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Abstract

This thesis addresses the problem of simultaneously transmitting several data
signals across a single channel. For this purpose, a transmultiplexer that uses modu-
lated filter banks is studied. Modulated filter banks comprise filters that are bandpass
versions of a lowpass prototype. The filters serve to assign portions of the channel
bandwidth to the data signals. The impulse responses of the filters are parameter-
ized by a center frequency, delay and phase factor. The objectives in configuring .
modulated filter banks are to use the full channel bandwidth for transmission, cancel
crosstalk between signals (arises when signals share bandwidth) and cancel intersym-
bol interference in each data signal. Assuming an ideal channel, a synthesis procedure
is developed by assigning a bandwidth to the lowpass prototype and deriving relation-
ships among the center frequencies, delays and phases such that the entire channel
bandwidth is utilized and crosstalk is cancelled. New design procedures for an FIR
lowpass prototype are proposed such that the intersymbol interference is suppressed.
One design method is based on a minimax criterion. Another approach involves an
unconstrained optimization of an error function.

The synthesis procedure leads to five bandwidth efficient transmultiplexers. Three
of the systems implement multicarrier Quadrature Amplitude Modulation (QAM) and
two accomplish multicarrier Vestigial Sideband Modulation (VSB). The performance
of the five systems is compared with filters obtained by the new design approaches.
Also, the issue of channel distortion is addressed. Finally, the transmultiplexers can

be converted into new subband systems.



Sommalire
La transmission simultanée de plusieurs signaux numériques sur un canal unique

constitue le sujet de cette thése. Pour accomplir cette tache, un transmulfiplexeur uti-
lisant un banc de filtres modulés est étudié. Les bancs de filtres modulés sont formées
des filtres qui sont des versions passe-bandes de prototype passe-bas. Les filtres ont
pour fonction 'attribution de portions de la bande de fréquence du canal aux signaux
numeériques. Les parametres servant a caractériser les réponses impulsionnelles des
filtres sont la fréquence centrale, le délai et le facteur de phase. Les objectifs, lors de
la configuration de bancs de filtres modulés, sont I'utilisation de la pleine largeur de
bande lors de la transmission, I’élimination de la diaphonie entre les signaux (ceci sur-
vient lorsque les signaux partagent une méme bande de fréquence) et ’élimination de
l’interférence entre symboles dans chacun des signaux numériques. Assumant un canal
idéal, une méthode de synthese est développée en assignant une bande de fréquence
au prototype passe-bas et en dérivant des relations entre les fréquences centrales,
les délais et les phases qui assurent une entiére utilisation de la bande de fréquence
du canal et l’élimination de la diaphonie. De nouvelles méthodes de conception de
prototype passe-bas RIF, assurant 1’élimination de l'interférence entre symboles, sont
proposées. Une méthode de conception est basée sur le critére minimax. Une autre

approche utilise une optimisation sans contraintes d’une fonction d’erreur.

La méthode de synthese conduit a cinq transmultiplexeurs utilisant la bande de
fréquence efficacement. Trois des systemes accomplissent QAM, alors que deux autres
utilisent VSB. La performance de ces cinq systémes, utilisant les filtres obtenus avec
les nouvelles méthodes de conception, est évaluée. De plus, le probléme de la distorsion
provoquée par le canal est considéré. Finalement, les transmultiplexeurs peuvent étre

convertis en nouvelles formes de systemes en sous-bandes.
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Chapter 1 Introduction

This thesis addresses the problem of simultaneously transmitting several data sig-
nals across a single channel. The data signals are discrete time continuous amplitude
signals. In proceeding with this problem, we study a type of multirate system [1]
known as a transmultiplexer. Originally, the term transmultiplexer was referred to
as a device that converts between time division multiplexed (TDM) and frequency
division multiplexed (FDM) formats [2]. In this thesis, a transmultiplexer is viewed
in a more general context. We refer to a transmultiplexer as a multi-input, multi-
output system that uses sampling rate alteration and filtering to combine N signals
for transmission across a channel and then recover the N input signals. It consists of
two subsystems, namely, a transmitter and receiver as shown in Fig. 1.1. At the trans-
mitter, the N input data signals are obtained by sampling continuous time signals
at a certain rate. They are then combined into a single composite signal operating
at N times the original sampling rate. Implicit modulation of the data signals is
accomplished by the sampling rate increase. The filters assign a frequency band to
each data signal for transmission. The composite signal is sent over a channel. At the

receiver, the original data signals are separated from the composite signal by filtering
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and a sampling rate decrease. The data signals are recovered at the original sampling

rate.
— Sampling Rate Increase Filter
— Sampling Rate Increase Filter Composite
N Inputs .
Signal
—{ Sampling Rate Increase Filter
(a) Transmitter
Filter Sampling Rate Decrease
i Filter Sampling Rate Decreasef—e
Con.flpOSIte — N Outputs
Signal
Filter Sampling Rate Decrease |-

(b) Receiver

Fig. 1.1 General transmultiplexer structure

The goal in configuring transmultiplexers is to multiplex N signals at a certain
sampling rate into a composite signal at N times the sampling rate (at the transmit-
ter) and then, achieve perfect reconstruction of the inputs (at the receiver). Band-
width efficiency (which is measured in samples/second/Hz for the type of inputs that
we consider) is achieved by using the full channel bandwidth thereby leaving no gaps

in the frequency bands allocated to the input signals. We consider systems that
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accomplish frequency division multiplexing (FDM). In these systems, the composite
signal is a frequency division multiplexed form of the NV data signals. The full channel
bandwidth is used for transmission and equal portions of the channel bandwidth is
allocated to each data signal. The various signals are confined to different frequency
bands thereby leading to an implicit separation of the data signals.

An application of FDM systems is in long distance transmission over telephone
and groupband lines. The resulting transmultiplexers are used in multicarrier voice-
band and groupband data. modems. In FDM systems, the bit rate can be maximized
by appropriate information assignment to each frequency band. This is brought aboﬁt
by assigning more bits to the bands that are less affected by the channel characteris-
tic. In [3], the problem of maximizing the bit rate by optimal power division among
frequency bands and an optimal choice of the number of bits per data symbol subject
to the constraints that the total transmitted power is fixed and the probability of error
of every symbol is the same (for additive white Gaussian noise) is addressed. Results
show that for channels with a sharply decreasing amplitude characteristic that ap-
proaches a null, there is much potential for achieving a high bit rate by putting more
transmitter power in the bands that are unaffected by the sharply decreasing ampli-
tude characteristic. Another aspect of FDM systems is that the channel distortion
is relatively lower in each of the N bands as compared to over the entire bandwidth.
Since a particular data signal is only affected by the channel distortion within its
allocated frequency band, equalization can be performed in each individual frequency
band as opposed to the entire frequency range. The equalizers in each band only have
to deal with this relatively lower distortion.
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In this thesis, we are mainly interestgd in developing new bandwidth efficient
transmultiplexers that implement FDM. N ot;é.'"that the previous discussion on informa-
tion assignment and equalization was meant to briefly indicate why one is interested
in FDM systems. The actual details of achieving high bit rates and performing adap-
tive equalization is outside the scope of this study. In configuring a transmultiplexer
with an FDM composite signal, consider the use of ideal bandpass filters such that
their frequency responses do not overlap and such that the entire available bandwidth
is used. These bandpass filters allocate different portions of the channel bandwidth to
each data signal. However, such ideal bandpass filters cannot be designed in practice.
This problem is circumvented by using bandpass filters whose frequency responses
overlaﬁ (referred to as spectral overlap, see Fig. 1.2) such that the entire bandwidth
is utilized and perfect reconstruction of the inputs results. This approach allows the
data signals to share some bandwidth and yet permits reconstruction of the inputs
without the use of guard bands. Guard bands are used in conventional FDM to sep-
arate the data signals but result in the wastage of useful bandwidth. Moreover, the

presence of spectral overlap permits the design of practical filters.

[ANAN

Frequency

Fig. 1.2 Filter characteristics with spectral overlap

Transmultiplexers with bandpass filters having spectral overlap can be configured
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by different methods that lead to perfect reconstruction assuming no channel effects’.
For two band systems, the standard approach is to use quadrature mirror filter (QMF)
banks [4] or the Smith-Barnwell structure {5]. In the case of N bands, the use of
tree-structured QMF banks [1], a matrix formalism [6][7], lossless structures [8] and
modulated filter banks [9]{10] accomplish perfect reconstruction.

Of the various methods that implement FDM, the focus of the research is to
explore modulated filter banks in depth. Modulated ﬁlter banks have a specific struc-
ture in that all the filters are frequency shifted versions of a lowpass prototype. The
filters are obtained by multiplying the lowpass impulse response by a modulating
function having a specified center frequency and phase shift. This leads to a set of
bandpass filters whose spectra are centered at various frequencies which are usually
equally spaced. The inherent structure of modulated filter banks implies that only the
design of a lowpass prototype is required to obtain complete control of the bandpass
frequency responses. Also, modulated banks have been shown to lend themselves to
a computationally efficient implementation through the use of a polyphase network
and fast transforms [10][11].

Now, we have focused the investigation to the study of modulated filter banks.
The main motivation that commences the investigation is to develop alternate con-
figurations for modulated filter banks that accomplish perfect reconstruction. This
is equivalent to examining the various ways of specifying the lowpass prototype and

the parameters of the modulating function such that we get modulated filter banks

T Although these methods were originally proposed for a subband system (explained later), they
are applicable to transmultiplexers.
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that reconstruct the input data signals. In proceeding, we note that the modulated
systems in [9][10][11] have a specific approach to describe the filters and moreover,
use distinct center frequencies. We provide an additional degree of freedom in de-
scribing the filters by introducing delay factors. The resulting filters are delayed and
frequency shifted versions of a lowpass prototype obtained by multiplying the lowpass
impulse response by a modulating function having a specified center frequency and
phase shift and then applying a delay factor. The presence of delay factors allows forr
the possibility of using the same center frequency to transmit two signals (a concept
used in analog communication systems to send two signals in quadrature at the same
frequency). The use of repeated center frequencies leads to complete spectral overlap
between the corresponding bandpass filters which must be cancelled to reconstruct
the inputs. Given the main aim of configuring new systems, we proceed by formulat-
ing a synthesis procedure for modulated filter banks in a transmultiplexer such that
perfect reconstruction is accomplished assuming an ideal channel.

The synthesis procedure leads to the configuration of new transmultiplexers.
There are two classes of systems with equally spaced center frequencies. In one type,
all the center frequencies are distinct with one signal being sent at each frequency.
Another type of transmultiplexer uses repeated center frequencies. Two signals are
sent in quadrature at each repeated center frequency. Some of the contributions of
the work lie in the formulation of the synthesis procedure, configuration of the new
systems and their interpretation from a communications point of view [12][13]. Other
contributions include new design procedures for a finite impulse response (FIR) low-
pass prototype to be used in the new transmultiplexers [14]{15][16] and a performance
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N components

Analysis Filtering Sampling Rate
Input —=  and Sampling : Increase and ~ |—= Output
Rate Decrease Synthesis Filtering

Fig. 1.3 General illustration of a subband system

evaluation of the systems [14}[15]. Based upon an analysis of the new systems, the
design procedures take the practical degradations into account in forming an optimal
prototype. The investigation also provides some insight into the complementary na-
ture of transmultiplexers and subband systems. Finally, the issue of channel distortion
in transmultiplexers is discussed [17].

Note that the synthesized transmultiplexers can be converted into new subband
systems due to the complementary nature of the two systems. A subband system is
a single-input, single-output multirate system that is commonly used in medium bit
rate speech coding. A general block diagram is given in Fig. 1.3. The input is split into
N components by a set of analysis bandpass filters. These N components are then
converted to a lower sampling rate. For speech coding applications, these components
are coded in accordance with their perceptual significance. A set of synthesis filters
acting on the N components results in the input being recovered at the original
sampling rate. The approaches based on QMF banks [4], the Smith-Barnwell structure
[5], tree-structured QMF banks [1], a matrix formalism [6][7], lossless structures (8]
and modulated filter banks [9](10][11] achieve perfect reconstruction in a subband

system. In fact, these approaches were originally proposed for subband systems.
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The new subband systems formed from the synthesized transmultiplexers use
modulated filter banks. Also, the subband systems belong to one of two classes. The
subband systems which use only distinct center frequencies split the input into N
components that represent different frequency ranges. The subband systems which
use repeated center frequencies are unusual. Each of the repeated center frequen-
cies establishes signal components that exist in quadrature and represent the same

frequency range.

1.1 Scope and Organization of the Thesis

The entire thesis is organized into seven chapters. After the introduction, Chapter
2 provides background material concerning the input-output descriptions of transmul-
tiplexers and subband systems and the achievement of perfect reconstruction. The
complementary nature of the two systems is also discussed. The latter part of the
chapter describes the research problem and the approach used.

Chapter 3 gives the transmultiplexer synthesis procedure in detail. Then, five dif-
ferent crosstalk-free transmultiplexers are synthesized and described from a communi-
cations point of view. New subband systems arise as complements of the synthesized
transmultiplexers. The two band case is treated in more detail.

Chapters 4 and 5 are devoted to formulating procedures to design the lowpass
prototype. In Chapter 4, we consider methods based on a minimax criterion that
simultaneously assure a lowpass behaviour and attempt to suppress the intersymbol

interference. In Chapter 5, an optimized design method based on the minimization of
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an error function is described. The error function is formulated so as to take practical
degradations into account. Design examples are provided in both chapters. Also, the
performance of the systems is evaluated for both the minimax and optimized design
approaches.

Chapter 6 provides methods to configure a channel compensation filter when
channel distortion is present. The channel compensation filter cancels crosstalk in
the presence of a channel but leaves residual intersymbol interference. The relative
performance of these methods is discussed in terms of suppression of the intersymbol
interference. Chapter 7 records the conclusions of the investigation and gives some

suggestions for future research.



Chapter 2 Multirate Digital Filter Banks

This chapter discusses background material on transmultiplexers and subband
systems. A mathematical description of the two systems leads to the formulation of
the perfect reconstruction property. Also, this establishes the complementary nature
of the two systems (a concept used later in the thesis). Methods to achieve perfect
reconstruction are described. Finally, the focus of the research problem and the

approach used are discussed.

2.1 Transmultiplexers and Subband Systems
2.1.1 Interpolation and Decimation

Multirate systems use both interpolation and decimation to accomplish sampling
rate alteration. The basic notion of interpolation lies in filling in a set of function val-
ues between two known values. Consider a discrete time signal obtained by sampling
a continuous time signal. Interpolation of this signal is a two step process. First,
the insertion of N — 1 zero-valued samples between each pair of sample values of the

discrete time signal is referred to as sampling rate expansion by an integral factor
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N. The resulting output discrete time signal is subsequently filtered to provide a
smooth transition between the nonzero samples. This smooth transition consists of
estimates of the continuous time signal between the already known nonzero samples.
The filtered signal can be viewed as a representation of a more finely sampled version
of the continuous time signal in which the new sampling rate is IV times the original
sampling rate.

The process of decimation accomplishes sampling rate reduction. Again, consider
a discrete time signal obtained by sampling a continuous time signal. The extrac-
tion of every N th. sample of the discrete time signal is referred to as sampling rate
compression by an integral factor N. The resulting output can be obtained from the
continuous time signal at 1/ times the original sampling rate. Note that decimation
usually includes lowpass filtering prior to sampling rate compression to avoid aliasing

at the lower rate.

2.1.2 Transmultiplexer

A multi-input, multi-output transmultiplexer is shown in Fig. 2.1. At the trans-
mitter, implicit modulation is accomplished by the sampling rate expander (sym-
bolically denoted by N T) since the spectrum of the input signal is replicated with
period 2w /N. An implicit set of carrier frequencies at multiples of 27 /N results.
The combining filter bank (comprising the combining filters A;(z)) allocates different
portions of the channel bandwidth to the various input signals by selecting a set of

N center frequencies for the purposes of transmission. The outputs of the combining

filters are multiplexed into one composite signal. The composite signal is sent over a
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channel. At the receiver, the composite signal is passed through a parallel structure
of separation filters B;(z). The sampling rate compressors (symbolically denoted by
N |) process each of the outputs of the separation filters to yield the resultant out-
put signals. The separation filter bank (consisting of the separation filters) and the
sampling rate compressors ensure that the resulting output signals depend only on
their corresponding inputs. This eliminates the influence of other inputs (crosstalk).
Note that the sampling rate expansion and compression are performed synchronouslyv

at the same rate and in phase with each other.

zo(n) —~{ N T Ap(2) By(z) N | p= 2¢(n)
zi(n) =~ N1 A1(z) Bi(z) N | = 21(n)
Channel |
gy_1{n) = N1 An_1(2) Bn_1(2) Nlt=i2y_1(n)

Fig. 2.1 A transmultiplexer system

Assuming that there is no channel distortion, the input-output relations are given

by
. L V=1 N-1 1 .
Xi(z) = & Y Xe(2) S AGEWHB; W) for 0<i<N-1, (21)
k:O 1:0
or equivalently (note the change from z to z%V),
. , N=1 N-1
XN = 5 X Xp(ZN) S AW TYBzWTY) for 0<i<N -1, (22)
k=0 =0
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where W = e=% . Each output signal X;(z%) is related to each input signal X (zV)

via a transfer function ﬁTki(zN ) where
Ny _ S l !
Tri(z") = ) AlzW™)Bi(zW ™) . (2.3)
=0

When k # i, Tp;(2V) is called a crosstalk function and represents the contribution
of the undesired input Xj(2/V) to the output X,-(zN). We refer to the input-output
transfer function at the sth terminal as T3;(z%). For eliminating crosstalk (T;("") =.
0 for k # i) and achieving an identical input-output relation Tj;(2Y) = T(z%) for

every terminal ¢, the matrix equation

A(z)BT(2) = T(z™)1 (2.4)
must be satisfied where
Ag(z)  Ag(=W=1) ... Ag(zWNAL)
AG) - A1:(z) Al(zE/V—l) Al(zW:-N“) C @s)
LAN—.I(z) AN—I(.ZW_l) AN—1(2W_N+1)_
By(z) Bo(zW~ly ... Bp(zW—N+L) ]
B(z) = Bl.(z) BI(ZI:/V—l) Bl(zI/V:‘N‘H) | 26)
| By_1(2) By_1(zW=Y) - By_j(zW-N+1),

and I is the identity matrix. If the above matrix equation is satisfied, each of the
output signals X;(z) = ﬁT(z)Xi(z). Intersymbol interference is present if the sam-
ples at the output depend on past and future input samples. Intersymbol interference
is eliminated if and only if T'(z) is of the form cz™?. Then, perfect reconstruction
is achieved in that the output samples are a scaled and delayed version of the input

samples.
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2.1.3 Subband System

Figure 2.2 depicts a single-input, single-output subband system. With perfect
channels, the input-output description is
. | N-1 [ AN=1 1
X(z) = i 3o X(EWTH Y AW B(z) . (2.7)
=0 k=0
The output is related to the input and its frequency shifted versions by a system
function j%fT[(z) where Tj(z) = ZI{:V:_OI Ap(zW =Y By(z). For I # 0, we refer to T(z)
as aliasing functions. Aliasing is eliminated if X (z) is not influenced by any of the
frequency shifted versions of X (z). Therefore, the aliasing functions should be zero.

In addition, perfect reconstruction is achieved if and only if the input-output transfer

function, Ty(z) = cz7P.

Ap(2) N | -{N1T By(z)
Aq(z N | b---- N7 Bi(z
e RS 12 o
Channels
An_1(2) Nt N7 By_1(2)

Fig. 2.2 A subband system

The cancellation of aliasing is equivalent to configuring the analysis fil-
ters Aj(z) and the synthesis filters B;(z) to satisfy the system of equations
AT(2)[By(z) Bi(z) --- By_1(2)]f =[To(z) 6 --- 0]T. This is equivalent
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to satisfying the matrix equation

Toz) 0 0
AT(B(z) = | | W) X . (2.8)
6 () TO(ZW—N+1)

If the above matrix equation is satisfied, the output signal X(z) = ﬁTo(z)X(z). To
provide a distinction with transmultiplexers, the filter banks in subband systems are

referred to as analysis and synthesis banks.

2.1.4 Complementary Nature of the Systems

The fundamental complementary nature between transmultiplexers and subband
systems relates crosstalk cancellation in the former and aliasing elimination in the
latter [7]. We continue to assume that there are no channel effects in both the trans-
multiplexer and the subband system. It has been shown in [7] that crosstalk and
aliasing cancellation are equivalent if and only if the product of the A(z) and B(z)
matrices (one of them being transposed) is equal to a function in zV¥ multiplied by
the identity matrix. By relating Eqs. (2.4) and (2.8), this is equivalent to stating that
any combining/separation filter banks that eliminate crosstalk and achieve the same
input-output transfer function for all pairs of corresponding terminals in a trans-
multiplexer will cancel aliasing when utilized as analysis/synthesis filter banks in a
subband system. However, the reverse is not true unless the input-output transfer
function of the subband system is a function of zV. Analysis/synthesis filter banks
for a subband system that cancel aliasing and achieve an input-output transfer func-
tion in 2V result in the relationship X(z) = Y]vT(zN)X(z). These same filter banks
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eliminate crosstalk in a transmultiplexer and achieve X;(z) = ﬁT(z)X,-(z) fori =0
to N — 1.

A further interpretation of this result is as follows. Suppose we design a subband
system that achieves perfect reconstruction. In general, these filter banks will not
cancel crosstalk in a transmultiplexer unless the transfer function of the subband
system, T'(z) = cz~P has a value of p which is a multiple of N. First suppose, c= N
and p = 0. The resulting filter banks can be applied in either a subband system or a
transmultiplexer. Furthermore, there is a perfect complementary nature since the two
systems are identity systems (the output samples are identical to the corresponding
input samples; there is no delay factor). This is further motivated from the sequence of
block diagram interpretations shown in Fig. 2.3. The identity subband system allows
us to connect the input and output and break the connections between the sampling
rate compressors and expanders thereby forming an equivalent transmultiplexer that
is also an identity system. Note that the analysis filter bank in a subband system
corresponds naturally to the separation filter bank in a transmultiplexer. Also, there
exists a similar correspondence between the synthesis and combining filter banks.

Consider the application of delay factors to an identity transmultiplexer (see
Fig. 2.4(a)). The same delay factor 279 is applied to each combining filter. Similarly,
the delay factor 2792 is applied to each separation filter. The constraint q; + g9 is
a multiple of N is necessary for crosstalk cancellation to be preserved. Otherwise,
the sampling rate compressors and expanders operate out of phase and crosstalk will
no longer be cancelled. In addition, if ¢; + ¢9 is a multiple of N, the delays can be
moved across the sampling rate compressors and expanders without disturbing the
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N : ] ;

—= A | NI i Nt B [~
(a) Identity subband system

d A NLl|:iei &:i|N? B |—

] g

(b) Connection of output and input
#: | NT|i| B FP—2+ A [i| N1 iz

(c) Identity transmultiplexer

Fig. 2.3 Block diagram interpretation illustrating
complementary nature

crosstalk-free nature of the system. When q; +¢9 is a multiple of N, the input-output

_qte

relationship is X;(z) = 27" ¥ - X;(z) for i = 0 to N — 1. The constraint that g] + g9
be a multiple of N for maintaining crosstalk cancellation holds when applying delay

factors to any crosstalk-free transmultiplexer.

The identity subband system can be modified by adding delay factors to the

analysis and synthesis filter banks (see Fig. 2.4(b)). The same delay factor z7P! is
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applied to each analysis filter. Similarly, the delay factor 27P2 is applied to each
synthesis filter. Now, the input-output transfer function is T(z) = Nz7P where
p = p1 + p2. Note that the alias-free nature of any subband system is preserved after
applying the delay factors z7P! and 2z7P2 to the analysis and synthesis filter banks
respectively. In a practical approach, the delay factors are chosen so that causal filter

banks result.

T NT|: A 2z~ z7 12 B N 7
— ot . ——
—— —— [rr———
(a) Transmultiplexer
— 1 ~
— PN A |l N : NTt:l B 2~ P2 -z
- —

(b) Subband system

Fig. 2.4 Application of delay factors

The inherent difference between transmultiplexers and subband systems concern-
ing the application of delay factors lies in the greater freedom that exists in choosing
the delay factors for subband systems. This returns us to the principle that any
crosstalk-free transmultiplexer with the same input-output transfer functions for ev-

ery pair of terminals can be converted to an alias-free subband system.
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2.1.5 Network Duality

Transmultiplexers and subband systems are configured by cascading two subsys-
tems in different orders. One is a multi-input, single-output system that comprises a
parallel connection of sampling rate expanders and filters. The other is a single-input,
multi-output system consisting of a parallel connection of filters and sampling rate
compressors. Digital network transposition transforms one subsystem into another.
The process of network transposition involves interchanging the roles of the input and
output, reversing the direction of all branches and replacing branch operations by their
duals [1]. Since a filter is its own dual and sampling rate expansion/compression are
dual operations [l], the two subsystems are transposes of each other. Furthermore,
since a network and its transpose are duals, the two structures are dual systems. The
two dual systems are cascaded with each other to yield two complementary multirate

systems, namely, the transmultiplexer and the subband system.

By performing network transposition, we see that the duals of subband systems
and transmultiplexers are again subband systems and transmultiplexers with the filter
banks interchanged. Consider a subband system which is in general linear and time-
varying. The dual subband system is also linear and time-varying but is described
by different aliasing functions than the original system. A frequency shifted version
of the aliasing function Tj(z), namely, T;(zW?), of the original system is equal to
the aliasing function Ty _;(z) of the dual system. The subband system becomes
time-invariant when aliasing is cancelled and is described by an input-output transfer
function T(z). Therefore, the dual will also be alias-free and have the same T'(z) [1].
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Therefore, as shown in [18], swapping the filter banks preserves aliasing cancellation
and maintains the same input-output transfer function.

Now, consider a transmultiplexer which in general is not crosstalk-free. The dual
transmultiplexer is also not crosstalk-free. The input-output transfer func;:ions Tir(2)
(k =0 to N — 1) are the same for both systems. The crosstalk functions Tj(z) in
the original network (relating the output at terminal / to the input at terminal k)
are equal to the functions T (z) of the dual network (relating the output at & to the
input at [). If a transmultiplexer is crosstalk-free, the dual transmultiplexer formed
by swapping the filter banks is also crosstalk-free and has the same input-output
transfer functions as the original system.

The swapping property which addresses the question of whether or not exchanging
the positions of the filter banks preserves the reconstruction property was discussed
in [18] for subband systems. We have shown that the same property holds for a
transmultiplexer with no specific assumptions about the filters or about N. Moreover,
we have provided the interpretation in terms of network transposition as opposed to a
direct mathematical proof. A mathematical proof starts by swapping the filter banks
of a crosstalk-free transmultiplexer and examines the new matrix product

B(2)AT(z) = (A(z)BT(2))"
=T(z")I,

thereby establishing the swapping property’f.

t The proof assumes that the input-output transfer function is the same for each pair of corre-
sponding terminals. It can be extended to the case of having different input-output transfer
functions.
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2.2 Perfect Reconstruction Property

Given the requirements on A(z) and B(z) for transmultiplexers and subband
systems as in Eqgs. (2.4) and (2.8), methods to achieve perfect reconstruction are
discussed. First, the two band case is considered. Then, we proceed to the case of

arbitrary N.

2.2.1 Two Band Case

In two band systems, the classical solution is to use quadrature mirror filter banks
(QMF) [4][19]. These banks consist of a lowpass/highpass filter pair whose magnitude
responses are symmetric about the quarter sampling frequency 7 /2. A one prototype

QMF system [4] is described by the following filter banks.

ag(n) = h(n) bo(n) = h(n)
(2.10)
ai(n) = (=1)*h(n—1)  bi(n) = (=1)"h(n +1)
For a transmultiplexer, the common input-output transfer function is
T(2%) = H%(z) + H%(-2) . (2.11)

This results in the relationship X;(z) = %T(z)Xi(z) for 2 =0 and 1. In the comple-
mentary subband system, X (z) = %T(z2)X(z). To make T'(z) = cz7P and thereby
achieve perfect reconstruction, the even-indexed samples of the impulse response of
H?(z) must be zero except for a reference coefficient at a time index of 2p. The
odd-indexed samples of H2(z) are arbitrary and can be used to shape the frequency

response of the filter. A filter with regular zero crossings in its impulse response
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except for a reference coefficient is called a Nyquist filter. In this case, HQ(Z) is a
Nyquist filter with a zero crossing interval equal to two samples.
The two band system described by Eq. (2.10) can be modified to include two

prototypes H(z) and G(z) as follows.

ag(n) = h(n) by(n) = g(n)
(2.12)
ai(n) = (=1)%g(n—1)  bi(n) = (=1)"(n +1)

In the general case, this is not strictly a QMF bank since the magnitude responses
of the lowpass/highpass pair H(2) and G(—z) may not be symmetrical about /2.
However, any two filters H(z) and G(z) such that H(z)G(z) is a Nyquist filter with
a zero crossing interval of two samples results in perfect reconstruction. In addition,
methods to get a lowpass H(z) and G(z) are given in [6][7]. A special case of Eq. (2.12)
arises when G(z) = H(z7!). The resulting system, known as a Smith-Barnwell
structure [5], requires a Nyquist filter H(z)H(z~1) to achieve perfect reconstruction.
A lowpass Nyquist filter must be factored into its minimum and maximum phase
components.

Note that the descriptions in Egs. (2.10) and (2.12) can lead to noncausal filters.
However, given the previous discussion on the application of delay factors, we can
modify any noncausal bank to make it causal such that perfect reconstruction is

preserved.

2.2.2 The N Band Case

The perfect reconstruction condition for the IV band case depends on the product
of A(z) and B(z) (one of them being transposed). The methods proposed to configure
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the filter banks that are based on a matrix formalism and on lossless structures impose
a specific structure on A(z). Then, B(z) is determined given A(z) thereby rendering
a particular relationship between Bp(z) and Ap(z). Modulated filter banks specify
Ap(z) and Bp(z) in terms of a lowpass prototype and a modulating function. It is

the characteristics of the prototype and the modulating function that ensure perfect

reconstruction.

2.2.2.1 Matrix Formalism

The use of a matrix formalism in determining the filter banks has been described
in the context of a subband system in [6]. The method comprises two stages. The
first stage introduces a way of directly solving for the synthesis filter bank in terms of
the analysis bank such that the system described by Eq. (2.8) is satisfied. This results
in the cancellation of aliasing. Given the resulting input-output transfer function, the
second stage is devoted to designing the filters to get perfect reconstruction.

In the first stage, a polyphase matrix is defined as P(z) = ﬁFAT(z) where the
entries of F are F(m,n) = W™ for m,n ‘= 0 to N — 1. Then, the entries of P(z)
are P(i,7) = z_iAij(zN) for 2,7 =0 to N — 1 where Aij(zN) is the jth polyphase
component of A;(z). As opposed to AT(z), P(z) has the advantage of being purely
real and exhibits no redundancy (in A7(z2), each filter coefficient appears N times).
It is shown in [6] that choosing Bj(z) such that [By(z) By(z) -+ By_1(2)]T =
1 1 --- 1]CT(z) where C(z) is the cofactor matrix of P(z) results in an alias-
free subband system with X(z) = [Det P(z)]X(z). The abbreviation Det refers to

determinant.
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At the second stage, the analysis filters are designed to reduce Det P(z) to
the form cz~P. Therefore, a specific restriction on A(z) is imposed to ensure that
Det P(z) = cz7P. A method to design FIR filters of equal length L to satisfy the
determinant constraint is discussed in [6][7]. A total of N — 1 of the analysis filters
Ay (2) are each designed separately with a length L that is sufficient to get an accept-
able frequency response. Also, N — 1 of the coefficients of the remaining filter are
chosen thereby leaving L — N +1 unknown coefficients. Note that there are L— N +1
nonzero coefficients in Det P(z). Therefore, a linear system of equations that solve
for the L — N + 1 coefficients of the remaining filter results such that Det P(2) is
reduced to the form cz™P. Note that the constraint L > N —1 is necessary to ensure
that the determinant of C(z) is not zero. After designing the analysis filters, B (z)

is determined as described above.

Although perfect reconstruction is accomplished by this method, there is no direct
control of the frequency response of one of the filters. Moreover, the filters By(z) are
generally longer than the Ag(z) [6]. This approach based on a matrix formalism
is applicable to the configuration of perfect reconstruction transmultiplexers. The
combining filters Ag(z) and the separation filters Bi(z) can be obtained as described

above. However, delay factors may have to be applied to the separation filters to

achieve perfect reconstruction in a transmultiplexer.

2.2.2.2 Lossless Structures

A matrix function G(z) is said to be lossless [8] if it is stable and satisfies the
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relation
GH(z"1)G(2) =1, (2.13)

where the superscript H denotes the complex conjugation of the coefficients of each
entry of the matrix followed by transposition and I is the identity matrix. In partic-
ular, this means that G is unitary on the unit circle z = e/, Tt is known that the
scattering matrix of any lossless multiport analog network is unitary [20]. Hence, the
term lossless has been used due to describe any G(z) which satisfies Eq. (2.13) and
is hence, unitary on the unit circle. In the case of a scalar function, G(z) is lossless
if it is stable and allpass.

In [8], the lossless property is imposed on A(z) in order to get a set of syn-
thesis filters Bi(z) = ez PAL(z~1) for a perfect reconstruction subband system.
It can be shown that by making A(z) lossless, a set of separation filters given by
Bi(z) = cz=™Y A (z71) results in a perfect reconstruction transmultiplexer. A de-
sign procedure in [8] leads to a set of FIR bandpass filters Aj(z) such that A(z) is
lossless. First, the filters Ag(2) are derived from a cascade of lossless building blocks
composed of the product of a unitary matrix and a diagonal matrix whose entries are
delay elements. The entries of the unitary matrices are jointly optimized to yield a
set of bandpass filters Ap(z). By examining the simple relationship between Bj(z)
and Ag(z), we observe that their magnitude responses are identical. Moreover, the

number of coefficients of the FIR B} (z) is the same as that of the FIR Ap(2).

2.2.2.3 Modulated Filter Banks

In modulated filter banks, all the filters are frequency shifted versions of a low-
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pass prototype. This gives a set of bandpass filters whose impulse responses are of the
form h(n)cos (wn + ) where h(n) is a lowpass prototype. The modulating function
is described by a center frequency w and a phase factor . For the case of distinct
center frequencies, the prototype is bandlimited such that there is spectral overlap
only between adjacent bandpass filters. Hence, any output signal at terminal / in
a transmultiplexer will experience crosstalk only from input signals at adjacent ter-
minals [ — 1 and [ + 1. The other crosstalk functions are zero since the magnitude>
responses of the corresponding bandpass filters are nonoverlapping. In a subband
system, the only aliasing terms are those due to spectral overlap. The other aliasing
terms are zero due to the bandlimitedness of the lowpass prototype. The crosstalk
and aliasing terms due to spectral overlap are cancelled by fixing the parameters of
the modulating function. This gives crosstalk-free transmultiplexers and alias-free
subband systems with bandlimited filters. Finally, perfect reconstruction is achieved
by satisfying the Nyquist criterion for zero intersymbol interference. In a practical
situation, the lowpass prototype is designed to have a sufficiently high stopband atten-
uation and such that a Nyquist response is either approximately or exactly achieved.
Modulated filter banks have the advantages of allowing for complete control of the
frequency responses of the bandpass filters through the design of a lowpass prototype
and being computationally efficient to implement.

The modulated filter banks in [9][10]{11] were originally proposed for a subband
system. The filter banks in [9]{10] are applicable in a transmultiplexer. The system
in {9] is not a regular structure in that the center frequencies are not equally spaced
and two prototypes of different bandwidths are used. The system in [10] uses one
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prototype A(n) which is bandlimited to no more than 7/N. Also, the center frequen-
cies are odd multiples of 7/2N. Therefore, the center frequencies are equally spaced

and exactly the same bandwidth is allocated to each input signal.

2.3 Focus of Research Problem

The investigation concentrates on modulated filter banks in a transmultiplexer.
The main purpose is to find alternative configurations of modulated filter banks to
those already described in the literature. This goal is achieved through the formu-
lation of a synthesis procedure. The synthesis procedure allows for a systematic
development in finding modulated filter banks. We start with a set of assumptions
that form a characterization of the filter banks. These assumptions allow for more
generality in describing the filters than in previously configured systems. Then, spe-
cific relationships among the parameters of the filters are derived such that crosstalk
is cancelled and the input-output transfer function between every pair of correspond-
ing terminals is the same. This constructive approach results in the configuration of
new crosstalk-free transmultiplexers. The intersymbol interference is suppressed by
designing the lowpass prototype.

The general nature of the starting assumptions provides greater flexibility in spec-
ifying the filter banks as compared to the existing systems. In particular, the assump-
tions made are as follows:

1. The filter banks consist of a set of bandpass filters that are modulated versions
of a lowpass prototype.
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2. The impulse responses of the filters are described by the impulse response of
the prototype and three free parameters, namely, a center frequency, phase
factor and delay.

3. Equally spaced center frequencies are used. In one case, all the frequencies
are distinct. In another case, the center frequencies are allowed to repeat such
that the same center frequency is used for two bands.

Note that a perfect channel is assumed. A discussion of channel distortion is given
in Chapter 6.

Assumption 2 provides an extra free parameter, namely, a delay factor in describ-
ing the impulse responses of the bandpass filters as compared to existing systems
that only allow for a center frequency and phase factor. The idea of permitting cen-
ter frequencies to repeat allows for two signals to be sent at the same frequency as
compared to existing schemes in which all the center frequencies are distinct. Addi-
tional freedom is provided over the existing N band modulated banks that have the
multirate structure of Fig. 2.1, use one lowpass prototype to derive a set of bandpass
filters and maintain equally spaced center frequencies.

The central objective of formulating a synthesis procedure involves the following

steps.

1. The bandwidth of the lowpass prototype is determined such that (1) spectral
overlap occurs only between bandpass filters centered at adjacent center fre-
quencies and at the same center frequency and (2) the set of bandpass filters
fill up the entire frequency range (0 to ).

2. Relationships among the three free parameters (center frequencies, phase fac-
tors and delays) are derived such that the resulting transmultiplexers have the
following properties.

(a) The input-output transfer function is the same for every pair of corre-
sponding terminals.

(b) The crosstalk components in the output data signal that arise from
other data signals due to the sharing of bandwidth are eliminated.

- 928 -



The synthesis procedure is developed based on a bandlimited lowpass prototype.
A filter H(z) is a bandlimited lowpass prototype if H(eI¥) is exactly equal to zero
in the stopband region ws < w < 7. The frequency characteristic of a general
bandlimited lowpass prototype with a tapered transition band is shown in Fig. 2.5.
In Step 1, we determine the stopband edge ws (thereby determining the bandwidth
of the prototype) for the purposes of restricting spectral overlap and allowing for full
bandwidth utilization. For systems in which all the center frequencies are distinct,
an output signal at a particular terminal will experience crosstalk from input signals
transmitted at adjacent center frequencies. For systems with repeated frequencies,
there is (1) partial spectral overlap between bandpass filters centered at adjacent
center frequencies and (2) complete spectral overlap between bandpass filters centered
at the same center frequency. Then, an output signal at a particular terminal will
experience crosstalk from input signals transmitted at adjacent center frequencies and

another signal sent at the same center frequency.

HN

0 Ws

Fig. 2.5 Frequency characteristic of a general bandlimited
lowpass prototype

Step 2 consists of two parts each devoted to forming relationships among the
center frequencies, phase factors and delays. First, the transfer function between

each pair of corresponding terminals is made to be the same. The transfer function
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is brought to a form which allows us to design a lowpass prototype such that the
intersymbol interference is suppressed (discussed in later chapters). Also, the trans-
multiplexers can be converted into subband systems which split the entire spectrum
of the input signal into N frequency bands. In Step 2(b), the crosstalk components
due to spectral overlap are cancelled. The crosstalk between signals that do not share
any bandwidth is zero for bandlimited filters.

The next chapter gives the synthesis procedure in detail. Since bandlimited filters
(stopband response is exactly zero) cannot be designed, a natural question concerns
how the design of a practical lowpass prétotype can be performed. A practical low-
pass prototype is distinguished from a bandlimited prototype in that the frequency
response of the practical filter only approximates the characteristic shown in Fig. 2.5.
In particular, the practical prototype has a stopband response which is small but not
exactly zero (stopband attenuation is high but not infinite). In Chapters 4 and 5,
new design methods for a practical FIR lowpass prototype are developed with the

aim of suppressing both intersymbol interference and crosstalk.
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Chapter 3 Transmultiplexer Synthesis

This chapter discusses the synthesis procedure for modulated banks in a trans-
multiplexer. The first step is to state the general assumptions. This includes the
specification of the impulse responses of the combining and separation filters in terms
of a lowpass prototype, center frequency, phase factor and delay. The synthesis proce-
dure starts by imposing a bandwidth constraint on the lowpass prototype. Then, the
input-output transfer function and the crosstalk functions are examined. This leads
to new crosstalk-free transmultiplexers. The last portion of this chapter exclusively
deals with two band transmultiplexers. Finally, the complementary subband systems

that emerge from the synthesized transmultiplexers are discussed.

3.1 Filter Specification

In developing a synthesis procedure, the first assumption characterizes the filter
banks. We confine all the filters to be modulated'and delayed versions of one ban-
dlimited lowpass prototype h(n). This condition will be relaxed later to allow for two
prototypes. The impulse responses of the combining filters Ap(z) and the separation
filters By (z) are parameterized by a center frequency (wy), phase factor (o, or f)
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and delay (n or pi). Their impulse responses are given by

ap(n) = h(n — ng) cos [w(n — ng) + oy
and
bi(n) = h(n + pg) cos [wg(n + pg) + Bl
respectively!. In the z-transform domain, A.(z) and Bi(z) are given by
Ay(z) = —;-z_"" (9% H(e=39k 2) 4 e~ H (eI )]

and

Bi(z) = %zp" [Pk H(e™ 9 2) + 9Pk H(eWk 2)] .

(3.2)

(3.3) |

(3.4)

The transmultiplexers have N bands. Also, N is the sampling rate expan-

sion/compression factor.

We further assume that the center frequencies wy are equally spaced and lie

between 0 and 7 (inclusive). In addition, two types of systems are considered. In one

type, all the-center frequencies are distinct. In the other case, center frequencies are

repeated (with the exception of 0 and 7) in that the same frequency is used for two

bands. Finally, note that the synthesis procedure is developed given that no channel

distortion is present.

3.2 Bandwidth Constraints

The first step in the synthesis procedure is to impose a bandwidth constraint on

the lowpass prototype. Consider the type of system in which all the center frequencies

t Depending on the signs of n; and py, either a delay or advance is used. In the remainder of the
thesis, we refer to n; and pi as delay factors regardless of whether they are positive or negative.
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are distinct. The bandwidth of the bandlimited lowpass prototype h(n) (stopband
response is exactly zero) is selected such that spectral overlap exists only between
filters centered at adjacent center frequencies. In addition, the entire range 0 to «
is utilized. Given A(n), there are N bandpass filter responses centered at different
frequencies and having the same bandwidth. The minimum bandwidth of the N
bandpass filters such that their frequency responses are mutually exclusive (no spec-
tral overlap), an equal bandwidth is allocated to each input and the full frequency>
range 0 to 7 is covered is 7/ N. Moreover, the center frequencies are odd multiples of
7 /2N. This translates to a minimum bandwidth of #/2N for h(n). Spectral overlap is
restricted to bandpass filters centered at adjacent frequencies by allowing the lowpass
prototype to have a bandwidth of no more than 100 percent in excess of its minimum
bandwidth. The stopband of the bandlimited lowpass prototype h(n) extends from
ws to T where 7/2N <ws < 7/N.

Now, consider the type of system in which the center frequencies repeat. Two
signals are transmitted at every repeating center frequency (0 and 7 excluded). The
minimum bandwidth of the bandpass filters which allows for filters centered at dif-
ferent frequencies to have mutually exclusive frequency responses is 2r/N. This
translates to a minimum bandwidth of #/N for h(n). Moreover, there are two pos-
sible sets of center frequencies. In one set, two of the center frequencies are 0 and 7
and the other repeating frequencies are multiples of 27 /N. Another possibility is to

have all the frequencies repeat and be odd multiples of 7/NT. The idea is to allow for

! We have implicitly considered the case when N is even. When N is odd, one of the center
frequencies is 0 or 7w with the remaining center frequencies repeating. The spacing between
adjacent frequencies is 2r/N. The minimum bandwidth of the filters is the same as for .V even.
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spectral overlap only between filters centered at the same frequency and at adjacent
frequencies. For both sets of center frequencies, this is possible if the lowpass proto-
type h(n) is bandlimited to no more than 100 percent over the minimum bandwidth.
The stopband of h(n) extends from ws to © where 7/N < ws < 27/N.

The bandwidth constraint is different for repeated and distinct center frequencies.
Given the above constraints on wg, the development of the synthesis procedure evolves
by assuming that the lowpass prototype h{n) has a stopband response that is exactly
zero (bandlimited prototype). Later, we will consider systems with practical filters.

We have established three sets of equally spaced center frequencies. For the case

of repeated center frequencies, the two sets are

Set1: 0 2% 27 4m Am o 2
€ * ’N’ N) N) N’ b N, N’ﬂ-
and
x 7™ 3n 3r T T
t2: —, —, —, —, " - — - .
ML NN N NN

Both Sets 1 and 2 ensure complete bandwidth utilization (frequency range 0 to «
is covered) given a lowpass prototype with a stopband frequency ws > 7/N. Also,
spectral overlap is restricted to filters centered at the same frequency and at adjacent
center frequencies if ws < 2r/N. Note that for Sets 1 and 2, it is assumed that N is
even. Later, we will see that this is necessary for realizing integral delay factors.

The set of N distinct equally spaced center frequencies is given by

Set 3: 3= 57 I« T
" 2N’ 2N’ 2N’ 2N’ 2N
The center frequencies of Set 3 are the same as those in [10]. Complete bandwidth

utilization is achieved given a lowpass prototype with a stopband edge ws > 7 /2N.
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Also, spectral overlap is restricted to bandpass filters centered at adjacent frequencies

ifws <7/N.

3.3 Input-Output Transfer Function

The next step is to make the input-output transfer function the same for every
pair of corresponding terminals. The kth input-output terminal pair has a transfer

function given by
N-1 . .
Ter(z") = 3 Ap(zW ™) BL(zW ™)
1=0

N-1
= %z-(nk—pk) S= wilme—pe) | eilentBe) 2 (e=dwr ;i 1)
1=0
+ e—j(ak+ﬁk)H2(ej“”°zW_i)

+ 2cos(ag, — Bp)H(e ™Ik zW ) H (9% 2 ).
(3.5)

The strategy will be to try to make the transfer function Tj(2" ) independent of k.
To this end, it is assumed that nj — p;, = s for every k. The expression for the input-
output transfer function consists of three terms. Note that the last term in Eq. (3.5)
will be zero for center frequencies sufficiently away from 0 and 7 (the spectra in the
H(-) terms do not overlap). Specifically, this will be true for wy < wp, < 7 —wy where
wp is the maximum bandwidth of the lowpass prototype (7 /N for distinct center
frequencies and 27 /N for repeated center frequencies). For the center frequencies
near 0 or m, choosing ap — B to be an odd multiple of 7/2 will suffice to set the
last term to zero. We now formulate two sets of conditions for identical input-output

transfer functions.
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Difference Criterion

For the difference criterion, the difference between any two center frequencies is
constrained to be a multiple of 2x/N. We first note that the frequency response of
Tir(2") is periodic in 2r/N. Equation (3.5) remains unchanged if, in its first two
terms, wy, is replaced by w; = wy + 2m7 /N (where m is an integer) and ny — pp = s
is a multiple of N (recall that the last term is zero from the preceding discussion).
Then, the same transfer functions at terminals k£ and [ are achieved by adhering to

the following set of rules.

1. If a particular wy, does not satisfy the inequality wp < wj < ®—wp, then ap—
must be an odd multiple of 7/2. The same restriction holds for terminal /.

2. The phases are chosen such that o + 8 = o; + G-

3. The delay factors are chosen such that np — pp = n; — p;. Moreover, both
ny — p and n; — p; are multiples of V.

The above rules generate a reduced form of Ty (2V) = Tyy(zV) as given by

N-1 , : : : .
Top(zV) = %Lz—‘(nk“‘?k) Y [eJ(ak+ﬁk)H2(e—JWkzw—2)+e—1(ak+ﬁk)H2(eJWkva—l)] ]
=0
(3.6)

Sum Criterion

It can be shown that if we confine the sum of the center frequencies wy, + w; =
2mn /N (where m is an integer), another set of rules for which Tp(zV) = Tu(zY)

emerges as follows.

1. If a particular wy does not satisfy the inequality wp < wp < T—wy, then ay— B,
must be an odd multiple of 7/2. The same restriction holds for terminal [.

2. The phases are chosen such that o + B = —(oq + B))-
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3. The delay factors are chosen such that ny — p, = n; — p;. Moreover, both
ng — p and n; — p; are multiples of N.

This generates a reduced form for the input-output transfer function as above.

Center Frequencies

The center frequencies of Set 1 and Set 2 satisty both the difference and sum
criteria. In fact, the coﬁditions for the two criteria are equivalent for the frequencies’
of Sets 1 and 2. Any two center frequencies of Set 3 satisfy either the difference or the
sum criterion. At this stage, we confine oy + 8, to be a multiple of 7 for Sets 1, 2 and
3. Appendix A elaborates on this aspect and justifies this choice. For the end center
frequencies (those that do not satisfy the inequality wp < wp < 7 — wp), the phase
difference aj — i is constrained to be an odd multiple of 7/2. Combining this with
the constraint on a4 + B} gives the condition that the phases a4 and f§; are of the
form (2r + 1)7 /4, where r is an integer, for the end frequencies. The end frequencies

are 0 and = for Set 1, #/N and = — 7 /N for Set 2 and 7/2N and 7 — 7 /2N for Set 3.

3.4 Analysis of Crosstalk

This section analyzes the crosstalk functions for signals sent at adjacent center
frequencies and the crosstalk functions for signals sent at the same center frequency.
The crosstalk functions associated with signals whose allocated bandwidths do not
overlap are equal to zero. We will adhere to the restrictions generated in Section 3.3 for
the input-output transfer function and formulate additional conditions for cancelling

crosstalk. The case when the center frequencies repeat and the case when they are
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distinct are considered separately. To start, we express the general crosstalk function
for signals transmitted at two center frequencies wy and w; as
N-1 ) .
Tu(z") = Y Ap(zW™")B(zW ™)
i=0
1 N1 . . . . .
= Zz—(nlc-—lm) S wilne—=p) [eJ("”ﬂ’)H(e_J“’kzW")H(e"J“"zW")
1=0
+ e—j(ak-i-ﬂz)H(ejwkzW—i)H(ejwzzW—i)
+ eI (@B g (e=dwk ;=) H (eI ;W )

+ e—j(a"_ﬁ‘)H(ejw”zW_i)H(e—jwzzW-—i)] .
(3.7)

The crosstalk function Ty(2") represents the contribution of the input X (zV)
(transmitted at wy) to the output XI(ZN). In the sequel, the four terms of which

Tii(2N) is comprised of are referred to as crosstalk terms.

3.4.1 Crosstalk: Different Center Frequencies of Sets 1 and 2

Consider the case of center frequencies belonging to Sets 1 and 2. These fre-
quencies are multiples of #/N. For now, it is assumed that the different positive
frequencies wy and w; are in the closed interval [2x/N,7 — 27 /N]. Two adjacent
center frequencies wy, and wj are related by w; —wp = 2mn /N where m = £1. Given
two adjacent frequencies, the last two crosstalk terms of Eq. (3.7) are zero due to
the bandlimitedness of H(z). By substituting the relationship w; — wy = 2mn /N
(m = 1) in the first two terms of Eq. (3.7), noting that e/“* = WP where p is a

multiple of 1/2 and performing algebraic manipulation to give identical crossterms in
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H(-), we get a simplified expression for the crosstalk function as

N-1
Tch(ZN) — }_Z—(nk—Pi) Z [[W(m-'?P)(le—Pl)ej(ak-('-ﬂ[) + e_j(ak+ﬁl)]
: i=0 (3.8)
WP (e W—HP) H (e W =)

From Eq. (3.8), we develop a general rule relating the phases, delays, m and p as

given by (discussion in Appendix B)

o +ﬂ1 =7 (m— 2P3\(rnk —pl) + _;_] ) (39)

Since m = 1, we have considered crosstalk due to spectral overlap between signals

transmitted at any two adjacent center frequencies in the closed interval (27 /N, 7 —

27 /N]. Then, Eq. (3.9) becomes

ap+B = (ﬂ_Qp])V(”’“"p’)Jr% . (3.10)

In seeking solutions to Eq. (3.10), we first note that p is either an even or odd
multiple of 1/2 thereby making +1 —2p odd or even respectively. Equation (3.10) de-
picts a general relationship between two unknowns oy + ) and ng —p;. In establishing
particular relationships between these two unknowns, we express ny — p; as a rational
multiple of N, namely aN/b where a and b are relatively prime. To realize integral
delay factors, aN/b must be an integer thereby imposing a restriction on N or the
number of bands to be an integral multiple of 5. To avoid excessive restrictions on N,
b must be kept to a minimum. We consider the cases in which b = 1 (no restriction
on N) and b =2 (N is even). This gives two different types of solutions to Eq. (3.10)
which are necessary since two signals are sent with the same center frequency. Also,

N is constrained to be even as a result.
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3.4.1.1 Set1l

In Set 1, p is an even multiple of 1/2 (center frequencies are even multiples of

7/N). The two types of solutions to Eq. (3.10) are given below.

Solution One

1. The delays are chosen such that ny — p; is a multiple of N.

2. The phases are chosen such that oy + §; is an odd multiple of 7 /2.

Solution Two

1. The delays are chosen such that ny — p; is an odd multiple of N/2.

2. The phases are chosen such that aj + £; is a multiple of .

The only remaining crosstalk due to spectral overlap occurs between the end
center frequency wy = 0 and w; = 27 /N. Retaining the restriction on aj and f, for
the end center frequencies and the difference in the delay factors to be as above, two
ways of eliminating crosstalk are as follows.

1. The delays are chosen such that nj — p; and n; — p; are multiples of N. The

phases o and B} are either £7/4 or +37/4. The phases o; and §; are odd
multiples of 7/2.

2. The delays are chosen such that ny — p; and n; — pg are odd multiples of N/2.
The phases a and f}, are either £7/4 or £37/4. The phases a; and 3; are
multiples of 7.

The same techniques result in cancelling crosstalk between signals sent at the other

center frequencies of 7 — 27 /N and 7.
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3.4.1.2 Set 2

For Set 2, p is an odd multiple of 1/2 (center frequencies are odd multiples of

7 /N). A type of solution to Eq. (3.10) is given below.

Solution

1. The delays are chosen such that nj; — p; is a multiple of N/2.

2. The phases are chosen such that a; + (8 is an odd multiple of /2.

For the end center frequency wy = 7 /N, spectral overlap occurs with w; = 37 /N.
By examining the crosstalk function, it is found that the elimination of crosstalk is

feasible if both of the conditions below are satisfied.
1. The delays are chosen such that n; — p; and n; — p; are multiples of N/2.

2. The phases are chosen such that (ag, ;) and (B, ) are (v/4,7/4 + mn),
(=7 /4, —7[4 £ mr), (37/4,37/4 £ m7) or (=37 /4,-3% /4 £ mr) where m is
an integer.

The same conditions result for cancelling the crosstalk between signa.lsi sent at a center
frequency of # — 37 /N and the other end frequency = — n/N.

Although the preceding analysis generates only one type of solution, there are in
fact two embedded solutions that arise by making the difference in the delay factors

an odd or even multiple of N/2.

3.4.2 Crosstalk: Repeated Center Frequencies

Here, we examine the crosstalk function associated with two signals transmitted

with the same center frequency. We return to the original expression for the crosstalk
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function as in Eq. (3.7) and let w; be equal to wy to get

N-1 | . . .
Tkl(ZN) _ %Z_(nk_pl) 2“6 wilne—pi) {ej(ak+m)H2(e_]w’°ZW_z)
=

+ eI (@ +B) g2(cdwe y =1y

+2cos (o — B)) H(eI 2W ™) H(e k)] .
(3.11)

In this specific case, the crosstalk function Tjj(z?V) is comprised of three crosstalk
terms. For 2r/N < wp, < m — 27 /N, the third crosstalk term in the above equation

is zero due to the bandlimitedness of H(z). The crosstalk function is reduced to

Ty(zN) = lz—(nk—Pz) Nz—:l wire—pr) [ej(ak+ﬁz)H2(e—jwkzw—i)

4 i=0 (3.12)

+ e HantB) g2 cioe i)

We have many degrees of freedom with which to force a zero crosstalk function.
To maintain compatibility with the types of solutions formulated earlier, we restrict
the differences in the delays to be multiples of N/2 and the sum of the phases to be
multiples of 7/2. Otherwise, we admit the situation of deriving conditions which when
united with the specific solutions in Sections 3.3 and 3.4.1 become contradictory in
that no combination of the parameters would satisfy the entire set. Given the delays
and phases as above, the analysis procedure investigates the question of which center
frequencies can be utilized for transmitting more than one signal. The details are

laid out in Appendix C. Given the derivations in Appendix C, we have the following

restrictions on the center frequencies.

1. If n} — p; is a multiple of N and aj + B; is an odd multiple of 7/2, the center
frequency must be a multiple of 7/N.

2. If ng — p; is an odd multiple of N/2 and «f + §; is a multiple of 7, the center
frequency must be an odd multiple of 7/N.
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3. If ny — p; is an odd multiple of N/2 and af + B; is an odd multiple of 7/2, the
center frequency must be an even multiple of 7/N.

The crosstalk cannot be made zero if ny — p; is a multiple of N and o} + §; is a
multiple of =.

It was initially established that the repeated center frequencies are multiples of
n/N. Here, we have an additional result that fixes these frequencies. It has been
shown that with a.pprppriate limitations on the delays and phases, the repeated center
frequencies must be multiples of 7 /N to ensure zero crosstalk.

The preceding analysis is specifically devoted to the center frequencies in the
closed interval [27 /N, m — 2x/N]. The remaining case that must be considered is the
end center frequency 7 /N in Set 2. Two signals can be transmitted_ at this frequency

without crosstalk subject to both conditions given below.
1. The delays are chosen such that nj — p; is an odd multiple of N/2.

2. The phases are chosen such that (a,8) = (v/4,—7/4 or 3n/4),
(—7/4,7/4 or — 3w /[4), (3m/4,—37/4 or w/4) or (-3 /4,37 /4 or — 7 /4).

The same conditions hold for the other end frequency of # — 7 /N in Set 2.

3.4.3 Distinct Center Frequencies of Set 3

Now, we consider the distinct center frequencies of Set 3. Crosstalk due to spectral
overlap occurs only between two signals transmitted at adjacent center frequencies.
In Set 3, let two adjacent center frequencies be given by wy = (2r + 1)x/2N and
w = (2r + 3)7/2N for r = 0,1,---, N — 2. By substituting these frequencies in
Eq. (3.7), invoking the bandlimitedness assumption for H(z) and performing algebraic
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manipulation just as in Section 3.4.1 gives a relationship similar to Eq. (3.10) as

(r+ D)(m—p1) |, 1
n ’+-2- : (3.13)

ap+p =7
Note that the same relationship holds between o + S and n; — pg.

Just like Eq. (3.10), Eq. (3.13) depicts a general relationship between two un-
knowns a; + 8; and np — p;. In contrast to the situation of having repeated center
frequencies, only one type of solution to Eq. (3.13) is necessary since the center fre-
quencies are distinct. This is provided without any restriction on N by setting n; —p;
to be a multiple of N. However, we can maintain the principle of making nj — p; a
rational multiple of N and impose the mild limitation of an even N to get a second

type of solution (similar to the approach in Section 3.4.1). The two types of solutions
lead to two different transmultiplexers.
Solution One

1. The delays are chosen such that n; — p; and n; — p; are multiples of N.

2. The phases are chosen such that o + 8; and o + 8, are odd multiples of 7 /2.

Solution Two

1. The delays are chosen such that ny — p; and n; — p; are odd multiples of N/2.

2. If ris odd, af + B and a7 + Bj are odd multiples of 7 /2. If r is even, o} +
and a; + f are multiples of .

3.5 Synthesized Transmultiplexers

The specific solutions proposed in Sections 3.3, 3.4.1, 3.4.2 and 3.4.3 comprise

a set of sufficient conditions for an N band crosstalk-free transmultiplexer with an
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identical input-output transfer function for every pair of corresponding terminals.
Given these solutions, we establish values for the free parameters and synthesize five
different types of transmultiplexers. The first three use repeated center frequencies
(Set 1 or 2). The other two use the distinct frequencies of Set 3. In four of the five

systems, it is necessary to implement delays which are odd multiples of N/2. For

these cases, the parameter IV is constrained to be even.

3.5.1 System T1

In the first system T1, we use center frequencies in Set 1. The combining and
separation filters corresponding to the end frequency wg = 0 are associated with
parameters ng = pg = 0 and ag = —fy = 7/4. The next center frequency, w; =
wg = 2r /N is used to transmit two signals. Crosstalk is eliminated between these
two signals and with the signal sent at zero frequency by setting ny = p; = N/2,
ap = =f1 =7, n9g = pp =0 and a9 = —fF9 = —7/2. Now, we proceed to the
frequency w3 = wgq = 47 /N. To cancel crosstalk between signals sent at 27 /N and
4n /N, weset ng =p3 =0, a3 = —f3 =0, ng = p4 = N/2 and oq = —f4 = 37/2.
These parameters eliminate crosstalk between the two signals sent at 47 /N due to
the compatibility in the rules formed for cancelling crosstalk due to spectral overlap
between adjacent and repeated frequencies. We continue this procedure in a sequential

fashion for each center frequency. This establishes the combining and separation filters
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of T1 as follows:

ag(n) = h(n) cos% bo(n) = h(n) cos%
N 27 N 27
g ai(n) = h(n - —2—7»\)"cosl—ﬁn bi(n) = h(n + -5) cos —7
ag(n) = h(n)sin 27En bo(n) = —h(n)sin 2—ﬂ‘n
N N (3.14)
ag(n) = h(n) cosf—r bg(n) = h( )cos4—7r
3(n) = " 3(n) = h(n v
N, . 4r N, . 4rx
aq(n) = h(n — —=)sin " bg(n) = —h(n + 7) sin —n

2

It is noted that for T1, the delay elements of N/2 alternate between the cosine and
sine carriers and that the separation filters associated with the sine carriers have a
minus sign associated with h(n). It is also observed that a delay element of N/2 is
associated with a center frequency of = only if N = 2,6,10,.... The input-output

transfer function for any pair of corresponding terminals is

N-1 _

S HA (=W

=0

[+ o(=2N)2? 4 o(=N)2N +0(0) + v(N)z™ +v(2N)272N 4. ]
(3.15)

T(zN) =

N —

N
2
where v(n) is the inverse z-transform of H?2(z).

3.5.2 System T2

In the second system T2, we use center frequencies in Set 2. The combining
and separation filters for the signals sent with the end center frequency /N have
parameters ng = pg = 0, a9 = —fy = 7/4, ny = py = N/2 and o] = —f; =
7 /4. There is no crosstalk between the signals transmitted at 7/N. For a frequency
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of 3r/N, crosstalk due to spectral overlap with 7/N is cancelled by setting ng =
po =0, a9 = —fig = —w/4, n3 = p3 = N/2 and a3 = —f3 = Tr/4. We observe
that these parameters ensure no crosstalk between the signals sent at 3=/N. For
the next frequency 57 /N, crosstalk due to spectral overlap with 3x/N is cancelled
by invoking the type of solution derived in Section 3.4.1. Again, these parameters
eliminate crosstalk arising from frequency repetition due to the compatability of the
derived conditions. This process continues in a sequential fashion. This establishes

the combining and separation filters of T2 as follows:

ap(n) = h(n) cos (%n + Z—) bo(n) = h(n)cos (%n . %)

ai(n) = h(n—%)cos(—%n—%) bi(n) = h(n+%)cos(%n+%)

ay(n) = h(n) cos (Son - o by(n) = h(n) cos (:%n +7) (3.16)
agln) = h(n— S)cos(Gn+T)  by(n) = h(nt 5 )cos(Can ~T)

The delay element of N/2 alternates between the cosine carriers having a resultant
phase of —7/4 and T /4. When no delay element is present, the resultant phase of the
cosine carriers alternates between 7 /4 and —n /4. The input-output transfer function

for any pair of corresponding terminals is

1 N1 o
T(ZN) — 5 H2(ZW_2+7)
=0
= %[ ot v(=2N) 2 — (= NN £ 0(0) — v (V)2 +v(2N)72Y — . ]
(3.17)

where v(n) is the inverse z-transform of H?2(z).
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3.5.3 System T3

A third transmultiplexer is synthesized by relaxing the assumption of using only
a single lowpass prototype. The system uses two lowpass prototypes h(n) and g(n) |
which are each bandlimited to no less than /N and no more than 27/N. Each of
the combining and separation filters is a modulated and delayed version of one of the

lowpass prototypes just as in Egs. (3.1) and (3.2).

Suppose T1 is modified to include two prototypes by alternating the positions of
h(n) and g(n) between the combining and separation filters for each center frequency.

This leads to a new transmultiplexer T3 described as follows.

ag(n) = h(n) cosg- bo(n) = g(n) cos%

N 2 N 2
ai(n) = g(n — E)cos Wﬂn bi(n) = h(n + E) Cos an
ag(n) = g(n)sin ?ln bo(n) = —h(n)sin 21:77.

i" | ) N (3.18)

ag(n) = h(n)cos T b3(n) = g(n) cos —Jgn

N, . 4« N, . 4«
ag(n) = h(n — —2—) sin—-n by(n) = —g(n + ?)sm ~"

The crosstalk between two signals sent at adjacent frequencies is eliminated as in
T1. Moreover, it can be shown that the crosstalk between two signals transmitted
at the same center frequency w; where 27/N < wp < 7 —27/N is eliminated by
the same approaches as derived in Section 3.4.2 even when two prototypes are used.

Therefore, system T3 is crosstalk-free. The input-output transfer function for any
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pair of corresponding terminals is

v 1A=l _ ,
T(z") = 3 ;0 H( W™)G(W™)

= g [ -+ w(=2N)2N + w(—-N)zN + w(0) (3.19)
+w(N)zV + w@N)" 4]
where w(n) is the inverse z-transform of H(z)G(z).

Consider modifying T2 to include two prototypes. Again, we alternate the posi-
tions of h(n) and g(n) between the combining and separation filters for each center
frequency. In this case, the crosstalk between two signals sent at an end center fre-
quency (w/N or (N — 1)x/N) is not cancelled with two prototypes. Therefore, T2
cannot be modified to include two prototypes.

Note that there are other ways of modifying the transmultiplexers to allow for two
prototypes. However, any other arrangement leads to a crosstalk function Tj;(z)
for two signals sent at adjacent frequencies to be expressed in terms of H(z) and
G(z). Then, the crosstalk terms in Thy(z"V) that involve spectral overlap cannot
be cancelled. To conclude, we observe that only T1 can be modified to allow for
two prototypes. Moreover, the modification must be performed in the unique way

described above.

3.5.4 System T4

The center frequencies of Set 3 are used to synthesize system T4. A lowpass
prototype with a maximum bandwidth of 7 /N is used. One of the specific solutions

formulated in Section 3.4.3 is invoked to establish the parameters. All the delay
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factors nj, and p, equal zero. The phases are set such that (ay, 8;) = (—7 /4, 7/4) for
k=0,2---and (o, B) = (x/4,—=/4) for k = 1,3, -. The filter bank description

of T4 is as follows:

T v T T

ag(n) = h(n) cos (Wn - Z) bo(n) = h(n)cos (Wn + Z)
3 g 3r s
ay(n) = h(n)cos (W'n + Z) b1(n) = h(n)cos (mn - Z) 5.20)
Sm .o om T .
= A bo(n) = oo T
ag(n) = h(n) cos(2Nn 4) 2(n) = h(n) cos(2Nn+ 4)
- The input-output transfer function for any pair of corresponding terminals is
N 1 N-1 g 2 ;1
T(z") = ; S H W) + H2(xW ™7 1)]
1=0
_ i;/_[ 4 o(—aN)22N — u(—2N) 22N 4 5(0) (3.21)

—v(2N)z72N 4 p(aN) ™4V — .. ] .

Note that the transfer function is in fact a function of 22V, In fact, system T4 is the
same as the transmultiplexer formed as the complement of the subband system in [10]
except for the phase factors. The complement of the system in [10] has phase factors
which satisfy the same solution in Section 3.4.3 that was invoked in forming T4 and
which are either the same as those in T4 or differ from those in T4 by a multiple of 7.
Therefore, the synthesis procedure includes an existing modulated filter bank based
on one prototype and equally spaced distinct center frequencies.

Just as T1 was modified to get T3, we attempt to modify T4 by alternating the
positions of two prototypes (both bandlimited to no more than m/N) between the
combining and separation filters for each center frequency. With this arrangement,

the crosstalk between two signals sent at adjacent center frequencies is cancelled as
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in T4. However, it can be shown that the input-output transfer function will not be

the same for all pairs of terminals.

3.5.5 System T5

In system T35, we again use the center frequencies of Set 3 and bandlimit the
prototype to no more than #/N. Another type of solutior; f;fmulated in Section 3.4.3.
is used to configure T5. For the end center frequency 7 /2N, the parameters are
ng = pg = 0 and ag = —fy = —7/4. When establishing the combining and separa-
tion filters for the frequency 37 /2N, crosstalk due to spectral overlap with 7/2N is
cancelled by setting ny = p; = N/2 and a1 = —f; = 37 /4. This process continues

in a sequential fashion such that the filter bank of T5 is described by:

T s T T

ag(n) = him)cos (5n —T)  bo(n) = h(n) cos (s3:m + T)

ay(n) = h(n—%)cosj—;n bi(n) = h(n+g)cos§—;n

ag(n) = h(n) cos (25—;,71 +2) byln) = h(n)cos (%n - (3.22)
a3(n) = h(n — %) sin ;—;n by(n) = —h(n + %) sin 27—;72

System TS is a new alternative to T4. A delay element of N/2 is present for every
other center frequency. In addition, the modulating function alternates between a
cosine and a sine for the cases in which a delay element is present. When no delay
element is present, the resultant phase of the cosine carrier alternates between —7 /4
and 7 /4. The input-output transfer function for T5 is the same as that for T4 and is
given by Eq. (3.21).
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As for T4, we attempt to modify T5 to accommodate two prototypes. In general,
the transfer function is not the same between every pair of corresponding terminals.

However, an exception occurs for the case N = 2 (see Section 3.7).

3.5.6 Modification of the Parameters

We address the question of whether the parameters chosen from the specific solu-
tions proposed in Sections 3.3, 3.4.1, 3.4.2 and 3.4.3 to configure the transmultiplexers
are unique. For the cases when the delay element is 0, a delay factor of the form a N/b
where a and b are relatively prime could be used. Then, the delay elements of N/2
would be replaced by aN/b+ N/2 = (2a + b)N/2b. In the general case, when 2a + b
and 2b are relatively prime, N is restricted to be an integral multiple of 2b in order
to realize integral delay factors. Otherwise, N must be an integral multiple of 5. Our
choice of delay factors imposes the most mild restriction on N in that N must be
even.

Any set of phase factors (ay, i) can be replaced by (ay +mn, B, — mn) where m
is an integer. Also, note that the transmultiplexers T1 through T5 were developed by
starting with phase factors 7/4 and — /4 for the lowest end frequency. However, any
odd multiple of 7/4 could be used as the starting point. In this case, the filters in T1
and T3 are either the same as or negatives of those presented above. In systems T2, T4
and T5, the phase factors used in all the filters would still remain to be odd multiples
of 7 /4. The cosine and sine carriers at the odd-indexed terminals of T5 could become
sine and cosine carriers respectively. To conclude, we note that the chosen parameters

are not unique. However, changes in the delay factors will restrict the number of
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bands and adjustments of the phase factors render only a trivial modification of the
system. Finally, note that the swapping property (discussed in Chapter 2) applies
to the synthesized transmultiplexers but offers no significant change in the delay and

phase factors.

3.5.7 Elimination of Intersymbol Interference

The five preceding transmultiplexers have been synthesized to eliminate crosstalk.
The input-output transfer function T'(z/V) still admits intersymbol interference. Inter-
symbol interference is eliminated in T1 and T2 if H2(z) satisfies the Nyquist criterion
in which every Nth sample of its impulse response (except for a reference sample) is
equal to zero. In T3, the product H(z)G(z) must satisfy the Nyquist criterion. Inter-
symbol interference is eliminated in T4 and T5 if H2(z) satisfies the Nyquist criterion
in which every 2Nth sample of its impulse response (except for a reference sample)
is equal to zero. Perfect reconstruction is achieved if the prototypes are bandlimited
(up to hundred percent above the minimum bandwidth) and the Nyquist criterion is
satisfied. The problem of designing the prototypes to satisfy the Nyquist criterion is

addressed in Chapters 4 and 5.

3.6 Multicarrier QAM and VSB Systems

An interpretation of what exactly each system implements is made clear by ex-
amining the input signal spectrum and the filter responses as shown in Fig. 3.1. As
shown in Fig. 3.1(a), modulation is implicitly accomplished by the sampling rate ex-
pander in that copies of the input signal spectrum appear at intervals of 27 /.NV. The
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three systems T1, T2 and T3 accomplish multicarrier Quadrature Amplitude Mod-
ulation (QAM) in the form of a digital multirate filter structure as in Fig. 2.1. For
each unique center frequency (except 0 and 7), two signals are sent in quadrature.
Systems T1 and T3 explicitly accomplish QAM in that a particular combining filter
extracts one of the replicated copies of the input spectrum around carrier frequencies
at multiples of 27 /N (see Fig. 3.1). The same is not true of T2 in that the combining
filters, whose center frequencies are odd multiples of /N, extract a portion of two
adjacent copies of the input spectrum. System T2 can be converted to a true QAM
scheme as follows. Suppose each of the input signals is multiplied by (—1)" prior to
sampling rate expansion. Then, the input spectrum shifts in such a way that after
sampliﬁg rate expansion, the replicated copies are centered at implicit carriers equal
to odd multiples of /N (shown in Fig. 3.1(b)). Now, each of the combining filters
will extract a replicated copy centered at an odd multiple of 7/N. The original signals
can be recovered by multiplying each of the outputs by (—1)".

Multicarrier Quadrature Amplitude Modulation systems have been realized in
continuous time [21] and in discrete time [22]. Also, a data modem based on the QAM
technique is described in [23]. The system in [22] uses one lowpass prototype and a
set of equally spaced frequencies for transmission. Also, it is oversampled as opposed
to the critically sampled systems that we consider. In an oversampled system, the
sampling rate expansion/compression factor is greater than the number of frequency
bands. This gives additional freedom in choosing the repeated center frequencies but
does not generally result in the utilization of the entire range 0 to . In every band,

the lowpass prototype performs an interpolation function by extracting the copy of the
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input spectrum around the 0 frequency. Each of the filtered outputs is then explicitly
modulated by multiplication with a sinusoid at the corresponding carrier frequency.
Two signals are sent in quadrature at each carrier frequehcy through modulation by
a cosine and sine carrier. Qur system T1 is related to the system proposed in [22].
The system in [22] can be converted to our system T1 with the restriction that the
carrier frequencies are multiples of 27 /N.

In contrast, system T4 and system T5 do not implement QAM. Systems T4 and
T5 can be thought of as being multicarrier Vestigial Sideband (VSB) schemes. Given
an implicit set of carriers at multiples of 27 /N, there are both lower and upper side-
bands at multiples of 27/N. A combining filter extracts either an upper or lower
sideband of a particular copy of the input spectrum and a vestige of a suppressed
sideband for transmission. Multiplication of the input signal by (—1)" prior to sam-
pling rate expansion results in an implicit set of carriers at odd multiples of 7/N.
Again, one upper or lower sideband and a vestige of a suppressed sideband is ex-
tracted for transmission. In contrast to conventional frequency division multiplexing
(FDM) schemes which avoid spectral overlap by using guard bands, the VSB systems
allow overlap between the transmitted sidebands of different input signals.

Another multirate system described in [9] is not a regular structure in that the
center frequencies are not equally spaced and two prototypes of different bandwidths
are used to derive the filter banks. Although the system in [9] is a subband system,
it can be converted into a transmultiplexer. When viewed as a transmultiplexer, the
system in [9] implements VSB for all carriers other than 0 and =.

A synthesis procedure that establishes a set of analog transmitter filters for the
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Fig. 3.1 Input signal spectrum and responses of the filters used
in systems T1 to T5 (shown for N even)
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simultaneous transmission of data is developed in [24]. The approach in [24] consists
of simultaneously deriving conditions on the amplitude and phase characteristics of
the filters such that crosstalk and intersymbol interference are cancelled. This leads
to a class of multicarrier analog transmission systems. In this thesis, an equivalent
class of digital systems are configured. In contrast to the method in [24], our synthe-
sis procedure decouples the problems of crosstalk and intersymbol interference. The
parameters of the cosine modulating function allow for crosstalk due to spectral over-
lap to be cancelled. Intersymbol interference is eliminated by designing the lowpass
prototype h(n) (discussed in Chapter 4). Transmultiplexer T4 is a digital counterpart

to the system configured in [24].

3.7 The Two Band Case

This section examines two band systems as a separate case. Although two band
versions of transmultiplexers T1 to T5 exist, we anticipate that a synthesis procedure
devoted only to the N = 2 case will lead to more flexible conditions than the N band
case and consequently, lead to many transmultiplexers. As before, the combining
filters A(z) have parameters wy, ny and aj for k = 0 and 1. The separation filters
Bi(z) have parameters wy, pp and (B for k = 0 and 1. We do not impose any
bandwidth restriction on the lowpass prototypes in formulating a synthesis procedure
for crosstalk-free transmultiplexers with two identical input-output transfer functions.

For systems based on one prototype filter and with two distinct center frequencies,

the following conditions must hold.

1. The two center frequencies must satisfy the relation wg + wy = .
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2. The delays are chosen such that:

(i) The relationship ng — pg = n; — p; must be satisfied. Moreover, both
ng — pg and n] — p; are even.

(ii) Both ng — p; and n; — pg are odd.
3. The phases are chosen such that:

(i) fwy # 0 and wy # =, then ag + By = —(a1 + B1). f wy = 0 and
wy = 7, then ag + By = (e + f1).

(i1) The relationship ag — By = £(a; — f1) must hold.
(ii) If wg # 0 and wy # 7, both oy + B and a1 + By are multiples of .

For the case in which both center frequencies are the same, we have the same restric-
tions on the delays as given above. The center frequency is /2. Appendix D justifies
this choice. The restrictions on the phases are as above except that 3(i) becomes
ag + By = (a1 + B1)-

Now, consider the case when two prototypes H(z) and G(z) are used. The filters
Ag(z) and Bj(z) are frequency shifted versions of H(z). Similarly, Aj(z) and By(z)
are frequency shifted versions of G(z). The conditions for the cancellation of crosstalk
remain the same as above. The input-output transfer function is examined to establish
any further requirements. For distinct center frequencies except 0 and =, the rules are
the same as for the single prototype case except that 3(ii) changes to ag— 8y = a1 —f31.
If wg = 0 and wy = 7, the rules are the same as the single prototype case. For the
case in which the center frequencies are the same, the rules are again the same as the
single prototype case.

As anticipated, the above rules permit the synthesis of many two band transmul-
tiplexers. There is no bandwidth restriction on the prototypes for the two band case.

This allows for more freedom in choosing the center frequencies for the 2 band case
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as compared to the N band case and yet ensures complete bandwidth utilization.

Table 3.1 shows some two band systems that are synthesized from the formulated

rules.
System Center. Con.qbining Separation
Frequencies Filters Filters
K 0 ao(n) = h(n) bo(n) = g(n)
u ay(n) = (-1)"g(n - 1) bi(n) = (-1)*h(n +1)

5 /2 ao(n) = h(n) cos(%n + {-) bo(n) = g(n) cos (7—;11 - %)
/2 ai(n) = g(n - 1)cos(gn - %) b1(n) = h(n 4+ 1) cos (gn + ;;-)

o /4 ag(n) = h(n) cos(zngz) bo(n) = g(n) cos(zn-:;z)
3r/4 ay(n) = g(n — 1) cos(T"n) bi(n) = h(n + 1)cos(T”n)

5 /3 ag(n) = h(n) cos (%n -;— g) bo(n) = g(n) cos (%n _2 %)
27 /3 ai(n) = g(n — l)cos(?rn—%) bl(n)zh(n+1)cos(—3—7rn+§)

Table 3.1 Synthesized Two Band Systems

The systems depicted in Table 3.1 involve two prototypes. One prototype versions
occur as a special case. System A is a two band version of T3 (the two band version
of T1 is the special case). When G(z) = H(z), System B is a two band version of
T2. Although many two band systems can be developed, they cannot necessarily
be extended to the N band case for our objectives. An N band version of System
B cannot be configured since the crosstalk function for two signals sent at adjacent
center frequencies will involve two prototypes and cannot be made equal to zero. If
G(z) = H(z), an N band version of System C results if the bandwidth of the prototype
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is reduced to n/N (system T5). However, an N band system with two prototypes
cannot be formed even with the reduced bandwidth since the input-output transfer
function is not the same for every pair of terminals. System D is synthesized by
taking advantage of the flexibility in choosing the center frequencies specifically for
the two band case. The general synthesis procedure in this chapter does not lead to

an N band version of System D even if G(z) = H(z).

3.8 Subband Complements

Transmultiplexers T1 through T5 are crosstalk-free. Moreover, each transmulti-
plexer has an identical input-output transfer function for every pair of corresponding
terminals. Therefore, systems T1 to T5 can be converted into alias-free subband
systems S1, S2, S3, S4 and S5 respectively (this complementary nature of the two
multirate systems was discussed in Chapter 2). The new subband systems S1, S2
and S3 have repeated center frequencies. The subband systems S4 and S5 have the
same distinct center frequencies. System S4 resembles the one in [10] while S5 is an
alternative employing delay factors. Note that the other two band transmultiplexers
that are synthesized in Section 3.7 can also be converted into subband systems.

The input-output transfer function for the transmultiplexers is given as T'(z%)
in Egs. (3.15), (3.17), (3.19) and (3.21). For the transmultiplexers, the input-output
relationship is X,(z) = ﬁT(z)X,c(z) for k = 0 to N — 1. For the complementary
subband systems, X (z) = ﬁT(zN)X(z). Note that this input-output relationship is
dependent on bandlimited prototypes with a restricted stopband edge ws as for the
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transmultiplexers. Moreover, perfect reconstruction is achieved in the complementary
subband systems if the Nyquist criterion is satisfied (as for the transmultiplexers).
We have configured transmultiplexers and subband systems that achieve per-
fect reconstruction given that the prototypes are bandlimited (up to hundred per-
cent above the minimum bandwidth, as discussed earlier) and the Nyquist criterion
is satisfied. When G(z) = H(z~!) in systems T3 and S3, the two conditions of
bandlimitedness and the Nyquist characteristic lead to perfect reconstruction with
By (z) = Ap(z~1). Therefore, both systems are lossless [8] under the same two con-
ditions. For the special case of N = 2, S1 reduces to the classical QMF arrangement
described by Eq. (2.10). Note that system S3 becomes the Smith-Barnwell structure
[5] for the case N = 2 if G(2) = H(271). For an arbitrary H(z) and G(z), system
S3 degenerates into a general two band two prototype system proposed in [6][7] (also
discussed in Chapter 2). In effect, we have developed subband systems which are N
band generalizations of the QMF bank, the Smith-Barnwell structure and the general

two band system proposed in [6][7] employing two prototypes.

- 61 -



Chapter 4 Minimax Filter Design

Given the synthesized transmultiplexers T1 to T5 and the complementary sub-
band systems S1 to S5, we proceed to design the practical lowpass prototypes that
describe the filter banks. In addition to the frequency response requirement, the time
domain‘ constraints on the impulse response of the prototypes that are needed to
‘satisfy the Nyquist criterion are taken into account. The design of the prototypes is

based on a minimax criterion.

4.1 Design Problem

The design problem of simultaneously satisfying the time and frequency domain
constraints to yield Nyquist filters is introduced. Then, the general characteristics of

Nyquist filters are described.

4.1.1 Time and Frequency Domain Requirements

For the QAM transmultiplexers T1 and T2 and their subband complements, the
lowpass prototype H(z) must be bandlimited to no less than #/N and no more than
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2r/N. In addition, H?2(z) must be a Nyquist filter with an impulse response having
exact zero crossings every Nth sample (except for a reference sample). Similar re-
quirements exist for T4, T5, S4 and S5 in that the lowpass H(z) must be bandlimited
to no less than /2N and no more than 7/N. Also, H2(z) must be a Nyquist filter
with an impulse response having exact zero crossings every 2Nth sample (except for
a reference sample).

Systems T3 and S3 involve two lowpass prototypes H(z) and G(z). Both mustr
be bandlimitéd to no less than #/N and no more than 27 /N. Also, H(z)G(z) must
be a Nyquist filter with an impulse response having exact zero crossings every Nth
sample (except for a reference sample). In carrying out the filter design, we set
G(z) = H(z™!). Then, both the prototypes have identical magnitude responses but
different phase responses. A Nyquist filter H(z)H(z~!) must be designed and split

into a minimum phase component H(z) and a maximum phase component H(z~1).

4.1.2 Nyquist Filters

Since the design problem mandates Nyquist filters, some of their basic character-
istics are introduced together with relevant terminology used in the remainder of the

thesis. A Nyquist filter F(2) has the following impulse response characteristic:

1 forz =0
fag)y={ K : (4.1)
0 fori#0

The parameter K is the zero crossing interval in the time response f(n) f. The

! Actually, f(0) can be any constant. However, setting f(0) = 1/K makes the right hand side of
Eq. (4.2) equal to 1.
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reference coefficient is f (O)I. In the frequency domain, this corresponds to
K-1
F(edw=2mi/K)y = 1 (4.2)
i=0
The minimum bandwidth solution is an ideal lowpass filter bandlimited to 7 /K.
We allow an excess bandwidth of f7 /K to bring the overall bandwidth to (1+ )7/ K.
The parameter 8 is the roll-off factor of |F(eJ¥)|. In the QAM systems (T1, T2 and
T3) and their subband complements, the zero crossing interval K is equal to the
number of bands N. The situation differs for the VSB systems (T4 and T5) and
their subband complements in that K = 2N. To ensure that the lowpass prototype
is bandlimited as discussed in Section 4.1.1, the parameter 8 < 1. In this case, only
adjacent replicas of the spectrum of F(e/%) (located at center frequencies that are

multiples of 27 /K) overlap. Also, the upper edge of the passband is wp = (1 —

B)m /K and the lower edge of the stopband is ws = (1 + B)r/K. The ideal frequency

characteristic 1s

|F(e?¥)] = {1 for 0<|w[<wp Passband

0 for ws <|w|<n Stopband . (4.3)

The response of an ideal filter makes a symmetrical transition from the passband to
the stopband passing through the value 0.5 at w = n /K.

We consider design approaches for a practical linear phase FIR Nyquist filter
F(z) that approximates the ideal magnitude characteristic. The passband edge wp
and the stopband edge ws are as defined above. The general zero constellation of

F(z) involves real axis zeros which occur in pairs at z = 29 and zj L. Unit circle

t Note that the reference coefficient need not occur at the zeroth sample. We specify it at the
zeroth sample for purposes of exposition.
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zeros occur in complex conjugate pairs. The general complex zeros of F(z) occur in
groups of four at z = 2, zj, zo_1 and (zo_l)*. When F(z) = H2(z), all its zeros must
occur as double order zeros and it must have an odd number of taps. For the case
F(z) = H(2)H(z71), we refer to F(z) as a factorable Nyquist filter. An FIR filter
F(z) is necessary to ensure stability of both its factors. Moreover, F'(2) is inherently
zero-phase and has an odd number of taps. For F(z) to be factorable into minimum
and maximum phase parts H(z) and H(z~1) respectively, the additional constraint
is that all of its zeros on the unit circle must occur as double order zeros.

Finally, note that although we deal with an F(z) which may yield noncausal
lowpass FIR prototypes, causality can be ensured in an actual implementation of
the transmultiplexers and subband systems by applying appropriate delay factors

(discussed in Chapter 2).

4.2 One Prototype Systems

For the transmultiplexers and subband complements which are based on one
prototype, F(z) = H?(z). For a linear phase F(z), H(z) is a linear phase FIR filter.
Consider systems T1, T2, S1 and S2. For these systems, N must be even. If H(z)
has an odd number of taps, an appropriate choice of filter delay results in the center
or reference coefficient of H2(z) emerging at a time index which is a multiple of N. If
H(z) has an even number of taps, there is no choice of delay that allows the reference
coefficient of H%(z) to emerge at a time index which is a multiple of N. For an H(z)
with an even number of taps, the reference coefficient of H2(z) never shows up in the
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expression for the input-output transfer function T(zN ). For systems T4, T5, S4 and
S5, it can also be shown that a linear phase H(z) must have an odd number of taps.
Therefore, a linear phase H(z) is constrained to have an odd number of taps. For the
remainder of the thesis, we design H(z) such that the reference coefficient of H2(z)
emerges at the zeroth sample.

The design problem mandates a lowpass H(z) such that H2(2) is a Nyquist filter
with exact zero crossings in its impulse response. It is now shown that both these
time and frequency domain requirements cannot be met in general. The approach is
to determine the time domain requirements on H(z) for F(z) = H2(z) to exhibit a
Nyquist characteristic.

First, we deal with the case when the zero crossing interval K = 2. Consider a
zero-phase h(n) which has 2L +1 taps from n = —L to L. Then, f(n) has 4L +1 taps
from n = —2L to 2L. Also, f(2:) = 0 except for a reference coeflicient f(0) = 1/2.
Since f(2L) = f(—2L) =0, it implies that A(L) = h(—L) = 0. The number of taps
of h(n) and f(n) are reduced. Now, h(n) has 2L — 1 taps from n = —(L — 1) to
L -1 and f(n) has 4L — 3 taps from n = —(2L — 2) to 2L — 2. Again, the end
coeflicients f(2L — 2) = f(—2L + 2) = 0 implying that A(L — 1) = A(=L +1) =0
thereby reducing the number of coefficients of H(z) by two. This process continues
and results in the unique solution H(z) = 1/4/2. This trivial result is the only filter
H(z) that guarantees exact zero crossings in the response of H2(z) for K = 2.

Consider the case when K > 2. If the filters are short (2L < K), then H(z) will
have more than one tap and will be free of any time domain constraints. However,
the number of taps of H(z) is not sufficient for an acceptable lowpass characteristic.
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For longer filters (2L > K), many nonlinear constraints on h(n) are imposed which
may compromise the desired lowpass nature.

Given the difficulty of simultaneously meeting the time and frequency domain
requirements, our strategy is to get a lowpass filter and only approximately satisfy
the time domain constraints. Although the zero crossings in f(n) are not exactly
met, the response is kept small at the time indices at which the zero crossings should
occur. There are closed form expressions for the frequency response of a Nyquist filter
given B < 1, one of which is a raised cosine spectrum. A lowpass H(z) is designed by
the McClellan-Parks algorithm [25] to approximate the square root of a raised cosine
spectrum with a given roll-off factor. We get a linear phase filter whose frequency
response is a minimax approximation of the desired response. Both equiripple and

nonequiripple lowpass prototypes are designed with appropriate weighting functions.

4.3 Two Prototype System

In contrast to the one prototype systems, the practical Nyquist filter F(z) =
H(z)H(z~1) for T3 and S3 can be designed such that H(z) is a good lowpass filter
and F(z) has exact zero crossings in its impulse response. Since F(z) is a zero-
phase function, the reference coefficient is f(0). Although F'(2) must have an odd
number of taps, there are no constraints on the number of coefficients of H(z) and
H(z~1). We develop two new approaches to design F(z) known as factorable mini-
max methods. The two approaches use the McClellan-Parks algorithm [25] as a first

step to control the stopband response. The subsequent step incorporates the time
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domain constraints by forcing zero crossings in the impulse response. This leads to
a spectrum that exactly satisfies Eq. (4.2). With a response satisfying Eq. (4.2), an
approximately zero stopband characteristic assures an approximately constant pass-
band characteristic (assuming § < 1). A few iterations of the above steps produces
a factorable Nyquist ﬁltef with a Chebyshev stopband response. The Nyquist filter
designed by our approaches is fundamentally equiripple. A nonequiripple filter can be
obtained by applying additional frequency weighting. Finally, the lowpass prototypes
H(z) and H(z™1) are obtained from the Nyquist filter.

In the past, FIR Nyquist filters have been designed using linear programming tech-
niques [26][27], by the eigenfilter approach [28][29], and by the use of the McClellan-
Parks algorithm as an intermediate step [30]{31]{32](33]. The methods in [27][29][31]
allow for the splitting of the filter into its minimum and maximum phase parts.
Salazar and Lawrence [27] set up the design as a linear programming problem in-
corporating the time domain constraints. In addition, the frequency response of the
filter is forced to be nonnegative in order that the minimum and maximum phase
factorization be possible. Mintzer [31] deals exclusively with the case when the zero
crossings occur for every second sample. In that paper, the frequency response of an
unconstrained filter is offset to ensure that it becomes nonnegative. In [29], the eigen-
filter concept is applied to obtain a Nyquist filter that is factorable into minimum
and maximum phase parts.

Nyquist filters with Chebyshev stopband behaviour have been designed in [33]
using a multistage structure. The focus in [33] is on a computationally efficient mul-

tistage implementation. However, the resulting filters are not necessarily factorable.
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One can make these filters factorable by adding a positive constant to the frequency
response (as in [31], see also [34]) to make it nonnegative. However, this fixup exces-
sively reduces the stopband attenuation for nonequiripple filters.

In the factorable minimax methods, we directly achieve a nonnegative frequency
response with controlled stopband characteristics. Furthermore, the polynomial fac-
torization problem for the determination of the minimum phase part is considerably
eased. The complexity of polynomial factorization is directly related to the order and
hence, to the length of the designed Nyquist filter. We reduce this complexity by
determining a partial factorization of the transfer function of the Nyquist filter as a
byproduct of the design procedure. The remaining factorization involves a polyno-
mial of much lower order than the overall transfer function. The rest of this chapter

is devoted to the design of F(z) = H(z)H(z~!) for T3 and S3.

4.4 Factorable Minimax Design Procedures

As in [29], we factor F(z) as F(z) = Fo(z)FiZ(z) where F12(z) contains all the
double zeros of F(z) on the unit circle and Fjy(z) contains the other zeros of F(z).
The double zeros of FZ(z) on the unit circle imply that it has an odd number of
coefficients and that it is a zero-phase function. The zeros of Fy(z) must occur in
mirror image pairs reflected about the unit circle. Hence, Fjy(z) also has an odd
number of coefficients and is a zero-phase function.

Let the lengths of Fj(z) and FIQ(z) be 2ly+1 and 2[1 +1 respectively. The number
of coefficients of the overall Nyquist filter F(z) is M = 2(lp + {1) + 1. Note that the
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case Iy + l{ = kK (for any integer k) results in a Nyquist filter with f(—lyp — 1) =
f(lg+11) = 0 thereby reducing the effective length by two. The inverse z-transforms

of F(z), Fy(z) and F3(z) are defined to be f(n), fo(n) and d(n) respectively.

4.4.1 First Method

The design procedure for the first method is as follows:

1. Initialization: Fix lg, l1, K, and ws. Set Fy(z) = 1. The weighting is given as
W{w).

2. Design Fy(z) using the McClellan-Parks algorithm such that it has zeros only
on the unit circle in the stopband region [ws, 7).

3. Impose the time domain constraints by solving for the coefficients of Fjy(2)
through a linear system of equations.

4. Form the Nyquist filter F(z). If the design warrants improvement, go back to
step 2.

5. Split F(z) into its minimum and maximurm phase parts.

We now describe steps 2 to 5 in more detail.

4.4.1.1 Step 2: Frequency Domain Specifications

The McClellan-Parks algorithm is used to get the coefficients of Fi(z). The speci-
fications are that the frequency response must be one at w = 0 and must approximate
zero in the stopband region [ws,7]. The weighting function applies to F12(z). The
weighting function is W(w)|Fy(e/*)|. Initially, it is W (w) since Fy(z) = 1. Subse-
quent iterations involve an update of the weighting function as Fy(2) is recomputed.
For the design of F}(z), tabulated values of the square root of the weighting function
are inputs to the algorithm.
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In the stopband, the frequency response of F)(z) exhibits a ripple-like behaviour
with local minima and maxima occurring at the extremal frequencies. If [y is even,
Fy(2) has an odd number of coefficients (I} +1). Two of the extremal frequencies are
0 and = [35]. However, the total number of zeros is a multiple of two, all occurring in
complex conjugate pairs (no zero at z = —1). At w = 7, either a local maximum or a
local minimum occurs. If [ is odd, F(z) has an even number of coefficients. In this
case, a zero occurs at z = —1. However, 7 is not an extremal frequency. The other

zeros occur in complex conjugate pairs bringing the total number of zeros to [j.

4.4.1.2 Step 3: Time Domain Constraints

Given Fi(z), we form F12(z) and solve for the coefficients of Fjy(z) such that F'(z)
has the Nyquist property. Since f(n) has samples for n = —(lg + 1) to Iy + {1, the
number of zero-valued samples that occur as n goes from 1 to lg+11 is {({g + 11)/ K |.
The same holds true as n goes from —1 to —(ly + [1). Since, the sample for n = 0 is

also known, the number of known coefficients of F(z) isf

I+ 1

=2
L l K

J +1. (4.4)

The coeflicients of F(z) are found by performing the convolution fy(n)xd(n). By
expanding the convolution sum, one can uniquely determine Fjy(z) such that the time
domain constraints are satisfied [29] if the number of unknown coefficients of Fy(z)
equals the number of known coefficients of F(z). This results in a system of linear

equations of dimension 2ly + 1. By further exploiting the time domain symmetry

t This formula is a corrected version of the formula given in [29].
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of each filter, the problem is reduced to that of a system of dimension ly 4+ 1. The

system of equations can be expressed as Df = ¢ where f1 = [f(0) --- fo(lp)],
cI'=[1/K 0 --- 0] and
d(0) 2d(1) S 2d(1p)
| dK) dK-D)+d(K+1) - d(K—l) + d(K+lp) ws)
d(Kly) d(Klg-1)+d(Klp+1) --- d(Klg—lg) + d(Klg+lo)

The constraint that L = 2ly + 1 is equivalent to ly = |({y + {1)/K | which in turn

translates to constraints on {y and !{ given by
WK-1)<h<lphK-1)+K. (4.6)
Appendix E gives the derivation of closed form expressions for /g and {; in terms of
In = [M -1 J
0= [ 2K
M-1 lM - 1J
L= —

2 2K
This method of satisfying the Nyquist property automatically takes care of the

K and M,

(4.7)

passband response of F(z). Note that Fjy(z) is a highpass function that primarily

controls the passband characteristic and hence has no zeros on the unit circle.

4.4.1.3 Step 4: Termination

The coefficients of F(z) are found from Fy(z) and F2(z). Steps 2 and 3 are
iterated if the design warrants improvement. For Step 2, the weighting function
W (w)|Fo(e?*)| is updated to include a new |Fy(e/*)| calculated from the coefficients
of Fy(z) formed in Step 3 of the previous iteration. The application of this weighting
factor significantly influences the stopband behaviour of F'(z) through the design of
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Fi(z). In the weighting function, the factor | Fo(e/*)| leads to a stopband behaviour of
F12(z) that compensates for the highpass response of Fj(z). The stopband behaviour
of F(z) is either equiripple or nonequiripple depending on the other fa,ctgr W(w) in
the weighting function. The iterations are terminated when the extremal frequencies

obtained by designing Fj(z) do not change by more than a given threshold.

4.4.1.4 Step 5: Final Filter

This step factors F(z) into minimum and maximum phase parts. The minimum
phase part of F(z) is H(z) = Fj (2)F1(z) where Fj (z) is the minimum phase part
of Fp(z). The factor Fj; (2) contains all the zeros of Fjy(z) that are within the unit
circle. The factor Fi(z) (has zeros on the unit circle) is known as a byproduct of the
design procedure. Only Fy(z) needs to be factored in order to derive its minimum
phase part. The maximum phase part, H(z~1), is obtained by time reversing the

coefficients of H(z).

4.4.2 Second Method

The difference between the second method and the previous approach lies in Step
2 in which a constrained form of the McClellan-Parks algorithm is used to directly
compute the coefficients of F#(z) rather than to first design Fy(z). The specifications
are that the frequency response must be one at w = 0 and must approximate zero
in the stopband region [ws,]. As before, the weighting function is W (w)|Hy(e/*)|.
Tabulated values of the weighting function are supplied as inputs. Since double zeros

on the unit circle are required, we constrain the frequency response to be nonnegative

- 78 -



in the stopband region. We implement the procedure in [36] (see also [37]) to obtain
a minimax approximation to a desired response that satisfies given upper and lower
constraints.

In the stopband, the frequency response of F' 12(2) exhibits a ripple-like behaviour
with local minima and maxima occurring at the extremal frequencies. The local
minima correspond to the frequencies at which the response touches zero. It is these
frequencies which determine the double zeros of F' 12(z) on the unit circle. Given that
Flz(z) has 2{; + 1 coeflicients, a total of I} 4+ 1 extremal frequencies result [35]. Two
of the extremal frequencies are 0 and 7 regardless of the value of ;. If {1 is odd, the
extremum at 7 is a local minimum thereby producing a double zero at z = —1. The
other zeros occur in groups of four in the stopband region bringing the total number
of zeros to 2ly. If I is even, the extremum at 7 is a local maximum (no zero at

z = —1). The total number of zeros is a multiple of four and occur in groups of four

" in the stopband region.

Steps 3 and 4 are identical to the first approach. In splitting F'(2) into its mini-
mum and maximum phase parts, we take advantage of the fact that the frequencies
corresponding to the double zeros of F' 12(2) are available as a byproduct of the mod-
ified McClellan-Parks algorithm (similar to the approach used in [37] to generate
minimum phase filters). Given these frequencies and hence, the locations of the zeros
on the unit circle, Fy(z) can be formed without directly factoring F2(z). As before,
only Fy(z) must be fa.cto;ed to form H(z) = Fy (2)F1(z).

The next section discusses the merits of factoring only Fy(z) as opposed to F'(z)

in determining the minimum phase part. Also, observations concerning the relative
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orders of Fy(z) and F(z) are given.

4.5 The Factorization Problem

Polynomial factorization can be an ill-conditioned problem [38]. There is an
advantage to substantially lowering the order of the polynomial to be factored. A
general zero plot of F(z) includes double order stopband zeros on the unit circle
and the other simple zeros that mainly contribute to the passband response. If F'(z)
were to be factored, the double zeros on the unit circle and the other zeros would be
determined through one factorization procedure. Note that finding the double zeros
can be an ill-conditioned problem [38]. Furthermore, the use of polynomial deflation
can be troublesome since the zeros of the resulting polynomial may in some cases
diverge from those of the original polynomial [38]. In our approach, both factorization
and deflation of F'(z) are avoided. In particular, the knowledge of Fi(z) ensures that
any errors that would normally occur in locating the unit circle zeros are absent and
do not affect the zeros of Fjy(z). Furthermore, the factorization of Fy(z) does not
involve multiple zeros since Fy(z) has only the simple zeros of F(z) that primarily
influence the passband.

Since only the zeros of Fj(z) have to be determined, the extent to which the
factorization problem is eased depends on the ratio lj/ly. The ratio l1/lg is both a
measure of the proportion of unit circle zeros to the other zeros of F(2) and of the
degrees of F(z) and Fy(z). The higher the value of I1/ly, the lower the relative orders
of Fy(z) and F(z). Appendix F shows that [ is greater than ly by a factor of at
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least K — 1. Therefore, the inherent advantage in terms of polynomial factorization
increases as K increases. However, even for the lowest value, K = 2, the degree of
F(z) is at least twice the degree of Fyj(z). Note that the lower bound for I3 /Iy = K -1
is satisfied when the end points of the impulse response are zero-valued (shown in
Appendix F). We discard this artificial case because the values of /[y and M can be

reduced by 1 and 2 respectively thereby giving a new value of {1/lj.

f(n)
I‘\
Igl \a\

g |

g 8

I¢ h\

o2 %e / \ o€ 0g
"SoeTIK —2kw_ K |0 Kw~ A0k 3K°eeo n
o 0 -2

Fig. 4.1 Typical Nyquist response f(n) (shown for K =5,
M =39 and g =0.2)

A typical designed Nyquist response f(n) is depicted in Fig. 4.1. The time re-
sponse consists of a main lobe between n = —K and n = K and a series of sidelobes
each occurring between the zero crossings. The value of [ is a measure of the number
of sidelobes. As the number of coeflicients M increases, ] also increases. For a fixed
number of lobes (constant value of ly), increasing M results in a higher stopband
attenuation while maintaining the same factorization complexity. Hence, for a fixed
number of lobes, one can maximize [1/ly by increasing M. The largest disparity in
the relative orders of Fy(z) and F(z) results by choosing the filter lengths to be of
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the form M = 2kK — 1.

Given that the filter lengths are constrained to be of the form M = 2kK — 1, the
ratio I1/lg is
L k(K -1)

pe=t (4.8)

This ratio is a maximum for k¥ = 2f. As k increases, a tradeoff results in that a
higher stopband attenuation due to a longer filter is obtained at the expense of both‘
a lower [1/lp and a higher [j. The subsequent examples show that a value of £ = 5
results in about an 80 dB stopband attenuation for a roll-off factor of 0.52. Then,
I1/lo = 5(K — 1)/4 and |y = 4. Only an eighth order polynomial with simple zeros
needs to be factored. Smaller roll-off factors require a larger number of taps (larger
value of k) and hence, a lower value of /1/lj and a higher value of Iy for an 80 dB

stopband attenuation.

4.6 Discussion of the Design Techniques

The two methods in this chapter can be used to design factorable Nyquist filters
with Chebyshev stopband behaviour and exact zero crossings in its impulse response.
An equiripple stopband is obtained when W(w) = 1. A nonequiripple design is
achieved by specifying a nonconstant W(w). The main advantages of the design
techniques are that the polynomial factorization complexity in finding the minimum
phase part is considerably eased and that arbitrary frequency weighting can be applied

without additional computational overhead. This section discusses the relative merits

t This is also a unique maximum for a general M (see Appendix F).
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of the two new factorable minimax methods and gives design examples. Finally, the

group delay behaviour of the minimum phase part is examined.

4.6.1 Comparison of the Two Proposed Methods

In the first method, we design an unconstrained Fi(z). When this Fy(z) is
squared, the resulting nonnegative frequency response has extremal frequencies that .
include those obtained in the design of F}(z). These are augmented by another set
at which the response is zero. In the second method, we design F 12(2) directly. The
error is minimized over the same closed region as in the first method while maintain-
ing the same total number of extremal frequencies. Since the constrained minimax
approximation is unique [36], F12(z) is the same for both methods.

Despite the theoretical equivalence of the two methods, numerical differences
do arise. The coefficients of F12(z) obtained by the two methods differ slightly in
practice. Although these small differences lead to more pronounced differences in the
coefficients of Fy(z), the coefficients of the overall Nyquist filters formed by the two
methods show only small differences. These differences manifest themselves mostly in
the stopband region of the frequency response. An equiripple characteristic is more

closely approached by the first method.

4.6.2 Design Examples

Examples are presented to demonstrate both equiripple and nonequiripple de-

signs. The design computations were done using double precision floating point
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arithmetic. Four iterations were necessary to resolve the coefficients. The follow-

ing examples are generated by the first of our methods.
Example 1

We generate an equiripple design with parameters k' = 6, [y = 4, [{ = 25,
wp = 0.087 and ws = 0.254w. This results in a filter with 59 coefficients having a
roll-off factor # = 0.52 whose magnitude response is shown in Fig. 4.2. The passband

response is flat to within 0.003 dB. The filter length is of the form M = 2kK —1 with

k=5.
0
-20
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5
0
3
3 -60}
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&
2 -80 4
0 0.1 0.2 0.3 0.4 0.5
Normalized Frequency Hz
Fig. 4.2 Magnitude response of the Nyquist filter: Example 1
Example 2

The parameters used in this example are K =4, [y = 4, [} = 15, wp = 0.127 and
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ws = 0.387. The weighting is

1 forw =20
W(w) = 90 (4.9)
ﬂ(w—ws)-i-l forws <w<w

This gives a nonequiripple Nyquist filter with 39 coefficients and a roll-off factor
B = 0.52. The filter length is of the form M = 2kK — 1 with £k = 5. Figure 4.3
shows the magnitude response of the filter. The passband response is flat to within

0.002 dB. Figure 4.4 shows the group delay response of the minimum phase part of

the filter.

4.6.3 Group Delay

The group delay of the minimum phase part is only important in the passband
and is primarily influenced by the passband zeros which are within the unit circle.
For a given number of taps and a given K, the group delay tends to be more constant
as the roll-off factor increases. Also, for a given roll-off factor and a given K, a larger
number of taps produces a group delay with a greater deviation. The minimum
phase filters generated in Examples 1 and 2 that achieve about a 40 dB stopband
attenuation have a relatively small passband group delay variation (approximately
0.15 zero crossing intervals).

Factorization of F'(z) into two constant group delay functions H(z) and G(z) to
be used in T3 and S3 is possible as follows. First, the double zeros of F?(z) are
allocated one each to H(z) and to G(z). Then, we classify the zeros of F{y(z) in polar
form ref? and only consider 0 < # < 7. The zeros of Fy(z) are taken in ascending
order of § and the mirror-image pairs are alternately assigned to H(z) and G(z).
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Fig. 4.3 Magunitude response of the Nyquist filter: Example 2
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Fig. 4.4 Group delay response of the minimum phase part:
Example 2
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This ensures that both H(z) and G(z) have constant group delay. Note that if [y is
odd, the number of taps of H(z) and G(z) differ by two. Otherwise, they have the
same number of taps. Due to the presence of identical stopband zeros in H(z), G(z)
and F(z), the stopband responses of both H(z) and G(z) are good. However, the
passband responses can deviate significantly from a constant. Therefore, factorizing
a Nyquist filter into two general factors H(2) and G(z) for use in T3 and S3 will

assure constant group delay factors but at the expense of an acceptable magnitude

response.

4.7 Comparison With Other Approaches

This section discusses the relative merits of the factorable minimax design meth-

ods when compared with other approaches.

4.7.1 Linear Programming Technique

In [27], a linear programming approach that is also based on a minimax criterion
is used to design a factorable Nyquist filter. For comparison, we generate a filter
with the same parameters as the example in {27} (M = 31, K =4, 3 = 0.125 and
W (w) = 1) using our factorable minimax approach. It is observed that the magnitude
and group delay responses of the filters given by the two designs are very similar. The
equiripple magnitude characteristic is more exactly given by our approach. Arbitrary

weighting can be easily applied in both the factorable minimax approach and a linear

programming formulation (see [26]).
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4.7.2 Eigenfilter Formulation

The eigenfilter approach [29] also simplifies the factorization problem and meets
the time domain constraints by solving a linear system of equations. The differences
between the factorable minimax approach and the eigenfilter method are as follows.
First, our approach is based on a minimax criterion as opposed to a least squares de-
sign achieved by the eigenfilter method. The factorable minimax approach naturally
generates an equiripple behaviour whereas the eigenfilter method naturally renders
nonequiripple filters. However, weighting can be applied in both methods to alter the
stopband characteristic. For the factorable minimax method, the McClellan-Parks
algorithm can easily incorporate arbitrary weighting, whereas, the incorporation of
an arbitrary weighting factor into the eigenfilter formulation involves the use of nu-

merical integration techniques.

A design example illustrates the differences in performance of the two methods.
Identical parameters to the ones in [29] are used. In particular, K = 3, {j = 10,
I} =21, wp = 0.2337, ws = 0.4337 and W(w) = 1. This gives a Nyquist filter with
63 coeflicients and a roll-off factor # = 0.3. Figure 4.5 shows the magnitude response
of the minimum phase part generated by our factorable minimax method. The stop-
band attenuation of the minimum phase filter achieved by our method is about 48
dB whereas the first stopband ripple of its counterpart generated by the eigenfilter

method shows an attenuation of approximately 45 dB. For higher frequencies, the

ripples of the filter designed by the eigenfilter method show an attenuation that is
more than that achieved by our method.
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Fig. 4.5 Magnitude response of the minimum phase part of the
Nyquist filter designed with the same parameters as in

[29]
4.7.3 Direct Use of the McClellan-Parks Algorithm

Factorable Nyquist filters can also be designed by invoking the constrained form of
the McClellan-Parks algorithm [36] to get a nonnegative response that approximates
a raised cosine characteristic. This approach and our factorable minimax method
can be used for getting the prototypes for systems T3 and S3. We compare the two
methods from different points of view (stopband attenuation, group delay, factoriza-
tion problem and achievement of exact zero crossings) through a design example that
conforms to the CCITT recommendation V.22 [39].

The CCITT recommendation V.22 [39] includes the specification of a pair of
transmitter/receiver filters which should approximate the square root of a raised
cosine response. The specified roll-off factor is 0.75. Upper and lower bounds in the
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frequency response in both the passband, transition band and a small portion of the
stopband must be met. In addition, the group delay variation should be below a
prescribed limit in the passband and a portion of the transition band.

We design Nyquist filters with a roll-off factor of 0.75 and with K = 4 by the
approach that uses the McClellan-Parks algorithm and the first factorable minimax

method. The approaches are described in slightly more detail as follows:

1. Design a filter that approximates a raised cosine response by invoking the
constrained form of the McClellan-Parks algorithm [36] such that the response
is nonnegative and its minimum and maximum phase parts have a frequency
response that satisfies the upper and lower bounds specified by V.22.

2. Use the first factorable minimax method to design a Nyquist filter such that

its minimum and maximum phase parts satisfy the V.22 specifications of the
frequency response.

In all cases, the smallest number of taps that satisfy the constraint M = 2kK — 1 is
used. This leads to 15 tap Nyquist filters for the two methods. A constant weighting
of 1 is used in both cases thereby yielding equiripple behaviour.

Factorable Nyquist filters designed by Method 1 can be made to satisfy the mag-
nitude specifications of V.22 since the procedure in [36] takes upper and lower bounds
of the frequency response into account. However, there is no guarantee that the group
delay variation of the minimum phase part is assured to be below the required limit.
The factorable minimax method does not guarantee a filter that satisfies any pre-
scribed specifications of the frequency response. However, filters that satisfy the V.22
specifications can be designed by choosing the number of taps, carrying out the design
and finally verifying that the constraints are met. We find that the constraints are

met with 15 taps. It is observed that increasing the number of taps will cause the
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frequency response constraints to be violated since the transition band becomes more
steep and lies outside the acceptable region.

For performing a min/max phase split, factoring F(z) designed by Method 1 can
be avoided since the unit circle zeros can be extracted from the extremal frequencies.
However, the other zeros would have to be determined by first deflating the original
polynomial. Also, there is no general expression for the proportion of unit circle zeros
to the other zeros of F(z). It is observed in [38] that deflation is more stable if the zeros
of smaller magnitude were extracted first. This further discourages the division of the
original polynomial by a polynomial that has the unit circle zeros since they have a
larger magnitude than the zeros within the unit circle which should be extracted first
to enhance the stability of the deflation process. A remedy to this problem is to use
Lagrange interpolation as in {37] to obtain a polynomial that represents the passband
zeros and then factor it to obtain the zeros inside the unit circle. An alternative is to
use a modified Newton’s iteration [40] on the original polynomial to obtain the zeros
inside the unit circle. Method 2 directly separates F(z) into two polynomials F12(z)
and Fjy(z) having zeros on and off the unit circle respectively. This avoids the tasks
of approximating Fy(z) by Lagrange interpolation and determining the zeros of Fiy(z)
by considering the original F(z).

After carrying out the design of the 15 tap Nyquist filters by both Methods 1
and 2, we compare them in terms of the stopband attenuation achieved by F(z), the
group delay of the factorized minimum phase filter H(z) in the region considered in
the V.22 specifications and in terms of the residual intersymbol interference. Method
1 does not assure exact zero crossings in the time response f(n). Hence. we use
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two quantitative measures of the residual intersymbol interference to measure the
suppression. Specifically, the normalized peak distortion Dp and the normalized

RMS distortion Drms are computed. They are defined by

> 1f(nK)|

_ n#0
e == (4.10)

and

Y fAnK)
nQO
F2(0)

The stopband attenuations of F(z) achieved by Methods 1 and 2 are about 45

Drms = (4.11)
and 50 dB respectively. The allowable variation in group delay as specified by V.22
is 0.18 zero crossing intervals. Method 1 generates a minimum phase filter whose
group delay variation is slightly under the prescribed 0.18 zero crossing intervals.
Method 2 does not meet the group delay requirement in that the filter it produces
has a variation of 0.24 zero crossing intervals!. In terms of normalized peak and
RMS distortion, Method 2 assures exact zero crossings and hence, produces no such
distortion. Method 1 produces low distortions Dp = 0.0004 and Dgyg = 0.0003.
Method 2 gives a higher stopband attenuation than Method 1 and produces exact
zero crossings in the impulse response. This enhanced stopband attenuation comes
at the expense of a larger group delay variation.

A comparison of the factorable minimax method to an approach directly using the
McClellan-Parks algorithm in terms of satisfying a CCITT recommendation was done.

Concerning the design of Nyquist filters for T3 and S3, the new factorable minimax

t A simple second order allpass equalizer brings the group delay within specifications. However,
the use of such equalizers sacrifices the exact zero crossing property of the original design.
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method does offer advantages over its McClellan-Parks counterpart. First, the new
method leads to exact zero crossings in the impulse response. The factorization
problem can be alleviated in both approaches. However, the new method can bring
down the factorization complexity by choosing appropriate filter lengths. Also, the
polynomial représenting the zeros off the unit circle is directly computed in the new
method. Hence, this does not necessitate any polynomial approximation or a zero

finding algorithm based on the original F(z).
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Chapter 5 Optimized Filter Banks

The minimax design procedures described in the previous chapter give lowpass
prototypes such that the Nyquist criterion is either approximated or exactly satisfied.
The designs are based on a common input-output transfer function for every pair of
terminals in the transmultiplexers. Returning to the synthesis procedure in Chapter
3, we note that the achievement of a common input-output transfer function partially
relies on the bandlimitedness of the prototype. Moreover, the crosstalk-free nature is
heavily dependent on the bandlimitedness property in that this property is used to
cancel the crosstalk terms (which comprise the crosstalk functions) that do not involve
spectral overlap. As before, we refer to bandlimited lowpass prototypes as those with
a stopband response which is exactly zero. Since bandlimited prototypes cannot be
designed, there exist practical imperfections in the synthesized systems. First, the
input-output transfer function may be different for each terminal pair. Second, there
may be residual crosstalk between signals sent at non-adjacent center frequencies.

We proceed to analyze the synthesized transmultiplexers with respect to both the
input-output transfer function and the crosstalk when practical filters are used. A

practical lowpass prototype is not bandlimited in that its frequency response only
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approximates zero in the stopband (stopband attenuation is high but not infinite).
Based on the analysis, optimized lowpass FIR filters that attempt to achieve a high
suppression of both intersymbol interference and crosstalk are designed by minimizing
an error function. Therefore, the practical degradations (both intersymbol interfer-
ence and crosstalk) are taken into account in the filter design procedure. In contrast
to the minimax approaches, the optimized designs take crosstalk into account. The
performance of the transmultiplexers is evaluated with both the optimized and the
minimax filters. We compare the two design approaches with respect to the resulting
performance. Finally, the feasibility of this technique for the subband complements

is discussed.

5.1 System Imperfections

Transmultiplexers T1 through T5 have each been configured with bandlimited
filters such that (1) the input-output transfer function is the same for every pair
of corresponding terminals and (2) crosstalk is cancelled. In addition, satisfying
the Nyquist criterion eliminates intersymbol interference and hence, achieves perfect
reconstruction. With practical filters, the input-output transfer function may not
be the same for all pairs of terminals. In addition, the design procedure may give
filters such that the Nyquist criterion is not exactly satisfied. Therefore, intersymbol
interference need not be eliminated at each output terminal. Moreover, the use of
practical filters may lead to residual crosstalk which would otherwise be cancelled
with a bandlimited prototype.
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In this section, we further analyze each transmultiplexer in terms of the possible
limitation of not achieving perfect reconstruction due to the use of practical filters.
The next section shows how the limitation is taken into account in an optimized design

of the practical prototype. Then, the performance of the systems with practical filters

is evaluated.

5.1.1 The Input-Output Transfer Function

In analyzing the transmultiplexers, we return to the synthesis procedure
in Chapter 3 to see where the bandlimitedness property was used in get-
ting a common input-output transfer function. Consider the general expres-
sion for the input-output transfer function Tgp(z?V) given by Eq. (3.5). The
bandlimitedness of the lowpass prototype was invoked to cancel the last term
Zfiﬁl Wire=Pe)2 cos (ap — Bi ) H (e~ zW %) H(e/k zW ~*) for some of the termi-
nals. However, this term is naturally cancelled for all terminals in T2, T4 and T5
and for the terminals in T1 operating at the center frequencies of 0 and . Similarly,
for system T3, the general expression for the input-output transfer function Tjp(2V)
is examined. The bandlimitedness of the prototypes must be invoked to cancel some
terms in Tgx(zN) for the terminals that do not operate at the end frequencies. These
terms are naturally cancelled (without invoking the bandlimitedness property) for the
terminals operating at the end frequencies of 0 and .

The preceding analysis reveals that the input-output transfer function is indeed
the same for all pairs of terminals in each of the systems T2, T4 and T5. Moreover,
this property holds for any practical prototype H(z). Therefore, for any f/(:), the
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common input-output transfer function T(2%) is given by Eq. (3.17) for system T2
and by Eq. (3.21) for T4 and T5. Now, consider systems T1 and T3. The com-
mon input-output transfer function T(z") as given in Eq. (3.15) (system T1) and in
Eq. (3.19) (system T3) holds only for the terminals specified by center frequencies of
0 and 7. Again, this is true for practical prototypes. The input-output transfer func-
tions for the other terminals of T1 and T3 are different from those given by Egs (3.15)
and (3.19) when practical filters are used. These differences are due to the fact that
the prototypes are not bandhimited.

The next step is to identify the sources of intersymbol interference in each of the
transmultiplexers. In systems T2, T4 and T3, intersymbol interference is cancelled at
all terrﬁina.ls given any H(z) if H2(z) satisfies the Nyquist criterion. The only poten-
tial source of intersymbol interference is due to the limitation of the design procedure
in giving H(z) such that H2(z) does not exactly satisfy the Nyquist criterion. There-
fore, the minimax design of Chapter 4 will lead to residual intersymbol interference
in T2, T4 and T5.

When dealing with systems T1 and T3, two cases must be considered. First, con-
sider the terminals operating at center frequencies of 0 and w. At these terminals, the
only source of intersymbol interference is due to the design procedure in giving filters
such that the Nyquist criterion is not exactly satisfied. At the other terminals, an ad-
ditional source of intersymbol interference arises since the filters are not bandlimited.
Given the minimax design of the previous chapter, intersymbol interference will be
present at all the terminals of T1. For transmultiplexer T3 with G(z) = H(z~!), the

factorable minimax design method assures that no intersymbol interference is present
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at the terminals specified by center frequencies of 0 and n. However, intersymbol
interference distortion will exist at the other terminals of T3 since the prototypes are

not bandlimited.

5.1.2 Crosstalk Functions

Here, we wish to determine the sources of crosstalk that arise with practical filters.
From the synthesis procedure in Chapter 3, crosstalk cancellation with bandlimited
prototypes occurs in two ways. First, terms in the crosstalk function Tj;(z%) that
involve either partial or complete spectral overlap are cancelled by choosing the center
frequencies, delays and phases. This cancellation depends only on the center frequen-
cies, delays and phases and is independent of any particular form of H(z) and G(z).
Therefore, these terms continue to be cancelled with practical filters. Second, terms
in the crosstalk function that do not involve spectral overlap are zero due to the
bandlimitedness of the prototypes. However, these crosstalk terrns.are not zero with
practical filters. This will lead to residual crosstalk. Summarizing, we note that all
the crosstalk terms in T(zV) that involve spectral overlap with bandlimited filters
continue to be cancelled with practical filters.

Note that with practical filters, although the terms in T}(z") that involve spec-
tral overlap are cancelled (as discussed above), this does not generally imply that
Tkl(zN ) = 0. We further analyze each of the transmultiplexers to determine the
number of crosstalk functions that are exactly zero with practical filters (also referred
to in the sequel as exact crosstalk cancellation). Exact crosstalk cancellation depends
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only on the center frequencies, delays and phases and occurs independently of the pro-
totypes H(z) and G(z). For a particular output terminal, there are N — 1 crosstalk
functions. For each of the transmultiplexers, a certain number of these NV — 1 func-
tions may be exactly zero. We proceed to enumerate the number of exact crosstalk
cancellations.

In system T1, the crosstalk is exactly zero between two signals sent at the same
center frequency, at center frequencies separated by an odd multiple of 2r/N and at
center frequencies separated by an even multiple of 27 /N if the difference in the delay
factors is an odd multiple of N/2. In system T2, exact crosstalk cancellation occurs
between any two signals as long as the difference in the delay factors of the associated
combining and separation filters is an odd multiple of N/2. System T3, like T1,
has crosstalk functions involving one prototype for signals sent at center frequencies
separated by an odd multiple of 2r/N. For these cases, the crosstalk function is
exactly zero. When two prototypes are involved in the crosstalk function, exact
crosstalk cancellation only occurs between two signals sent with a center frequency of
7 /2 (this center frequency appears when N is a multiple of 4). For transmultiplexer
T4, none of the crosstalk functions is exactly zero. In T5, the crosstalk function
Tri(27) is exactly zero if k4 1= N — 1 for N not a multiple of 4. If N is a multiple
of 4, T1(zV) is never exactly zero in T5.

Given the preceding discussion, all the cases were examined in detail and the num-
ber of exact crosstalk cancellations enumerated for each output terminal. Table 5.1
summarizes the results. Appendix G gives the derivation of one case for system T1,

namely, for output terminals operating at center frequencies that are even multiples
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Transmultiplexer Number of Cancellations

T1 ~ ﬂ
4
N
T2 —
2
N
T3 )
T4 0
T5 Qorl

Table 5.1 Number of Exact Crosstalk Cancellations for Eaéh
Output Terminal
of 2r /N when N is a multiple of 4. We see that for the case explored in Appendix G,
the number of exact crosstalk cancellations is different for the two terminals at each of
these center frequencies. At one of the terminals, there are (3N —4)/4 exact crosstalk
cancellations. At the other terminal, (3N + 4)/4 exact crosstalk cancellations occur.
A similar situation in T1 develops when N is not a multiple of 4 and the center fre-
quencies are either even or odd multiples of 27 /N. In this case, the two terminals at
these frequencies will show a different number of crosstalk functions that are exactly
zero. The number of exact crosstalk cancellations is approximately 3N/4 for all the

terminals.

Transmultiplexer T3 has approximately N/2 exact crosstalk cancellations at each
output terminal, the actual number depending on whether a center frequency of 7 /2
is used, Transmultiplexers T2 and T4 have N/2 and 0 exact crosstalk cancellations

at each output terminal respectively. In system T3, one crosstalk function is exactly
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zero for each output terminal when N is not a multiple of 4. When N is a multiple
of 4, none of the crosstalk functions is exactly zero in T5.

Of the transmultiplexers, T1 achieves the most number of exact crosstalk can-
cellations (about 3/4 of the total number of crosstalk functions). In systems T2 and
T3, about half of the crosstalk functions are exactly zero. The table shows that for
reasonably large N, the QAM schemes (T1, T2 and T3) achieve many more exact

crosstalk cancellations than their VSB counterparts (T4 and T5).

5.2 Error Function Formulation

This section discusses the design of an FIR lowpass prototype that is based on
the minimization of an error function. We consider both the practical degradations of
intersymbol interference and crosstalk in the design of the prototype. The minimax
filter design approaches of Chapter 4 are based on the input-output transfer functions
given in Chapter 3 (common for all terminals). Also, the crosstalk is not explicitly
considered.

We establish an error function that takes the various distortions into account.
Minimizing the error function should give a lowpass prototype with a good stopband
behaviour and in addition, should lead to low intersymbol interference and crosstalk
distortions. As for the minimax design, the stopband edge frequency is ws; = (1 +
B)wmin where wpin is the minimum bandwidth of the lowpass prototype and 0 < 8 <
1. We recall that wyjp = /N for T1, T2 and T3 and wpy;, = 7/2N for T4 and T5.
Also, the parameter § (introduced in Chapter 4) is the roll-off factor that controls the
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bandwidth in excess of wpyiy. Note that the passband characteristic is not explicitly
considered since an approximately zero stopband response and a low intersymbol
interference distortion ensure an approximately constant passband response if 5 < 1.

A linear phase prototype h(n) is designed for systems T1, T2, T4 and T5. For
notational convenience, we assume throughout that A(n) is in zero-phase form and
has 2L+1 taps fromn = —L to L. A nonlinear phase h(n) with L+1 taps fromn = 0
to L is designed for transmultiplexer T3 with G(z) = H(z~!). The error function is

a weighted linear combination of various factors, each of which is discussed below.

Stopband

The factor in the error function representing the stopband characteristic is de-

noted by Eg, where
1 2
N juw
E, 21T/S!H(e ) dw (5.1)

S = [-m, —ws]U[ws, 7] and ws is the stopband edge. Therefore, Ey is the square
of the energy in the stopband. This function has been used in [28] as part of a
general least-squares linear phase FIR design. For a zero-phase H(z) with an odd
number of taps (designed for the one prototype systems), the frequency response can

be expressed as

, L
H(e®) =" b(n)coswn (5.2)

n=0
where b(0) = A(0) and b(n) = 2h(n) for n # 0. The quantity \/Ey, can be expressed
as bTPb where b = [b(0) b(1) --- b(L)T and P is a positive definite symmetric
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matrix whose entries are given by

P(r,s) = /W COS Tw cos Swdw (5.3)

ws
for0<r,s < L.

Since G(z) = H(z~!) in system T3, the stopband energies of both filters are
the same. For a nonlinear phase H(z), \/Eg}, can again be expressed in quadratic
form hTRh where h = [h(0) A(1) --- A(L)]T and R is a positive definite symmetric
matrix whose entries are given by

R(r,s) = 2i /Sej“’("‘s)dw

s

- (5.4)
=— [ cos(w(r—s))dw

T Jw,

for0<r,s < L.

Intersymbol Interference Distortion

At output terminal /, the mean-square intersymbol interference distortion is given
by ng Ln£0 t?l(n) where t;(n) is the inverse z-transform of the input-output transfer
function Ty(z). The mean-square intersymbol interference distortion depends on
which output terminal is considered. However, given the discussion in Section 5.1.1,
the transfer function is the same for many input-output terminal pairs when practical
filters are used. Therefore, the mean-square intersymbol interference distortion will
be the same at many output terminals.

Consider systems T2, T4 and T5. As mentioned in Section 5.1.1, tj;(n) is the same
for every terminal [ even with practical filters. Hence, it is sufficient to determine

the mean-square intersymbol interference distortion at only one terminal. Moreover,
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t;1(n) is the inverse z-transform of T'(z) where T(zN) is defined in Eq. (3.17) for T2
and Eq. (3.21) for T4 and T5. Therefore, the mean-square intersymbol interference
distortion is Z Yng0v 2(nN) for T2 and 1 1 Zn0 v2(2nN) for T4 and TS where v(n) =
h(n) * h(n) (* is the convolution operator).

In systems T1 and T3, t;;(n) is generally different for each terminal ! with practical
filters. As mentioned in Section 5.1.1, these differences are due to the fact that the
prototypes are not bandlimited. We ignore the differences in ¢j;(n) and only consider
the terminal at either a center frequency of 0 or 7. At each of these terminals, t;;(n)
is the inverse z-transform of T(z) where T(z%) is defined in Eq. (3.15) for T1 and in
Eq. (3.19) for T3. Therefore, the mean-square intersymbol interference distortion at
.each of these terminals is ZIIZn;éO v2(nN) for T1 and %Zn¢0 w2(nN) for T3 where
v(n) = h(n) * h(n) and w(n) = h(n) * h(—n).

The factor representing the mean-square intersymbol interference distortion is
denoted by Ei;. For systems T2, T4 and T5, Fjg; is based on any terminal {. However,
for T1 and T3, Ej4 is based on the terminal at either a center frequency of 0 or .
From the preceding discussion, Eig; is given by

z [A(n) * h(n)]? for systems T1 and T2

n=cN
n#0

[h(n) * h(n)]? for systems T4 and T5
Eisi = 5 "%;ON (5.5)
n

Y [A(n)* h(=n)]>  for system T3
n=cN
| n#0

Note that FEig is a function of b for the one prototype systems and is a function of h

for T3.
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Crosstalk Distortion

At output terminal [, the total crosstalk power due to the undesired input signals
is Py (1). In developing a mathematical formula for P ({), we assume that each of
the input data signals is zero-mean, white, uncorrelated with other inputs and has
a signal power Fs. The crosstalk power at output terminal | contributed by a signal
at input terminal k is given by the input signal power Ps multiplied by Znt i(n)
where t4;(n) is the inverse z-transform of the crosstalk function T;(z). Also, the total
crosstalk power at output terminal [ is the sum of the crosstalk powers contributed
by each of the undesired signals and is given by

Pal) =55 S T o). (56)
N? k=0 ™
k21

To include the crosstalk power for every terminal !/, we formulate an overall

crosstalk factor E ) given by
1 N=l
Beik = B Z Pesi(1)

1 NZ—:INX_:I
Vi

Zn: t31(n)

S

N-1
[ak(

N—1N-
= 1;} > ay(n) * by(n)]?

=0 n=cN
#

Recall that ap(n) and b;(n) are the impulse responses of the kth combining filter and

ol

the /th separation filter respectively. Note that F. is a function of b for the one
prototype systems and a function of h for T3.

For computational purposes, the number of terms involved in the expression for
E.ix can be decreased by exploiting the symmetry of the crosstalk power and the fact
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that there may be some crosstalk functions that are exactly zero. The total crosstalk
power for output terminal [ operating at a center frequency wy is the same as that for
a terminal operating at = —wj (except for w; = 7/2 in some systems). Hence, only the
output terminals operating at frequencies in the range [0,7/2] need be considered.
After taking advantage of the symmetry described above, we can further exclude the

terms in E ) corresponding to the crosstalk functions which are exactly zero.

Overall Error Function

The overall error function to be minimized is the weighted sum of the individual
factors relating to the stopband, mean-square intersymbol interference distortion and
total crosstalk power. At this point, note that the zero solution (b =0 or h = 0) is
the global minimum. To avoid reaching this solution, we append a term (bTh — 1)2
or (hTh — 1)2 to the overall error function. Hence, the overall error function E(b)

(applies to T1, T2, T4 and T5) and E(h) (applies to T3) are

2
E(b) = 71 Egp, + ¥2Eisi + 73 Ecrx +74(bTb — 1)
(5.8)
2
E(h) = 11 Eg, + v2Eisi + 13Ecex + 7a(hTh - 1)
where the 7; represent nonnegative weighting factors. With 43 = 0 (no crosstalk

factor), the same E(b) and hence, the same filter results for systems T1 and T2 and

for T4 and T5.

Optimization Procedure

We use a Quasi-Newton approach [41] to get a local minimum of E. It is an
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iterative method specified by the two equations,

Hs, = —VE(d) ‘
(5.9)
dk+1 =d; + A\psg

where k is the iteration index, Hy is the Hessian matrix, s;, is the direction of descent,
VE is the gradient of E and Ay is a scaling factor which specifies the extent to which
movement along the direction of descent occurs to get an update. Note that d is the
vector of variables to be optimized and is updated in each iteration. Then, d = b
for the one prototype systems and d = h for T3. We express the gradient VE in
closed form and evaluate it at d, in each iteration. Although the Hessian matrix can
be expressed in closed form, we use the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
update [41] in each iteration. In the actual implementation, we use a routine from
the IMSL library [42] to perform the minimization. An initial condition is supplied
as an input. Also, subroutines to calculate the error function and its gradient are

supplied by the user.

5.3 Design Examples

When performing an unconstrained minimization of the error function, we use
the optimization procedure described above. The computations were performed using
double precision floating point arithmetic. Note that the initial conditions affect the
final local minimum. For the one prototype systems, the initial condition we use corre-
sponds to an equiripple linear phase filter (with unity gain at zero frequency) having a
frequency response that is a minimax approximation of the square root of a raised co-

sine spectrum. For transmultiplexer T3, the initial condition we use corresponds to an
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equiripple minimum phase filter (with unity gain at zero frequency) that is designed by
the factorable minimax approach. Examples of magnitude response plots are shown
in Figure 5.1 (system T1), Figure 5.2 (system T3) and Figure 5.3(a) and (b) (system
T4) for the case N = 6 and B = 0.52. Figure 5.1 shows the magnitude response
of a 33 tap ﬁiter designed with weighting factors (v1,72,73,74) = (100,1,1,0.01).
Figure 5.2 shows the magnitude response of a 30 tap filter designed with weighting
factors (y1,72,73,74) = (100,1,1,0.01). Figure 5.3 shows the magnitude responses
of a 59 tap filter designed with weighting factors (v1,42,+3,7v4) = (100,1,0,0.01) and
(71,72,73,74) = (100,1,1,0.01). Note that the magnitude response in the passband
is flat to within 0.013 dB (Fig. 5.1), 0.003 dB (Fig. 5.2) and 0.014 dB (Fig. 5.3(a)

and (b)).

(]
n
o

Y

Magnitude Respoﬁse dB

) o1 ' 0.2 0.3 ' 0.4 T
Normalized Frequency Hz

Fig. 5.1 Magnitude response of the lowpass filter for system T1.
The weighting factors are

(71772’73174) = (100, ]., 1, 001)
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The fact that some crosstalk terms which form the crosstalk function Tj;(z?) are
exactly zero is reflected in the frequency response of the lowpass prototype. Consider
Fig. 5.3 which shows the magnitude responses of the optimized filters for system
T4 with and without a crosstalk weight v3. The stopband response is significantly
different for the two filters. When a positive crosstalk weight is applied, the stopband
response is shaped so as to suppress the nonzero crosstalk terms. An analysis of
system T4 revealed that none of the crosstalk functions Ty(z?) is exactly zero.
However, some of the terms in the crosstalk function Tkl(zN) are zero. Among the
crosstalk functions in T4 for the case N = 6, the terms involving sidebands whose
center frequencies are separated by 7 /3, 27/3 and 7 are never zero. The other terms
involving sidebands whose center frequencies are separated by 7 /6, n/2 and 57 /6
are consistently zero. This manifests itself in that the magnitude response in the
stopband around the frequencies of 7/3, 27/3 and 7= exhibit a higher attenuation
than neighbouring regions. It is the higher attenuation in these regions that suppress
the nonzero crosstalk terms. Similarly, transmultiplexer T3 has nonzero crosstalk
terms involving sidebands separated by 27/3 when N = 6. When the crosstalk
weight yg3 = 1, the stopband response of the resulting filter is better than for a design
with 43 = 0 about the frequency 27 /3.

Additional experiments were conducted by changing only the parameter v4 (the
weighting factor for the term that avoids a zero solution) and observing the per-
formance in terms of intersymbol interference and crosstalk distortions. The value
v4 = 0.01 was chosen to arrive at a good solution in a reasonable number of iterations.

Reducing ~4 significantly below this value gives a local minimum with a poorer per-
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Fig. 5.2 Magnitude response of the lowpass filter for system T3.
The weighting factors are

('71»'72a 73 74) = (100’ 1,1, 0'01)'

formance (in terms of intersymbol interference and crosstalk distortions). Increasing
~4 beyond 0.01 merely increases the number of iterations.

As an alternative to the Quasi-Newton procedure, the steepest descent algorithm
was also attempted with the same initial conditions. At the beginning, there was a
rapid decrease in the error. Then, there was a very slow decrease in the error but no

signs of convergence even after many iterations.

5.4 Transmultiplexer Performance

4

The performance of the transmultiplexers is evaluated and compared for minimax
filters and for filters designed by the method in this chapter. The transmultiplexers
have six bands (N = 6) and use filters having an excess bandwidth of 52 percent

- 109 -



-ao-
M
=
5]
L»]
g5 -4
[l
8
o
5
S -60f
=
=
20
[3+]
= g0
B 0.1 0.2 0.3 0.4 0.5

Normalized Frequency Hz
(a) The weighting factors are (y1,72,73,74) = (100,1,0,0.01).
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(b) The weighting factors are (v1,v2,73,74) = (100,1,1,0.01).

Fig. 5.3 Magnitude response of the lowpass filter for system T4.
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(B = 0.52). For systems T1, T2 and T3, the aim is to achieve a minimum stopband
attenuation of about 40 dB. A stopband attenuation of about 35 dB is used for
systems T4 and T5 since an excessively long prototype would be required for a 40 dB
attenuation when using the minimax method.

For the one prototype systems (T1, T2, T4 and T5), a minimax linear phase H(z)
is designed by the McClellan-Parks algorithm [25] such that its frequency response
approximates the square root of a raised cosine spectrum. The factorable minimax
method is used for T3. The resulting prototypes H(z) and H(z~!) are not linear
phase. For T1 and T2, the prototype has 77 taps. For T3, a 30 tap filter results.
For T4 and T5, a 99 tap prototype is used. Equiripple designs are obtained by a
weightiﬁg function equal to unity. Figure 4.2 (design Example 1 in Chapter 4) depicts
the magnitude response of the equiripple Nyquist filter whose 30 tap minimum and
maximum phase parts are used in T3 for the performance study.

We also design nonequiripple responses for the transmultiplexers. For the one
prototype systems, the weighting function W(w) is unity in the passband and the

transition band. In the stopband, an increasing weight is used,

W(w) = %(w—ws)ﬂ (5.10)

for wg < w < 7. In the case of T3, the factorable minimax method is based exclusively
on stopband control and hence, allows for weighting only in the stopband. We use
W (w) as above for ws < w < 7. These filters, with a stopband attenuation increasing
towards 7, should achieve a higher crosstalk suppression. In all cases, the minimum
stopband attenuation (at the stopband edge) is essentially the same for the equiripple
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and nonequiripple filters. However, the attenuation at the high frequencies for the
nonequiripple designs is 58 dB (77 tap prototype for T1 and T2), 52 dB (30 tap filter

for T3) and 54 dB (99 tap filter for T4 and T3).

Using the new method involving an unconstrained minimization of the error func-
tion F, wé design a 33 tap filter for systems T1 and T2, a 30 tap filter for system T3
and a 59 tap filter for transmultiplexers T4 and T5. For systems T1, T2, T4 and T3,
the initial condition for the optimization corresponds to an equiripple linear phase
filter (with unity gain at zero frequency) having a frequency response that is a min-
imax approximation of the square root of a raised cosine spectrum. For system T3,
the initial condition corresponds to an equiripple minimum phase filter (with unity
gain at zero frequency) designed by the factorable minimax method. The weighting
factors used are (v1,7v9,73,74) = (100, 1,0,0.01) and (100,1,1,0.01). The design ex-
amples in the previous section correspond to those used here in the performance study.
The minimum stopband attenuations (at the stopband edge) are approximately equal

whether crosstalk is taken into account or not (y3 =1 or y3 = 0).

In measuring the performance of the transmultiplexers, we consider the nor-
malized peak distortion Dp and the normalized root mean-square (RMS) distortion
Dpums for the intersymbol interference. These performance measures have been used
in Chapter 4 to compare the factorable minimax design method with the McClellan-
Parks approach. For the Ith terminal, Dp(!) is

Xn: ltu(n)|

Dp(l) :% (5.11)
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and Dgpyms(!) is

(5.12)

Note that the factor Fjg in the error function only considers the mean-square distor-
tion. The quantity Dp(l) as well as Drys({) will be the same for all terminals in T2,
T4 and T5. There will be some variation among the terminals in T1 and T3.

The normalized crosstalk power at terminal [, Dorp(!) is the performance mea-

sure for the crosstalk. It is expressed as

Dorp(l) = el

P
FZZt?z(n)
n

Nl (5.13)
> S thi(n)
k=0 T
Ay
2
>_ti(n)
n
The output signal at terminal [ contains two components, one desired term resulting
from the corresponding input and an undesired factor due to crosstalk. At terminal
[, the power of the desired component is the input signal power Ps multiplied by
‘[vlz Son t?l(n). Dividing the total crosstalk power by the power of the desired compo-
nent establishes the normalized crosstalk power Dorp(!) which can be thought of as
a crosstalk to signal ratio.
Tables 5.2, 5.3 and 5.4 show the values of Dp(!), Drms(!) and Degrp(l) (in dB)
for the transmultiplexers when N = 6. Only the values for the first three output

terminals are provided since symmetry gives the same results for the other three

terminals’. We proceed to analyze the results and compare the two design methods.

! Note that for system T5 with y3 = 1, the optimization algorithm did not converge. A fixup
involved using only the crosstalk terms having sidebands separated by no more than =/2.
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Intersymbol Interference Suppression

In Section 5.1.1, we identified two potential sources of intersymbol interference.
These are (1) the limitation of the design procedure in giving filters such that the
Nyquist criterion is not exactly satisfied and (2) the fact that the prototypes are
not bandlimited. These causes of intersymbol interference are reflected in Tables 5.2
and 5.3. In the forthcoming analysis, we refer to these sources of intersymbol inter- -
ference as Source (1) and Source (2). Also, our observations are confined to the first
three terminals of the transmultiplexers. However, these observations will hold for

the corresponding last three terminals due to symmetry.

First, consider the minimax designs. Source (1) is the only potential cause of
intersymbol interference in systems T2, T4 and T5 and at terminal 0 of T1 and T3.
There is no intersymbol interference at terminal 0 of T3 since the factorable minimax
method assures a Nyquist characteristic. For the other cases, a minimax design
that approximates the square root of a Nyquist characteristic leads to intersymbol
interference. Regarding terminals 1 and 2 of transmultiplexer T'1, both Source (1) and
Source (2) contribute to intersymbol interference. However, the small variation in the
values of Dp and Dgys for T1 shows that Source (2) is not severe. At terminals 1 and
2 of T3, only Source (2) contributes to intersymbol interference. The low normalized
peak and RMS distortions for terminals 1 and 2 of T3 again show that Source (2) is
not severe. In fact, T3 outperforms the other systems indicating that Source (1) is the
dominant cause of intersymbol interference. Applying an increasing frequency weight

in the stopband does not affect the normalized peak and RMS distortions significantly
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Dp(l) in dB Dp(l) in dB
Transmultiplexer | minimax design | minimax design
constant W(w) | increasing W(w)

T1 -30 —29 -31 | -29 —-29 —-30
T2 -30 —-30 —-30 | —-29 -29 —29
T3 —00 —39 —39 | —o0 —48 —48
T4 —26 —26 —26 | -23 —23 —23
T5 —-26 —-26 —26 | -23 —23 —-23

(a) Minimax designs

Dp(l)in dB Dp(l) in dB
Transmultiplexer | optimized design | optimized design
13=0 13 =1
T1 -56 —55 —54 | —56 —56 — 56
T2 -5 —36 —56 | —56 — 356 — 56
T3 —99 —49 —49 | -92 —78 —82
T4 ~56 —5 —56 | —57 —57 —57
T5 —-56 —56 —56 | —56 — 56 — 56

(b) Optimized designs with (y1,v92,74) = (100, 1,0.01).

Table 5.2 Peak distortion (in dB) for transmultiplexers T1 to
T5. Entries along a row refer to output terminals
!l =0, 1 and 2 respectively.

except for terminals 1 and 2 of system T3. An enhanced stopband response (due to
an increasing frequency weight) diminishes the effect of Source (2) and leads to lower
normalized peak and RMS distortions at terminals 1 and 2 of system T3.

Now, consider the optimized design for the one prototype systems (T1, T2, T4
and T5). Source (1) leads to intersymbol interference in all the systems. Source (2)
| only affects terminals 1 and 2 of system T1. However, Source (1) is the dominant

cause of intersymbol interference. This is exemplified by the fact that there is very
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little variation in the values of Dp and Dgyg for T1. The normalized peak and RMS

distortions are not significantly different for the cases v3 = 0 and v3 = 1.

Dgums(!) in dB Drms(!) in dB

Transmultiplexer | minimax design minimaXx design
constant W(w) | increasing W(w)

T1 -36 —-34 —-37 | -34 -3¢ —-34

T2 -36 —-36 —36 | —34 -3¢ —34

T3 —00 —45 —45 | —c0o —54 — 54

T4 -31 -31 -31) -31 -31 -31

T5 -31 -31 -31 | -31 -31 =31

(a) Minimax designs

Drums(l) in dB Dgms(!) in dB
Transmultiplexer | optimized design | optimized design
73 =0 73 =1
T1 -60 —60 —60 | —60 —60 —60
T2 -60 —60 —60 | —60 —60 —60
T3 —105 —57 —57| —96 —83 -—88
T4 —62 —62 —-62 | —63 —63 —63
TS —-62 —62 —62 | —62 —62 —62

(b) Optimized designs with (v1,79,v4) = (100, 1,0.01).

Table 5.3 RMS distortion (in dB) for transmultiplexers T1 to
T5. Entries along a row refer to output terminals
[ =0, 1 and 2 respectively.

In the case of an optimized design for T3, the intersymbol interference at terminal
0 is only due to Source (1). However, both Source (1) and Source (2) affect terminals
1 and 2. In contrast to the one prototype systems, Source (2) is the major cause of
intersymbol interference. This is revealed by the large difference in the normalized

peak and RMS distortions for terminals 1 and 2 compared with terminal 0. The
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initial condition used in the optimization corresponds to a filter H(z) that assures
exact zero crossings in the impulse response of H(z)H(z~!). The use of this initial
condition results in an optimized filter H(z) that sacrifices the zero crossing property
of H(z)H(z~1). However, the resulting intersymbol interference distortion is very
low at terminal 0. A crosstalk weight (y3 = 1) leads to more distortion at terminal 0
and less distortion at terminals 1 and 2 compared to the case v3 = 0. For terminals
1 and 2 of T3, the bandlimitedness property is used to cancel terms in the input-
output transfer function involving sidebands whose center frequencies are separated
by 27/3. Source (2) contributes to intersymbol interference at these terminals. The
enhanced stopband attenuation about 27/3 that results from the use of a positive
crosstalk weight diminishes the effect of Source (2). This results in a lower intersymbol

interference distortion at terminals 1 and 2.

Crosstalk Suppression

The QAM systems (T1, T2 and T3) generally achieve a much lower normalized
crosstalk power than the VSB transmultiplexers (T4 and T5) primarily because QAM
systems exhibit many more crosstalk functions that are exactly zero. An exception
arises for the optimized design with 43 = 0. In this case, T4 and T5 achieve a lower
normalized crosstalk power than T3. However, this occurs by using a filter in T4
and T5 that has more taps and a better overall stopband response than the filter
used in T3. Also, we notice that the crosstalk power is exactly zero for terminal
2 of T1. Among the QAM systems, T1 and T2 outperform T3 but at the expense
of more filter coefficients (the disparity in the number of coefficients is much more
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for the minimax designs). For a minimax design, an increasing frequency weight
diminishes the crosstalk power as anticipated. For the optimized design, a positive
crosstalk weight (y3 = 1) results in a substantially lower crosstalk power than for a

zero crosstalk weight.

Dcgrp(l) in dB Dcgrp(!) in dB
Transmultiplexer | minimax design | minimax design
constant W(w) | increasing W(w)

T1 —47 —47 —oc0 | =65 —65 — o0
T2 —47 —47 —47 | —65 —65 —65
T3 -39 —40 —41 | —47 —49 -48
T4 —25 —25 —25 | —40 —40 —40
TS —26 —-26 —26 | —43 —44 -4l

(a) Minimax designs

Dcgrp(l) in dB Dcrp(!) in dB
Transmultiplexer | optimized design | optimized design
73=10 3=1

T1 -7 —-70 —oo0 | =87 —87 — o

T2 -7 —-70 —70 { —87 —87 -—-87

T3 —46 —48 —45 | -4 —-T7T -173

T4 —54 —54 —-54 | —65 —65 —65

TS —-49 —50 —52 | —60 —60 —61

(b) Optimized designs with (v1,72,v4) = (100,1,0.01).

Table 5.4 Normalized crosstalk power (in dB) for
transmultiplexers T1 to T5. Entries along a row refer
to output terminals [ =0, 1 and 2 respectively.

Comparison of Minimax and Optimized Designs

The new optimized design approach is highly beneficial for the one.prototype

- 114 -



systems (T1, T2, T4 and T5). A much lower intersymbol interference and crosstalk
distortion is achieved (even with a crosstalk weight of zero) with many fewer filter
taps as compared to a minimax design. In addition, the optimized design allows for
the flexibility of taking crosstalk into account by setting 43 > 0.

For system T3, we have proposed new minimax and optimized design approaches.
For the performance study, the number of filter coefficients for the minimax and opti- 7
mized designs are the same. Moreover, the minimax filters serve as initial conditions
for the optimized design. The main advantage of the optimized design over the mini-
max design primarily lies in using a positive crosstalk weight to substantially diminish
the crosstalk power. The optimized filters designed with a positive crosstalk weight
lead to a lower crosstalk distortion (at all terminals) and a lower intersymbol inter-
ference distortion (at terminals 1 and 2) as compared to minimax filters. Without
a crosstalk weight, there is no clear advantage of the optimized design. In fact, the
factorable minimax approach with an increasing stopband weight and the optimized
design with y3 = 0 lead to a similar performance. Finally, in contrast to the mini-
max approach, an optimized design will not give an H(z) such that H(z)H(z~!) is
a Nyquist filter with exact zero crossings thereby resulting in residual intersymbol

interference at terminal 0.

5.5 Design for the Complementary Subband Systems

Given the design method for the transmultiplexers, we now attempt to see whether

this filter design approach carries over to the complementary subband systems. Note
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that the minimax design approaches can be used for both the transmultiplexers and
their subband complements. The complementary subband systems have an input-
output relationship X(z) = ﬁT(zN)X(z) if the prototypes are bandlimited where
T(zN) is defined in Egs. (3.15), (3.17), (3.19) and (3.21). In addition, perfect re-
construction is accomplished by satisfying the Nyquist criterion. With practical
prototypes, there is residual aliasing in that the input-output relationship becomes
X(z) = %T(zN)X(z) + terms due to aliasing. In a practical design, the stopband
edge frequency is restricted as in the case of transmultiplexers. In formulating a suit-
able error function, the factors Eg},, Eigi and the factor that avoids a zero solution
(bTh — 1)2 or (hTh — 1)2) are the same as for the transmultiplexers. The remaining
question is about how to take aliasing into account. In general, the output of a sub-
band system is a combination of a filtered input and filtered frequency shifted versions
of the input. Even for a zero-mean white input, the filtered input is correlated with
the filtered frequency shifted versions of the input. This makes it difficult to express
the total power at the output due to aliasing in relation to the power of the desired
component due to the input especially for an arbitrary N. However, filters can be
designed by minimizing the error function having the factors Eg,, Eis and the factor
that avoids a zero solution. The filters that were previously designed with v3 = 0 can
be used in the complementary subband systems!.

Similar error functions for designing a prototype for subband systems have been

proposed in [19][43]. A subband system with two bands which accomplishes a natural

! Note that filters designed with y3 = 1 do not seem to perform any better (or any worse) with
respect to suppression of aliasing than filters designed with v3 = 0.
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cancellation of aliasing is the focus of [19][43]. The error functions are weighted linear
combinations of two components. The first component is the stopband energy which
in {19] is expressed as an integral and which in [43] is approximated as a sum over a
dense grid. The second component is the mean-square distortion at the output. The
actual expressions in [19] and [43] differ in that a time domain approach is used in the
former and a frequency domain approach is used in the latter. The error function for
our subband systems consisting of a weighted linear combination of the terms Eg,

Eis and the term that avoids a zero solution is based on a time domain approach as

in [19].
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Channel Distortion
Chapter 6

and Compensation

Until now, the investigation on modulated filter banks assumed that there is no
channel distortion. However, a channel is present when data is transmitted from one
location to another. This brings up the question of how to achieve reconstruction
of the input data signals when there is channel distortion given that reconstruction
can be accomplished in the absence of a channel. This chapter provides preliminary
results that deal with this issue. Methods to configure a channel compensation filter
to combat channel distortion are derived. Also, the performance of these methods is

evaluated for a specific channel.

6.1 Combating Channel Effects

In a transmultiplexer, the composite signal passes through a single channel. The
overall system is shown in Fig. 6.1 where the channel has a system function Q(z). In
attempting to alleviate the effects of the channel Q(z), we assume that the combining
and separation banks are configured to satisfy A(z)BT(z) = T(zV)I. Therefore,
in the absence of a channel, the transmultiplexer is crosstalk-free and has the same
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input-output transfer function for every pair of terminals’. This can be assured by
the methods given in Chapter 2 and by the new modulated filter banks developed in
this thesis. The problem is to specify a channel compensation filter that acts on the
received composite signal and nullifies the channel distortion. The only compensation
filter that accomplishes this is 1/@(z) which is unstable if Q(2) has zeros outside the
unit circle. Approaches are formulated to configure a stable compensation filter that
reinstates the crosstalk cancellation property and suppresses the resulting intersymbol

interference. Then, simulations are done to compare the various approaches.

zo(n) = N 1 Ap(2) By(2) N | = zg(n)

zi(n)—={ N T Aq(z) By (z) N | = Z1(n)

zy-1(n)— N T An-1(2) By_1(?) N |F=dy_q(n)

Fig. 6.1 Channel distortion in a transmultiplexer

6.1.1 Theoretical Development

In Chapter 2, the input-output relations for a transmultiplexer were given as-
suming no channel distortion. When a channel is present, the outputs X;(z) (as in

Fig. 6.1) are given by

KT(:M) = oXT(z")A(:)Q()BT(2) (6.1)

t Note that this assumption includes the special case of perfect reconstruction.
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where

Q(z) = Diag [Q(2), QzW™), -+, QW =N+, (6.2)
Xo(zx) ):fo(zx)

X(V) = Xl(:z . (V) = Xl(zz ) (6.3)
Xy-1(zV) Xn-1(zY)

and A(z) and B(z) are defined as in Chapter 2. Since the system with no channel
distortion (Q(z) = 1) eliminates crosstalk and has the same input-output transfer
function for every pair of terminals, A(z)BT(2) = T(2)I. To cancel crosstalk with

the presence of a channel, one needs to satisfy the augmented equation
A(2)Q(2)BT(2) = ST ()1 (6.4)

In the sequel, it is assumed that Q(z) is a stable function. No restriction on
the zeros of Q)(z) is imposed. A channel compensation filter E(z) that acts on the
received composite signal is equivalent to modifying the separation filters to B} (z) =
Bi(2)E(z) for k = 0 to N—1. Then, a new separation filter matrix B'(z) = B(z)R(z)

results where
R(z) = Diag [E(z), E(zW™1), --., EGW~N*1)] (6.5)

If R(z) is chosen such that Q(z)R(z) = S(2M)I, Eq. (6.4) becomes
A(:)Q()B'(2)] = A(=)Q(2)R ()BT ()
= S(z")IA(2)BT (2) (6.6)
= SEN)T(M)I.
In choosing R(z), the stability of E(z) must be ensured.
The special case in which the channel response Q(z) is itself a function of 2z
ensures that A(z)Q(z)BT(z) remains a function of 2V and consequently, no crosstalk
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is introduced by the channel [44]. A special case is when Q(z) is a pure delay of
the form z—™¥. This is equivalent to applying delay factors to the combining and
separation filter banks. Then, the perfect reconstruction property is preserved for an
identity transmultiplexer as discussed in Chapter 2.

An obvious solution to Q(z)R(z) = S(zM)I is to choose R(z) = Q~1(z). This
makes S(2V) = 1 and E(z) = 1/Q(z). However, this solution is inappropriate if Q(z)
has zeros outside the unit circle since an unstable compensation filter E(z) results.

To achieve crosstalk cancellation, R(z) is set to be
R(z) = 8(zM)ICq(2) (6.7)

where ®(2V) is any arbitrary function of 2V and Cq(z) is the cofactor matrix of

Q(z) given by

FN-1 , -
I1 @Ew™) 0 0
=
N-1 .
0 IT Q=W 0
Colz) = 2725(1) (6.8)
N-1 ,
0 0 H Q(zW™)
] A ]
Then,
T Qew
Q(2)R(2) = P(= z
(2)R(z) = &( a 69)
=51
and
N-1 '
E(z) = (") [T Q(zW™). (6.10)
1=1



The channel Q(z) and the compensation filter E(z) introduce an extra term S(z™)
in the input-output transfer function. The overall input-output transfer function is
S(zN)T(2N). The compensation filter E(z) can be thought of as being composed
of two filters. The filter with system function 1'[?_[___11 Q(zW %) when cascaded with

Q(z) can be viewed as a composite channel 1'[2-]\_1_61 Q(zW 1), which being a function of

N

z¥V | ensures the cancellation of crosstalk. However, residual intersymbol interference

remains. The other filter &(z%) should be a function of 2V to preserve the crosstalk
cancellation property. However, its actual role is to suppress the residual intersymbol
interference admitted by the factor S(z/). We ignore the intersymbol interference
admitted by the factor T'(z) since it can be suppressed or even cancelled by designing
the ﬁlte'r banks. In effect, the channel compensation filter consists of two components,
one which exactly cancels crosstalk and one which suppresses intersymbol interference.
Since Q(z) is stable, it follows that E(z) is stable providing ®(2%) is stable. Based

on the specification for R(z), different approaches of choosing #(z%) are given.
6.1.1.1 Choices for &(z")

Method 1

The simplest method, namely, #(z/¥) = 1 does not attempt to control the inter-
symbol interference. It introduces the factor S(zV) = 1'[?;61 Q(zW 1) in the overall

input-output transfer function.
Method 2

A second procedure alleviates the problem of a high order input-output transfer
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function that is present in the previous approach. Suppose Q(z) is split up as

Q(z) = = ; (6.11)

where U (z) contains the zeros of Q(z) within the unit circle and U_(z) contains the

zeros of ()(z) on and outside the unit circle. Since Q(z) is assumed to be stable, D(z)

has all its zeros within the unit circle. By setting

N-1 -1
D(zW™1)
é(zV) = — 6.12
= 1 7 = (6.12)
we get a lower order factor in the input-output transfer function
N-1 ,
SNy = T[ U_(zw™), - (6.13)
1=0
and a stable channel compensation filter
D(Z) N-~1 .
E(2) = U~-(zW™%) . 6.14

Since the order of the overall input-output transfer function is reduced over that of

Method 1, the resulting time span of the intersymbol interference is shortened.

Method 3

Assume that the original transfer function T(zV) is allpass and that Q(z) has no
zeros on the unit circle (in analogy with the development in [18]). Now, we proceed
to examine whether the allpass property of the input-output transfer function can be

preserved. Setting

g D(zW~#)

Ny = : .
2(=") o U+ GW—H)U_(2~1W?)

(6.15)
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renders a new allpass factor

N-1 Wt
SV = 1:[0 %—3—) (6.16)

and a stable channel compensation filter

Nl_—I1 ,
U_(zW™7)
EB(z) = 22 _i=i . (6.17)
Ut(z) N-1 ,
[T U-(z"1w)
i=0

Method 3 preserves the allpass property of the input-output transfer function but

introduces an infinite time span for the intersymbol interference.

Method 4

So far, we have presented methods that either control the time span or the allpass
nature of the input-output transfer function. Now, we attempt to choose an FIR

@(zN ) so as to suppress the intersymbol interference. Given that

N-1
Ny _ N )
S(z7) = (2 )il;[oQ(ZW ) (6.18)
= &(V ) (V)
or equivalently S(z) = &(z)¥(z), we determine the coefficients of an FIR &(z) to
minimize the mean-square intersymbol interference 3" ¢ s2(n). Since s(n) = ¢(n)
(n), it can be shown that 37,9 s¥(n) = ¢TU$ where ¢ is the column vector of

coefficients of ®(z) and W is a positive definite symmetric matrix whose entries ¥(k, /)

are given by

(kD)= 5 p(n—k)p(n —1) . (6.19)

n

n#0
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To avoid the trivial solution #(z) = 0, we impose the constraint ¢1¢ = 1. Then, ¢
is the eigenvector corresponding to the minimum eigenvalue of U. Note that Method

4 can be viewed as attempting to approximate the inverse of the composite channel

N5t Qw—.
Method 5

An alternative method to suppress the intersymbol interference is to choose &(z%V)

to be
N-1 —3
M = Ay T 2EWT
d(z") = A( )11;[0 TG (6.20)
Then,
N-1
SNy = AN 1'[0 U_(zW™?) . (6.21)

An FIR A(z%) is determined to suppress the mean-square intersymbol interference.
As compared to Method 4, Method 5 only performs an approximation of the inverse
of a maximum phase function that contains the zeros of Q(z) on and outside the unit
circle. A factor of &(zV) exactly cancels the zeros and poles of Q(z) within the unit

circle.
Summary of Methods

Table 6.1 shows the compensation filter £(z) and the overall input-output transfer
functions T'(zV)S(2V) resulting from the methods presented above. Suppose we
have an FIR channel Q(z). This leads to either an FIR or IIR compensation filter
depending on the method utilized. Assuming that T(z%) is an FIR function (this
is often the case since perfect reconstruction is desired), the overall input-output
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transfer function is FIR in Methods 1, 2, 4 and 5. Method 3 is only useful for an

allpass T'(z/) and renders an IIR input-output transfer function.

Method Compensation Filter Function Input-Output Transfer Function

N-1 _ v M=l ,

1 II QW™ TY) T[] Qzw™)
=1 =0

N-1 ,

2 D(Z) H U_(zW™%) T(zV) I Uv-(zw™)
Ur(2) =1 i=0

N-1 .
U_(zw™ ,
3 D) ) T U-Ew )

N
U () Pl 10 L gt

I U-(z"tw)
=0

N-1 ) N-1 .
4 &(zN) 1_11 Q(zW ™) T(zN)d (") [[0 Q=W
Ny D(z) Ny ar Ny T _i
5 A(z) T202) H U_(zW™%) T(z")A@EY) [T U-(zW™)
+12) =0

Table 6.1 Channel compensation filter and overall input-output
transfer functions for the methods

An IIR channel results in IIR compensation filters for all of the methods. However,
Methods 1, 3 and 4 produce an IIR input-output transfer function while Methods 2
and 5 still produce an FIR input-output transfer function (under the assumption
that T(z") is FIR). Methods 2, 3 and 5 involve additional computation to split the
numerator of Q(z) into its minimum and maximum phase parts.

For the special case when Q(z) is a function of 2V, crosstalk is not introduced.
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Then, the compensation filters for Methods 1 and 4 assume a special forrp. Method
1 renders a compensation filter E(z) = (N — 1)Q(2) which is not particularly ap-
propriate since crosstalk is already absent and no specific control of the intersymbol
interference is provided for. In Method 4, the form of the compensation filter should
reduce to E(z) = &(z") as no additional factor is necessary to cancel crosstalk.
Then, &(zV) will approximate the inverse of Q(z). Note that for a general Q(z) (not
a function of zV), using a compensation filter to suppress the mean-square intersym-

bol interference does not result in crosstalk cancellation.

6.1.2 Performance Evaluation

We evaluate the performance of a transmultiplexer when the different channel
compensation filters are used. Consider the two band (N = 2) version of transmul-
tiplexer T3 with G(z) = H(z~1). The filters H(z) and H(z~!) are obtained by the
factorable minimax approach such that T(zY) = N (an identity transmultiplexer).
Therefore, with practical filters, both intersymbol interference and crosstalk are ex-
actly cancelled when no channel distortion is present. The presence of a channel
and a compensation filter reinstates the exact crosstalk cancellation property and
introduces the extra term S (zN ) in the input-output transfer function. The residual
intersymbol interference is only due to @(z) and E(z) and not the practical filters
used in the combining and separation filter banks. Therefore, the evaluation of the
performance only depends on the compensation filter. By calculating s(n) (the in-

verse z-transform of S(z)), we measure both the normalized peak distortion Dp and
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the normalized RMS distortion Dppg. The normalized peak distortion is given by

Zn: |s(n)]

_ n#0
Dp = —|3(0)| . (6.22)

The normalized RMS distortion is given by

Drms = (6.23)

In many communications applications, the multiplexed output of the combining
bank is converted to a lowpass analog signal, modulated, sent across a channel and
demodulated back to baseband. Then, continuous time to discrete time (C/D) con-
version takes place prior to the action of the separation bank. First, forming a lowpass
analog signal from the discrete time output of the combining bank involves converting
the discrete time signal into an impulse train and passing the impulse train through
a lowpass analog filter (D/C conversion). Note that C/D conversion is equivalent to
sampling the continuous time input. This overall process is equivalent to transmit-
ting the lowpass analog signal (formed by D/C conversion) over a lowpass equivalent
channel and then performing C/D conversion as shown in Fig. 6.2. The D/C and
C/D conversions are performed in phasel and at the same sampling rate fs = 1/Ts.

For our performance study, we need a discrete time equivalent Q)(z) that models
the system of Fig. 6.2. The process of D/C conversion translates the discrete time
input into an impulse train and uses an ideal raised cosine filter with 50 percent roll-

off to get the lowpass analog signal. In the absence of a channel, the discrete time

t Note that if the D/C and C/D conversions are done out of phase, this can be modelled as an
extra linear phase component in the channel.
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equivalent @Q(z) = 1. We consider a lowpass equivalent channel with a cubic phase

characteristic (parabolic group delay) §(f) given by [45]

9(Q) = —3—7’:2(91})3 : (6.24)

In effect, we are using a channel with a heavily distorted phase response that be-
comes more severe with increasing p. Such a phase nonlinearity exists over telephone

channels and has been used to study the performance of multicarrier modems [23].

From Lowpass To _
combining == D/C equivalent C/D }— separation
bank channel bank

Fig. 6.2 Transmission over an analog channel

Specifically, we consider the discrete time equivalent response g(n) for the case
p = 5. This is representative of the group delay distortion that is seen by a high speed
modem over a telephone channel. The discrete time response ¢(n) diminishes rapidly
with |n|. An FIR Q(z) with 43 coefficients spans the significant part of the response.
The magnitude response of Q)(z) is flat up to the quarter sampling frequency and
then decreases by 6 dB at the half sampling frequency due to aliasing effects. The
group delay is parabolic up to the quarter sampling frequency and then becomes more
severe.

In calculating the normalized peak and RMS distortions for the first three meth-
ods, the reference coefficient that leads to the minimum distortion is aligned with the
zeroth time index. This is equivalent to applying an additional time advance to the
compensation filter. Although the impulse response is infinite in extent for Method
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3, lower bounds for the normalized peak and RMS distortions are computed by con-
sidering the first 60 samples. For Methods 4 and 5, the eigenvector corresponding to
the minimum eigenvalue of the positive definite matrix is of dimension 61. Therefore,
the component of the compensation filter involving the FIR least-squares approxi-
mation (denoted by &(zV) or A(z")) has 61 nonzero coefficients. In addition, the
coefficients of &(2V) or A(zV) are centered about the zeroth time index. This time
index corresponds to the best reference coefficient of s(n) without the least-squares
filter.

The normalized peak and RMS distortions resulting from Methods 1, 2 and 3
are much larger than for Methods 4 and 5 primarily because there is no explicit
suppression of the intersymbol interference. Specifically, Methods 1, 2 and 3 give
peak distortions of 1.47, 0.46 and 1.11 respectively and RMS distortions of 0.91, 0.37
and 0.58 respectively. Of the first three approaches, Method 2 achieves the lowest
distortion and constrains the time span of the intersymbol interference. Method 3 is
highly specific to preserving a stable IIR allpass transfer function. Even though the
impulse response dies out with time, a large distortion results. Methods 4 and 5 are
successful in that they result in very low peak and RMS distortions, all of which are

below 1074,

6.1.3 Application to Specific Systems

The methods used to configure a channel compensation filter assume that the
transmultiplexer is crosstalk-free and results in the same input-output transfer func-

tion for every pair of terminals in the absence of a channel. The derivation is general
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in that there are no specific requirements on the form of the combining and separation
filter banks. In addition, N can be any integer. Therefore, the channel compensation
filters are applicable to two band QMF banks, the two band Smith-Barnwell struc-
ture, the NV band systems configured by the use of a matrix formalism and N band
lossless filter banks (see Chapter 2).

With bandlimited prototypes, transmultiplexers T1 to T5 satisfy the assumptions
for configuring the channel compensation filters. Therefore, the channel compensation
methods of this chapter can be applied to these transmultiplexers. Note that with
practical filters, residual crosstalk is admitted. Suppose the channel compensation
schemes are applied to the transmultiplexers that use practical filters. Then, the extra
factor S(2%) is introduced in the input-output transfer function and the crosstalk
functions. Specifically, the crosstalk functions become Ty;(2™)S(2"V) where T},;(zV)
are the crosstalk functions of the system in the absence of a channel. Methods 4
and 5 are particularly effective in that the factor S(z%V) is approximately a constant.
Then, the normalized crosstalk power will be about the same as the crosstalk power

that is admitted in the absence of a channel.

6.1.4 Channel Effects in a Subband System

Channel distortion is introduced in a subband system when each of the inter-
mediate signals formed after sampling rate compression is passed through a channel.
Given that. the original system with no channel distortion eliminates aliasing, the pro-
cedure given in [18] describes how to modify the synthesis filters to combat channel

distortion. Just as in our approaches for a transmultiplexer, no specific assumptions
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about the filter banks or the number of bands N are made. Each of the synthesis
filters is modified by a different factor that depends on the system function of each of
the channels such that the cancellation of aliasing is reinstated. Qur methods modify
the separation filters by the same factorf. Our Methods 1, 2 and 3 are analogous
to the approaches in [18]. In addition, we have proposed two additional procedures
to control the intersymbol interference. The modification approaches for both sub-
band systems and transmultiplexers do not assure perfect reconstruction. Since the
subband systems S1 to S5 are alias-free with bandlimited filters, the compensation

schemes in [18] apply.

! We can extend our approach to allow for different compensation filters Ex(2) in each band. If
Q(2)Ek(2) is a function of z/V for each k, crosstalk is cancelled. Different input-output transfer
functions will result for each pair of terminals.
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Chapter 7 Conclusions

The thesis has explored a class of transmultiplexers that use modulated filter
banks. Modulated filter banks use bandpass versions of a lowpass prototype. We
have also dealt with subband systems which are complementary to transmultiplexers.
In this chapter, a list of the contributions that have arisen from the investigation
are presented. Then, a summary of the entire thesis is given. Recommendations for

future research are outlined.

7.1 Contributions

The contributions resulting from the research are as follows:

1. A synthesis procedure based on a bandlimited lowpass prototype was developed
for transmultiplexers that use modulated filter banks. The aim is to cancel
crosstalk and maintain the same input-output transfer function for every pair
of terminals.

2. As a consequence of the synthesis procedure, five bandwidth efficient trans-
multiplexers emerge.

3. The systems can be interpreted from a communications point of view. Three
of the systems implement multicarrier Quadrature Amplitude Modulation
(QAM). The other two implement multicarrier Vestigial Sideband Modulation
(VSB).
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The two band case was examined in more detail. This led to the synthesis of
new two band transmultiplexers.

The synthesized transmultiplexers can be converted into new subband systems.

New design methods for a practical FIR lowpass prototype were formulated to
suppress intersymbol interference and crosstalk.

(a) The minimax designs take intersymbol interference into account.

(b) The designs based on the minimization of an error function attempt
to suppress both intersymbol interference and crosstalk. In fact, this
design is based on an analysis of the transmultiplexers with respect to
both intersymbol interference and crosstalk for practical filters.

The performance of the transmultiplexers with the designed practical filters
was evaluated. This performance evaluation allows us to compare the trans-
multiplexers and the two design methods.

Filter design methods for the subband complements were described based on
the approaches for transmultiplexers.

In the presence of channel distortion in transmultiplexers, five approaches to
configure channel compensation filters were formulated to cancel crosstalk.
The performance of these methods was compared with respect to the suppres-
sion of the resulting intersymbol interference given a realistic channel.

7.2 Summary

The motivation behind the investigation was to develop alternate configurations

for transmultiplexers that use modulated filter banks. This was accomplished by for-

mulating a synthesis procedure based on a bandlimited lowpass prototype (stopband

response is exactly zero). The synthesis procedure is a constructive approach for de-

veloping new systems. As a result, five transmultiplexers (T1 to T5) were configured

such that: (1) The input-output transfer function between each pair of terminals is

the same and (2) The crosstalk is cancelled. Four of the systems are new while T4
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resembles an existing modulated filter bank. Transmultiplexers T1, T2, T4 and T5
are based on one prototype H(z). System T3 uses two prototypes H(z) and G(z).

Each of the transmultiplexers implements a form of Frequency Division Multiplex-
ing (FDM) without the use of guard bands. Therefore, the full channel bandwidth is
utilized by allowing for spectral overlap among the filters. In addition, the transmul-
tiplexers are bandwidth efficient. Consider the case in which each input signal to the
transmultiplexer is sampled at fy Hz. Then, the total information rate is fs = N fy
samples/second where fs is the sampling rate of the composite signal which occupies
a bandwidth of fs/2 Hz. The bandwidth efficiency of each of the systems is the ratio
of the information rate (fs samples/second) to the total bandwidth (fs/2 Hz) and
is equal to 2 samples/second/Hz. The synthesized transmultiplexers are bandwidth
efficient in that the full information in each input is transmitted and the inputs are
recovered.

Although all of the transmultiplexers accomplish FDM, a further interpretation
from a communications point of view can be made. Three of the new systems (T1,
T2 and T3) implement multicarrier Quadrature Amplitude Modulation (QAM). Two
signals are sent in quadrature at each repeating center frequency. The other two (T4
and T5) accomplish multicarrier Vestigial Sideband Modulation (VSB) in which one
signal is sent at each distinct frequency.

The N band transmultiplexers T1 to TS can be converted into subband comple-
ments S1 to S5 respectively. Systems S1, S2, S3 and S5 are new while S4 resembles an
existing system. Subband systems S1, S2 and S3 allow for repeated center frequen-
cies. System S1 is an N band generalization of the two band QMF bank. System S3
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is an N band generalization of a two band, two prototype system. For a particular
case (G(z) = H(z~1)), S3 is lossless and is an N band generalization of the two band
Smith-Barnwell structure. Both S4 and S5 use distinct center frequencies.

Transmultiplexers T1 through T5 have each been configured with bandlimited
filters such that (1) the input-output transfer function is the same for every pair
of corresponding terminals and (2) crosstalk is cancelled. In addition, satisfying
the Nyquist criterion eliminates intersymbol interference and hence, achieves perfect
reconstruction. For the one prototype systems (T1, T2, T4 and T5) specified by a
lowpass H(z), H%(z) should be a Nyquist filter. For transmultiplexer T3 specified
by two lowpass filters H(z) and G(z), H(z)G(z) should be a Nyquist filter. Since
bandlimited filters cannot be designed and the Nyquist criterion may not be exactly
satisfied, neither intersymbol interference nor crosstalk is exactly cancelled. New
design methods for a practical FIR lowpass prototype were introduced with the added
aim of suppressing intersymbol interference and crosstalk.

One of the design methods is based on a minimax approach to achieve a lowpass
response. In addition, the desired Nyquist characteristic is taken into account. For
the one prototype systems, there is an inherent difficulty in designing a lowpass H(z)
such that H 2(z) exactly satisfies the Nyquist criterion. We used the McClellan-Parks
algorithm to get a linear phase lowpass H(z) that approximates the square root of a
raised cosine response. For system T3 with G(z) = H(z™!), a lowpass H(z) can be
designed such that H(z)H(z~!) is a Nyquist filter. This is the advantage of using
two prototypes in configuring T3.

Two new approaches called factorable minimax methods were formulated to de-
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sign a lowpass Nyquist filter H(2)H(z~1) having a Chebyshev stopband response.
Both methods are iterative and four iterations were found to be sufficient in our
examples to resolve the coefficients. The main advantages of the design techniques
are that the polynomial factorization complexity in finding the minimum phase part
H(z) is considerably eased and that arbitrary frequency weighting can be applied
without additional computational overhead. Although the two design approaches
should theoretically give the same filter, the first of our methods is numerically more
accurate and hence, renders a slightly better frequency response. Comparisons with
both a linear programming approach and the eigenfilter formulation showed that the
proposed methods are good in terms of both magnitude response and group delay
variation.

The other new design approach was formulated to take the practical degradations
due to both intersymbol interference and crosstalk into account. First, an analysis of
these practical imperfections was done for each of the systems. Based on this analysis,
the desired lowpass nature and Nyquist characteristic were considered together with
the crosstalk that arises due to practical filters. The design procedure involves the
optimization of an error function that is performed by a Quasi-Newton technique. The
function proposed is based on (1) achieving a low stopband energy, (2) suppressing
the mean-square intersymbol interference and (3) diminishing the crosstalk power.
With an initial condition corresponding to a lowpass filter with an approximate or
exact square root Nyquist frequency response, the resulting optimized filter leads to
low intersymbol interference and crosstalk distortions.

The performance of the five transmultiplexers was compared for both minimax
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filters and the optimized filters. The intersymbol interference distortion is generally
the lowest for system T3. This is due to the fact that for T3, a minimax design leads
to filters that exactly satisfy the Nyquist criterion and the optimized design uses
minimax filters as the initial condition. The normalized crosstalk power was observed
to be generally lower for the QAM systems as compared to the VSB systems.

In comparing the design methods, we observed that lower intersymbol interference
and crosstalk distortions with fewer filter coefficients are achieved by the optimized
design when compared to minimax filters in the case of the one prototype systems.
Therefore, the optimized design is preferred for T1, T2, T4 and T5. In the case of T3,
both the minimax and the optimized design approaches are new. The advantage of the
optimized design lies in using a crosstalk weight. This leads to a much lower crosstalk
power than the minimax design for the same number of filter coefficients. Also, the
resulting intersymbol interference distortion is very low although the Nyquist criterion
is not exactly satisfied by the optimized design. When no crosstalk weight is applied,
the optimized and minimax design approaches lead to a similar performance. For
T3, there is a tradeoff between achieving a very low crosstalk distortion (optimized
design) and exactly satisfying the Nyquist criterion (minimax design).

The complementary subband systems S1 to S5 achieve perfect reconstruction if
the prototypes are bandlimited and the Nyquist criterion is satisfied. Therefore, the
minimax designs for the transmultiplexers carry over to the subband complements.
Moreover, the optimized designs without a crosstalk weight also carry over to the
subband complements.

Finally, the issue of channel distortion in transmultiplexers was dealt with. In
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combating channel effects, the general principle is to use a single compensation fil-
ter that acts on the received composite signal prior to the action of the separation
filter bank. This compensation filter was shown to have two components. One fixed
component cancels crosstalk. The second component can be chosen to suppress in-
tersymbol interference. Five choices for the second component were given. The first
choice makes no attempt to control the intersymbol interference. Two other choices
attempt to control either the time span of the intersymbol interference or the form of
the input-output transfer function. The last two choices suppress the mean-square in-
tersymbol interference. A performance evaluation involving a channel with a parabolic
group delay showed that the last two choices achieve a low intersymbol interference
distortion.

This investigation has led to new transmultiplexers and new filter design strategies
that achieve an excellent performance. We anticipate that the new transmultiplexers
will be important in practical data communication systems employing multicarrier
transmission. Also, the new subband systems should be useful for speech coding

applications.

7.3 Recommendations for Future Research
7.3.1 Adaptive Equalization of Channels

The configuration of the channel compensation filters was based on the assump-
tion that the channel characteristic is known and is fixed for all time. However, the

case of having a channel characteristic that is unknown and which varies with time
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should be investigated. Therefore, an adaptive equalizer that approximates the in-
verse of the channel characteristic is needed. The use of decision directed equalization

is one possible approach [46][47].

7.3.2 Computational Complexity

A polyphase decomposition in conjunction with the use of a Fast Fourier Trans- -
form has been shown to substantially reduce the computational complexity of imple-
menting the filter banks in [10][22]. In fact, this is an attractive feature of modulated
filter banks. We anticipate that this technique is applicable to our new systems.
The possibility of applying this technique to the new systems and comparing the

transmultiplexers in terms of computational complexity is worth exploring.

7.3.3 Non-Uniform Modulated Filter Banks

This thesis has exclusively dealt with modulated filter banks in which each data
signal is allocated exactly the same bandwidth. A pending problem involves relax-
ing the assumption of having equal bandwidth filter banks and synthesizing non-
uniform banks. Recently, subband systems with an arbitrary number of bands with
filter banks having non-uniform magnitude responses have been analyzed [48]. These
subband systems differ from conventional structures in that the sampling rate com-
pression/expansion factors are different in each band. However, there are necessary
conditions on the sampling rate compression/expansion factors for aliasing cancella-

tion [48]. First, analogous conditions for crosstalk cancellation in transmultiplexers
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with different sampling rate expansion/compression factors should be determined.
Then, non-uniform modulated filter banks must be synthesized. The question of

filter design should also emerge.

7.3.4 Subband Coding of Speech

Subband systems usually split the input speech into components that represent
different frequency ranges. For individually coding each subband, the bit allocation
can be weighted so that finer quantization is performed for the subbands that are
perceptually more significant. Systems S4 and S5 decompose the speech into com-
ponents representing different frequency ranges. The actual application of S4 and S5
to speech coding remains to be investigated. Systems S1, S2 and S3 are unusual in
that modulated filter banks with repeated center frequencies are used. The poten-
tial advantages of S1, S2 and S3 for speech coding applications should be explored.

Both scalar and vector quantization strategies should be considered in coding each

subband.
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Appendix A. Phase Factors in Relation to the Synthesis
Procedure

Given the sum and difference criteria and the three sets of center frequencies, the
sum of the phase factors o, + 31 was confined to be a multiple of 7 for every terminal
k. Here, we justify this choice based on a crosstalk analysis and design constraints.
Consider the center frequencies in Set 1 which lead to system T1. For crosstalk
cancellation between two signals sent at w; = 0 and w; = 27 /N, the condition that
a; and ) be odd multiples of 7/2 emerge if n;, — p; and n; — p;, are multiples of N.
Then, a; + B; is a multiple of #. Considering either the sum or difference criterion
reveals that the sum of the phase factors should be a multiple of 7 for each terminal.

Consider the frequencies of Set 2 which leads to system T2. In particular, we
examine the crosstalk function relating two signals transmitted at wp = w; = 7/N
(an end frequency). If the difference in the delay factors n; — p; is an odd multiple
of N/2, oy + B; should be a multiple of 7 and o} — §; should be an odd multiple of
7 /2 for cancelling the crosstalk. Combining these restrictions with those for either
the sum or difference criterion and noting the conditions on the phase factors for the
end frequencies leads us to confine the sum of the phase factors ay + 81 and a; + 5;
to be a multiple of w. This restriction on the sum of the phase factors will then hold
for every terminal.

In the case of the frequencies of Set 3, the arbitrary nature of the sum of the
phase factors allows us to synthesize systems other than T4 and TI5. The phase
factors ap and fj of these systems will be different from those in T4 and T5. Also,

the input-output transfer functions of these systems will differ from that of T4 and
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T5 in that they will be a function of 2N as opposed to 22V as in T4 and T5 (see
Eq. (3.21)). Then, the condition for cancelling intersymbol interference is that H2(z)
should be a Nyquist filter with an impulse response having zero crossings every Nth
sample (except for a reference sample). This requires a minimum bandwidth of = /N
(explained in Chapter 4) which corresponds to the maximum bandwidth allowed for
the lowpass prototype H(z). Hence, there is a conflict in the bandwidth constraints
which renders an unsuitable design problem. By restricting aj + (8 to be a multiple

of 7 for every terminal, we encounter the feasible Nyquist design problem.
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Appendix B. Derivation of Equation (3.9)

The crosstalk function specified by Eq. (3.8) is

N-1
Tp(zN) = >z~ (e—p0) 3 [[W(m—2l’)(nk—P1)ej(ak+ﬂl) + e~(aeth))

1
4 i=0 (B.1)
Wiw=P) H (z W —HPYH(z W~ ™P)]

For notational convenience, let ng —p; = s, m —2p = r and o} + 5; = 8. The crosstalk

function is zero if

Wrsel 4710 = ¢ (B.2)
or equivalently
: 1
20 _
e =~ Wrs
— _eJ s (B.3)
- ej(ZNIrs—i-r) _
This implies that
1
o=r[Z+3] . (B.4)

In terms of the original parameters, Eq. (B.4) becomes

(m = 2p)(ng = 1) | }} . (B.5)

a”ﬂ’:”[ N 5
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Appendix C. Examination of the Crosstalk Function,
Eq. (3.12)

For notational convenience, let a = e/(%+A) and o* be its complex conjugate.

The first step in analyzing Eq. (3.12) is to substitute w = (27/N)g + Aw to get

N-1
4z(M=P)T (V) = g > Wi —p) g2(o=i0w ,py—ita)
=0
N-—l - 3 .
+a* Z Wz(nk—p;)HQ(eJszW—z—q) )
i=0

(C.1)

Note that ¢ is an integer and 0 < Aw < 2x/N. The limitations on Aw are deter-
mined in order to fix the frequencies at which two signals can be transmitted without

crosstalk. Let e/&% = WP where —1 < p < 0. Then,

N-1

4 =PIT (V) = o 3 Wine—P) g2 —ita-p)

1=0

C.2

N-1 . ( )

+a* 3 wilmemp)yw—2a(m—p) g2 (W -itetey
1=0
It is desired to have the two terms in the above equation cancel each other.
Consider the case when np — p; is a multiple of N and @ = —a*. Then, the

exponential indices of W in the arguments of H2(-) of the two terms must differ by
an integer to make the crosstalk zero. Therefore, p is fixed at either 0 or —1/2 thereby
forcing the center frequencies to be multiples of #/N. Since a = —a*, a; + §; is an

odd multiple of 7 /2.

Suppose nj — p; is an odd multiple of N/2. Then, we get

N—]' . .
1T (N) = a Y (<1 HA(:W 7P
i=0
N-1 ,
+a* Y (<L) HA (W)
1=0

(C.3)
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Algebraic substitution for the second term only yields

N-1

4m=P)T (N Y = 0 ST (<1) H2 (:WiHeP)
1=0
N—1-2p | | (C.4)
+a* Y (-D)H(-1)PH2(zW iR
t=—2p
If a = —a*, 2p must be an even integer for the two terms to cancel. Therefore, p = 0

and the center frequencies are multiples of 27/N. If a = a*, 2p must be an odd
integer for the two terms to cancel. Hence, p = —1/2 and the center frequencies are
odd multiples of 7 /N. This development generates the various approaches as outlined

in Section 3.4.2.
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Appendix D. Two Band Systems: Repeated Center
Frequencies

Consider two band systems with combining filters Ag(z) and separation filters
Bi(z) for £k = 0 and 1. The combining filters have parameters ny and ;. The
separation filters have parameters p; and 8. The common center frequency is we.
For one prototype systems, we examine what possible values of w; are permissible for
crosstalk cancellation. Consider the crosstalk function Tg(22) given by

Ton(%) = 32~ (0P [cd(eoth) 2 o mdwer)

4 H00t0) g2 vez)

+ 2cos (ag — B1)H(e % z) H(el¥ z)
T (_1)—(no—P1)ej(ao+ﬂl)HQ(_e—jwcz)

+ (—-1)"(”0—171)e"j(a0+ﬁ1)H‘2(_ejch)

+ (—1)_("°—p1)2 cos (ag — ﬁl)H(—e—j“"z)H(—ejwcz)]
(D.1)

Even if ap — f; is an odd multiple of 7/2 and two terms disappear, the sum of the
other four terms should be zero. For this to happen, the arguments of H 2 must match.
When we # 0 and we # 7, the arguments match only if e/¥¢ = —e~3%e or w, = /2.
This justifies the fact that two band systems can only use a repeated center frequency

of 7/2. The same arguments hold for the crosstalk function Tyo(22).
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Appendix E. Constraints on the parameters [y and [;

Let the zero crossing interval be K and the number of filter coefficients be M =
2(lg + {1) + 1. The parameters [y and Iq satisfy
W(K-1)<L<p(K-1)+K. (E.1)
Since ly = (M — 1)/2 — ly, the inequality reduces to

In <
0="9K

<lg+1. (E.2)

This new inequality is satisfied by a unique ly given by

- 2]

Then, [ is given by

, _M—l_[M—lj
L 2 2K
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Appendix F. The Ratio /;/ij: Lower and Upper Bounds

This appendix derives lower and upper bounds for {1/ly and shows how to fix the
filter length M = 2(lyp + /1) + 1 to achieve these bounds. The zero crossing interval
is K. The ratio {1/l is only finite for Iy # 0 which is a reasonable assumption. If
lop = 0, the filter length M < 2K — 1 thereby giving an impulse response with no zero

crossings and hence, an insufficient length for an acceptable stopband attenuation.

F.1 Lower Bound

The lower bound for I1/ly is given by the lefthand side of Eq. (E.1),

4 >K-—1. (F.1)
ly

The lower bound is achieved if and only if Iy and !, are given by

M—1
0= %7
2K (F.2)
(M =1)(K - 1)
1= oK

In this case, the filter length is of the form M = 2[3K + 1 thereby giving an impulse
response with the two end coefficients equal to zero.

If [y and [y are chosen as above, the system of equations Df = ¢ that solve for the
coefficients of Fy(z) can be decoupled into a reduced system of dimension /y and the
additional equation d(1)fo(lp) = 0. Hence, fo(=lg) = fo(lp) = O thereby reducing
the effective values of Iy and M by 1 and 2 respectively. Such a choice of parameters

gives results that are identical to the case when [y is reduced by 1.
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F.2 Upper Bound

The upper bound for [;/ly is obtained by examining the righthand side of
Eq. (E.1),
K

hiogo1: X (F.3)
ly ly

Since the minimum value of [y is 1, an upper bound is 2K — 1. Achieving a ratio
equal to a value of 2K — 2 is possible if and only if [j =1 and {; = 2K - 2. If [j > 1,
the upper bound K — 1+ K/lp < 2K —2 for every K > 2. Hence, {1/ly < 2K —2 for
every Iy > 1. The final conclusion is that for a given K, there exists only one filter

length, namely, M = 4K — 1 that achieves the maximum value l1/ly = 2K — 2.
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Appendix G. Number of Exact Crosstalk Cancellations
for a Specific Case

Consider a center frequency we that is an even multiple of 27/N (excluding 0
and 7) in system T1 with NV being a multiple of 4. For a signal sent at w,, exact
crosstalk cancellation with other signals sent at odd multiples of 27/N is achieved.
Since there are N/4 frequencies that are odd multiples of 27 /N and two signals are
sent at each of these frequencies, a total of N/2 crosstalk functions are exactly zero. |
In T1, there are a total of (V — 4)/4 center frequencies that are even multiples of
27 /N. The crosstalk between the signal sent at w. and one of the signals sent at
other frequencies that are even multiples of 2r /N will be exactly zero depending on
the delay factors. Furthermore, the crosstalk between the two signals sent at w, will
be exactly zero. Now, we have an additional (N — 4)/4 crosstalk functions that are
exactly zero bringing the total to (3N —4)/4. In addition, the crosstalk between one
of the signals sent at w and the signals sent at 0 and = will be exactly zero depending
on the delay factors. Depending on the signal sent at w¢, the overall number of exact

crosstalk cancellations is either (3V —4)/4 or (3N +4)/4.
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