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Abstract 
This thesis addresses the problem of simultaneously transmitting several data 

signals across a single channel. For this purpose, a transmultiplexer that uses modu- 

lated filter banks is studied. Modulated filter banks comprise filters that are bandpass 

versions of a lowpass prototype. The filters serve to assign portions of the channel 

bandwidth to the data signals. The impulse responses of the filters are parameter- 

ized by a center frequency, delay and phase factor. The objectives in configuring 

modulated filter banks are to use the full channel bandwidth for transmission, cancel 

crosstalk between signals (arises when signals share bandwidth) and cancel intersym- 

bol interference in each data signal. Assuming an ideal channel, a synthesis procedure 

is developed by assigning a bandwidth to the lowpass prototype and deriving relation- 

ships among the center frequencies, delays and phases such that the entire channel 

bandwidth is utilized and crosstalk is cancelled. New design procedures for an FIR 

lowpass prototype are proposed such that the intersymbol interference is suppressed. 

One design method is based on a minimax criterion. Another approach involves an 

unconstrained optimization of an error function. 

The synthesis procedure leads to five bandwidth efficient transmultiplexers. Three 

of the systems implement multicarrier Quadrature Amplitude Modulation (QAM) and 

two accomplish multicarrier Vestigial Sideband Modulation (VSB). The performance 

of the five systems is compared with filters obtained by the new design approaches. 

Also, the issue of channel distortion is addressed. Finally, the transmultiplexers can 

be converted into new subband systems. 



Sommaire 
La transmission simultande de plusieurs signaux numdriques sur un canal unique 

constitue le sujet de cette thkse. Pour accomplir cette t&che, un transmultiplexeur uti- 

lisant un banc de filtres modulds est ktudid. Les bancs de filtres modulds sont formdes 

des filtres qui sont des versions passe-bandes de prototype passe-bas. Les filtres ont 

pour fonction l'attribution de portions de la bande de frbquence du canal aux signaux 

numdriques. Les paramktres servant & caractkriser les rkponses impulsionnelles des 

filtres sont la frdquence centrale, le ddlai et le facteur de phase. Les objectifs, lors de 

la configuration de bancs de filtres modulds, sont l'utilisation de la pleine largeur de 

bande lors de la transmission, 17klimination de la diaphonie entre les signaux (ceci sur- 

vient lorsque les signaux partagent une msme bande de frbquence) et 1'Climination de 

l'interfkrence entre symboles dans chacun des signaux numdriques. Assumant un canal 

idkal, une mdthode de synthhe est dkvelopge en assignant une bande de frkquence 

au prototype passe-bas et en dkrivant des relations entre les frkquences centrales, 

les dClais et les phases qui assurent une entikre utilisation de la bande de frdquence 

du canal et l'dlimination de la diaphonie. De nouvelles mdthodes de conception de 

prototype passe- bas RIF, assurant l'dirninat ion de l'interfbrence ent re symboles, sont 

proposkes. Une mCthode de conception est baske sur le critkre minimax. Une autre 

approche utilise une optimisation sans contraintes d'une fonction d'erreur. 

La mkthode de synthkse conduit & cinq transmultiplexeurs utilisant la bande de 

frdquence efficacement. Trois des systkmes accomplissent QAM, alors que deux autres 

utilisent VSB. La performance de ces cinq systkmes, utilisant les filtres obtenus avec 

les nouvelles mdthodes de conception, est kvalube. De plus, le problkme de la distorsion 

provoqude par le canal est considkri. Finalement, les transmultiplexeurs peuvent ktre 

convertis en nouvelles formes de systkmes en sous-bandes. 
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Chapter 1 Introduction 

This thesis addresses the problem of simultaneously transmitting several data sig- 

nals across a single channel. The data signals are discrete time continuous amplitude 

signals. In proceeding with this problem, we study a type of multirate system [I] 

known as a transmultiplexer. Originally, the term transmultiplexer was referred to 

as a device that converts between time division multiplexed (TDM) and frequency 

division multiplexed (FDM) formats [2]. In this thesis, a transmultiplexer is viewed 

in a more general context. We refer to a transmultiplexer as a multi-input, multi- 

output system that uses sampling rate alteration and filtering to combine N signals 

for transmission across a channel and then recover the N input signals. It consists of 

two subsystems, namely, a transmitter and receiver as shown in Fig. 1.1. At the trans- 

mitter, the N input data signals are obtained by sampling continuous time signals 

at a certain rate. They are then combined into a single composite signal operating 

at N times the original sampling rate. Implicit modulation of the data signals is 

accomplished by the sampling rate increase. The filters assign a frequency band to 

each data signal for transmission. The composite signal is sent over a channel. A t  the 

receiver, the original data signals are separated from the composite signal by filtering 
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and a sampling rate decrease. The data signals are recovered at the original sampling 

rate. 

- Sampling Rate Increase - Filter 

- Sampling Rate Increase - Filter Composite 
N Inputs Signal 

Sampling Rate Increase Filter 

(a) Transmitter 

Filter Sampling Rate Decrease 

(b) Receiver 

- 
Composite 

J 

Signal 

Fig. 1.1 General transmultiplexer structure 

Sampling Rate Decrease - 

The goal in configuring transmultiplexers is to multiplex N signals at a certain 

sampling rate into a composite signal at N times the sampling rate (at the transmit- 

ter) and then, achieve perfect reconstruction of the inputs (at the receiver). Band- 

width efficiency (which is measured in samples/second/Hz for the type of inputs that 

we consider) is achieved by using the full channel bandwidth thereby leaving no gaps 

in the frequency bands allocated to the input signals. We consider systems that 
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- Sampling Rate Decrease - 
N Outputs 
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accomplish frequency division multiplexing (FDM). In these systems, the composite 

signal is a frequency division multiplexed form of the N data signals. The full channel 

bandwidth is used for transmission and equal portions of the channel bandwidth is 

allocated to each data signal. The various signals are confined to different frequency 

bands thereby leading to an implicit separation of the data signals. 

An application of FDM systems is in long distance transmission over telephone 

and groupband lines. The resulting transmultiplexers are used in multicarrier voice- 

band and groupband data modems. In FDM systems, the bit rate can be maximized 

by appropriate information assignment to each frequency band. This is brought about 

by assigning more bits to the bands that are less affected by the channel characteris- 

tic. In [3], the problem of maximizing the bit rate by optimal power division among 

frequency bands and an optimal choice of the number of bits per data symbol subject 

to the constraints that the total transmitted power is fixed and the probability of error 

of every symbol is the same (for additive white Gaussian noise) is addressed. Results 

show that for channels with a sharply decreasing amplitude characteristic that ap- 

proaches a null, there is much potential for achieving a high bit rate by putting more 

transmitter power in the bands that are unaffected by the sharply decreasing ampli- 

tude characteristic. Another aspect of FDM systems is that the channel distortion 

is relatively lower in each of the N bands as compared to over the entire bandwidth. 

Since a particular data signal is only affected by the channel distortion within its 

allocated frequency band, equalization can be performed in each individual frequency 

band as opposed to the entire frequency range. The equalizers in each band only have 

to deal with this relatively lower distortion. 
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In this thesis, we are mainly interested in developing new bandwidth efficient 
. . 

. . 

transmultiplexers that implement FDM. Notethat the previous discussion on informa- 

tion assignment and equalization was meant to briefly indicate why one is interested 

in FDM systems. The actual details of achieving high bit rates and performing adap- 

tive equalization is outside the scope of this study. In configuring a transmultiplexer 

with an FDM composite signal, consider the use of ideal bandpass filters such that 

their frequency responses do not overlap and such that the entire available bandwidth 

is used. These bandpass filters allocate different portions of the channel bandwidth to 

each data signal. However, such ideal bandpass filters cannot be designed in practice. 

This problem is circumvented by using bandpass filters whose frequency responses 

overlap (referred to as spectral overlap, see Fig. 1.2) such that the entire bandwidth 

is utilized and perfect reconstruction of the inputs results. This approach allows the 

data signals to share some bandwidth and yet permits reconstruction of the inputs 

without the use of guard bands. Guard bands are used in conventional FDM to sep- 

arate the data signals but result in the wastage of useful bandwidth. Moreover, the 

presence of spectral overlap permits the design of practical filters. 

Frequency 

Fig. 1.2 Filter characteristics with spectral overlap 

Transmultiplexers with bandpass filters having spectral overlap can be configured 
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by different methods that lead to perfect reconstruction assuming no channel effectst. 

For two band systems, the standard approach is to use quadrature mirror filter (QMF) 

banks [4] or the Smith-Barnwell structure [5]. In the case of N bands, the use of 

tree-structured QMF banks [I], a matrix formalism [6][7], lossless structures [8] and 

modulated filter banks [9][10] accomplish perfect reconstruction. 

Of the various methods that implement FDM, the focus of the research is to 

explore modulated filter banks in depth. Modulated filter banks have a specific struc- 

ture in that all the filters are frequency shifted versions of a lowpass prototype. The 

filters are obtained by multiplying the lowpass impulse response by a modulating 

function having a specified center frequency and phase shift. This leads to a set of 

bandpass filters whose spectra are centered at various frequencies which are usually 

equally spaced. The inherent structure of modulated filter banks implies that only the 

design of a lowpass prototype is required to obtain complete control of the bandpass 

frequency responses. Also, modulated banks have been shown to lend themselves to 

a computationally efficient implementation through the use of a polyphase network 

and fast transforms [lo] [l 11 . 

Now, we have focused the investigation to the study of modulated filter banks. 

The main motivation that commences the investigation is to develop alternate con- 

figurations for modulated filter ban ks that accomplish perfect reconstruction. This 

is equivalent to examining the various ways of specifying the lowpass prototype and 

the parameters of the modulating function such that we get modulated filter banks 

Although these methods were originally proposed for a subband system (explained later), they 
are applicable to transmultiplexers. 



that reconstruct the input data signals. In proceeding, we note that the modulated 

systems in [9][10][11] have a specific approach to describe the filters and moreover, 

use distinct center frequencies. We provide an additional degree of freedom in de- 

scribing the filters by introducing delay factors. The resulting filters are delayed and 

frequency shifted versions of a lowpass prototype obtained by multiplying the lowpass 

impulse response by a modulating function having a specified center frequency and 

phase shift and then applying a delay factor. The presence of delay factors allows for 

the possibility of using the same center frequency to transmit two signals (a concept 

used in analog communication systems to send two signals in quadrature at the same 

frequency). The use of repeated center frequencies leads to complete spectral overlap 

between the corresponding bandpass filters which must be cancelled to reconstruct 

the inputs. Given the main aim of configuring new systems,'weproceed by formulat- 

ing a synthesis procedure for modulated filter banks in a transmultiplexer such that 

perfect reconstruction is accomplished assuming an ideal channel. 

The synthesis procedure leads to the configuration of new transmultiplexers. 

There are two classes of systems with equally spaced center frequencies. In one type, 

all the center frequencies are distinct with one signal being sent at each frequency. 

Another type of transmultiplexer uses repeated center frequencies. Two signals are 

sent in quadrature at each repeated center frequency. Some of the contributions of 

the work lie in the formulation of the synthesis procedure, configuration of the new 

systems and their interpretation from a communications point of view [12] [13]. 0 ther 

contributions include new design procedures for a finite impulse response (FIR) low- 

pass prototype to  be used in the new transmultiplexers [14][15][16] and a performance 
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Fig. 1.3 General illustration of a subband system 

evaluation of the systems [14][15]. Based upon an analysis of the new systems, the 

- N components 

design procedures take the practical degradations into account in forming an optimal 

Sampling Rate 
Increase and 

Synthesis Filtering 
Input - 

prototype. The investigation also provides some insight into the complementary na- 

- Output 

ture of transmultiplexers and subband systems. Finally, the issue of channel distortion 

in transmultiplexers is discussed [17]. 

Analysis Filtering 
and Sampling 
Rate Decrease 

Note that the synthesized transmultiplexers can be converted into new subband 

C 

L 

h 

systems due to the complementary nature of the two systems. A subband system is 

a single-input, single-output multirate system that is commonly used in medium bit 

rate speech coding. A general block diagram is given in Fig. 1.3. The input is split into 

N components by a set of analysis bandpass filters. These N components are then 

converted to a lower sampling rate. For speech coding applications, these components 

are coded in accordance with their perceptual significance. A set of synthesis filters 

acting on the N components results in the input being recovered at the original 

sampling rate. The approaches based on QMF banks [4], the Smith-Barnwell structure 

[5], tree-structured QMF banks [I], a matrix formalism [6][7], lossless structures [8] 

and modulated filter banks [9][10][11] achieve perfect reconstruction in a subband 

system. In fact, these approaches were originally proposed for subband systems. 



The new subband systems formed from the synthesized transmultiplexers use 

modulated filter banks. Also, the subband systems belong to one of two classes. The 

subband systems which use only distinct center frequencies split the input into N 

components that represent different frequency ranges. The subband systems which 

use repeated center frequencies are unusual. Each of the repeated center frequen- 

cies establishes signal components that exist in quadrature and represent the same 

frequency range. 

1.1 Scope and Organization of the Thesis 

The entire thesis is organized into seven chapters. After the introduction, Chapter 

2 provides background material concerning the input-output descriptions of transmul- 

tiplexers and subband systems and the achievement of perfect reconstruction. The 

complementary nature of the two systems is also discussed. The latter part of the 

chapter describes the research problem and the approach used. 

Chapter 3 gives the transmultiplexer synthesis procedure in detail. Then, five dif- 

ferent crosstalk-free transmultiplexers are synthesized and described from a communi- 

cations point of view. New subband sys tems arise as complements of the synthesized 

transmultiplexers. The two band case is treated in more detail. 

Chapters 4 and 5 are devoted to formulating procedures to design the lowpass 

prototype. In Chapter 4, we consider methods based on a minimax criterion that 

simultaneously assure a lowpass behaviour and attempt to suppress the in tersymbol 

interference. In Chapter 5 ,  an optimized design method based on the minimimt ion of 
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an error function is described. The error function is formulated so as to take practical 

degradations into account. Design examples are provided in both chapters. Also, the 

performance of the systems is evaluated for both the minimax and optimized design 

approaches. 

Chapter 6 provides methods to configure a channel compensation filter when 

channel distortion is present. The channel compensation filter cancels crosstalk in 

the presence of a channel but leaves residual intersymbol interference. The relative 

performance of these methods is discussed in terms of suppression of the intersymbol 

interference. Chapter 7 records the conclusions of the investigation and gives some 

suggestions for future research. 



Chapter 2 Multirate Digital Filter Banks 

This chapter discusses background material on transmultiplexers and subband 

systems. A mathematical description of the two systems leads to the formulation of 

the perfect reconstruction property. Also, this establishes the complementary nature 

of the two systems (a concept used later in the thesis). Methods to achieve perfect 

reconstruction are described. Finally, the focus of the research problem and the 

approach used are discussed. 

2.1 Transmultiplexers and Subband Systems 

2.1.1 Interpolation and Decimation 

Multirate systems use both interpolation and decimation to accomplish sampling 

rate alteration. The basic notion of interpolation lies in filling in a set of function val- 

ues between two known values. Consider a discrete time signal obtained by sampling 

a continuous time signal. Interpolation of this signal is a two step process. First, 

the insertion of N - 1 zero-valued samples between each pair of sample values of the 

discrete time signal is referred to as sampling rate expansion by an integral factor 
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N. The resulting output discrete time signal is subsequently filtered to provide a 

smooth transition between the nonzero samples. This smooth transition consists of 

estimates of the continuous time signal between the already known nonzero samples. 

The filtered signal can be viewed as a representation of a more finely sampled version 

of the continuous time signal in which the new sampling rate is N times the original 

sampling rate. 

The process of decimation accomplishes sampling rate reduction. Again, consider 

a discrete time signal obtained by sampling a continuous time signal. The extrac- 

tion of every Nth sample of the discrete time signal is referred to as sampling rate 

compression by an integral factor N .  The resulting output can be obtained from the 

continuous time signal at 1 / N  times the original sampling rate. Note that decimation 

usually includes lowpass filtering prior to sampling rate compression to avoid aliasing 

at the lower rate. 

2.1.2 Transmult iplexer 

A multi-input, multi-output transmultiplexer is shown in Fig. 2.1. At the trans- 

mitter, implicit modulation is accomplished by the sampling rate expander (sym- 

bolically denoted by N T) since the spectrum of the input signal is replicated with 

period 27rlN. An implicit set of carrier frequencies at multiples of 2 n / N  results. 

The combining filter bank (comprising the combining filters A i ( z ) )  allocates different 

portions of the channel bandwidth to the various input signals by selecting a set of 

N center frequencies for the purposes of transmission. The outputs of the combining 

filters are multiplexed into one composite signal. The composite signal is sent over a 
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channel. At the receiver, the composite signal is passed through a parallel structure 

of separation filters Bi(z). The sampling rate compressors (symbolically denoted by 

N 1) process each of the outputs of the separation filters to yield the resultant out- 

put signals. The separation filter bank (consisting of the separation filters) and the 

sampling rate compressors ensure that the resulting output signals depend only on 

their corresponding inputs. This eliminates the influence of other inputs (crosstalk). 

Note that the sampling rate expansion and compression are performed synchronously 

at the same rate and in phase with each other. 

Fig. 2.1 A transmultiplexer system 

Assuming that there is no channel distortion, the input-output relations are given 

1 N-1 N-1 
xi (*)  =, C Xk( t )  C A ~ ( * ~ c v - ' ) B ~ ( ~ ~ w - ' )  for O 5 i 5 N - 1 , 

k=O l = O  

or equivalently (note the change from z to zN), 

1 N-1 N-1 
&(zN) = - C x k ( z N )  C A ~ ( ~ w - ' ) B ~ ( ~ w - ' )  for 0 4 i 5 N - 1 , 

N k=O l=O 



where W = e-js. Each output signal x i ( z N )  is related to each input signal x k ( z N )  

via a transfer function where 

When k # i, ~ ~ ~ ( 2 ~ )  is called a crosstalk function and represents the contribution 

of the undesired input x k ( z N )  to the output % ( r N ) .  We refer to the input-output 

transfer function at the i th terminal as T ~ ~ ( z ~ ) .  For eliminating crosstalk ( ~ ~ ~ ( z ~ )  = 

0 for k # i )  and achieving an identical input-output relation Ti i ( zN)  = T ( z N )  for 

every terminal i, the matrix equation 

must be satisfied where 

and I is the identity matrix. If the above matrix equation is satisfied, each of the 

output signals xi(*) = & T ( z ) x ~ ( ~ ) .  Intersymbol interference is present if the Sam- 

ples at the output depend on past and future input samples. Intersymbol interference 

is eliminated if and only if T ( z )  is of the form ce-P. Then, perfect reconstruction 

is achieved in that the output samples are a scaled and delayed version of the input 

samples. 



2.1.3 Subband System 

Figure 2.2 depicts a single-input, single-output subband system. With perfect 

channels, the input-output description is 

The output is related to the input and its frequency shifted versions by a system 

function $T/ ( z )  where TI  ( I )  = ~ r = - ~  A ~ ( I  W - I )  B ~ ( I ) .  For I # 0, we refer to Tl ( z )  

as aliasing functions. Aliasing is eliminated if ~ ( z )  is not influenced by any of the 

frequency shifted versions of X ( z ) .  Therefore, the aliasing functions should be zero. 

In addition, perfect reconstruction is achieved if and only if the input-output transfer 

function, T o ( z )  = cz-P. 

Fig. 2.2 A subband system 

The cancellation of aliasing is equivalent to configuring the analysis fil- 

ters Ai(z )  and the synthesis filters Bi(z )  to satisfy the system of equations 

a T ( z ) [ s 0 ( r )  B1 ( z )  . . . B ~ - ~ ( z ) ] ~  = [T0(z)  0 . . . OIT.  This is equivalent 
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to satisfying the matrix equation 

If the above matrix equation is satisfied, the output signal ~ ( z )  = $T~(Z)X(Z) .  To 

provide a distinction with transmultiplexers, the filter banks in subband systems are 

referred to as analysis and synthesis banks. 

2.1.4 Complementary Nature of the Systems 

The fundamental complementary nature between transmultiplexers and subband 

systems relates crosstalk cancellation in the former and aliasing elimination in the 

latter [7 ] .  We continue to assume that there are no channel effects in both the trans- 

multiplexer and the subband system. It has been shown in [7] that crosstalk and 

aliasing cancellation are equivalent if and only if the product of the A(z) and B(z) 

matrices (one of them being transposed) is equal to a function in zN multiplied by 

the identity matrix. By relating Eqs. (2.4) and (2.8), this is equivalent to stating that 

any combining/separation filter banks that eliminate crosstalk and achieve the same 

input-output transfer function for all pairs of corresponding terminals in a trans- 

multiplexer will cancel aliasing when utilized as analysis/synthesis filter banks in a 

subband system. However, the reverse is not true unless the input-output transfer 

function of the subband system is a function of zN. Analysis/synthesis filter banks 

for a subband system that cancel aliasing and achieve an input-output transfer func- 

tion in zN result in the relationship k ( z )  = k T ( r N ) ~ ( z ) .  These same filter banks 
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eliminate crosstalk in a transmultiplexer and achieve k i ( z )  = $ T ( z ) x ~ ( ~ )  for i = 0 

to N - 1. 

A further interpretation of this result is as follows. Suppose we design a subband 

system that achieves perfect reconstruction. In general, these filter banks will not 

cancel crosstalk in a transmultiplexer unless the transfer function of the subband 

system, T(z) = cz-P has a value of p which is a multiple of N. First suppose, c = N 

and p = 0. The resulting filter banks can be applied in either a subband system or a 

transmultiplexer. Furthermore, there is a perfect complementary nature since the two 

systems are identity systems (the output samples are identical to the corresponding 

input samples; there is no delay factor). This is further motivated from the sequence of 

block diagram interpretations shown in Fig. 2.3. The identity subband system allows 

us to connect the input and output and break the connections between the sampling 

rate compressors and expanders thereby forming an equivalent transmultiplexer that 

is also an identity system. Note that the analysis filter bank in a subband system 

corresponds naturally to the separation filter bank in a transmultiplexer. Also, there 

exists a similar correspondence between the synthesis and combining filter banks. 

Consider the application of delay factors to an identity transmultiplexer (see 

Fig. 2.4(a)). The same delay factor 2-91 is applied to each combining filter. Similarly, 

the delay factor 2-92 is applied to each separation filter. The constraint ql + q2 is 

a multiple of N is necessary for crosstalk cancellation to be preserved. Otherwise, 

the sampling rate compressors and expanders operate out of phase and crosstalk will 

no longer be cancelled. In addition, if ql + q2 is a multiple of N, the delays can be 

moved across the sampling rate compressors and expanders without disturbing the 
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(a) Identity subband system 

(b) Connection of output and input 

(c) Identity transmultiplexer 

Fig. 2.3 Block diagram interpretation illustrating 
complementary nature 

crosstalk-free nature of the system. When ql + q2 is a multiple of N, the input-output 

'IlfCIZ 
relationship is x i (* )  = t- N Xi(t) for i = 0 to N - 1. The constraint that ql + qz 

be a multiple of N for maintaining crosstalk cancellation holds when applying delay 

factors to  any crosstalk-free transmultiplexer. 

The identity subband system can be modified by adding delay factors to the 

analysis and synthesis filter banks (see Fig. 2.4(b)). The same delay factor z-PI is 



applied to each analysis filter. Similarly, the delay factor z - P a  is applied to each 

synthesis filter. Now, the input-output transfer function is T ( z )  = Nz-P where 

p = pl + p2. Note that the alias-free nature of any subband system is preserved after 

applying the delay factors z-P1 and z-P2 to the analysis and synthesis filter banks 

respectively. In a practical approach, the delay factors are chosen so that causal filter 

banks result. 

Fig. 2.4 Application of delay factors 

The inherent difference between transmultiplexers and subband systems concern- 

ing the application of delay factors lies in the greater freedom that exists in choosing 

the delay factors for subband systems. This returns us to the principle that any 

crosstalk-free transmultiplexer with the same input-output transfer functions for ev- 

x 

ery pair of terminals can be converted to an alias-free subband system. 
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2.1.5 Network Duality 

Transmultiplexers and subband systems are configured by cascading two subsys- 

tems in different orders. One is a multi-input, single-output system that comprises a 

parallel connection of sampling rate expanders and filters. The other is a single-input , 

multi-output system consisting of a parallel connection of filters and sampling rate 

compressors. Digital network transposition transforms one subsystem into another. 

The process of network transposition involves interchanging the roles of the input and 

output, reversing the direction of all branches and replacing branch operations by their 

duals [I]. Since a filter is its own dual and sampling rate expansion/compression are 

dual operations [I], the two subsystems are transposes of each other. Furthermore, 

since a network and its transpose are duals, the two structures are dual systems. The 

two dual systems are cascaded with each other to yield two complementary multirate 

systems, namely, the transmultiplexer and the subband system. 

By performing network transposition, we see that the duals of subband systems 

and transmultiplexers are again subband systems and transmultiplexers with the filter 

banks interchanged. Consider a subband system which is in general linear and time- 

varying. The dual subband system is also linear and time-varying but is described 

by different aliasing functions than the original system. A frequency shifted version 

of the aliasing function Tl(z), namely, T / (~w' ) ,  of the original system is equal to 

the aliasing function TN-1(z) of the dual system. The subband system becomes 

time-invariant when aliasing is cancelled and is described by an input-output transfer 

function T(z). Therefore, the dual will also be alias-free and have the same T(s) [I]. 
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Therefore, as shown in [18], swapping the filter banks preserves aliasing cancellation 

and maintains the same input-output transfer function. 

Now, consider a transmultiplexer which in general is not crosstalk-free. The dual 

transmultiplexer is also not crosstalk-free. The input-output transfer functions Tkk(z) 

(k = 0 to N - 1) are the same for both systems. The crosstalk functions Tkl(r) in 

the original network (relating the output at terminal 1 to the input at terminal k) 

are equal to the functions Tlk(z) of the dual network (relating the output at k to the 

input at 1). If a transmultiplexer is crosstalk-free, the dual transmultiplexer formed 

by swapping the filter banks is also crosstalk-free and has the same input-output 

transfer functions as the original system. 

The swapping property which addresses the question of whether or not exchanging 

the positions of the filter banks preserves the reconstruction property was discussed 

in [18] for subband systems. We have shown that the same property holds for a 

transmultiplexer with no specific assumptions about the filters or about N. Moreover, 

we have provided the interpretation in terms of network transposition as opposed to a 

direct mathematical proof. A mathematical proof starts by swapping the filter banks 

of a crosstalk-free transmultiplexer and examines the new matrix product 

B ( Z ) A ~ ( Z )  = ( A ( z ) B T ( z ) ) ~  

= T ( ~ ~ ) I  , 

thereby establishing the swapping propertyt. 

t The  proof assumes that  the input-output transfer function is the same for each pair of corre- 
sponding terminals. I t  can be extended to  the case of having different input-output transfer 
functions. 



2.2 Perfect Reconstruction Property 

Given the requirements on A(z) and B ( z )  for transmultiplexers and subband 

systems as in Eqs. (2.4) and (2.8), methods to achieve perfect reconstruction are 

discussed. First, the two band case is considered. Then, we proceed to the case of 

arbitrary N. 

2.2.1 Two Band Case 

In two band systems, the classical solution is to use quadrature mirror filter banks 

(QMF) [4][19]. These banks consist of a lowpass/highpass filter pair whose magnitude 

responses are symmetric about the quarter sampling frequency w / 2 .  A one prototype 

QMF system [4] is described by the following filter banks. 

For a transmultiplexer, the common input-output transfer function is 

This results in the relationship x i ( z )  = ~ T ( ~ ) x ~ ( z )  for i = 0 and 1. In the comple- 

mentary subband system, ~ ( z )  = ~ T ( Z ~ ) X ( Z ) .  TO make T(z) = cz-P and thereby 

achieve perfect reconstruction, the even-indexed samples of the impulse response of 

~ ' ( 2 )  must be zero except for a reference coefficient at a time index of 2 p .  The 

odd-indexed samples of H ~ ( z )  are arbitrary and can be used to shape the frequency 

response of the filter. A filter with regular zero crossings in its impulse response 
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except for a reference coefficient is called a Nyquist filter. In this case, H2(z)  is a 

Nyquist filter with a zero crossing interval equal to two samples. 

The two band system described by Eq. (2.10) can be modified to include two 

prototypes H(z)  and G(z) as follows. 

In the general case, this is not strictly a QMF bank since the magnitude responses 

of the lowpass/highpass pair H(z)  and G(-z) may not be symmetrical about n/2. 

However, any two filters H(z)  and G(z) such that H(z)G(z) is a Nyquist filter with 

a zero crossing interval of two samples results in perfect reconstruction. In addition, 

methods to get a lowpass H ( z )  and G(z)  are given in [6 ] [7 ] .  A special case of Eq. (2.12) 

arises when G(z) = ~ ( z - I ) .  The resulting system, known as a Smith-Barnwell 

structure [5 ] ,  requires a Nyquist filter ~ ( z ) H ( z - l )  to achieve perfect reconstruction. 

A lowpass Nyquist filter must be factored into its minimum and maximum phase 

components. 

Note that the descriptions in Eqs. (2.10) and (2.12) can lead to noncausal filters. 

However, given the previous discussion on the application of delay factors, we can 

modify any noncausal bank to make it causal such that perfect reconstruction is 

preserved. 

2.2.2 The N B a n d  Case 

The perfect reconstruction condition for the N band case depends on the product 

of A(z)  and B(z)  (one of them being transposed). The methods proposed to configure 
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the filter banks that are based on a matrix formalism and on lossless structures impose 

a specific structure on A(z). Then, B(z)  is determined given A(z) thereby rendering 

a particular relationship between Bk(z) and Ak(z). Modulated filter banks specify 

Ak(z) and Bk(z) in terms of a lowpass prototype and a modulating function. It is 

the characteristics of the prototype and the modulating function that ensure perfect 

reconstruction. 

2.2.2.1 Ma t r i x  Formal ism 

The use of a matrix formalism in determining the filter banks has been described 

in the context of a subband system in [6]. The method comprises two stages. The 

first stage introduces a way of directly solving for the synthesis filter bank in terms of 

the analysis bank such that the system described by Eq. (2.8) is satisfied. This results 

in the cancellation of aliasing. Given the resulting input-output transfer function, the 

second stage is devoted to designing the filters to get perfect reconstruction. 

In the first stage, a polyphase matrix is defined as P ( z )  = ;FA~(Z)  where the 

entries of F are F(m,n)  = Wmn for m ,n  = 0 to N - 1. Then, the entries of P(z)  

are P( i ,  j )  = z - ~ A ~ ~ ( z ~ )  for i, j = 0 to N - 1 where A ~ ~ ( z * )  is the j th polyphase 

component of Ai(z ) .  As opposed to AT(*), P ( z )  has the advantage of being purely 

real and exhibits no redundancy (in AT(z), each filter coefficient appears N times). 

T -  It is shown in [6] that choosing Bk(z) such that [BO(z) Bl(z) . . . BN-l ( z ) ]  - 

[l 1 . a .  l ] c T ( r )  where C(z)  is the cofactor matrix of P ( r )  results in an  alias- 

free subband system with k(z) = [Det P(z)]X(z).  The abbreviation Det refers to 

determinant. 



At the second stage, the analysis filters are designed to reduce Det P(z) to 

the form cz-P. Therefore, a specific restriction on A ( z )  is imposed to ensure that 

Det P ( z )  = cz-P. A method to design FIR filters of equal length L to satisfy the 

determinant constraint is discussed in [6][7]. A total of N - 1 of the analysis filters 

Ak(z)  are each designed separately with a length L that is sufficient to get an accept- 

able frequency response. Also, N - 1 of the coefficients of the remaining filter are 

chosen thereby leaving L - N + 1 unknown coefficients. Note that there are L - N + 1 

nonzero coefficients in Det P(z ) .  Therefore, a linear system of equations that solve 

for the L - N + 1 coefficients of the remaining filter results such that Det P ( z )  is 

reduced to the form cz-P. Note that the constraint L > N - 1 is necessary to ensure 

that the determinant of C(z)  is not zero. After designing the analysis filters, Bk(z)  

is determined as described above. 

Although perfect reconstruction is accomplished by this method, there is no direct 

control of the frequency response of one of the filters. Moreover, the filters Bk(z)  are 

generally longer than the Ak(z) 161. This approach based on a matrix formalism 

is applicable to the configuration of perfect reconstruction transmultiplexers. The 

combining filters Ak(z) and the separation filters Bk(z)  can be obtained as described 

above. However, delay factors may have to be applied to the separation filters to 

achieve perfect reconstruction in a transmultiplexer. 

2.2.2.2 Lossless Structures 

A matrix function G(z)  is said to be lossless [S] if it is stable and satisfies the 
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relation 

where the superscript H denotes the complex conjugation of the coefficients of each 

entry of the matrix followed by transposition and I is the identity matrix. In partic- 

ular, this means that G is unitary on the unit circle z = ejw. It is known that the 

scattering matrix of any lossless multiport analog network is unitary [20]. Hence, the 

term lossless has been used due to describe any G ( z )  which satisfies Eq. (2.13) and 

is hence, unitary on the unit circle. In the case of a scalar function, G(z) is lossless 

if it is stable and allpass. 

In [8], the lossless property is imposed on A(r)  in order to get a set of syn- 

thesis filters Bk(z)  = CZ-PA~(Z-')  for a perfect reconstruction subband system. 

It can be shown that by making A(z)  lossless, a set of separation filters given by 

Bk(z)  = C Z - ~ ~ A ~ ( Z - ' )  results in a perfect reconstruction transmultiplexer. A de- 

sign procedure in [8] leads to a set of FIR bandpass filters Ak(z) such that A(z )  is 

lossless. First, the filters Ak(z) are derived from a cascade of lossless building blocks 

composed of the product of a unitary matrix and a diagonal matrix whose entries are 

delay elements. The entries of the unitary matrices are jointly optimized to yield a 

set of bandpass filters Ak(z) .  By examining the simple relationship between Bk(z)  

and Ak(z),  we observe that their magnitude responses are identical. Moreover, the 

number of coefficients of the FIR Bk (z) is the same as that of the FIR Ak(z).  

2.2.2.3 Modulated Filter Banks 

In modulated filter banks, all the filters are frequency shifted versions of a low- 



pass prototype. This gives a set of bandpass filters whose impulse responses are of the 

form h ( n )  cos (wn  + 7) where h ( n )  is a lowpass prototype. The modulating function 

is described by a center frequency w and a phase factor y. For the case of distinct 

center frequencies, the prototype is bandlimited such that there is spectral overlap 

only between adjacent bandpass filters. Hence, any output signal at terminal 1 in 

a transmultiplexer will experience crosstalk only from input signals at adjacent ter- 

minals 1 - 1 and 1 + 1. The other crosstalk functions are zero since the magnitude 

responses of the corresponding bandpass filters are nonoverlapping. In a subband 

system, the only aliasing terms are those due to spectral overlap. The other aliasing 

terms are zero due to the bandlimitedness of the lowpass prototype. The crosstalk 

and aliasing terms due to spectral overlap are cancelled by fixing the parameters of 

the modulating function. This gives crosstalk-free transmultiplexers and alias-free 

subband systems with bandlimited filters. Finally, perfect reconstruction is achieved 

by satisfying the Nyquist criterion for zero intersymbol interference. In a practical 

situation, the lowpass prototype is designed to have a sufficiently high stopband at ten- 

uation and such that a Nyquist response is either approximately or exactly achieved. 

Modulated filter banks have the advantages of allowing for complete control of the 

frequency responses of the bandpass filters through the design of a lowpass prototype 

and being computationally efficient to implement . 

The modulated filter banks in [9][10][11] were originally proposed for a subband 

system. The filter banks in [9][10] are applicable in a transmultiplexer. The system 

in [9] is not a regular structure in that the center frequencies are not equally spaced 

and two prototypes of different bandwidths are used. The system in [lo] uses one 
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prototype h(n )  which is bandlimited to no more than T I N .  Also, the center frequen- 

cies are odd multiples of n /2N .  Therefore, the center frequencies are equally spaced 

and exactly the same bandwidth is allocated to each input signal. 

2.3 Focus of Research Problem 

The investigation concentrates on modulated filter banks in a transmultiplexer. 

The main purpose is to find alternative configurations of modulated filter banks to 

those already described in the literature. This goal is achieved through the formu- 

lation of a synthesis procedure. The synthesis procedure allows for a systematic 

development in finding modulated filter banks. We start with a set of assumptions 

that form a characterization of the filter banks. These assumptions allow for more 

generality in describing the filters than in previously configured systems. Then, spe- 

cific relationships among the parameters of the filters are derived such that crosstalk 

is cancelled and the input-output transfer function between every pair of correspond- 

ing terminals is the same. This constructive approach results in the configuration of 

new crosstalk-free transmultiplexers. The intersymbol interference is suppressed by 

designing the lowpass prototype. 

The general nature of the starting assumptions provides greater flexibility in spec- 

ifying the filter banks as compared to the existing systems. In particular, the assump- 

tions made are as follows: 

1. The filter banks consist of a set of bandpass filters that are modulated versions 
of a lowpass prototype. 



2. The impulse responses of the filters are described by the impulse response of 
the prototype and three free parameters, namely, a center frequency, phase 
factor and delay. 

3. Equally spaced center frequencies are used. In one case, all the frequencies 
are distinct. In another case, the center frequencies are allowed to repeat such 
that the same center frequency is used for two bands. 

Note that a perfect channel is assumed. A discussion of channel distortion is given 

in Chapter 6. 

Assumption 2 provides an extra free parameter, namely, a delay factor in describ- 

ing the impulse responses of the bandpass filters as compared to existing systems 

that only allow for a center frequency and phase factor. The idea of permitting ten- 

ter frequencies to repeat allows for two signals to be sent at the same frequency as 

compared to existing schemes in which all the center frequencies are distinct. Addi- 

tional freedom is provided over the existing N band modulated banks that have the 

multirate structure of Fig. 2.1, use one lowpass prototype to derive a set of bandpass 

filters and maintain equally spaced center frequencies. 

The central objective of formulating a synthesis procedure involves the following 

steps. 

1. The bandwidth of the lowpass prototype is determined such that (1) spectral 
overlap occurs only between bandpass filters centered at adjacent center fre- 
quencies and at the same center frequency and (2) the set of bandpass filters 
fill up the entire frequency range (0 to n). 

2. Relationships among the three free parameters (center frequencies, phase fac- 
tors and delays) are derived such that the resulting transmultiplexers have the 
following properties. 

(a) The input-output transfer function is the same for every pair of corre- 
sponding terminals. 

(b) The crosstalk components in the output data signal that arise from 
other data signals due to the sharing of bandwidth are eliminated. 



The synthesis procedure is developed based on a bandlimited lowpass prototype. 

A filter H(z)  is a bandlimited lowpass prototype if ~ ( e j ~ )  is exactly equal to zero 

in the stopband region ws < w < T. The frequency characteristic of a general 

bandlimited lowpass prototype with a tapered transition band is shown in Fig. 2.5. 

In Step 1, we determine the stopband edge ws (thereby determining the bandwidth 

of the prototype) for the purposes of restricting spectral overlap and allowing for full 

bandwidth utilization. For systems in which all the center frequencies are distinct, 

an output signal at a particular terminal will experience crosstalk from input signals 

transmitted at adjacent center frequencies. For systems with repeated frequencies, 

there is (1) partial spectral overlap between bandpass filters centered a t  adjacent 

center frequencies and (2) complete spectral overlap between bandpass filters centered 

at the same center frequency. Then, an output signal at a particular terminal will 

experience crosstalk from input signals transmitted at adjacent center frequencies and 

another signal sent at the same center frequency. 

Fig. 2.5 Frequency characteristic of a general bandlimited 
lowpass prototype 

Step 2 consists of two parts each devoted to forming relationships among the 

center frequencies, phase factors and delays. First, the transfer function between 

each pair of corresponding terminals is made to be the same. The transfer function 
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is brought to a form which allows us to design a lowpass prototype such that the 

intersymbol interference is suppressed (discussed in later chapters). Also, the trans- 

multiplexers can be converted into subband systems which split the entire spectrum 

of the input signal into N frequency bands. In Step 2(b), the crosstalk components 

due to spectral overlap are cancelled. The crosstalk between signals that do not share 

any bandwidth is zero for bandlimited filters. 

The next chapter gives the synthesis procedure in detail. Since bandlimited filters 

(stopband response is exactly zero) cannot be designed, a natural question concerns 

how the design of a practical lowpass prototype can be performed. A practical low- 

pass prototype is distinguished from a bandlimited prototype in that the frequency 

response of the practical filter only approximates the characteristic shown in Fig. 2.5. 

In particular, the practical prototype has a stopband response which is small but not 

exactly zero (stopband attenuation is high but not infinite). In Chapters 4 and 5, 

new design methods for a practical FIR lowpass prototype are developed with the 

aim of suppressing both intersymbol interference and crosstalk. 



Chapter 3 Transmultiplexer Synthesis 

This chapter discusses the synthesis procedure for modulated banks in a trans- 

multiplexer. The first step is to state the general assumptions. This includes the 

specification of the impulse responses of the combining and separation filters in terms 

of a lowpass prototype, center frequency, phase factor and delay. The synthesis proce- 

dure starts by imposing a bandwidth constraint on the lowpass prototype. Then, the 

input-output transfer function and the crosstalk functions are examined. This leads 

to new crosstalk-free transmultiplexers. The last portion of this chapter exclusively 

deals with two band transmultiplexers. Finally, the complementary subband systems 

that emerge from the synthesized transmultiplexers are discussed. 

3.1 Filter Specification 

In developing a synthesis procedure, the first assumption characterizes the filter 

banks. We confine all the filters to be modulated and delayed versions of one ban- 

dlimited lowpass prototype h(n) .  This condition will be relaxed later to allow for two 

prototypes. The impulse responses of the combining filters Ak(z) and the separation 

filters Bk(z) are parameterized by a center frequency (wk),  phase factor (ak or Pk) 
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and delay (nk or pk). Their impulse responses are given by 

ak(n) = h(n - nk)  cos [wk(n - nk) + ak] 

and 

bk(n) = h(n + pk) cos [wk(n + pk) + P k l  

respectivelyi. In the z-transform domain, Ak(z) and Bk(z) are given by 

and 

The transmultiplexers have N bands. Also, N is the sampling rate expan- 

sion/compression factor. 

We further assume that the center frequencies wk are equally spaced and lie 

between 0 and a (inclusive). In addition, two types of systems are considered. In one 

type, all the-center frequencies are distinct. In the other case, center frequencies are 

repeated (with the exception of 0 and T) in that the same frequency is used for two 

bands. Finally, note that the synthesis procedure is developed given that no channel 

distortion is present. 

3.2 Bandwidth Constraints 

The first step in the synthesis procedure is to impose a bandwidth constraint on 

the lowpass prototype. Consider the type of system in which all the center frequencies 

t Depending on the signs of nk and pk, either a delay or advance is used. In the remainder of the 
thesis, we refer to nk and pk as delay factors regardless of whether they are positive or negative. 



are distinct. The bandwidth of the bandlimited lowpass prototype h(n)  (stopband 

response is exactly zero) is selected such that spectral overlap exists only between 

filters centered at adjacent center frequencies. In addition, the entire range 0 to n 

is utilized. Given h(n), there are N  bandpass filter responses centered at different 

frequencies and having the same bandwidth. The minimum bandwidth of the N  

bandpass filters such that their frequency responses are mutually exclusive (no spec- 

tral overlap), an equal bandwidth is allocated to each input and the full frequency 

range 0 to n  is covered is T I N .  Moreover, the center frequencies are odd multiples of 

n / 2 N .  This translates to a minimum bandwidth of n / 2 N  for h(n). Spectral overlap is 

restricted to bandpass filters centered at adjacent frequencies by allowing the lowpass 

prototype to have a bandwidth of no more than 100 percent in excess of its minimum 

bandwidth. The stopband of the bandlimited lowpass prototype h(n) extends from 

w, to n  where n / 2 N  5 w, 5 n / N .  

Now, consider the type of system in which the center frequencies repeat. Two 

signals are transmitted at every repeating center frequency (0 and n excluded). The 

minimum bandwidth of the bandpass filters which allows for filters centered at dif- 

ferent frequencies to have mutually exclusive frequency responses is 2nlN.  This 

translates to a minimum bandwidth of T I N  for h(n). Moreover, there are two pos- 

sible sets of center frequencies. In one set, two of the center frequencies are 0 and n  

and the other repeating frequencies are multiples of 2nlN.  Another possibility is to 

have all the frequencies repeat and be odd multiples of T / N ~ .  The idea is to allow for 

t We have implicitly considered the case when N is even. When N is odd, one of the center 
frequencies is 0 or 7~ with the remaining center frequencies repeating. The spacil~g between 
adjacent frequencies is 2 ? r / N .  The minimum bandwidth of the filters is the same as for .I' even. 



spectral overlap only between filters centered at the same frequency and at adjacent 

frequencies. For both sets of center frequencies, this is possible if the lowpass proto- 

type h(n) is bandlimited to no more than 100 percent over the minimum bandwidth. 

The stopband of h(n) extends from ws to n where w/N 5 us 5 2nlN.  

The bandwidth constraint is different for repeated and distinct center frequencies. 

Given the above constraints on us, the development of the synthesis procedure evolves 

by assuming that the lowpass prototype h ( n )  has a stopband response that is exactly 

zero (bandlimited prototype). Later, we will consider systems with practical filters. 

We have established three sets of equally spaced center frequencies. For the case 

of repeated center frequencies, the two sets are 

2n 2n 4n 4n 2n 2a 
Set 1 : 0, x, F, ;ii, x, . - - ,  IT--,  n - - ,  n 

N N 

and 

w n 37r 3n n= n 
Set 2 :  F, T, z, T, . e m ,  n - F ,  n - x  . 

Both Sets 1 and 2 ensure complete bandwidth utilization (frequency range 0 to w 

is covered) given a lowpass prototype with a stopband frequency w, > TIN. Also, 

spectral overlap is restricted to filters centered at the same frequency and at adjacent 

center frequencies if w, < 2nlN. Note that for Sets 1 and 2, it is assumed that N is 

even. Later, we will see that this is necessary for realizing integral delay factors. 

The set of N distinct equally spaced center frequencies is given by 

n 3n 5n 7n 71- 
Set 3 : - 

2N'  3' 3' 5' ?I--- 2N 

The center frequencies of Set 3 are the same as those in [lo]. Complete bandwidth 

utilization is achieved given a lowpass prototype with a stopband edge us >_ n/2N. 
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Also, spectral overlap is restricted to bandpass filters centered at adjacent frequencies 

if ws 5 TIN. 

3.3 Input-Output Transfer Function 

The next step is to make the input-output transfer function the same for every 

pair of corresponding terminals. The kth input-output terminal pair has a transfer 

function given by 

The strategy will be to try to make the transfer function ~ ~ ~ ( 2 ~ )  independent of k. 

To this end, it is assumed that nk - pk = s for every k. The expression for the input- 

output transfer function consists of three terms. Note that the last term in Eq. (3.5) 

will be zero for center frequencies sufficiently away from 0 and n (the spectra in the 

H(.) terms do not overlap). Specifically, this will be true for wb 5 wk 5 n - wb where 

wb is the maximum bandwidth of the lowpass prototype (n/N for distinct center 

frequencies and 2a lN for repeated center frequencies). For the center frequencies 

near 0 or n,  choosing ak - Pk to be an odd multiple of n/2 will suffice to set the 

last term to zero. We now formulate two sets of conditions for identical input-output 

transfer functions. 



Difference Criterion 

For the difference criterion, the difference between any two center frequencies is 

constrained to be a multiple of 27rJN. We first note that the frequency response of 

T ~ ~ ( z ~ )  is periodic in 27rJN. Equation (3.5) remains unchanged if, in its first two 

terms, wk is replaced by wl = wk + 2mnJN (where m is an integer) and n k  - pk = s 

is a multiple of N (recall that the last term is zero from the preceding discussion). 

Then, the same transfer functions at terminals k and 1 are achieved by adhering to 

the following set of rules. 

1. If a particular wk does not satisfy the inequality wb 5 wk 5 n-wb, then crk-Pk 
must be an odd multiple of nJ2. The same restriction holds for terminal I .  

2. The phases are chosen such that a k  + Pk = a/ -I- Pl. 

3. The delay factors are chosen such that nh - pk = nl - pl. Moreover, both 
nk - pk and nl - pl are multiples of N. 

The above rules generate a reduced form of Tkk(zN) = ~ ~ ~ ( n ~ )  as given by 

Sum Criterion 

It can be shown that if we confine the sum of the center frequencies wk + wl = 

2m7rJN (where m is an integer), another set of rules for which Tkk(zN) = Tl1(zN) 

emerges as follows. 

1. If a particular wk does not satisfy the inequality wb 5 wk 5 7r-wb, then a k  -Pk 
must be an odd multiple of 7rJ2. The same restriction holds for terminal 1. 

2. The phases are chosen such that crk + Pk = -(al + P I ) .  



3. The delay factors are chosen such that nk - pk = nl - pi. Moreover, both 
nk - pk and ni - pl are multiples of N .  

This generates a reduced form for the input-output transfer function as above. 

Center Frequencies 

The center frequencies of Set 1 and Set 2 satisfy both the difference and sum 

criteria. In fact, the conditions for the two criteria are equivalent for the frequencies 

of Sets 1 and 2. Any two center frequencies of Set 3 satisfy either the difference or the 

sum criterion. At this stage, we confine ak + Pk to be a multiple of n for Sets 1, 2  and 

3. Appendix A elaborates on this aspect and justifies this choice. For the end center 

frequencies (those that do not satisfy the inequality wb 5 wk 5 n - wb), the phase 

difference ak - Pk is constrained to be an odd multiple of n / 2 .  Combining this with 

the constraint on ak + Pk gives the condition that the phases ak and Pk are of the 

form (2r + l)n/4, where r is an integer, for the end frequencies. The end frequencies 

are 0 and n for Set 1, n / N  and T - n / N  for Set 2  and n/2N and n - T / ~ N  for Set 3. 

3.4 Analysis of Crosstalk 

This section analyzes the crosstalk functions for signals sent at adjacent center 

frequencies and the crosstalk functions for signals sent at the same center frequency. 

The crosstalk functions associated with signals whose allocated bandwidths do not 

overlap are equal to zero. We will adhere to the restrictions generated in Section 3.3 for 

the input-output transfer function and formulate additional conditions for cancelling 

crosstalk. The case when the center frequencies repeat and the case when they are 



distinct are considered separately. To start, we express the general crosstalk function 

for signals transmitted at two center frequencies wk and wl as 

The crosstalk function ~ ~ ~ ( 2 ~ )  represents the contribution of the input x k ( z N )  

(transmitted at wk) to the output k l ( r N ) .  In the sequel, the four terms of which 

~ ~ ~ ( 2 ~ )  is comprised of are referred to as crosstalk terms. 

3.4.1 Crosstalk: Different Center Frequencies of Sets 1 and 2 

Consider the case of center frequencies belonging to Sets 1 and 2. These fre- 

quencies are multiples of TIN. For now, it is assumed that the different positive 

frequencies wk and wl are in the closed interval [2r/N, r - 2r/N]. Two adjacent 

center frequencies wk and wl are related by wl - wk = 2malN where m = f 1. Given 

two adjacent frequencies, the last two crosstalk terms of Eq. (3.7) are zero due to 

the bandlimitedness of H(z). By substituting the relationship wl - wk = 2mr /N  

(m = f 1) in the first two terms of Eq. (3.7),  noting that e J W k  = Wp where p is a 

multiple of 112 and performing algebraic manipulation to give identical crosstrrms in 
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H(-), we get a simplified expression for the crosstalk function as 

W ~ ( ~ L - P ~ ) H ( ~ W - ~ + P ) H ( & - ~ + P  11 - 
From Eq. (3.8), we develop a general rule relating the phases, delays, m and p as 

given by (discussion in Appendix B) 

Since m = f 1, we have considered crosstalk due to spectral overlap between signals 

transmitted at any two adjacent center frequencies in the closed interval [27r/N, T - 

2a/N]. Then, Eq. (3.9) becomes 

In seeking solutions to Eq. (3.10), we-first note that p is either an even or odd 

multiple of 1/2 thereby making f 1 - 2 p  odd or even respectively. Equation (3.10) de- 

picts a general relationship between two unknowns ak +PI and n k  -pi. In establishing 

particular relationships between these two unknowns, we express nk -pi as a rational 

multiple of N,  namely aN/b where a and b are relatively prime. To realize integral 

delay factors, aN/b must be an integer thereby imposing a restriction on N or the 

number of bands to be an integral multiple of b. To avoid excessive restrictions on N, 

b must be kept to a minimum. We consider the cases in which b = 1 (no restriction 

on N )  and b = 2 (N is even). This gives two different types of solutions to Eq. (3.10) 

which are necessary since two signals are sent with the same center frequency. Also, 

N is constrained to be even as a result. 
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3.4.1.1 Set 1 

In Set 1 ,  p is an even multiple of 112 (center frequencies are even multiples of 

T I N ) .  The two types of solutions to Eq. (3.10) are given below. 

Solution One 

1. The delays are chosen such that nk - pl is a multiple of N .  

2. The phases are chosen such that crk + PI is an odd multiple of n / 2 .  

Solution Two 

1 .  The delays are chosen such that nk - pl is an odd multiple of N/2 .  

2. The phases are chosen such that crk + PI is a multiple of n.  

The only remaining crosstalk due to spectral overlap occurs between the end 

center frequency wk = 0 and wl = 2n/ N .  Retaining the restriction on crk and Pk for 

the end center frequencies and the difference in the delay factors to be as above, two 

ways of eliminating crosstalk are as follows. 

1. The delays are chosen such that nk - pl and nl - pk are multiples of N. The 
phases crk and Pk are either f 7r/4 or f 3 ~ 1 4 .  The phases crl and PI are odd 
multiples of n / 2 .  

2. The delays are chosen such that nk - pl and nl - pk are odd multiples of N / 2 .  
The phases crk and Pk are either f n/4  or f 3 ~ 1 4 .  The phases crl and PI are 
multiples of T .  

The same techniques result in cancelling crosstalk between signals sent at the other 

center frequencies of n  - 2n/N and n.  
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3.4.1.2 Set 2 

For Set 2, p is an odd multiple of 1/22 (center frequencies are odd multiples of 

TIN).  A type of solution to Eq. (3.10) is given below. 

Solution 

1. The delays are chosen such that nk - pi is a multiple of N/2. 

2. The phases are chosen such that a,, + PI is an odd multiple of n/2. 

For the end center frequency wk = TIN,  spectral overlap occurs with wl = 3nlN. 

By examining the crosstalk function, it is found that the elimination of crosstalk is 

feasible if both of the conditions below are satisfied. 

1. The delays are chosen such that nk - pl and nl - pk are multiples of N/2. 

2. The phases are chosen such that (ak ,  P I )  and (Pk, c q )  are (.rr/4,n/4 & mn), 
( - ~ / 4 ,  -7r/4 & m ~ ) ,  (3~ /4 ,3n /4  & mx) or ( - h / 4 ,  -3n/4 f mn) where m is 
an integer. 

The same conditions result for cancelling the crosstalk between signals sent at a center 

frequency of .rr - 3 r / N  and the other end frequency .rr - T I N .  

Although the preceding analysis generates only one type of solution, there are in 

fact two embedded solutions that arise by making the difference in the delay factors 

an odd or even multiple of N/2. 

3.4.2 Crosstalk: Repeated Center Frequencies 

Here, we examine the crosstalk function associated with two signals transmitted 

with the same center frequency. We return to the original expression for the crosstalk 
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function as in Eq. ( 3 . 7 )  and let wl be equal to wk to get 

+ 2 cos (ak - p1) ~ ( e j ~ ~  z w - ~ )  ~ ( e - j W k  z  w - ~ ) ]  . 
(3 .11)  

In this specific case, the crosstalk function T k l ( z N )  is comprised of three crosstalk 

terms. For 2n/N 5 wk 5 n - 2n/N, the third crosstalk term in the above equation 

is zero due to the bandlimitedness of H ( z ) .  The crosstalk function is reduced to 

We have many degrees of freedom with which to force a zero crosstalk function. 

To maintain compatibility with the types of solutions formulated earlier, we restrict 

the differences in the delays to be multiples of N/2 and the sum of the phases to be 

multiples of ~ / 2 .  Otherwise, we admit the situation of deriving conditions which when 

united with the specific solutions in Sections 3.3 and 3.4.1 become contradictory in 

that no combination of the parameters would satisfy the entire set. Given the delays 

and phases as above, the analysis procedure investigates the question of which center 

frequencies can be utilized for transmitting more than one signal. The details are 

laid out in Appendix C. Given the derivations in Appendix C, we have the following 

restrictions on the center frequencies. 

1. If nk - p i  is a multiple of N and crk + PI is an odd multiple of n/2, the center 
frequency must be a multiple of TIN. 

2 .  If nk - pl is an odd multiple of N/2 and ak + PI is a multiple of n, the center 
frequency must be an odd multiple of n /N.  



3 .  If nk - pl is an odd multiple of N / 2  and crk + PI is an odd multiple of w / 2 ,  the 
center frequency must be an even multiple of T I N .  

The crosstalk cannot be made zero if nk - pl is a multiple of N and crk + PI is a 

multiple of w. 

It was initially established that the repeated center frequencies are multiples of 

T I N .  Here, we have an additional result that fixes these frequencies. It has been 

shown that with appropriate limitations on the delays and phases, the repeated center 

frequencies must be multiples of T I N  to ensure zero crosstalk. 

The preceding analysis is specifically devoted to the center frequencies in the 

closed interval [ 2 n / N ,  n  - 2 n / N ] .  The remaining case that must be considered is the 

end center frequency n / N  in Set 2.  Two signals can be transmitted at this frequency 
- 

without crosstalk subject to both conditions given below 

1. The delays are chosen such that nk - pl is an odd multiple of N / 2 .  

2.  The phases are chosen such that (CXk,Pl) = ( w / 4 , - ~ / 4  or 3 w / 4 ) ,  
( - w / 4 , w / 4  or - 3 a / 4 ) ,  (37~14, -3n /4  or w / 4 )  or ( - 3 ~ / 4 , 3 w / 4  or - w / 4 ) .  

The same conditions hold for the other end frequency of w  - w / N  in Set 2. 

3.4.3 Distinct Center Frequencies of Set 3 

Now, we consider the distinct center frequencies of Set 3. Crosstalk due to spectral 

overlap occurs only between two signals transmitted at adjacent center frequencies. 

In Set 3, let two adjacent center frequencies be given by wk = (2r  + l ) n / 2 N  and 

wl = (2r  + 3 ) w / 2 N  for r  = 0,1, .  . . , N  - 2 .  By substituting these frequencies in 

Eq. (3 .7 ) ,  invoking the bandlimitedness assumption for H ( z )  and performing algebraic 
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manipulation just as in Section 3.4.1 gives a relationship similar to Eq. (3.10) as 

Note that the same relationship holds between cq + Pk and n l  - p k .  

Just like Eq. (3.10), Eq. (3.13) depicts a general relationship between two un- 

knowns crk + P1 and n k  - p l .  In contrast to the situation of having repeated center 

frequencies, only one type of solution to Eq. (3.13) is necessary since the center fre- 

quencies are distinct. This is provided without any restriction on N by setting n k  - p i  

to be a multiple of N. However, we can maintain the principle of making n k  - pl a 

rational multiple of N and impose the mild limitation of an even N to get a second 

type of solution (similar to the approach in Section 3.4.1). The two types of solutions 

lead to two different transmultiplexers. 

Solution One 

1. The delays are chosen such that n k  - pl and n l  - pk are multiples of N. 

2. The phases are chosen such that a k  + PI and 01 + Pk are odd multiples of ~ / 2 .  

Solution Two 

1. The delays are chosen such that n k  - p i  and n l  - pk are odd multiples of N/2. 

2. If r is odd, cuk + PI and q + Pk are odd multiples of n/2. If r is even, ak + PI 
and a1 + Ph are multiples of n. 

3.5 Synthesized Transmult iplexers 

The specific solutions proposed in Sections 3.3, 3.4.1, 3.4.2 and 3.4.3 comprise 

a set of sufficient conditions for an N band crosstalk-free transmultiplexer with an 
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identical input-output transfer function for every pair of corresponding terminals. 

Given these solutions, we establish values for the free parameters and synthesize five 

different types of transmultiplexers. The first three use repeated center frequencies 

(Set 1 or 2). The other two use the distinct frequencies of Set 3. In four of the five 

systems, it is necessary to implement delays which are odd multiples of N/2. For 

these cases, the parameter N is constrained to be even. 

3.5.1 System T1 

In the first system T I ,  we use center frequencies in Set 1. The combining and 

separation filters corresponding to the end frequency wo = 0 are associated with 

parameters no = po = 0 and CYO = -PO = ~ / 4 .  The next center frequency, w l  = 

w2 = 2.r/N is used to transmit two signals. Crosstalk is eliminated between these 

two signals and with the signal sent at zero frequency by setting nl = pl = N/2, 

a1 = - P I  = T, n2 = p2 = 0 and a2 = -,& = -7r/2. Now, we proceed to the 

frequency wg = wq = 4nlN. To cancel crosstalk between signals sent at 2x/N and 

~ T / N ,  we set ng = pg = 0, "3 = -P3 = 0, n4 = p4 = N/2 and 0 4  = -P4 = 3 ~ 1 2 .  

These parameters eliminate crosstalk between the two signals sent at 4 r / N  due to 

the compatibility in the rules formed for cancelling crosstalk due to spectral overlap 

between adjacent and repeated frequencies. We continue this procedure in a sequential 

fashion for each center frequency. This establishes the combining and separation filters 
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of T 1  as follows: 

, n  n- 
ao(n) = h(n) cos - bo ( n )  = h(n) cos - 

4 f .  4 

27r 1 a2(n) = h(n), sin -n 
N 

2 n 
b2(n) = -h(n) sin -n 

N 
4n 4n ( a3(n) = h(n) cos -n 
N 

b3(n) = h(n) cos -n 
N 

It is noted that for TI, the delay elements of N/2  alternate between the cosine and 

sine carriers and that the separation filters associated with the sine carriers have a 

minus sign associated with h(n). It is also observed that a delay element of N/2 is 

associated with a center frequency of n only if N = 2,6,10, . . .. The input-output 

transfer function for any pair of corresponding terminals is 

where v(n) is the inverse z-transform of ~ ~ ( 2 ) .  

3.5.2 System T2 

In the second system T2,  we use center frequencies in Set 2. The combining 

and separation filters for the signals sent with the end center frequency n / N  have 

parameters no = po = 0, a0 = -Po = n /4 ,  nl = pl = N/2  and a1 = -PI  = 

n/4.  There is no crosstalk between the signals transmitted at T I N .  For a frequency 
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of 3n-IN, crosstalk due to spectral overlap with n-/N is cancelled by setting n2 = 

P2 = 0, a2 = -P2 = -n-14, ng = p3 = N / 2  and ag = -P3 = 7n-14. We observe 

that these parameters ensure no crosstalk between the signals sent at 3 n / N .  For 

the next frequency 5n-IN, crosstalk due to spectral overlap with 3 n l N  is cancelled 

by invoking the type of solution derived in Section 3.4.1. Again, these parameters 

eliminate crosstalk arising from frequency repetition due to the compatability of the 

derived conditions. This process continues in a sequential fashion. This establishes 

the combining and separation filters of T2 as follows: 

n- n- n- n- 
ao(n) = h(n) cos (-n + -) 

N 4 
bo(n) = h(n) cos (- n - - ) 

N 4 
N n- n- N n- n- 

al(n)  = h(n - -) cos (-n - -) bl(n) = h(n + -) cos (-n + -) 
2 N 4 2 N 4 

3n- a 3a  n- 
a2(n) = h(n) cos (-n - -) b2(n) = h(n) cos (- n  + - ) (3 .16)  

N 4 N 4 

The delay element of N / 2  alternates between the cosine carriers having a resultant 

phase of -n-/4 and a / 4 .  When no delay element is present, the resultant phase of the 

cosine carriers alternates between n / 4  and - n / 4 .  The input-output transfer function 

for any pair of corresponding terminals is 

where v(n)  is the inverse z-transform of H 2 ( z ) .  



3.5.3 System T3 

A third transmultiplexer is synthesized by relaxing the assumption of using only 

a single lowpass prototype. The system uses two lowpass prototypes h(n) and g(n)  

which are each bandlimited to no less than a / N  and no more than 2nlN. Each of 

the combining and separation filters is a modulated and delayed version of one of the 

lowpass prototypes just as in Eqs. (3 .1)  and (3.2). 

Suppose T1 is modified to include two prototypes by alternating the positions of 

h(n) and g(n) between the combining and separation filters for each center frequency. 

This leads to a new transmultiplexer T3 described as follows. 

n n 
ao(n) = h(n) cos - bO ( n )  = g(n) cos - 

4 4 

2n 27r 
a2(n) = g(n) sin -n b2(n) = -h(n) sin -n 

N N 
4n 

a3(n) = h(n) cos - n 
N 

4n 
b3 ( n )  = g ( n )  cos - n 

N 
N 4n N 4n 

a4(n) = h(n - -) sin -n b4(n) = -g(n + -) sin -n 
2 N 2 N 

The crosstalk between two signals sent at adjacent frequencies is eliminated as in 

T I .  Moreover, it can be shown that the crosstalk between two signals transmitted 

at the same center frequency wh where 2n/N < wk 5 n - 2nlN is eliminated by 

the same approaches as derived in Section 3.4.2 even when two prototypes are used. 

Therefore, system T3 is crosstalk-free. The input-output transfer function for any 
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pair of corresponding terminals is 

+ w ( ~ ) r - ~  + w ( ~ N ) z - ~ ~  + 0 .  .] 

where w ( n )  is the inverse z- transform of H(z )G(z ) .  

Consider modifying T2 to include two prototypes. Again, we alternate the posi- 

tions of h (n )  and g(n)  between the combining and separation filters for each center 

frequency. In this case, the crosstalk between two signals sent at an end center fre- 

quency ( T I N  or ( N  - 1 ) ~ l N )  is not cancelled with two prototypes. Therefore, T2 

cannot .be modified to include two prototypes. 

Note that there are other ways of modifying the transmultiplexers to allow for two 

prototypes. However, any other arrangement leads to a crosstalk function T k l ( z N )  

for two signals sent at adjacent frequencies to be expressed in terms of H ( z )  and 

G ( z ) .  Then, the crosstalk terms in ~ ~ ~ ( 2 ~ )  that involve spectral overlap cannot 

be cancelled. To conclude, we observe that only T1 can be modified to allow for 

two prototypes. Moreover, the modification must be performed in the unique way 

described above. 

3.5.4 System T4 

The center frequencies of Set 3 are used to synthesize system T4. A lowpass 

prototype with a maximum bandwidth of T I N  is used. One of the specific solutions 

formulated in Section 3.4.3 is invoked to establish the parameters. All the delay 
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factors nk and pk equal zero. The phases are set such that (ag, Pk) = (-x/4, n/4) for 

Ic = 0,2,.  - and (ak, Pk) = ( ~ 1 4 ,  -7r/4) for k = 1,3, . .. The filter bank description 

of T4 is as follows: 

37r 71- 3n n 
al(n)  = h(n) cos (-n + -) bl(n) = h(n)  cos (-n - -) 

2N 4 2N 4 

The input-output transfer function for any pair of corresponding terminals is 

Note that the transfer function is in fact a function of z 2 N .  In fact, system T4 is the 

same as the transmultiplexer formed as the complement of the subband system in [lo] 

except for the phase factors. The complement of the system in 1101 has phase factors 

which satisfy the same solution in Section 3.4.3 that was invoked in forming T4 and 

which are either the same as those in T4 or differ from those in T4 by a multiple of 7r. 

Therefore, the synthesis procedure includes an existing modulated filter bank based 

on one prototype and equally spaced distinct center frequencies. 

Just as T1 was modified to get T3, we attempt to modify T4 by alternating the 

positions of two prototypes (both bandlimited to no more than w/N) between the 

combining and separation filters for each center frequency. With this arrangement, 

the crosstalk between two signals sent at adjacent center frequencies is cancelled as 
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in T4. However, it can be shown that the input-output transfer function will not be 

the same for all pairs of terminals. 

3.5.5 System T5 

In system T5, we again use the center frequencies of Set 3 and bandlimit the 

prototype to no more than n /N.  Another type of solution formulated in Section 3.4.3 

is used to configure T5. For the end center frequency 7r/2N, the parameters are 

no = po = 0 and a 0  = -Po = -7r/4. When establishing the combining and separa- 

tion filters for the frequency 3n/2N, crosstalk due to spectral overlap with 7r/2N is 

cancelled by setting n l  = pi = N / 2  and a1 = -PI = 3 ~ 1 4 .  This process continues 

in a sequential fashion such that the filter bank of T5 is described by: 

7r 7r 7r W 
ao(n)=h(n)cos(-n--)  bo(n)=h(n)cos(-n+-)  

2N 4 2N 4 
N 37r N 37r 

al(n) = h(n - -)cos- 
2 2~~ 2 2 N  

bl(n) = h(n + -) cos -n 

N 77r N 7n 
ag(n) = h(n - -) sin -n b3(n) = - h(n + -) sin -n 

2 2N 2 2N 

System T5 is a new alternative to T4. A delay element of N/2 is present for every 

other center frequency. In addition, the modulating function alternates between a 

cosine and a sine for the cases in which a delay element is present. When no delay 

element is present, the resultant phase of the cosine carrier alternates between -n/4 

and s /4 .  The input-output transfer function for T5 is the same as that for T4 and is 

given by Eq. (3.21). 



As for T4, we attempt to modify T5 to accommodate two prototypes. In general, 

the transfer function is not the same between every pair of corresponding terminals. 

However, an exception occurs for the case N = 2 (see Section 3.7). 

3.5.6 Modification of the Parameters 

We address the question of whether the parameters chosen from the specific solu- 

tions proposed in Sections 3.3,3.4.1, 3.4.2 and 3.4.3 to configure the transmultiplexers 

are unique. For the cases when the delay element is 0, a delay factor of the form aN/  b 

where a and b are relatively prime could be used. Then, the delay elements of N/2 

would be replaced by aN/b + N/2 = (2a + b)N/2b. In the general case, when 2a + b 

and 2b are relatively prime, N is restricted to be an integral multiple of 2b in order 

to realize integral delay factors. Otherwise, N must be an integral multiple of b. Our 

choice of delay factors imposes the most mild restriction on N in that N must be 

even. 

Any set of phase factors (al,, PI,)  can be replaced by (ak + m r ,  Pk - mn) where m 

is an integer. Also, note that the transmultiplexers T1 through T5 were developed by 

starting with phase factors r / 4  and - r / 4  for the lowest end frequency. However, any 

odd multiple of r / 4  could be used as the starting point. In this case, the filters in T1 

and T3 are either the same as or negatives of those presented above. In systems T2, T4 

and T5, the phase factors used in all the filters would still remain to be odd multiples 

of r /4 .  The cosine and sine carriers at the odd-indexed terminals of T5 could become 

sine and cosine carriers respectively. To conclude, we note that the chosen parameters 

are not unique. However, changes in the delay factors will restrict the number of 

- 52 - 



bands and adjustments of the phase factors render only a trivial modification of the 

system. Finally, note that the swapping property (discussed in Chapter 2) applies 

to the synthesized transmultiplexers but offers no significant change in the delay and 

phase factors. 

3.5.7 Elimination of Intersymbol Interference 

The five preceding transmultiplexers have been synthesized to eliminate crosstalk. 

The input-output transfer function T ( z ~ )  still admits intersymbol interference. Inter- 

symbol interference is eliminated in T1 and T2 if H2(z) satisfies the Nyquist criterion 

in which every Nth sample of its impulse response (except for a reference sample) is 

equal to zero. In T3, the product H(z)G(z) must satisfy the Nyquist criterion. Inter- 

symbol interference is eliminated in T4 and T5 if H2(z) satisfies the Nyquist criterion 

in which every 2Nth sample of its impulse response (except for a reference sample) 

is equal to zero. Perfect reconstruction is achieved if the prototypes are bandlimited 

(up to hundred percent above the minimum bandwidth) and the Nyquist criterion is 

satisfied. The problem of designing the prototypes to satisfy the Nyquist criterion is 

addressed in Chapters 4 and 5. 

3.6 Multicarrier QAM and VSB Systems 

An interpretation of what exactly each system implements is made clear by ex- 

amining the input signal spectrum and the filter responses as shown in Fig. 3.1. As 

shown in Fig. 3.l(a), modulation is implicitly accomplished by the sampling rate ex- 

pander in that copies of the input signal spectrum appear at intervals of '27rI.V. The 
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three systems T I ,  T2 and T3 accomplish multicarrier Quadrature Amplitude Mod- 

ulation (QAM) in the form of a digital multirate filter structure as in Fig. 2.1. For 

each unique center frequency (except 0 and n), two signals are sent in quadrature. 

Systems T1 and T3 explicitly accomplish QAM in that a particular combining filter 

extracts one of the replicated copies of the input spectrum around carrier frequencies 

at multiples of 2n/N (see Fig. 3.1). The same is not true of T2 in that the combining 

filters, whose center frequencies are odd multiples of TIN,  extract a portion of two 

adjacent copies of the input spectrum. System T2 can be converted to a true &AM 

scheme as follows. Suppose each of the input signals is multiplied by (-l)n prior to 

sampling rate expansion. Then, the input spectrum shifts in such a way that after 

sampling rate expansion, the replicated copies are centered at implicit carriers equal 

to odd multiples of n /N  (shown in Fig. 3.l(b)). Now, each of the combining filters 

will extract a replicated copy centered at an odd multiple of TIN. The original signals 

can be recovered by multiplying each of the outputs by (- l)n. 

Multicarrier Quadrature Amplitude Modulation systems have been realized in 

continuous time [21] and in discrete time 1221. Also, a data modem based on the QAM 

technique is described in [23]. The system in [22] uses one lowpass prototype and a 

set of equally spaced frequencies for transmission. Also, it is oversampled as opposed 

to the critically sampled systems that we consider. In an oversampled system, the 

sampling rate expansion/compression factor is greater than the number of frequency 

bands. This gives additional freedom in choosing the repeated center frequencies but 

does not generally result in the utilization of the entire range 0 to n. In every band, 

the lowpass prototype performs an interpolation function by extracting the copy of the 
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input spectrum around the 0 frequency. Each of the filtered outputs is then explicitly 

modulated by multiplication with a sinusoid at the corresponding carrier frequency. 

Two signals are sent in quadrature at each carrier frequency through modulation by 

a cosine and sine carrier. Our system T1 is related to the system proposed in [22]. 

The system in [22] can be converted to our system T1 with the restriction that the 

carrier frequencies are multiples of 2nlN.  

In contrast, system T4 and system T5 do not implement QAM. Systems T4 and 

T5 can be thought of as being multicarrier Vestigial Sideband (VSB) schemes. Given 

an implicit set of carriers at multiples of 2n /N ,  there are both lower and upper side- 

bands at multiples of 2nlN.  A combining filter extracts either an upper or lower 

sideband of a particular copy of the input spectrum and a vestige of a suppressed 

sideband for transmission. Multiplication of the input signal by (-l)n prior to sam- 

pling rate expansion results in an implicit set of carriers at odd multiples of T I N .  

Again, one upper or lower sideband and a vestige of a suppressed sideband is ex- 

tracted for transmission. In contrast to conventional frequency division multiplexing 

(FDM) schemes which avoid spectral overlap by using guard bands, the VSB systems 

allow overlap between the transmitted sidebands of different input signals. 

Another multirate system described in [9] is not a regular structure in that the 

center frequencies are not equally spaced and two prototypes of different bandwidths 

are used to derive the filter banks. Although the system in [9] is a subband system, 

it can be converted into a transmultiplexer. When viewed as a transmultiplexer, the 

system in [9] implements VSB for all carriers other than 0 and n. 

A synthesis procedure that establishes a set of analog transmitter filters for the 
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(a) Input signal spectrum after sampling rate expansion 

(b) Spectrum of input signal multiplied by (-l)n after sampling 
rate expansion 

. . .  

n 2n 3n 4n 5n 2n n - - - - Frequency n-- n-- n 
O N N N N N  N N 

(c) Filter responses for systems T I  and T3 

(d) Filter responses for system T2 

. . . 

n 2n 3n 4n 5n 2 n x - - - - - 
O N N N  N N Frequency N !V 

n-- X-- 

( e )  Filter responses for systems T4 and T5 

Fig. 3.1 Input signal spectrum and responses of the filters used 
in systems T1 to T5 (shown for N even) 
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simultaneous transmission of data is developed in [24]. The approach in [24] consists 

of simultaneously deriving conditions on the amplitude and phase characteristics of 

the filters such that crosstalk and intersymbol interference are cancelled. This leads 

to a class of multicarrier analog transmission systems. In this thesis, an equivalent 

class of digital systems are configured. In contrast to the method in [24], our synthe- 

sis procedure decouples the problems of crosstalk and intersymbol interference. The 

parameters of the cosine modulating function allow for crosstalk due to spectral over- 

lap to be cancelled. Intersymbol interference is eliminated by designing the lowpass 

prototype h(n)  (discussed in Chapter 4). Transmultiplexer T4 is a digital counterpart 

to the system configured in [24]. 

3.7 The Two Band Case 

This section examines two band systems as a separate case. Although two band 

versions of transmultiplexers TI to T5 exist, we anticipate that a synthesis procedure 

devoted only to the N = 2 case will lead to more flexible conditions than the N band 

case and consequently, lead to many transmultiplexers. As before, the combining 

filters Ak(z) have parameters wk, nk and cuk for k = 0 and 1. The separation filters 

Bk(z) have parameters wk, pk and Pk for k = 0 and 1. We do not impose any 

bandwidth restriction on the lowpass prototypes in formulating a synthesis procedure 

for crosstalk-free transmultiplexers with two identical input-output transfer functions. 

For systems based on one prototype filter and with two distinct center frequencies, 

the following conditions must hold. 

1. The two center frequencies must satisfy the relation wo + wl = n. 
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2. The delays are chosen such that: 

( i )  The relationship no - po = n l  - pl must be satisfied. Moreover, both 
no - po and n l  - pi are even. 

(ii) Both no - pi and n l  - po are odd. 

3. The phases are chosen such that: 

(i)  If wo # 0 and wl # x ,  then a 0  +Po  = -(al + P I ) .  If wo = 0 and 
w l  = x,  then a 0  $ Po = f (al + Pi). 

(ii) The relationship a 0  - Po = f (al - PI) must hold. 

(iii) If wo # 0 and wl # x,  both a 0  + P1 and a1  + Po are multiples of x.  

For the case in which both center frequencies are the same, we have the same restric- 

tions on the delays as given above. The center frequency is x/2. Appendix D justifies 

this choice. The restrictions on the phases are as above except that 3(i) becomes 

a 0  + Po = &(a1 + PI). 

Now, consider the case when two prototypes H(z) and G(z) are used. The filters 

Ao(z) and Bl (z) are frequency shifted versions of H(z). Similarly, Al(z) and BO(z) 

are frequency shifted versions of G(z). The conditions for the cancellation of crosstalk 

remain the same as above. The input-output transfer function is examined to establish 

any further requirements. For distinct center frequencies except 0 and x ,  the rules are 

the same as for the single prototype case except that 3(ii) changes to a0-Po = a1  -PI. 

If wo = 0 and wl = x,  the rules are the same as the single prototype case. For the 

case in which the center frequencies are the same, the rules are again the same as the 

single prototype case. 

As anticipated, the above rules permit the synthesis of many two band transmul- 

tiplexers. There is no bandwidth restriction on the prototypes for the two band case. 

This allows for more freedom in choosing the center frequencies for the 2 band case 
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as compared to the N band case and yet ensures complete bandwidth utilization. 

Table 3.1 shows some two band systems that are synthesized from the formulated 

rules. 

Center Combining 
System 

Frequencies Filters 

Separation 

Filters 

n T 
ao(n) = h(n) cos ( - n  + -) 

2 4 
n n 

al (n )  = g(n - 1) cos ( -n  - -) 
2 4 

X n 
ao(n) = h(n)  cos (- n - -) 

4 4 
3 n 

a1 ( n )  = g(n  - 1 )  cos (- n )  
4 

n n 
ao(n) = h(n) cos (-n + -) 

3 3 
2n a 

al ( n )  = g(n - 1) cos (- n - -) 
3 3 

n n 
bo(n) = g(n) cos (- n - -) 

2 4 
n n 

bl(n) = h(n + 1) cos ( -n  + -) 
2 4 

n n 
bo(n) = g(n) cos ( -n  + -) 

4 4 
3n 

bl ( n )  = h(n + 1) cos (- n )  
4 

A n 
bo(n) = g(n) cos ( -n  - -) 

3 3 
2n n 

bl(n) = h(n + 1) cos (-n + -) 
3 3 

Table 3.1 Synthesized Two Band Systems 

The systems depicted in Table 3.1 involve two prototypes. One prototype versions 

occur as a special case. System A is a two band version of T3 (the two band version 

of T1 is the special case). When G(z) = H ( z ) ,  System B is a two band version of 

T2. Although many two band systems can be developed, they cannot necessarily 

be extended to the N band case for our objectives. An N band version of System 

B cannot be configured since the crosstalk function for two signals sent at adjacent 

center frequencies will involve two prototypes and cannot be made equal to zero. If 

G(z) = H(z),  an N band version of System C results if the bandwidth of the prototype 
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is reduced to T I N  (system T5). However, an N band system with two prototypes 

cannot be formed even with the reduced bandwidth since the input-output transfer 

function is not the same for every pair of terminals. System D is synthesized by 

taking advantage of the flexibility in choosing the center frequencies specifically for 

the two band case. The general synthesis procedure in this chapter does not lead to 

an N band version of System D even if G ( z )  = H ( z ) .  

3.8 Subband Complements 

Transmultiplexers T1 through T5 are crosstalk-free. Moreover, each transmulti- 

plexer has an identical input-output transfer function for every pair of corresponding 

terminals. Therefore, systems T1 to T5 can be converted into alias-free subband 

systems S1, S2, S3, S4 and S5 respectively (this complementary nature of the two 

multirate systems was discussed in Chapter 2). The new subband systems S1, S2 

and S3 have repeated center frequencies. The subband systems S4 and S5 have the 

same distinct center frequencies. System S4 resembles the one in [lo] while S5 is an 

alternative employing delay factors. Note that the other two band transmultiplexers 

that are synthesized in Section 3.7 can also be converted into subband systems. 

The input-output transfer function for the transmultiplexers is given as T ( z ~ )  

in Eqs. (3.15), (3.17), (3.19) and (3.21). For the transmultiplexers, the input-output 

relationship is x k ( r )  = + T ( Z ) X ~ ( Z )  for k = 0 to N - 1. For the complementary 

subband systems, ~ ( r )  = ~ T ( z ~ ) x ( z ) .  Note that this input-output relationship is 

dependent on bandlimited prototypes with a restricted stopband edge w, as for the 
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transmultiplexers. Moreover, perfect reconstruction is achieved in the complementary 

subband systems if the Nyquist criterion is satisfied (as for the transm~lti~lexers) .  

We have configured transmultiplexers and subband systems that achieve per- 

fect reconstruction given that the prototypes are bandlimited (up to hundred per- 

cent above the minimum bandwidth, as discussed earlier) and the Nyquist criterion 

is satisfied. When G(z) = H(Z-l) in systems T3 and S3, the two conditions of 

bandlimitedness and the Nyquist characteristic lead to perfect reconstruction with 

Bk(z) = ~ ~ ( 2 - l ) .  Therefore, both systems are lossless [8] under the same two con- 

ditions. For the special case of N = 2, S1 reduces to the classical QMF arrangement 

described by Eq. (2.10). Note that system S3 becomes the Smith-Barnwell structure 

[5] for the case N = 2 if G(z) = ~ ( z - l ) .  For an arbitrary H(z) and G(z), system 

S3 degenerates into a general two band two prototype system proposed in [6][7] (also 

discussed in Chapter 2). In effect, we have developed subband systems which are N 

band generalizations of the QMF bank, the Smith-Barnwell structure and the general 

two band system proposed in [6][7] employing two prototypes. 



Chapter 4 Minimax Filter Design 

Given the synthesized transmultiplexers TI to T5 and the complementary sub- 

band systems S1 to S5, we proceed to design the practical lowpass prototypes that 

describe the filter banks. In addition to the frequency response requirement, the time 

domain constraints on the impulse response of the prototypes that are needed to 

satisfy the Nyquist criterion are taken into account. The design of the prototypes is 

based on a minimax criterion. 

4.1 Design Problem 

The design problem of simultaneously satisfying the time and frequency domain 

constraints to yield Nyquist filters is introduced. Then, the general characteristics of 

Nyquist filters are described. 

4.1.1 Time and Frequency Domain Requirements 

For the QAM transmultiplexers T1 and T2 and their subband complements, the 

lowpass prototype H ( z )  must be bandlimited to no less than T I N  and no more than 
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2a lN.  In addition, H2(z) must be a Nyquist filter with an impulse response having 

exact zero crossings every Nth sample (except for a reference sample). Similar re- 

quirements exist for T4, T5, S4 and S5 in that the lowpass H(z)  must be bandlimited 

to no less than a /2N and no more than TIN. Also, H2(z) must be a Nyquist filter 

with an impulse response having exact zero crossings every 2Nth sample (except for 

a reference sample). 

Systems T3 and S3 involve two lowpass prototypes H(z)  and G(z). Both must 

be bandlimited to no less than T I N  and no more than 27rIN. Also, H(z)G(z) must 

be a Nyquist filter with an impulse response having exact zero crossings every Nth 

sample (except for a reference sample). In carrying out the filter design, we set 

G(z) = H(Z-l). Then, both the prototypes have identical magnitude responses but 

different phase responses. A Nyquist filter H(Z)H(Z-~)  must be designed and split 

into a minimum phase component H(z) and a maximum phase component ~ ( z - l ) .  

4.1.2 Nyquist Filters 

Since the design problem mandates Nyquist filters, some of their basic character- 

istics are introduced together with relevant terminology used in the remainder of the 

thesis. A Nyquist filter F ( z )  has the following impulse response characteristic: 

1 
for i = 0 

j ( i l<) = {x 
0 for i # 0 

The parameter Ii' is the zero crossing interval in the time response f (n )  t. The 

t Actually, f(0) can be any constant. However, setting f(0) = 1/K makes the right hand side of 
Eq. (4.2) equal to 1. 



reference coefficient is f (0)j. In the frequency domain, this corresponds to 

The minimum bandwidth solution is an ideal lowpass filter bandlimited to n / K .  

We allow an excess bandwidth of Pn/ I< to bring the overall bandwidth to (1 + P ) T /  I<. 

The parameter P is the roll-off factor of ~ ~ ( e j ~ ) l .  In the QAM systems (TI ,  T2 and 

T 3 )  and their subband complements, the zero crossing interval I< is equal to the 

number of bands N. The situation differs for the VSB systems (T4 and T5) and 

their subband complements in that I< = 2N. To ensure that the lowpass prototype 

is bandlimited as discussed in Section 4.1.1, the parameter P 5 1. In this case, only 

adjacent replicas of the spectrum of ~ ( e j ~ )  (located at center frequencies that are 

multiples of 2 ~ / 1 < )  overlap. Also, the upper edge of the passband is wp = (1 - 

P ) n / I <  and the lower edge of the stopband is ws = (1 + P)T/I<. The ideal frequency 

characteristic is 

1 for 0 5 Iwl 5 up Passband 
0 for w, 5 Iwl 5 7r Stopband . (4.3) 

The response of an ideal filter makes a symmetrical transition from the passband to 

the stopband passing through the value 0.5 at w = n/ I<.  

We consider design approaches for a practical linear phase FIR Nyquist filter 

F(z )  that approximates the ideal magnitude characteristic. The passband edge wp 

and the stopband edge ws are as defined above. The general zero constellation of 

F ( z )  involves real axis zeros which occur in pairs at z = zo and zt l .  Unit circle 

t Note that the reference coefficient need not occur at  the zeroth sample. We specify it at the 
zeroth sample for purposes of exposition. 



zeros occur in complex conjugate pairs. The general complex zeros of F (z )  occur in 

-1 * groups of four at z = z ~ , z b ,  z{ and (zo ) . When F(z)  = H2(z) , all its zeros must 

occur as double order zeros and it must have an odd number of taps. For the case 

F (z )  = H(Z)H(Z-I), we refer to F ( r )  as a factorable Nyquist filter. An FIR filter 

F ( z )  is necessary to ensure stability of both its factors. Moreover, F (z )  is inherently 

zero-phase and has an odd number of taps. For F(z )  to be factorable into minimum 

and maximum phase parts H(z) and ~ ( z - l )  respectively, the additional constraint 

is that all of its zeros on the unit circle must occur as double order zeros. 

Finally, note that although we deal with an F(z)  which may yield noncausal 

lowpass FIR prototypes, causality can be ensured in an actual implementation of 

the transmultiplexers and subband systems by applying appropriate delay factors 

(discussed in Chapter 2). 

4.2 One Prototype Systems 

For the transmultiplexers and subband complements which are based on one 

prototype, F(z )  = ~ ~ ( 2 ) .  For a linear phase F(z) ,  H(z)  is a linear phase FIR filter. 

Consider systems TI,  T2, S1 and S2. For these systems, N must be even. If H(z) 

has an odd number of taps, an appropriate choice of filter delay results in the center 

or reference coefficient of H2(z) emerging at a time index which is a multiple of N. If 

H (z) has an even number of taps, there is no choice of delay that allows the reference 

coefficient of ~ ~ ( 2 )  to emerge at a time index which is a multiple of N. For an H( r )  

with an even number of taps, the reference coefficient of H2(z) never shows up in the 
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expression for the input-output transfer function ~ ( z ~ ) .  For systems T4, T5, S4 and 

S5, it can also be shown that a linear phase H ( z )  must have an odd number of taps. 

Therefore, a linear phase H ( z )  is constrained to have an odd number of taps. For the 

remainder of the thesis, we design H ( z )  such that the reference coefficient of ~ ~ ( z )  

emerges at the zeroth sample. 

The design problem mandates a lowpass H ( z )  such that ~ ~ ( 2 )  is a Nyquist filter 

with exact zero crossings in its impulse response. It is now shown that both these 

time and frequency domain requirements cannot be met in general. The approach is 

to determine the time domain requirements on H ( z )  for F ( z )  = ~ ~ ( 2 )  to exhibit a 

Nyquist characteristic. 

First, we deal with the case when the zero crossing interval I< = 2. Consider a 

zero-phase h ( n )  which has 2L + 1 taps from n = - L to L.  Then, f  ( n )  has 4 L  + 1 taps 

from n = -2L to 2L. Also, f  ( 2 i )  = 0 except for a reference coefficient f  ( 0 )  = 112. 

Since f ( 2 L )  = f ( - 2 L )  = 0,  it implies that h ( L )  = h( -L )  = 0. The number of taps 

of h ( n )  and f  ( n )  are reduced. Now, h ( n )  has 2 L  - 1 taps from n = - ( L  - 1 )  to 

L - 1 and f  (n)  has 4 L  - 3 taps from n = -(2L - 2 )  to 2L - 2. Again, the end 

coefficients f(2L - 2 )  = f ( -2L  + 2 )  = 0 implying that h ( L  - 1) = h ( - L  + 1) = 0 

thereby reducing the number of coefficients of H ( z )  by two. This process continues 

and results in the unique solution H ( z )  = I/&. This trivial result is the only filter 

H ( z )  that guarantees exact zero crossings in the response of ~ ~ ( 2 )  for Ii' = 2. 

Consider the case when K > 2. If the filters are short ( 2 L  < I<), then H ( z )  will 

have more than one tap and will be free of any time domain constraints. However, 

the number of taps of H ( z )  is not sufficient for an acceptable lowpass charactcvistic. 
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For longer filters (2L  > I() ,  many nonlinear constraints on h(n)  are imposed which 

may compromise the desired lowpass nature. 

Given the difficulty of simultaneously meeting the time and frequency domain 

requirements, our strategy is to get a lowpass filter and only approximately satisfy 

the time domain constraints. Although the zero crossings in f (n) are not exactly 

met, the response is kept small at the time indices at which the zero crossings should 

occur. There are closed form expressions for the frequency response of a Nyquist filter 

given p 5 1, one of which is a raised cosine spectrum. A lowpass H ( z )  is designed by 

the McClellan-Parks algorithm [25] to approximate the square root of a raised cosine 

spectrum with a given roll-off factor. We get a linear phase filter whose frequency 

response is a minimax approximation of the desired response. Both equiripple and 

nonequiripple lowpass prototypes are designed with appropriate weighting functions. 

4.3 Two Prototype System 

In contrast to the one prototype systems, the practical Nyquist filter F ( z )  = 

~ ( z )  H ( Z - ~ )  for T3 and S3 can be designed such that H ( z )  is a good lowpass filter 

and F ( z )  has exact zero crossings in its impulse response. Since F ( z )  is a zero- 

phase function, the reference coefficient is f (0). Although F ( z )  must have an odd 

number of taps, there are no constraints on the number of coefficients of H ( z )  and 

~ ( z - l ) .  We develop two new approaches to design F ( z )  known as factorable mini- 

max methods. The two approaches use the McClellan-Parks algorithm [25] as a first 

step to control the stopband response. The subsequent step incorporates the time 
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domain constraints by forcing zero crossings in the impulse response. This leads to 

a spectrum that exactly satisfies Eq. (4.2). With a response satisfying Eq. (4.2), an 

approximately zero stopband characteristic assures an approximately constant pass- 

band characteristic (assuming ,f? < 1). A few iterations of the above steps produces 

a factorable Nyquist filter with a Chebyshev stopband response. The Nyquist filter 

designed by our approaches is fundamentally equiripple. A nonequiripple filter can be 

obtained by applying additional frequency weighting. Finally, the lowpass prototypes 

H ( r )  and ~ ( z - l )  are obtained from the Nyquist filter. 

In the past, FIR Nyquist filters have been designed using linear programming tech- 

niques [26][27], by the eigenfilter approach [%] [%], and by the use of the McClellan- 

Parks algorithm as an intermediate step [3O] [3l] [32] [33]. The methods in [27] [29] [3l] 

allow for the splitting of the filter into its minimum and maximum phase parts. 

Salazar and Lawrence [27] set up the design as a linear programming problem in- 

corporating the time domain constraints. In addition, the frequency response of the 

filter is forced to be nonnegative in order that the minimum and maximum phase 

factorization be possible. Mintzer [31] deals exclusively with the case when the zero 

crossings occur for every second sample. In that paper, the frequency response of an 

unconstrained filter is offset to ensure that it becomes nonnegative. In [29], the eigen- 

filter concept is applied to obtain a Nyquist filter that is factorable into minimum 

and maximum phase parts. 

Nyquist filters with Chebyshev stopband behaviour have been designed in [33] 

using a multistage structure. The focus in [33] is on a computationally efficient mul- 

tistage implementation. However, the resulting filters are not necessarily factorable. 
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One can make these filters factorable by adding a positive constant to the frequency 

response (as in [31], see also [34]) to make it nonnegative. However, this fixup exces- 

sively reduces the stopband attenuation for nonequiripple filters. 

In the factorable minimax methods, we directly achieve a nonnegative frequency 

response with controlled stopband characteristics. Furthermore, the polynomial fac- 

torization problem for the determination of the minimum phase part is considerably 

eased. The complexity of polynomial factorization is directly related to the order and 

hence, to the length of the designed Nyquist filter. We reduce this complexity by 

determining a partial factorization of the transfer function of the Nyquist filter as a 

byproduct of the design procedure. The remaining factorization involves a polyno- 

mial of much lower order than the overall transfer function. The rest of this chapter 

is devoted to the design of F ( z )  = H ( z ) H ( ~ - ' )  for T 3  and S3. 

4.4 Factorable Minimax Design Procedures 

As in [29], we factor F ( z )  as F ( z )  = F ~ ( ~ ) F : ( Z )  where FF(z)  contains all the 

double zeros of F ( z )  on the unit circle and FO(z )  contains the other zeros of F ( z ) .  

The double zeros of F:(z) on the unit circle imply that it has an odd number of 

coefficients and that it is a zero-phase function. The zeros of Fo(z )  must occur in 

mirror image pairs reflected about the unit circle. Hence, FO(z )  also has an odd 

number of coefficients and is a zero-phase function. 

Let the lengths of Fo(z )  and F?(Z) be 210 + 1 and 211 +1 respectively. The number 

of coefficients of the overall Nyquist filter F ( z )  is M = 2(10 + 1 ' )  + 1. Note that the 
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case lo + ll = kK (for any integer k) results in a Nyquist filter with f(-lo - 11) = 

f (IO + 11) = 0 thereby reducing the effective length by two. The inverse t-transforms 

of F (I), Fo(z) and F:(z) are defined to be f (n), fo(n) and d(n) respectively. 

4.4.1 First Method 

The design procedure for the first method is as follows: 

Initialization: Fix 10, 11, I(,  and ws. Set Fo(z) = 1. The weighting is given as 

W ( 4 .  

Design Fl(z)  using the McClellan-Parks algorithm such that it has zeros only 
on the unit circle in the stopband region [w,, T I .  
Impose the time domain constraints by solving for the coefficients of Fo(z) 
through a linear system of equations. 

Form the Nyquist filter F(z).  If the design warrants improvement, go back to 
step 2. 

Split F(z) into its minimum and maximum phase parts. 

We now describe steps 2 to 5 in more detail. 

4.4.1.1 Step 2: Frequency Domain Specifications 

The McClellan-Parks algorithm is used to get the coefficients of Fl(z). The speci- 

fications are that the frequency response must be one at w = 0 and must approximate 

zero in the stopband region [w,, a]. The weighting function applies to F?(Z). The 

weighting function is w(u)~  ~ ~ ( e j ~ ) I .  Initially, it is W ( w )  since Fo(z) = 1. Subse- 

quent iterations involve an update of the weighting function as Fo(a) is recomputed. 

For the design of Fl(z), tabulated values of the square root of the weighting function 

are inputs to the algorithm. 
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In the stopband, the frequency response of F l ( z )  exhibits a ripple-like behaviour 

with local minima and maxima occurring at the extremal frequencies. If 11 is even, 

F l ( z )  has an odd number of coefficients ( E l  + 1). Two of the extremal frequencies are 

0 and n [35]. However, the total number of zeros is a multiple of two, all occurring in 

complex conjugate pairs (no zero at z  = - 1 ) .  At w = n, either a local maximum or a 

local minimum occurs. If Zl is odd, F l ( z )  has an even number of coefficients. In this 

case, a zero occurs at z  = -1. However, n is not an extremal frequency. The other 

zeros occur in complex conjugate pairs bringing the total number of zeros to 11. 

4.4.1.2 Step 3: Time Domain Constraints 

Given Fl ( z ) ,  we form F:(z) and solve for the coefficients of Fo ( z )  such that F ( z )  

has the Nyquist property. Since f (n )  has samples for n = - ( l o  + 11) to lo + 11, the 

number of zero-valued samples that occur as n goes from 1  to 10 + l I  is [(lo + l 1 ) / I { j .  

The same holds true as n goes from -1 to -(lo + 11). Since, the sample for n  = 0 is 

also known, the number of known coefficients of F ( z )  ist 

The coefficients of F ( z )  are found by performing the convolution f O ( n )  * d ( n ) .  By 

expanding the convolution sum, one can uniquely determine Fo(z )  such that the time 

domain constraints are satisfied [29] if the number of unknown coefficients of Fo(z )  

equals the number of known coefficients of F ( z ) .  This results in a system of linear 

equations of dimension 210 + 1. By further exploiting the time domain symmetry 

t This formula is a corrected version of the formula given in [29]. 



of each filter, the problem is reduced to that of a system of dimension lo + 1. The 

system of equations can be expressed as Df = c where fT = [ f O ( 0 )  . . fO(lO)],  

cT = [ 1 / K  0 01 and 

d ( K )  ( - 1  + ( 1  . d(Ii'-lo) + d(K+lo) 
(4.5) 

d(Ii'lo) d(Ii'lo-1) + d(I(lo+l) . . d(Ii'lo-lo) + d(I(lo+lo) 

The constraint that L = 210 + 1 is equivalent to lo = L(10 + 11)/1(] which in turn 

translates to constraints on ZO and ll given by 

Appendix E gives the derivation of closed form expressions for lo and E l  in terms of 

Ii' and M ,  

This method of satisfying the Nyquist property automatically takes care of the 

passband response of F ( t ) .  Note that Fo(z )  is a highpass function that primarily 

controls the passband characteristic and hence has no zeros on the unit circle. 

4.4.1.3 Step 4: Termination 

The coefficients of F ( z )  are found from F o ( i )  and F&). Steps 2 and 3 are 

iterated if the design warrants improvement. For Step 2, the weighting function 

~ ( w ) ~ ~ ~ ( e j ~ ) l  is updated to include a new / F O ( e j w ) ~  calculated from the coefficients 

of Fo(z )  formed in Step 3 of the previous iteration. The application of this weighting 

factor significantly influences the stopband behaviour of F ( z )  through the design of 



Fl (z). In the weighting function, the factor I FO(eJW ) 1 leads to a stopband behaviour of 

F?(z) that compensates for the highpass response of Fo(z). The stopband behaviour 

of F(z )  is either equiripple or nonequiripple depending on the other factor W ( w )  in 

the weighting function. The iterations are terminated when the extremal frequencies 

obtained by designing Fl(z) do not change by more than a given threshold. 

4.4.1.4 Step 5: Final Filter 

This step factors F(z )  into minimum and maximum phase parts. The minimum 

phase part of F(z )  is H(z) = F{(z)Fl(z) where F<(z) is the minimum phase part 

of Fo(z). The factor Ff(z)  contains all the zeros of FO(z) that are within the unit 

circle. The factor Fl(z) (has zeros on the unit circle) is known as a byproduct of the 

design procedure. Only Fo(z) needs to be factored in order to derive its minimum 

phase part. The maximum phase part, ~ ( z - l ) ,  is obtained by time reversing the 

coefficients of H (z). 

4.4.2 Second Method 

The difference between the second method and the previous approach lies in Step 

2 in which a constrained form of the McClellan-Parks algorithm is used to directly 

compute the coefficients of F?(Z) rather than to first design Fl(e). The specifications 

are that the frequency response must be one at w = 0 and must approximate zero 

in the stopband region [us, TI. As before, the weighting function is ~ ( w )  1 H0(ejw ) 1.  

Tabulated values of the weighting function are supplied as inputs. Since double zeros 

on the unit circle are required, we constrain the frequency response to be nonnegative 



in the stopband region. We implement the procedure in [36] (see also [37]) to obtain 

a minimax approximation to a desired response that satisfies given upper and lower 

cons train t s. 

In the stopband, the frequency response of F?(z) exhibits a ripple-like behaviour 

with local minima and maxima occurring at the extremal frequencies. The local 

minima correspond to the frequencies at which the response touches zero. It is these 

frequencies which determine the double zeros of F?(Z) on the unit circle. Given that 

F?(Z) has 211 + 1 coefficients, a total of li + 1 extrernal frequencies result [35]. Two 

of the extremal frequencies are 0 and w regardless of the value of 11. If ll is odd, the 

extremum at w is a local minimum thereby producing a double zero at z = -1. The 

other zeros occur in groups of four in the stopband region bringing the total number 

of zeros to 211. If l1 is even, the extremum at w is a local maximum (no zero at 

z = -1). The total number of zeros is a multiple of four and occur in groups of four 

in the stopband region. 

Steps 3 and 4 are identical to the first approach. In splitting F(z)  into its mini- 

mum and maximum phase parts, we take advantage of the fact that the frequencies 

corresponding to the double zeros of F?(Z) are available as a byproduct of the mod- 

ified McClellan-Parks algorithm (similar to the approach used in [37] to generate 

minimum phase filters). Given these frequencies and hence, the locations of the zeros 

on the unit circle, F1(z) can be formed without directly factoring F:(z). As before, 

only FO(z) must be factored to form H(z) = F{(z)Fl(z). 

The next section discusses the merits of factoring only FO(z) as opposed to F ( z )  

in determining the minimum phase part. Also, observations concerning the relative 



orders of Fo(z) and F(z) are given. 

4.5 The Factorization Problem 

Polynomial factorization can be an ill-conditioned problem [38]. There is an 

advantage to substantially lowering the order of the polynomial to be factored. A 

general zero plot of F(z) includes double order stopband zeros on the unit circle 

and the other simple zeros that mainly contribute to the passband response. If F(z) 

were to be factored, the double zeros on the unit circle and the other zeros would be 

determined through one factorization procedure. Note that finding the double zeros 

can be an ill-conditioned problem [38]. Furthermore, the use of polynomial deflation 

can be troublesome since the zeros of the resulting polynomial may in some cases 

diverge from those of the original polynomial [38]. In our approach, both factorization 

and deflation of F(z) are avoided. In particular, the knowledge of Fl(z) ensures that 

any errors that would normally occur in locating the unit circle zeros are absent and 

do not affect the zeros of Fo(z). Furthermore, the factorization of Fo(z) does not 

involve multiple zeros since Fo(z) has only the simple zeros of F(z) that primarily 

influence the passband. 

Since only the zeros of Fo(z) have to be determined, the extent to which the 

factorization problem is eased depends on the ratio ll/lO. The ratio 11/10 is both a 

measure of the proportion of unit circle zeros to the other zeros of F(z) and of the 

degrees of F(z) and Fo(z). The higher the value of I1/lo, the lower the relative orders 

of Fo(z) and F(z). Appendix F shows that l1 is greater than 10 by a factor of at 
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least K - 1. Therefore, the inherent advantage in terms of polynomial factorization 

increases as I( increases. However, even for the lowest value, K = 2, the degree of 

F ( z )  is at least twice the degree of Fo(z) .  Note that the lower bound for 11/10 = I( - 1 

is satisfied when the end points of the impulse response are zero-valued (shown in 

Appendix F). We discard this artificial case because the values of lo and M can be 

reduced by 1 and 2 respectively thereby giving a new value of I1/lo. 

Fig. 4.1 Typical Nyquist response f (n)  (shown for K = 5 ,  
M = 39 and ,h' = 0.2) 

A typical designed Nyquist response f(n) is depicted in Fig. 4.1. The time re- 

sponse consists of a main lobe between n = -I( and n = K and a series of sidelobes 

each occurring between the zero crossings. The value of lo is a measure of the number 

of sidelobes. As the number of coefficients M increases, l1 also increases. For a fixed 

number of lobes (constant value of lo) ,  increasing M results in a higher stopband 

attenuation while maintaining the same factorization complexity. Hence, for a fixed 

number of lobes, one can maximize 11/10 by increasing M .  The largest disparity in 

the relative orders of Fo(z)  and F ( z )  results by choosing the filter lengths 1 0  be of 
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the form M = 2 k K  - 1. 

Given that the filter lengths are constrained to be of the form M = 2 k K  - 1 ,  the 

ratio 11/10 is 

This ratio is a maximum for k = 2t.  As k increases, a tradeoff results in that a 

higher stopband attenuation due to a longer filter is obtained at the expense of both 

a lower 11/10 and a higher 10. The subsequent examples show that a value of k  = 5 

results in about an 80 dB stopband attenuation for a roll-off factor of 0.52. Then, 

E1/10 = 5 ( K  - 1)/4 and lo = 4. Only an eighth order polynomial with simple zeros 

needs to be factored. Smaller roll-off factors require a larger number of taps (larger 

value of k) and hence, a lower value of 11/10 and a higher value of lo for an 80 dB 

stopband attenuation. 

4.6 Discussion of the Design Techniques 

The two methods in this chapter can be used to design factorable Nyquist filters 

with Chebyshev stopband behaviour and exact zero crossings in its impulse response. 

An equiripple stopband is obtained when W(w) = 1. A nonequiripple design is 

achieved by specifying a nonconstant W(w). The main advantages of the design 

techniques are that the polynomial factorization complexity in finding the minimum 

phase part is considerably eased and that arbitrary frequency weighting can be applied 

without additional computational overhead. This section discusses the relative merits 

t This is also a unique maximum for a general M (see Appendix F). 



of the two new factorable minimax methods and gives design examples. Finally, the 

group delay behaviour of the minimum phase part is examined. 

4.6.1 Comparison of the Two Proposed Methods 

In the first method, we design an unconstrained Fl(z). When this Fl(z) is 

squared, the resulting nonnegative frequency response has extremal frequencies that 

include those obtained in the design of Fl(z). These are augmented by another set 

at which the response is zero. In the second method, we design F?(r)  directly. The 

error is minimized over the same closed region as in the first method while maintain- 

ing the same total number of extremal frequencies. Since the constrained minimax 

approximation is unique [36], F?(T) is the same for both methods. 

Despite the theoretical equivalence of the two methods, numerical differences 

do arise. The coefficients of F?(z) obtained by the two methods differ slightly in 

practice. Although these small differences lead to more pronounced differences in the 

coefficients of Fo(z), the coefficients of the overall Nyquist filters formed by the two 

methods show only small differences. These differences manifest themselves mostly in 

the stopband region of the frequency response. An equiripple characteristic is more 

closely approached by the first method. 

4.6.2 Design Examples 

Examples are presented to demonstrate both equiripple and nonequiripple de- 

signs. The design computations were done using double precision floating point 

- 78 - 



arithmetic. Four iterations were necessary to resolve the coefficients. The follow- 

ing examples are generated by the first of our methods. 

Example 1 

We generate an equiripple design with parameters I{ = 6, lo = 4 ,  l1 = 25, 

up = 0 . 0 8 ~  and w, = 0 . 2 5 4 ~ .  This results in a filter with 59 coefficients having a 

roll-off factor P = 0.52 whose magnitude response is shown in Fig. 4.2. The passband 

response is flat to within 0.003 dB. The filter length is of the form M = 2 k K  - 1 with 

k = 5. 

Normalized Frequency Hz 

Fig. 4.2 Magnitude response of the Nyquist filter: Example 1 

Example 2 

The parameters used in this example are I( = 4,  lo = 4,  l1 = 15, wp = 0 . 1 2 ~  and 
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ws = 0 .38~ .  The weighting is 

This gives a nonequiripple Nyquist filter with 39 coefficients and a roll-off factor 

,f3 = 0.52. The filter length is of the form M = 2 k K  - 1 with k  = 5. Figure 4.3 

shows the magnitude response of the filter. The passband response is flat to within 

0.002 dB. Figure 4.4 shows the group delay response of the minimum phase part of 

the filter. 

4.6.3 Group Delay 

The group delay of the minimum phase part is only important in the passband 

and is primarily influenced by the passband zeros which are within the unit circle. 

For a given number of taps and a given I<, the group delay tends to be more constant 

as the roll-off factor increases. Also, for a given roll-off factor and a given I ( ,  a larger 

number of taps produces a group delay with a greater deviation. The minimum 

phase filters generated in Examples 1 and 2 that achieve about a 40 dB stopband 

attenuation have a relatively small passband group delay variation (approximately 

0.15 zero crossing intervals). 

Factorization of F (z )  into two constant group delay functions H(z) and G(z) to 

be used in T3 and S3 is possible as follows. First, the double zeros of ~ : ( z )  are 

allocated one each to H(r) and to G(z). Then, we classify the zeros of FO(z) in polar 

form reje and only consider 0 9 t9 5 rr. The zeros of Po(*) are taken in ascending 

order of 8 and the mirror-image pairs are alternately assigned to H(z)  and G(z). 
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Normalized Frequency Hz 

Fig. 4.3 Magnitude response of the Nyquist filter: Example 2 

Normalized Frequency Hz 

Fig. 4.4 Group delay response of the minimum phase part: 
Example 2 



This ensures that both H(z) and G(z) have constant group delay. Note that if lo is 

odd, the number of taps of H(z) and G(z) differ by two. Otherwise, they have the 

same number of taps. Due to the presence of identical stopband zeros in H(z),  G(z) 

and F(z ) ,  the stopband responses of both H(z) and G(z) are good. However, the 

passband responses can deviate significantly from a constant. Therefore, factorizing 

a Nyquist filter into two general factors H(z) and G(z) for use in T3 and S3 will 

assure constant group delay factors but at the expense of an acceptable magnitude 

response. 

4.7 Comparison With Other Approaches 

This section discusses the relative merits of the factorable minimax design meth- 

ods when compared with other approaches. 

4.7.1 Linear Programming Technique 

In 1271, a linear programming approach that is also based on a minimax criterion 

is used to design a factorable Nyquist filter. For comparison, we generate a filter 

with the same parameters as the example in [27] (M = 31, K = 4, P = 0.125 and 

W(w) = 1) using our factorable minimax approach. It is observed that the magnitude 

and group delay responses of the filters given by the two designs are very similar. The 

equiripple magnitude characteristic is more exactly given by our approach. Arbitrary 

weighting can be easily applied in both the factorable minimax approach and a linear 

programming formulation (see 1261). 



4.7.2 EigenAlter Formulation 

The eigenfilter approach [29] also simplifies the factorization problem and meets 

the time domain constraints by solving a linear system of equations. The' differences 

between the factarable minimax approach and the eigenfilter method are as follows. 

First, our approach is based on a minimax criterion as opposed to a least squares de- 

sign achieved by the eigenfilter met hod. The factorable minimax approach naturally 

generates an equiripple behaviour whereas the eigenfilter method naturally renders 

nonequiripple filters. However, weighting can be applied in both methods to alter the 

stopband characteristic. For the factorable minimax method, the McClellan-Parks 

algorithm can easily incorporate arbitrary weighting, whereas, the incorporation of 

an arbitrary weighting factor into the eigenfilter formulation involves the use of nu- 

merical integration techniques. 

A design example illustrates the differences in performance of the two methods. 

Identical parameters to the ones in [29] are used. In particular, I< = 3, lo = 10, 

l1 = 21, w, = 0.233~, ws = 0 .433~ and W(w) = 1. This gives a Nyquist filter with 

63 coefficients and a roll-off factor ,43 = 0.3. Figure 4.5 shows the magnitude response 

of the minimum phase part generated by our factorable minimax method. The stop- 

band attenuation of the minimum phase filter achieved by our method is about 48 

dB whereas the first stopband ripple of its counterpart generated by the eigenfilter 

method shows an attenuation of approximately 45 dB. For higher frequencies, the 

ripples of the filter designed by the eigenfilter method show an attenuation that is 

more than that achieved by our method. 
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Normalized Frequency Hz 

Fig. 4.5 Magnitude response of the minimum phase part of the 
Nyquist filter designed with the same parameters as in 

[291 

4.7.3 Direct Use of the McClellan-Parks Algorithm 

Factorable Nyquist filters can also be designed by invoking the constrained form of 

the McClellan-Parks algorithm [36] to get a nonnegative response that approximates 

a raised cosine characteristic. This approach and our factorable minimax method 

can be used for getting the prototypes for systems T 3  and S3. We compare the two 

methods from different points of view (stopband attenuation, group delay, factoriza- 

tion problem and achievement of exact zero crossings) through a design example that 

conforms to the CCITT recommendation V.22 1391. 

The CCITT recommendation V.22 [39] includes the specification of a pair of 

transrnitter/receiver filters which should approximate the square root of a raised 

cosine response. The specified roll-off factor is 0.75. Upper and lower bounds in the 
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frequency response in both the passband, transition band and a small portion of the 

stopband must be met. In addition, the group delay variation should be below a 

prescribed limit in the passband and a portion of the transition band. 

We design Nyquist filters with a roll-off factor of 0.75 and with I< = 4 by the 

approach that uses the McClellan-Parks algorithm and the first factorable minimax 

method. The approaches are described in slightly more detail as follows: 

1. Design a filter that approximates a raised cosine response by invoking the 
constrained form of the McClellan-Parks algorithm [36] such that the response 
is nonnegative and its minimum and maximum phase parts have a frequency 
response that satisfies the upper and lower bounds specified by V.22. 

2. Use the first factorable minimax method to design a Nyquist filter such that 
its minimum and maximum phase parts satisfy the V.22 specifications of the 
frequency response. 

In all cases, the smallest number of taps that satisfy the constraint M = 2kK - 1 is 

used. This leads to 15 tap Nyquist filters for the two methods. A constant weighting 

of 1 is used in both cases thereby yielding equiripple behaviour. 

Factorable Nyquist filters designed by Method 1 can be made to satisfy the mag- 

nitude specifications of V.22 since the procedure in [36] takes upper and lower bounds 

of the frequency response into account. However, there is no guarantee that the group 

delay variation of the minimum phase part is assured to be below the required limit. 

The factorable minimax method does not guarantee a filter that satisfies any pre- 

scribed specifications of the frequency response. However, filters that satisfy the V.22 

specifications can be designed by choosing the number of taps, carrying out the design 

and finally verifying that the constraints are met. We find that the constraints are 

met with 15 taps. It is observed that increasing the number of taps will cause the 
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frequency response constraints to be violated since the transition band becomes more 

steep and lies outside the acceptable region. 

For performing a min/max phase split, factoring F ( z )  designed by Method 1 can 

be avoided since the unit circle zeros can be extracted from the extremal frequencies. 

However, the other zeros would have to be determined by first deflating the original 

polynomial. Also, there is no general expression for the proportion of unit circle zeros 

to the other zeros of F ( z ) .  It is observed in [38] that deflation is more stable if the zeros 

of smaller magnitude were extracted first. This further discourages the division of the 

original polynomial by a polynomial that has the unit circle zeros since they have a 

larger magnitude than the zeros within the unit circle which should be extracted first 

to enhance the stability of the deflation process. A remedy to this problem is to use 

Lagrange interpolation as in [37] to obtain a polynomial that represents the passband 

zeros and then factor it to obtain the zeros inside the unit circle. An alternative is to 

use a modified Newton's iteration [40] on the original polynomial to obtain the zeros 

inside the unit circle. Method 2 directly separates F ( z )  into two polynomials F?(Z)  

and Fo(z )  having zeros on and off the unit circle respectively. This avoids the tasks 

of approximating Fo(z)  by Lagrange interpolation and determining the zeros of Fo(z)  

by considering the original F ( z ) .  

After carrying out the design of the 15 tap Nyquist filters by both Methods 1 

and 2, we compare them in terms of the stopband attenuation achieved by F ( z ) ,  the 

group delay of the factorized minimum phase filter H ( z )  in the region considered in 

the V.22 specifications and in terms of the residual intersymbol interference. )lethod 

1 does not assure exact zero crossings in the time response f (n). Hence. \ve use 
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two quantitative measures of the residual intersymbol interference to measure the 

suppression. Specifically, the normalized peak distortion Dp and the normalized 

RMS distortion DRMs are computed. They are defined by 

and 

The stopband attenuations of F ( z )  achieved by Methods 1 and 2 are about 45 

and 50 dB respectively. The allowable variation in group delay as specified by V.22 

is 0.18 zero crossing intervals. Method 1 generates a minimum phase filter whose 

group delay variation is slightly under the prescribed 0.18 zero crossing intervals. 

Method 2 does not meet the group delay requirement in that the filter it produces 

has a variation of 0.24 zero crossing intervalst. In terms of normalized peak and 

RMS distortion, Method 2 assures exact zero crossings and hence, produces no such 

distortion. Method 1 produces low distortions Dp = 0.0004 and DRMS = 0.0003. 

Method 2 gives a higher stopband attenuation than Method 1 and produces exact 

zero crossings in the impulse response. This enhanced stopband attenuation comes 

at the expense of a larger group delay variation. 

A comparison of the factorable minimax method to an approach directly using the 

McClellan-Parks algorithm in terms of satisfying a CCITT recommendation was done. 

Concerning the design of Nyquist filters for T3  and S3, the new factorable minimax 

t A simple second order allpass equalizer brings the group delay within specifications. However, 
the use of such equalizers sacrifices the exact zero crossing property of the original design. 



method does offer advantages over its McClellan-Parks counterpart. First, the new 

method leads to exact zero crossings in the impulse response. The factorization 

problem can be alleviated in both approaches. However, the new method can bring 

down the factorization complexity by choosing appropriate filter lengths. Also, the 

polynomial representing the zeros off the unit circle is directly computed in the new 

method. Hence, this does not necessitate any polynomial approximation or a zero 

finding algorithm based on the original F ( z ) .  



Chapter 5 Optimized Filter Banks 

The minimax design procedures described in the previous chapter give lowpass 

prototypes such that the Nyquist criterion is either approximated or exactly satisfied. 

The designs are based on a common input-output transfer function for every pair of 

terminals in the transmultiplexers. Returning to the synthesis procedure in Chapter 

3, we note that the achievement of a common input-output transfer function partially 

relies on the bandlimitedness of the prototype. Moreover, the crosstalk-free nature is 

heavily dependent on the bandlimitedness property in that this property is used to 

cancel the crosstalk terms (which comprise the crosstalk functions) that do not involve 

spectral overlap. As before, we refer to bandlimited lowpass prototypes as those with 

a stopband response which is exactly zero. Since bandlimited prototypes cannot be 

designed, there exist practical imperfections in the synthesized systems. First, the 

input-output transfer function may be different for each terminal pair. Second, there 

may be residual crosstalk between signals sent at non-adjacent center frequencies. 

We proceed to analyze the synthesized transmultiplexers with respect to both the 

input-output transfer function and the crosstalk when practical filters are used. A 

practical lowpass prototype is not bandlimited in that its frequency response only 
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approximates zero in the stopband (stopband attenuation is high but not infinite). 

Based on the analysis, optimized lowpass FIR filters that attempt to achieve a high 

suppression of both intersymbol interference and crosstalk are designed by minimizing 

an error function. Therefore, the practical degradations (both intersymbol interfer- 

ence and crosstalk) are taken into account in the filter design procedure. In contrast 

to the minimax approaches, the optimized designs take crosstalk into account. The 

performance of the transmultiplexers is evaluated with both the optimized and the 

minimax filters. We compare the two design approaches with respect to the resulting 

performance. Finally, the feasibility of this technique for the subband complements 

is discussed. 

5.1 System Imperfections 

Transmultiplexers T1 through T5 have each been configured with bandlimited 

filters such that (1) the input-output transfer function is the same for every pair 

of corresponding terminals and (2) crosstalk is cancelled. In addition, satisfying 

the Nyquist criterion eliminates intersymbol interference and hence, achieves perfect 

reconstruction. With practical filters, the input-output transfer function may not 

be the same for all pairs of terminals. In addition, the design procedure may give 

filters such that the Nyquist criterion is not exactly satisfied. Therefore, intersymbol 

interference need not be eliminated at each output terminal. Moreover, the use of 

practical filters may lead to residual crosstalk which would otherwise be cancelled 

with a bandlimited prototype. 
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In this section, we further analyze each transmultiplexer in terms of the possible 

limitation of not achieving perfect reconstruction due to the use of practical filters. 

The next section shows how the limitation is taken into account in an optimized design 

of the practical prototype. Then, the performance of the systems with practical filters 

is evaluated. 

5.1.1 The Input-Output Transfer Function 

In analyzing the transmultiplexers, we return to the synthesis procedure 

in Chapter 3 to see where the bandlimitedness property was used in get- 

ting a common input-ou tput transfer function. Consider the general expres- 

sion for the input-output transfer function T k k ( z N )  given by Eq. (3.5). The 

bandlimitedness of the lowpass prototype was invoked to cancel the last term 

N - l  ~ ~ ( ~ ~ - p ~ ) 2  cos (ak - pk)H(e - jwk  Z W - ~ )  H ( e j w k  Z W - ~ )  for some of the termi- Ci=o 

nals. However, this term is naturally cancelled for all terminals in T2, T4 and T5 

and for the terminals in T1 operating at the center frequencies of 0 and T .  Similarly, 

for system T3, the general expression for the input-output transfer function ~ ~ ~ ( 2 ~ )  

is examined. The bandlimitedness of the prototypes must be invoked to cancel some 

terms in T k k ( z N )  for the terminals that do not operate at the end frequencies. These 

terms are naturally cancelled (without invoking the bandlimitedness property) for the 

terminals operating at the end frequencies of 0 and T .  

The preceding analysis reveals that the input-output transfer function is indeed 

the same for all pairs of terminals in each of the systems T 2 ,  T4 and T5. Lloreover, 

this property holds for any practical prototype H ( z ) .  Therefore, for any ti(:), the 
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common input-output transfer function ~ ( r ~ )  is given by Eq. (3.17) for system T2 

and by Eq. (3.21) for T4 and T5. Now, consider systems T1 and T3. The com- 

mon input-output transfer function T ( z ~ )  as given in Eq. (3.15) (system T1) and in 

Eq. (3.19) (system T3) holds only for the terminals specified by center frequencies of 

0 and n. Again, this is true for practical prototypes. The input-output transfer func- 

tions for the other terminals of T1 and T3 are different from those given by Eqs (3.15) 

and (3.19) when practical filters are used. These differences are due to the fact that 

the prototypes are not bandlimited. 

The next step is to identify the sources of intersymbol interference in each of the 

transmultiplexers. In systems T2, T4 and T5, intersymbol interference is cancelled at 

all terminals given any H(z) if ~ ~ ( 2 )  satisfies the Nyquist criterion. The only poten- 

tial source of intersymbol interference is due to the limitation of the design procedure 

in giving H(z)  such that ~ ~ ( 2 )  does not exactly satisfy the Nyquist criterion. There- 

fore, the minimax design of Chapter 4 will lead to residual intersymbol interference 

in T2, T4 and T5. 

When dealing with systems T I  and T3, two cases must be considered. First, con- 

sider the terminals operating at center frequencies of 0 and n. At these terminals, the 

only source of intersymbol interference is due to the design procedure in giving filters 

such that the Nyquist criterion is not exactly satisfied. At the other terminals, an ad- 

ditional source of intersymbol interference arises since the filters are not bandlimited. 

Given the minimax design of the previous chapter, intersymbol interference will be 

present at all the terminals of T1. For transmultiplexer T3 with G(r) = H(Z-l), the 

factorable minimax design method assures that no intersymbol interference is present 
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at  the terminals specified by center frequencies of 0 and a. However, intersymbol 

interference distortion will exist at the other terminals of T3 since the prototypes are 

not bandlimited. 

5.1.2 Crosstalk Functions 

Here, we wish to determine the sources of crosstalk that arise with practical filters. 

From the synthesis procedure in Chapter 3, crosstalk cancellation with bandlimited 

prototypes occurs in two ways. First, terms in the crosstalk function Tkl(zN) that 

involve either partial or complete spectral overlap are cancelled by choosing the center 

frequencies, delays and phases. This cancellation depends only on the center frequen- 

cies, delays and phases and is independent of any particular form of H(z) and G(z). 

Therefore, these terms continue to be cancelled with practical filters. Second, terms 

in the crosstalk function that do not involve spectral overlap are zero due to the 

bandlimi tedness of the prototypes. However, these crosstalk terms are not zero with 

practical filters. This will lead to residual crosstalk. Summarizing, we note that all 

the cross talk terms in T ~ / ( Z  N ,  that involve spectral overlap with bandlimited filters 

continue to be cancelled with practical filters. 

Note that with practical filters, although the terms in Tkl(zN) that involve spec- 

tral overlap are cancelled (as discussed above), this does not generally imply that 

~ ~ [ ( z ~ )  = 0. We further analyze each of the transmultiplexers to determine the 

number of crosstalk functions that are exactly zero with practical filters (also referred 

to in the sequel as exact crosstalk cancellation). Exact crosstalk cancellation depends 
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only on the center frequencies, delays and phases and occurs independently of the pro- 

totypes H(z )  and G ( z ) .  For a particular output terminal, there are N  - 1 crosstalk 

functions. For each of the transmultiplexers, a certain number of these N - 1 func- 

tions may be exactly zero. We proceed to enumerate the number of exact crosstalk 

cancellations. 

In system T1, the crosstalk is exactly zero between two signals sent at the same 

center frequency, at center frequencies separated by an odd multiple of 2 r / N  and at 

center frequencies separated by an even multiple of 2wlN if the difference in the delay 

factors is an odd multiple of N / 2 .  In system T2, exact crosstalk cancellation occurs 

between any two signals as long as the difference in the delay factors of the associated 

combining and separation filters is an odd multiple of N / 2 .  System T3, like TI ,  

has crosstalk functions involving one prototype for signals sent at center frequencies 

separated by an odd multiple of 2 r l N .  For these cases, the crosstalk function is 

exactly zero. When two prototypes are involved in the crosstalk function, exact 

crosstalk cancellation only occurs between two signals sent with a center frequency of 

w / 2  (this center frequency appears when N  is a multiple of 4). For transmultiplexer 

T4, none of the crosstalk functions is exactly zero. In T5, the crosstalk function 

T ~ , ( z ~ )  is exactly zero if k + 1 = N - 1 for N  not a multiple of 4. If N  is a multiple 

of 4, T ~ , ( z ~ )  is never exactly zero in T5. 

Given the preceding discussion, all the cases were examined in detail and the num- 

ber of exact crosstalk cancellations enumerated for each output terminal. Table 5.1 

summarizes the results. Appendix G gives the derivation of one case for system TI ,  

namely, for output terminals operating at center frequencies that are even multiples 
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Transmultiplexer Number of Cancellations 

Table 5.1 Number of Exact Crosstalk Cancellations for Each 
Output Terminal 

of 2 x / N  when N is a multiple of 4. We see that for the case explored in Appendix G, 

the number of exact crosstalk cancellations is different for the two terminals at each of 

these center frequencies. At one of the terminals, there are (3N - 4 ) / 4  exact crosstalk 

cancellations. At the other terminal, (3N + 4 ) / 4  exact crosstalk cancellations occur. 

A similar situation in T1 develops when N  is not a multiple of 4  and the center fre- 

quencies are either even or odd multiples of 2 x l N .  In this case, the two terminals at 

these frequencies will show a different number of crosstalk functions that are exactly 

zero. The number of exact crosstalk cancellations is approximately 3N/4  for all the 

terminals. 

Transmultiplexer T3 has approximately N / 2  exact crosstalk cancellations at each 

output terminal, the actual number depending on whether a center frequency of 7r/2 

is used. Transmultiplexers T 2  and T 4  have N / 2  and 0 exact crosstalk cancellations 

at each output terminal respectively. In system T5, one crosstalk function is exactly 
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zero for each output terminal when N is not a multiple of 4. When N is a multiple 

of 4, none of the crosstalk functions is exactly zero in T5. 

Of the transmultiplexers, T1 achieves the most number of exact crosstalk can- 

cellations (about 314 of the total number of crosstalk functions). In systems T2 and 

T3, about half of the crosstalk functions are exactly zero. The table shows that for 

reasonably large N, the QAM schemes (TI ,  T2 and T3) achieve many more exact 

crosstalk cancellations than their VSB counterparts (T4 and T5). 

5.2 Error Function Formulation 

This section discusses the design of an FIR lowpass prototype that is based on 

the minimization of an error function. We consider both the practical degradations of 

intersymbol interference and crosstalk in the design of the prototype. The minimax 

filter design approaches of Chapter 4 are based on the input-output transfer functions 

given in Chapter 3 (common for all terminals). Also, the crosstalk is not explicitly 

considered. 

We establish an error function that takes the various distortions into account. 

Minimizing the error function should give a lowpass prototype with a good stopband 

behaviour and in addition, should lead to low intersymbol interference and crosstalk 

distortions. As for the minimax design, the stopband edge frequency is w, = (1 + 

/?)wmin where w,;, is the minimum bandwidth of the lowpass prototype and 0 < /? 5 

1. We recall that wmin = x / N  for T1, T2 and T3 and wmin = n / 2 N  for T4 and T5. 

Also, the parameter P (introduced in Chapter 4) is the roll-off factor that cor~ t  rols the 
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bandwidth in excess of w,;,. Note that the passband characteristic is not explicitly 

considered since an approximately zero stopband response and a low intersymbol 

interference distortion ensure an approximately constant passband response if ,f? < 1. 

A linear phase prototype h(n) is designed for systems T1, T2, T4 and T5. For 

notational convenience, we assume throughout that h(n) is in zero-phase form and 

has 2L+1 taps fromn = -L  to L. A nonlinear phase h(n) with L + l  taps fromn = 0 

to L is designed for transmultiplexer T3 with G(z) = ~ ( z - l ) .  The error function is 

a weighted linear combination of various factors, each of which is discussed below. 

Stopband 

The factor in the error function representing the stopband characteristic is de- 

noted by Esb where 

S = [-a, -us] U[ws, T ]  and w, is the stopband edge. Therefore, Esb is the square 

of the energy in the stopband. This function has been used in [28] as part of a 

general least-squares linear phase FIR design. For a zero-phase H ( z )  with an odd 

number of taps (designed for the one prototype systems), the frequency response can 

be expressed as 

L 
H (elW) = b(n) cos wn 

n=O 

where b(0)  = h(0) and b(n) = 2h(n) for n # 0. The quantity a can be expressed 

as bTpb where b = [b(O) b ( l )  . . b ( ~ ) ] ~  and P is a positive definite symmetric 



matrix whose entries are given by 

cos rw cos swdw 

for 0 5 r, s  5 L. 

Since G(z) = H ( z - ~ )  in system T3, the stopband energies of both filters are 

the same. For a nonlinear phase H ( z ) ,  & can again be expressed in quadratic 

form h T ~ h  where h = [h(O) h (1 )  . h ( ~ ) ] ~  and R is a positive definite symmetric 

matrix whose entries are given by 

ir 
- - J cos ( W ( T  - s))dw 

= ws 

for 0 5 r, s  5 L. 

Intersymbol Interference Distortion 

At output terminal 1, the mean-square intersymbol interference distortion is given 

by $ CniO t f l ( n )  where t l l ( n )  is the inverse z-transform of the input-output transfer 

function Tl l ( r ) .  The mean-square intersymbol interference distortion depends on 

which output terminal is considered. However, given the discussion in Section 5.1.1, 

the transfer function is the same for many input-output terminal pairs when practical 

filters are used. Therefore, the mean-square intersymbol interference distortion will 

be the same at many output terminals. 

Consider systems T2, T4 and T5. As mentioned in Section 5.1 .I, tll ( n )  is the same 

for every terminal 1 even with practical filters. Hence, it is sufficient to determine 

the mean-square intersymbol interference distortion at  only one terminal. Moreover, 
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tll(n) is the inverse r-transform of T(r)  where ~ ( 2 ~ )  is defined in Eq. (3.17) for T2 

and Eq. (3.21) for T4 and T5. Therefore, the mean-square intersymbol interference 

distortion is v 2 ( n ~ )  for T2 and a v2(2nN) for T4 and T5 where v(n) = 

h(n) * h(n) (* is the convolution operator). 

In systems T1 and T3, tll(n) is generally different for each terminal I with practical 

filters. As mentioned in Section 5.1.1, these differences are due to the fact that the 

prototypes are not bandlimited. We ignore the differences in tll(n) and only consider 

the terminal at either a center frequency of 0 or n. At each of these terminals, tll(n) 

is the inverse z-transform of T ( r )  where ~ ( 2 ~ )  is defined in Eq. (3.15) for TI  and in 

Eq. (3.19) for T3. Therefore, the mean-square intersymbol interference distortion at 

each of these terminals is f E,pO v2(nN) for T1 and f En+0 w2(niV) for T3 where 

v(n) = h(n) * h(n) and w(n) = h(n) * h(-n). 

The factor representing the mean-square intersymbol interference distortion is 

denoted by Eisi. For systems T2, T4 and T5, Eisi is based on any terminal 1. However, 

for T1 and T3, Eisi is based on the terminal at either a center frequency of 0 or T .  

From the preceding discussion, Eisi is given by 

C P(n )  * h(n)12 for systems T1 and T2 
n=cN 
n#O 

[h(n) * h(n)12 for systems T4 and T5 
n=2cN (5-5) 

[h(n) * h(-n)12 for system T3 
n=cN 

, n#O 

Note that EiSi is a function of b for the one prototype systems and is a function of h 

for T3. 



Crosstalk Distortion 

At output terminal 1, the total crosstalk power due to the undesired input signals 

is Pctk(l). In developing a mathematical formula for Pctk(l), we assume that each of 

the input data signals is zero-mean, white, uncorrelated with other inputs and has 

a signal power Ps. The crosstalk power at output terminal I contributed by a signal 

at input terminal k is given by the input signal power Ps multiplied by & C, tzl(n) 

where tkl(n) is the inverse z-transform of the crosstalk function Tkl (z). Also, the total 

crosstalk power at output terminal 1 is the sum of the crosstalk powers contributed 

by each of the undesired signals and is given by 

To include the crosstalk power 

crosstalk factor Ectk given by 

for every terminal 1, we formulate an overall 

Recall that ak(n) and bl(n) are the impulse responses of the kth combining filter and 

the lth separation filter respectively. Note that Ectk is a function of b for the one 

prototype systems and a function of h for T3. 

For computational purposes, the number of terms involved in the expression for 

Ectk can be decreased by exploiting the symmetry of the crosstalk power and the fact 



that there may be some crosstalk functions that are exactly zero. The total crosstalk 

power for output terminal 1 operating at a center frequency wl is the same as that for 

a terminal operating at R - q (except for wl = n/2 in some systems). Hence, only the 

output terminals operating at frequencies in the range [0, n/2] need be considered. 

After taking advantage of the symmetry described above, we can further exclude the 

terms in Ectk corresponding to the crosstalk functions which are exactly zero. 

Overall Error Function 

The overall error function to be minimized is the weighted sum of the individual 

factors relating to the stopband, mean-square intersymbol interference distortion and 

total crosstalk power. At this point, note that the zero solution ( b  = 0 or h = 0) is 

the global minimum. To avoid reaching this solution, we append a term (bTb - 1) 2 

2 
or (hTh - 1) to the overall error function. Hence, the overall error function E (b )  

(applies to T I ,  T2, T4 and T5) and E ( h )  (applies to T3) are 

where the yi represent nonnegative weighting factors. With y3 = 0 (no crosstalk 

factor), the same E(b) and hence, the same filter results for systems T1 and T2 and 

for T4 and T5. 

Optimization Procedure 

We use a Quasi-Newton approach [41] to get a local minimum of E. It is an 
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iterative method specified by the two equations, 

Hksk = -vE(dk) 

(5.9) 
dk+l = dk + X k s k  

where k is the iteration index, H k  is the Hessian matrix, s k  is the direction of descent, 

VE is the gradient of E and X k  is a scaling factor which specifies the extent to which 

movement along the direction of descent occurs to get an update. Note that d is the 

vector of variables to be optimized and is updated in each iteration. Then, d = b 

for the one prototype systems and d = h for T3. We express the gradient VE in 

closed form and evaluate it at dl, in each iteration. Although the Hessian matrix can 

be expressed in closed form, we use the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

update '[41] in each iteration. In the actual implementation, we use a routine from 

the IMSL library [42] to perform the minimization. An initial condition is supplied 

as an input. Also, subroutines to calculate the error function and its gradient are 

supplied by the user. 

5.3 Design Examples 

When performing an unconstrained minimization of the error function, we use 

the optimization procedure described above. The computations were performed using 

double precision floating point arithmetic. Note that the initial conditions affect the 

final local minimum. For the one prototype systems, the initial condition we use corre- 

sponds to an equiripple linear phase filter (with unity gain at zero frequency) having a 

frequency response that is a minimax approximation of the square root of a raised co- 

sine spectrum. For transmultiplexer T3, the initial condition we use corresponds to an 
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equiripple minimum phase filter (with unity gain at zero frequency) that is designed by 

the factorable minimax approach. Examples of magnitude response plots are shown 

in Figure 5.1 (system TI ) ,  Figure 5.2 (system T3) and Figure 5.3(a) and (b) (system 

T4) for the case N = 6 and ,4 = 0.52. Figure 5.1 shows the magnitude response 

of a 33 tap filter designed with weighting factors (yl,72, y3,y4) = (100,1,1,0.01). 

Figure 5.2 shows the magnitude response of a 30 tap filter designed with weighting 

factors (yl,  72, yj, y4) = (100,1,1,0.01). Figure 5.3 shows the magnitude responses 

of a 59 tap filter designed with weighting factors (yl ,  y2,y3, 74) = (100,1,0,0.01) and 

(yl,  y2,73, y4) = (100,1,1,0.01). Note that the magnitude response in the passband 

is flat to within 0.013 dB (Fig. 5.1), 0.003 dB (Fig. 5.2) and 0.014 dB (Fig. 5.3(a) 

and (b)). 

Normalized Frequency Hz 

Fig. 5.1 Magnitude response of the lowpass filter for system T1 
The weighting factors are 
(~1,727~3,7414 = (100, 1,1,0.01). 



The fact that some crosstalk terms which form the crosstalk function Tkl (rN) are 

exactly zero is reflected in the frequency response of the lowpass prototype. Consider 

Fig. 5.3 which shows the magnitude responses of the optimized filters for system 

T4 with and without a crosstalk weight y3. The stopband response is significantly 

different for the two filters. When a positive crosstalk weight is applied, the stopband 

response is shaped so as to suppress the nonzero crosstalk terms. An analysis of 

system T4 revealed that none of the crosstalk functions Tkl(zN) is exactly zero. 

However, some of the terms in the crosstalk function T ~ . , ( z ~ )  are zero. Among the 

crosstalk functions in T4 for the case N = 6, the terms involving sidebands whose 

center frequencies are separated by w/3, 2w/3 and n are never zero. The other terms 

involving sidebands whose center frequencies are separated by w/6, w/2 and 5n/6 

are consistently zero. This manifests itself in that the magnitude response in the 

stopband around the frequencies of n/3, 2 . ~ 1 3  and .;rr exhibit a higher attenuation 

than neighbouring regions. It is the higher attenuation in these regions that suppress 

the nonzero crosstalk terms. Similarly, transmultiplexer T3 has nonzero crosstalk 

terms involving sidebands separated by 2w/3 when N = 6. When the crosstalk 

weight 73 = 1, the stopband response of the resulting filter is better than for a design 

with 73 = 0 about the frequency 2.~13. 

Additional experiments were conducted by changing only the parameter yq (the 

weighting factor for the term that avoids a zero solution) and observing the per- 

formance in terms of intersymbol interference and crosstalk distortions. The value 

yq = 0.01 was chosen to arrive at a good solution in a reasonable number of iterations. 

Reducing 74 significantly below this value gives a local minimum with a poorer per- 
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Normalized Frequency Hz 

Fig. 5.2 Magnitude response of the lowpass filter for system T3. 
The weighting factors are 
(71,72773774) = (100,1,1,0.01). 

formance (in terms of intersymbol interference and crosstalk distortions). Increasing 

y4 beyond 0.01 merely increases the number of iterations. 

As an alternative to the Quasi-Newton procedure, the steepest descent algorithm 

was also attempted with the same initial conditions. At the beginning, there was a 

rapid decrease in the error. Then, there was a very slow decrease in the error but no 

signs of convergence even after many iterations. 

5.4 Transmultiplexer Performance 

The performance of the transmultiplexers is evaluated and compared for minimax 

filters and for filters designed by the method in this chapter. The transmultiplexers 

have six bands (N = 6) and use filters having an excess bandwidth of 52 percent 
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Normalized Frequency Hz 

(a) The weighting factors are (yl,y2, y3,y4) = (100,1,0,0.01). 

Normalized Frequency Hz 
(b) The weighting factors are (yl, 72, 73, 7 4 )  = (100,l,  1,0.01). 

Fig. 5.3 Magnitude response of the lowpass filter for system T4. 



( p  = 0.52). For systems T I ,  T2 and T3, the aim is to achieve a minimum stopband 

attenuation of about 40 dB. A stopband attenuation of about 35 dB is used for 

systems T4 and T5 since an excessively long prototype would be required for a 40 dB 

attenuation when using the minimax method. 

For the one prototype systems (T l ,  T2, T4 and T5), a minimax linear phase H(z) 

is designed by the McClellan-Parks algorithm [25] such that its frequency response 

approximates the square root of a raised cosine spectrum. The factorable minimax 

method is used for T3. The resulting prototypes H(z) and ~ ( z - l )  are not linear 

phase. For T1 and T2, the prototype has 77 taps. For T3, a 30 tap filter results. 

For T4 and T5, a 99 tap prototype is used. Equiripple designs are obtained by a 

weighting function equal to unity. Figure 4.2 (design Example 1 in Chapter 4) depicts 

the magnitude response of the equiripple Nyquist filter whose 30 tap minimum and 

maximum phase parts are used in T3 for the performance study. 

We also design nonequiripple responses for the transmultiplexers. For the one 

prototype systems, the weighting function W(w) is unity in the passband and the 

transition band. In the stopband, an increasing weight is used, 

for us 5 w 5 T. In the case of T3, the factorable minimax method is based exclusively 

on stopband control and hence, allows for weighting only in the stopband. We use 

W ( w )  as above for w, 5 w 5 n. These filters, with a stopband attenuation increasing 

towards T ,  should achieve a higher crosstalk suppression. In all cases, the minimum 

stopband attenuation (at the stopband edge) is essentially the same for the equiripple 
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and nonequiripple filters. However, the attenuation at the high frequencies for the 

nonequiripple designs is 58 dB (77 tap prototype for T1 and T2), 52 dB (30 tap filter 

for T3) and 54 dB (99 tap filter for T4 and T5). 

Using the new method involving an unconstrained minimization of the error func- 

tion E, we design a 33 tap filter for systems T I  and T2, a 30 tap filter for system T3 

and a 59 tap filter for transmultiplexers T4 and T5. For systems T I ,  T2, T4 and T5, 

the initial condition for the optimization corresponds to an equiripple linear phase 

filter (with unity gain at zero frequency) having a frequency response that is a min- 

imax approximation of the square root of a raised cosine spectrum. For system T3, 

the initial condition corresponds to an equiripple minimum phase filter (with unity 

gain at zero frequency) designed by the factorable minimax method. The weighting 

factors used are (yl, y2, y3, y4) = (100,1,0,0.01) and (100,1,1,0.01). The design ex- 

amples in the previous section correspond to those used here in the performance study. 

The minimum stopband attenuations (at the stopband edge) are approximately equal 

whether crosstalk is taken into account or not (y3 = 1 or 73 = 0). 

In measuring the performance of the transmultiplexers, we consider the nor- 

malized peak distortion Dp and the normalized root mean-square (RMS) distortion 

DRMS for the intersymbol interference. These performance measures have been used 

in Chapter 4 to compare the factorable minimax design method with the McClellan- 

Parks approach. For the lth terminal, Dp(l) is 



and DRMS(l) is 

Note that the factor Eisi in the error function only considers the mean-square distor- 

tion. The quantity Dp(l) as well as DRMS(l) will be the same for all terminals in T2, 

T4 and T5. There will be some variation among the terminals in T1 and T3. 

The normalized crosstalk power at terminal I ,  DCRP(l) is the performance mea- 

sure for the crosstalk. It is expressed as 

k=O 
k f l  

The output signal at terminal 1 contains two components, one desired term resulting 

from the corresponding input and an undesired factor due to crosstalk. At terminal 

1, the power of the desired component is the input signal power Ps multiplied by 

& En tf,(n). Dividing the total crosstalk power by the power of the desired compo- 

nent establishes the normalized crosstalk power DCRP(l) which can be thought of as 

a crosstalk to signal ratio. 

Tables 5.2, 5.3 and 5.4 show the values of Dp(l), DRMS(I) and DCRP(l) (in dB) 

for the transmultiplexers when N = 6. Only the values for the first three output 

terminals are provided since symmetry gives the same results for the other three 

terminalst. We proceed to analyze the results and compare the two design methods. 

t Note that for system T5 with 73 = 1, the optimization algorithm did not converge. A fixup 
involved using only the crosstalk terms having sidebands separated by no more than ~ / 2 .  



Intersymbol Interference Suppression 

In Section 5.1.1, we identified two potential sources of intersymbol interference. 

These are (1) the limitation of the design procedure in giving filters such that the 

Nyquist criterion is not exactly satisfied and (2) the fact that the prototypes are 

not bandlimited. These causes of intersymbol interference are reflected in Tables 5.2 

and 5.3. In the forthcoming analysis, we refer to these sources of intersymbol inter- 

ference as Source (1) and Source (2). Also, our observations are confined to the first 

three terminals of the transmultiplexers. However, these observations will hold for 

the corresponding last three terminals due to symmetry. 

First, consider the minimax designs. Source (1) is the only potential cause of 

intersymbol interference in systems T2, T4 and T5 and at terminal 0 of T1 and T3. 

There is no intersymbol interference at terminal 0 of T3  since the factorable minimax 

method assures a Nyquist characteristic. For the other cases, a minimax design 

that approximates the square root of a Nyquist characteristic leads to intersymbol 

interference. Regarding terminals 1 and 2 of transmultiplexer T1, both Source (1) and 

Source (2) contribute to intersymbol interference. However, the small variation in the 

values of Dp and DRMS for T1 shows that Source (2) is not severe. At terminals 1 and 

2 of T3, only Source (2) contributes to intersymbol interference. The low normalized 

peak and RMS distortions for terminals 1 and 2 of T3 again show that Source (2) is 

not severe. In fact, T3 outperforms the other systems indicating that Source (1) is the 

dominant cause of intersymbol interference. Applying an increasing frequency weight 

in the stopband does not affect the normalized peak and RMS distortions significantly 
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Transmultiplexer minimax design 
const ant W (w) 

-30 -29 - 31 

-30 - 30 - 30 
-0 -39 -39 
-26 - 26 - 26 
-26 - 26 - 26 

minimax design 
increasing W(w) 

(a) Minimax designs 

Transmultiplexer I optimized design 1 optimized design 

T5 1 -56 - 56 - 56 1 -56 - 56 - 56 

(b) Optimized designs with (yl, y2, y4) = (100,1,0.01). 

Table 5.2 Peak distortion (in dB) for transmultiplexers T1 to 
T5. Entries along a row refer to output terminals 
1 = 0, 1 and 2 respectively. 

except for terminals 1 and 2 of system T3. An enhanced stopband response (due to 

an increasing frequency weight) diminishes the effect of Source (2) and leads to lower 

normalized peak and RMS distortions at terminals 1 and 2 of system T3. 

Now, consider the optimized design for the one prototype systems (T l ,  T2, T4 

and T5). Source (1) leads to intersymbol interference in all the systems. Source (2) 

only affects terminals 1 and 2 of system TI. However, Source (1) is the dominant 

cause of intersymbol interference. This is exemplified by the fact that thcrb is very 



little variation in the values of Dp and DRMS for T I .  The normalized peak and RMS 

distortions are not significantly different for the cases 73 = 0 and 73 = 1. 

Transmultiplexer 
DRMS(I) in dB 
minimax design 
constant W (w) 

-36 - 34 - 37 

-36 - 36 - 36 
-00 - 45 -45 
-31 - 31 - 31 
-31 - 31 - 31 

(a) Minimax designs 

DRMs(l) in dB 
minimax design 
increasing W(w) 

Transmultiplexer 
DRMS(l) in dB 

optimized design 

73 = 0 

DRMS(l) in dB 
optimized design 

73 = 1 

(b) Optimized designs with (yl, 72, y4) = (100,1,0.01). 

Table 5.3 RMS distortion (in dB) for transmultiplexers T1 to 
T5. Entries along a row refer to output terminals 
I = 0, 1 and 2 respectively. 

In the case of an optimized design for T3, the intersymbol interference at terminal 

0 is only due to Source (1). However, both Source (1) and Source (2) affect terminals 

1 and 2. In contrast to the one prototype systems, Source (2) is the major cause of 

intersymbol interference. This is revealed by the large difference in the normalized 

peak and RMS distortions for terminals 1 and 2 compared with terminal 0. The 
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initial condition used in the optimization corresponds to a filter H(z)  that assures 

exact zero crossings in the impulse response of ~ ( z )  H(Z-I). The use of this initial 

condition results in an optimized filter H(z) that sacrifices the zero crossing property 

of H(Z)H(Z-l). However, the resulting intersymbol interference distortion is very 

low at terminal 0. A crosstalk weight (y3 = 1) leads to more distortion at terminal 0 

and less distortion at terminals 1 and 2 compared to the case y3 = 0. For terminals 

1 and 2 of T3, the bandlimitedness property is used to cancel terms in the input- 

output transfer function involving sidebands whose center frequencies are separated 

by 2 ~ 1 3 .  Source (2) contributes to intersymbol interference at these terminals. The 

enhanced stopband attenuation about 2n/3 that results from the use of a positive 

crosstalk weight diminishes the effect of Source (2). This results in a lower intersymbol 

interference distortion at terminals 1 and 2. 

Crosstalk Suppression 

The QAM systems (Tl, T2 and T3) generally achieve a much lower normalized 

crosstalk power than the VSB transmultiplexers (T4 and T5) primarily because QAM 

systems exhibit many more crosstalk functions that are exactly zero. An exception 

arises for the optimized design with 73 = 0. In this case, T4 and T5 achieve a lower 

normalized crosstalk power than T3. However, this occurs by using a filter in T4 

and T5 that has more taps and a better overall stopband response than the filter 

used in T3. Also, we notice that the crosstalk power is exactly zero for terminal 

2 of T1. Among the QAM systems, T1 and T2 outperform T3 but at the expense 

of more filter coefficients (the disparity in the number of coefficients is much more 
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for the minimax designs). For a minimax design, an increasing frequency weight 

diminishes the crosstalk power as anticipated. For the optimized design, a positive 

crosstalk weight (y3 = 1) results in a substantially lower crosstalk power than for a 

zero crosstalk weight. 

Transmultiplexer 
DCRP(l) in dB 
minimax design 
constant W(w) 

(a) Minimax designs 

DCRP(l) in dB 
minimax design 
increasing W(w) 

-65 - 65 - 00 

-65 - 65 - 65 
-47 - 49 - 48 
-40 - 40 - 40 
-43 -44 - 4 1  

Transmultiplexer 

(b) Optimized designs with (yl, y2,y4) = (100,1,0.01). 

DCRP(I) in dB 
optimized design 

73 = 0 

Table 5.4 Normalized crosstalk power (in dB) for 
transmultiplexers T1 to T5. Entries along a row refer 
to output terminals 1 = 0, 1 and 2 respectively. 

DCRP(l) in dB 
optimized design 

73 = 1 

Comparison of Minimax and Optimized Designs 

The new optimized design approach is highly beneficial for the one prototype 
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systems (Tl ,  T2, T4 and T5). A much lower intersymbol interference and crosstalk 

distortion is achieved (even with a crosstalk weight of zero) with many fewer filter 

taps as compared to a minimax design. In addition, the optimized design allows for 

the flexibility of taking crosstalk into account by setting 7 3  > 0. 

For system T3, we have proposed new minimax and optimized design approaches. 

For the performance study, the number of filter coefficients for the minimax and opti- 

mized designs are the same. Moreover, the minimax filters serve as initial conditions 

for the optimized design. The main advantage of the optimized design over the mini- 

max design primarily lies in using a positive crosstalk weight to substantially diminish 

the crosstalk power. The optimized filters designed with a positive crosstalk weight 

lead to a lower crosstalk distortion (at all terminals) and a lower intersymbol inter- 

ference distortion (at terminals 1 and 2) as compared to minimax filters. Without 

a crosstalk weight, there is no clear advantage of the optimized design. In fact, the 

factorable minimax approach with an increasing stopband weight and the optimized 

design with 73  = 0 lead to a similar performance. Finally, in contrast to the mini- 

max approach, an optimized design will not give an H(r) such that ~ ( z )  ~ ( z - l )  is 

a Nyquist filter with exact zero crossings thereby resulting in residual intersymbol 

interference at terminal 0. 

5.5 Design for the Complementary Subband Systems 

Given the design method for the transmultiplexers, we now attempt to see whether 

this filter design approach carries over to the complementary subband systems. Note 
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that the minimax design approaches can be used for both the transmultiplexers and 

their subband complements. The complementary subband systems have an input- 

output relationship ~ ( z )  = & T ( Z ~ ) X ( Z )  if the prototypes are bandlimited where 

T(z*) is defined in Eqs. (3.15), (3.17), (3.19) and (3.21). In addition, perfect re- 

construction is accomplished by satisfying the Nyquist criterion. With practical 

prototypes, there is residual aliasing in that the input-output relationship becomes 

X(L)  = $ ~ ( z ~ ) ~ ( r )  + terms due to aliasing. In a practical design, the stopband 

edge frequency is restricted as in the case of transmultiplexers. In formulating a suit- 

able error function, the factors Esb, Eisi and the factor that avoids a zero solution 

2 2 
((bTb - 1) or (hTh - 1) ) are the same as for the transmultiplexers. The remaining 

question is about how to take aliasing into account. In general, the output of a sub- 

band system is a combination of a filtered input and filtered frequency shifted versions 

of the input. Even for a zero-mean white input, the filtered input is correlated with 

the filtered frequency shifted versions of the input. This makes it difficult to express 

the total power at the output due to aliasing in relation to the power of the desired 

component due to the input especially for an arbitrary N. However, filters can be 

designed by minimizing the error function having the factors Esb, Eisi and the factor 

that avoids a zero solution. The filters that were previously designed with y g  = 0 can 

be used in the complementary subband systemst. 

Similar error functions for designing a prototype for subband systems have been 

proposed in [19][43]. A subband system with two bands which accomplishes a natural 

t Note that filters designed with y3 = 1 do not seem to perform any better (or any ~vorsp)  with 
respect to suppression of aliasing than filters designed with y3 = 0. 



cancellation of aliasing is the focus of [19] [43]. The error functions are weighted linear 

combinations of two components. The first component is the stopband energy which 

in [19] is expressed as an integral and which in [43] is approximated as a sum over a 

dense grid. The second component is the mean-square distortion at the output. The 

actual expressions in [19] and [43] differ in that a time domain approach is used in the 

former and a frequency domain approach is used in the latter. The error function for 

our subband systems consisting of a weighted linear combination of the terms Esb, 

Eisi and the term that avoids a zero solution is based on a time domain approach as 

in [19]. 



Chapter 6 
Channel Distortion 

and Compensation 

Until now, the investigation on modulated filter banks assumed that there is no 

channel distortion. However, a channel is present when data is transmitted from one 

location to another. This brings up the question of how to achieve reconstruction 

of the input data signals when there is channel distortion given that reconstruction 

can be accomplished in the absence of a channel. This chapter provides preliminary 

results that deal with this issue. Methods to configure a channel compensation filter 

to combat channel distortion are derived. Also, the performance of these methods is 

evaluated for a specific channel. 

6.1 Combating Channel Effects 

In a transmultiplexer, the composite signal passes through a single channel. The 

overall system is shown in Fig. 6.1 where the channel has a system function Q ( z ) .  In 

attempting to alleviate the effects of the channel Q(z), we assume that the combining 

and separation banks are configured to satisfy A(z)B~(z) = T ( z ~ ) I .  Therefore, 

in the absence of a channel, the transmultiplexer is crosstalk-free and has the same 

- 118 - 



input-output transfer function for every pair of terminalst. This can be assured by 

the methods given in Chapter 2 and by the new modulated filter banks developed in 

this thesis. The problem is to specify a channel compensation filter that acts on the 

received composite signal and nullifies the channel distortion. The only compensation 

filter that accomplishes this is l /Q(z)  which is unstable if Q ( z )  has zeros outside the 

unit circle. Approaches are formulated to configure a stable compensation filter that 

reinstates the crosstalk cancellation property and suppresses the resulting intersymbol 

interference. Then, simulations are done to compare the various approaches. 

x N - l ( n )  

Fig. 6.1 Channel distortion in a transmultiplexer 

6.1.1 Theoretical Development 

In Chapter 2, the input-output relations for a transmultiplexer were given as- 

suming no channel distortion. When a channel is present, the outputs x ; ( z )  (as in 

Fig. 6.1)  are given by 

* T  N  1 x ( f  )=-xT 
N ( f N  ) W Q ( ~ B ~ ( ~ )  (6 .1 )  

t Note that this assumption includes the special case of perfect reconstruction. 
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where 

Q(z) = Diag [ Q ) ,  Q ( - )  . . . ,  Q(zw-~+ ' ) ]  , (6.2) 

and A(z) and B(z)  are defined as in Chapter 2. Since the system with no channel 

distortion (Q(z) = 1) eliminates crosstalk and has the same input-output transfer 

function for every pair of terminals, A ( z ) B ~ ( ~ )  = T(zN) l .  To cancel crosstalk with 

the presence of a channel, one needs to satisfy the augmented equation 

In the sequel, it is assumed that Q(z) is a stable function. No restriction on 

the zeros of Q(z) is imposed. A channel compensation filter E(z) that acts on the 

received composite signal is equivalent to modifying the separation filters to Bi (z )  = 

Bk(z)E(z) for k = 0 to N -1. Then, a new separation filter matrix Bi(z)  = B(z)R(z)  

results where 

R(;) = Diag E ) ,  E ( W )  e m . ,  E(IW-~+')]  . (6.5) 

If R(z)  is chosen such that Q( r )R(z)  = s (zN) l ,  Eq. (6.4) becomes 

+ ) Q ( ~ ) [ B ' ( ~ ) I ~  = A ( ~ ) Q ( ~ ) R ( Z ) B ~ ( Z )  

= s ( z N ) ~ ( z N ) l  . 
In choosing R(z),  the stability of E(z)  must be ensured. 

The special case in which the channel response Q(z) is itself a function of zN 

ensures that A ( z ) Q ( z ) B T ( ~ )  remains a function of and consequently, no crosstalk 
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is introduced by the channel [44]. A special case is when Q(z) is a pure delay of 

the form r-mN. This is equivalent to applying delay factors to the combining and 

separation filter banks. Then, the perfect reconstruction property is preserved for an 

identity transmultiplexer as discussed in Chapter 2. 

An obvious solution to Q ( r ) R ( r )  = s ( z N ) l  is to choose R ( r )  = Q-'(2). This 

makes s ( z N )  = 1 and E(z) = l /Q(r) .  However, this solution is inappropriate if Q(z) 

has zeros outside the unit circle since an unstable compensation filter E(z) results. 

To achieve crosstalk cancellation, R(z )  is set to be 

where @(zN) is any arbitrary function of zN and CQ(z) is the cofactor matrix of 

Q(z) given by 

= 

Then, 

and 



The channel Q ( z )  and the compensation filter E ( z )  introduce an extra term s ( z N )  

in the input-output transfer function. The overall input-output transfer function is 

s ( z N ) ~ ( z N ) .  The compensation filter E ( z )  can be thought of as being composed 

of two filters. The filter with system function ngil Q ( Z  w - ~ )  when cascaded with 

Q ( z )  can be viewed as a composite channel nEil Q(ZW-' ) ,  which being a function of 

z N ,  ensures the cancellation of crosstalk. However, residual intersymbol interference 

remains. The other filter @ ( z N )  should be a function of z N  to preserve the crosstalk 

cancellation property. However, its actual role is to suppress the residual intersymbol 

interference admitted by the factor s(zN). We ignore the intersymbol interference 

admitted by the factor T ( z ~ )  since it can be suppressed or even cancelled by designing 

the filter banks. In effect, the channel compensation filter consists of two components, 

one which exactly cancels crosstalk and one which suppresses intersymbol interference. 

Since Q ( z )  is stable, it follows that E ( z )  is stable providing @ ( z N )  is stable. Based 

on the specification for R ( z ) ,  different approaches of choosing @ ( z N )  are given. 

6.1.1.1 Choices for @ ( z N )  

Method 1 

The simplest method, namely, @ ( z N )  = 1 does not attempt to control the inter- 

symbol interference. It introduces the factor s ( z N )  = n:il Q(~w- ' )  in the overall 

input-output transfer function. 

Method 2 

A second procedure alleviates the problem of a high order input-output transfer 
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function that is present in the previous approach. Suppose Q ( z )  is split up as 

where U+ ( z )  contains the zeros of Q ( z )  within the unit circle and U- ( z )  contains the 

zeros of Q ( z )  on and outside the unit circle. Since Q ( z )  is assumed to be stable, D ( z )  

has all its zeros within the unit circle. By setting 

we get a lower order factor in the input-output transfer function 

and a stable channel compensation filter 

Since the order of the overall input-output transfer function is reduced over that of 

Method 1, the resulting time span of the intersymbol interference is shortened. 

Method 3 

Assume that the original transfer function ~ ( z ~ )  is allpass and that Q ( z )  has no 

zeros on the unit circle (in analogy with the development in [18]). Now, we proceed 

to examine whether the allpass property of the input-output transfer function can be 

preserved. Setting 



renders a new allpass factor 

and a stable channel compensation filter 

Method 3 preserves the allpass property of the input-output transfer function but 

introduces an infinite time span for the intersymbol interference. 

Method 4 

So far, we have presented methods that either control the time span or the allpass 

nature of the input-output transfer function. Now, we attempt to choose an FIR 

@ ( z N )  so as to suppress the intersymbol interference. Given that 

= qPN)qZN) 

or equivalently S(z)  = @ ( z ) @ ( z ) ,  we determine the coefficients of an FIR @ ( z )  to 

minimize the mean-square intersymbol interference s2 (n ) .  Since s ( n )  = d ( n )  * 

+(n), it can be shown that s2 (n )  = + T ~ 4  where ) is the column vector of 

coefficients of @ ( z )  and 9 is a positive definite symmetric matrix whose entries 8 ( k ,  1) 

are given by 



To avoid the trivial solution @(z) = 0, we impose the constraint 4T4 = 1. Then, 4 

is the eigenvector corresponding to the minimum eigenvalue of Q. Note that Method 

4 can be viewed as attempting to approximate the inverse of the composite channel 

Method 5 

An alternative method to suppress the intersymbol interference is to choose @(zN) 

Then, 

An FIR d ( z N )  is determined to suppress the mean-square intersymbol interference. 

As compared to Method 4, Method 5 only performs an approximation of the inverse 

of a maximum phase function that contains the zeros of Q(z) on and outside the unit 

circle. A factor of @(zN) exactly cancels the zeros and poles of Q(z) within the unit 

circle. 

Summary of Methods 

Table 6.1 shows the compensation filter E (2) and the overall input-output transfer 

functions T(zN)s (zN)  resulting from the methods presented above. Suppose we 

have an FIR channel Q(z). This leads to either an FIR or IIR compensation filter 

depending on the method utilized. Assuming that T(zN) is an FIR function (this 

is often the case since perfect reconstruction is desired), the overall input-output 
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transfer function is FIR in Methods 1, 2, 4 and 5. Method 3 is only useful for an 

allpass T ( z N )  and renders an IIR input-output transfer function. 

Method Compensation Filter Function Input-Output Transfer Function 

Table 6.1 Channel compensation filter and overall input-output 
transfer functions for the methods 

An IIR channel results in IIR compensation filters for all of the methods. However, 

Methods 1, 3 and 4 produce an IIR input-output transfer function while Methods 2 

and 5 still produce an FIR input-output transfer function (under the assumption 

that T ( z N )  is FIR). Methods 2, 3 and 5 involve additional computation to split the 

numerator of Q ( z )  into its minimum and maximum phase parts. 

For the special case when Q ( z )  is a function of zN ,  crosstalk is not i n t  rotluced. 
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Then, the compensation filters for Methods 1 and 4 assume a special form. Method 

1 renders a compensation filter E(z) = ( N  - l )Q(z) which is not particularly ap- 

propriate since crosstalk is already absent and no specific control of the intersymbol 

interference is provided for. In Method 4, the form of the compensation filter should 

reduce to E(z) = @(zN) as no additional factor is necessary to cancel crosstalk. 

Then, @(zN) will approximate the inverse of Q(z). Note that for a general Q(z) (not 

N a function of a ), using a compensation filter to suppress the mean-square intersym- 

bol interference does not result in crosstalk cancellation. 

6.1.2 .Performance Evaluation 

We evaluate the performance of a transmultiplexer when the different channel 

compensation filters are used. Consider the two band ( N  = 2) version of transmul- 

tiplexer T3 with G(z) = ~ ( z - l ) .  The filters H(z) and H(z-') are obtained by the 

factorable minimax approach such that T ( z ~ )  = N (an identity transmultiplexer). 

Therefore, with practical filters, both intersymbol interference and crosstalk are ex- 

actly cancelled when no channel distortion is present. The presence of a channel 

and a compensation filter reinstates the exact crosstalk cancellation property and 

introduces the extra term s ( z N )  in the input-output transfer function. The residual 

intersymbol interference is only due to Q(z) and E(z) and not the practical filters 

used in the combining and separation filter banks. Therefore, the evaluation of the 

performance only depends on the compensation filter. By calculating s (n)  (the in- 

verse z-transform of s ( ~ ) ) ,  we measure both the normalized peak distortion Dp and 
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the normalized RMS distortion DRMS. The normalized peak distortion is given by 

The normalized RMS distortion is given by 

In many communications applications, the multiplexed output of the combining 

bank is converted to a lowpass analog signal, modulated, sent across a channel and 

demodulated back to baseband. Then, continuous time to discrete time (C/D) con- 

version takes place prior to the action of the separation bank. First, forming a lowpass 

analog signal from the discrete time output of the combining bank involves converting 

the discrete time signal into an impulse train and passing the impulse train through 

a lowpass analog filter (D/C conversion). Note that C/D conversion is equivalent to 

sampling the continuous time input. This overall process is equivalent to transmit- 

ting the lowpass analog signal (formed by D/C conversion) over a lowpass equivalent 

channel and then performing C/D conversion as shown in Fig. 6.2. The D/C and 

C/D conversions are performed in phaset and at the same sampling rate fs = l / T s .  

For our performance study, we need a discrete time equivalent Q ( z )  that models 

the system of Fig. 6.2. The process of D/C conversion translates the discrete time 

input into an impulse train and uses an ideal raised cosine filter with 50 percent roll- 

off to get the lowpass analog signal. In the absence of a channel, the discrete time 

t Note that if the D/C and C/D conversions are done out of phase, this can be modelled as an 
extra linear phase component in the channel. 



equivalent Q(z) = 1. We consider a lowpass equivalent channel with a cubic phase 

characteristic (parabolic group delay) O(S2) given by [45] 

In effect, we are using a channel with a heavily distorted phase response that be- 

comes more severe with increasing p. Such a phase nonlinearity exists over telephone 

channels and has been used to study the performance of multicarrier moderns 1231. 

Fig. 6.2 Transmission over an analog channel 

Specifically, we consider the discrete time equivalent response q(n) for the case 

p = 5. This is representative of the group delay distortion that is seen by a high speed 

modem over a telephone channel. The discrete time response q(n) diminishes rapidly 

with Inl. An FIR Q(z) with 43 coefficients spans the significant part of the response. 

The magnitude response of Q(z) is flat up to the quarter sampling frequency and 

then decreases by 6 dB at the half sampling frequency due to aliasing effects. The 

group delay is parabolic up to the quarter sampling frequency and then becomes more 

severe. 

In calculating the normalized peak and RMS distortions for the first three meth- 

ods, the reference coefficient that leads to the minimum distortion is aligned with the 

zeroth time index. This is equivalent to applying an additional time advance to the 

compensation filter. Although the impulse response is infinite in extent for Method 
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3, lower bounds for the normalized peak and RMS distortions are computed by con- 

sidering the first 60 samples. For Methods 4 and 5 ,  the eigenvector corresponding to 

the minimum eigenvalue of the positive definite matrix is of dimension 61. Therefore, 

the component of the compensation filter involving the FIR least-squares approxi- 

mation (denoted by @(zN) or A(zN)) has 61 nonzero coefficients. In addition, the 

coefficients of @(zN) or A(zN) are centered about the zeroth time index. This time 

index corresponds to the best reference coefficient of s (n)  without the least-squares 

filter. 

The normalized peak and RMS distortions resulting from Methods 1, 2 and 3 

are much larger than for Methods 4 and 5 primarily because there is no explicit 

suppression of the intersymbol interference. Specifically, Methods 1, 2 and 3 give 

peak distortions of 1.47, 0.46 and 1.11 respectively and RMS distortions of 0.91, 0.37 

and 0.58 respectively. Of the first three approaches, Method 2 achieves the lowest 

distortion and constrains the time span of the intersymbol interference. Method 3 is 

highly specific to preserving a stable IIR allpass transfer function. Even though the 

impulse response dies out with time, a large distortion results. Methods 4 and 5 are 

successful in that they result in very low peak and RMS distortions, all of which are 

below 

6.1.3 Application to Specific Systems 

The methods used to configure a channel compensation filter assume that the 

transmultiplexer is crosstalk-free and results in the same input-output transfer func- 

tion for every pair of terminals in the absence of a channel. The derivation is general 
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in that there are no specific requirements on the form of the combining and separation 

filter banks. In addition, N can be any integer. Therefore, the channel compensation 

filters are applicable to two band QMF banks, the two band Smith-Barnwell struc- 

ture, the N band systems configured by the use of a matrix formalism and N band 

lossless filter banks (see Chapter 2). 

With bandlimited prototypes, transmultiplexers T1 to T5 satisfy the assumptions 

for configuring the channel compensation filters. Therefore, the channel compensation 

methods of this chapter can be applied to these transmultiplexers. Note that with 

practical filters, residual crosstalk is admitted. Suppose the channel compensation 

schemes are applied to the transmultiplexers that use practical filters. Then, the extra 

factor s ( z N )  is introduced in the input-output transfer function and the crosstalk 

functions. Specifically, the crosstalk functions become T k l ( z N ) s ( z N )  where TkI ( r  N ,  

are the crosstalk functions of the system in the absence of a channel. Methods 4 

and 5 are particularly effective in that the factor s ( z N )  is approximately a constant. 

Then, the normalized crosstalk power will be about the same as the crosstalk power 

that is admitted in the absence of a channel. 

6.1.4 Channel Effects in a Subband System 

Channel distortion is introduced in a subband system when each of the inter- 

mediate signals formed after sampling rate compression is passed through a channel. 

Given that the original system with no channel distortion eliminates aliasing, the pro- 

cedure given in 1181 describes how to modify the synthesis filters to combat channel 

distortion. Just as in our approaches for a transmultiplexer, no specific assu 111 1) tions 
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about the filter banks or the number of bands N are made. Each of the synthesis 

filters is modified by a different factor that depends on the system function of each of 

the channels such that the cancellation of aliasing is reinstated. Our methods modify 

the separation filters by the same factort. Our Methods 1, 2 and 3 are analogous 

to the approaches in [18]. In addition, we have proposed two additional procedures 

to control the intersymbol interference. The modification approaches for both sub- 

band systems and transmultiplexers do not assure perfect reconstruction. Since the 

subband systems S1 to S5 are alias-free with bandlimited filters, the compensation 

schemes in [18] apply. 

t We can extend our approach to allow for different compensation filters Ek(z) in each band. If 
Q ( z ) E k ( z )  is a function of zN for each k ,  crosstalk is cancelled. Different input-output transfer 
functions will result for each pair of terminals. 



Chapter 7 Conclusions 

The thesis has explored a class of transmultiplexers that use modulated filter 

banks. Modulated filter banks use bandpass versions of a lowpass prototype. We 

have also dealt with subband systems which are complementary to transmultiplexers. 

In this chapter, a list of the contributions that have arisen from the investigation 

are presented. Then, a summary of the entire thesis is given. Recommendations for 

future research are outlined. 

7.1 Contributions 

The contributions resulting from the research are as follows: 

A synthesis procedure based on a bandlimited lowpass prototype was developed 
for transmultiplexers that use modulated filter banks. The aim is to cancel 
crosstalk and maintain the same input-output transfer function for every pair 
of terminals. 

As a consequence of the synthesis procedure, five bandwidth efficient trans- 
multiplexers emerge. 

The systems can be interpreted from a communications point of view. Three 
of the systems implement multicarrier Quadrature Amplitude Modulation 
(QAM). The other two implement multicarrier Vestigial Sideband Modulation 
(VSB). 



4. The two band case was examined in more detail. This led to the synthesis of 
new two band transmultiplexers. 

5. The synthesized transmultiplexers can be converted into new subband systems. 

6. New design methods for a practical FIR lowpass prototype were formulated to 
suppress intersymbol interference and crosstalk. 

(a) The minimax designs take intersymbol interference into account. 

(b) The designs based on the minimization of an error function attempt 
to suppress both intersymbol interference and crosstalk. In fact, this 
design is based on an analysis of the transmultiplexers with respect to 
both intersymbol interference and crosstalk for practical filters. 

7. The performance of the transmultiplexers with the designed practical filters 
was evaluated. This performance evaluation allows us to compare the trans- 
multiplexers and the two design methods. 

8. Filter design methods for the subband complements were described based on 
the approaches for transmultiplexers. 

9. In the presence of channel distortion in transmultiplexers, five approaches to 
configure channel compensation filters were formulated to cancel crosstalk. 
The performance of these methods was compared with respect to the suppres- 
sion of the resulting intersymbol interference given a realistic channel. 

7.2 Summary 

The motivation behind the investigation was to develop alternate configurations 

for transmultiplexers that use modulated filter banks. This was accomplished by for- 

mulating a synthesis procedure based on a bandlimited lowpass prototype (stopband 

response is exactly zero). The synthesis procedure is a constructive approach for de- 

veloping new systems. As a result, five transmultiplexers (T1 to T5) were configured 

such that: (1) The input-output transfer function between each pair of terminals is 

the same and (2) The crosstalk is cancelled. Four of the systems are new while T4 
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resembles an existing modulated filter bank. Transmultiplexers T I ,  T2, T4 and T5 

are based on one prototype H(z). System T3 uses two prototypes H(z) and G(z). 

Each of the transmultiplexers implements a form of Frequency Division Multiplex- 

ing (FDM) without the use of guard bands. Therefore, the full channel bandwidth is 

utilized by allowing for spectral overlap among the filters. In addition, the transmul- 

tiplexers are bandwidth efficient. Consider the case in which each input signal to the 

transmultiplexer is sampled at f0 Hz. Then, the total information rate is f, = NfO 

samples/second where fs is the sampling rate of the composite signal which occupies 

a bandwidth of fs/2 Hz. The bandwidth efficiency of each of the systems is the ratio 

of the information rate (f, samples/second) to the total bandwidth (fs/2 Hz) and 

is equal to 2 samples/second/Hz. The synthesized transmultiplexers are bandwidth 

efficient in that the full information in each input is transmitted and the inputs are 

recovered. 

Although all of the transmultiplexers accomplish FDM, a further interpretation 

from a communications point of view can be made. Three of the new systems (TI, 

T2 and T3) implement multicarrier Quadrature Amplitude Modulation (QAM). Two 

signals are sent in quadrature at each repeating center frequency. The other two (T4 

and T5) accomplish multicarrier Vestigial Sideband Modulation (VSB) in which one 

signal is sent at each distinct frequency. 

The N band transmultiplexers T1 to T5 can be converted into subband comple- 

ments S1 to S5 respectively. Systems S1, S2, S3 and S5 are new while S4 resembles an 

existing system. Subband systems S1, S2 and S3 allow for repeated center frequen- 

cies. System S1 is an N band generalization of the two band QMF bank. System S3 
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is an N band generalization of a two band, two prototype system. For a particular 

case (G(z) = H(Z-l)), S3 is lossless and is an N band generalization of the two band 

Smith-Barnwell structure. Both S4 and S5 use distinct center frequencies. 

Transmultiplexers T1 through T5 have each been configured with bandlimited 

filters such that (1) the input-output transfer function is the same for every pair 

of corresponding terminals and (2) crosstalk is cancelled. In addition, satisfying 

the Nyquist criterion eliminates intersymbol interference and hence, achieves perfect 

reconstruction. For the one prototype systems (T l ,  T2, T4 and T5) specified by a 

lowpass H(z),  ~ ~ ( 2 )  should be a Nyquist filter. For transmultiplexer T3  specified 

by two lowpass filters H(z) and G(z), H(z)G(z) should be a Nyquist filter. Since 

bandlimited filters cannot be designed and the Nyquist criterion may not be exactly 

satisfied, neither intersymbol interference nor crosstalk is exactly cancelled. New 

design methods for a practical FIR lowpass prototype were introduced with the added 

aim of suppressing intersymbol interference and crosstalk. 

One of the design methods is based on a minimax approach to achieve a lowpass 

response. In addition, the desired Nyquist characteristic is taken into account. For 

the one prototype systems, there is an inherent difficulty in designing a lowpass H(z)  

such that H2(z) exactly satisfies the Nyquist criterion. We used the McClellan-Parks 

algorithm to get a linear phase lowpass H(z) that approximates the square root of a 

raised cosine response. For system T3 with G(z) = H ( r l ) ,  a lowpass H ( z )  can be 

designed such that ~ ( z )  H(Z-l) is a Nyquist filter. This is the advantage of using 

two prototypes in configuring T3. 

Two new approaches called factorable minimax methods were formulatcvi to de- 
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sign a lowpass Nyquist filter H ( Z )  ~ ( z - l )  having a Chebyshev stopband response. 

Both methods are iterative and four iterations were found to be sufficient in our 

examples to resolve the coefficients. The main advantages of the design techniques 

are that the polynomial factorization complexity in finding the minimum phase part 

H ( z )  is considerably eased and that arbitrary frequency weighting can be applied 

without additional computational overhead. Although the two design approaches 

should theoretically give the same filter, the first of our methods is numerically more 

accurate and hence, renders a slightly better frequency response. Comparisons with 

both a linear programming approach and the eigenfilter formulation showed that the 

proposed methods are good in terms of both magnitude response and group delay 

variation. 

The other new design approach was formulated to take the practical degradations 

due to both intersymbol interference and crosstalk into account. First, an analysis of 

these practical imperfections was done for each of the systems. Based on this analysis, 

the desired lowpass nature and Nyquist characteristic were considered together with 

the crosstalk that arises due to practical filters. The design procedure involves the 

optimization of an error function that is performed by a Quasi-Newton technique. The 

function proposed is based on (1) achieving a low stopband energy, (2) suppressing 

the mean-square intersymbol interference and (3) diminishing the crosstalk power. 

With an initial condition corresponding to a lowpass filter with an approximate or 

exact square root Nyquist frequency response, the resultingoptimized filter leads to 

low intersymbol interference and crosstalk distortions. 

The performance of the five transmultiplexers was compared for both minimax 
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filters and the optimized filters. The intersymbol interference distortion is generally 

the lowest for system T3. This is due to the fact that for T3, a minimax design leads 

to filters that exactly satisfy the Nyquist criterion and the optimized design uses 

minimax filters as the initial condition. The normalized crosstalk power was observed 

to be generally lower for the QAM systems as compared to the VSB systems. 

In comparing the design methods, we observed that lower intersymbol interference 

and crosstalk distortions with fewer filter coefficients are achieved by the optimized 

design when compared to minimax filters in the case of the one prototype systems. 

Therefore, the optimized design is preferred for T I ,  T2, T4 and T5. In the case of T3, 

both the minimax and the optimized design approaches are new. The advantage of the 

optimized design lies in using a crosstalk weight. This leads to a much lower crosstalk 

power than the minimax design for the same number of filter coefficients. Also, the 

resulting intersymbol interference distortion is very low although the Nyquist criterion 

is not exactly satisfied by the optimized design. When no crosstalk weight is applied, 

the optimized and minimax design approaches lead to a similar performance. For 

T3, there is a tradeoff between achieving a very low crosstalk distortion (optimized 

design) and exactly satisfying the Nyquist criterion (minimax design). 

The complementary subband systems S1 to S5 achieve perfect reconstruction if 

the prototypes are bandlimited and the Nyquist criterion is satisfied. Therefore, the 

minimax designs for the transmultiplexers carry over to the subband complements. 

Moreover, the optimized designs without a crosstalk weight also carry over to the 

subband complements. 

Finally, the issue of channel distortion in transmultiplexers was dealt with. In 
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combating channel effects, the general principle is to use a single compensation fil- 

ter that acts on the received composite signal prior to the action of the separation 

filter bank. This compensation filter was shown to have two components. One fixed 

component cancels crosstalk. The second component can be chosen to suppress in- 

tersymbol interference. Five choices for the second component were given. The first 

choice makes no attempt to control the intersymbol interference. Two other choices 

attempt to control either the time span of the intersymbol interference or the form of 

the input-output transfer function. The last two choices suppress the mean-square in- 

tersymbol interference. A performance evaluation involving a channel with a parabolic 

group delay showed that the last two choices achieve a low intersymbol interference 

distortion. 

This investigation has led to new transmultiplexers and new filter design strategies 

that achieve an excellent performance. We anticipate that the new transmultiplexers 

will be important in practical data communication systems employing multicarrier 

transmission. Also, the new subband systems should be useful for speech coding 

applications. 

7.3 Recommendat ions for Future Research 

7.3.1 Adaptive Equalization of Channels 

The configuration of the channel compensation filters was based on the assump- 

tion that the channel characteristic is known and is fixed for all time. However, the 

case of having a channel characteristic that is unknown and which varies with time 
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should be investigated. Therefore, an adaptive equalizer that approximates the in- 

verse of the channel characteristic is needed. The use of decision directed equalization 

is one possible approach [46] [47]. 

7.3.2 Computational Complexity 

A polyphase decomposition in conjunction with the use of a Fast Fourier Trans- 

form has been shown to substantially reduce the computational complexity of imple- 

menting the filter banks in [10][22]. In fact, this is an attractive feature of modulated 

filter banks. We anticipate that this technique is applicable to our new systems. 

The possibility of applying this technique to the new systems and comparing the 

transmultiplexers in terms of computational complexity is worth exploring. 

7.3.3 Non-Uniform Modulated Filter Banks 

This thesis has exclusively dealt with modulated filter banks in which each data 

signal is allocated exactly the same bandwidth. A pending problem involves relax- 

ing the assumption of having equal bandwidth filter banks and synthesizing non- 

uniform banks. Recently, subband systems with an arbitrary number of bands with 

filter banks having non-uniform magnitude responses have been analyzed [48]. These 

subband systems differ from conventional structures in that the sampling rate com- 

pression/expansion factors are different in each band. However, there are necessary 

conditions on the sampling rate compression/expansion factors for aliasing cancella- 

tion [48]. First, analogous conditions for crosstalk cancellation in transmultiplexers 
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with different sampling rate expansion/compression factors should be determined. 

Then, non-uniform modulated filter banks must be synthesized. The question of 

filter design should also emerge. 

7.3.4 Subband Coding of Speech 

Subband systems usually split the input speech into components that represent 

different frequency ranges. For individually coding each subband, the bit allocation 

can be weighted so that finer quantization is performed for the subbands that are 

perceptually more significant. Systems S4 and S5 decompose the speech into com- 

ponents representing different frequency ranges. The actual application of S4 and S5 

to speech coding remains to be investigated. Systems S1, S2 and S3 are unusual in 

that modulated filter banks with repeated center frequencies are used. The poten- 

tial advantages of S1, S2 and S3 for speech coding applications should be explored. 

Both scalar and vector quantization strategies should be considered in coding each 

subband. 



Appendix A. Phase Factors in Relation to the Synthesis 
Procedure 

Given the sum and difference criteria and the three sets of center frequencies, the 

sum of the phase factors crk + Pk was confined to be a multiple of a for every terminal 

k. Here, we justify this choice based on a crosstalk analysis and design constraints. 

Consider the center frequencies in Set 1 which lead to system TI. For crosstalk 

cancellation between two signals sent at wk = 0 and wl = 2r /N ,  the condition that 

cq and ,Or be odd multiples of a / 2  emerge if nk - pl and nl - pk are multiples of N. 

Then, cq + PI is a multiple of a. Considering either the sum or difference criterion 

reveals that the sum of the phase factors should be a multiple of a for each terminal. 

Consider the frequencies of Set 2 which leads to system T2. In particular, we 

examine the crosstalk function relating two signals transmitted at wk = wl = a / N  

(an end frequency). If the difference in the delay factors nk - pl is an odd multiple 

of N / 2 ,  a k  + PI should be a multiple of .~r and a k  - PI should be an odd multiple of 

a /2  for cancelling the cross talk. Combining these restrictions with those for either 

the sum or difference criterion and noting the conditions on the phase factors for the 

end frequencies leads us to confine the sum of the phase factors a k  + Pk and a1 + PI 

to be a multiple of a. This restriction on the sum of the phase factors will then hold 

for every terminal. 

In the case of the frequencies of Set 3, the arbitrary nature of the sum of the 

phase factors allows us to synthesize systems other than T4 and T5. The phase 

factors ctk and Pk of these systems will be different from those in T4 and T5. Also, 

the input-output transfer functions of these systems will differ from that of T4 and 
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T5 in that they will be a function of z N  as opposed to z2N as in T4 and T5 (see 

Eq. (3.21)). Then, the condition for cancelling intersymbol interference is that H~ (2) 

should be a Nyquist filter with an impulse response having zero crossings every Nth 

sample (except for a reference sample). This requires a minimum bandwidth of n / N  

(explained in Chapter 4) which corresponds to the maximum bandwidth allowed for 

the lowpass prototype H ( z ) .  Hence, there is a conflict in the bandwidth constraints 

which renders an unsuitable design problem. By restricting ak + Pk to be a multiple 

of n for every terminal, we encounter the feasible Nyquist design problem. 



Appendix B. Derivation of Equation (3.9) 

The crosstalk function specified by Eq. (3.8) is 

For notational convenience, let nk -p(  = s ,  m - 2 p  = r and a k  +Pi = 8. The crosstalk 

function is zero if 

or equivalently 

- - -e  j a r s  N 

This implies that 

In terms of the original parameters, Eq. (B.4) becomes 



Appendix C. Examination of the Crosstalk -Function, 
Eq. (3.12) 

For notational convenience, let a = e j ( ~ k + f i )  and a* be its complex conjugate. 

The first step in analyzing Eq. (3.12) is to substitute wk = ( 2 n l N ) q  + O w  to get 

Note that q is an integer and 0 5 A w  < 2 n l N .  The limitations on A w  are deter- 

mined in order to fix the frequencies at which two signals can be transmitted without 

crosstalk. Let ejnw = Wp where -1 < p 5 0. Then, 

It is desired to have the two terms in the above equation cancel each other 

Consider the case when n k  - pl is a multiple of N and a = -a*. Then, the 

exponential indices of W in the arguments of H 2 ( - )  of the two terms must differ by 

an integer to make the crosstalk zero. Therefore, p is fixed at either 0 or -112 thereby 

forcing the center frequencies to be multiples of T I N .  Since a = -a*, crk + ,dl is an 

odd multiple of 7r/2. 

Suppose n k  - pl is an odd multiple of N/2.  Then, we get 



Algebraic substitution for the second term only yields 

If a = -a*, 2 p  must be an even integer for the two terms to cancel. Therefore, p = 0 

and the center frequencies are multiples of 2 n l N .  If a = a*, 2 p  must be an odd 

integer for the two terms to cancel. Hence, p = -112 and the center frequencies are 

odd multiples of T I N .  This development generates the various approaches as outlined 

in Section 3.4.2. 



Appendix D. Two Band Systems: Repeated Center 
Frequencies 

Consider two band systems with combining filters A k ( z )  and separation filters 

B k ( z )  for k = 0 and 1. The combining filters have parameters n k  and a k .  The 

separation filters have parameters pk and P k .  The common center frequency is w,. 

For one prototype systems, we examine what possible values of w, are permissible for 

crosstalk cancellation. Consider the crosstalk function ~ ~ ~ ( 2 ~ )  given by 

0 - P  j ( a ~ + P l )  H 2 ( e - j w c z )  ~ ~ ~ ( 2 ~ )  = -z - (  [e  
4 

+ e - j ( a ~ + h  ) H ~ ( ~ ~ w c  z )  

Even if cro - PI  is an odd multiple of s/2  and two terms disappear, the sum of the 

other four terms should be zero. For this to happen, the arguments of H 2  must match. 

When w, # 0 and w, # n, the arguments match only if eJWc = -e -JWc or w, = n/2. 

This justifies the fact that two band systems can only use a repeated center frequency 

of a/2. The same arguments hold for the crosstalk function ~ ~ ~ ( z ~ ) .  



Appendix E. Constraints on the parameters lo and il 

Let the zero crossing interval be I '  and the number of filter coefficients be M = 

2(10 + 11) + 1. The parameters lo and l1  satisfy 

Since ll = ( M  - 1)/2 - 10, the inequality reduces to 

This new inequality is satisfied by a unique lo given by 

Then, l1 is given by 



Appendix F. The Ratio Illlo: Lower and Upper Bounds 

This appendix derives lower and upper bounds for I l l lo  and shows how to fix the 

filter length M = 2(10 + 11) + 1 to achieve these bounds. The zero crossing interval 

is I<. The ratio 11/10 is only finite for lo # 0 which is a reasonable assumption. If 

lo = 0, the filter length M < 21- - 1 thereby giving an impulse response with no zero 

crossings and hence, an insufficient length for an acceptable stopband attenuation. 

F. l  Lower Bound 

The lower bound for Z1/lO is given by the lefthand side of Eq. ( E . l ) ,  

The lower bound is achieved if and only- if lo and l1 are given by 

In this case, the filter length is of the form M = 210K + 1 thereby giving an impulse 

response with the two end coefficients equal to zero. 

If lo and l1 are chosen as above, the system of equations Df = c that solve for the 

coefficients of F o ( z )  can be decoupled into a reduced system of dimension lo and the 

additional equation d ( l l )  fO( lO)  = 0. Hence, fO(-10) = fO( lo)  = 0 thereby reducing 

the effective values of lo and M by 1 and 2 respectively. Such a choice of parameters 

gives results that are identical to the case when lo is reduced by 1. 



F.2 Upper Bound 

The upper bound for 11/10 is obtained by examining the righthand side of 

Since the minimum value of lo is 1, an upper bound is 211' - 1. Achieving a ratio 

equal to a value of 211' - 2 is possible if and only if lo = 1 and I l  = 211' - 2. If lo > 1, 

the upper bound I( - 1 + 11'/10 5 211' - 2 for every K > 2. Hence, 11/10  < 211' - 2 for 

every lo > 1. The final conclusion is that for a given I<, there exists only one filter 

length, namely, M = 411' - 1 that achieves the maximum value 11/10 = 21( - 2.  



Appendix G. Number of Exact Crosstalk Cancellat ions 
for a Specific Case 

Consider a center frequency wc that is an even multiple of 2n/N (excluding 0 

and T)  in system T1 with N being a multiple of 4. For a signal sent at w,, exact 

crosstalk cancellation with other signals sent at odd multiples of 2nlN is achieved. 

Since there are N/4 frequencies that are odd multiples of 2 r / N  and two signals are 

sent at each of these frequencies, a total of N/2 crosstalk functions are exactly zero. 

In TI, there are a total of ( N  - 4)/4 center frequencies that are even multiples of 

2nlN. The crosstalk between the signal sent at wc and one of the signals sent at 

other frequencies that are even multiples of 2n/N will be exactly zero depending on 

the delay factors. Furthermore, the crosstalk between the two signals sent at wc will 

be exactly zero. Now, we have an additional ( N  - 4)/4 crosstalk functions that are 

exactly zero bringing the total to (3N - 4)/4. In addition, the crosstalk between one 

of the signals sent at w, and the signals sent at 0 and T will be exactly zero depending 

on the delay factors. Depending on the signal sent at wc, the overall number of exact 

crosstalk cancellations is either (3N - 4)/4 or (3N + 4)/4. 
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