-over problem in the quantized LSF's. 

For these cases the LSF's are known to lie in the area of the quantization region 

above the line El = 12. This region is smaller than the original quantization box. The 

optimal values of the quantized LSF's are determined from the centroid of the new 

region (indicated by an x). 

Fig. 4.6 Quantization regions for first two LSF's. 

Online computations of the centroid of the new quantization region can undesir- 

ably increase the computational load of the quantizer. One solution is to compute 

and store the centroids of all the possible cross-over regions. However, sub-optimal 

schemes as previously developed can perform well, particularly the third method 

which places the centroid a fixed distance below the upper boundary and the same 

distance to the right of the left boundary but above the line lI = 12. This distance 



can be optimized for the case of a triangular quantization region (such as region 1) 

which corresponds to the distance being 113 of the length of the upper and left side 

of the triangle. The switching position technique of correcting the cross-overs reflects 

the centroid of the original quantization region about the line ll = 1 2 .  The changing 

the quantization index method selects the centroid of either the upper neighbouring 

region or the left neighbouring region. 

Further difficulties can arise if there is the rare occurrence of three consecutive 

LSF cross-overs. The optimal solution for this case does not warrant the extra com- 

putations. Methods developed for correcting two adjacent LSF cross-overs can still 

perform adequately. 

The use of the three methods of correcting cross-overs was implemented in the 

LS F-GOV21, LSF-DIS21 and LSF-MIX21 quantizers. The overall results of these 

quantizers for the five test sentences are shown in Tables 4.17, 4.18 and 4.19. Included 

along with the distortion measures are the number of cross-overs that occurred in 

the five test sentences and the average error in the quantized crossed over LSF's 

as compared to the original LSF's. The method of finding the intersection of the 

quantization levels consistently had the lowest quantization error of the crossed over 

LSF's followed by the methods switching position and changing the quantization 

level. Perceptually however, the difference between the three methods was slight to 

non-detectable. 

The advantage of the spacing of the LSF's in between the boundaries technique is 

that it can be assured that the quantized LSF's will at least lie between the boundaries 

which contain the original LSF's. The switching of the LSF's method could result 

in the situation where the quantized LSF's do not both lie within the boundaries of 

the original LS F's positions. Hence the better performance in the quant izers tested 

of the spacing of the LSF's in the boundary method over the switching the LSF's 

method. The reason the performance was not significantly better was that in most 

cases the switched LSF's did lie within the boundaries and therefore had the same 

possibility of matching the original LSF's as did the spaced LSF's. The changing the 

index method performed poorly because the quantized LSF's are always outside the 



quantization region where the original LSF's lie. 

A special quantizer LSF-BD21 was designed to exploit the fact that the original 

LSF's lie within the boundaries of the quantization levels. The quantization levels are 

chosen to minimize the spacing between the boundaries so as the crossed over LSF's 

could be better pin-pointed. The table of the quantization levels is shown in Table 

4.20. The results of this new quantizer did not show any improvement over the other 

21 bit LSF quantizers. The spacings between the boundaries are not significantly 

smaller to have any effect. 

-- -- 

I SD - AVE 1 2.18 1 2.17 - I 2.74 

Switching Intersection 1 LSF-GOVZ1 1 I 
Cross-overs of Boundaries 

I SD - MAX 1 3.99 1 3.99 I 7.58 

Changing Quan- 

tization Levels 

SNR 2.41 2.28 1 SEGSNR 1 3.96 / 2'58 4.09 1 3.65 

Table 4.17 LSF-GOV21 using different methods of correcting 
LSF's cross-overs. 

# cross-overs 

% error 

SD - AVE 1.68 1.70 

SD - MAX 1 7.73 1 7.73 

208 

0.443 

Switching Intersection 1 LSF-DISZ1 ( 1 
Cross-overs of Boundaries 

I SNR 1 4.30 1 4.90 1 4.54 I 

Changing Quan- 

tization Levels 

208 

0.438 

I % error 1 0.545 1 0.366 1 1.397 I 

216 

1.883 

SEGSNR 

# cross-overs 

Table 4.18 LSF-DIS21 using different methods of correcting 
LSF's cross-overs. 

6.64 

41 

6.76 

4 1 

6.61 

41 



Switching Intersection 
ISF-MIX11 1 1 

Cross-overs of Boundaries 

SD-TVE 1 y. 7:;;- 
SD - MAX 
% > > d B  40.96 39.72 
% > 4 d B  

SNR 1 .O1 1.74 
SEGSNR ( 4.25 / 4.41 

Changing Quan- 

tization Levels 

Table 4.19 LSF-MIX21 using different methods of correcting 
LSF's cross-overs. 

# cross-overs 

% error 

Table 4.20 Quantization output levels for LSF-BD21. 

69 

0.567 

LSF 

1 

2 

3 

4 

5 

6 

70 

0.389 

Bits 

2 

3 

3 

3 

2 

2 

72 

1.734 

Quantizer output levels (Hz) 

75, 175, 270, 375 

200, 280, 350, 415, 510, 600, 850, 1000 

425, 520, 610, 700, 825, 970, 1175, 1600 

625, 720,840, 985, 1150, 1300, 1500, 1800 

1100, 1399, 1750, 2200 

1550, 1700, 1970, 2455 



I SD - MAX 1 3.73 1 3.73 1 3.73 

LSF-BD21 

SD - AVE 

I SNR 1 0.48 1 0.50 1 0.51 

(i, a )  
1.94 

I % error 1 0.452 1 0.427 1 0.460 

SEGSNR 

# cross-overs 

Table 4.21 LSF-BD21 with different spacing for quantized 
LSF's. 

(0.2207,0.7333) 

1.94 

4.2.2 Center/Offset Technique of Coding LSF's 

(Q ,;) 
1.94 

4.19 

87 

Two different approaches are taken to code the LSF coefficients. Both methods 

consider taking the coefficients as belonging to pairs. The first quantizers, based on 

Kang and Fransen design [2], calculate the center frequency of each pair and the  

4.24 

8 7 

difference or offset between the pair members. 

4.28 

87 

Center = 4 + h+l 
2 '  

i =  1,3 ,5  ,..., p -1 ,  

Offset = Ii+l - 4 
2 '  

z = 1,3,5 ,..., p-1.  

Three quantizers based on the centerloffset principle are examined, The first . 

LSF-C021K, uses Kang and Fransen's table for the quantization frequencies (wc  

Table 4.22). The second, LSF-C021, uses a design based on the statistical distribution 

of the center and offset frequencies [27] (see Table 4.23). Improvement of this wcori~l 

quantizer was attempted in the third quantizer, LSF-CO30, by increasing the  n u r ~ ~ t w r  

of bits by about fifty percent (see Table 4.24). Each quantizer uses a frame size of 1 i O  

samples and an overlap of 25 samples. Results of the centerloffset LSF quarit~zc~rs 

are shown in Tables 4.25, 4.26 and 4.27 using the average spectral distortion SI) 

measurement as well as SNR and segmental SNR evaluations. 



Pair No. I Frequency I Quantizer output levels 

I 
2 

3 

4 

Table 4.22 Quantization output levels for LSF-C021K. 

Center 

- 

5 

I Pair No. I Frequency I Quantizer output levels 

400, 420, 450, 480, 500, 530, 570, 600, 

640, 670, 710, 760, 800, 850, 900, 950 

Offset 

Center 

Offset 

Center 

Offset 

Center 

Offset 

300, 350,400, 420 

900, 950, 1010, 1070, 1130, 1200, 1270, 1350 

300, 350, 400, 420 

1430, 1510, 1600, 1700, 1800, 1900, 2020, 2140 

300, 350, 400, 420 

2260, 2400, 2540, 2690 

300, 350 
- - 

Center 

Offset 

3020, 3200, 3390, 3590 

300 

I 

Table 4.23 Quantization output levels for LSF-C021. 

2 

3 

4 

5 

Center 
100, 113, 127, 143, 161, 182, 205, 231, 

260, 293, 330, 372, 419, 473, 532, 600 

Offset 

Center 

Offset 

Center 

Offset 

Center 

Offset 

Center 

Offset 

35, 57, 92, 150 

500, 579, 671, 777, 901, 1043, 1209, 1400 

. 120, 163, 221, 300 

1100, 1221, 1358, 1509, 1677, 1863, 2070, 2300 

70, 107, 164, 250 

1900, 2162, 2461, 2800 

100, 170 

2700, 2944, 3210, 3500 

100 



I Pair No. I Frequency I Quantizer output levels 

159, 168, 178, 189, 200, 212, 225, 238, 1 Center 1 
252, 267, 283, 300, 318, 337, 357, 378, 

1 Center 1 500, 536, 574, 614, 658, 705, 755, 808, 
866, 927, 993, 1064, 1139, 1220, 1307, 1400 

Offset 

I Offset 1 50, 67, 91, 122, 164, 221, 297, 400 I 

400, 424, 449, 476, 504, 534, 567, 600 

20, 28, 39, 54, 75, 104, 144, 200 

1100, 1155, 1214, 1275, 1339, 1407, 1477, 1552, 1 Center 1 
3 1630, 1712, 1799, 1889, 1984, 2085, 2190, 2300 

1 Offset 1 70, 107, 164, 250 1 
1 Center 1 1900, 1950, 2001, 2053, 2107, 2163, 2219, 2277, 

4 2337, 2398, 2461, 2525, 2591, 2659, 2729, 2800 

I Offset 1 50, 117, 183, 250 1 

Table 4.24 Quantization output levels for LSF-CO3O. 

5 
Center 

Offset 

LSF-C021K 

SD - AVE 

SNR -0.63 -14.33 -18.33 -11.45 -5.05 -9.96 

SEGSNR 1 1 . 7 5  1 -3.14 1 -3.02 1 -2.92 1 -1.62 1 -2.49 I 

2700, 2802, 2908, 3018, 3132, 3250, 3373, 3500 

100, 200 

SD - MAX 

% > > d B  

Table 4.25 Performance of LSF Quantizer LSF-C021K. 

CANM8 

5.16 

7.59 

100.0 

HAPF8 

4.97 

7.59 

100.0 

PROM8 

5.50 

7.73 

100.0 

TOMF8 

5.19 

7.30 

100.0 

PBlM8 

5.04 

Overall 

5.17 

8.12 

100.0 

8.12 

100.0 



I SD - AVE 

% > > d B  

SEGSNR 

CANM8 I HAPF8 I PROM8 I TOMF8 I PBlM8 I Overall 1 

Table 4.26 Performance of LSF Quantizer LSF-C021. 

LSF-C030 I CANM8 I HAPF8 I PROM8 I TOMF8 I PBlM8 I Overall 1 

Table 4.27 Performance of LSF Quantizer LSF-CO3O. 

SD - AVE 

SD - MAX 

% > > d B  

% > 4 d B  

SNR 
SEGSNR 

Results of the statistically determined LSF-C021 quantizer are better than those 

of the LSF-C021K quantizer. The problem with the LSF-C021K quantizer is its 

lowest possible offset frequency is 300 Hz. Hence the minimum distance between LSF's 

in a pair is 600 Hz. This constraint was the prime reason for the poor performance 

of LSF-C021K, particularly with quantizing the lower LSF's. 

0.92 

2.08 

0.93 

0 

4.98 

11.96 

The LSF's crossing over are also a problem for the center/offset quantizers. The 

three methods of correcting cross-overs - switching positions, changing indices arid 

0.94 

2.07 

0.93 

0 

2.30 

9.64 

spacing between boundaries - are applicable to the center/offset quantizers. The 

switching positions technique remains exactly the same. The approach to changing 

1.18 

4.79 

6.48 

0 

5.61 

11.22 

the indices is to follow the steps below and to stop at any point as soon as the LSF's 

are no longer crossed over. 

1.02 

3.14 

3.70 

0 

1.82 

9.22 

a) If offset index of upper LSF can no longer be decreased, increase center i n ( l c s  
of upper LSF and put offset index of upper LSF to its maximum value. 

0.88 

1.77 

0 

0 

12.64 

14.35 

0.99 

4.79 

2.41 

0 

5.47 

11.28 



b) Decrease offset index of upper LSF. 

c) If offset index of lower LSF can no longer be decreased, decrease center index 
of lower LSF and put offset index of lower LSF to its maximum value. 

d) Decrease offset index of lower LSF. 

e) Go to a). 

In the intersection of boundaries technique of correcting cross-overs, the bound- 

aries of the quantization level chosen for each LSF are determined from the center 

and offset frequencies. The quantized LSF's are positioned in the intersection of these 

boundaries. In the centerloffset technique, the only cross-overs that can occur is be- 

tween an even frequency LSF and the next higher odd frequency LSF. Results for 

the different methods of correcting LSF cross-overs for the quantizers LSF-C021 and 

LSF-CO3O are shown in Tables 4.28 and 4.29. 

Results show that intersection of boundaries method provided the smallest error in 

the quantized LSF's followed by the switching cross-overs method and the changing 

quantization levels method. Only a small number of cross-overs did occur though 

and hence final conclusions can not be made about the performance of the different 

techniques. 

Switching Intersection / LSF-CO21 I 1 
Cross-overs of Boundaries 

I SD - MAX 1 4.80 1 4.80 / 4.80 I 

Changing Quan- 

tization Levels 
I I I 

SD - AVE I 1.76 

% > 4 d B  

SNR 

SEGSNR 

Table 4.28 LSF-C021 using different methods of correcting 
LSF's cross-overs. 

1.76 

# cross-overs 

% error 

1.76 

0.74 

4.85 

7.52 

16 

0.661 

0.74 

5.17 

7.60 

0.74 

5.02 

7.54 

16 

0.587 

16 

0.851 



SD - AYE / / SD - MAX 4.79 

Switching Intersection 1 LSF-COIO 1 1 
Cross-overs of Boundaries 

SNR 5.28 

SEGSNR 1 11.29 1 11.34 5'85 ( 11.28 5.47 I 

Changing Quan- 

tization Levels 

cross-overs 11 1 0.710 1 0.454 l1 1 1.98 

Table 4.29 LSF-CO3O using different methods of correcting 
LSF7s cross-overs. 

4.2.3 Even/Odd Technique of Coding LSF's 

The second quantizers, based on Crosmer and Barnwell design [7], quantize the 

even frequencies by their relative positioning to the neighboring odd frequency LSF's. 

The odd frequencies are quantized with differential pulse code modulation (DPCl I ) .  

The equations for the LSF coefficients are 

Ii - li-l 
Even = , - 7 i = 2,4,6 ,..., p, 

4 + 1 -  li-1 ( 4 . 4 )  
o d d  = li - i;, i = 173 ,5 , . . . , p -  1, 

where ii is a quantized LSF coefficient and ii is a quantized LSF coefficient from ttlc 

previous frame. 

Two quantizers are based on the evenlodd principle; LSF-E021 and LS F- t-:O:{O. 

The first uses 21 bits while the second uses 30 bits. The quantization levels for t h c v  

quantizers are shown in Tables 4.30 and Table 4.31. Results of the quantizers arc' 

shown in Table 4.32 and Table 4.33 using average spectral distortion (SD ) nvba..;urc> 

with the average and maximum values calculated as well as SNR and segmental 55 It 

evaluations. 



The ten extra bits in LSF-E030 resulted in further improvement of the LSF- 

E021 quantizer. The LSF-E021 quantizer performed better than the LSF-C021 

quantizer while comparable performances were achieved by the LSF-EO3O and LSF- 

C030 quantizers. The quantizers using the evenlodd principle take advantage of 

frame-to-frame correlation by quantizing odd frequencies using DPCM. 

I Pair No. I Frequency I Quantizer output levels 

Even(%) 
Odd (A) 

Even (%) 

Odd (A)  1 -210, -30, 30, 210 I 

0.1,27,54,80 

-198, -100, -40, -10, lo ,  40, 100, 198 

0.1, 27, 54, 80 

Odd (A) 
Even(%) 

Odd (A) 
Even (%) 

Even (%) 1 25 

-200, -100, -40, -10, lo,  40, 100, 200 

0.1,27,54,80 

-205, -30, 30, 205 

30, 60 

Table 4.30 Quantization output levels for LSF-E021. 



Pair No. Frequency [ Quantizer output levels 

Even (%) 1 0.1, 1, 2, 5, 10, 15, 20, 25, 30, 35, 

40, 45, 50, 60, 80, 98 

Even (%) I 0.1, 5, 10, 20, 40, 60, 80, 98 

Even(%) 

Odd (A) 

Even (%) 

Table 4.31 Quantization output levels for LSF-E030. 

0.1,27,54,80 

-249, -101, -44, -9, 22, 58, 101, 188 

50, 117, 183, 250 

Odd (A) 
Even (%I  

-126, -25, 30, 131 

25 

1 SEGSNR 1 8.36 1 7.10 1 8.64 1 6.44 1 6.18 1 7.34 1 

LSF-E021 
SD - AVE 

SD - MAX 

% > 2  dB 

% > > d B  

SNR 

Table 4.32 Performance of LSF Quantizer LSF-E021. 

- 58 - 

CANM8 

1.31 

4.42 

9.26 

0.93 

5.78 

HAPF8 

1.31 

2.59 

9.26 

0 

2.97 

PROM8 

1.36 

3.10 

9.26 

0 

-0.50 

PBlM8 

1.38 

3.07 

6.25 

0 

7.46 

TOMF8 

1.38 

4.26 

13.89 

0.93 

2.57 

Overall 

1.35 

4.42 

9.58 

0.37 

3.66 



Table 4.33 Performance of LSF Quantizer LSF-EO3O. 

4.3 Comparison of Scalar Quantization Techniques 

Several methods of scalar quantization of LPC coefficients have been developed 

in this chapter. In the first section, scalar quantization of reflection coefficients was 

examined. Reflection coefficients have been a popular representation of the LPC co- 

efficients for scalar quantization in speech coders. However, recent attention has been 

focused on the scalar quantization of LSF's. LSF's have shown to be closely related 

to the formant frequencies in speech and hence have good quantization properties. 

Two techniques for scalar quantizing LSF's were studied. 

In comparison to the reflection coefficient quantizers, the LSF quantizers offer 

significantly better results. For example, the 21 bit LSF quantizers using the cen- 

terloffset and evenlodd techniques performed better than the 24 bit reflection co- 

efficient quantizer. Further, the 30 bit LSF quantizers had only marginally poorer 

performances than the 40 and 43 bit reflection coefficient quantizers. 

TOMF8 

1.06 

2.25 

4.63 

0 

9.82 

13.27 

LSF-E030 
SD - AVE 
SD - MAX 

% > 2 d B  

% > > d B  

SNR 

SEGSNR - 

HAPF8 

1.12 

2.45 

6.48 

0 

8.41 

12.80 

CANM8 

1.11 

3.29 

2.78 

0 

6.54 

12.87 

PROM8 

1.12 

2.54 

5.56 

0 

10.71 

13.60 

PBlM8 

1.16 

2.00 

1.25 

0 

12.14 

17.05 

Overall 

1.11 

3.29 

4.14 

0 

9.52 

13.92 



Chapter 5 
Vector-Scalar Quantization 

of LPC Coefficients 

Vector quantization considers the set of LPC coefficients of one frame of speech 

input in its entirety. The goal of vector quantization is to take into account interpa- 

rameter correlation and hence reduce the number of bits required to send the set of 

LPC coefficients. The basic idea is to compare as a vector the LPC coefficients from a 

frame of speech input to pre-determined coefficient vectors stored in a codebook. The 

index of the closest vector is transmitted. For example, if a LPC coefficient vector is 

found to be closest to vector 64 in the codebook, the index 64 is transmitted to the 

receiver. The receiver then uses vector 64 in its copy of the codebook for the LPC 

synthesis of speech. 

Vector-scalar quantization is a two stage coding scheme. In the first stage, vector 

quantization is performed. An error vector is determined by subtracting the codebook 

vector from the original LPC coefficient vector. The goal of vector-scalar quantization 

is to achieve the performance theoretically possible with vector quantization wi thout  

incurring the associated heavy computational load and large memory requirements. 

In the first section, the method of basic vector quantization is briefly reviewed. 

Results are obtained for vector quantizers which use codebooks of 512 vectors. In the 

next part of the chapter, vector-scalar quantization is examined. Improvements of the 

vector-scalar quantization approach are introduced and their performance evalualtd.  

- 60 - 



5.1 Vector Quantization 

Three issues that effect the accuracy of vector quantization are the size of the 

codebook, composition of the codebook and the method of determining the distance 

between vectors. The larger the codebook, the better chance of a given vector being 

represented. The size of the codebook is determined by the number of bits allotted 

for transmission of the LPC coefficients. The method for developing the composition 

of the codebook used in this work is the popular Linde Buzo Gray (LBG) algorithm 

[%I. This algorithm takes a large number of vectors (at least several times larger than 

the size of the codebook to be constructed) and obtains from them a set of vectors 

that best represents the data vectors. This set comprises the codebook. The steps of 

the algorithm are listed below; 

a) Centroid of data is taken. 
b) Centroid(s) are split in two. 

c) The data is clustered to the closest new centroid by the 

difference measure; 

in the domain of the coefficients. 

d) The new centroid of the clustered data is determined. 

e) See if distortion for these centroids is low enough, if 

not cluster data with new centroids by going to step c). 

f )  Go to step b) until the desired size of codebook is reached. 

The same LPC coefficients in different representations will result in different vec- 

tor distances from the measurement formula (x - y)2 and hence a different composi- 

tion of the codebook. As shall be seen, the performance of the codebooks is affected 

by the choice of LPC coefficient domain to construct the codebook. 

The third issue mentioned that effects the vector quantization is the d i s t a ~ r w  

measurement between vectors used for selecting the vectors from the codebook w  tit^^ 

quantizing. In the LBG algorithm described above, the Euclidean vector distance- w,xs 

used. Other possibilities include the Itakura-Saito distortion measure which gerwrnll>, 

corresponds better to the perceptional quality of speech [18]. Further, w c i g h t ~ r ~ q  

schemes can be used to key on specific coefficients that have increased ptwc-pt 1 1 ~ 1  



importance. The weighting schemes depend on which representation of the LPC 

coefficients are used. 

5.1.1 Unstable Vectors in Codebooks 

During the training of the vector quantization codebooks, LPC coefficient vectors 

could result that would produce an unstable filter. One reason why unstable vectors 

can result from a set of stable vectors is due to the method of splitting of the cen- 

troids in the LBG algorithm. The splitting of the centroids was performed using the 

following equation; 

The value of E is typically around 0.005. If the centroid c represents the reflection 

coefficients, a stable filter would require that all the coefficients have magnitude less 

than one. With the perturbation of the E value, a reflection coefficient could eventually 

have a magnitude greater than unity after several centroid splittings. In the LSF 

representation, for a stable filter it is required that the coefficients are well ordered 

in the sense that li < li+l. After several splittings, a LSF centroid could lose this 

well-orderness due to the ith coefficient continually increasing and the coefficient i+ 1 

continually decreasing. Unstable vectors must be removed from the codebook or 

corrected to ensure that a set stable filter coefficients will be sent to the receiver. 

In some representations of the LPC coefficients, such as the predictor represen- 

tation, the centroid of a set of stable vectors can lead directly to an unstable vector. 

The centroid of a set of stable reflection or a set of LSF vectors will always lead to a 

stable vector though. 



5.1.2 Vector Quantization with Nine Bit Codebooks 

The performance of vector quantization of LPC coefficients is studied in this sec- 

tion. Since vector quantization using 20 to 30 bits is difficult to implement, quantizers 

using 9 bits will be examined. These quantizers will later be used as the basis for 

vector-scalar quantizers using 20 to 30 bits. With 512 vectors in the codebook, the 

vector quantizers use an exhaustive codebook search method. A Hamming window 

is used on the 8 kHz sampled input speech to produce frames of 150 samples. A 25 

sample overlap into each of the adjoining frames is used. It should be noted that the 

codebooks were trained using only English sentences. 

The performance of the VQ codebooks were compared using the average spectral 

distortion (SD) measure, SNR and segmental SNR (SEGSNR). The average value of 

the spectral distortion measure is given in addition to its maximum value and per- 

centage of occurrence of values over 2 dB and 4 dB. Codebooks in six LPC coefficient 

domains were tested. The characteristics of the quantizers are shown in Table 5.1. 

The results are shown from Table 5.2 to Table 5.7. 

The two French sentences, PBlF8 and PBlM8, were used to test the flexibil- 

ity and robustness of the quantizers. The French sentences show how the vector 

cluantizers are restricted by the scope of their training sentences while the individual 

coefficient quantizers are more flexible. The general trend for the quantizers to per- 

form better on the English sentence CATF8 than on the English sentence PROMS is 

not a coincidence. The training data had the same speaker as the one speaking the 

CATF8 sentence and not the speaker uttering the PROM8 sentence. 

The codebooks VQ-ANG9, VQ-P9 and VQ-Kg did not perform very well. The 

codebook VQ-X9 was quite good for the English sentences but was very poor on the 

French sentences. The two quantizers VQ-L9 and VQ-C9 performed well. 

The distortion errors of the vector quantizers for the sentence CATM8 are shown 

graphically for the average spectral distortion measure in Fig. 5.1. 
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Fig. 5.1 Graphs of spectral distortion (SD) measure for the 
sentence CATM8. 



I Quantizer 1 No. Bits I Frame Size I Overlap I LP C Coefficient 

VQ-ANG9 

VQ-L9 

VQ-X9 

I VQ-Kg 1 9 1 150 1 25 1 Reflection I 

VQ-C9 

VQ-P9 

- - -- - - -- - 

Table 5.1 Characteristics of vector quantizers. 
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9 
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9 

9 

150 
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150 

VQ-ANG9 

SD - AVE 
SD - MAX 

% > 2 d B  

% 'o 4 dB 
SNR 

SEGSNR 

Table 5.3 Performance of vector quantizer VQ-L9. 

150 
150 

25 

25 

25 

Table 5.2 Performance of vector quantizer VQ-ANG9. 

CATF8 

2.73 
6.22 

69.75 

18.49 

4.30 

6.03 

Overall 

1.87 
4.22 

39.19 
0.44 

0.93 

3.85 

VQ-L9 
SD - AVE 
SD - MAX 

% > 2 dB 

% > 4 dB 

SNR 
SEGSNR 

Autocorrelation, no gain 

Line Spectral Frequency 

Roots of Chebyshev 

25 

25 

polynomial expansion 

Cepstral 

Predictor 

CATM8 

2.78 
6.44 

66.17 

20.30 

3.82 

6.28 

CATF8 

1.45 

2.82 

9.24 

0.0 

2.98 
4.91 

PROM8 

3.46 
6.80 

84.26 

33.33 

2.20 

4.74 

CATM8 

1.57 

2.77 

24.81 

0.0 

1.64 

4.75 

PBlF8  

3.83 
6.45 

97.75 
43.82 

3.05 
- 

5.77 

PROM8 

2.01 

4.03 

53.70 

0.93 

1.11 

3.91 

PBlM8 

3.75 
6.52 

96.25 
32.50 

4.00 

5.79 

PBlF8  

2.00 

3.68 

49.44 

0.0 

-3.21 

2.62 

Overall 

3.31 

6.80 

82.84 
29.69 

3.47 

5.72 

PBlM8 

2.32 
4.22 

58.75 

1.25 

2.13 

3.06 



I SD - MAX 

CATF8 1 CATM8 1 PROM8 I PBlF8  I PBlM8 I Overall 

Table 5.4 Performance of vector quantizer VQ-X9. 

I SEGSNR 1 4.82 1 5.45 1 3.35 1 3.64 1 3.30 1 4.11 

VQ-C9 
S D - A V E  

SD - MAX 

% > 2 dB 
% > 4 dB 

SNR 

Table 5.5 Performance of vector quantizer VQ-C9. 

SD - AVE 

SD - MAX 

CATF8 

1.47 

3.67 

14.29 

0.0 

3.91 

Overall 

Table 5.6 Performance of vector quantizer VQ-P9. 

CATM8 

1.53 
2.84 

19.55 

0.0 

3.56 

PROM8 

1.93 

4.03 

43.52 

0.93 

1.62 

P B l F 8  

2.02 

3.60 

53.92 

0.0 

1.10 

PBlM8 

2.20 

6.33 

58.75 

0.0 

3.31 

Overall 

1.83 

6.33 

38.01 

0.19 

2.72 



SNR 1 -0.19 1 -0.84 1 -1.93 1 -2.85 ( 1.04 1 -0.95 1 

VQ-Kg 
SD - AVE 
SD - MAX 

% 'o 2 dB 

SEGSNR 1 3.49 1 3.72 1 2.91 1 2.56 1 1.30 1 2.80 1 

CATM8 

1.89 

CATF8 

1.82 

Table 5.7 Performance of vector quantizer VQ-Kg. 

3.87 

35.29 

Although a set of LPC coefficients can be represented in any of the representations 

used above in the VQ quantizers, the quantizers did not perform the same despite 

having the same training data for the codebooks, method of constructing the codebook 

and the method of searching the codebook. The reason for the differing performances 

is due to the method of determining which vector is considered closest in distance to 

the vector to be quantized. The Euclidean distance (x - y)2 has different meaning 

for the different representations of the LPC coefficients. By examining the distortion 

measure graph for the quantizer VQ-Kg as an example, it is seen that it performs 

poorly throughout with some very large error spikes. In particular, in frames 69 to 

70, the VQ-Kg goes from having a large error in one frame to a small one in the next 

frame followed by a large error in the next frame after that. The question is if there 

exist vectors in the codebook that would have caused less error than those chosen. 

After changing the Euclidean distance in the quantizer to the LSF distortion 

measure, DLSF3, yet still using the same codebook, better vectors were chosen for 

the frames. In fact, the overall performance of the VQ-Kg quantizer improved to the 

same level as the LSF and cepstral VQ quantizers. Fig. 5.2 shows the new distortion 

measure errors for the quantizer VQ-Kg using the DLSF3 distortion measure. The 

error spikes are now generally smoothed out. Fig. 5.3 and Fig. 5.4 show the spec- 

tral envelopes of the original LPC coefficients, VQ-Kg quantized coefficients using 

the Euclidean distance measure and VQ-Kg quantized coefficients using the DLSFn 

PROM8 

2.47 

4.38 

38.35 

P B l F 8  

2.44 

4.99 

66.67 

PBlM8 

3.07 

Overall 

2.34 

4.86 

68.54 

7.08 

81.25 

7.08 

58.02 



distortion measure for frames 71 to 74. As can be seen, the use of the DLSF3 distor- 

tion measure makes the quantizer select a vector from the codebook to more closely 

match the spectral envelope than when the quantizer used the Euclidean distance in 

the reflection domain. 

From the results of the quantizer VQ-L9 and VQ-C9, we conclude that using the 

Euclidean distance in the LSF and cepstral domain result in good perceptual matches 

between the original vector and the codebook vector. The matches are good because 

the LSF and cepstral coefficients have a more direct relationship to the spectral 

envelope than do other representations of the LPC coefficients such as the reflection 

coefficients. The same reasoning applies to why better performance is achievable in 

scalar quantizing LSF coefficients rather than reflection coefficients. The failure of the 

Euclidean distance in some representations of the LPC coefficients for vector selection 

underscores the importance of using an appropriate distortion measure. 

Time (frames) 

Fig. 5.2 Graph of spectral distortion measure errors for VQ-Kg 
using the DLSF3 distance measure for codebook 
selection for the sentence CATMS. 
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Fig. 5.3 Comparative LPC spectral envelopes for CATM8, 
frames 71 and 72. 
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Fig. 5.4 Comparative LPC spectral envelopes for CATM8, 
frames 73 and 74. 



5.1.3 Evaluation of Vector Quantization 

A major problem encountered with vector quantization is the excessive memory 

size required for a coder using 20 to 30 bits per frame of speech. Further, there is a 

heavy computational load associated with searching large size codebooks. Despite its 

implementational drawbacks, vector quantization is a very good technique for speech 

coding. It exploits the correlation that exists between the individual LPC coefficients. 

The previous section shows that with only 9 bits per 20 ms speech frame, vector 

quantization gives good results. In the next section, the method of a combination 

of vector and scalar quantization is examined. In this vector-scalar coding approach, 

most of the benefits of vector quantization can be achieved without incurring a large 

computational load or excessive memory requirements. 

5.2 Vector- S calar Quantization 

In this section, the vector quantization (VQ) technique as developed in the previ- 

ous section will be combined with scalar quantization (SQ). The vector-scalar quanti- 

zation (VQ-SQ) technique takes advantage of the interparameter correlation between 

the LP C coefficients. In comparison to vector quantization for a given number of bits. 

this hybrid reduces significantly the amount of memory required and the number of 

calculations performed. Hence quantizers using 20 to 30 bits can be developed by 

allotting 10 or less bits for VQ and the remaining bits for SQ. 

A diagram of the vector-scalar quantization method is shown in Fig. 5.5 .  'I'hc 

LP C coefficients are first quantized using the vector quantization codebook. The error 

vector resulting from this quantization is then quantized using scalar quantization for 

each component of the vector. The index from the codebook (IVQ) as well a.9 111(' 

index vector from the SQ stage (ISQ) are transmitted to the decoder. 

Several VQ-SQ coders were simulated. The codebooks for vector quant 1zn1 I O I I  

were all constructed using the LBG method from the training data sentences Ii3tc-d 

in Appendix A. LSF vectors of length 10 are used in this section for the LP( '  rtSl)rc.- 

sentation while a weighted LSF distortion measure as discussed in Chapter 2 i s  I I W V I  
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Fig. 5.5 LPC coefficient coder and decoder using vector 

quantization followed by scalar quantization. 

for selecting vectors from the codebook. The scalar quantizers consider the error 

vector from the vector quantization in the LSF domain. The scalar quantization is 

non-uniform in spacing and more bits are given to the lower LSF's on the grounds 

that they are more important perceptually. Table 5.8 shows the characteristics of six 

quantizers using vector quantization followed by scalar quantization. These quan tiz- 

ers were evaluated using the test data sentences listed in Appendix B. The average 

performance over the test sentences was evaluated using the average spectral distor- 

tion (SD) measure, SNR and segmental SNR (SEGSNR). The average value of the 

spectral distortion measure is given in addition to its maximum value and percentage 

of occurrence of values over 2 dB and 4 dB. 

The results show similar performance of the VQ-SQ quantizers to the scalar quan- 

tizers previously studied. Perceptually experiments confirm this observation. The 

allocation of bits between the VQ stage and the SQ stage did not have a significant 

impact on the performance of the coders. 

A significant problem with the VQ-SQ technique is the poor frequency resolution 



Quantizer 

VQ5-SQ25 

VQ8-SQ22 

VQ9-SQ21 

VQIO-SQ20 

VQ5-SQ16 

VQ8-SQ13 

VQ9-SQ12 

VQlO-SQll 

Table 5.9 Results for VQ-SQ quantizers. 

# Bits for 

VQ 

Quantizer 

VQ5-SQ25 

VQ8-SQ22 

VQ9-SQ21 

VQ10-SQ20 

VQ5-SQ16 

VQ8-SQ13 

VQ9-SQ12 

VQlO-SQll 

in the SQ which can result in some large errors. The problem results from t h e  

relatively large distribution of errors coming from the VQ stage. For example, a 

histogram of the errors resulting for the first LSF after VQ is shown in Fig. 5.6. 

Designing the SQ levels for the first LSF based on the graph results in the following 

values: 

Table 5.8 Bit distributions for VQ-SQ quantizers. 

5 
8 

9 

10 

5 

8 

9 

10 

From these numbers, the smallest frequency spacing between levels is 50 Hz, w i th  t h e  

largest spacing being 100 Hz. When designing the coder using only scalar quantiza- 

# Bits for 

SQ 
Total # Bits 

25 

22 

2 1 

20 

16 

13 

12 

11 

AVE-SD 

1.52 

1.66 

1.65 

1.60 

2.05 

2.06 
2.04 

1.95 

30 

30 

30 

30 
2 1 

21 
21 

2 1 

MAX-SD 

4.36 

4.11 

4.24 

4.08 

4.97 

4.30 
4.57 

4.35 

% > 2dB 

23.59 

31.08 

29.49 
25.95 

51.77 

47.78 
48.71 

41.59 

% > 4dB 

3.75 

2.50 

2.50 
1.25 

5.56 

3.75 

3.75 

1.85 

SNR 

11 .03 

11.78 
12.23 

10.66 

7.05 

5.95 
6.48 

6.01 

SEGSNR 

12.34 

12.92 

12.50 

11.63 

9.99 
7.70 

7.86 

7.98 



Frequency (Hz) 

Fig. 5.6 Graph showing distribution of errors for the first LSF 
for 1000 vectors after vector quantization. 

Frequency (Hz) 

Fig. 5.7 Graph showing distribution of the first LSF for 3600 
vectors. 

tion, the range of the first LSF as shown in Fig. 5.7 is used. 

The SQ levels based on this graph are; 

The smallest frequency spacing between levels is 25 Hz while the largest possihle 

spacing is 50 Hz. The SQ coder can achieve better frequency resolution becausc i t  

has more bits for each LSF than the VQ-SQ coders which lose bits on the VQ s t  +a('. 



As the histograms indicate, the error LSF distribution is only somewhat easier to 

quantize than the LSF itself yet considerably less bits are available to do so. 

5.2.1 Vector Quantization Coupled with Scalar Quantization 

An alternate approach to having the SQ stage following the VQ stage is to have 

the SQ stage nested within the VQ stage as shown in Fig. 5.8. The input vector is 

compared to each codebook vector and the error vector calculated. Each component 

of the error vectors is scalar quantized. The resulting quantized error vectors are 

then added back to the corresponding codebook vectors. The result is that for every 

codebook vector a new vector is formed. From these new vectors, the closest one 

to the input vector is determined. The index of the codebook vector and the set of 

scalar quantization indices (determined for the error vector) associated with the new 

vector selected are passed to the decoder. 
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Fig. 5.8 LPC coefficient coder and decoder using vector 

quantization coupled with scalar quantization. 

In the nested VQ-SQ approach, the true closest vector resulting from the corn- 

bination of VQ-SQ is chosen. To illustrate, consider that a codebook consists of the  

- 75 - 



two vectors; 

and the scalar quantization has the following quantization levels; 

10 

3400 

3400 

If the input vector is as follows; 
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3000 

3000 

0 
LSF: 

Quant.levels 

With separate VQ and SQ stages the VQ stage would pick vl as the closest vector 
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2200 
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vl 
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and be followed with SQ to produce the following quantized vector; 
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There is an error of 50 Hz in the second LSF. Using SQ coupled with the VQ stage, 
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the two vectors the coder would chose from are; 
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300 

2 

50,175 
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3000 
2 

500 

3 
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0 

Now v ! ~  will be chosen since it is the closest to the original vector. It gives an crsor 

of 25 Hz. This is an improvement over having the VQ and SQ stages separate. 

As illustrated in the example above, the reason for the improvement in coupling 

the VQ and SQ stages is the non-uniform spacing of the scalar quantization Ict.cls. 

The coupled VQ-SQ scheme will in fact always perform as well or better t h a n  ~ v h v ~ l  

the two stages are performed independently. The disadvantage lies in the i ncrcawaq l 

number of computations since the scalar quantization must be performed for all t h c .  

vectors in the codebook for each frame of speech input. A sub-optimal method tha t  

would reduce the amount of calculations is to have the VQ stage select the  r n  tw*t 

matches from the codebook. SQ is ~erformed on these m matches and t tw f in I r l  
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Fig. 5.9 LPC coefficient coder and decoder using two stages of 

selection in quantization. In the first stage, the m 
closest codebook vectors are determined which are then 
used in the second stage and scalar quantized. From 
these m vector-scalar combinations, the best match to 
the input vector is selected. 

decision is made from these m combinations (see Fig. 5.9). 

The results are shown in Table 5.10 for the coupled VQ-SQ quantizers for m equal 

to ,512. To examine the effects of lowering the value of m, the quantizer VQ9-SQ21-C 

was implemented with varying values of m (see Table 5.11). 

Coupling the SQ and VQ stages resulted in better performance than when the 

stages were separate. The average spectral distortion as well as the number of outliers 

are reduced for the coupled VQ-SQ coders. Some small improvements were seen in 

the segmental SNR value. 

Table 5.1 1 shows that for values of m as low as 10 there is not a significant reduc- 

tion in the performance of the coupled VQ-SQ quantizer. The variable m represents 

the number of codebook vectors selected to be used in the coupled VQ-SQ quanti- 

zation. Hence the computational complexity of the coupled VQ-SQ quantization can 

easily be reduced without diminishing performance. 



Table 5.10 Results for coupled VQ-SQ quantizers. 

AVE-SD MAX-SD 

% > 4dB 

2.50 

0.0 

0.0 

Quantizer 

VQ5-SQ25-C 
VQ8-SQ22-C 
VQ9-SQ21-C 

% > 4dB I SNR 

MAX-SD 

4.06 

3.95 
3.49 

AVE-SD 

1.26 

1.12 
1.05 

SEGSNR 

SNR 
10.50 

10.17 
10.23 

% > 2dB 

13.03 
10.93 

8.69 

Table 5.11 Results for quantizer VQ9-SQ21-C with varying 
values of m. 

SEGSNR 

12.53 
13.82 

12.93 

5.2.2 Partially Adaptive Vector Codebook 

LPC parameters have frame-to-frame correlation that is not exploited in the VQ 

scheme previously examined. Differential VQ methods exist where the difference 

between the input vector and the previous quantized input vector is quantized as 

shown in Fig. 5.10. Advantage is thus taken if the frame-to-frame correlation. One 

disadvantage of this scheme is the poor performance that results when two consecutive 

speech frames have little or no correlation. A second disadvantage is the problem of 

errors propagating. Once the decoder has incorrectly received a vector index (through 

channel errors) it will no longer track the coder for subsequent frames. 
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Fig. 5.10 LPC coefficient coder and decoder using differential 

vector quantization. 
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Fig. 5.11 LPC coefficient coder and decoder using vector 

quantization followed by scalar quantization. In the 
vector codebook, a buffer of the past quantized vectors 
of length j is used. 



A method proposed in this work to incorporate frame-to-frame correlation in the 

VQ coders developed in the previous section is shown in Fig. 5.11. The codebook is 

comprised of two sections; one which is fixed and one which is variable. The fixed 

section is from the regular trained codebook. The variable codebook is based on the 

last outputs of the coder, creating a buffer of previously quantized vectors. In this 

fashion, the coder can use frame-to-frame correlation if it exists or it can rely on 

a fixed codebook if that correlation is not present significantly. A coder with only 

a fixed codebook cannot benefit from the correlation. Further, a codebook based 

completely on previous frame vectors can perform poorly if it so happens that there 

are suddenly large differences in the LPC vectors frame-to-frame such as during a 

change of speaker. 

The use of previous quantized vectors to be included in part of the codebook can 

be labelled as optional differential time domain coding. The cost for this differential 

coding is quite low. For example, 12 vectors used for differential coding do not take 

much space in a codebook of 512 vectors. 

One problem with differential coding that should be addressed is the propagation 

of error that can result from improper decoding in the receiver. A method of limiting 

this problem is to prevent a vector from the variable section of the codebook being 

returned to the codebook a second time. Hence if the receiver incorrectly stores a 

vector, the vector can only be selected a fixed number of times (n-i, where IZ is 

the total number of codebook vectors and i is the length of the buffer) before being 

discarded. A second solution is to force the coder to choose a vector from the fixed 

codebook every so often. 

An improvement to the partially adaptive quantizers is to include the technique 

previously examined of coupling the vector and scalar quantization stages together. 

Fig. 5.12 shows the implementation of the coder and decoder while the results of the 

quantizers using this scheme are shown in Table 5.12. 

All eight quantizers improved with the addition of the variable component to the 

codebook. The previous quantized vectors were selected a significant number of times 

(around 35 % of frames). 
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Fig. 5.12 LPC coefficient coder using vector quantization 

coupled with scalar quantization. In the vector 
codebook, a buffer of the past quantized vectors of 
length j is used. 

It is of interest to determine the ideal length of the buffer of previously q u a n  t  izctl 

vectors. Fig. 5.13 shows a graph of the percentage of times the vectors are chosen 

from the codebook versus the length of time the vector has been in the cod~hook.  

The graph shows that the previous vector is chosen very frequently (one t h i r d  of t h e  

time) with the next five being selected occasionally. The rest of the vectors a r c  c-hosc~l 

as frequently as any other vector in the fixed codebook (around 0.2 % of thtb t i r rw) .  

Hence a good choice would be to store the previous six quantized input vector. Ir l  t hc 

variable codebook. 

The amount of correlation that exists between the LPC parameters of n - 1 )4y . c  1 1  



Table 5.12 Results for coupled VQ-SQ quantizers using an 
partially adaptive codebook. 

Quantizer 

VQ5-SQ25-AC 
VQ8-SQ22-AC 
VQ9-SQ21-AC 

VQ10-SQ20-AC 
VQ5-SQ16-AC 
VQ8-SQ13-AC 

VQ9-SQl2-AC 
VQ10-SQ11-AC 

Past Quantized Vectors (# delays) 

Fig. 5.13 Graph of the frequency of times the previous quantized 
vectors are selected from the adaptive codebook. 

AVE-SD 

1.19 
1.06 
1.01 
0.97 

1.87 
1.47 

1.49 

1.39 

file and its previous frame can be roughly divided into three categories; little, some 

and considerable. The case of little correlation is handled by the fixed codebook 

section while the variable codebook section handles the cases of some and considerable 

correlation. An improvement would be to have two scalar quantizers available for the 

variable section of the codebook. One scalar quantizer for the case of some correlation 

and scalar quantizer with smaller quantization levels for the case of considerable 

correlation. A diagram showing the implementation of these two scalar quantizers is 
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shown in Fig. 5.14. The buffer of previously quantized vectors is stored in two separate 

codebooks. One of these codebooks uses the regular scalar quantizer while the other 

uses the quantizer with small quantization levels. There is no bit-rate penalty for 

using the two scalar quantizers. The decoder uses the scalar quantizer as determined 

by the vector quantization index. The cost of this scheme is the small reduction of 

the fixed codebook size as the variable codebook size codebook is doubled. Results 

of the quantizers using this scheme are shown in Table 5.13. 

Table 5.13 Results for coupled VQ-SQ quantizers using an 
partially adaptive codebook with two available 
quantizers to the adaptive codebook. 

The quantizers select the scalar quantizer with finer quantization levels frequently. 

The result is better performance of around 1 dB SEGSNR higher than the quantizers 

that did not use two scalar quantizers. Compared to the scalar quantizers, these 

quantizers perform better given the same number of bits. 

A more sophisticated model used for differential coding than that shown in 

Fig. 5.10 is one which predicts what the present vector will be based on the pre- 

vious inputs. The difference between the predicted vector and the actual vector is 

coded (see Fig. 5.15). 

This idea of predicting the input vector can be incorporated into the VQ coder 

developed so far in this work. The predictor in the scheme shown in Fig. 5.15 can 

only make one prediction of the input vector. The prediction block can be altered 
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Fig. 5.14 LPC coefficient coder using vector quantization 

coupled with scalar quantization. In the vector 
codebook, a buffer of the past quantized vectors of 
length j is used with two scalar quantizers available 
for the buffer vectors. 



CODER DECODER 
Fig. 5.15 LPC coefficient coder and decoder using predictive 

vector quantization. 

so as several possibilities of the input vector are made. These possibilities are then 

placed in a small section of the codebook. Fig. 5.16 shows the implementation of this 

idea. Equations for the predictors used in this work are 

where 
I I' A 1 = l  - 1 ,  

A2 = 1'' - 1'", 

and I' is the previous quantized LSF vector, 1" is the quantize1 

( .5.4) 

d LSF vector from the 

second previous frame and 1"' is the quantized LSF vector from the third previous 

frame. 

Also, two scalar quantizers can be used for the predicted vectors. If a very good 

prediction is made, a SQ with small quantization levels can be used while i f  a good 

prediction is made, a SQ with medium quantization levels can be used. If the !)re- 

dicted vectors are all poor, the coder would pick a vector from another part of the. 
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CODER 
Fig. 5.16 LPC coefficient coder using vector quantization 

coupled with scalar quantization. In the vector 
codebook, a buffer comprised of predictions of the 
next vector of length j is used. 



codebook. Table 5.14 shows the results for this coding scheme coupled with the pre- 

vious quantizers which used a buffer of previous quantized vectors in the codebook. 

The expected improvements resulting from using predictive techniques were not 

realized. The predicted vectors were selected fairly often (15 % of frames) but there 

was a proportionable decrease in the number of vectors selected from the buffer of 

previous vectors (20 %, down from 35 %). This indicates that the past input vectors 

offer as good a prediction of the next input vector as the prediction schemes used in 

the coder. 
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Table 5.14 Results for coupled VQ-SQ quantizers using an 
partially adaptive codebook with two available 
quantizers to the adaptive codebook. 



Chapter 6 Conclusion 

The purpose of this thesis was to examine the coding techniques of Linear Predic- 

tive Coding (LPC) coefficients. LPC coefficients are used often in low-bit-rate coders 

as they provide an economical representation of the spectral envelope of the speech 

signal. The coefficients are motivated from a physical model of the human speech 

production organs and hence have particular characteristics which can be exploited 

in their coding. 

Spectral envelope distortion measures have two uses in speech coding. The first 

use is to evaluate the performance of speech coding systems. It is important to be 

able to determine how successfully a speech coder is working. Extensive qualitative 

tests by human listeners are the ideal method of evaluating speech coders yet have 

a few major drawbacks. Primarily, qualitative tests require a fair amount of time 

as many subjects, listening to large segments of speech, are needed for complete 

evaluations. For fast comparisons of speech coders, quantitative distortion measures 

are useful. Several distortion methods have been developed by researchers that are 

based in the speech spectral envelope. They are particularly useful in evaluating 

coding of LPC coefficients. Of the distortion measures studied, few corresponded 

well to the evaluations performed by human listeners. Differences of over 20 % in 

distortion measure values between two sets of speech did not necessarily indicate a 

perceptual differences between the two sets. 

In vector quantization of LPC coefficients, a spectral distortion measure is re- 

quired in selecting spectral envelopes from a codebook. Of the many measures stud- 
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ied, two measures based on LSF's can be classified as providing 'good' results followed 

by three that provide 'satisfactory' results. A consideration on selecting the distortion 

measure is the amount of calculations required to compute the measure. Euclidean 

measures require the fewest computations. Also, calculations can be minimized if the 

distortion measure uses the same LPC coefficient representation as that used to store 

the codebook vectors. 

Several low-bit coders have been developed in the past using scalar quantization 

of LPC coefficients. The representation of the LPC coefficients used is usually either 

reflection coefficients or the Line Spectral Frequencies (LSF's). Quantization schemes 

previously implemented by other researchers were examined and evaluated in this 

thesis. As has already been reported by other researchers, it was found that LSF's 

require significantly fewer bits than reflection coefficients for similar performance. 

Beyond the direct scalar quantization of LSF's there lies two schemes which exploit 

special characteristics of the LSF's. The first scheme considers the LSF's as pairs, 

coding the center of the pairs as well as a the offset between the center and the LSF's 

in the pair. The second scheme quantizes the odd numbered LSF's differentially. The 

even LSF's are quantized as the proportional spacing between its two neighbouring 

odd LSF's. This second scheme has the advantage of its use of the frame-to-frame 

correlation that exists between frames of speech data. 

Vector quantization of LPC coefficients is difficult to implement due to its memory 

requirements and excessive computational load. However, there has been a decreasing 

cost of memory used for storing codebooks and an increasing speed of processors 

used for the searches through the codebook which makes the vector quantization 

approach practical. Vector quantizers using a small number of bits were developed so 

as they could be used in vector-scalar quantizers using 20 to 30 bits. In experiments 

performed, vector quantization with 512 level codebook was shown to achieve good 

results for the low number of bits used for each speech frame. The performance of 

vector quantization was shown to depend on the distortion measure used for codebook 

vector selection. LSF and cepstral coefficient based distortion measures were shown 

to perform the best. 



Vector-scalar quantization is a two stage coding scheme that exploits the ad- 

vantages offered by vector quantization while drastically reducing the memory and 

computational requirements for a given number of bits per frame. The performance 

of the vector-scalar quantizers was found to be comparable to scalar quantizers. The 

benefits expected from vector quantization were not realized. However, two new 

techniques were developed to increase the performance of the vector-scalar quantizers 

without increasing the bit-rate. 

Conventionally, the vector quantization stage is independent from the scalar stage. 

The approach in this work was to compare each codebook vector to the input vector 

and scalar quantize each component of the corresponding error vectors. The resulting 

vectors from the vector-scalar quantization are all compared to the input vector to 

determine the closest one. Coupling the scalar and vector quantization stages resulted 

in the reduction of the average spectral distortion as well as the number of outliers. 

The reason that the coder with the two stages separately may not choose the true 

closest vector is that the scalar quantizers consists of non-uniform quantization levels. 

The disadvantage in having the scalar and vector stage coupled is the large in- 

crease in calculations. A simple method to reduce the number of calculations is to 

first select a small limited number of vectors from the codebook without considering 

the scalar quantization. The scalar quantization is combined with the set of vec- 

tors chosen from the codebooks and then the final best combined quantized vector is 

chosen. Experiments showed that this sub-optimal approach detracts little from the 

performance of the full codebook combined with scalar quantization if a reasonable 

number of vectors is selected to be combined with the scalar quantization. 

A second new approach to vector-scalar quantization examined was the incorpo- 

ration of a small adaptive codebook to the large fixed codebook. In one case studied, 

the adaptive codebook was composed of a buffer of previous quantized input vectors. 

In the second case investigated, the adaptive codebook consisted of predictions of the 

next input vector. The predictions were based on the previously quantized inputs. 

The adaptive codebook exploits the frame-to-frame correlation of the LPC coeffi- 

cients. Having the adaptive codebook does not incur a bit-rate penalty as it rcplaccs 



part of the fixed codebook . The vectors in the adaptive codebook comprising 5 % of 

the size of the fixed codebook were selected around 35 % of the time. 

A further improvement to the adaptive codebook was the use two scalar quan- 

tizers, one with coarse quantization levels and one with fine quantization levels. The 

adaptive codebook is stored twice in the overall codebook. One of these adaptive 

codebooks uses the coarse quantizer while the other uses the quantizer with small 

quantization levels. The decoder can determine which scalar quantizer to use by the 

vector quantization index. Hence there is no increase in bit-rate for having the two 

scalar quantizers for the adaptive codebook although there is a small reduction in 

size of the fixed codebook. 

With the adaptive codebook, increased performance was achieved with the vector- 

scalar quantization at  no extra cost in bits. The drawbacks to having a partially 

adaptive codebook is that there is the potential problem of the decoder becoming 

mistracked from the coder. A simple method of limiting the propagation of errors is 

to prevent a vector from the adaptive codebook from being returned to the codebook 

a second time. Hence an incorrectly decoded vector will be stored in the decoder for 

a small, fixed number of times. A second method is to force the coder to choose a 

vector from the fixed codebook every so often. 

The final results of this thesis show that the vector-scalar quantization tech11 ique 

is a good method of coding LPC coefficients. The performance of the vector-scalar 

quantization is better than that of the scalar quantization methods examined. For 

similar bit rates, the vector-scalar quantization with the use of the two new techniques 

introduced has significantly lower average spectral distortion and less outliers. .4 

reduction in the amount of bits required for coding the LPC coefficients could be 

achieved by using vector-scalar quantization. This reduction can be important f o r  

low-bit rate coders. A further area of research is the prediction techniques used i n  

the adaptive codebooks. Better results than those achieved in this work can prot)al)ly 

he realized by using more sophisticated prediction schemes. 



APPENDIX A 

Male Speaker # 1: 

ADDM8 - Add the sum to the product of these three. 

OAKM8 - Oak is strong and also gives shade. 

OPNM8 - Open the crate but don't break the glass. 

PIPM8 - The pipe began to rust while new. 

THVM8 - Thieves who rob friends deserve jail. 

Male Speaker # 2: 

DOUG1 - The birch canoe slid on the smooth planks. 

DOUG2 - Glue the sheet to the dark blue blackground. 

DOUG3 - It's easy to tell the depth of the well. 

DOUG4 ' These days a chicken leg is a rare dish. 

DOUG5 - Rice is often served in round bowls. 

Female Speaker # 1: 

ADDF8 - Add the sum to the product of these three. 

OAKF8 - Oak is strong and also gives shade. 

OPNF8 - Open the crate but don't break the glass. 

PIPF8 - The pipe began to rust while new. 

THVF8 - Thieves who rob friends deserve jail. 

Female Speaker # 2: 

VOICFl - The birch canoe slid on the smooth planks. 

VOICF2 - Glue the sheet to the dark blue blackground. 

VOICF3 - It's easy to tell the depth of the well. 

VOICF4 - These days a chicken leg is a rare dish. 

VOICF5 - Rice is often served in round bowls. 



APPENDIX B 

Male speaker # 1: 

CANM8 - The red canoe is gone. 

PROM8 - We watched the new program. 

Male Speaker # 2: 

PBlM8 - Aimez-vous des petits pois? 

Female Speaker # 1: 

HAPF8 - Happy hour is over. 

TOMF8 - Tom's birthday is in June. 
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