
A Technique for Combining 

Equalization with Differential Detection 

Kenneth Mark Aleong, B.Eng. 

Department of Electrical Engineering 

McGill University, Montreal 

June, 1991 

A Thesis submitted to the Faculty of Graduate Studies and Research 

in partial fulfillment of the requirements for the degree of Master of Engineering 

@Kenneth Mark Aleong, 1991 



Abstract 

A technique for combining equalization and differentially coherent detection is pro- 

posed for use in wireless communication when carrier phase recovery is difficult. A 

decision-feedback differentially coherent scheme, which generates an improved refer- 

ence phase, is combined with a linear equalizer and the LMS algorithm is used to 

adapt the equalizer to an unknown channel. In addition, the proposed receiver is 

simulated for various two-dimensional signal constellations over multipath channels. 

It is shown that for high SNR, the degradation of this structure is negligible with 

respect to combined coherent detection and equalization. Therefore, this equalized 

differentially coherent detection scheme can be used when carrier phase tracking (i.e. 

coherent detection) is difficult and intersymbol interference is a major obstacle. 



Cette thke  propose une technique combinant 1'6galisation et la dktection cohQente 

diffirentielle pour la radiocommunication quand le rktablissement de la phase du 

signal porteur est difficile. Un systkme cohdrent diffirentiel rktroaction amdiorant 

la phase de rkfkrence est combini B un dgalisateur linthire. La prockdure "CMM" est 

ensuite utilisk pour adapter l'kgalisateur B un canal inconnu. De plus, une simulation 

du rkcepteur est faite avec des constellations de signaux B deux-dimensions pour des 

canaux multi-routes. I1 est dkmontrk que, pour un grand RSB, la ddgradation de la 

performance de cette technique est nkgligeable par rapport B la combination classique 

de la dktection cohdrente et de l'kgalisation. Donc, cette technique de dktection 

cohkrente diffkrentielle Cgalisk peut-&re utilisCe quand la poursuite de la phase du 

signal porteur (c.a.d. la dktection cohkrente) est difficile et que l'interfhence entre 

symboles est une probleme majeur. 
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Chapter 1 

Introduction 

Recent years have witnessed an increased interest in bandwidth efficient modulation 

schemes. The simplest and most widely used technique for achieving high bandwidth 

efficiency is based on two-dimensional modulation formats 111. With these schemes, 

demodulation is usually performed coherently, which means that carrier phase track- 

ing is necessary. In many situations (such .as communication over fading multipath 

channels, or short burst communications such as TDMA or Frequency Hopping), car- 

rier phase tracking is a difficult task, and thus noncoherent demodulation techniques 

have to be used. The noncoherent demodulation methods for two-dimensional formats 

are based on differentially coherent techniques, and thus the phase information has 

to be differentially encoded. In these schemes, carrier phase tracking is not necessary; 

however, this is achieved at the expense of SNR performance. 

In the last year, new differentially coherent detection techniques have been 

introduced [2]-[5]. The chief merit of these detection schemes is their low SNR degra- 

dation with respect to corresponding coherent detectors. One of the potential appli- 

cations of the new differentially coherent strategies is for Indoor Wireless and Mobile 

Communications. In these systems, intersymbol interference due to multipath is a 

major problem. Therefore, the extent to which the new differentially coherent de- 



tection techniques can be suitable for these applications depends on the performmce 

of these schemes in an intersymbol interference environment, and the possibility of 

combining them with equalization. This subject has not been considered yet (as far 

as we know), and this work makes a first step in this direction. 

Two-dimensional modulation, where the data is encoded into the phase and 

amplitude of a sinusoidal carrier has been extensively studied in [I], (61-[ll]. In this 

work, Phase Shift Keying (PSK), Quadrature Amplitude Modulation (QAM) and 

V29 signal constellations [12], [13, page 2431 will be used in a combined amplitude 

and differential phase modulation scheme, which uses amplitudes and phase differ- 

ences to convey information. This modulation scheme is used instead of combined 

amplitude and phase modulation because the differential phase encoding enables the 

use of differentially coherent detection. Differentially coherent detection simplifies 

the receiver structure significantly since no phase tracking is performed and thus, 

is very attractive when carrier phase tracking is difficult. However, it has an SNR 

performance degradation compared to coherent detection that approaches 3 dB for 

,MPSK ( M > 2 ) .  As a result, we propose to use the decision-feedback differentially 

coherent detection structure of [2] because of its low SNR degradation and relatively 

low complexity. Our objective is to consider this scheme over IS1 channels, while 

focusing on the multipath environment. The decision-feedback differentially coherent 

detector of [2] can be naturally combined with known equalization techniques, while 

the other proposed differentially coherent detectors [3]-[5], seem to require special 

equalization methods. 

In this work, we consider linear equalization, because of its reduced complex- 

ity. In addition, the Mean-Square-Error (MSE) criterion is used to find the optimum 

linear equalizer for known channels. However, in practice, the multipath characteris- 

tics of these channels are usually not known so that adaptive equalization is necessary. 

Therefore, we also consider the Least-Mean-Squares (LMS) adaptation algorithm [14], 



mainly because of its simplicity and robustness and also because it is one of the more 

popular algorithms used in practice. 

This thesis is organized along the following lines. Chapter 2 presents the 

rationale of combining linear equalization with decision-feedback differentially coher- 

ent detection, and introduces the system model. In Chapter 3, the minimum MSE 

(MMSE) and optimum equalizer coefficients are derived for known channels, taking 

into account reference phase errors, and numerical results are presented for some mul- 

tipath channels. In Chapter 4, the LMS adaptive algorithm is used for adapting the 

equalizer to an unknown channel and Adaptive Mean-Square-Error (AMSE) simu- 

lation results are presented. Finally, Chapter 5 states the conclusions and suggests 

further work. This is followed by a bibliography of related articles and two appen- 

dices. Appendix A presents an overview of the overall computer program and lists 

the MMSE program file and a sample test case. Appendix B lists the AMSE program 

file, a sample test case and additional program files. 



Chapter 2 

Combining Equalization. and 

Decision-Feedback Differentially 

Coherent Detection 

The subject of this chapter is the integration of linear equalization with differentially 

coherent detection. Section 2.1 discusses the need for differentially coherent detection 

and linear equalization in a communication system. Section 2.2 describes the base- 

band system model, including the proposed receiver which combines an improved 

differentially coherent detection structure with a linear equalizer. Finally, Section 

2.3 focuses on the advantages of this proposed receiver over conventional coherent 

receivers which combine coherent detection and linear equalization. 



Equalization and Decision-Feedback Differen- 

tial Coherent Detection 

Any communication system consists of three components: transmitter, channel and 

receiver. The main objective in any communication system is to transmit information 

as accurately as possible. The transmitter encodes the discrete-time information into 

a continuous-time signal which is transmitted over the channel. The receiver must 

recover the information from the received signal which is a distorted version of the 

transmitted signal. This distortion is due to the channel. Channel distortion can be 

generated by noise, fading, as well as time-dispersion. Therefore, the transmitter and 

receiver have to be designed with the communications channel in mind. 

An important parameter of a communication system is the method by which 

the information is encoded into the transmitted signal, the modulation method. Much 

attention has been given to two-dimensional modulation, where the data is encoded 

into the phase and amplitude of a sinusoidal carrier [6]-[8], mainly because of its 

bandwidth efficiency. A close relative to this amplitude and phase modulation is 

amplitude and differential phase modulation. 

Differential phase modulation structures the sinusoidal carrier such that car- 

rier phase differences and not actual carrier phases convey information [15]. Thus, 

carrier phase tracking, which tracks absolute phases, is not necessary at the receiver 

since phase differences between successive signals (and not the absolute phases of the 

signals) convey information. The phase encoding adds little to the complexity of the 

transmitter. In this work, combined amplitude and differential phase modulation, 

with differentially coherent detection, is considered. 

A differentially coherent detector estimates the transmitted information by 

making use of phase differences between successive symbols. In the absence of channel 

distortion, differentially coherent detection is an attractive alternative to coherent 



detection especially when carrier phase recovery is difficult. It has been successfully 

applied with PSK modulation, particularly for binary PSK (BPSK) signal [16, page 

1741. This gives an extremely simple receiver for BPSK with a small degradation 

in performance. However, for MPSK (M>2), it gives an SNR degradation that 

approaches 3 dB as M increases. In [2], an improved differentially coherent detection 

technique was introduced. The proposed differential receiver structure uses past phase 

decisions to modify L previous received samples. These modified samples were then 

summed to give an improved phase reference. This strategy can be considered as an 

open loop version of a coherent receiver with decision-feedback carrier phase tracking. 

It was found that the performance of this improved differentially coherent detection 

approaches that of coherent detection for high SNR. 

As stated earlier, the channel distorts the transmitted signal. In a time- 

dispersive channel, the effect of each transmitted symbol extends beyond the time- 

interval used to represent that symbol. This is due to the dispersion effect of the 

channel which broadens pulses and causes them to interfere with one another. The 

distortion caused by the resulting overlap of received signals is called intersymbol 

interference (ISI). Its effect is most easily described in an equivalent baseband pulse 

amplitude modulation (PAM) system. Such a system is shown in Figure 2.1. 

Channel - 2 a b ]  6(t - jT)  4 j(t) tm/T kT) Z(t) - 
j=-a0 

Figure 2.1: A Baseband PAM model 

In Figure 2.1, 6(t) is the Dirac delta function and the "channeln includes the 

effect of the transmitter filters, the transmission medium and the receiver filters. The 

channel's impulse response is j(t) and the input signal 5(t) is a sequence of data 



symbols alj] which are transmitted at instants jT through the channel where T is the 

signaling (or symbol) interval and is used to represent the complex envelope (CE) 

notation. Therefore, the CE of the received signal g(t) is given by 

If the received signal is sampled at instant kT +to, where to accounts for the channel 

delay and the sampler phase, we get 

The IS1 is induced by )(to + iT), i # 0. The IS1 is zero if )(to + iT)=O, i # 0; that is, 

if #(t) has zero crossings at T-spaced intervals. When @(t) has such uniformly spaced 

zero crossings, it is said to satisfy Nyquist's criterion [13, page 1571. The criterion 

specifies a frequency-domain condition on the received pulses for zero ISI. It can be 

expressed as: 
OD k 1 e ~ ( f )  = &(f - T )  = T for i f 1  5 - 

&=-w 2T 

where e ( f )  is the channel frequency response (i-e. the Fourier transform of jj(t)), 

c ~ ( f )  is the folded channel spectral response after symbol-rate sampling and the 

frequency band 1 f 1 5 5 is the Nyquist or minimum bandwidth. 

One class of pulse shapes which are ISI-free and commonly used, is the raised- 

cosine family with cosine roll-off around 1 f 1 = &. It can be expressed as 

where a is the roll-off factor with a value between 0 and 1. From [13, page 1581, the 

transfer function ~ ( w )  of )(t) (w = 2n f )  is given by 

T T 
&(w) = ( 5 (I - sin [20(lui - j)] ) 



G(w) and j ( t )  for a = 0,0.3,0.6,1.0 are shown in Figures 2.2 and 2.3. It is easily seen 

that these frequency responses ~ ( w )  satisfy Nyquist's criterion, and thus there is no 

ISI. In practice, the effect of IS1 can be seen from a trace of the received signal on 

an oscilloscope with its time base synchronized to the symbol clock. For a two-level 

PAM system, if the channel satisfies the zero IS1 condition, there are only two distinct 

levels at the sampling instant. 

Although the transmitter and receiver are designed so that Nyquist's criterion 

is satisfied, in practice, the channel distorts the signals so that actually the criterion 

is not satisfied and IS1 results. As a result, equalizers, which are designed to deal 

with ISI, are used [17]. The objective of an equalizer is to reduce the effects of IS1 on 

the process of data recovery from the received signal. 

Equalizers which use delays and tap-gain multipliers, and operate in the time: 

domain are known as discrete-time filters. In these, current and past received signals 

(and maybe past receiver decisions) are weighted by different tap-gains, and used 

to reduce the IS1 at a particular time instant. There are two categories of discrete- 

time equalizers, namely linear transversal equalizers and decision-feedback equalizers 

(DFEs). In linear transversal equalizers, current and past values of the received signal 

are linearly weighted by the equalizer taps and summed to produce an output. These 

equalizers are usually implemented with a finite number of taps for physical reasons, 

i.e. as a finite impulse response (FIR) filter. As a result, they cannot remove all ISI. 

In addition, a linear equalizer introduces gains at those frequencies where the folded 

channel has loss and this gain amplifies noise at those frequencies. Thus, the noise 

power at the equalizer output is larger than if the linear equalizer was not present, i.e. 

noise is enhanced by the linear equalizer. Nevertheless, linear equalizers are used in 

practice since they are good approximations to the ideal filter for a sufficient number 

of FIR filter taps and can be used in an adaptive mode. DFEs are recursive nonlinear 

equalizers that make use of past receiver decisions and are comprised of a forward 



Figure 2.2: e ( w )  which satisfy Nyquist criterion 



sin (pi*x) /pi/x - 
sin (pi*x) /pi/x?cos (0.3*pi*x) / (1-0.6*x*O. 6 )  --- 
sin (pi*~) /pi/xkos (0.6*pi*x) /(I-1.2*x*1.2*~) - - - 

sin (pitx) /pi/x*cos (pi*x) / (1-2*x*2*x) -----. 

Figure 2.3: g ( t )  which satisfy Nyquist criterion 



and feedback filter. The forward filter is similar to a linear transversal filter. Its 

function is to eliminate precursor IS1 (samples of the pulse response before the main 

lobe) while the function of the feedback filter is to cancel the postcursor IS1 (samples 

of the pube response after the main lobe), see Figure 2.3. In addition, DFEs do not 

enhance noise as much as linear equalizers and are less sensitive to sampling phase 

errors. However, DFEs suffer from feedback error propagation. Therefore, they are 

more difficult to use in adaptive mode due to this lack of guaranteed stability. 

This work considers linear equalization for systems that employ different ial 

detection. This subject has been given consideration in the literature [15], [18]-[20]. 

A linear equalizer following a differential detector as in [18], has the difficult task 

of equalizing a nonlinear channel due to the quadratic nature of the channel depen- 

dent terms at the differential detector output. As a result, a linear equalizer cannot 

effectively equalize the channel, and non-linear equalization techniques should be con- 

sidered. Therefore, a linear equalizer should precede the differential detector as in [15], 

since it has to equalize a linear channel. In [19], a scheme for adaptive equalization 

of incoherently demodulated signals was presented. In the scheme, a linear equalizer, 

placed after an envelope detector, was used to make an estimate of the IS1 due to 

multipath fading and acted as an IS1 canceller (i.s.i.c). In addition, differential phase 

estimation and phase tracking estimation were both used in the receiver structure. 

Also, the equalizer structure had complex tap-gains and real input values, instead of 

the usual complex tap gains and complex input values, which reduced the system com- 

plexity by fifty percent. However, in this scheme, the linear equalizer has the difficult 

task of coping with the nonlinearity introduced by the envelope detector. Adaptive 

equalization for differential coherent reception in the presence of channel distortion 

was also studied in (201. A linear equalizer, with seven taps, was placed before a 

differential detector and differential data encoding was performed by multiplying the 

previously transmitted data symbol by the current data symbol. Simulations were 

done at high SNR for BPSK and QPSK. Similar rates of convergence were shown for a 



coherent receiver and the differential detection receiver. However, the MSE obtained 

for the differential case was about 3 dB larger than that obtained in the coherent 

case. We intend to solve this problem by using the improved differentially coherent 

detection technique of [2]. 

In [2], an improved differentially coherent detection receiver was introduced 

for an ISI-free additive white Gaussian noise channel. The main advantage of this 

differentially coherent detection technique is its negligible degradation with respect 

to coherent detection. With ISI, there is need for an equalizer as well. By placing 

a linear equalizer before differentially coherent detection, the effects of the IS1 can 

be reduced and detection is performed on an almost ISI-free signal. Furthermore, 

equalization is performed without the need for carrier phase tracking, improving the 

robustness of the system to carrier phase noise, and carrier phase hits. 

2.2 Baseband System Model 

The baseband model (complex envelope) for the system considered in this work is 

shown in Figure 2.4. In this work, continuous-time signals use ( ) brackets and 

discrete-time signals [ ] rectangular brackets. Figure 2.4 will now be briefly described: 

The system is composed of three conceptual parts: transmitter, channel and receiver. 

2.2.1 Transmitter 

The transmitter model consists of a differential phase encoder followed by a trans- 

mitter filter # ~ ( t ) .  Let us consider two dimensional modulated data signals specified 

by the complex envelope (CE) notation. The CE of the transmitted signal is given 





where b[k]ej4ih] are the amplitude and differentially phase-encoded data transmitted 

at time instant kT and T is the duration of a symbol interval. 

Amplitude and Differential Phase Modulation 

Symmetric signal constellations e.g. PSK, QAM, V29, are commonly used for two- 

dimensional modulation. In this work, the symmetric constellations shown in Fig- 

ure 2.5 are used and each consteilation point is specified by an amplitude b and phase 

cp. In our scheme, the transmitted phase data is differentially encoded so that phase 

differences and not absolute phase values convey information. The encoded phase 

4[n] is given by 

where $ means phase addition modulo 2n. Therefore, the transmitted amplitude 

and differential phase encoded information symbols are b[n]ej4["1 where b[n]ej'["l (= 

a[.] = ar[n] + jai[n]) are the actual data symbols and a,[n] and ai[n] are the real and 

imaginary components of the actual data respectively. 

The average power E[b2[n]]  of each constellation is normalized to unity. 

Therefore, all points in a MPSK constellation will have unit amplitude with each 

point k having a phase of where k = 1,. . . , M. In a 4PSK system, b[n] = 1 

and 4[n]  assumes values from the set of (0, f $,r). In addition, the minimum Eu- 

clidean distance kin for this constellation is fi. For 8PSK, 4[n]  assumes values 

from (0, ztq, f y ,  *?, T )  and the minimum distance is 0.7654. 

For the 16QAM system, a,[n] and ai[n] are first chosen independently from 

the set [f 1, f 31. The average signal power is normalized to one and the signal points 

are rescaled accordingly. Therefore, b[n] assumes values from (5, 1, 5) and ~ [ n ]  

(and not +[n]) from the set of (0, f O.ln, f O.257r, f OAT, f O.6n, f O.75n, f O.gn, n) 

depending on which signal point is transmitted. In addition, the minimum distance 

between any two signal points is equal to 0.6325. 



Figure 2.5: Symmetric Two-Dimensional Signal Constellations 

The 8V29 constellation consists of two sets of QPSK signals on different circles 

where the outer circle has a radius 5 times that of the inner radius. Also, the two 

QPSK constellations are out of phase by f .  Thus, b[n] assumes values from the set 

p) and 4[n] from (0, f 2, f f, f F, r). In addition, its minimum distance (7% n 
is equal to 0.8528. 

The 16V29 constellation consists of four sets of QPSK signals on different 

circles where the second circle has a radius 5 times that of the inner radius, the 

third circle has a radius 4 times that the second and the fourth is & times that 

of the third. Also, QPSK constellations on odd circles are out of phase with respect 

to QPSK constellations on the even circles by Q. Thus, b[n] assumes values from the 

set of (&, $,&, 3) and 4[n] from (0, f f ,  f f ,  f F, r). Finally, its minimum 



distance is equal to 0.5443. 

Transmitter Filter 

The transmitter filter is a pulse shaping filter with a real impulse response ijT ( t ) .  The 

desired overall impulse response j ( t )  (= jT( t )  *#c ( t )  * j ~ ( t )  where * denotes convolu- 

tion.) is a Nyquist raised-cosine response with roll-off factor a, assuming ijc(t) = 6(t) .  

Also, the transfer function of the desired Nyquist raised-cosine response is divided 

equally between the transmitter and the receiver filters. Thus, the transmitter filter 

is designed so that its transfer function &(w) is equal to dm where &(w) is the 

transfer function of the desired Nyquist response #( t ) .  In our model, the roll-off factor 

cr is set to zero so that the raised-cosine Nyquist response has zero excess-bandwidth. 

Therefore, the transmitter's impulse response aT ( t )  

and the transfer function GT(w) is given by 

can be expressed as: 

2.2.2 Channel 

The channel response is represented by the complex impulse response j c ( t )  and ad- 

ditive white Gaussian noise i i( t) .  A multipath channel model is used. Thus, the 

complex impulse response j c ( t )  can be expressed as 

where Np is the number of paths in the channel, p[i ]  is the amplitude attenuation in 

path i, B[i] is the phase-shift in path i and ~ [ i ]  is the relative signal delay due to path 



i. Consequently, the receiver input, +(t) can be expressed as 

where s'(t) is the transmitted signal, ijc(t) is the channel impulse response and fi(t) 

is additive white Gaussian noise with zero-mean and No [Watt/Hz] power spectral 

density of the real and imaginary component. 

2.2.3 Receiver 

The baseband equivalent receiver consists of a filter with impulse response jR(t) 

followed by a sampler. The sampler is followed by a linear equalizer and then by the 

decision-feedback differential coherent detection structure of [2]. 

Receiver Filter 

As previously stated, the transmitter and receiver filters are designed so that the 

overall response in an ideal channel is a Nyquist raised-cosine response. In addition, 

the desired Nyquist transfer function is divided equally between the two filters, which 

gives an optimal receiver structure for an ISI-free channel. Thus, the receiver filter 

has transfer function GR(u) which is given by 

where GT(w) is the transfer function of the transmitter filter impulse response, which 

is given in (2.9) and ~ ( w )  is the transfer function of the desired overall response. 

Using (2.11), the receiver filter output g(t) is given by 

where S ( t )  is the transmitted signal, ac(t) is the channel impulse response, fi(t) is the 

channel additive white Gaussian noise and ijR(t) is the receiver filter impulse response. 



Thus, the receiver filter output can also be expressed as 

where 

and 

Therefore, the noise fiR(t) has zero-mean and power spectrum density 

where GR(w) denotes the Fourier transform of jR( t ) .  Sampling the received signal 

g( t )  at t = n T ,  the discrete-time output y [n] can be expressed as: 

OD 

[n] = b[k]ei4(lIg[n - k] + nR[n] (2.16) 
k = - O D  

where g[n - k] = j ( [ n  - k ] T ) ,  nR[n] = fiR(nT) and b[k]ej41k] are the amplitude and 

differentially phase-encoded data transmitted at time instant kT.  

Linear Equalizer 

The linear equalizer has 2N+1 complex taps and equalizes both in-phase and quadra- 

ture components using its real and imaginary taps. The input to the linear equal- 

izer is given in (2.16). The adaptive digital equalizer has complex coefficients ck[n]: 

k = -N ,  . . . ,O,. . . , N where ~ [ n ]  is the reference tap and [n] corresponds to a par- 

ticular symbol interval or iteration. Thus, the equalizer output +] is given by: 

There are many criteria for obtaining the optimum linear equalizer coefficients for a 

known channel. The peak distortion criterion would have been sufficient if only the 



IS1 is to be minimized [21]. However, the noise must be taken into account. Therefore, 

the Mean Square Error(MSE) criterion is used. 

For an unknown or time-varying channel, the equalizer must adapt itself. The 

speed and stability of convergence are important factors which must be considered 

in choosing an adaptive algorithm. In fact, many different adaptive algorithms exist 

and a survey on adaptive equalization can be found in [22]. One adaptive algorithm 

is the Least-Mean-Squares (LMS) gradient algorithm, which was proposed in [14] and 

has been extensively used in the last few decades. In this work, the LMS algorithm 

is employed because of its simplicity and robustness and is the subject of Chapter 

4. Finally, there has been recent work on faster-converging algorithms [23]-[25], and 

these algorithms are briefly discussed in Chapter 4. 

Decision-Feedback Differentially Coherent Detection 

We use an improved differentially coherent detection structure, introduced in (21 which 

can reduce the SNR degradation with respect to coherent detection. The principles 

on which this detection strategy rely on will now be discussed. 

One way of interpreting a differentially encoded scheme is in terms of phase 

references. Differential phase encoding preprocesses the signal such that the required 

phase reference for estimating the information is carried by the previous symbol. 

Therefore, in differentially coherent detection, there is no need to establish an absolute 

phase reference, since the previous symbol phase is used for that. This simplifies 

the receiver structure when compared to coherent detection which requires carrier 

phase tracking. However, this is achieved at the expense of a loss of about 3 dB in 

performance relative to coherent MPSK(M> 2). This is because in a differentially 

coherent (DC) scheme, the phase reference is impaired hy channel noise in the same 

way as the information phase. Therefore, in a DC scheme, detection is performed with 

a noisy phase reference, and when compared to ideal coherent detection, where the 



phase reference is noise-free, it gives a degradation in performance. Quantitatively, 

in a DC scheme, the SNR of the reference signal is the same as the SNR of the 

information signal. In a coherent scheme, the SNR of the reference signal is infinite 

(ideal coherent case) and the SNR of the information signal is finite. Thus, the DC 

detection technique can be generalized so that the reference signal is extracted from 

a number of past symbols which results in smoothing the channel noise. Using this 

method, the SNR of the reference signal is increased and the performance should 

approach that of a coherent scheme. This is the approach used in [2]. 

The differentially coherent detection structure generates a reference phase by 

summing the aligned past L equalizer outputs z[n - L], . . ., z[n - 11. Each of the 

previous L equalizer outputs, except the most previous one, i.e. z[n - 11, has its 

phase incremented by the sum of the phase decisions cp's of the signals between it and 

z[n - 11. Therefore, the aligned equalizer outputs zt[n - i] i = 2,. . . , L are given by 

i-1 

zt[n - i] = z[n - i] exp 

Summing the z' [n - i], i = 1 ,. . . , L where z'[n - 11 = z[n - 11 gives 

L L i-1 

t~ [n] = 1 v [n] 1 eie["] = x z'[n - i] = z [n - i] exp I j  x y [n - k] 

The result of this coherent summation of the equalizer outputs, v[n], has a larger SNR 

due to the smoothing of the noise and as a result, its phase p[n] is a better estimate 

of the exact phase reference q5[n - 11. The reference phase estimate b[n] is then 

subtracted from the phase of the equalizer output z[n]. Thus, the decision variable 

presented to  the threshold detector is z[n]e-jfi["]. The threshold detector generates an 

output decision symbol k j h h i c h  minimizes the squared error ( r [n] e-jBln] - bej'12. 

The error ~ [ n ]  is then used to adapt the equalizer coefficients. 

The reference phase estimation process derived above was analyzed for an 

additive white Gaussian noise channel in [2] for MPSK. In the alignment of the 

vectors, actual information phases cp[n - k]):;: are used. In practice, the receiver 



operates in a decision-feedback mode (i.e. cp's used in the alignment process would be 

the $ decisions on previous phases). To simplify the analysis, the feedback decisions 

are assumed error-free. The effect of errors in the feedback decisions would be to 

reduce momentarily the SNR of the reference signal which obviously depends on L. 

For small L, a decision-feedback error is more noticeable. However, the persistence 

time of this effect is only L symbols and is thus short. For L=l, this is just the 

double error effect in DC receivers. For large L, a decision-feedback error is not very 

noticeable since the SNR reduction in the reference signal is small. However, the 

effect lasts for L symbols. 

Comparison with Equalization and Coherent 

Detection 

The advantages of our "differentialn receiver, which combines an improved differen- 

tially coherent detection scheme and linear equalization, over conventional "coherentn 

receivers, which combine coherent detection and equalization, will now be discussed. 

The first advantage of the differential receiver is that it can be used in fading 

multipath channels where carrier phase tracking is difficult. This is because the 

proposed differential receiver avoids carrier phase tracking with little performance 

degradation. If a coherent receiver were employed, carrier phase tracking would be 

quite complicated since carrier phase recovery is very difficult in these channels and 

since there is coupling between the phase estimation and equalization which affects 

the system performance. Therefore, the improved differentially coherent detection 

scheme is very attractive for fading multipath channels. 

The second advantage of the differential receiver is that it can be used in burst 

communication. In burst communication, data is usually transmitted in short bursts, 

i.e. over a very short time period. As a result, coherent receivers cannot be used 



since there is not enough data for carrier phase tracking. The proposed differential 

receiver is ideal for this situation since it does not track absolute carrier phases and 

can adapt very quickly to bursts of data. 

The third advantage is that the differential receiver employs baseband equal- 

ization. Baseband equalization is preferred for many technological reasons and can 

be used to compensate for asymmetrical baseband impairments [26]. However, for 

coherent receivers, it introduces a delay in decision-oriented carrier phase estimation 

loops, which causes inaccurate detection. As a result, passband equalization (which 

is more difficult to implement digitally) is usually employed since it allows coherent 

receivers to deal with carrier phase tracking more easily. For the differential receiver, 

no carrier phase tracking is necessary and therefore baseband equalization (which can 

be implemented more easily in a digital fashion) can always be used without any of 

the disadvantages associated with coherent receivers. 

Finally, the proposed differential receiver avoids phase ambiguities due to 

symmetric signal constellations since it assumes that phase differences (and not abso- 

lute phases as coherent receivers with decision-directed phase tracking assume) convey 

information. 



Chapter 3 

Equalization for Known Channels 

This chapter analyses the equalized decision-feedback differentially coherent detection 

technique of Chapter 2, using the MSE criterion for channels whose characteristics 

are known beforehand. Section 3.1 derives the MMSE and optimum equalizer coef- 

ficients in terms of the auto-correlation matrix A and the cross-correlation column 

vector B. Section 3.2 expresses these two quantities in terms of the channel charac- 

teris tics, assuming perfect reference phase estimation. Section 3.3 analyzes reference 

phase estimation errors and their effects on MMSE calculations. Section 3.4 presents 

numerical results. Finally, Section 3.5 concludes the chapter by discussing the MMSE 

numerical results. 

3.1 MMSE Analysis 

In this section, the MSE criterion is used to derive the optimum equalizer coefficients 

and the minimum MSE (MMSE) for known channels. All quantities involved in the 

analysis are shown in Figure 2.4. 

The actual data symbols b[n]ej'''["l are assumed to be statistically indepen- 

dent and equiprobable. In addition, the average signal power of each constellation is 



normalized to one. Thus, 

E [b2[n]] = 1 (3.1) 

The optimum equalizer coefficients will now be derived using the MSE criterion. The 

equalizer coefficients are optimum if they minimize the MSE : 

where ~ [ n ]  is the error between the differentially detected equalized output and the 

desired data symbol. It can be expressed as 

where &n] is the reference phase estimate, i.e. phase estimate of $[n - 11. Thus, 

Now if ~ [ n ]  = [c&], . . . , ~ [ n ] ,  . . . , c ~ [ n ]  IT represents the (2N+1) equalizer 

coefficients at the n-th symbol interval and yT[n] = - 
then (2.17) becomes 

+I = 3 in1 g[nl 

Substituting (3.4) into (3.3), we get 

After some manipulation, 

EIM I' = f T [ n ] ~ & ]  - 2Re [c*' [ n ] ~ ]  + E [b2 [n]] 



Thus, it is easily seen that A is the auto-correlation matrix of y[n] and is the 

cross-correlation matrix between the received data y[n] (phase-shifted by &n]) and 

the transmitted data symbols b[n]eji["]. The MSE can be minimized by differentiating 

with respect to ~ [ n ]  and equating to zero. Therefore 

and the optimum solution is 

+In] = A-'B 

Now, using (3.1) and (3.10) in (3.6), the MMSE tmin can be expressed as 

3.2 MMSE with Perfect Reference Phase 

From the previous section, it is seen that depends on the reference phase estimate 

p[n] which is related to the exact reference phase 4[n - 11 via: 

where q[n] is the error of this estimator. The random variable q[n] depends on an 

ensemble of samples z[k], k < n - 1, and thus, it is almost uncorrelated with any 

single sample y [n - k], - N < k < N. Using this assumption and substituting (3.12) 

in (3.8), can be expressed as: 

8 = E [b[n] ej*[nl y* [n] ejH"-l) ] E [ej'dnl] - 
8 = E [b[n] @["I y* [n] ] E [ejq["1] - 

where & is the cross-correlation vector with errorless reference phase estimation. For 

the moment, perfect reference phase estimation will be assumed (i.e. q[n]=O and B 



= - B).  The matrix A and the column vector B will now be simplified in terms of the 

overall impulse response and the SNR. From (3.7), 

and y[n]  is defined in (2.16). Thus, for i, j = -N, . . . , 0, . . . , N,  



since the p's are statistically independent and E [ejv] = 0 for symmetrical constella- 

tions. Now, for i  - k = j - I, 

( 4 )  = E [b2[n + i  - k]] 
= 1 

Therefore, 

1 z = j  
where bij = . Thus, using (3.16), 

0 i # j  

( 2 )  = 2% C g* [k] E [b[n + i  - k] e-j4[n+-k1 n ~ [ n  + jl ] 
{ k I W  

where the noise nR and data bejv are assumed uncorrelated and fiR(t) is a zero-mean 

process. 

( 3 )  = E [/OD -QD [", f i * ( + )  &([n  + i ] T  - T )  fi(rt) aR( [n  + j ] T  - rt)  drdr f ]  

- - E [ f i * ( ~ )  G(T')]  3; ( [ n  + i ] T  - T )  aR ( [ n  + j ] T  - T I )  drdrl  
2N06(r-r') 

= 2 ~ 0 1 -  & ( [ n + i ] T - r ) h ( [ n + f T - T ) ~ T  
-OD 



since i i ( t )  is white and aR(t) + jR( t )  satisfies Nyquist's first criterion. Therefore, for 

i , j  = -N,.. . ,o, .  . ., N. 

The matrix A is Hermitian and positive semi-definite. Now, from (3.14), 

where 
B~ = [B[-N] ,..., B[O] ,... ,BIN]] - 

yT[n] = [Y[~-N],...,Y[~I,...,Y~~+N~I - 
Thus, for i = -N,. . . ,O,.  . . , N, 

B [i] = E [b[n] ej4in] y [n + i]] 

The summation and expectation operators can be interchanged since they are linear. 

Therefore, 

using (3.16). Therefore, the errorless column vector B is simply a truncated overall 

impulse response vector, i.e. B = [g[- N], . . . , g[O], . . . , g[N] 1. 



3.3 Reference Phase Error Analysis 

In the previous section, perfect reference phase estimation was assumed. However, in 

practice, phase estimation errors will occur. In our analysis, perfect receiver decisions 

are assumed, and estimation errors are due mainly to channel noise and ISI. 

From, Section 3.2, only B depends on ~ [ n ]  via (3.15). Therefore, the depen- 

dence of fl (and the MMSE) on the reference phase error ~ [ n ]  defined in (3.12) wi4 

now be found by analyzing E [ e j ~ [ ~ ] ]  . From (2. lg),  

L 
Iv [n] I ejfi["] = x z [n - i] exp 

i=l 

Also, the past equalizer outputs can be expressed by : 

where ~ [ n  -i] is the equalization error. From [13], for high SNR and with E [b2[n]] = 1, 

E [ ~ [ n  - i]] = 0 (3.21) 

Substituting (3.20) into (3.19), we get 

where 



and q[n] is the phase estimation error. For q[n] << 1 and E [q[n] ] = 0,  

From (3.26), it is seen that q[n] is the phase error of a (real) phasor b[n - i] 
i=l 

L 

perturbed by noise ~ [ n  - i~e-j&[~-q, and thus the results from [2] can be used. 
i=1 

Thus, we fix b b  - I ] ,  . . . , b[n - L] and calculate the conditional variance of q[n], i.e. 

E [q2[n] I b[n - I ] ,  . . . , b[n - L] 1 .  For high SNR and fixed b[n - i] ,  i = 1,. . . , L, the 

asymptotic distribution of q[n] is Tikonov [2] and the conditional probability density 

where lo is the modified Bessel function of order zero and A is the SNR of the (real) 
L L 

phasor b[n - i] perturbed by the noise ~ [ n  - i]e-jdn-4 which can be expressed 
i=1 i=l 

as: 

(2 - il)' 
A [b[n - 11,. . . , b[n - L]] = i=l 

L 
E [I ~ [ n  - ile-jdn-d 1' I b[n - 11,. . . , bin - L]] 

i=l 
(3.29) 

- 

where the numerator is the power of b[n - i] and the denominator is the variance 

L 
of C ~ [ n  - i]e-j4["-4 for fix 

i=l 
expressed as 

- 

irl  

d b[n - i], i = 1,. . . , L. Now, the denominator can be 



= xx E [r[n - i]~'[n - k] I b[n - l],.. . ,b[n - L]] x 

L 
= E [~c[n - i] l 2  I b[n - 11,. . ., b[n - L]] 

i=l 

where we used the fact that the equalization error e[n - i] is practically uncorrelated 

with ej4in-4. Therefore, substituting (3.30) into (3.29), we get 

{ e b [ n  i=l - i][ 
A [b[n - 11,. . . , b[n - L] ] = (3.31) 

E - i] I 2  I b[n - I],.. . , b[n - L]] 
i=l 

and 

1 
E [r)2[n] I b[n - l],.,b[n- L]] . 

A [bin - 11,. . . , b[n - L]] 

Therefore, 

E [v2[nl] = E 

Here we assumed that E [le[n - i] I 2  I b[n - 11,. . . , b[n - L] ] is uncorrelated 
2 2 

with { t b [ n - i ] )  . For large L, then { k b [ n - i ] )  . L2 {~[b] ) '  . K ,  where X 
i=l i=l 

3 1 



is a constant and thus, it is clear that the assumption is valid. For small L, then 

E[le[n - i ]  I 2  I b[n - 11,. . . , b[n - L] ] .Y E [le[n - i ]  12] since only a small fraction of 

signal samples which are stored in the equalizer are fixed, and thus the equalization 

error is almost the same as the one obtained when no signal sample is constrained. 

Thus, the assumption is valid again. Therefore, with (3.23) the variance of the phase 

estimation error is given by 

which shows that 

IBI 5 la 
The MMSE 

is larger than the one with (perfect reference phase estimation). The optimum 

equalizer coefficients are 

c in] = A-~B -opt 

The optimum equalizer coefficients for a known channel can be computed by finding 

A-' first. However, there is another numerical way of finding the optimum equalizer 

coefficients without inverting the matrix A. This is done by using the MSE Gradient 

(MSEG) algorithm [13] : 

~ [ n  + I] = ~ [ n ]  - X [B - Ae[n]] (3.42) 

c[n + l] = [ I  + XA] $n] - A& - (3.43) 



It should be noted that in (3.43), [n] denotes the number of iterations and not a 

particular time instant n T  in the data symbol sequence. To ensure convergence, the 

stepsize X must satisfy 

O < A <  
2 

Ld A) 

where X-(A) is the maximum eigenvalue of the matrix A. 

3.4 Numerical Results 

The MMSE was calculated for various 2-D constellations, channels, SNRs, number 

of equalizer taps (2N+1) and L (number of equalizer outputs used to generate the 

phase estimate of previous transmitted symbol) which are listed below. 

0 Five constellations: 4PSK, 8PSK, lGQAM, 8V29 and 16V29. 

0 Five channels: A, B, C, X, and Y. 

0 Three S N R ~ ( = ~ = $ - ) :  8 dB, 15 dB, and 25 dB. 

Number of equalizer taps (2N+1): 1,3,. . . ,21. 

0 Values of L used: 1, 2, 3 and 5. 

The five channels tested were multipath channels with impulse response given by 

(2.10). Multipath propagation, in these channels, can be viewed as signal transmission 

subjected to different paths with differing relative amplitude attenuation, phase-shifts 
L 

and delays. In addition, if p[i] < 1 and p[l]=l, 8[1]=0, ~[1]=0,  in (2.10), the 
i=2 

channel is minimum phase (241 and has mainly postcursor ISI. In our simulations, 

all the channels tested are minimum phase. The five channels and their impulse 

responses are listed below. Channels A, B and C each have two paths each, while X 

and Y have three and five paths respectively. 



The matrix A and the column vector had complex values due to the complex 

impulse response of the multi-path channels. A zero roll-off factor was used. The 

element values of A and & were calculated using the equations (3.17), (3.18), (3.36) 

and (3.37). The MMSE calculations were performed by matrix inversion for various 

N and L. For each constellation, the squared minimum distance &, between any 

two points was compared with the MMSE results to get a better indication of the 

system performance. 

Tables 3.1-5 list the MMSE results for each constellation with L=l, for various 

SNRs and number of equalizer taps (=2N+1). Table 3.6 lists the average gain p in 

MMSE (in dB) that is achieved by increasing the value of L for nine equalizer taps. 

The average gain p (for a  articular SNR and constellation) was calculated as follows: 

Assume we want to calculate p for L equal to 7, i.e. h. For each channel Ci, the 

MMSE result for L=l was divided by the MMSE result for L=7 to give a MMSE 

ratio Q,(Ci). The Q,(Ci)s for each channel Ci were then summed and the total was 

divided by the number of channels tested N,, i.e. 5, to give an average Q,. To find 

p in dB, the logarithm to the base 10 was taken and then multiplied by 10. Thus for 

a particular SNR, constellation and L=7, we have 

Finally, results for a sample MMSE test case are given in Appendix A. 



I I Channel A I Channel B I Channel C I Channel X Channel Y 

SNR 8 dB p 

Table 3.1: MMSE with L=l,  for 4PSK, Squared Minimum Distance = 2.0 



Channel A Channel B 

8 dB 15 dB 25 dB 8 dB 15dB 25 dB 

2N+1 

I 1 1 0.5552 1 0.3160 1 0.2498 1 0.3319 1 0.1987 1 0.1667 

Channel X Channel Y 

8 dB 15 dB 25 dB 8 d B  15 dB 25 dB 

0.4245 0.1948 0.1318 0.3947 0.2046 0.1552 

0.3925 0.1423 0.0714 0.3445 0.1222 0.0604 

0.3887 0.1375 0.0664 0.3421 0.1194 0.0575 

- - 

Table 3.2: MMSE with L=l,  for 8PSK, Squared Minimum Distance = 0.5858 



I I Channel A I Channel B I Channel C I Channel X I Channel Y I - - - 

SNR 8 dB 15 dB 25 dB 8 dB 15 dB 25 dB 8 d~ 1 5 d ~  25 d~ 8 dB 15 dB 25 dB 8 d B  15 dB 25dB 

1 0.6470 0.3216 0.2499 0.3671 0.2004 0.1667 0.4085 0.2247 0.1886 0.4931 0.1986 0.1318 0.4493 0.2074 0.1552 

L I I I I I I I I 

Table 3.3: MMSE with L=l ,  for 8V29, Squared Minimum Distance = 0.7273 



I I Channel A I Channel B I Channel C I Channel X I Channel Y I - - - - - -  - 

SNR 8 dB 15 dB 25 dB 8 dB 15 dB 25 d~ 8 d~ 15 d~ 25 d~ 8 dB 15 dB 25 dB 8 dB 15 dB 25 dB 

Table 3.4: MMSE with L=l ,  for lGQAM, Squared Minimum Distance = 0.4 





Table 3.6: Average Gain in MMSE dB over (L=l) for 9 Equalizer Taps 

3.5 0 bservat ions 

For each of the tested channels, we observed the following: For a specific number of 

equalizer taps, the higher the SNR is, the lower is the MMSE. For a reasonably small 

MMSE, the SNR should be at least 25 dB. For a given SNR, the MMSE decreased 

monotonically as the number of taps increased. The reduction in MMSE by increasing 

the number of equalizer taps is larger at higher SNR. Increasing the number of taps 

above nine does not reduce the MMSE appreciably and thus does not improve the 

system performance significantly. 

For each constellation and fixed value of L, the number of equalizer taps and 

the SNR were varied and the channels were placed in order of increasing MMSE 

as shown in Table 3.7. For an SNR of 25 dB, channels A and C have the largest 

MMSE values. For an SNR of 8 dB, channels A and X have the largest MMSE. Thus, 

equalization of channel C is more sensitive to the SNR (i.e. larger noise enhancement) 

than channel A. In addition, at an SNR of 25 dB, channel Y has the smallest MMSE 

and at 8 dB, channel B has the smallest. Thus, Y has the least IS1 but the addition 

of noise degrades the performance of the MMSE equalizer in channel Y more than it 



Table 3.7: Channels in Order of Increasing MMSE. 

- 

Number of 

Equalizer Taps 

does in channel B. This shows that channel Y can be better equalized than B, at the 

expense of a larger noise enhancement. 

Reference phase estimation errors are due to channel noise and IS1 only since 

in our analysis, perfect receiver decisions were assumed. In addition, the amplitude of 

the signal points also affects the reference phase errors since it determines the symbol 

SNR. As a result of these reference phase errors, the MMSE depends also on the value 

of L and the size and type of signal constellation. This can be seen from (3.36). The 

MMSE dependence on these two parameters will now be discussed: From (3.37), the 

column vector & differs from perfect phase estimation column vector B by a factor 

which is proportional to the variance of the phase estimation error q[n], i.e. E [q2[n] ] 

(3.36). From the results, a number of observations can be made: 

SNR 

in dB 

First, for very high SNR, i.e. more than 25 dB, the MMSE results of all signal 

constellations approach the ideal MMSE results for a coherent receiver regardless of 

the value of L, since E [q2[n]] approaches zero for very high SNR (3.36). 

Channels in Order of 

Increasing 1 MMSE 

Second, the MMSE results were observed to be the same for 4PSK and 8PSK 

always. This was because, for MPSK, E [ ~ ~ [ n ] ]  is independent of the constellation 

size M and inversely proportional to L since b[n] is constant and equal to unity (3.36). 



However, although they give the same MMSE results, 4PSK has a smaller probability 

of error P, than 8PSK since its minimum distance is larger. Therefore, for the same 

P,, the SNR of the 8PSK constellation must be raised to a suitable higher value. 

Third, 16V29, 16QAM and 8V29 gave larger MMSE results than MPSK. 

Thus, constellations with signal points of varying amplitudes have degradations in 

performance, i.e. larger MMSE results, compared to constant amplitude signal con- 

stellations. In addition, the l6V29 constellation gave larger MMSE results than both 

16QAM and 8V29, since it has signal points with smallest amplitudes. Therefore, con- 

stellations with smaller amplitude signal points have larger degradations in MMSE 

performance. 

Using a larger L, the constellations with smaller amplitude symbol points had 

larger MMSE performance gains, i.e. larger reductions in MMSE. Thus, by increasing 

L, 16V29, 16QAM, 8V29 and MPSK had performance gains which decreased in that 

order. As a result, using a larger L reduces the difference in MMSE performance 

between the V29, QAM, and PSK constellations. Furthermore, by increasing L, the 

system performance approaches that of combined coherent detection and equalization. 

In addition, the gain in MMSE(dB), i.e. p ,  by using a value of L larger than one, was 

very significant, especially for low SNR. Also, using L=3 or L=5 gives appreciable 

gains in performance over L=2. However, larger values of L do not yield appreciable 

performance gains over L=3. Therefore, three appears to be the best value for L. 

This is because increasing L increases the SNR of the reference signal from which the 

phase reference is extracted until it approaches coherent PSK. It appears that the 

reference phase SNR of the differential detected signal sufficiently approaches that of 

a coherently detected signal at L=3. 

Finally, the difference in MMSE between coherent and differentially coherent 

detection is smaller here than in [20]. This is due to the way that the reference phase 

is derived in this work. In [20], an adaptive equalizer was used for differentially co- 



herent reception and the MMSE obtained was about 3 dB more than that obtained 

in the coherent case. One previous equalizer output was used to generate the refer- 

ence estimate and its conjugate was used in the decision variable, together with the 

equalizer output. Thus, errors in the reference estimate caused both ampli tude and  

phase errors in the receiver's decisions. In our case, the improved phase reference 

estimate &n], (which can be generated by using more than one past equalizer output 

to smooth channel noise), is used only to phase-shift the current equalizer output. 

In other words, we process the reference sample by a limiter which removes the am- 

plitude noise. Thus, our reference estimate causes on ly  phase errors in the receiver's 

decisions and therefore, the difference in MMSE between coherent detection and dif- 

ferential detection is less than 3 dB in our case. In addition, increasing L allows 

the system performance to approach that of combined coherent detection and linear 

equalization. As a result, our proposed receiver has better system performance which 

approaches that of combined coherent detection and linear equalization. 



Chapter 4 

Adaptive Equalization for 

Unknown Channels 

The combination of decision-feedback differentially coherent detection with adaptive 

equalization is considered in this chapter. In Section 4.1, the conventional Least- 

Mean-Square (LMS) adaptive algorithm and some fast-converging algorithms, e.g. 

Kalman are briefly reviewed. Following this, the LMS algorithm, which is used for 

adapting the linear equalizer, is described. Simulation results (for a specific number 

of equalizer taps, SNR and L) and graphs which compare average convergence rates 

and residual MSEs for different test cases (i.e. different constellations, channels and 

step-sizes.), are presented in Section 4.2. Finally, these results are discussed in Section 

4.3. 

4.1 The LMS Adaptive Equalizer 

For many practical wireless systems, the channel characteristics are usually not known 

beforehand, and therefore the equalizer must adapt to the unknown channel. In 

addition, the characteristics of these channels may vary sufficiently with time so that 



adaptive equalization is also necessary during normal data transmission. 

A comprehensive survey on the early days of adaptive equalization can be 

found in [17]. In 1960, Widrow and Hoff [14] presented the Least-Mean-Squares 

(LMS) error adaptive filtering scheme which has been used extensively in the last 

three decades. In addition, key papers [27] and [28] have contributed to the under- 

standing of the convergence of the LMS stochastic update algorithm for transversal 

equalizers, including the effect of channel characteristics (eigenvalue spread of the 

auto-correlation matrix) and the number of equalizer taps on the rate of convergence. 

First, in [27], the assumption of statistical independence for the random equalizer 

input vectors - y[n] (from one instant [n] to another instant [n+l]), which direct equal- 

izer convergence, was investigated and it was found that although this assumption is 

far from true, the results obtained using this assumption are in excellent agreement 

with the actual performance of the LMS equalizer convergence. 

In [28], Ungerboeck considered the MSE criterion instead of the expected 

tap-gain errors relative to their optimum values (considered by Gersho in [21]). In 

addition, he assumed the equalizer input vectors - y[n] at  successive instants to be 

statistically independent and showed that the influence of the number of equalizer 

taps, and not only the channel characteristics, dominates the speed of convergence. 

This was opposed to (211, where the speed of convergence (for Gersho's criterion, 

i.e. the expected tap-gain errors relative to their optimum values) was shown to 

depend only on the channel characteristics. As a result, Ungerboeck suggested a new 

criterion for stability, which imposed a much narrower upper bound on the step-size 

than the one found in [21] and a corresponding optimum initial step-size parameter 

for LMS adaptive equalization. Finally, he showed the MSE convergence is faster 

in practice than theoretically predicted and suggested that step-sizes slightly less 

than the optimum step-size should be chosen, since the assumption of statistical 

independence of the equalizer input vectors - y[n] at successive instants is not true in 



practice. 

In our simulations, the LMS algorithm is used to adapt the linear equalizer to 

the channel because of its simplicity and robustness. However, its main drawback is its 

slow convergence compared with the more sophisticated algorithms [23]-[25]. In [23], 

the Kalman filtering algorithm was described. It can be used to estimate the equalizer 

coefficients vector at each symbol interval and its convergence rate was shown to be 

proportional to the number of equalizer taps and independent of the eigenvalue spread. 

However, it requires on the order of N2 operations per iteration for an equalizer 

with N taps. In [24], a self-orthogonalizing algorithm was compared to the Kalman 

algorithm of [23] and the LMS algorithm. The algorithm tries to accelerate the rate 

of convergence by reducing the eigenvalue spread of the channel-correlation matrix, 

i.e. by making the eigenvalues equal, since a large eigenvalue spread slows the rate 

of convergence. It was found that the proposed self-orthogonalizing algorithm, which 

was less complex than the Kalman, converged much faster than the LMS algorithm 

but was slower than the Kalman algorithm. The Kalman algorithm of [23] was later 

recognized as a form of a Recursive-Least-Squares (RLS) algorithm and the idea of 

fast Kalman filtering was introduced [25]. This algorithm took advantage of the 

data structure by using the "shifting property" of RLS algorithms and reduced its 

computational complexity to an order of N operations per iteration for an equalizer 

with N taps. Therefore, the algorithm performs as well as the one in (231 while 

avoiding its computational complexity. 

The LMS algorithm will now be discussed. It is similar to the MSEG al- 

gorithm (3.41) but uses an instant squared error instead of the mean squared error 

because the ensemble averages represented by the matrix A and $ are not known in 

practice. The LMS algorithm is also referred to in the literature as the stochastic 

gradient (SG) algorithm [13]. Using the LMS algorithm, the filter coefficient vector 



is updated by 

where e[n] is the error at the n-th iteration, [n] denotes a particular symbol interval 

(or time instant t=nT), g[n] = [ ~ - ~ [ n ] ,  . . . , ~ [ n ] ,  . . . ,cN[n]] and X is the step-size. 

Using (3.2), the error is given by: 

where Bin] is the reference phase estimate. Differentiating the instant squared error 

1~[n]1~ with respect to ~ [ n ] ,  we get : 

where t[n] = ~ ~ [ n ] ~ [ n ] .  Therefore, substituting (4.2) in (4.1), we get : 

Thus, each equalizer tap q[n]  is updated using the error ~ [ n ] ,  the phase 

reference estimate &n] and the received sample y[n + k] for k = -N, . . . ,O, . . . , N. 

The algorithm of (4.4) will now be explained referring to Figure 2.4. The 

equalizer adaptation is driven by the error signal ~ [n ] ,  which indicates to the equalizer 

in which direction the coefficients ~ [ n ]  must be changed to reduce the squared error 

Ie[n] 1'. Specifically, the input sample to the equalizer, y [n - k] is taken from the output 

of the same unit delay and is used for multiplication by ck[n]. The resulting product 

contributes to the summation for z[n], which is then phase-shifted by B[n] and the 

data symbol b[n]ej~["] is subtracted from it to give the error ~ [ n ] .  The increment of 

the tap coefficient ck[n] is -Xc[n]y*[n - k]ejbM, where yk[n - k] is phase-shifted by 

&I] to compensate for the unknown rotation of these samples. 



In wireless communication systems, the adaptive equalizer should be able 

to track the time-varying multipath characteristics usually encountered. Therefore, 

the rate of convergence of the adaptive algorithm employed is very important and is 

determined by the stepsize A. For the LMS algorithm, the best convergence rate and 

the allowable values of the step-size A, which guarantee stability of convergence, are 

dictated by the number of equalizer coefficients (2N+1), and to a lesser extent, by 

the eigenvalue spread of the matrix A (i.e. which depends on channel characteristics) 

[28]. From [28], the allowable step-sizes A are 

where Al, . . . , AzN+l are the 2N+1 eigenvalues of the auto-correlation matrix A and 

E[ly[n] 12] is the expected squared amplitude of the equalizer input y[n]. Also, the 

optimum step-size suggested is 

The dependence of LMS convergence on A is as follows: Starting with zero, as we 

increase A, the speed of convergence and the residual MSE increases, until we reach 

the maximum speed at A#. Continuing to increase A, slows the rate of convergence 

(but the residual MSE still increases) until eventually we reach instability at twice 

the optimum step-size. Therefore, there is a tradeoff between the rate of convergence 

and the residual MSE. In fact, for fastest convergence, the residual MSE is twice that 

of the MMSE [13]. Therefore, if the step-size is too small, the equalizer would not 

adapt fast enough (i.e. within an agreed time frame or number of symbols) or if it 

is too large, the equalizer would blow up (not stable) (4.5). Therefore, A should be 

chosen such that the rate of convergence is fast yet has a reasonable (not necessarily 

minimum) residual MSE. 

In adaptive equalization, there are two modes. The first mode is the initial 

acquisition which uses a training sequence which is known to the receiver. This mode 



is used to initially adapt the equalizer to the channel and, thus uses actual data 

bejv to generate the error signal. Once the equalizer converges in an specific period of 

time, the second mode of adaptive equalization can begin. In the second mode, actual 

receiver decisions are substituted for the known training sequence and normal data 

transmission occurs. This mode of equalizer adaptation is called the decision-directed 

mode since receiver decisions kj* are used to generate the error e[n], and the phase 

estimate bin) This is seen from Figure 2.4 and equalizer adaptation takes place in a 

decision-feedback manner. However, this mode of equalizer adaptation cannot track 

fast variations in the channel characteristics. As a result, it may be necessary to use 

the first mode to re-adapt the equalizer to the channel. 

The adaptive MSE (AMSE) simulation results using the LMS adaptive algo- 

rithm for different test cases will now be discussed. 

4.2 Simulation Results 

Simulations of the equalizer adaptation were performed using the LMS algorithm. 

Three parameters of the simulations were kept constant: 

0 Nine (=2N+1) equalizer taps were used. Using a larger number of taps in- 

creases the delay in the equalizer and does not result in any substantial gain in 

performance, with the channels that were tested in this work. 

Three equalizer samples used to generate the improved reference phase estimate 

(i.e. L was chosen to be 3) since the gain in performance over L=2 is substan- 

tial and because using any larger value of L e.g. L=5 does not result in an 

appreciable gain in performance. 

The SNR was set to 25 dB. A lower SNR would require a prohibitive large 

number of simulations. 



The three other parameters in the simulations form the basis for different test 

cases. These parameters are the signal constellation, the channel and the step-size A. 

The choices for each were as follows: 

Four constellations: 8PSK, 8V29, 16QAM and 16V29. 

Two channels: A and X. 

Step-sizes: 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05 and 0.1. For our nine 

tap equalizer and with E[ly[n]12] 1, Ungerboeck's optimal step-size is 0.1. 

Results were examined and the two step-sizes A=0.005 and X=0.05 were chosen 

for presentation since they best summarize the trade-offs in selecting the step 

size. 

For the LMS simulations, training sequences were used, i.e. perfect receiver 

decisions were assumed. Each sequence had a length of 3220 data symbols to en- 

sure that steady-state convergence had been achieved. All nine equalizer taps were 

initialized to zero for each trial. 

Initially, in our simulations, twenty independent trials were performed for 

each test case (i.e. choice of constellation, channel and step-size) and an average 

learning curve was calculated. However, the average learning curves were very noisy 

due to an insufficient number of trials. At an SNR of 25 dB, it was found that we 

need approximately sixty trials to get reasonable smooth average learning curves. All 

simulation results were then examined and are summarized by eight graphs and two 

tables, shown on the next few pages. 

The first four graphs, i.e. Figures 4.1-4, were each derived for a separate 

test case (i.e. either 8PSK or 16QAM used in either channel A or X, using X equal 

to 0.005). Each graph plots the squared error versus the number of iterations and 

compares sixty trial runs with an average learning curve. It is seen that the number 
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Figure 4.5: Average Learning Curves for 8PSK. 
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Figure 4.7: Average Learning Curves for 16QAM. 
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1 I Channel A I Channel X I 
Step-Size 0.005 0.05 0.005 0.05 

Constellation 
I 

Table 4.1: Comparison of Residual MSEs and MMSEs for 25 dB 

of independent trials, i.e. 60, used to calculate the curves was sufficient since the 

dispersion is reasonable. 

Consequently, the last four graphs, i.e. Figures 4.5-8, compare the average 

learning curves of different test cases. Each graph corresponds to a particular con- 

stellation, and compares four different test cases (i.e. either X=0.005 or A=0.05 used 

in either channel A or X). Finally, each graph plots the logarithm of the MSE versus 

the number of iterations so that differences in convergence behaviour between the 

different test cases can be noticed more easily. 

Table 4.1 compares the residual MSEs obtained from Figures 4.5-8 with the 

calculated MMSE results of Section 3.4. In order to compare the constellations from 

a probability of error point of view, we used the squared minimum Euclidean distance 

normalised to the number of bits per symbol, log, M, and the residual MSE, [. 
This quantity in [dB] is given by: 

Although, a may not give an accurate indication to the actual probability of error 

P. I( exp [d?,, y] which can be arrived at since P. is proportional to the 



Table 4.2: a for different test cases 

a for Channel X Constellation 

8PSK 

8V29 

l6QAM 

16V29 

lo M exponent of the SNR [13] and [b,;, +] represents the normalized SNR for any M- 

ary constellation, it can be used for a benchmark comparison of the different schemes 

from the probability of error point of view. As a result, we can compare a for the 

tested constellations under the same SNR (see Table 4.2). The larger a is, the smaller 

the probability of error and the better is the system performance. 

a for Channel A 

Finally, the simulation results for a sample AMSE test case are given in 

Appendix B. 

4.3 Observations 

For the first four graphs, i.e. Figures 4.1-4, we see that the average learning curves 

for sixty independent trials and an SNR of 25 dB are reasonably smooth and give a 

good indication of the average convergence performance. If the curves were too noisy, 

more independent trials would have been required to calculate the average learning 

curves. Finally, we note that the trial runs give a better indication of what should be 

expected in an actual system implementation. 
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We will now look at Figures 4.5-8, where each figure compares the average 

convergence rates for different channels and step-sizes, for a given constellation. A 
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MSE convergence cutoff point of 0.05 was chosen since the average learning curves 

passed through this level only once before settling down to the residual MSE levels 

between 0.02 and 0.035. Thus, the average learning curves for different channels and 

step-sizes were compared for each graph, using this MSE cutoff level of 0.05. The 

following was observed: 

For channel A, the k 0 . 0 5  step-size converged after approximately 125 sym- 

bols and the k 0 . 0 0 5  step-size converged after about 1000 symbols. For channel X, 

the k 0 . 0 5  step-size converged after approximately 100 symbols and the A=0.005 

step-size converged after about 750 symbols. Thus, for a given A, the rate of conver- 

gence is faster for channel X than for channel A. In addition, the rate of convergence 

for the k 0 . 0 5  is faster than for k0.005.  

Table 4.1 shows that the residual MSEs approach but never reach the MMSE 

results calculated in Section 3.4. This is due to the equalizer coefficients which are 

never exactly optimum. For a given A, Table 4.1 shows that the residual MSE is 

smaller for channel X than for channel A. Also, for a given channel, the residual MSE 

is larger for b 0 . 0 5  than for k0.005. In addition, it was found that the X=0.05 

and A=0.005 step-sizes have average residual MSEs of 50% and 25% excess MSEs 

respectively, where excess MSE is the MSE over and above the MMSE possible. As a 

result, this shows that the larger the step-size A ,  the larger the excess MSE, since the 

equalizer coefficients have a larger variance about the optimum values. For X=0.05, 

we see that the proposed receiver adapts very quickly to unknown channels while 

giving a residual MSE which is only a small percentage larger than that of X=0.005. 

Thus, A=0.05 seems to be a better choice. 

In addition, the speed and stability of the MSE convergence were compared 

for the tested constellations. Close examination of the last four graphs and Table 4.1 

shows that 16V29 converges slightly faster and has a slightly smaller residual MSE 

than 16QAM (which is more noticeable in channel A). However, from Table 4.2, 



16QAM has a smaller probability of error due to its larger minimum distance dm;,. 

Also, 8PSK is better than 8V29 in terms of both convergence speed and residual 

MSE which was more noticeable in channel X than in channel A. Nevertheless, the 

minimum distance dmin of 8V29 is larger than that of 8PSK, and from Table 4.2, we 

have that 8V29 has a smaller probability of error than 8PSK, especially for channels 

with severe IS1 e.g. channel A. 

Finally, Table 4.2 compares a for the tested constellations and shows that 

a decreases (the probability of error increases) for 8V29, 8PSK, 16QAM, 16V29, in 

that order, for the tested channels. In addition, Table 4.2 allows us to calculate the 

increase in SNR necessary to achieve the same a. On the average, for k0.005, the 

SNR must be increased by 0.7 and 1.0 dB for channels A and X respectively, to achieve 

the a associated with the MMSE. Also, for k 0 . 0 5 ,  the SNR must be increased by 

an average of about 0.9 dB and 1.1 dB for channels A and X respectively, to achieve 

the same a as the X=0.005 case. 



Chapter 5 

Conclusions 

A combined linear equalization and decision-feedback differentially coherent detection 

structure for indoor wireless communication channels was proposed. These channels 

were modeled as multipath channels since multipath propagation is one of the major 

impairments in wireless communication systems. In these channels, carrier phase 

tracking is difficult and differentially coherent reception is attractive since it does 

not require phase-tracking. However, there is a loss in performance compared to 

coherent detection that approaches 3 dB for MPSK(M>2). Therefore, an improved 

technique based on decision-feedback differentially coherent detection was used whose 

performance approaches that of coherent detection. In addition, this differentially 

coherent scheme can be combined quite easily with known equalization techniques. 

This is necessary since IS1 due to multipath is a major problem in these channels. 

In this work, the integration of decision-feedback differential detection with linear 

equalization has been considered. In addition, two-dimensional signal constellations 

were considered, in the hope of achieving a high data transmission rate, in a given 

bandwidth. 

The MSE criterion was used and MMSE results were calculated for known 

channels, taking into account reference phase estimation errors. It was seen that 



the MMSE performance degrades for 16V29, 16QAM, 8V29 and 8PSK in decreasing 

order, since constellations with signal points of smaller amplitude have a larger degra- 

dation. However, using a larger value of L, i.e. number of equalizer outputs used to 

generate the reference phase, reduces the degradation in MMSE performance, since 

constellations with smaller amplitude signal points gain more in MMSE performance. 

Thus, the performance of the V29 and QAM signal constellations approach that of the 

PSK signal constellation and a high data transmission rate can be achieved in a given 

bandwidth. Furthermore, increasing L allows the system performance to approach 

that of combined coherent detection and equalization. 

In an adaptive mode, the LMS algorithm was used. The simulations were 

performed with a 9 tap equalizer, L=3 and an SNR of 25 dB since for known channels, 

these values were found to be to be sufficient for a reasonably small MMSE. Using 

a MSE cutoff level of 0.05, the equalizer converges within 125 iterations and has 

a residual MSE of about 0.029 (50% excess MSE) for A=0.05. For A=0.005, the 

equalizer converges within 1000 iterations with a residual MSE of 0.024 (25% excess 

MSE). Therefore, k0 .05  seems to be the better choice. In addition, 8PSK (16V29) 

converges slightly faster and has a slightly smaller residual MSE than 8V29 (16QAM). 

However, the difference in MSE convergence performance for the tested constellations 

is almost negligible for L=3. Finally, at the same Eb, the constellations 8V29, 8PSK, 

16QAM and 16V29 have probabilities of error in increasing order. 

For a sufficiently large L, e.g. L=3, the combination of the decision-feedback 

differentially coherent detection structure with linear equalization performs as well as 

combined coherent detection and linear equalization, with the advantage that it can 

be used when carrier phase tracking is difficult e.g. fading multipath channels, burst 

cornrnunicat ion. In addition, the receiver shows very small MMSE differences be- 

tween different two-dimensional constellations. Over practical wireless channels, the 

proposed receiver seems to have significant advantages with respect to conventional 



coherent receivers and we will now suggest further work in this area of combining 

equalization with differentially coherent detection. 

Suggestions for Further Work 

To simplify the analysis, receiver decisions were assumed error-free with high SNR 

and actual information phases cp[n - k] for k = 1,. . . , L - 1 were used in the equalizer 

adaptation simulations. Therefore, it would be of interest to analyze the effects of 

decision errors on the adaptation process and on the residual MSE as well. In addition, 

simulations should also be performed for non-zero excess-bandwidth pulses. 

To improve performance, one can use decision-feedback equalizers (DFEs) 

with the decision-feedback differentially coherent detection structure of [2]. The DFE 

cancels the dominant postcursor IS1 in minimum phase multipath channels without 

noise enhancement. Therefore, this combination is worth further investigation. 

Improving the reference phase estimation for the QAM and V29 constella- 

tions may improve results. Therefore, reference phase estimation which is optimized 

for amplitude and phase signal constellations should be used in conjuncture with dif- 

ferential detection. Also, the reference phase estimation for non-stationary channels 

can be improved by introducing a forgetting factor. Therefore, past equalizer outputs 

can be weighted such that the more recent equalizer outputs will have more influence 

on the reference phase estimate, thus improving the phase tracking capabilities. 

Finally, the adaptive equalizer should be tested using faster adaptation algo- 

rithms e.g. fast Kalman algorithm [25]. 
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Appendix A 

A.l Program Overview 

The computer program was written using the C programming language and ran under the 
SUN 0s. The program consists of seven separate files. Data was read from a specified input 
file and all results were written to a specified output file. In addition, two other output files 
were created for ease of plotting the LMS simulation results. One file stored trial results 
and the other stored the average learning curves, i.e. average results of 60 trials. 

Input File Data 

Test constellation: PSK, QAM, V29 and any other format. 

Multipath channel Parameters: Number of paths-1, amplitude attenuations, phase- 
shifts and relative delays 

Roll-off factor of overall desired response. Any number from 0 to 1. 

0 Step-sizes to be used in LMS simulations. 

Noise Power in dB. 

Number of Equalizer Taps besides the reference tap: called N, i.e. min.,max.,step. 

Number of Equalizer Outputs for phase estimate: L, i.e. min.,max.,step. 

0 The output data filenames. 

Program Files and Functions 

The seven files and their functions are as follows: 

EQ.C: Main program file. Reads input file and generates output files. Calls MMSE.C 
and AMSE.C. 



MMSE.C: Calculates MMSE numerical results. C d s  C1NV.C 

AMSE.C: Calculates LMS simulation results. Calls RAND0M.C 

C1NV.C: Inverts a complex matrix using LU Decomposition. 

RAND0M.C: Generates Uniform and Gaussian distributed random numbers. 

C0MPLEX.C: Library of complex arithmetic operations. 

UT1L.C: Utility subroutines. 

Program Details 

The convolution of the overall pulse response g[n] with the encoded data was limited to 440 
terms centered at J[0]. It was found that increasing this number to 1000 did not provide 
any significant differences. In the program, the number of equalizer taps was N+1, i.e. the 
equalizer had N/2 taps on both sides of the reference tap c[O] and the maximum number 
allowed is 41 including the reference tap. In addition, the transmitter and receiver filters 
were designed such that their overall response #(t) was Nyquist. The pulse shape used was 
the raised-cosine pulse with a roll-off factor of cr. The transmitter and receiver transfer 

functions were both 4 G .  
The Random and Gaussian number generators used, were provided in [29]. In addi- 

tion, a complex matrix inversion program to invert the Hermitian matrix A, was developed 
using the real matrix inversion program in [29]. It was tested rigorously and was very sta- 
ble. In the LMS simulations, each test case was subjected to  60 independent trials, each of 
length 3220 and the average learning curve was calculated. In addition, the data for each 
test case was stored in files coded as "123.456". The codes are shown in table A.1. 

Therefore, the file eoa.25a contained the data of the average learning curve for 
8PSK, A=0.005, channel A and 25 dB SNR. Also, the data file grx.25 held the raw data for 
60 trials for 16QAM, k0.05,  channel X and 25 dB SNR. 

Table A.l: Data File Code Table 

Code 

1 
2 
3 
45 
6 

Parameter 

Constellation 
Step-Size X 
Channel 
SNRin dB 
File Data Type 

Allowed Symbols and Meaning 

e:8PSK; g:16QAM; h:8V29; j:16V29; 
o:0.005; r:0.05 
a:Channel A; x:Channel X; 
25:25 dB; 
a:average; nothing:60 trials; 



MMSE Program File and Test Case 

#define HAX 256 /* H u  number of signals in constellation */ 
#define OFFSET 220 /* Position of Reference Response */ 
Mafine HAXTEWS 440 /* Pumber of term8 in Convolution */ 
#define HAXTAPS 40 /* Haximum Number of Taps in Equalizer */ 
#def ine 1m 2 /* Used for Print Display */ 
#def ine PI 3.141592664 
Mefine EUUOR 0.00000001 

typedef rtruct FCOHPLEX i 
double r,i; 
3 f complex; 

......................................................................... 
/********* H - number of signals in constellation ++++*****+*/ 
/*******a* 1+1 - Total number of Equalizer Taps ********c**/ 
/********* SIG-SET - Signal points in Constellation *******+*+*/ 
/********* g - overall impulre r e s p o ~ e  ***+L******/ 
/********a f - receiver impulse response ********+**/ 
/********* fp - file pointer to output data file *++**++***+/ 
/********* val - stores step-sizes that will be u m d  in simulation *****/ 
/********* 10 - noise power to signal energy power *****+*++**/ 
......................................................................... 
double HIPHEAPSQ~(H ,I ,SIG,SET .g .f ,f p ,val,NO) 
int H, 1; 
icompiex SIG,SETCHAX+II , ~ U U X ~ ~ + I I  , I [IIIXTEWS+II ; 
FILE *fp; 
float val CPm+il, 10 ; 
i 

......................................................................... 
/****************** Complex Operators ******&*********++***************/ 
......................................................................... 

double Cabs ( ) ; 
fcomplex Caddo, CsubO, CmulO, Cdiv(); 
fcomplex ComplexO, ConjgO, ArgO, RCmulO; 

......................................................................... 
/********** y - received signal, b - input data signal ***************/ 
/********** bd - differentially encoded phase *+*************/ 
/******a*** A - y correlation matrix, IPV - A inverse ***************/ 
/********** B - cross - correlation matrix bet. b and y ***************/ 
/********** C - equalizer vector *I************+/ 
/*****a**** USE - mean sqrure error, pdt = 1 - USE ***************/ 
/a********* dummy - dummy variable *****+*+**+**+*/ 
/********** v - rum of zln-il*e C j  (sum of angler)] ***+*********+*/ 



......................................................................... 
f complex A [HAXTAPS+l] mXIAPS+l] , IIV ~XTAPS+I] [HAXTAPS+~] ; 
icorpiex I UUXTAPS+II CHAXTAPS+~I ; 
f complex B WXTAPS+l] , C mX TAPS+ll; 
f complex pdt ; 
double HSB; 

......................................................................... 
/********** Cd, Cs vectors calculated during ideal gradient algorithm **/ 
/********** AC - pdt estimate of A matrix and C matrix *****************/ 
/********** I - Identity matrix, A1 = I - A t**++***********+/ 

......................................................................... 
f complex cd[HAX TAPS+l] , Cs [HAXTAPS+ll; 
f complex AC CHAXTAPS+ll; 
f complex A1 [HAXTAPS+l] ~XTAPS+l] ; 

......................................................................... 
/********** i, j ,k ,kl ,kk ,n - indices, rn - random # generated *******/ 
/***a****** POI - reference point, jPm = j%Pm ******a/ 

/**********  iff - mean square difference without equalizer **+****/ 
/***a****** Store, Store2 - intermediate differences **a****/ 

/********** alpha - step-size *******/ 
/********** cinv - hverts complex matrix *******/ 
/********** ran1 - generates uniformly distributed r.v *******/ 
/********** gasdev - gonerates gaussian distributed r.v *******/ 
/********** noise - additive chamel noise components at diff. instants*/ 
/********** w - noise after passing through receiver *******/ 
......................................................................... 

int i, j, jPm, k, n; 
int mar-num, chk; 
float alpha ; 
double Dif f , Store, Store?; 
void cinv() ; 

......................................................................... 

......................................................................... 
for (i=O ; i<=HAXTAPS ;I++) 
< 
BCiI = Complex(O.0,O.O); 
for (j=O;j<=HAXTAPS;j++) ACil Cjl = Complex(O.0,O.O); 

3 
for (i=O ; i<=HAXTAPS ; i++) C [I] = Complex(0 .On 0.0) ; 



for (i=O;i<WXTAPS;i++) gCi1 = Complex(O.0,O.O); 
for (i=O;i<WXTAPS;i++) gCWX1EBIIS-i] = Complex(O.0,O.O); 

, . . . . . . . . . . . . . . . . . . . . . . .  

for (i=l;i<=I+l;i++) 
B ti1 = Conjg(g Ci+OFFSET-I/2-11) ; 

/***** Invert. A to IIV, dim I+l, A rmchanged ******/ 
cinv(A*1IVsI+l) ; 
f f lurh(fp) ; 

, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - I  

/**************++*+******** Opt- Qaalizer ............................ 
.......................................................................... 

pdt = Complex(O.0,O.O); 
for (it1 ; i<=I+l ; i++) 
C 
cci-11 = Complex(O.O,O.O) ; 
for (j=l;j<=I+l;j++) 
CCi-13 = Cadd(CCi-11 ,Cnml(IIVCil Cjl sBCjI 1) ; 

pdt = Cadd(pdt,Qnrl(Conjg(BCi'J),CCi-11)); 
3 
f f larh(fp) ; 

.......................................................................... 

.............................. check to nee AC = B ....................... 

.......................................................................... 
/* 

for (i=l ;i<=H+l ;i++) 
C 
ACCil = Complex(O.0,O.O); 
for (j=l; j<=I+l; j++) ICil Cjl = Complex(0.0,O.O) ; 



ICil Cil .r = 1.0; 
1 
for (i-1 ;i<=l+l ;i++) 
i 
for (j=l; j<=li+l; j++) ACCil = cadd(~cCi1 ,Cmul(ACil [jl ,CCj-11)) ; 
if (ieh == 1) fprintf(fp,"W); 
fprintf (fp,"~t%3dl=Y.8.4f,%8.4fj *@,i,~cCil .r,Aclil .i); 

3 
f f lruh(fp) ; 

*/ 
.......................................................................... 
/**************** Theoretical Interart - Ideal Grad. Alg. ***************/ 
/***************** c [i] = c [i] (1 -alpha x A) - alpha x B *****************/ 
.......................................................................... 
/* 

fprintf (fp,"bb ***** HEAH SQUAFLE GRADIEIll UGORITEH ****#*I ; 

for (chk=l ; chk<=max-nun; chk++) 
< 
for (i=O;i<=MXTAPS;i++) CCi] = ~omplex(O.0,O.O); 
if (DO) ~[l/2+l].r = 1.0; 
elre CCO1.r = 1.0; 
alpha = valCchkl ; 
f printf (f p , @@balpha=Y'. 4f \n" ,alpha) ; 
if .(alpha != 0.0) 
< 
for (it1 ;i<=l+l ;i++) 
for (j=l;j<=l+l;j++) 
AlCil Cjl = Csub(ICi1 Cjl ,RCmul(alpha,ACil Cjl)) ; 

k=O ; 
do 
i 
k++ ; 
for (i=l;i<=l+l;i++) 
i 
ACCil = Complex(O.0,O.O); 
Cr Cil = C Cil ; 
for (j=l; j<=U+l; j++) 
ACCil = Cadd(ACCi1 ,Cmul(AlIil tjl ,CCj-11)); 

1 
for (i=l;i<=U+l;i++) 
C [i-11 = Cadd(AC Ci] ,~Cmul(alpha ,B [i] ) ) ; 

Diff = 0.0; 
for (i=O;i<=l;i++) CdCiI = Crub(CCi1 ,Cr Cil 1 ; 
for (i=O;i<=P;i++) Dif f += Cabs (CdCil ) ; 

1 
while (Diff > ERROR); 

v = Complex(O.O,O.O); 
for (i=l ; i<=l+l; i++) 



C 
if ((iYJm ==I) && (i != 1)) fprintf (fpSn\n"); 
iprintf (fpSwCrL3d=%8 .4f ,%8.4f j " A-112-1 rC[i-ll .r,C[i-11 .i) ; 
v = Cadd(v,rrul(Conjg(B[i]),C[i-11)); 

3 
fprintf(fprwbT~erinloop=%3d,pdtl=%8.4f.%8.41j ",k,v.r.v.i); 

3 
3 

*/ 
................................................................. 

f printf (f p , ~o\nninimum Hean Square Error b" ; 
HSE = 1 - Cabs(pdt1 ; 
fprintf (fpSwPDT=%8.4f+%8.4f j" ,pdt .r,pdt .i) ; 
fflush(fp) ; 
return(HSE) ; 

3 

Input File 

ga26.06 
1 
0.6 
180 
0.6 

'I 
16 
1 
0.05 
25.0 
2 
20 
2 
1 
6 
1 
gra .26 



981QO P S R R 9  = 7 
9910'0 = P S R R C  a 7 
981QO P S R R C  3 7 
n t r o  = PSRRI 3 7 

981CO = P S R R  '02 = N  
FOQOQO + ~ C O  = raa 

r o u ~ a r v m b ~ n v a p m u + ~ ~  
OL = [ 0 ] 3 * W ? * q * d * r a = ? m P ; o - m ~  

OLIQO = P S R R 9  = 1 
OLIQO P S R R C  = 7 
OLIQO = U S R R C  f 7 
ILIQO = P S R R I  ' 7 

U 1 0 0  = P S R R 9  7 
UIQO = P S R R C  ' 7 
UIQO P S R R C  7 
9AIOO P S R R I  = 7 

UIQO ' P S R R ' 9 I  I N  
.~WOQO + sctco = & a d  

r o n p m r s m b ~ ~ - a e s u ? n ? ~  
91 = [ O ] ~ * V ? * Y * ~ * & U = ? ~ P # O - Y ~ N  

- -  - 

ISIQO = P S R R I  = 7 

OIIUO f U S R R  ' P I  = N  
foooro- + ocrro = raa 

r o u ~ a r v m b ~ n v a p m u ? r ~  
P I  3 [ O ] ~ * ~ * ? . ~ ~ * ~ S . G ~ = ! F ~ ~ P I O ~ Y U ~ N  

L8IPO = PSRRC ' 7 
88IQO P S R R 1  7 

96IQO = P S R R 9  0 7 
96IQO P S R R C  ' 7 
PIIQO = P S R R L  17 
861QO * P S R R I  3 7 

OILCO = P S R R 9  7 
OILQO ' P S R R C  = 7 
IICQO BSRRC 7 
CILUO P S R R I  7 

OICWO = P S R R 1 8  = N  
fooowo + 06~6-o  = & a d  

r o u @ a r v 3 ~ n v w p m u + ? ~  
8  = [ O ] ~ * ~ ! * Y * ~ * & Y . ? P * E ~ O ~ Y U ( . N  

WLQO = P S R R 9  1 
8ZLUO 0 P S R R C  = 1 
tCLQO P S R R C  f 7 
6CCQO P S R R I  ' 7 

LLCCO = U S R R . 9  = N  
f o o w o  + crrco = raa 

r o u p a r d s n m a p m m ? n ? ~  
9  [ 0 ] 3 * i * ? * q * d - & ~ * ! F d P ~ ~ u 1 y m N  

W8LCO = PSRR'P N  
.COOOQ'O + S I L C O  = raa 

r o n ~ a r d y n v a ~ u m u ? n 8 ~  
P " [ 0 1 3 * ~ ! * ~ * ~ - + a = ? ~ P ~ o r Y ~ m N  

CICQO = P S R R 9  0 'I 
CICQO = PSRRC = 7 
CICQO P S R R L  7 
PIC00 = P S R R I  7 



Appendix B 

AMSE Program File and Test Case 

Xdef ine l u x  266 /* Max Pumber of signals allowed in a se t  */ 
Wefine HAXTEUS 440 /* M a x  lumber of convolutiontermr */ 
#define OFFSET 220 /* Position of reference tap */ 
tdef ine RUE 3220 /* lumber of signals in a requcmce */ 
#def ine HAXTAPS 40 /* Hax Iumber of Complex Taps Allowed */ 
#def ine Im 2 /* Used fo r  Printed Output */ 
#define KKHAX 60 /* Hax number of BUM */ 
#define PI 3.141692664 
#define EBBOR 0.000000001 
#define CELLSIZE 600 
#define HAXCELL 20 
#define STEP 100 

typedef s t rac t  FCOIIPLEX ( 
double r , i ; 
1 f complex ; 

/88~8888888888~~8888888888888888888888888~88888~888888888888888888/ 

/8+88*8*+++8+8888+ Uses adaptive algorithm t o  88888~**8***/ 

/***************** update equalizer coefficiants +**+******++/ 
/***************** Parameters juat l i k e  in HIIHEAPS~EWOR ********/ 
................................................................... 

ADAPTIVEHSE(L,H,li ,SIG,SET,g,f ,fp,f l,f2,val,IO) 
int L, H *  r ;  
f complex SIG,SET[HAXtl] , gCHAXTERXS+ll, f CnrXTERHS+l] ; 
FILE *fp, *f 1; 
f loa t  val  l l m t i l ,  10; 
i 

double Cabs() ; 



fcomplex CaddO, CrnbO, C m u l o ,  C d i v o ;  
fcomplex Complex0 , conjgo  , Argo 8 R W O ;  
fcomplex ylsmr+ll, bCaUB+ll, WCaUB+lI; 
f complex C CHAXTAPS+ll; 

.................................................................. 
/*************** - eqaalizer oatputr $****+C******/ 

/*************** t e l p  - f o r  ph.86 .stirpation *************/ 
/*************** a r t i r a t e  - ertirpate of data rim *************/ 
/*************** er ror  = estirpate - acts ******+**+***/ 
/*********+***+* fat - d m y  variable f o r  W t i n g  *************/ 
.................................................................. 

icompiex z CRUB+~I , b,arg CRUB+~I , temp cnrxTrPs+i] ; 
f complex estimate, error ,  f ao [lIAXTAPS+ll; 
f complex v , v-arg , noise CRlJU+ll , w CRUU+ll; 
f l oa t  alpha, r t d v , r a n l o ;  
double rum, rum1 , Amse [RUP+ll; 
double rum2 [nAXCELL+l] . sum3 [HAXCELL+~] , amse ; 
f l oa t  gasdev ( ) , cnt [UXTAPS+I] ; 

........................................................ 
/************** Indices ************c******/ 
........................................................ 

int i, j, jPm, k, kl .  kk, rn, n; 
i n t  idum, idum2. max-num, chk; 

............................................................. 
/****+**********I Det0-e Bumbar of Step-sizes ***********/ 
............................................................. 

chk = 0; 
do 
< 

chk++ ; 
1 
while (valCchkl != 0.0) ; 
max-num = chk - 1 ; 
rtdv = sqrt(ll0); 

............................................................. 
f o r  (chk=l;chkC=max,num;chk++) 
< 

alpha = vallchkl ; 
i f  (alpha != 0.0) 
< 

fpr intf(fp,% Step = %6.3f\nW,alpha); 
f o r  (k=O;kc=RlJU;k++) M a 1  = Complex(O.0,O.O); 
f o r  (i=O ; ic=RDll; i++ ) Amse Cil = 0.00 ; 
WCO1.r = 1.0; amse = 0.0; 
f o r  (i=0 ; ic=nAXCELL ; I++) sum3 Cil = 0.0 ; 
............................................................. 
............................................................. 
f o r  (kk=l ;kkc=KKHAX ;kk++) 
< 

f o r  (i=O ; ic=JIAXTAPS ;i++) C Cil = Complex (0.0 ,O .O) ; 



/******* Different Equalizer In i t ia l iza t ion  *************/ 
/* i f  (DO) CC1/2l.r = 1.0; 

e l se  CCOI .r = 1.0; 
*/ 
.......................................................... 

8m 0.0; 
sum1 = 0.0; 
f o r  (i=O; i<=HAXCELL;i++) sum2 Cil = 0.0; 
f o r  (i=l;i<=H;i++) cn t t i l  tO.0; 

id= = kk; 
id& = kk; 
fpr intf(fprW\n %Id, "Skk); 
f o r  (k=l;k<= BOP;k++) 
i 
. rn = ((int)(rml(&idm)*H))YJ +l; 

fo r  (i=l;i<=H;i++) 
i 

i f  (rn == i )  cntCil++; 
1 
/*** id= = k ******/ 
b W = SIC-SETCd; 
b,argW = Arg(bCk1) ; 
b d w  = Cmrrl(b,argW ,WCk-11); 
noise [kl = ~omplex(gasdev(ltidnm2) .gasdev(Lidud ) ; 
noireCk1 .r *= stdv ; 
noiseW .i *= stdv ; 

1 
fprintf  (fpSw\n") ; 
fo r  ( i = l  ;i<=H;i++) 
i 

cat Ci3 /= BOP ; 
fprintf  (fp . "X8  .4fW, cnt Cil ; 

3 
ffllmh(fp) ; 

fo r  (n=l;n<= BmJ;n++) 
i 

yM = C0mp1ex(0.0.0.0); 
OM = Complex(o.O,O.o); 
fo r  (k=O ; k<=HAXTERHS ; k++) 
i 

k l  = k - OFFSET; 
i f  ( (n >kl) && (hi >= n - BOP)) 
C 

y M  = Cadd(y M ,Cnml(bdCn-kl-11 ,Cmul(bCn-kll ,gCkl))) ; 
w h d  = Cadd(wM ,Clmil(noiseb-kll ,f Ck])); 

3 
1 
y h d  = Cadd(yM .wM);  



3 
/*+************ U S  ADAPTIVE UGOBITEH ******* */ 

n =  1; 
do 
i 

/**** Get Phase encoded estimate for prev. signal ***/ 
zIn3 = Comple.(O.O,O.O); 
sum = 0.0; 
for (i=l;i<=L;i++) teopp[il = Complex(O.0,O.O); 
for (i=O ; i<=I ; i++) 
i 

if ((n+i)>E/2) zlnl = cadd(z Cd ,Cmul(c Cil ,yb+i-I/21 ) ) ; 
3 
for (i=l;i<=L;i++) 
< 
if (n>i) templil 

1 
for (i=?;i<=L;i++) 
< 
for (j=n-i+l; j<--1; j++) 
i 

1 
v = Complex(O.O,O.O); 
for (i=i ;i<=L;i++) v = ~add(v ,tempCij ) ; 
if (Cabs(v) == 0.0) v = ~omplex(1.0,O.O); 
v-arg = Arg(v) ; 
estimate = ~mul(zCnj ,Conjg(~-arg)) ; 
error = ~aub(eatimate ,bid ; 
sum = ~abs(error) * Cabs(error); 
for (i=O;i<=P;i++) 
i 
facCi1 = Complex(O.O,O.O); 
if ( (n+i >I/2 1 
< 

factil = Cnml(~onjg(yCn+i-1/21) ,v,arg) ; 
facti] = Cmul(facCi1 ,error); 

3 
cCi1 = Csub(CCi1 ,BCniL(alpha,facCil)); 

3 
if ((nfSTEP == 0) 1 1  (n ==I)) 
i 
if (n<=BUH-OFFSET) f printf (f 1, "%4d X8.4f \n" ,n, sum) ; 
ff lUsh(f1) ; 

1 
AlllseCd += sum; 
sum1 += sum; 



rum1 /= (Bull - OFFSET); 
m.0 ++ 8-1; 
for (i=O ; i<=HAXCELL ;i++) s1m2 [il /= CELLSIZE ; 
fprintf (fp,"\n") ; 
for (i=l ;i<=6 ;i++) f printf (f p ,"%8 .4fM ,sum2 [il) ; 
f f luah(f p) ; 
for (it0 ; i<=HAXCELL;i++) rum3 [i] += rum2 ti] ; 
f f lush(f I) ; 
fprintf (f I ,"\n") ; 

1 
for (n=l ;n<=Bm;n++) Amse bd /= KKHAX ; 

fprintf(f2," I %8.4f\n",limse[l]); 
f f lurh(f 2) ; 
for (n=l;n<=RUU;n++) 
C 
if ((nYSTEP == 0) && (n<=BUli-OFFSET) ) 
C 
if (n<BUli-OFFSET) fprintf (f 2, "%4d %8.4f \nu ,n,Amae bd ; 
else fprintf (f2,"%4d %8.4f",n,Amrebd) ; 
fflush(f2) ; 

3 
3 
amse /= KRIIAX; 
fprintf (fp ,"\nStap Size=%8.4f ,\tAver.ge W E  = %8.4f \n" ,alpha,amse) ; 
fprintf (fp,%4d\n"   lo ; 
for (i=O;i<=UXCELL;i++) rum3 Cil /= gglUX ; 
for (i=l;i<=6;i++) fprintf(fp,"%10.4f",rtrap3[i]); 
fprintf (fp,"\n") ; 
ffluah(fp) ; 

1 
3 

1 



Input File 

Average Output File 
1 1.1100 

100 0.0438 
100 0.0186 
300 0.0311 
400 0.0116 
600 0.0146 
600 0.0311 
TOO 0.0141 
800 0.0301 
900 0.0147 

1000 0.0197 
1100 0.0164 
1300 0.0186 
1300 0.031T 
MOO 0.0181 
1600 0.0116 
1600 0.0109 
1700 0.03TO 
1800 0.0318 
lm00 0.0391 
1000 0.0339 
a100 0.0190 
1100 0.0349 
1300 0.0166 
1400 0.0184 
1b00 0.0167 
moo o.orr9 
1700 0.0334 
a800 0.0am 
a900 0.0317 
3000 0.01T8 
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ILCQO OOC 
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SCCQO W L I  
6 I W O  0 0 0 1  
CCCQO 0 0 9 1  
W W O  W P I  
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W I C O  wct 
H C C O  W I I  
1owo 0001 
S I I Q O  001 
CIOQO 001 
C C I Q O  0 0 1  
CPCQO 001 
8 s W O  0 0 s  
IOOQO 00)  
VCCQO 001 
O 6 W O  OOC 
I L W O  0 0 1  
OOOQI I 

CIOQO OOOC 
1 ~ C O  OOIC 
W I Q O  Wit 
S I O Q O  W L C  
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C C W O  W P L  
O W 0  OOCC 
L O W 0  W C C  
W I Q O  OOIC 
OLSCO OOOC 
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I O I Q O  W I I  
C C W O  0 0 4 1  
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O C I C O  0011 
O W C O  00,I 
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6010-0 ooc1 
I C W O  0011 
LLCQO 0 0 0 1  
I C C C O  OQ. 
I W O  001 
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C W W O  00, 
L I I Q O  001 
V6LQO 00)  
L V I Q O  OOC 
CLOCO OOt 
VSOQO 001 
0000'1 1 

6 1 I C O  OOOC 
,wo-o owe 
I O I Q O  W I C  
C C W O  W L C  
O I I C O  0 0 1 C  
C C W O  001c 
I K C C O  W P C  
OLCUO W C C  
CObQO wcc 
C C I U O  W I C  
WCQO OOOL 
C C I C O  OQ.1 
LOCCO 0011 
OLSCO 0011 
O P W O  0 0 8 1  
COCQO 0011 
W 1 U O  wv1 
181QO OOCI 
L 6 I C O  W C I  
C C W O  0 0 1 1  
rnro 0001 
I I W O  001 
C O I U O  001 
CVCQO 0 0 1  
L O W 0  001 
vvw-0 001 
S I I C O  00, 
I S I Q O  OOC 
1 O W O  wc 
6 C I Q O  W I  
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L I I C O  oooc 
PCIQO 001C 
S V I C O  OOIC 
L I W O  W L C  
O I C C O  W V C  
AVIQO 001C 
I L I Q O  W W  
CLCQO W C C  
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L C I C O  W I C  
PLIQO OOOC 
I I I C O  O O I I  
O C I C O  0 0 8 1  
I l L C O  W L I  
I L I Q O  o w 1  
I P C C O  0011 
0 1 w o  W W  
* I I Q O  m1 
I W C O  wet 
I L P Q O  0011 
I S W O  0 0 0 1  
L S I C O  001 
O V W O  wv 
CWZQO W L  
OCCQO 00, 
O C W O  0 0 9  
*VCQO 00, 
P I 0 0 0  om 
6OCCO OOC 
LVVQO 0 0 1  
mrt I 

P I W O  OOOC 
CICQO O W C  
CPCQ'O W I C  
P I I C O  W A C  
C I C C O  001c 
S V I 0 ' 0  001c 
I C W O  ww 
OCIQO m c  
P I I C O  wcc 
L w 0  W I C  
L6CQO OOOC 
6110-0 0011 
6SCCO 0 0 8 1  
6 I W O  0 0 4 1  
O I O C O  m1 
M W O  0011 
1 P I U O  ww 
W I I C O  OOCI 
* I C C O  OQCt 
S C W O  0 0 1 1  
W W O  OQOI 
U C C O  001 
CIOQO 001 
SISQO W L  
S I C C O  001 
6 S W O  001 
S I W O  00, 
U W O  OOC 
COIQO we 
LVCQO 001 
O O O r 1  I 

1PCQO OOOC 
OICQO 001C 
0 v 1 r 0  001c 
W I Q O  W L C  
6CCQO W V C  
U O O - 0  wsc 
1 A W O  W V C  
A ~ C C O  wcz 
e w o  WCL 
L S W O  W l C  
P180'0 O W C  
I I S C O  0 0 6 1  
I I W O  W I I  
C V I C O  W L I  
PCOCO wor 
U I Q O  O O I I  
CCOt'O W P I  
OIOQO OOCK 
W C C O  OOCI 
W W O  0 0 1 1  
C C W O  OOOI 
P L W O  ow 
C O W 0  0 0 1  
O I O C O  OOL 
1810-0  00, 
6 L I Q O  0 0 9  
OCPCO 00, 
C6CO-0 OOC 
6 W O  OOC 
CLOQO 0 0 1  
OOOCO 1 

saro-o woc 
? I C C O  owc 
C O W 0  W I C  
01Cl'O OOLC 
1 1 W O  W V C  
CCCCO OOSC 
A I I C O  OOW 
L P W O  m c  
ocW0 W C C  
P I W O  W I C  
I m o ' O  OOOC 
L O W 0  0 0 6 1  
O I W O  0 0 8 1  
SOIQO OOLI  
V I W O  oOv1 
V I D 0 0  0 0 9 1  
C I 1 C O  w*1 
C6CQO W C I  
O W 0  W C I  
I V I C O  0011 
o w 0  OOOI 
W I Q O  001 
S I I C O  001 
1SCI-0  OOL 
U C Q O  001 
W L W O  001 
O I W O  OQ, 
OCCUO OOC 
CVIQO W C  
COCWO 001 
OOQCt I 



I 1.0000 
100 0.0796 
100 0.0011 
300 0.0067 
400 0.0198 
660 0.0411 
MO 0.0410 
TOO 0.0074 
MO 0.0039 
m 0.0010 

1000 0.0131 
1100 0.0416 
law 0.01u 
1 ~ 0 0  o a m  
1400 0.0019 
1600 0.0073 
1600 O.Oao? 
1 m  0.0189 
1800 o.oo.1 
1WO 0.0011 
1000 0.0163 
1100 o a o n  
1100 o.Oao3 
1so0 0.0138 
1400 0.0186 
1600 0.0306 
1800 0.0016 
1700 0.1019 
am0 0.0016 
aeon 0.0011 
so00 0.0119 
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I C O C O  0 0 4 1  
CSCQO 0 0 0 1  
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1 1 ~ 0 0 0  
100 0.0317 
100 0.0113 
SO0 OW48 
400 0.0166 
MO 0.0078 
MO 0.0034 
700 0.0093 
600 0.0188 
MO 0.0091 

1000 OJ166 
1100 OWW 
1100 0.0107 
1WO 0.0477 
1400 0.0314 
1600 0.0043 
1600 0.0090 
1700 0.0010 
1800 0.0098 
1-0 0.0368 
1000 0.0185 
a100 0.0361 
a300 0.0079 
1300 0.0187 
1400 0.0088 
1500 0.15n 
1600 0.0128 
1700 0.0098 
1800 0.0119 
1900 0.0105 
3000 0.0187 

1 1.oooa 
100 0.0113 
m o m o r  
500 0.0191 
400 0.0457 
MO 0.0190 
MO 0.0189 
TOO 0.0045 
MO 0,756 
MO 0.0073 

1000 0.0433 
1100 0.00s 
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Additional Program Files 

#define lux 
#def ine MAX,PArn 
#define PI 
#define HAxmMs 
#define OFPSEI 
#def in0 HAXTAPS 
#define Pm 
#def ine SIUP 

266 /* Hax # of signals in constellation */ 
10 /* Hax # of path in channel */ 
3.141692664 
440 /* number of terms in convolution */ 
220 /* Position of reference tap */ 
40 /* Hax # of taps allowed */ 
2 /* Used for display purposes * / 

100 /* Po of gaps used by simpson r u l e  */ 

typedef stmct FCOHPLEX < 
double r , i ; 
1 fcomplex; 

main0 
< 
int is j, k, num-ch; 
float GC-rodCHAX ,PAIES+l] , GC-ang CHAX,PATES+~~ , delay CHAX,PATES+~] ; 
float roll, val CPm+ll; 
double kdel [UX,PA?ES+II , mag; 
double HIPIIEIPSQ~RO, IMSE, LIMSE; 
I C O ~ ~ ~ O X  SIG,SET~HAX+I~ , ~CHAXTERHS+I~ , f IHAX'IEB~S+II ; 
fcomplex CaddO, CsubO, CnmlO, CdivO; 
fcomplex ComplexO, ConjgO, k g 0  ; 
double Cabs ( 1, Sum; 
FILE *fp, *fl, *f2; 
int L, H, n, Hl, kl; 
int Lmin, Lmax, Lstep, Pmin, Pmu, Istep; 
int jlm, mu-num, chk, 1, a; 
void ADAPTIVEHSEO ; 
char choice, f ilename[lOl, f ile,nlC13] , f ile-nlaC141; 
int n, Diff-Hag, done; 
float PO, magsum; 
double point [SIHP+l], qam,mag[HAX+ll, v29,magCHAX+l] , f req[H~~+ll ; 
double integral, hvalue [SIUP+~] , factor, f ac , sqsm CHAXTAPS+l] ; 
double amt CSIHP+ll; 
f complex value CSIHP+l] , add1 , add2, f store; 

................................................................. 
printf ("Enter FILEHAHE to be written to(Hax 8 characters) :@'I ; 
scmi ("Xs" *filename) ; 
fp = fopan(filana~e,~a") ; 
if (fp == am) 



C 
printf ("Cannot open Filew) ; 
oxIt(1) ; 

1 
................................................................. 
printf ("EHIEU IUHBEB OF EITFU PATES Ill CHIIPEL : "1 ; 
8cmi ("yd" , \bum,ch) ; /* limber of paths in channel */ 
fprintf (fp ,"bJlumbr of paths = X 2 d W  ,n~m,ch) ; 
printf ("lumber of paths = % 2 d W  ,npm,ch) ; 
for (i=l ; i<=num-ch; i++) 
< 
printf ("War PATE #%d, enter parametersW ,i) ; 
printf ("Path Hagnitude Response - Gc-mod :"I ; 
~ca,af(~~?"~~ , \\Gc-modIi1) ; 
printf ("Path Angle Responre in Degrees - Gc-ang : "1 ; 
mcanf (aa%f'a, \\Gc,.ng ti1 ; 
Gc-ang Ci] = Gc-ang ti] /l8O. 00; 
printf("Path Time Delay in units of T - delay :"I; 
scanf (*%f " , \\delay ti1 ) ; 

1 
for (i=l ;i<=num,ch;i++) 
i 
f printf (fp , "Path #%2d Gc,mod=%7. Sf, Gc,ang=%7. 3f, 

delay=%7.3f \n" ,i ,Gc,modti] ,~c,ang ti] *I80 ,delay ti] 1 ; 
3 

/** Urimg SiPpson8s Rule to Evaluate an integral ******************/ 
.................................................................... 
for (n=O ;n<=SIlIP;n++) 
i 
pointkl = - 1.0/2 + 1.0 n / SIHP; 

3 
integral = 0.0; 
for (n=O;nc=SIHP;n++) 
i 
hvalueCnJ = 0.0; 
valueCnJ = Complex(O.O,O.O); 
for (is1 ;i<=num-ch;i++) 
i 
add1 = Complex (Gc-mod Cil *cor (Gc-ang Cil *PI) , 

Gc-modCi1 *8in(Gc,angtil *PI) ; 
add2 = Complex(co8 (2*PI*delay Cil+point CnJ ) , 

-rin(2*PI*delay .point CnJ ) 1 ; 
add1 = Cmul(add1 ,add2 ) ; 
value kl = Cadd(value Cnl ,add11 ; 

3 
valuekl = Cadd(valueCn3 ,Complex(l.O,O.O)); 

for (n=O;n<=SIlP;n++) 



integral += hvalue W ; 
integral -= 0.5 ( hvalne 101 + hvalne CSIHPI 1 ; 
integral /= SIWP; 
fprintf(fpSH\nIntegral =X8.4fu,integral); 
f f lorh(fp) ; 

/**********mre Wp ................................. 
printf(ooEnter Boll factor betwean 0 and I:"); 
r~aaf(~Xi~, \\roll); 
fprintf (fp ,%Roll factor =%8.4f ,roll) ; 

...................................................... 
/* Determine the overall impulse response of */ 
/* transmitter channel and */ 
/* receiver. */ 
...................................................... 
for (k=O ; k<=HAXTERHS; k++) 
< 
gkl = Complex(O.O,O.O); 
kl = k - OFFSET; 
g W  .r = rin(PI*kl)/(PI*kl)* 

cos (roll*PI*ki)/ (1 -(2*roll*kI )* (2*roll*kl) ) ; 
if (kl ==O) g [OFFSET] .r = 1.0000 ; 
for (it1 ; i<=num-ch; i++) 
< 
kdel ti] = kl - delay ti] ; 
if ((kdelCi1 != 0.0000) \\ \\ (roll == 0.0)) 
< 
g W  .r += Gc-modCi1 cos(Gc,angCil*PI) 

rin(PI*kdel ti] )/ (PI*kdel ) ; 
g W .i += ~c-modCiI rin(Gc-angCi1 *PI) 

rin(PI*kdelCil )/(PI*kdel[il) ; 
3 
else if ((kde1Cil != 0.0000) \\ \\ (roll != 0.0)) 
i 
g Ckl .r += ~c-modCi1 cor (Gc,angtil*PI) 

rin(PI*kdel Cil ) /(PI*kdel Cil ) 
cos (roll*PI*kdel Ci] ) 

/ (I - (2*roll*kdelCil) *(2*roll*kdel till ) ; 
g W  .i += Gc-modci] rin(Gc,angtil*PI) 

rin(PI*kdel [ill/ (PI*kdelCil) 
con (roll*PI*kdel [i] ) 

/ (I - (2*roll*kdel [ill * (2*roll*Mel Cil ) ) ; 
3 
0180 
< 
g Ckl .r += Gc-mod ti * con (Gc-ang Cil *PI) ; 
g lhl .i += Gc-modCi1 sin(Gc,ang Cil *PI) ; 

3 
3 

/* 
if ((k?"m)==l) fprintf (fp ,"bm) ; 



/* Determine receiver response for channel additive noise */ 
................................................................... 
for (k=0 ; k<=lUXTERHS;k++) 
< 
k1 = k - OFFSET; 
f W  = Complex(o.o,O.o); 
if (roll == 0.0) fCOFFSET1.r = 1.0; 
else 
< 
for (i=O;i<=SIHP;i++) amt [il = 0 .O; 
for (i=O;i<=SIMP;i++) amt Cil = sqrt(1-sin(PI*(2*i/SIHP -1)/2)) ; 

/***** 6 ~ -  kl ******/ 
if ((hi != 0) \\ \\ (kl%2 == 0)) 
i 
fstore = Complex(0.0,O.O); 
for (i=O;i<=SMP;i++) 
f 8tore.r += 2 amt [i] cos(roll*PI*k1*(2*i/SIHP - 1)) ; 

f store .r -= (amt [Ol + amt [SIMP] ) * cos (roll*PI*kl ) ; 
f 8tore.r *= (roll/SIHP/sqrt(2.0) ) ; 
fCh1.r = sin(kl*PI*(l-roll))/PI/kl + f8tore.r ; 

for (i=O;i<=SIHP;i++) 
fst0re.i += 2 amt[i] sin(roll*PI*kl*(2*i/SIHP - 1)); 

fst0re.i -= (amt [SIHP] - amt LO]) sin(roll*PI*kl) ; 
f store. i *= (roll/SIHP/sqrt (2.0) ; 
f Ckl .i = f8tore.i; 

1 
/***** odd kl *******/ 
else if 1 != 0 \\ \\ (klX2 != 0 ) )  
< 
fstore = Complex(O.0,O.O); 
for (it0 ; i<=SMP ; i++) 
f8tore.r += 2 * amtCi1 * cos(roll*PI*kl*(2*i/SIIIP - 1)); 

f store .r -= (amt LO1 + amt CSIHP] ) cor (roll*PI*kl) ; 
f8tors.r *= (roll/SIllP/sqrt(2.0)); 
f W . r  = sin(kl*PI*(l-roll))/PI/kl - f8tore.r ; 

for (i=0; i<=SIHP; i++) 
f8tore.i += 2 amtCi1 sin(roll*PI*kl*(2*i/SIHP - 1)); 

f 8tore.i -= (amt [SIHPI - amt CO] ) sin(roll*PI*kl) ; 
f store. i *= (roll/SIHP/sqrt (2.0) ) ; 
f W .i -= f8tore.i; 

1 
else if (kl ==O) 



< 
f a to re  = Complex(O.0,O.O); 
f o r  (i=O;i<=SMP;i++) 

f8tore . r  += 2 * amtCi1; 
f8tore . r  -= (amtCO1 + amtCSIHP1); 
f r t o r e  .r *= (roll/SIHP/sqrt (2 .O) ; 
fCOFPSEI1.r = 1 - r o l l  + f8tore . r ;  

3 
3 

3 
f f l run(fp)  ; 

................................................................... 
/* Determine the inpat data signals */ 
/*  ith her PSK, qAU, V29 or other, H=2,4,8 ,16,32,64,128,256 */ 
................................................................... 

f o r  (i=0 ; i<=HAX; i++)  SIG-SET Cil = Complex (0.0 ,O .o) ; 
f o r  (i=0 ; i*=nAXIAPS ;I++ sqsum [il = 0.0 ; 
Sum = 0.0; 
printf("\n VHAT SIGPAL COHStELLATIOP IS DESIBED?bW); 
pr intf  (" Enter P or p(PSK), Q or q(QAH), V or v(V29)"); 
p r in t f  (" or something also b\t : " ) ; 
.c(LPI("Xs", \\choice) ; 

if ((choice == 'p') I I (choice == 'P')) 
< 

printf  ("PSK Chosen: How Many Points?: "1; 
s c d  ("Xd" , \\HI ; 
fpr in t f  (fp,"bbXdPSK" ,HI ; 
f o r  (kt1 ;k<=H;k++) 
C 

SIC-SET W .r = con (2*PI*k/H) ; 
SIG-SETW .i = 8in(2*PI*k/H); 

3 
3 
e l r e  i f  ((Choica == 'q' ) I I (choice == ~ q ' ) )  
i 

printf  ("QAH chosen: How Many Points? : ") ; 
.cad (*oXd80 * \\HI ; 
fpr intf  (fp, "bbX2dQAH" , H I  ; 
H i  = ( i n t  ( f loat  h q r t  (1 .OO*H) ; 
f o r  (k=O;k<=Hl-1 ;k++) 
C 

f o r  (kl=l ;kl<=Hl ;kl++) 
i 

SIG,SETb*Hl+kll .r = (2.0*kl - n l  - 1)  ; 
SIG,SEIb*Hl+kll .i = (?.Oak - H i  + 1) ; 
Sum = Sum + SIG,SEICk*Hl+kll .r * SIG~SETCk*Hl+kll .r + 

Sf G-SET b*Hl+kll .i SIG-SET b*Hl+kl] . i ; 
1 

3 



printf (%Sum of squares= %8.4fM ,Sum) ; 
Sum = rqrt(Sum/H); 
DiifJag = 0; 
f o r  (i=l;i<=HAx;i++) freqCi3 = 0.0; 
f o r  (i=l;i<=HAX;i++) qam,magCil = 0.0; 
f o r  (k=O ;kc=Hl-1; k++) 
< 

fo r  (kl=1;kl<=Hl;kl++) 
< 

SIG,SEICk*Hl+kll .r /= Sum; 
SIG,SEIb*Hl+kI] .i /= Sum; 
mag = Cabr (SIC-SET tk*Hl+ki] ) ; 
done = 1; 
fo r  ( i = l  ;ic=Diff ,Hag;i++) 
< 

i f  (qam-mag Cil == mag) 
< 

f req l i l  += 1 .O/H; 
done = 0; 

3 
3 
i f  (done == 1) 
< 

Dif f ,nag++ ; 
qam-mag CDif f  ,Hag1 = mag; 
f req CDif f , H a g l  += 1 . O/H ; 

3 
3 

1 
for  ( i = l ;  i<=Dif f  ,Hag; i++) sqsumC11 += f  roqCi1 /qam,mag C i l  /qam,magCil; 

for  ( i = l  ;i<=Dif f  ,Hag;i++) 
for  (j=l;j<=Diff,Hag;j++) 

sqsum C2l += f  req Cil f  reqC jl / (qam-mag C i l  qam-mag C jl ) 
/ (qm-mag 111 +qam,mag C jl ; 

fo r  (i=l;i<=Diff,Hag;i++) 
for  (j=l;j<=Diff,Hag;j++) 

for  (k=l ;k<=Diff ,Hag; k++) 
sqsumC31 += freqCi1 * freqCjl * f r e q W  

/ (qm-mag Cil +q-aag Cjl +qmmag tkl 1 
/ (qm-mag Cil +qam~ag C jl +qaPlmag tkl 1 ; 

fo r  (i=l;i<=Diff,Hag;i++) 
for  (j=l;j<=Diff,Hag;j++) 

for  (k=l ;k<=Diif ,Hag;k++) 
for  (l=l;l<=Diff,Hag;l++) 

for  (m=l ;m<=Diff ,Hag;m++) 
sqrum[61 += freqCil freqCj] * fraq[k] freq[U f r e q m  
/ (qam-mag Cil +qam,mag C jl +qam,mag Ckl +qam,mag CU +qam,mag GIII 
/ (qam-mag 113 +qam,mag C jl +q-,mag tkl +qamBag CU +qmmag LP3 ; 

for  ( i = l ;  i<=Dif f  ,Hag; i++) 



C 
f pr intf  (f p , "\nQam,Hag= X8.41, Freq = X8.4f1@ , qam-mag Cil , f req Cil ) ; 

3 
f o r  ( i = l  ; i<=S;i++) 
C 

if (i!=4) i p r in t f  (fp,@@\p.qmum~?"= X8.M '@ ,i ,mqmum~i~ ) ; 
3 

3 
e l s e  i f  ((choice == 'v') I I (choice == 'v')) 
C 

printf  ("V29 chosen: How Hany Points? : "1 ; 
s c m i  (''23" , \\HI ; 
printf  ('@'%d V29 SIGHAL SET" ,H) ; 
fpr intf  ( fp  ,"bb%2dV29" ,HI ; 
H i  = H/8; 
pr intf  ( ' @ M i  ==%do' ,Hi) ; 
mag = 1.0; 
Diff ,Hag = H i  2; 
f o r  (i=0 ; ~ < = H A x  ; i++) v29,mag [il = 0.0 ; 
fo r  (i=o;i<=Hl-l;i++) 
i 

j = 8 * i + i ;  
f o r  (k= j ; k<= j+3 ;k++) 
i 

SIC-SETW .r = mag cor(PI*(2*k-11/41; 
SIG,SETCLJ .i = mag min(PI*(2*k-11/41; 
Sum = Sum + SIG-SETW .r * SIG-SETW .r 

+ SIG-SET W . i SIC-SET W .i ; 
3 
v29,mag[2+i+ll = mag; 
mag = mag (2*i+3) / (2*i+1) / sqrt(2.O) ; 
f o r  (k=j+4;k<=j+7;k++) 
C 

SIC-SETW .r = mag com(PI*k/2) ; 
SIC-SET W .I = mag min(PI*k/2) ; 
Sum = Sum + SIC-SETW .r SIG-SRbl .r 

+ SIG-SET W .i * SIG-SET w .i ; 
3 
v29,mag C2*i+2l = mag ; 
mag *= mqrt(2.0); 

3 
pr intf  ("Wum of squarer= %8 .4fN ,Sum) ; 
Sum = sqrt(Sum/H); 
f o r  (k=l;k<=H;k++) 
C 

SIG-SETCkL'J .r /= Sum; 
SIG-SETCL'J .i /= Sum; 

3 
f o r  ( i = l  ;i<=Dif f ,Hag;i++) v29,magCil /= Sum; 



for (i=1 ;i<=Diff,llag;i++) 
for (j=l;j<=Diff,Hag;j++) 
sqsrrm121 += 1 .O /(v29,maglil +v29,magCjl) 

/ (v29,mag Cil +vzQ,mag C j3 ; 
for (it1 ;i<=Diff ,Hag;i++) 
for (j=l;j<=Diff,Hag;j++) 
for (k=l ;k<=Diff ,Hag;k++) 

sqsrrm[3] += 1.0 /(v2Q,mag Cil +v2Q,magC jl +v2Q,magb] ) 
/(v29,mag 113 +v29,magC jl +v29,mag Ckl ; 

for (i=l ; i<=Dif f ,Hag;i++) 
for (j=l;j<=Diff,Hag;j++) 
for (k=l ;k<=Diff ,Hag;k++) 
for (It1 ; l<=Dif f ,Hag ; l++) 
for (m=l;m<=Diff,Hag;m++) 
sqrumC61 += 1.0 

/ (v29,mag CiJ +v29,mag Cjl +v29,mag bl +v2Q,mag 111 +v29,mag Gal 
/(v2Q,mag Cil +v29,mag Cjl +v29,mag Ckl +v2Q,mag [lj +v29,mag ) ; 

for (i=l;i<=6;i++) 
sqrum[i] /= pot?( (double) Diff-Hag, (double) i) ; 

fprintf (f~,*~b") ; 
for (i=l;i<=S;i++) 
fprintf(fp,'%8.1f",pow( (double) Diff-Hag, (double) i)); 

for (i=l;i<=Diff,Hag;i++) 
C 
fprintf (fpt"\nV29,Hag= %8.4f O0 ,v29,mag[il) ; 

3 
for (i=l;i<=S;i++) 
C 
if (i!=4) fprintf(fp.oobqsmD"= %8.4foD,i,sqsmCil); 

3 
3 
else /* AYT MHBR SET */ 
C 
printf("\n Enter Ilumber of Points in Signal Constellation:\n"); 
scanf (oo%do*, \\HI ; 
f printf (fp ,"\n\nSignal Set not PSK or QAH or V W O  ; 
for (k=l ; k<=H ; k++) 
< 
printf ("SICC%dl .r =" ,k) ; 
scaaf("W .SIG,SETCkl .r) ; 
printf (ooSIGCLdl .i = O0 ,k) ; 
~canf("%f*~ ,SIG,SETM .i) ; 
Sum = Sum + SIG-SET bl .r SIG-SET Ck] .r + 

SIG-SET [L) . i SIC-SET lf'J . i ; 
1 
printf ( % S u m  of squarer = X8 .4fU ,Sum) ; 
sum = sqrt(Sum) ; 



for (kt1 ;k<=H;k++) 
< 
SIG-SETW .r /= Sum; 
SIC-SET El .i /= Sum; 

3 
3 

......................................................................... 
/**+**+***+*************** Print Corntellation Set ...................... 
......................................................................... 
for (k=l ; k<=H ;k++) 
< 
if ((kYJIm) == 1) fprintf(fp,"\n"); 
fprintf (fp,"srL3d=%8.41,%8.4fj ",k,SIG,SETW .r,SIG,SETbl .i); 

3 
f f lush(f p) ; 

......................................................................... 
/* What are the step-sizes that are used */ 
......................................................................... 
for (i=O;i<=Ym;i++) val[il= 0 .O; 
printf ("\prumbar of UPHIS to be entered:"); 
scanf (*O%do8 , \bax,num) ; 
for (&=I ;chk<=maxsum;chk++) 
< 
printf ("Enter ALPHIrL2dI: " ,chk) ; 
~canf(~~W". \\valkhkl); 

1 
-, 

/* Determine loise Power */ 
....................................................................... 
scanf("YJ", \\110); 
fprintf (fp,"\n\nllO/2= M.41 dBW,11O) ; 
110 /= 10.0; 
10 = 1.0/p0s(10.0,110) ; 
f printf (f p. 0'\nl10/2= %8.4f O0 ,110) ; 
f f lush(f p) ; 

. -, 
/* Determine L and 11 ranges and stepr */ 
....................................................................... 
scanf ( **%doon \\llmin) ; 
scani ("%d", \\has ) ; 
scanf(**'M", \\Jistep); 
sc& (OnYaOO , \\Lmin) ; 
scanf ( OO%doO , \\Islax) ; 
~canf(~~%d~~, \\Lstep) ; 

........................................................................ 
/** Perform Simulations */ 
........................................................................ 
for (I=O ;11<=11max;)l=P+Pstep) 
< 

i 



f pr intf  ( fp  ,"\nbHumber of Equalizer Taps berider C COI = %Idm , I )  ; 
ff lush(fp)  ; 
WIISE = H I I ~ I S Q ~ ( H , I , S I G , S ~ , g , f  ,fp,val,10) ; 
fprintf  ( fp r"\nll=%2d8\tlWSE=X8 .4f\n" ,I ,WIISE) ; 
f f lruh(fp) ; 
f o r  (L=Lmh;L<=bax ;L=L +Lrtep) 
< 

i f  (L != 4) 
< 

fprintf  (fp,"\pt = X2d ",L) ; 
magrum = 0.0; factor = 0.0; fac  = 0.0; 
i f  ((choice == 'p') I I (choice == 'P' 1) 
< 

magrum = 1.0 * L; 
factor  = L I0  integral / (m.grum magrum); 
fac  = 1 - (0.6 factor factor) ;  
LHHSE = 1 - (1-HHSE) fac fac;  
fprintf (fp8"HHSE=%8.4f" ,tWnSE) ; 

3 
e l r e  i f  ((choice == 'q' ) I I (choice == 'Q')) 
i 

factor = L PO integral * rqr~m[L] ; 
fac = 1 -  ( 0 . 5 * f a c t o r * f a c t o r ) ;  
LHllSE = 1 - (1-IRISE) fac * fac;  
fprintf (fp , "HHSE=%8.4fW ,WMSE) ; 

1 
e1.e i f  ((choice == ' v ' )  I I  (choice == 'V')) 
i 

factor  = L 10 integral rqrumCLl ; 
fac  = 1 - (0.6 factor factor) ;  
LHHSE = 1 - (I-IMSE) fac fac;  
fpr intf  (fp, "HHSE=%8.4f O0 ,LMSE) ; 

3 
e lse  f printf (fp , "\n PBOGBUI SOT AVAILABLE FOB SIGIAL SETw) ; 
fflruh(fp) ; 
i f  ( I  == 8) && (L == 3) 
i 

rcuri  ("%rU .f i le-nl) ; 
f l  = fopen(fi1e-nl,"w"); 
i f  (f 1 == IIVLt) printf ("Cannot open Fi lew) ; exi t  (1) ; 
rprintf (f ile-nla, "%r%c", f i l e a ,  'a' ) ; 
f 2  = fopen(fi1e-nlaSMv"); 
i f  (12 == P(ILL) 
i 

printf ("Cannot open File") ; exi t  (1) ; 
3 



............................................................. 
/********** CIIVO - Taken from: Iumerical Reciper in C ****/ 
/********** Altered to invert complex matricer *+*I#/ 
/********** instead of just real matrices *+**/ 
............................................................. 
#include <rtdlib .h> 
#include <rtdio.h> 
#include <math .h> 

typedef rtr~ct FCOHPLEX C 
double r , i ; 
3 fcomplex; 

fcomplex ~add() ,Csub() ,Cmnl() ,Cdiv() , E m ( )  ,Complex() ; 
double Cabs ( ) ; 
............................................... 
/8888888*88888888 LWKSB ...................... 

void lubkrb(A,I,indx,b) 
f complex A CIIAXTAPS+l] D(AXTAPS+l] . bCHAXTAPS+l] ; 
int I, indxCHAXTAPS+ll; 
< 
int i* ii=o* ip, j; 
fcomplex rum; 

for (i=l ; i<=l; i++) 
C 
ip = indx ti1 ; 
rum = b Cipl ; 
bCip1 = bCi1 ; 
if (ii) 
for (j=ii; j<=i-1; j++) sum = Csub(rum,Cmul(ACil Cjl ,bCjl)) ; 

else if (Cabr(rum)>0.000) ii= i; 
b[i] = rum; 

3 
for (i=n;i>=l;i--1 
C 
rum = blil ; 



fo r  ( j= i+l ;  j<=E; j++) arm = Csub(rum,bul(ACil Cjl ,bCjl)) ; 
i f  ( Cabr(ACil[il) > 0.00) 
< 

bCil = Cdiv(rum,ACiI I i l ) ;  
3 
e lse  b [il =sum; 

3 
1 
................................................ 

< 
int i, imax, j, k; 
double big, dm,  temp; 
double *vv , *vector ( ; 
f complex rum, dtm2 , -3; 
void nrerror( 1, f roe-vector ( ; 

vv = vector(1 ,HI; 
*d = 1.0; 
f o r  (i=l;i<=E;i++) 
< 

big = 0.0; 
fo r  (j=i;jc=n;j++) 
< 

i f  ((temp = Cabr(ACi1 Cjl)) > big) big = temp; 
3 
i f  (big == 0.0) nrerror("Singular matrix in routine LUDCIIP"); 
vvCi1 = 1 .O/big; 

3 



rum = Cmb(rum,Cmul(ACil W ,Aw Cjl) )  ; 
rCi1 UI = r=; 
i f  ((durn= wti] Cabs(sum)) >= big)  
i 

b i g  = dum; 
irar = i; 

1 
1 
i f  (j!=imax) 
i 

f o r  (k=l ;k<=P ;k++) 
< 

dum2 = ACimaxlW; 
r c i p l t ~ l  W = rCj1 W; 
A C ~ I  w = d m ;  

1 
*d = - (ad); 
vv C h a d  =vv C jl ; 

3 
inaxcj1 = imax; 
i f  (caba(ACj3 [ j l )  == 0.0) /***** Question **/ 
< 

pr in t f  (w\nTIPIfi~d",  j ) ; 
pr in t f  (%A = %8.4f+%8.4fj",ACjI Cjl .r,Atj] Cj] .i); 
A C j ]  Cjl .r = ?In; 
ACj]  [j] .i = 0.00; 

3 
i f  (j!=H) 
i 

dum3 = ~omplex(l.O,O.O); 
dum2 = Cdiv(dum3,ACj~Cj~); 
f o r  ( i= j+ l ; i<=l ; i++)  A C i l  Cjl = ~ m r r l ( ~ C i 1  Cjl , d m ) ;  

3 
3 
free,vector(w ,l , l )  ; 

3 
.................................................. 
/********** matrix Inversion program **********/ 

void ciav(A,y,P) 
i c o m p i e ~  A CHAXTAPS+II I~AXTAPS+II , y CHAXTAPS+II [HAXTAPS+II ; 
int P; 
< 

int i, j ,  indxCHAXTAPS+lI, k; 
fcornpie~ ID CHAXTAPS+I~ CHAXTAPS+II . AA CHU(TAPS+II C~AXTAPS+II ; 
f complex c o l  CHAXTAPS+lI ; 
double d; 
int jHm;  



#def ine HAXS 98 
~ . . .  . . . . .  . . ~  . . . .  

/********* Returns uaif om r.v from 0.0 to  1.0 **+*+*e**/ 
/********* *********/ 
/********* From: lumerical Recipes in C .  Ch.7 pg.207 *********/ 
.............................................................. 
float ran0 ( idum) 
int *id-; 
< 

static  float y, maxran, vCMXS1; 
float dutn; 
static  int iff=O; 

j ;  
w i p e d  int i ,  k; 
void arerror ( ; 

i f  (*idnm < 0 I I i f f  ==O) 
< 



i f f  = 1; 
i = 2; 
do 
i 

k = i; 
i = i << 1; 

1 while ( i ) ;  
m a x r a n  = k; 
rrand(*idrun) ; 
*id\llP = 1; 
f o r  (j=i;j<nAXS;j++) 
d m  = rand(); 

f o r  ( j= l ;  j<UAXS; j++) 
vCj1 = r and0 ;  

1 
j = i + y (MXS -l)/maxran; 
i f  ( ( j  > (HAXS-1)) 1 1  ( j  < 1) )  

nrerr~r(~RABO : THIS CAUUOT UPPm") ; 
y = vCj1; 
vCj1 = rand0 ; 
return(y/maxran) ; 

1 

#define H i  269200 
#define I A l  7141 
#define I C l  64773 
#def ine Bnl (1 .O/Ul) 
#define 112 134456 
#define I12 8121 
#define IC2 28411 
#define ~ n 2  (i.o/n2) 
#define U3 243000 
#define 113 4661 
#def ine IC3 61349 
..................................................................... 
/********** rat- a tmifomly distributed r .v from 0.0 t o  1.0 ****/ 
/********** Set idum t o  any negative value t o  i n i t i a l i z e  or ****/ 
/********** re in i t ia l ize  the sequence. *++*/ 
/********** From: lumerical Recipe8 in C. Ch.7 pg 210 ****/ 
..................................................................... 
f loa t  rani (idrun) 
int *id= ; 
< 

s t a t i c  long i x l ,  ix2, 1x3; 
s t a t i c  f l o a t  r 1981 ; 
f loa t  temp; 
s t a t i c  int iff=O; 

j ;  
void =error( ; 



if ( * i b  < 0 I I  i f f  == 0) 
C 

i f f  = 1; 
i x l  = (ICl-(*id-)) % Hi; 
i x i  = (IAI*~XI+ICI) % n i ;  
i.2 = i x l  Y, n2; 
1x3 = it1 % n3; 
f o r  ( j= i ;  j<=97; j++) 
C 

i ~ i  = (IAI*IXI+ICI) Y, n i ;  
ix2 = (IA2*ix2+IC2) % n2; 
r [jl= (ixi+ix2*RH2)*~1; 

1 
*ib = 1; 

1 
i x l  = (1~l*ixl+IC1) Y, W 1 ;  
ix2 = (1~2*ix2+IC2) Y, n2; 
1x3 = (IA3*ix3+IC3) % n3; 
j = 1 + ((97*ix3)/H3) ; 
i f  (j>Q7 I I j <I)  nrerror ("RAP1 : This cannot happen" ; 
temp = rtjl; 
r [j] = (ixl+ix2*Bn2)*Bnl; 

........................................................ 
/**** Return8 a normally distributed deviate with ****/ 
/**** zero-mean and unit variance, using ranl (idum)****/ 
/**** as the source of uniform deviates ***e/ 

/**** From Pumerical Recipes in C. Ch 7.3 pp.216-7 ****/ 
, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ., 
f loa t  gasdev(idum) 
i n t  *idam; 
C 
s t a t i c  int i se t  = 0; 
s t a t i c  f loa t  grot ; 
f loa t  fac,  r, v l ,  v2; 
f loa t  ranl ( ; 

i f  ( i s e t  == 0) 
C /* Ye don't have an deviate handy 80 */ 

do 
C 

, . .  

/** pick two uniform numbers in the square a r t -  **/ 
/** ending from -1 t o  +i in each direction **/ 
/** See i f  they are in the unit c i rc le ,  i f  not **/ 
/** t r y  again **/ 
.................................................... 
vl  = 2.0 * ranl(idum1 - 1.0; 
v2 = 2.0 ranl(idum1 - 1.0; 



r = vl * vl + v2 v2; 
3 
while (r>= 1.0); 
fac = mqrt(-P.O*log(r)/r); 
...................................................... 
/** low make the Box-Huller Transformation to get **/ 
/** two normal deviates. Return one and rave the **/ 
/** other for the next time. **/ 
...................................................... 
grot = vl fac; 
...................................................... 
/** Set flag. **/ 
...................................................... 
imet = 1; 
return(v2*fac) ; 

3 
else 

...................................................... 
/** Ye have an extra deviate handy, so m e t  the **/ 
/** flag, and return the extra deviate. **/ 
...................................................... 
iset = 0; 
return(gsat) ; 

typedef mtruct FCOHPLEX ( 
double r , i ; 
3 fcomplex; 

fcomplex Cadd(a,b) 
fcomplex a,b; 
i 
f complex c; 

fcomplex Crub(a,b) 
fcomplex a,b; 
< 



f complex c ; 

f complex Cmul(a,b) 
fcomplex 8,b; 
< 
f complex c; 

f complex Cdiv (a ,b) 
fcomplex 8,b; 
C 
f complex c ; 
double r ,don; 

if (fabr(b.r) >= faba(b.i)) 
i 
r=b.i/b.r; 
don = b.r + r b.i; 
c.r = (8.r + r * a.i)/don; 
c.i = (8.i - r a.r)/dan; 

3 
elre 
i 
r = b.r/ b.i; 
don = b.i + r b.r; 
c.r = (a.r * r + a.i)/don; 
c.i = (a.i * r - a.r)/don; 

1 
return(c) ; 

1 

f complex Complex(re ,id 
double re, im; 
i 
f complex c ; 

c.r = re; 
c.i = im; 
return(c) ; 

3 



double Cabr(z) 
f complex 2 ; 
i 

double x, y, a ~ ,  temp; 

x = fabr(2.r); 
y = fabr(z.i);  
i f  (x==O.O) 8w = y; 
e l re  i f  (y==O .O) an8 = x; 
e l re  if  (x>y) 
i 

temp = y/x; 
am = x rqrt(l.O + temp temp); 

1 
else 
i 

temp = x/y; 
a m  = y sqrt( l .O+ temp* temp); 

3 
re turdam ; 

3 

f complex Conjg(z) 
f complex z ; 
i 

f complex c ; 

f complex Csqrt (2) 
f co~pplex 2 ; 
i 

f complex c; 
doable X ,  yr o n  r; 
i f  ((z.r == 0.0) \\ \\ (z.i == 0.0)) 
i 

c.r = c . i  = 0.0; 
retrrm(c) ; 

3 
else 
i 

1 = fabs(2.r); 
y = fabr(z.i); 
i f  (x >= y) 
i 

r = y/x; 
o = rqrt(x) * sqrt(O.5*(l.O + rqrt(l.O+r * r ) ) ) ;  



3 
elae 
C 
r = x/y; 
w = sqrt(y) * aqrt(O.6*(r+sqrt(l.O + r * r))); 

3 
if (z.r >= 0.0) 
C 
c.r = w; 
c.i = z.i/(2.0 * w); 

1 
else 
C 
c.i = (2.i >= 0) ? P : -w; 
c.r = z.i /(2.0 * c.i); 

3 
return(c) ; 

3 
3 

f complex Rcmul(x ,a) 
double x; 
fcomplex a; 
4 

f complex c ; 
c.r = x a.r; 
c.i = x a.i; 
return(c) ; 

3 

f complex Arg(z) 
f complex z ; 
C 
f complex c; 
c.r = z.r/Cabs(z) ; 
c.i = z.i/Caba(z) ; 
retuxn(c) ; 

3 

............................................................. 
/********* Utility program: Pumerical Recipes in C ********/ 
............................................................. 



void nrerror (error-text 
char error-text 0 ; 
C 
void exit0 ; 

f printf (at&rr ,"lmrarical Bacip.8 run-time error. . \ll") ; 
fprintf (rt&rr,n%m\n" ,error,text) ; 
fprintf (mtderr,". . .now exiting to myatam.. .W) ; 

double *vector(nl,nh) 
int nl. nh; 
C 
double *v ; 

v= (double * )malloc ( ( w i p e d  
if ( !v) nrerror 
return(v-nl) ; 

.) (nh-nl+l)*rizeof (double)) ; 
'("~ocation failure in vector()") ; 

void f ree,vector(v ,nl ah) 
double *v; 
int nl* nh; 
C 
free((char*) (v+nl)) ; 

3 


