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Abstract

A technique for combining equalization and differentially coherent detection is pro-
posed for use in wireless communication when carrier phase recovery is difficult. A
decision-feedback differentially coherent scheme, which generates an improved refer-
ence phase, is combined with a linear equalizer and the LMS algorithm is used to
adapt the equalizer to an unknown channel. In addition, the proposed receiver is
simulated for various two-dimensional signal constellations over multipath channels.
It is shown that for high SNR, the degradation of this structure is negligible with
respect to combined coherent detection and equalization. Therefore, this equalized
differentially coherent detection scheme can be used when carrier phase tracking (i.e.

coherent detection) is difficult and intersymbol interference is a major obstacle.



Résumé

Cette these propose une technique combinant I’égalisation et la détection cohérente
différentielle pour la radiocommunication quand le rétablissement de la phase du
signal porteur est difficile. Un systéme cohérent différentiel a rétroaction améliorant
la phase de référence est combiné a un égalisateur linéaire. La procédure “CMM?” est
ensuite utilisée pour adapter 1’égalisateur a un canal inconnu. De plus, une simulation
du récepteur est faite avec des constellations de signaux a deux-dimensions pour des
canaux multi-routes. Il est démontré que, pour un grand RSB, la dégradation de la
performance de cette technique est négligeable par rapport a la combination classique
de la détection cohérente et de 1'égalisation. Donc, cette technique de détection
cohérente différentielle égalisée peut-étre utilisée quand la poursuite de la phase du
signal porteur (c.a.d. la détection cohérente) est difficile et que l'interférence entre

symboles est une probleme majeur.
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Chapter 1

Introduction

Recent years have witnessed an increased interest in bandwidth efficient modulation
schemes. The simplest and most widely used technique for achieving high ba.ndwidti1
efficiency is based on two-dimensional modulation formats [1]. With these schemes,
demodulation is usually performed coherently, which means that carrier phase track-
ing is necessary. In many situations (such-as communication over fading multipath
channels, or short burst communications such as TDMA or Frequency Hopping), car-
rier phase tracking is a difficult task, and thus noncoherent demodulation techniques
have to be used. The noncoherent demodulation methods for two-dimensional formats
are based on differentially coherent techniques, and thus the phase information has
to be differentially encoded. In these schemes, carrier phase tracking is not necessary;

however, this is achieved at the expense of SNR performance.

In the last year, new differentially coherent detection techniques have been
introduced [2]-[5]. The chief merit of these detection schemes is their low SNR degra-
dation with respect to corresponding coherent detectors. One of the potential appli-
cations of the new differentially coherent strategies is for Indoor Wireless and Mobile
Communications. In these systems, intersymbol interference due to multipath is a

major problem. Therefore, the extent to which the new differentially coherent de-



tection techniques can be suitable for these applications depends on the performance
of these schemes in an intersymbol interference environment, and the possibility of
combining them with equalization. This subject has not been considered yet (as far

as we know), and this work makes a first step in this direction.

Two-dimensional modulation, where the data is encoded into the phase and
amplitude of a sinusoidal carrier has been extensively studied in [1], [6]-[11]. In this
work, Phase Shift Keying (PSK), Quadrature Amplitude Modulation (QAM) and
V29 signal constellations [12], [13, page 243] will be used in a combined amplitude
and differential phase modulation scheme, which uses amplitudes and phase differ-
ences to convey information. This modulation scheme is used instead of combined
amplitude and phase modulation because the differential phase encoding enables the
use of differentially coherent detection. Differentially coherent detection simplifies
the receiver structure significantly since no phase tracking is performed and thus,
is very attractive when carrier phase tracking is difficult. However, it has an SNR
performance degradation compared to coherent detection that approaches 3 dB for
MPSK (M >2) As a result, we propose to use the decision-feedback differentially
coherent detection structure of [2] because of its low SNR degradation and relatively
low complexity. Our objective is to consider this scheme over ISI channels, while
focusing on the multipath environment. The decision-feedback differentially coherent
detector of {2] can be naturally combined with known equalization techniques, while
the other proposed differentially coherent detectors [3]-[5], seem to require special

equalization methods.

In this work, we consider linear equalization, because of its reduced complex-
ity. In addition, the Mean-Square-Error (MSE) criterion is used to find the optimum
linear equalizer for known channels. However, in practice, the multipath characteris-
tics of these channels are usually not known so that adaptive equalization is necessary.

Therefore, we also consider the Least-Mean-Squares (LMS) adaptation algorithm [14],



mainly because of its simplicity and robustness and also because it is one of the more

popular algorithms used in practice.

This thesis is organized along the following lines. Chapter 2 presents the
rationale of combining linear equalization with decision-feedback differentially coher-
ent detection, and introduces the system model. In Chapter 3, the minimum MSE
(MMSE) and optimum equalizer coefficients are derived for known channels, taking
into account reference phase errors, and numerical results are presented for some mul-
tipath channels. In Chapter 4, the LMS adaptive algorithm is used for adapting the
equalizer to an unknown channel and Adaptive Mean-Square-Error (AMSE) simu-
lation results are presented. Finally, Chapter 5 states the conclusions and suggests
further work. This is followed by a bibliography of related articles and two appen-
dices. Appendix A presents an overview of the overall computer program and lists
the MMSE program file and a sample test case. Appendix B lists the AMSE program

file, a sample test case and additional program files.



Chapter 2

Combining Equalization and
Decision-Feedback Differentially

Coherent Detection

The subject of this chapter is the integration of linear equalization with differentially
coherent detection. Section 2.1 discusses the need for differentially coherent detection
and linear equalization in a communication system. Section 2.2 describes the base-
band system model, including the proposed receiver which combines an improved
differentially coherent detection structure with a linear equalizer. Finally, Section
2.3 focuses on the advantages of this proposed receiver over conventional coherent

receivers which combine coherent detection and linear equalization.



2.1 Equalization and Decision-Feedback Differen-

tial Coherent Detection

Any communication system consists of three components: transmitter, channel and
receiver. The main objective in any communication system is to transmit information
as accurately as possible. The transmitter encodes the discrete-time information into
a continuous-time signal which is transmitted over the channel. The receiver must
recover the information from the received signal which is a distorted version of the
transmitted signal. This distortion is due to the channel. Channel distortion can be
generated by noise, fading, as well as time-dispersion. Therefore, the transmitter and

receiver have to be designed with the communications channel in mind.

An important parameter of a communication system is the method by which
the information is encoded into the transmitted signal, the modulation method. Much
attention has been given to two-dimensional modulation, where the data is encoded
into the phase and amplitude of a sinusoidal carrier [6]-[8], mainly because of its
bandwidth efficiency. A close relative to this amplitude and phase modulation is

amplitude and differential phase modulation.

Differential phase modulation structures the sinusoidal carrier such that car-
rier phase differences and not actual carrier phases convey information [15]. Thus,
carrier phase tracking, which tracks absolute phases, is not necessary at the receiver
since phase differences between successive signals (and not the absolute phases of the
signals) convey information. The phase encoding adds little to the complexity of the
transmitter. In this work, combined amplitude and differential phase modulation,

with differentially coherent detection, is considered.

A differentially coherent detector estimates the transmitted information by
making use of phase differences between successive symbols. In the absence of channel

distortion, differentially coherent detection is an attractive alternative to coherent



detection especially when carrier phase recovery is difficult. It has been successfully
applied with PSK modulation, particularly for binary PSK (BPSK) signal [16, page
174]. This gives an extremely simple receiver for BPSK with a small degradation
in performance. However, for MPSK (M>2), it gives an SNR degra.datibn that
approaches 3 dB as M increases. In [2], an improved differentially coherent detection
technique was introduced. The proposed differential receiver structure uses past phase
decisions to modify L previous received samples. These modified samples were then
summed to give an improved phase reference. This strategy can be considered as an
open loop version of a coherent receiver with decision-feedback carrier phase tracking.
It was found that the performance of this improved differentially coherent detection

approaches that of coherent detection for high SNR.

As stated earlier, the channel distorts the transmitted signal. In a time-
dispersive channel, the effect of each transmitted symbol extends beyond the time-
interval used to represent that symbol. This is due to the dispersion effect of the
channel which broadens pulses and causes them to interfere with one another. The
distortion caused by the resulting overlap of received signals is called intersymbol
interference (ISI). Its effect is most easily described in an equivalent baseband pulse

amplitude modulation (PAM) system. Such a system is shown in Figure 2.1.

()= 3 o]t ~iT) = Chamne g i(t+kT)
J=-oc0 g

Figure 2.1: A Baseband PAM model

In Figure 2.1, é(t) is the Dirac delta function and the “channel” includes the
effect of the transmitter filters, the transmission medium and the receiver filters. The

channel’s impulse response is §(t) and the input signal #(t) is a sequence of data



symbols a[j] which are transmitted at instants §T through the channel where T is the
signaling (or symbol) interval and “is used to represent the complex envelope (CE)

notation. Therefore, the CE of the received signal §(t) is given by

§(t)= 2 aljil§(t-j7T) (2.1)

j=—o0

If the received signal is sampled at instant kT + 1o, where ¢y accounts for the channel

delay and the sampler phase, we get

§to+ kT) = a[k]§(to) + 2 alil§(te + kT —jT) (22)
N— o igk
desived term 1 _ oo # "
1s1
The IS1 is induced by §(to +:T'), ¢ # 0. The ISI is zero if g(to +:T')=0,  # 0; that is,

if §(t) has zero crossings at T-spaced intervals. When §(¢) has such uniformly spaced
zero crossings, it is said to satisfy Nyquist’s criterion {13, page 157]. The criterion
specifies a frequency-domain condition on the received pulses for zero ISI. It can be

expressed as:

- @ . k 1
G = Gf-=)=T < —= 2.3
P)= & GU-g)=T for S5 (2.9

where G(f) is the channel frequency response (i.e. the Fourier transform of §(t)),
Gr(f) is the folded channel spectral response after symbol-rate sampling and the

frequency band |f| < 3% is the Nyquist or minimum bandwidth.

One class of pulse shapes which are ISI-free and commonly used, is the raised-

cosine family with cosine roll-off around |f| = 2. It can be expressed as

t ant
i sm(1rT cos(T)

where a is the roll-off factor with a value between 0 and 1. From [13, page 158, the
transfer function G(w) of §(t) (w = 2x f) is given by

T 0< jw| < &
Gwy=1{ X (1-sin [l(|w| - 1)] ) SEcwsEE (25
2 2a T
0 w| > ek



G(w) and §(2) for a = 0,0.3,0.6, 1.0 are shown in Figures 2.2 and 2.3. It is easily seen
that these frequency responses G(w) satisfy Nyquist’s criterion, and thus there is no
ISIL. In practice, the effect of ISI can be seen from a trace of the received signal on
an oscilloscope with its time base synchronized to the symbol clock. For a two-level
PAM system, if the channel satisfies the zero ISI condition, there are only two distinct

levels at the sampling instant.

Although the transmitter and receiver are designed so that Nyquist’s criterion
is satisfied, in practice, the channel distorts the signals so that actually the criterion
is not satisfied and ISI results. As a result, equalizers, which are designed to deal
with ISI, are used [17]. The objective of an equalizer is to reduce the effects of ISI on

the process of data recovery from the received signal.

Equalizers which use delays and tap-gain multipliers, and operate in the time~
domain are known as discrete-time filters. In these, current and past received signals
(and maybe past receiver decisions) are weighted by different tap-gains, and used
to reduce the ISI at a particular time instant. There are two categories of discrete-
time equalizers, namely linear transversal equalizers and decision-feedback equalizers
(DFEs). In linear transversal equalizers, current and past values of the received signal
are linearly weighted by the equalizer taps and summed to produce an output. These
equalizers are usually implemented with a finite number of taps for physical reasons,
i.e. as a finite impulse response (FIR) filter. As a result, they cannot remove all ISI.
In addition, a linear equalizer introduces gains at those frequencies where the folded
channel has loss and this gain amplifies noise at those frequencies. Thus, the noise
power at the equalizer output is larger than if the linear equalizer was not present, i.e.
noise is enhanced by the linear equalizer. Nevertheless, linear equalizers are used in
practice since they are good approximations to the ideal filter for a sufficient number
of FIR filter taps and can be used in an adaptive mode. DFEs are recursive nonlinear

equalizers that make use of past receiver decisions and are comprised of a forward
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Figure 2.3: §(t) which satisfy Nyquist criterion
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and feedback filter. The forward filter is similar to a linear transversal filter. Its
function is to eliminate precursor ISI (samples of the pulse response before the main
lobe) while the function of the feedback filter is to cancel the postcursor ISI (samples
of the pulse response after the main lobe), see Figure 2.3. In addition, DFEs do not
enhance noise as much as linear equalizers and are less sensitive to sampling phase
errors. However, DFEs suffer from feedback error propagation. Therefore, they are

more difficult to use in adaptive mode due to this lack of guaranteed stability.

This work considers linear equalization for systems that employ differential
detection. This subject has been given consideration in the literature [15], [18]-[20].
A linear equalizer following a differential detector as in [18], has the difficult task
of equalizing a nonlinear channel due to the quadratic nature of the channel depen-
dent terms at the differential detector output. As a result, a linear equalizer cannot
effectively equalize the channel, and non-linear equalization techniques should be con-
sidered. Therefore; a linear equalizer should precede the differential detector as in [15],
since it has to equalize a linear channel. In [19], a scheme for adaptive equalization
of incoherently demodulated signals was presented. In the scheme, a linear equalizer,
placed after an envelope detector, was used to make an estimate of the ISI due to
multipath fading and acted as an ISI canceller (i.s.i.c). In addition, differential phase
estimation and phase tracking estimation were both used in the receiver structure.
Also, the equalizer structure had complex tap-gains and real input values, instead of
the usual complex tap gains and complex input values, which reduced the system com-
plexity by fifty percent. However, in this scheme, the linear equalizer has the difficult
task of coping with the nonlinearity introduced by the envelope detector. Adaptive
equalization for differential coherent reception in the presence of channel distortion
was also studied in [20]. A linear equalizer, with seven taps, was placed before a
differential detector and differential data encoding was performed by multiplying the
previously transmitted data symbol by the current data symbol. Simulations were

done at high SNR for BPSK and QPSK. Similar rates of convergence were shown for a

11



coherent receiver and the differential detection receiver. However, the MSE obtained
for the differential case was about 3 dB larger than that obtained in the coherent

case. We intend to solve this problem by using the improved differentially coherent

detection technique of [2].

In {2], an improved differentially coherent detection receiver was introduced
for an ISI-free additive white Gaussian noise channel. The main advantage of this
differentially coherent detection technique is its negligible degradation with respect
to coherent detection. With ISI, there is need for an equalizer as well. By placing
a linear equalizer before differentially coherent detection, the effects of the ISI can
be reduced and detection is performed on an almost ISI-free signal. Furthermore,
equalization is performed without the need for carrier phase tracking, improving the

robustness of the system to carrier phase noise, and carrier phase hits.

2.2 Baseband System Model

The baseband model (complex envelope) for the system considered in this work is
shown in Figure 2.4. In this work, continuous-time signals use ( ) brackets and
discrete-time signals | ] rectangular brackets. Figure 2.4 will now be briefly described:

The system is composed of three conceptual parts: transmitter, channel and receiver.

2.2.1 Transmitter

The transmitter model consists of a differential phase encoder followed by a trans-
mitter filter gr(t). Let us consider two dimensional modulated data signals specified
by the complex envelope (CE) notation. The CE of the transmitted signal is given
by

)= 3 blkeHgp(t — kT) (2.6)

k=-~oc0

12
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where b[k]e##¥] are the amplitude and differentially phase-encoded data transmitted

at time instant kT and T is the duration of a symbol interval.

Amplitude and Differential Phase Modulation

Symmetric signal constellations e.g. PSK, QAM, V29, are commonly used for two-
dimensional modulation. In this work, the symmetric constellations shown in Fig-
ure 2.5 are used and each constellation point is specified by an amplitude b and phase
¢. In our scheme, the transmitted phase data is differentially encoded so that phase
differences and not absolute phase values convey information. The encoded phase
#[n] is given by

¢ln] = dln — 1] ® pln] @

where @ means phase addition modulo 2r. Therefore, the transmitted amplitude
and differential phase encoded information symbols are b(n]e’#™ where b[n]ei*!™ (=
a[n] = a,[n] + ja;[n]) are the actual data symbols and a,[r] and a;[r] are the real and

imaginary components of the actual data respectively.

The average power E[b?[n]] of each constellation is normalized to unity.
Therefore, all points in a MPSK constellation will have unit amplitude with each
point k having a phase of 25 where k = 1,...,M. In a 4PSK system, b[n] = 1
and ¢[n] assumes values from the set of (0,%%,). In addition, the minimum Eu-
clidean distance dpmi, for this constellation is /2. For 8PSK, @[n] assumes values

from (0,+%,+%,+2%, ) and the minimum distance is 0.7654.

For the 16QAM system, a,[n] and a;[n] are first chosen independently from
the set [1,+3]. The average signal power is normalized to one and the signal points
are rescaled accordingly. Therefore, b[n] assumes values from (715-, 1, 73;) and @[n]
(and not ¢[r]) from the set of (0, +0.17, +0.257, +0.47, +0.67, £0.75x, £0.97, =)
depending on which signal point is transmitted. In addition, the minimum distance

between any two signal points is equal to 0.6325.

14
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Figure 2.5: Symmetric Two-Dimensional Signal Constellations

The 8V29 constellation consists of two sets of QPSK signals on different circles
where the outer circle has a radius 7"’; times that of the inner radius. Also, the two
QPSK constellations are out of phase by 5. Thus, b[n] assumes values from the set
of (A, ’7@) and ¢[n] from (0, +%, £3, £, ). In addition, its minimum distance
is equal to 0.8528.

The 16V29 constellation consists of four sets of QPSK signals on different
circles where the second circle has a radius 7‘"-2- times that of the inner radius, the
third circle has a radius v/2 times that the second and the fourth is ﬁ; times that
of the third. Also, QPSK constellations on odd circles are out of phase with respect
to QPSK constellations on the even circles by §. Thus, b[n] assumes values from the

set of (ﬁ,%,%,%) and ¢[n] from (0, %, £, £32, ). Finally, its minimum

15



distance is equal to 0.5443.

Transmitter Filter

The transmitter filter is a pulse shaping filter with a real impulse response §r(t). The
desired overall impulse response §(t) (= gr(t) * gc(t) * Gr(t) where * denotes convolu-
tion.) is a Nyquist raised-cosine response with roll-off factor , assuming jc(t) = §(t).
Also, the transfer function of the desired Nyquist raised-cosine response is divided
equally between the transmitter and the receiver filters. Thus, the transmitter filter
is designed so that its transfer function Gr(w) is equal to 1/G(w) where G(w) is the
transfer function of the desired Nyquist response §(t). In our model, the roll-off factor
« is set to zero so that the raised-cosine Nyquist response has zero excess-bandwidth.

Therefore, the transmitter’s impulse response §r(t) can be expressed as:

gr(t) = —%)T—) (2.8)

and the transfer function Gr(w) is given by

- T
Gr(w) = { lf: s (2.9)

Rl

2.2.2 Channel

The channel response is represented by the complex impulse response §c(t) and ad-
ditive white Gaussian noise 7i(t). A multipath channel model is used. Thus, the

complex impulse response gc(t) can be expressed as

N,
gc(t) = Z_: pli)e®8(t — 7[3)) (2.10)

where N, is the number of paths in the channel, p[i] is the amplitude attenuation in

path 2, 8[z] is the phase-shift in path : and 7[i] is the relative signal delay due to path
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t. Consequently, the receiver input, #(¢) can be expressed as
7(t) = 3(t) * g (t) + A(1) (2.11)

where 3(t) is the transmitted signal, gc(t) is the channel impulse response and 7(t)
is additive white Gaussian noise with zero-mean and Ny [Watt/Hz] power spectral

density of the real and imaginary component.

2.2.3 Receiver

The baseband equivalent receiver consists of a filter with impulse response §g(t)
followed by a sampler. The sampler is followed by a linear equalizer and then by the

decision-feedback differential coherent detection structure of [2].

Receiver Filter

As previously stated, the transmitter and receiver filters are designed so that the
overall response in an ideal channel is a Nyquist raised-cosine response. In addition,
the desired Nyquist transfer function is divided equally between the two filters, which
gives an optimal receiver structure for an ISI-free channel. Thus, the receiver filter

has transfer function Gg(w) which is given by

Gr(w) = Gr(w) = \/G’(w) (2.12)

where G'r(w) is the transfer function of the transmitter filter impulse response, which
is given in (2.9) and G(w) is the transfer function of the desired overall response.

Using (2.11), the receiver filter output §(t) is given by

§(t) = {3(2) * Go(t) + A(t)} * gr(t) (2.13)

where 3(t) is the transmitted signal, §o(t) is the channel impulse response, #(t) is the

channel additive white Gaussian noise and gr(t) is the receiver filter impulse response.
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Thus, the receiver filter output can also be expressed as

i)=Y Hkle#Mg(t - KT) + finlt) (2.14)
k=-00
where
§(t) = gr(t) * go(t) * 3a(t)
and

wnlt) = | e~ n)aa(r)ir

Therefore, the noise fig(t) has zero-mean and power spectrum density
= 2
P(w) = 2No|Gr(w)| (2.15)
where Gr(w) denotes the Fourier transform of ga(t). Sampling the received signal
#(t) at t = nT, the discrete-time output y[r] can be expressed as:

y[n] = i b[k]ej"’["]g[n — k] + ng[n] (2.16)

k=—co

where g[n — k] = §([n — k]T), ngr[n] = igr(nT) and b{k]e’** are the amplitude and
differentially phase-encoded data transmitted at time instant k7.

Linear Equalizer

The linear equalizer has 2N +1 complex taps and equalizes both in-phase and quadra-
ture components using its real and imaginary taps. The input to the linear equal-
izer is given in (2.16). The adaptive digital equalizer has complex coeficients ci[n]:
k= —=N,...,0,...,N where ¢o[n] is the reference tap and [n] corresponds to a par-
ticular symbol interval or iteration. Thus, the equalizer output z[n] is given by:
| N
zln]= D clnlyln — k] (2.17)
k=-N

There are many criteria for obtaining the optimum linear equalizer coefficients for a

known channel. The peak distortion criterion would have been sufficient if only the
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IST is to be minimized [21). However, the noise must be taken into account. Therefore,

the Mean Square Error(MSE) criterion is used.

For an unknown or time-varying channel, the equalizer must adapt itself. The
speed and stability of convergence are important factors which must be considered
in choosing an adaptive algorithm. In fact, many different adaptive algorithms exist
and a survey on adaptive equalization can be found in [22]. One adaptive algorithm
is the Least-Mean-Squares (LMS) gradient algorithm, which was proposed in [14] and
has been extensively used in the last few decades. In this work, the LMS algorithm
is employed because of its simplicity and robustness and is the subject of Chapter
4. Finally, there has been recent work on faster-converging algorithms [23]-[25], and
these algorithms are briefly discussed in Chapter 4.

Decision-Feedback Differentially Coherent Detection

We use an improved differentially coherent detection structure, introduced in [2] which
can reduce the SNR degradation with respect to coherent detection. The principles

on which this detection strategy rely on will now be discussed.

One way of interpreting a differentially encoded scheme is in terms of phase
references. Differential phase encoding preprocesses the signal such that the required
phase reference for estimating the information is carried by the previous symbol.
Therefore, in differentially coherent detection, there is no need to establish an absolute
phase reference, since the previous symbol phase is used for that. This simplifies
the receiver structure when compared to coherent detection which requires carrier
phase tracking. However, this is achieved at the expense of a loss of about 3 dB in
performance relative to coherent MPSK(M> 2). This is because in a differentially
coherent (DC) scheme, the phase reference is impaired by channel noise in the same
way as the information phase. Therefore, in a DC scheme, detection is performed with

a noisy phase reference, and when compared to ideal coherent detection, where the
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phase reference is noise-free, it gives a degradation in performance. Quantitatively,
in a DC scheme, the SNR of the reference signal is the same as the SNR of the
information signal. In a coherent scheme, the SNR of the reference signal is infinite
(ideal coherent case) and the SNR of the information signal is finite. Thus, the DC
detection technique can be generalized so that the reference signal is extracted from
a number of past symbols which results in smoothing the channel noise. Using this
method, the SNR of the reference signal is increased and the performance should

approach that of a coherent scheme. This is the approach used in [2].

The differentially coherent detection structure generates a reference phase by
summing the aligned past L equalizer outputs z[n — L], ..., z[n — 1]. Each of the
previous L equalizer outputs, except the most previous one, i.e. z[n — 1], has its
phase incremented by the sum of the phase decisions ¢'s of the signals between it and

z[n — 1). Therefore, the aligned equalizer outputs z/[n — i} ¢ = 2,..., L are given by

2[n —i] = z[n — i] exp [j i oln — k]] (2.18)

k=1
Summing the z'[n —i], ¢ = 1,..., L where 2'[n — 1] = z[n — 1] gives
_ L L izl
v[n] = |v[n]|ePM = d 2 n—il=)_zn—i] exp [ Y oln — k] ] (2.19)
i=1 i=1 k=1

The result of this coherent summation of the equalizer outputs, v[n], has a larger SNR
due to the smoothing of the noise and as a result, its phase [n] is a better estimate
of the exact phase reference ¢[n — 1]. The reference phase estimate B[n] is then
subtracted from the phase of the equalizer output z[n]. Thus, the decision variable
presented to the threshold detector is z[n]e=38l"). The threshold detector generates an
output decision symbol bei® which minimizes the squared error |z[n]e=l"] — bei®|2.

The error €[n] is then used to adapt the equalizer coefficients.

The reference phase estimation process derived above was analyzed for an

additive white Gaussian noise channel in (2] for MPSK. In the alignment of the

vectors, actual information phases ¢[n — k])}EZ} are used. In practice, the receiver
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operates in a decision-feedback mode (i.e. ¢’s used in the alignment process would be
the ¢ decisions on previous phases). To simplify the analysis, the feedback decisions
are assumed error-free. The effect of errors in the feedback decisions would be to
reduce momentarily the SNR of the reference signal which obviously depends on L.
For small L, a decision-feedback error is more noticeable. However, the persistence
time of this effect is only L symbols and is thus short. For L=1, this is just the
double error effect in DC receivers. For large L, a decision-feedback error is not very
noticeable since the SNR reduction in the reference signal is small. However, the

effect lasts for L symbols.

2.3 Comparison with Equalization and Coherent

Detection

The advantages of our “differential” receiver, which combines an improved differen-
tially coherent detection scheme and linear equalization, over conventional “coherent”

receivers, which combine coherent detection and equalization, will now be discussed.

The first advantage of the differential receiver is that it can be used in fading
multipath channels where carrier phase tracking is difficult. This is because the
proposed differential receiver avoids carrier phase tracking with little performance
degradation. If a coherent receiver were employed, carrier phase tracking would be
quite complicated since carrier phase recovery is very difficult in these channels and
since there is coupling between the phase estimation and equalization which affects
the system performance. Therefore, the improved differentially coherent detection

scheme is very attractive for fading multipath channels.

The second advantage of the differential receiver is that it can be used in burst
communication. In burst communication, data is usually transmitted in short bursts,

i.e. over a very short time period. As a result, coherent receivers cannot be used
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since there is not enough data for carrier phase tracking. The proposed differential
receiver is ideal for this situation since it does not track absolute carrier phases and

can adapt very quickly to bursts of data.

The third advantage is that the differential receiver employs baseband equal-
ization. Baseband equalization is preferred for many technological reasons and can
be used to compensate for asymmetrical baseband impairments [26]. However, for
coherent receivers, it introduces a delay in decision-oriented carrier phase estimation
loops, which causes inaccurate detection. As a result, passband equalization (which
is more difficult to implement digitally) is usually employed since it allows coherent
receivers to deal with carrier phase tracking more easily. For the differential receiver,
no carrier phase tracking is necessary and therefore baseband equalization (which can
be implemented more easily in a digital fashion) can always be used without any of

the disadvantages associated with coherent receivers.

Finally, the proposed differential receiver avoids phase ambiguities due to
symmetric signal constellations since it assumes that phase differences (and not abso-
lute phases as coherent receivers with decision-directed phase tracking assume) convey

information.
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Chapter 3

Equalization for Known Channels

This chapter analyses the equalized decision-feedback differentially coherent detection
technique of Chapter 2, using the MSE criterion for channels whose characteristics
are known beforehand. Section 3.1 derives the MMSE and optimum equalizer coef-
ficients in terms of the auto-correlation matrix A and the cross-correlation column
vector B. Section 3.2 expresses these two quantities in terms of the channel charac-
teristics, assuming perfect reference phase estimation. Section 3.3 analyzes reference
phase estimation errors and their effects on MMSE calculations. Section 3.4 presents
numerical results. Finally, Section 3.5 concludes the chapter by discussing the MMSE

numerical results.

3.1 MMSE Analysis

In this section, the MSE criterion is used to derive the optimum equalizer coefficients
and the minimum MSE (MMSE) for known channels. All quantities involved in the

analysis are shown in Figure 2.4.

The actual data symbols b[n]e’*!™ are assumed to be statistically indepen-

dent and equiprobable. In addition, the average signal power of each constellation is
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normalized to one. Thus,
E [B*[n)] =1 (3.1)
The optimum equalizer coefficients will now be derived using the MSE criterion. The

equalizer coefficients are optimum if they minimize the MSE :
Ele[n] I

where ¢[n] is the error between the differentially detected equalized output and the

desired data symbol. It can be expressed as

e[n] = z[n]e=BIM — pln)eiein) (3.2)
|
desired signal

where f[n] is the reference phase estimate, i.e. phase estimate of é[n — 1]. Thus,
Eleln] [ = E |z[n}e=#1" — bin]eset[’ (3.3)
Now if ¢[r] = {c_n[n],...,co[n}, ..., cx[n]) |* represents the (2N+1) equalizer

coefficients at the n-th symbol interval and yT[n] = [y[n — N}, ...,y[0],...,y[n + N}],
then (2.17) becomes '

z[n] = ¢ [n] y[n] (3.4)

Substituting (3.4) into (3.3), we get
Elefn] [* = E |¢" [nly[n]e~2 — yn)eieil] (3.5)

After some manipulation,

Ele[n] * = ¢ [n) Acln] — 2Re [¢*T[n] B] + E [¥*[n] (3.6)
where
A=E [y[n] y*[n]] (3.7)
and
B=E [b[n]eivlﬂlg'[n]eiﬂln]] (3.8)
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Thus, it is easily seen that A is the auto-correlation matrix of y[rn] and B is the
cross-correlation matrix between the received data y[n] (phase-shifted by 3[n]) and
the transmitted data symbols bjn]e#*I". The MSE can be minimized by differentiating

with respect to ¢[n] and equating to zero. Therefore

OE|¢[n]?
dc[n]

and the optimum solution is

=2Ac[n]-2B=0 (3.9)

coptln] = A1 B (3.10)
Now, using (3.1) and (3.10) in (3.6), the MMSE {min can be expressed as

bmin=1—B" A'B (3.11)

3.2 MMSE with Perfect Reference Phase

From the previous section, it is seen that B depends on the reference phase estimate

B[n] which is related to the exact reference phase ¢[n — 1] via:
Bln] = ¢ln — 1) + 9n] (3.12)

where 7[n] is the error of this estimator. The random variable n[n] depends on an
ensemble of samples z[k], £ < n — 1, and thus, it is almost uncorrelated with any
single sample y[n — k], —N < k < N. Using this assumption and substituting (3.12)

in (3.8), B can be expressed as:

B =E [b[n]ej”["lg‘[n]eﬁ’("‘l)] E [ej"["]] (3.13)

B = F [b[n]e-""’["]g' [n] l E [ein[ﬂl] (3.14)
B

B = B.E ein[ﬂ]] (3.15)

where B is the cross-correlation vector with errorless reference phase estimation. For

the moment, perfect reference phase estimation will be assumed (i.e. 7[n]=0 and B
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= B). The matrix A and the column vector B will now be simplified in terms of the

overall impulse response and the SNR. From (3.7),

A=E [y[nly"[n)]
where
y¥In} = [yln = N},...,yInl,...,yln + N

and y[n] is defined in (2.16). Thus, for ¢,j = —N,...,0,...,N,

Ai; = ElyIn+iyln+]]

= E [{ fj bln + i — kle=#In+i-Hg*[k] 4+ ng[n + z‘]}

k=-00

X { f: bin + j — )"+ Ag[1} + npln + ;] }]

k=—00 |==00

= E i i bln + i — kjb[n + j — lJe~¢ln+i-kl gitlnti=ll g= k] g[l]}

+2R {E i bln + i — kle##"+=K g*[k] npln + j]] }

k=~co

+E [ng[n + 1] naln + 1]

= (D)+(2)+(3)
1) = > X gkl E [b[n +i—kbn+j— l]e:'{&[»+5-n—¢[n+e_k1}]
k=~-0c0 l==00 (;)
Fori—k#j—1,
4) = E [b[n +i—klbn+j -1 etelnti-l+..+olnti-k+1] }]

= E[pjn+i—klbn+ji-1]E [ej{"[""’j-‘]+...+¢[n+i—k+1] }]
= Efbln+i~Kbln+j—1]] E [er+i-1] ... | [efvintizksl]

o

~
(1] 0

0
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since the ¢’s are statistically independent and E [e’¢] = 0 for symmetrical constella-

tions. Now,fori—k =3 -1,

(4) = E[tln+i— k)
= 1
Therefore,
Ebfn+i—Kbfn+j— leHlrti-T-slnti-k}] — g, ., (3.16)
where 6;; ={ ! ’=J . Thus, using (3.16),
0 i#7
M = 5 ¥ Y ol
= kg_:wg'[k] I=Z_:w 9l61his
= T sHsle-i+]]
(2) = 2R {kf‘; g’k E [b[n +i— k] e~¢nt-M ppln + j]] }

= 2R { i g'lk] E [b[n +1— k] e"j¢["+""’]] E [ng[n + 7] ]}

k=-oc0 o

=0

where the noise ng and data be’* are assumed uncorrelated and 7g(t) is a zero-mean

process.
® = [ 7) r([n + 4T — 7) &(7') gr([n + JIT - 1) deT']
= ./ / E [n () ()] Gr(ln +4T - 7) Gr(ln +j]T — 7') drd7’
2N05(-r-1")
= 2No_/ dr ([n+:T - 7)gr([n +j)T — 1) dr
= 2No6.'j
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since fi(t) is white and §r(t) * gr(t) satisfies Nyquist’s first criterion. Therefore, for

i,j=—-N,...,0,...,N.
A = 5: g [E) glk — i + ] + 2Nodi; (3.17)
The matrix A is Hermitian and positive semi-definite. Now, from (3.14)',
B = E [bjn]e*rly"[n] |

where
BT = [B[-N),...,B[0],...,B|N]]
yT[n] = [y[n—N),...,y[n},...,y[n+ N]]
Thus, for : = =N,...,0,...,N,

Bli] = E [t[n]e’®y"[n +i]]

= F -b[n]e"ﬂ"] { 5_: [b[n +1-— k]e""‘["*"'"]g'[k]] + ngxin + i }]

k=-—0c0 .

L
.

= E| Y bn]bln+i— k] eflelnl-dinti-k}gp)

_k=—oo

+ E [b[n]e™*™] E[ngfn +1]]

The summation and expectation operators can be interchanged since they are linear.

Therefore,

Bl = i glk] E [bln] bln + i — k] eFtéinl-dlm+i-H}]

k=—co0

$0,i—k

= 3 gkl

k=—-o00

Bfi] = g1 (3.18)

using (3.16). Therefore, the errorless column vector B is simply a truncated overall

impulse response vector, i.e. B = [g[-N],...,g[0],...,g[N]].
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3.3 Reference Phase Error Analysis

In the previous section, perfect reference phase estimation was assumed. However, in
practice, phase estimation errors will occur. In our analysis, perfect receiver decisions

are assumed, and estimation errors are due mainly to channel noise and ISI.

From, Section 3.2, only B depends on 5{r] via (3.15). Therefore, the depen-
dence of B (and the MMSE) on the reference phase error 5[n] defined in (3.12) will,
now be found by analyzing E [ej"[“]] . From (2.19),

L -1
o |9 = 3] exp [ 3= pln — ]
=1 k=1
L

= 3 zln - i] expli{#ln — 1) - #fn - i}] (3.19)

=1
Also, the past equalizer outputs can be expressed by :

2[n — i) = b[n — 3] ¥"1 4 g[n — 4] (3.20)

where ¢{n—1] is the equalization error. From [13], for high SNR and with E [b%[n]] = 1,

Elgln-4]] = 0 (3.21)
Eeln—il = NT[™ — i — (3.22)
T ng_:w Ge(f - 'f) + N,
~ N,T o = 4 (3.23)
F Y |-

Substituting (3.20) into (3.19), we get

jo[n] | = {zLj bn — i) + EL: efn — z']e-#l"-ﬂ} eiln-1l (3.24)

=1 =1

= |v[n]|e#léin-1lninl} (3.25)

where

L L
wln)le™ = 3" bjn — i} 4+ 3" e[n — i]e—n-1 (3.26)

=1 i=1
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and n[n] is the phase estimation error. For [n] < 1 and E [5[n]] =0,
i 1
E [eilrl] 1 - 5E [n1n] (3.27)

L
From (3.26), it is seen that n[n] is the phase error of a (real) phasor ) _ bn — i]

i=1
perturbed by noise ie[n - i]c'-“’["""], and thus the results from [2] can be used.
Thus, we fix b{n — 1]‘?.1 ..,b[n — L] and calculate the conditional variance of y[n], i.e.
E[n?[n] | b[n —1],...,b[n — L]]. For high SNR and fixed b[n — 1}, i = 1,..., L, the
asymptotic distribution of 5{n] is Tikonov [2] and the conditional probability density
function (pdf) piin} | bin—1],...b0n— L))(v) can be expressed as :

exp| A[b[n — 1),...,b[n — L] Jcos(v)]
2xlo[A[b[n — 1),...,0[n — L]]] (3.28)

P(nin] |bn—1],...bin—L]) (V) =

where I is the modified Bessel function of order zero and A is the SNR of the (real)
L L

phasor Y _ b[n — i] perturbed by the noise > eln- i]e~3"= which can be expressed

{f. bin — i]},

as :

Afbjn—1},...,bn — L]] = - =1
E|[| Y eln—ile#n=a12 | p[n—1],...,b[n - L]]
=1
(3.29)
L
where the numerator is the power of Y b[n — i] and the denominator is the variance

=1

L
of Y e[n — ile~#"" for fixed b[n — i], i = 1,...,L. Now, the denominator can be

i=1

expressed as

L
E || Y efn —ile -2

i=1

b[n—l],...,b[n—L]]

L L .
= E|Y.Y eln - ile"[n — k|e-i#in-il-¢in-kl}

i=1 k=1

bn—1),...,bn — L]
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L L

= Y. ) Ele[n—ile*[n—k]| bln—1],...,5[n — L]] x

=1 k=1
E [e‘j{"[“"]"’[“"']} I bjn —1],...,b[n — L) ]

=6;3 since Efeiv |b]=0 for:ymmctrieal conastellations.

L
= Y E[leln—ill?| tn—1,...,b0 - L]] (3.30)

=1

where we used the fact that the equalization error €[n — ] is practically uncorrelated

with e#i"=i, Therefore, substituting (3.30) into (3.29), we get

{XL: bin — i]}z

Alb[n=1],...,b[n =L} ] = =1 (3.31)
ZE[le[n—z]|2| bln —1],.. b[n—L]]
and
. N 1
E [n*[n] | bn - 1),.,b[n — L]] = NS IRy (3.32)
L
> E [leln —i] 2] 8ln - 1),., 8[n — L] ]
= = . (3.33)
L
{g b[n — z]}
Therefore,
- i
Y E [leln =] 2| bln —1},...,8n — L]]
E [nz[n]] = E|= (3.34)
{z_; bn — z]}
L 1
o~ Z:Ele[n —iP?.E - . (3.35)
= {Z_; bn — i]}

Here we assumed that E {|e[n —i] [*| b[n — 1], .,8[n — L]] is uncorrelated

with {E bn — z]} For large L, then {2 bjn — z]} ~ [? {E[b)}® ~ K, where K

=1 =1
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is a constant and thus, it is clear that the assumption is valid. For small L, then
E[leln = ]2 | b[n — 1),...,b[n — L] ] ~ E[le|n — 7] |*] since only a small fraction of
signal samples which are stored in the equalizer are fixed, and thus the equalization
error is almost the same as the one obtained when no signal sample is constrained.
Thus, the assumption is valid again. Therefore, with (3.23) the variance of the phase

estimation error is given by

d 1
f y; (3.36)

E [n[n]] = LN,T [_ “

7 %'Fz_:w |C~v’c(f—‘;1—1) l{ZL:I;[n_i]}
Also, from (3.15) and (3.27),
5=B.{1-E[snl]} (3.37)
which shows that
|1B| < |B| (3.38)
The MMSE
bmin=1-8" A'B (3.39)

is larger than the one with B (perfect reference phase estimation). The optimum

equalizer coefficients are
cpln] = A7'B (3.40)

The optimum equalizer coefficients for a known channel can be computed by finding
A1 first. However, there is another numerical way of finding the optimum equalizer
coefficients without inverting the matrix A. This is done by using the MSE Gradient
(MSEG) algorithm [13] :

en+1) = dn)- 5 220 (341)
dn+1] = dn]—A[B - Adn]] (3.42)
cdn+1] = [I+AAldn]- 2B (3.43)
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It should be noted that in (3.43), [n] denotes the number of iterations and not a
particular time instant nT in the data symbol sequence. To ensure convergence, the
step-size A must satisfy
2
0< A< —
Amaz(A)

where Amaz(A) is the maximum eigenvalue of the matrix A.

3.4 Numerical Results

The MMSE was calculated for various 2-D constellations, channels, SNRs, number
of equalizer taps (2N+1) and L (number of equalizer outputs used to generate the

phase estimate of previous transmitted symbol) which are listed below.

e Five constellations: 4PSK, 8PSK, 16QAM, 8V29 and 16V29.
e Five channels: A, B, C, X, and Y.

o Three SNRs(=Z&1nll=.L): 8 dB, 15 dB, and 25 dB.

e Number of equalizer taps (2N+1): 1,3,...,21.

e Values of L used: 1, 2, 3 and 5.

The five channels tested were multipath channels with impulse response given by
(2.10). Multipath propagation, in these channels, can be viewed as signal transmission

subjected to different paths with differing relative amplitude attenuation, phase-shifts
I .
and delays. In addition, if ) pfi] < 1 and p[1]=1, §[1]=0, 7[1]=0, in (2.10), the

=2
channel is minimum phase [24] and has mainly postcursor ISI. In our simulations,
all the channels tested are minimum phase. The five channels and their impulse
responses are listed below. Channels A, B and C each have two paths each, while X

and Y have three and five paths respectively.
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: Go(t) = 8(t) — 0.56(¢ — 0.5T)
: Go(t) = 6(t) — 0.56(¢ — 1.5T)
: Go(t) = 6(t) — 0.58(t — 3.5T)
: §o(t) = 8(t) — 0.36(t — 0.5T) + 0.5j6( — 3.5T)

< M Q & >

: go(t) = 6(t) — 0.36(t — 0.7T) — 0.076(¢ — 1.5T') + 0.0756(t — 1.5T")
+0.16(t — 1.8T) + 0.256(t — 3.5T)

The matrix A and the column vector B had complex values due to the complex
impulse response of the multi-path channels. A zero roll-off factor was used. The
element values of A and B were calculated using the equations (3.17), (3.18), (3.36)
and (3.37). The MMSE calculations were performed by matrix inversion for various
N and L. For each constellation, the squared minimum distance dZ;, between any
two points was compared with the MMSE results to get a better indication of the

system performance.

Tables 3.1-5 list the MMSE results for each constellation with L=1, for various
SNRs and number of equalizer taps (=2N+1). Table 3.6 lists the average gain g in
MMSE (in dB) thi;t is achieved by increasing the value of L for nine equalizer taps.
The average gain p (for a particular SNR and constellation) was calculated as follows:
Assume we want to calculate x for L equal to «, i.e. p,. For each channel C;, the
MMSE result for L=1 was divided by the MMSE result for L=7 to give a MMSE
ratio Q,(C;). The @Q,(C;)s for each channel C; were then summed and the total was
divided by the number of channels tested N, i.e. 5, to give an average @,. To find
¢ in dB, the logarithm to the base 10 was taken and then multiplied by 10. Thus for
a particular SNR, constellation and L=+, we have

N.
By = 10 log,q T\II'ZQ'V(CJ] (3.44)

€ =1

Finally, results for a sample MMSE test case are given in Appendix A.
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Channel A Channel B Channel C Channel X Channel Y

SNR| 8dB | 15dB | 25dB | 8dB | 15dB | 25dB | 8dB | 15dB [ 25dB | 8dB | 15dB | 25dB | 8dB | 15dB | 25dB
2N+1

0.5552 | 0.3160 | 0.2498 | 0.3319 | 0.1987 | 0.1667 | 0.3651 | 0.2226 | 0.1886 | 0.4245 | 0.1948 | 0.1318 | 0.3947 | 0.2046 | 0.1552

0.4600 | 0.1354 | 0.0312 | 0.3135 | 0.1669 | 0.1294 | 0.3647 { 0.2215 | 0.1872 | 0.3925 | 0.1423 | 0.0714 | 0.3445 | 0.1222 | 0.0604

0.4570 | 0.1332 | 0.0284 | 0.2605 | 0.0877 | 0.0399 | 0.3627 | 0.2181 | 0.1832 | 0.3887 | 0.1375 | 0.0664 | 0.3421 | 0.1194 | 0.0575

0.4540 | 0.1285 | 0.0228 | 0.2603 | 0.0846 | 0.0345 | 0.3363 | 0.1760 | 0.1351 | 0.3841 | 0.1330 | 0.0616 | 0.3391 | 0.1167 | 0.0545

O |~ |t |

0.4525 | 0.1267 | 0.0211 | 0.2536 | 0.0716 | 0.0183 | 0.2937 | 0.1097 | 0.0592 | 0.3696 | 0.0989 | 0.0176 | 0.3250 | 0.0864 | 0.0162

11 0.4515 | 0.1254 | 0.0197 | 0.2531 | 0.0711 | 0.0175 | 0.2878 | 0.1011 | 0.0495 | 0.3692 | 0.0984 | 0.0170 | 0.3249 | 0.0856 | 0.0149

13 0.4508 | 0.1245 | 0.0187 | 0.2514 | 0.0680 | 0.0134 | 0.2853 | 0.0976 | 0.0456 | 0.3690 | 0.0980 | 0.0165 | 0.3247 | 0.0851 | 0.0141

15 0.4502 | 0.1238 | 0.0180 | 0.2509 | 0.0676 | 0.0130 | 0.2818 | 0.0851 | 0.0277 | 0.3689 | 0.0976 | 0.0156 | 0.3245 | 0.0844 | 0.0130

17 0.4498 | 0.1233 | 0.0175 | 0.2502 | 0.0664 | 0.0116 | 0.2805 | 0.0827 | 0.0249 | 0.3683 | 0.0957 | 0.0130 | 0.3240 | 0.0829 | 0.0109

19 0.4995 | 0.1228 | 0.0170 | 0.2498 | 0.0661 | 0.0113 | 0.2793 | 0.0805 | 0.0222 | 0.3681 | 0.0955 | 0.0128 | 0.3239 | 0.0827 | 0.0106

21 0.4492 | 0.1225 | 0.0167 | 0.2494 | 0.0655 | 0.0107 | 0.2773 | 0.0756 | 0.0155 | 0.3680 | 0.0953 | 0.0125 | 0.3238 | 0.0826 | 0.0105

Table 3.1: MMSE with L=1, for 4PSK, Squared Minimum Distance = 2.0




%

Channel A Channel B Channel C Channel X Channel Y
SNR | 8dB | 15dB | 25dB | 8dB | 15dB | 25dB | 8dB | 15dB | 25dB | 8dB | 15dB | 25dB | 8dB | 15dB | 25dB
2N +1
1 0.5552 | 0.3160 | 0.2498 | 0.3319 | 0.1987 | 0.1667 | 0.3651 | 0.2226 | 0.1886 | 0.4245 | 0.1948 | 0.1318 | 0.3947 | 0.2046 | 0.1552
3 0.4600 | 0.1354 | 0.0312 | 0.3135 | 0.1669 | 0.1294 | 0.3647 | 0.2215 | 0.1872 | 0.3925 | 0.1423 | 0.0714 | 0.3445 | 0.1222 0.0604
5 0.4570 | 0.1332 | 0.0284 | 0.2605 | 0.0877 | 0.0399 | 0.3627 | 0.2181 | 0.1832 | 0.3887 | 0.1375 | 0.0664 | 0.3421 | 0.1194 | 0.0575
7 0.4540 | 0.1285 | 0.0228 | 0.2603 | 0.0846 | 0.0345 | 0.3363 | 0.1760 | 0.1351 | 0.3841 | 0.1330 { 0.0616 | 0.3391 | 0.1167 | 0.0545
9 0.4525 | 0.1267 | 0.0211 | 0.2536 | 0.0716 | 0.0183 | 0.2937 | 0.1097 { 0.0592 | 0.3696 | 0.0989 | 0.0176 | 0.3250 | 0.0864 } 0.0162
11 0.4515 | 0.1254 | 0.0197 { 0.2531 | 0.0711 | 0.0175 | 0.2878 | 0.1011 | 0.0495 | 0.3692 | 0.0984 | 0.0170 | 0.3249 | 0.0856 | 0.0149
13 0.4508 | 0.1245 | 0.0187 | 0.2514 | 0.0680 | 0.0134 | 0.2853 | 0.0976 | 0.0456 | 0.3690 | 0.0980 | 0.0165 | 0.3247 | 0.0851 | 0.0141
15 0.4502 | 0.1238 | 0.0180 | 0.2509 | 0.0676 | 0.0130 | 0.2818 | 0.0851 | 0.0277 { 0.3689 | 0.0976 | 0.0156 0.321.45 0.0844 | 0.0130
17 0.4498 | 0.1233 | 0.0175 | 0.2502 | 0.0664 | 0.0116 | 0.2805 | 0.0827 | 0.0249 | 0.3683 | 0.0957 | 0.0130 { 0.3240 | 0.0829 | 0.0109
19 0.4995 | 0.1228 | 0.0170 | 0.2498 | 0.0661 | 0.0113 | 0.2793 | 0.0805 | 0.0222 | 0.3681 | 0.0955 | 0.0128 | 0.3239 | 0.0827 | 0.0106
21 0.4492 | 0.1225 | 0.0167 | 0.2494 | 0.0655 | 0.0107 | 0.2773 | 0.0756 | 0.0155 | 0.3680 | 0.0953 | 0.0125 | 0.3238 | 0.0826 | 0.0105

Table 3.2: MMSE with L=1, for 8PSK, Squared Minimum Distance = 0.5858




Le

Channel A Channel B Channel C Channel X Channel Y
SNR | 8dB | 15dB | 25dB | 8dB | 15dB [ 25dB | 8dB | 15dB [ 25dB | 8dB | 15dB [ 25dB | 8dB | 15dB | 25dB
2N +1 -
1 0.6470 | 0.3216 | 0.2499 | 0.3671 | 0.2004 | 0.1667 | 0.4085 0.22:'; 0.1886 | 0.4931 | 0.1986 | 0.1318 E4493 0.2074 § 0.1552
3 0.5715 | 0.1424 | 0.0313 | 0.3496 | 0.1686 | 0.1294 | 0.4081 | 0.2237 | 0.1872 | 0.4649 | 0.1463 | 0.0715 | 0.4493 | 0.1253 | 0.0605
5 0.5691 | 0.1403 | 0.0285 | 0.2994 | 0.0897 | 0.0399 | 0.4063 | 0.2202 | 0.1832 | 0.4616 | 0.1416 | 0.0665 | 0.4014 | 0.1226 | 0.0576
7 0.5667 | 0.1356 | 0.0229 | 0.2992 | 0.0865 | 0.0345 | 0.3817 | 0.1783 | 0.1351 | 0.4576 | 0.1371 | 0.0617 | 0.3987 { 0.1199 | 0.0546
9 0.5655 { 0.1339 | 0.0212 | 0.2928 | 0.0736 | 0.0183 | 0.3420 | 0.1121 | 0.0592 | 0.4448 | 0.1032 | 0.0176 | 0.3859 | 0.0896 | 0.0162
11 0.5647 | 0.1326 | 0.0198 | 0.2924 | 0.0731 | 0.0175 | 0.3365 | 0.1036 | 0.0496 | 0.4444 | 0.1027 | 0.0170 | 0.3858 | 0.0889 | 0.0149
13 0.5642 | 0.1317 | 0.0188 | 0.2908 | 0.0699 | 0.0134 | 0.3342 | 0.1001 | 0.0457 | 0.4442 | 0.1023 | 0.0165 | 0.3855 | 0.0883 | 0.0142
15 0.5637 | 0.1310 | 0.0181 { 0.2903 | 0.0695 | 0.0131 | 0.3310 | 0.0876 | 0.0277 | 0.4442 | 0.1019 { 0.0157 | 0.3854 | 0.0877 | 0.0130
17 0.5634 | 0.1305 { 0.0175 | 0.2897 | 0.0684 | 0.0117 | 0.3297 | 0.0852 | 0.0249 | 0.4436 | 0.1000 | 0.0130 | 0.3850 | 0.0862 | 0.0109
19 0.5631 | 0.1300 | 0.0171 | 0.2893 | 0.0680 | 0.0113 | 0.3286 { 0.0830 | 0.0222 | 0.4434 | 0.0998 | 0.0129 ; 0.3849 | 0.0860 | 0.0106
21 0.5629 | 0.1297 | 0.0167 | 0.2889 | 0.0675 | 0.0107 | 0.3267 | 0.0781 | 0.0155 | 0.4433 | 0.0996 | 0.0126 | 0.3848 { 0.0859 | 0.0105

Table 3.3: MMSE with L=1, for 8V29, Squared Minimum Distance = 0.7273
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Channel A Channel B Channel C Channel X Channel Y
SNR | 8dB [ 15dB [ 25dB | 8dB | 15dB | 25dB | 8dB | 15dB [ 25dB | 8dB | 15dB | 25dB | 8dB | 15dB { 25dB
2N+1 .
1 0.6814 | 0.3239 { 0.2499 | 0.3811 | 0.2011 | 0.1668 | 0.4258 | 0.2256 | 0.1886 { 0.5198 | 0.2001 | 0.1318 0:1708 0.2086 | 0.1552
3 0.6132 | 0.1453 | 0.0314 | 0.3640 | 0.1693 | 0.1294 | 0.4254 | 0.2245 | 0.1873 | 0.4931 | 0.1480 | 0.0715 | 0.4269 | 0.1266 | 0.0605
5 0.6110 | 0.1432 | 0.0285 | 0.3150 | 0.0904 | 0.0400 { 0.4236 | 0.2211 | 0.1832 | 0.4900 | 0.1432 | 0.0665 | 0.4247 | 0.1239 | 0.0576
7 0.6089 | 0.1385 | 0.0229 | 0.3148 | 0.0873 | 0.0345 | 0.3998 | 0.1792 | 0.1351 | 0.4861 | 0.1387 | 0.0617 | 0.4221 { 0.1211 | 0.0546
9 0.6078 | 0.1368 | 0.0212 | 0.3085 | 0.0743 | 0.0183 | 0.3612 | 0.1131 | 0.0592 | 0.4740 | 0.1049 | 0.0176 | 0.4099 | 0.0910 | 0.0163
11 0.6071 | 0.1355 | 0.0198 | 0.3081 | 0.0739 | 0.0175 | 0.3559 | 0.1046 | 0.0496 | 0.4737 | 0.1044 | 0.0170 | 0.4098 | 0.0902 | 0.0150
13 0.6066 | 0.1346 | 0.0188 | 0.3066 | 0.0707 | 0.0134 | 0.3537 | 0.0969 | 0.0457 | 0.4735 | 0.1040 | 0.0165 | 0.4095 | 0.0897 | 0.0142
15 0.6062 | 0.1339 | 0.0181 | 0.3061 | 0.0703 | 0.0131 | 0.3505 | 0.0886 | 0.0277 | 0.4735 | 0.1036 | 0.0157 | 0.4094 | 0.0890 | 0.0131
17 0.6059 | 0.1334 | 0.0176 | 0.3055 | 0.0692 | 0.0117 | 0.3493 | 0.0862 | 0.0249 | 0.4729 | 0.1017 | 0.0131 | 0.4090 | 0.0875 | 0.0110
19 0.6057 | 0.1330 | 0.0171 | 0.3051 | 0.0688 | 0.0113 | 0.3482 | 0.0840 | 0.0222 | 0.4728 | 0.1016 | 0.0129 | 0.4089 | 0.0873 { 0.0106
21 0.6055 | 0.1326 | 0.0168 { 0.3047 | 0.0683 | 0.0107 | 0.3464 | 0.0791 | 0.0155 | 0.4727 | 0.1013 | 0.0126 | 0.4088 | 0.0872 | 0.0105

Table 3.4: MMSE with L=1, for 16QAM, Squared Minimum Distance = 0.4
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=2 L=3 L=5

SNR | 8dB | 15dB | 25dB | 8dB | 15dB | 25dB | 8dB | 15dB | 25dB

Constellation
4PSK 0.375 m 0.004 | 0.449 | 0.080 | 0.004 | 0.489 | 0.087 | 0.004
8PSK 0.375 { 0.067 | 0.004 | 0.449 | 0.080 | 0.004 | 0.489 { 0.087 | 0.004
8V29 1.012 | 0.205 | 0.004 | 1.173 | 0.234 | 0.008 | 1.243 | 0.244 | 0.008
16QAM 1.274 {1 0.266 | 0.010 | 1.440 | 0.297 | 0.014 | 1.509 | 0.307 | 0.014
16V29 1.833 | 0.427 | 0.020 | 2.062 | 0.468 | 0.024 | 2.148 | 0.483 | 0.024

Table 3.6: Average Gain in MMSE dB over (L=1) for 9 Equalizer Taps

3.5 Observations

For each of the tested channels, we observed the following: For a specific number of
equalizer taps, the higher the SNR is, the lower is the MMSE. For a reasonably small
MMSE, the SNR should be at least 25 dB. For a given SNR, the MMSE decreased
monotonically as the number of taps increased. The reduction in MMSE by increasing
the number of equalizer taps is larger at higher SNR. Increasing the number of taps
above nine does not reduce the MMSE appreciably and thus does not improve the

system performance significantly.

For each constellation and fixed value of L, the number of equalizer taps and
the SNR were varied and the channels were placed in order of increasing MMSE
as shown in Table 3.7. For an SNR of 25 dB, channels A and C have the largest
MMSE values. For an SNR of 8 dB, channels A and X have the largest MMSE. Thus,
equalization of channel C is more sensitive to the SNR (i.e. larger noise enhancement)
than channel A. In addition, at an SNR of 25 dB, channel Y has the smallest MMSE
and at 8 dB, channel B has the smallest. Thus, Y has the least ISI but the addition

of noise degrades the performance of the MMSE equalizer in channel Y more than it
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Number of SNR | Channels in Order of
Equalizer Taps | in dB | Increasing MMSE
8 B,C,Y,X,A
9 15 B,Y,X,C A
25 Y,X,B,A,C
8 |- BCY, XA
21 15 B,C,Y,X,A
25 Y,B,X,C, A

Table 3.7: Channels in Order of Increasing MMSE.

does in channel B. This shows that channel Y can be better equalized than B, at the

expense of a larger noise enhancement.

Reference phase estimation errors are due to channel noise and ISI only since
in our analysis, perfect receiver decisions were assumed. In addition, the amplitude of
the signal points also affects the reference phase errors since it determines the symbol
SNR. As a result of these reference phase errors, the MMSE depends also on the value
of L and the size and type of signal constellation. This can be seen from (3.36). The
MMSE dependence on these two parameters will now be discussed: From (3.37), the
column vector B differs from perfect phase estimation column vector B by a factor
which is proportional to the variance of the phase estimation error 5[n}, i.e. E [7%[n]]

(3.36). From the results, a number of observations can be made:

First, for very high SNR, i.e. more than 25 dB, the MMSE results of all signal
constellations approach the ideal MMSE results for a coherent receiver regardless of

the value of L, since E [p?[n]] approaches zero for very high SNR (3.36).

Second, the MMSE results were observed to be the same for 4PSK and 8PSK
always. This was because, for MPSK, E [n%[n]] is independent of the constellation

size M and inversely proportional to L since b[n] is constant and equal to unity (3.36).
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However, although they give the same MMSE results, 4PSK has a smaller probability
of error P, than 8PSK since its minimum distance is larger. Therefore, for the same

P,, the SNR of the 8PSK constellation must be raised to a suitable higher value.

Third, 16V29, 16QAM and 8V29 gave larger MMSE results than MPSK.
Thus, constellations with signal points of varying amplitudes have degradations in
performance, i.e. larger MMSE results, compared to constant amplitude signal con-
stellations. In addition, the 16V29 constellation gave larger MMSE results than both
16QAM and 8V29, since it has signal points with smallest amplitudes. Therefore, con-

stellations with smaller amplitude signal points have larger degradations in MMSE

performance.

Using a larger L, the constellations with smaller amplitude symbol points had
larger MMSE performance gains, i.e. larger reductions in MMSE. Thus, by increasing
L, 16V29, 16QAM, 8V29 and MPSK had performance gains‘ which decreased in that
order. As a result, using a larger L reduces the difference in MMSE performance
between the V29, QAM, and PSK constellations. Furthermore, by increasing L, the
system performance approaches that of combined coherent detection and equalization.
In addition, the gain in MMSE(dB), i.e. g, by using a value of L larger than one, was
very significant, especially for low SNR. Also, using L=3 or L=5 gives appreciable
gains in performance over L=2. However, larger values of L do not yield appreciable
performance gains over L=3. Therefore, three appears to be the best value for L.
This is because increasing L increases the SNR of the reference signal from which the
phase reference is extracted until it approaches coherent PSK. It appears that the
reference phase SNR of the differential detected signal sufficiently approaches that of
a coherently detected signal at L=3.

Finally, the difference in MMSE between coherent and differentially coherent
detection is smaller here than in [20]. This is due to the way that the reference phase

is derived in this work. In [20], an adaptive equalizer was used for differentially co-
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herent reception and the MMSE obtained was about 3 dB more than that obtained
in the coherent case. One previous equalizer output was used to generate the refer-
ence estimate and its conjugate was used in the decision variable, together with the
equalizer output. Thus, errors in the reference estimate caused both amplitude and
phase errors in the receiver’s decisions. In our case, the improved phase reference
estimate B[n], (which can be generated by using more than one past equalizer output
to smooth channel noise), is used only to phase-shift the current equalizer output.
In other words, we process the reference sample by a limiter which removes the am-
plitude noise. Thus, our reference estimate causes only phase errors in the receiver’s
decisions and therefore, the difference in MMSE between coherent detection and dif-
ferential detection is less than 3 dB in our case. In addition, increasing L allows
the system performance to approach that of combined coherent detection and linear
equalization. As a result, our proposed receiver has better system performance which

approaches that of combined coherent detection and linear equalization.
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Chapter 4

Adaptive Equalization for

Unknown Channels

The combination of decision-feedback differentially coherent detection with adaptive
equalization is considered in this chapter. In Section 4.1, the conventional Least-
Mean-Square (LMS) adaptive algorithm and some fast-converging algorithms, e.g.
Kalman are briefly reviewed. Following this, the LMS algorithm, which is used for
adapting the linear equalizer, is described. Simulation results (for a specific number
of equalizer taps, SNR and L) and graphs which compare average convergence rates
and residual MSEs for different test cases (i.e. different constellations, channels and
step-sizes.), are presented in Section 4.2. Finally, these results are discussed in Section
43.

4.1 The LMS Adaptive Equalizer

For many practical wireless systems, the channel characteristics are usually not known
beforehand, and therefore the equalizer must adapt to the unknown channel. In

addition, the characteristics of these channels may vary sufficiently with time so that
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adaptive equalization is also necessary during normal data transmission.

A comprehensive survey on the early days of adaptive equalization can be
found in [17]. In 1960, Widrow and Hoff [14] presented the Least-Mean-Squares
(LMS) error adaptive filtering scheme which has been used extensively in the last
three decades. In addition, key papers [27] and [28] have contributed to the under-
standing of the convergence of the LMS stochastic update algorithm for transversal
equalizers, including the effect of channel characteristics (eigenvalue spread of the
auto-correlation matrix) and the number of equalizer taps on the rate of convergence.
First, in [27), the assumption of statistical independence for the random equalizer
input vectors y[r] (from one instant [n] to another instant {n+1]), which direct equal-
izer convergence, was investigated and it was found that although this assumption is
far from true, the results obtained using this assumption are in excellent agreement

with the actual performance of the LMS equalizer convergence.

In [28], Ungerboeck considered the MSE criterion instead of the expected
tap-gain errors relative to their optimum values (considered by Gersho in [21]). In
addition, he assumed the equalizer input vectors y[n] at successive instants to be
statistically independent and showed that the influence of the number of equalizer
taps, and not only the channel characteristics, dominates the speed of convergence.
This was opposed to [21], where the speed of convergence (for Gersho’s criterion,
i.e. the expected tap-gain errors relative to their optimum values) was shown to
depend only on the channel characteristics. As a result, Ungerboeck suggested a new
criterion for stability, which imposed a much narrower upper bound on the step-size
than the one found in [21] and a corresponding optimum initial step-size parameter
for LMS adaptive equalization. Finally, he showed the MSE convergence is faster
in practice than theoretically predicted and suggested that step-sizes slightly less
than the optimum step-size should be chosen, since the assumption of statistical

independence of the equalizer input vectors y[n] at successive instants is not true in
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practice.

In our simulations, the LMS algorithm is used to adapt the linear equalizer to
the channel because of its simplicity and robustness. However, its main drawback is its
slow convergence compared with the more sophisticated algorithms [23]-(25]. In [23],
the Kalman filtering algorithm was described. It can be used to estimate the equalizer
coefficients vector at each symbol interval and its convergence rate was shown to be
proportional to the number of equalizer taps and independent of the eigenvalue spread.
However, it requires on the order of N? operations per iteration for an equalizer
with N taps. In [24], a self-orthogonalizing algorithm was compared to the Kalman
algorithm of [23] and the LMS algorithm. The algorithm tries to accelerate the rate
of convergence by reducing the eigenvalue spread of the channel-correlation matrix,
i.e. by making the eigenvalues equal, since a large eigenvalue spread slows the rate
of convergence. It was found that the proposed self-orthogonalizing algorithm, which
was less complex than the Kalman, converged much faster than the LMS algorithm
but was slower than the Kalman algorithm. The Kalman algorithm of [23] was later
recognized as a form of a Recursive-Least-Squares (RLS) algorithm and the idea of
fast Kalman filtering was introduced [25]. This algorithm took advantage of the
data structure by using the “shifting property” of RLS algorithms and reduced its
computational complexity to an order of N operations per iteration for an equalizer
with N taps. Therefore, the algorithm performs as well as the one in [23] while

avoiding its computational complexity.

The LMS algorithm will now be discussed. It is similar to the MSEG al-
gorithm (3.41) but uses an instant squared error instead of the mean squared error
because the ensemble averages represented by the matrix A and B are not known in
practice. The LMS algorithm is also referred to in the literature as the stochastic
gradient (SG) algorithm [13]. Using the LMS algorithm, the filter coefficient vector ¢
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is updated by

dn +1] = ) - 39007 1)

where ¢€[n] is the error at the n-th iteration, [n] denotes a particular symbol interval

(or time instant t=nT), ¢[n] = [c_n[n},...,c0[n]},...,cn[r]] and ) is the step-sizé.

Using (3.2), the error is given by:
€[n] = z[n]e=#n — p[n]eieln!
S —
desired signal
where f8[n] is the reference phase estimate. Differentiating the instant squared error

le[n]|> with respect to c[n], we get :

—alaec[FJ]P = 2(z[n]e~3B — b[n]e?*tr)y" [n] e8] (4.2)

where z[n] = cT[n]y[n]. Therefore, substituting (4.2) in (4.1), we get :

dn+1] = n]-A gz[n]e-fﬂiﬂl: bln]e?*!") y*[n] el (4.3)
e[n)
drn+1) = n] - Ae[n]y*[n]e (4.4)

Thus, each equalizer tap ci[n] is updated using the error ¢[n], the phase

reference estimate A[n] and the received sample y[n + k] for k = —N,...,0,...,N.

The algorithm of (4.4) will now be explained referring to Figure 2.4. The
equalizer adaptation is driven by the error signal €[n], which indicates to the equalizer
in which direction the coefficients ci[n] must be changed to reduce the squared error
le[n]|*. Specifically, the input sample to the equalizer, y[n— k] is taken from the output
of the same unit delay and is used for multiplication by ci[n]. The resulting product
contributes to the summation for z[n], which is then phase-shifted by 3[rn] and the
data symbol b[n]e*I" is subtracted from it to give the error e[n]. The increment of
the tap coeficient cx[n] is —Ae[n]y*[n — k]e?B™, where y*[n — k] is phase-shifted by

ﬁ[n] to compensate for the unknown rotation of these samples.
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In wireless communication systems, the adaptive equalizer should be able
to track the time-varying multipath characteristics usually encountered. Therefore,
the rate of convergence of the adaptive algorithm employed is very important and is
determined by the step-size A. For the LMS algorithm, the best convergence rate and
the allowable values of the step-size A, which guarantee stability of convergence, are
dictated by the number of equalizer coefficients (2N+1), and to a lesser extent, by
the eigenvalue spread of the matrix A (i.e. which depends on channel characteristics)
[28]. From [28], the allowable step-sizes A are

2 (= I
(2N + DE[ly[r]2] * M +...+ dava

0<A< (4.5)

where A;,..., A2nN41 are the 2N+1 eigenvalues of the auto-correlation matrix A and
E[Jy[n]}?] is the expected squared amplitude of the equalizer input y[r]. Also, the

optimum step-size suggested is

o 1
7 (2N + 1)E[ly[n]i?]

(4.6)

The dependence of LMS convergence on A is as follows: Starting with zero, as we
increase ), the speed of convergence and the residual MSE increases, until we reach
the maximum speed at A.,. Continuing to increase A, slows the rate of convergence
(but the residual MSE still increases) until eventually we reach instability at twice
the optimum step-size. Therefore, there is a tradeoff between the rate of convergence
and the residual MSE. In fact, for fastest convergence, the residual MSE is twice that
of the MMSE [13]. Therefore, if the step-size is too small, the equalizer would not
adapt fast enough (i.e. within an agreed time frame or number of symbols) or if it
is too large, the equalizer would blow up (not stable) (4.5). Therefore, A should be

chosen such that the rate of convergence is fast yet has a reasonable (not necessarily

minimum) residual MSE.

In adaptive equalization, there are two modes. The first mode is the initial

acquisition which uses a training sequence which is known to the receiver. This mode
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is used to initially adapt the equalizer to the channel and, thus uses actual data
be?® to generate the error signal. Once the equalizer converges in an specific period of
time, the second mode of adaptive equalization can begin. In the second mode, actual
receiver decisions are substituted for the known training sequence and normal data
transmission occurs. This mode of equalizer adaptation is called the decision-directed
mode since receiver decisions be’® are used to generate the error €[n}, and the phase
estimate B[n). This is seen from Figure 2.4 and equalizer adaptation takes place in a
decision-feedback manner. However, this mode of equalizer adaptation cannot track
fast variations in the channel characteristics. As a result, it may be necessary to use

the first mode to re-adapt the equalizer to the channel.

The adaptive MSE (AMSE) simulation resﬁlts using the LMS adaptive algo-

rithm for different test cases will now be discussed.

4.2 Simulation Results

Simulations of the equalizer adaptation were performed using the LMS algorithm.

Three parameters of the simulations were kept constant:

e Nine (=2N+1) equalizer taps were used. Using a larger number of taps in-
creases the delay in the equalizer and does not result in any substantial gain in

performance, with the channels that were tested in this work.

e Three equalizer samples used to generate the improved reference phase estimate
(i.e. L was chosen to be 3) since the gain in performance over L=2 is substan-
tial and because using any larger value of L e.g. L=>5 does not result in an

appreciable gain in performance.

e The SNR was set to 25 dB. A lower SNR would require a prohibitive large

number of simulations.
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The three other parameters in the simulations form the basis for different test
cases. These parameters are the signal constellation, the channel and the step-size A.

The choices for each were as follows:

e Four constellations: 8PSK, 8V29, 16QAM and 16V29.
e Two channels: A and X.

e Step-sizes: 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05 and 0.1. For our nine
tap equalizer and with E[jy[n]|?] = 1, Ungerboeck’s optimal step-size is 0.1.
Results were examined and the two step-sizes A=0.005 and A=0.05 were chosen
for presentation since they best summarize the trade-offs in selecting the step

size.

For the LMS simulations, training sequences were used, i.e. perfect receiver
decisions were assumed. Each sequence had a length of 3220 data symbols to en-
sure that steady-state convergence had been achieved. All nine equalizer taps were

initialized to zero for each trial.

Initially, in our simulations, twenty independent trials were performed for
each test case (i.e. choice of constellation, channel and step-size) and an average
learning curve was calculated. However, the average learning curves were very noisy
due to an insufficient number of trials. At an SNR of 25 dB, it was found that we
need approximately sixty trials to get reasonable smooth average learning curves. All
simulation results were then examined and are summarized by eight graphs and two

tables, shown on the next few pages.

The first four graphs, i.e. Figures 4.1-4, were each derived for a separate
test case (i.e. either 8PSK or 16QAM used in either channel A or X, using A equal
to 0.005). Each graph plots the squared error versus the number of iterations and

compares sixty trial runs with an average learning curve. It is seen that the number
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Channel A | Channel X
Step-Size | 0.005 | 0.05 | 0.005 | 0.05
Constellation
8PSK 0.026 | 0.032 | 0.021 | 0.026
8V29 0.025 | 0.029 | 0.023 | 0.028
16QAM 0.027 | 0.032 | 0.023 | 0.028
16V29 0.025 | 0.029 | 0.024 | 0.029
MMSE Results 0.0210 0.0176

Table 4.1: Comparison of Residual MSEs and MMSEs for 25 dB

of independent trials, i.e. 60, used to calculate the curves was sufficient since the

dispersion is reasonable.

Consequently, the last four graphs, i.e. Figures 4.5-8, compare the average
learning curves of different test cases. Each graph corresponds to a particular con-
stellation, and compares four different test cases (i.e. either A=0.005 or A=0.05 used
in either channel A or X). Finally, each graph plots the logarithm of the MSE versus
the number of iterations so that differences in convergence behaviour between the

different test cases can be noticed more easily.

Table 4.1 compares the residual MSEs obtained from Figures 4.5-8 with the
calculated MMSE results of Section 3.4. In order to compare the constellations from
a probability of error point of view, we used the squared minimum Euclidean distance
d?,;, normalised to the number of bits per symbol, log, M, and the residual MSE, £.
This quantity in [dB] is given by:

o = 10log,, {dz M] (4.7)

min 5

Although, o may not give an accurate indication to the actual probability of error

P, = K exp [dfm lﬂeLM] which can be arrived at since P. is proportional to the
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Constellation o for Channel A o for Channel X
A=0.005 | A=0.05 | with MMSE | A=0.005 | A=0.05 | with MMSE
8PSK 18.3 174 19.2 19.2 18.3 20.0
8V29 19.4 18.8 20.2 19.8 18.9 20.9
16QAM 17.7 17.0 18.8 18.4 17.6 19.6
16V29 16.7 16.1 17.5 16.9 16.1 18.3

Table 4.2: ¢ for different test cases

exponent of the SNR [13] and [dfm-n l—‘ﬁ‘gﬂ-] represents the normalized SNR for any M-
ary constellation, it can be used for a benchmark comparison of the different schemes
from the probability of error point of view. As a result, we can compare o for the
tested constellations under the same SNR (see Table 4.2). The larger o is, the smaller

the probability of error and the better is the system performance.

Finally, the simulation results for a sample AMSE test case are given in

Appendix B.

4.3 Observations

For the first four graphs, i.e. Figures 4.1-4, we see that the average learning curves
for sixty independent trials and an SNR of 25 dB are reasonably smooth and give a
good indication of the average convergence performance. If the curves were too noisy,
more independent trials would have been required to calculate the average learning
curves. Finally, we note that the trial runs give a better indication of what should be

expected in an actual system implementation.

We will now look at Figures 4.5-8, where each figure compares the average

convergence rates for different channels and step-sizes, for a given constellation. A

60




MSE convergence cutoff point of 0.05 was chosen since the average learning curves
passed through this level only once before settling down to the residual MSE levels
between 0.02 and 0.035. Thus, the average learning curves for different channels and
step-sizes were compared for each graph, using this MSE cutoff level of 0.05. The

following was observed:

For channel A, the A=0.05 step-size converged after approximately 125 sym-
bols and the A=0.005 step-size converged after about 1000 symbols. For channel X,
the A=0.05 step-size converged after approximately 100 symbols and the A=0.005
step-size converged after about 750 symbols. Thus, for a given A, the rate of conver-
gence is faster for channel X than for channel A. In addition, the rate of convergence

for the A\=0.05 is faster than for A=0.005.

Table 4.1 shows that the residual MSEs approach but never reach the MMSE
results calculated in Section 3.4. This is due to the equalizer coeflicients which are
never exactly optimum. For a given A, Table 4.1 shows that the residual MSE is
smaller for channel X than for channel A. Also, for a given channel, the residual MSE
is larger for A=0.05 than for A=0.005. In addition, it was found that the A=0.05
and A=0.005 step-sizes have average residual MSEs of 50% and 25% excess MSEs
respectively, where excess MSE is the MSE over and above the MMSE possible. As a
result, this shows that the larger the step-size A, the larger the excess MSE, since the
equalizer coeflicients have a larger variance about the optimum values. For A=0.05,
we see that the proposed receiver adapts very quickly to unknown channels while
giving a residual MSE which is only a small percentage larger than that of A=0.005.
Thus, A=0.05 seems to be a better choice.

In addition, the speed and stability of the MSE convergence were compared
for the tested constellations. Close examination of the last four graphs and Table 4.1
shows that 16V29 converges slightly faster and has a slightly smaller residual MSE
than 16QAM (which is more noticeable in channel A). However, from Table 4.2,
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16QAM has a smaller probability of error due to its larger minimum distance dp;n.
Also, 8PSK is better than 8V29 in terms of both convergence speed and residual
MSE which was more noticeable in channel X than in channel A. Nevertheless, the
minimum distance dmin, of 8V29 is larger than that of 8PSK, and from Table 4.2, we

have that 8V29 has a smaller probability of error than 8PSK, especially for channels
with severe ISI e.g. channel A.

Finally, Table 4.2 compares o for the tested constellations and shows that
o decreases (the probability of error increases) for 8V29, 8PSK, 16QAM, 16V29, in
that order, for the tested channels. In addition, Table 4.2 allows us to calculate the
increase in SNR necessary to achieve the same . On the average, for A=0.005, the
SNR must be increased by 0.7 and 1.0 dB for channels A and X respectively, to achieve
the o associated with the MMSE. Also, for A=0.05, the SNR must be increased by
an average of about 0.9 dB and 1.1 dB for channels A and X respectively, to achieve

the same o as the A=0.005 case.
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Chapter 5

Conclusions

A combined linear equalization and decision-feedback differentially coherent detection
structure for indoor wireless communication channels was proposed. These channels
were modeled as multipath channels since multipath propagation is one of the major
impairments in wireless communication systems. In these channels, carrier phase
tracking is difficult and differentially coherent reception is attractive since it does
not require phase-tracking. However, there is a loss in performance compared to
coherent detection that approaches 3 dB for MPSK(M>2). Therefore, an improved
technique based on decision-feedback differentially coherent detection was used whose
performance approaches that of coherent detection. In addition, this differentially
coherent scheme can be combined quite easily with known equalization techniques.
This is necessary since ISI due to multipath is a major problem in these channels.
In this work, the integration of decision-feedback differential detection with linear
equalization has been considered. In addition, two-dimensional signal constellations

were considered, in the hope of achieving a high data transmission rate, in a given

bandwidth.

The MSE criterion was usgd and MMSE results were calculated for known

channels, taking into account reference phase estimation errors. It was seen that

63



the MMSE performance degrades for 16V29, 16QAM, 8V29 and 8PSK in decreasing
order, since constellations with signal points of smaller amplitude have a larger degra-
dation. However, using a larger value of L, i.e. number of equalizer outputs used to
generate the reference phase, reduces the degradation in MMSE performance, since
constellations with smaller amplitude signal points gain more in MMSE performance.
Thus, the performance of the V29 and QAM signal constellations approach that of the
PSK signal constellation and a high data transmission rate can be achieved in a given
bandwidth. Furthermore, increasing L allows the system performance to approach

that of combined coherent detection and equalization.

In an adaptive mode, the LMS algorithm was used. The simulations were
performed with a 9 tap equalizer, L=3 and an SNR of 25 dB since for known channels,
these values were found to be to be sufficient for a reasonably small MMSE. Using
a MSE cutoff level of 0.05, the equalizer converges within 125 iterations and has
a residual MSE of about 0.029 (50% excess MSE) for A=0.05. For A=0.005, the
equalizer converges within 1000 iterations with a residual MSE of 0.024 (25% excess
MSE). Therefore, A=0.05 seems to be the better choice. In addition, 8PSK (16V29)
converges slightly faster and has a slightly smaller residual MSE than 8V29 (16QAM).
However, the difference in MSE convergence performance for the tested constellations
is almost negligible for L=3. Finally, at the same E;, the constellations 8V29, 8PSK,
16QAM and 16V29 have probabilities of error in increasing order.

For a sufficiently large L, e.g. L=3, the combination of the decision-feedback
differentially coherent detection structure with linear equalization performs as well as
combined coherent detection and linear equalization, with the advantage that it can
be used when carrier phase tracking is difficult e.g. fading multipath channels, burst
communication. In addition, the receiver shows very small MMSE differences be-
tween different two-dimensional constellations. Over practical wireless channels, the

proposed receiver seems to have significant advantages with respect to conventional
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coherent receivers and we will now suggest further work in this area of combining

equalization with differentially coherent detection.

5.1 Suggestions for Further Work

To simplify the analysis, receiver decisions were assumed error-free with high SNR
and actual information phases p[n — k] for k = 1,..., L — 1 were used in the equalizer
adaptation simulations. Therefore, it would be of interest to analyze the effects of
decision errors on the adaptation process and on the residual MSE as well. In addition,

simulations should also be performed for non-zero excess-bandwidth pulses.

To improve performance, one can use decision-feedback equalizers (DFEs)
with the decision-feedback differentially coherent detection structure of [2]. The DFE
cancels the dominant postcursor IS] in minimum phase multipath channels without

noise enhancement. Therefore, this combination is worth further investigation.

Improving the reference phase estimation for the QAM and V29 constella-
tions may improve results. Therefore, reference phase estimation which is optimized
for amplitude and phase signal constellations should be used in conjuncture with dif-
ferential detection. Also, the reference phase estimation for non-stationary channels
can be improved by introducing a forgetting factor. Therefore, past equalizer outputs
can be weighted such that the more recent equalizer outputs will have more influence

on the reference phase estimate, thus improving the phase tracking capabilities.

Finally, the adaptive equalizer should be tested using faster adaptation algo-
rithms e.g. fast Kalman algorithm [25).
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Appendix A

A.1 Program Overview

The computer program was written using the C programming language and ran under the
SUN OS. The program consists of seven separate files. Data was read from a specified input
file and all results were written to a specified output file. In addition, two other output files
were created for ease of plotting the LMS simulation results. One file stored trial results
and the other stored the average learning curves, i.e. average results of 60 trials.

Input File Data

e Test constellation: PSK, QAM, V29 and any other format.

e Multipath channel Parameters: Number of paths-1, amplitude attenuations, phase-
shifts and relative delays

o Roll-off factor of overall desired response. Any number from 0 to 1.

¢ Step-sizes to be used in LMS simulations.

e Noise Power in dB.

o Number of Equalizer Taps besides the reference tap: called N, i.e. min.,max.,step.
o Number of Equalizer Outputs for phase estimate: L, i.e. min.,max.,step.

e The output data filenames.

Program Files and Functions

The seven files and their functions are as follows:

e EQ.C: Main program file. Reads input file and generates output files. Calls MMSE.C
and AMSE.C.
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¢ MMSE.C: Calculates MMSE numerical results. Calls CINV.C

e AMSE.C: Calculates LMS simulation results. Calls RANDOM.C

e CINV.C: Inverts a complex matrix using LU Decomposition.

e RANDOM.C: Generates Uniform and Gaussian distributed random numbers.
e COMPLEX.C: Library of complex arithmetic operations.

o UTIL.C: Utility subroutines.

Program Details

The convolution of the overall pulse response §[n] with the encoded data was limited to 440
terms centered at §[0]. It was found that increasing this number to 1000 did not provide
any significant differences. In the program, the number of equalizer taps was N+1, i.e. the
equalizer had N /2 taps on both sides of the reference tap c{0] and the maximum number
allowed is 41 including the reference tap. In addition, the transmitter and receiver filters
were designed such that their overall response §(t) was Nyquist. The pulse shape used was
the raised-cosine pulse with a roll-off factor of a. The transmitter and receiver transfer

functions were both {/G(jw).

The Random and Gaussian number generators used, were provided in [29]. In addi-
tion, a complex matrix inversion program to invert the Hermitian matrix A, was developed
using the real matrix inversion program in [29]. It was tested rigorously and was very sta-
ble. In the LMS simulations, each test case was subjected to 60 independent trials, each of
length 3220 and the average learning curve was calculated. In addition, the data for each
test case was stored in files coded as ”123.456”. The codes are shown in table A.1.

Therefore, the file eoa.25a contained the data of the average learning curve for
8PSK, A=0.005, channel A and 25 dB SNR. Also, the data file grx.25 held the raw data for
60 trials for 16QAM, A=0.05, channel X and 25 dB SNR.

Code | Parameter Allowed Symbols and Meaning |
1 Constellation | e:8PSK; g:16QAM; h:8V29; j:16V29;
2 Step-Size A 0:0.005; r:0.05

3 Channel a:Channel A; x:Channel X;

45 SNR in dB 25:25 dB;

6 File Data Type | a:average; nothing:60 trials;

Table A.1: Data File Code Table
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A.2 MMSE Program File and Test Case

MMSE.C

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#define MAX 256 /* Max number of signals in constellation ./
#define OFFSET 220 /#* Position of Reference Response w/
#define MAXTERKS 440 /+* Number of terms in Convolution w/
#define MAXTAPS 40 /+ Maximum Number of Taps in Equalizer */
#define Nm 2 /#» Used for Print Display =/
#define PI 3.141592654
#define ERROR 0.00000001
typedef struct FCOMPLEX {

double r,i;

} fcomplex;
/enenn . */
/#ssssaees M - Number of signals in constellation sekbsabnns/
/#eeenesss §+1 - Total number of Equalizer Taps L Y
/esssssses SIG_SET - Signal points in Comstellation shsRAEueRns/
/#ssssssss g - overall impulse response ssssansnsey/
/#*»ssssns £ - receiver impulse response shnnnngsann/
/*xessmnns fp - file pointer to output data file ssenssesnns/

/**ssunens val - stores step-sizes that will be used in simulation s==xs/

/#s=ssxsss HO - noise pover to signal energy power seruRsbkhs/
/ /
double MINMEANSQERR(M,K,SIG_SET,g,f,fp,val,N0)
int M, §;
fcomplex SIG_SETI[MAX+1], g[MAXTERMS+1], £[MAXTERMS+1];
FILE *1p;
float valllin+1], ¥O;
{
/ * e wn/
/ e * Complex Operators chsRnnany/
/ * e/
double Cabs();
fcomplex Cadd(), Csub(), Cmul(), Cdiv();
fcomplex Complex(), Conjg(), Arg(), RCmul();
/ s s s+e/
/#sssxsssss y - received signal, b - input data signal = * w5/
/#%ssxsnnss bd - differentially encoded phase /
/esssssssss ) - y correlation matrix, INV - A inverse »
/#ssssssass B - cross - correlation matrix bet. b and y sss/
/essssxssas C - equalizer vector LAl /
/#sssnsssis MSE - mean square error, pdt = 1 - MSE */
/essusssnss dqummy - dummy variable Ll /
/#*2sxssex v - gun of z[n-il*e[j(sum of angles)] /

72



/ shas * Lk b Ll * e/
fcomplex A[MAXTAPS+1] [MAXTAPS+1], INVIMAXTAPS+1] [MAXTAPS+1];
fcomplex I[MAXTAPS+1] [MAXTAPS+1];
fcomplex B[MAXTAPS+1], CIMAXTAPS+1];
fcomplex pdt;

double NMSE;

PN e . e . /
/%sssessnss Cd, Cs vectors calculated during ideal gradient algorithm #»/
/eexsxsusss AC - pdt estimate of A matrix and C matrix sssssss sannns/
/#%ssssssss 1 - Jdentity matrix, 41 = I - 4 TEEEEEEBS ssnnne/
/ *e ane sooran sessesrannens /

fcomplex CA[MAXTAPS+1], Cs[MAXTAPS+1];
fcomplex ACIMAXTAPS+1];
fcomplex A1[MAXTAPS+1] [MAXTAPS+1];

/ ws/
/esensessss i,§,k,k1,kk,n - indices, rn - random # generated shanbns/
/#sssxssses pos - reference point, jim = j%Em shuknn/
/#*sxessses Diff - mean square difference without equalizer susrnns/
/#sssesensr Store, Store2 - intermediate differences sxsenns/
/s*esnsnsss alpha - step-size nensnns/
/e*ssusasss cinv - inverts complex matrix sanusns/
/esessnssss Tanl - generates uniformly distributed r.v saksnan/
/ssssssssss gagdev ~ generates gaussian distributed r.v shsrans/
/sesxaxesns noise -~ additive channel noise components at diff. instantss/
/esssssesss § — noise after passing through receiver whunsns/
/» . * /

int i, j, jim, k, n;

int max_num, chk;

float alpha;

double Diff, Store, Store2;
void cinv();

/= . /
/* Get Number of Step-Sizes * /
VA1l T shuw “EERR *es/

chk = 0;
do
{
chk++;
}
while (vallchk] !'= 0.0);
max_num = chk - 1;

/"* ShkkhkgRkg Sy SReRRrhnERRRgRik "~ /
/eesnnins * sss+ Injtialize e * /
[anse serresnreenrrony /

tor (i=0;i<=MAXTAPS;i++)
{
B[i] = Complex(0.0,0.0);
for (j=0;j<=MAXTAPS;j++) A[i]l[j] = Complex(0.0,0.0);
}
for (i=0;i<=MAXTAPS;i++) C[i] = Complex(0.0,0.0);
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for (i=0;i<MAXTAPS;i++) gli] = Complex(0.0,0.0);
for (i=0;i<MAXTAPS;i++) g[MAXTERMS-i] = Complex(0.0,0.0);

/e SessRnkn shae * %/
/e* Get Auto-Correlation Matrix A === /
/* » » % */
for (i=1;i<=N+1;i++)
{
for (j=1;j<=N+1;j++)
{
it ((i==j) &z (i>1))

ALY 4] = Al1111);
else
{

for (k=0;k<=MAXTERMS;k++)
{
it ( ((k-i+j)>=0) && ((k-i+j)<=MAXTERMS) )
A[il03) = Cadd(A[i1[j],Cmul(Conjg(glkl),glk-i+j1));
}
it (i==j) A[il[i).r + = 2 = NO;
}
}
}
/ﬁ-. L ] /
/enw * Get cross—-correlation Vector B /
/en /
for (i=1;i<=N+1;i++)
B[i] = conjg(g[i+OFFSET-K/2-1]);
/essss Inverts A to INV, dim N+1, 4 unchanged *#=ssx/
cinv(A,INV, N+1);
£flush(1p);

e /
/ Optimum Equalizer # /
/ o x/

pdt = Complex(0.0,0.0);
for (i=1;i<=N+1;i++)
{
C[i-1] = Complex(0.0,0.0);
for (j=1;j<=N+1;j++)
cli-1] = cadd(c[i-1],Cmul(INVIi][j]1,B[j1));
pdt = Cadd(pdt,Cmul(Conjg(B[il),C[i-1]1));
}
f££lush(tp);
/ /
/*% e check to see AC = B sssex */
/ wann/
/*

for (i=1;i<=N+1;i++)
{
AC[i] = Complex(0.0,0.0);
tor (j=1;j<=N+1;j++) I[il[j] = Complex(0.0,0.0);
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I[11[i).x = 1.0;

)

for (i=1;i<=N+1;i++)

{
for (j=1;j<=N+1;j++) AC[i] = Cadd(AC[i],Cmul(A[i][j],C[j-11));
it (i%Nm == 1) fprintf(fp,"\n");
fprintf(tp,"Pl/3d)=%8.4¢,%8.42] “,i,AC[i].r,AC[4].i);

}

£f1ush(fp);
*/
/* resses shee seesaases *EREBRERRRRRSE ST RS/
/exvenrrnn * Theoretical Interest - Ideal Grad. Alg. #ssssssssssssss/
/ » C[i) = c[i1(I-alpha x A) - alpha x B 2t */
/ *ens e sban » sesnn/
/*

fprint2(fp,”\n\n *=s*s MEAN SQUARE GRADIENT ALGORITHM sx#»");

for (chk=1;chk<=max_num;chk++)
{
for (i=0;i<=MAXTAPS;i++) Cli] = Complex(0.0,0.0);
it (¥>0) clN/2+1).r = 1.0;
else C[0].r = 1.0;
alpha = val[chk];
fprint? (£p,"\nalpha=Y%8.4f\n" ,alpha);
if (alpha != 0.0)
{
for (i=1;i<=N+1;1i++)
for (J=1;j<=N+1;j++)
A1[i][§] = Csub(I[il[j],RCaul(alpha,A[i]l[]]1));
k=0;
do
{
k++;
tor (i=1;i<=N+1;i++)
{
AC[1i) = Complex(0.0,0.0);
csli] = c[il;
for (j=1;j<=N+1;j++)
AC[i] = cadd(AC[i],Cmul(A1[i]1[j],C[j-1]));
}
for (i=1;i<=N+1;i++)
C[i-1] = cadda(AC[i] ,RCmul(alpha,B[il));
Diff = 0.0;
for (i=0;i<=N;i++) Cd[i] = Csub(C[i],Cs[1]);
for (i=0;i<=N;i++) Diff += Cabs(Cd[i]);
}
while (Diff > ERROR);

v = Complex(0.0,0.0);
for (i=1;i<=N+1;i++)
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{
it ((1%m ==1) && (4 != 1)) fprint? (fp,"\n");
tprintf(2p,“C%3dl=%8.4¢,%8.42§ *,i-§/2-1,C[i-1].r,C[i-1].i);
v = Cadd(v,Cmul(Conjg(B[il),c[i-11));

} .

fprintf(2p,"\nTimes in loop=¥3d, pdti=Y8.41,%8.4¢ " k,v.r,v.i);

}
}
./

/ven SRSRIREES shkans /

fprintf(fp,"\nMinimum Mean Square Error \n");
MSE = 1 - Cabs(pdt);

fprintf (£p,"PDT=Y8.41+%8.42j" ,pdt.r,pdt.i);
£f1lush(fp);

return(MSE);

Input File

ga26.06
1
0.5
180
0.5
q

16

1
0.05
25.0
2

20
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Appendix B

B.1 AMSE Program File and Test Case

AMSE.C

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#define MAX 266 /* Max Number of signals allowed in a set */
#detine MAXTERMS 440 /* Max Number of convolution terms ./
#define OFFSET 220 /+% Position of reference tap */
#define RUN 3220 /* Number of signals in a sequence */
#define MAXTAPS 40 /* Max Number of Complex Taps Allowed »/
#detine Nm 2 /* Used for Printed Output ./
#detine KKMAX 60 /% Max number of Runs ./
#define PI 3.1415692664

#define ERROR 0.000000001
#define CELLSIZE 600
#define MAXCELL 20
#define STEP 100

typedef struct FCOMPLEX {

double r,i;
} fcomplex;

*sane * * » /
/ * * Uses LMS adaptive algorithm to sxnsssnnnnhn/
/une update equalizer coefficients P —y
[ersnnssnany * Parameters just like in MINMEANSQERROR *s##»s#s/
/ * s *hes Ll /

ADAPTIVEMSE(L,M,N,SIG_SET,g,f,fp,f1,12,val,N0)
int L, M, N;

fcomplex SIG_SET[MAX+1], g[MAXTERMS+1], f[MAXTERMS+1];
FILE «fp, *f1;
float vallin+1], XO;
{
double Cabs();
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~

fcomplex Cadd(), Csub(), Cmul(), Cdiv();
fcomplex Complex(), Conjg(), Arg(), RCmul();
fcomplex y[RUN+1], b[RUN+1], bd[RUN+1];
fcomplex C[MAXTAPS+1];

P - . . ./
/ * Z - equalizer outputs susnRnRREen/
/ temp - used for phase estimation ssssssxsusrns/
/ ¢ estimate - estimate of data signal ss#ssssssuss/
/ . error = estimate - actual LT Y
/ fac - dummy variable for updating ®ssssssisisss/
/ s * . *
fcomplex z[RUN+1], b_arg[RUN+1], temp[MAXTAPS+1];
fcomplex estimate, error, fac[MAXTAPS+1];
fcomplex v, v_arg, noise [RUN+1], w[RUN+1];
float alpha, stdv, rani();
double sum, sumil, Amse[RUN+1];
double sum2[MAXCELL+1], sum3[MAXCELL+1], amse;
float gasdev(), cnt[MAXTAPS+1];
/ * annEnRn/
VALl »+ Indices * /
/s . * /
int i, j, jEm, k, ki1, kk, I, n;
int idum, idum2, max_num, chk;
/ . /
/enx Determine Number of Step-sizes s#susssisss/
/* /
chk = 0;
do
{
chk++;
}
while (vallc = 0.0);
max_num = chk - 1;
stdv = sqrt(N0);
/ /
for (chk=1;chk<=max_num;chk++)
{
alpha = vallchk];
if (alpha != 0.0)
{
fprintz(£p,”\n Step = %6.3f\n",alpha);
for (k=0;k<=RUN;k++) bd[k] = Complex(0.0,0.0);
for (i=0;i<=RUN;i++) Amse[i] = 0.00;
bd[0].x = 1.0; amse = 0.0;
for (i=0;i<=MAXCELL;i++) sum3[i] = 0.0;
/ /
/%» * /
for (kk=1;kk<=KKMAX;kk++)
{

for (i=0;i<=MAXTAPS;i++) C[i]l = Complex(0.0,0.0);
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/#ssseex Different Equalizer Initialization ssssssssssnsas/
/* it (1>0) c[N/2].r = 1.0;
else C[0].x = 1.0;
*/
/ . . */
sum = 0.0;
sumi = 0.0;
for (i=0;i<=MAXCELL;i++) sum2[i] = 0.0;
for (i=1;i<=M;i++) cntli] =0.0;

idum = kk;

idum2 = kk;

tprintf(£p,"\n %2d, ",kk);

for (k=1;k<= RUN;k++)

{
rn = ((int) (ranti(&idum)*M))%M +1;
for (i=1;i<=M;i++)
{

it (rn == i) cnt[il++;

}
/e idum = k sesses/
blx] = SIG_SET[rn];
b_arglk] = Arg(blk]);
bd[k] = Cmul(b_arglk],bdlk-1]);
noise[k] = Complex(gasdev(&idum2),gasdev(&idum2));
noise[k].r == stdv ;
noise[k].i »= stdv ;

)}

fprintf(fp,"\n");

for (i=1;i<=M;i++)

{
cnt[i] /= RUX;
fprintf(fp,"%8.42",cnt[i]);

}

££1lush(fp);

for (n=1;n<= RUN;n++)
{
y{n] = Complex(0.0,0.0);
w[n] = Complex(0.0,0.0);
for (k=0;k<=MAXTERMS;k++)
{
k1 = k -~ OFFSET;
it ((n >k1) && (k1 >= n - RUN))
{

ynl

Cadd(y[n],Cmul(bd[n-k1-1] ,Coml(bn-k1],glk1)));
vin)

Cadd(w[n] ,Cmul(noise [n-k1],2[k1));

}
}
y[n] = cadd(y[nl,wlnl);
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}

VA sl sssss LMS ADAPTIVE ALGORITHM sessess =/
ns1;
do
{

/#sss Get Phase encoded estimate for prev. signal #»s/
z[n] = Complex(0.0,0.0);
sum = 0.0;
for (i=1;i<=L;i++) templi]l = Complex(0.0,0.0);
tor (i=0;i<=N;i++)
{
it ((n+1)>¥/2) z[n] = Cadd(z[n],Cmul(C[il,y[n+i-¥/2]));
}
for (i=1;i<=L;i++)
{
it (n>i) temp[i] = z[n-il;
}
for (i=2;i<=L;i++)
{
for (j=n-i+1;j<=m-1;j++)
{
i1 (j) templil = Cmul(temp[il,b_argljl);
}
}
v = Complex(0.0,0.0);
for (i=1;i<=L;i++) v = Cadd(v,temp[il);
it (Cabs(v) == 0.0) v = Complex(1.0,0.0);

v_arg = Arg(v);

estimate = Cmul(z{n],Conjg(v_arg));
error = Csub(estimate,bin]);

sum = Cabs(error) * Cabs(error);

for (i=0;i<=N;i++)

{
tac[i] = Complex(0.0,0.0);
it ((n+i)>N/2)

{
fac[i] = Cmul(Conjg(yIn+i-N/2]),v_arg);
fac[i] = Cmul(facli],error);
}
c[i] = Csub(C[i),RCmul(alpha,fac[il));
}
it ((n%STEP == 0) || (n ==1))
{
if (n<=RUN-OFFSET) fprintf(f1,"%4d %8.4f\n",n,sum);
£f1lush(f1);
}
Ansen] += sum;
suni += sum;

it ((n> 0)&&(n<= 500)) sum2[1] += sum;
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else if ((n> 500)22(n<=1000)) sum2[2]
else if ((n>1000)&k(n<=1600)) sum2[3]
else it ((n>1500)2k(n<=2000)) sum2[4]
else if ((n>2000)&k(n<=2600)) sum2[5]
else it ((n>2600)&&(n<=3000)) sum2[6]
n+é+;

}

while (n<=RUN-OFFSET);

+

sum;
sunm;
sum;
sum;
sum;

+

+

+
nw u unn

+

suml /= (RUN - OFFSET);
amse += suml;
for (i=0;i<=MAXCELL;i++) sum2{i] /= CELLSIZE ;
fprintt(fp,"\n");
for (i=1;i<=6;i++) fprintf(fp,"%8.41",sum2[i]);
22lush(1p);
for (i=0;i<=MAXCELL;i++) sum3[i] += sum2[i] ;
f£flush(f1);
fprintf (£1,"\n");
}
for (n=1;n<=RUN;n++) Amse[n] /= KKMAX;
fprintf (£2," 1 %8.4f\n",Amse[1]);

f£flush(£2);

for (n=1;n<=RUN;n++)

{
it ((n%STEP == 0) &k (n<=RUN-OFFSET))
{

if (n<RUN-OFFSET) fprintt (£2,"%4d %8.41\n",n,Anse Mml);
else fprintf(£2,"%4d %8.42",n,Amse(nl);
f£f1ush(£2);
}
}
amse /= KKMAX;
fprintf (fp,"\nStep Size=%8.4f,\tAverage MSE = %8.4f\n",alpha,amse);
fprintf(fp,"%4d\n" ,KKNAX) ;
for (i=0;i<=MAXCELL;i++) sum3[i] /= KKMAX ;
for (i=1;i<=6;i++) fprintf(fp,"%10.4f" ,sum3[i]);
fprintf(fp,"\n");
f£f1lush(1p);
}
}
}
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Input File

§x3285.08
3

0.3
180
0.8
0.3
20
3.8
q

16

1
0.08
25.0
2

20

2

1

b

1
grx.35

Average Output File

1 1.1200
100 0.0438
200 0.0286
300 0.0312
400 0.021¢
500 0.0246
600 0.0312
700 0.0242
300 0.0301
200 0.0247

1000 0.0297
1100 0.0284
1200 0.02s6
1300 0.0317
1400 0.0282
1500 0.0228
1600 0.0209
1700 0.0270
1300 0.0338
1900 0.0291
32000 0.0339
3100 0.02%0
3300 0.0249
3300 0.035¢
26400 0.0364
2500 0©.0387
2600 0.03>9
2700 0.033¢
32800 0.0352
2000 0.0317
3000 0.0378
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1100
1200
1300
1400
1800
1600
1700
1800
1900
2000
2100
2200
2300
2400
2800
2600
2700
2000
2900
3000

100
200
300
400

€00
T00
800

1000
1100
1200
1300
1400
1500
1800
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000

1.8000
0.0824
0.0779
0.0244
0.0458
0.0202
0.0008
0.03680
0.0003
0.0101
0.0730
0.0062
0.002¢
0.0085
0.0208
0.0089
0.0158
0.0123
0.1198
0.0008
0.0310
0.0083
0.03386
0.0220
0.124¢
0.0181
0.0073
0.0303
0.002¢
0.0227
0.0198

1.0000
0.0145
0.02%¢
0.0447
0.0085
0.0114
0.0086
0.0180
0.0032
0.038¢8
0.0133
0.0137
0.0010
0.0458
0.0388
0.0077
0.0358
0.0259
0.0204
0.0133
0.0478
0.1863
0.008¢
0.0097
0.0278
0.0306
0.0263
0.0094¢
0.007¢
0.0118
0.0344

1600
1700
1800
1900
2000
2100
3200
3300
2400
2500
2600
2700
2800
2900
3000

100
200
300
400

€00
700
200

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
3200
2300
2400
2500
2600
2700
2800
2900
3000

1.0000
0.0493
0.0073
0.0013
0.0329
0.0110
00513
0.00682
0.0058
0.0080
0.0491
0.0220
0.001¢6
0.1041
0.0378
0.0009
0.0233
0.007T1
0.0088
0.007¢
0.0894
0.1083
0.0210
0.0044
0.0110
0.0537
0.0086
0.0331
0.01314
0.0241
0.0210

1.0000
0.0180
0.0898
0.0084
0.0043
0.03¢8
0.1163
0.0178
0.0140
0.0471
0.0981
0.0480
0.0483
0.0388
0.0163
00175
0.0184
0.0179
0.0884
0.0662
0.0223
0.0011
0.0248
0.0019
0.0089
0.003¢
0.0084
0.0127
0.0207
0.0511
0.0385

700

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000

1.0000
0.0870
0.0541
0.0099
0.018¢
0.0325
0.0178
0.0004¢
0.0078
0.0036
0.0089
0.0131
0.0104
0.017¢
0.0008
0.0109
0.0001
0.000¢
0.0041
0.0370
0.0029
0.0508
0.0168
0.0028
0.0566
0.1088
0.0360
0.0093
0.0270
0.0077
0.0058

1.0000
0.0057
0.0148
0.0782
0.0089
0.0308
0.0093
0.0045
0.0116
0.00682
0.0085
00211
0.0013
0.0894
0.0002
0.0142
0.0731
0.0174

0.0033

0.0133
0.0932
0.0102
0.0018
0.0198
0.0099
0.0242
0.0341
0.0208
0.0300
0.0923
0.0031
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T00

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400

3600
2700
2800
2900

0.2000
0.0292
0.0079
0.027%
0.0136
0.0270
0.0391
0.027%
0.1088
0.0080
0.0089
0.0244
0.0183
0.00586
0.0534
0.0129
0.0069
0.0006
0.0219
0.0322
0.0000
0.0256
0.0008
0.0210
0.0145
0.0288
0.0052
0.0038
0.0283
0.0333
0.0016

1.0000
0.0796
0.0032
0.0087
0.0198
0.0011
0.0410
0.0074
0.0039
0.0010
0.0131
0.0475
0.016¢6
0.0337
0.0029
90073
0.0607
0.0199
0.0091
0.0017
0.0183
0.0072
0.0203
0.0138
0.0395
0.0208
0.00156
0.1019
0.0028
0.0022
0.0229

100
200

400

500

600

Y00

300

200
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000

100
200
300
400
500
800
700
800

1000
1100
1200
1300
1400

1600
1700
1800
1900
2000
2100
2200
2300
3400
2800
3600
3700
2800
2900

1.8000
0.0344
0.0039
0.0282
0.0164
0.0136
0.13133
©.0503
0.019
003211
0.0108
0.0285
0.0150
0.0109
00719
0.0279
0.0083
0.0023
0.0877
0.0010
0.0149
0.0146
0.0033
0.0079

0.0383

0.0024
0.0115
0.0081

0.0585

0.0142

0.0145

0.2000
0.0412
0.0334
0.0208
0.0099
0.0802
0.0123
0.6087
0.0460
0.002¢6
0.0984
0.0210
0.0328
0.1309
0.0313
0.0401
0.0370
0.032¢
0.0332
0.000¢
0.0311
0.0253
0.019¢
0.0046
0.0418
0.0399
0.024¢
0.0038
0.0100
0.0448
0.0199

100
200
300
400

600
700

1000
1100
1300
1300
1400

1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000

100
200
300
400
300

T00

800

900
1000
1100
1300
1300
1400
1500
1800
1700
1800
1900
2000
2100
2200

2400
2500
2600
2700
2800

1.8000
0.0608
0.0230
0.0109
0.0139%
0.00687
0.0891
0.0049
0.0203
0.0039
0.0079
0.0350
0.0024
0.0378
0.003%
0.0177
0.0324
0.0084
0.0206
0.0054

0.0272

0.0018

0.0231

0.000¢

0.0003

0.018%
0.048¢
0.0622

0.0047
0.0014

0.0133

0.2000
0.0574
0.1065
0.0081
0.0170
0.0445
0.1021
0.0294
0.0097
0.0081
0.0181
0.0071
0.0144
0.0682
0.0089
0.0897
0.008¢
0.069¢
0.1173
0.0121
0.0087
0.0308
0.0833
0.0455
0.0093
0.0870
0.0085
0.0110
0.08¢¢6
0.1038
0.0082
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B.2 Additional Program Files

EQ.C

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#define MAX 266 /% Max # of signals in constellation %/
#define MAX_PATHS 10 /* Max # of paths in channel =/
#define PI ~ 3.141592654
#define MAXTERMS 440 /+* Number of terms in convolution */
#define OFFSET 220 /#* Position of reference tap w/
#define MAXTAPS 40 /+ Max # of taps allowed ./
#define Nm 2 /# Used for display purposes =/
#define SIMP 100 /# No of gaps used by simpson rule %/
typedef struct FCOMPLEX {

double r,i;

} fcomplex;
main()

{

int i, j, k, num_ch;

float Gc_mod[MAX_PATHS+1], Gc_ang [MAX_PATHS+1], delay[MAX_PATHS+1];
float roll, vallim+1];

double kdel[MAX_PATHS+1], mag;

double MINMEANSQERR(), MMSE, LMMSE;

fcomplex SIG_SET[MAX+1], g[IMXTERHSO-i] » T[MAXTERMS+1];

fcomplex Cadd(), Csub(), Cmul(), Cdiv();

fcomplex Complex(), Conjg(), Arg();

double Cabs(), Sum;

FILE ofp, *f1, *12;

int L, X, ¥, M1, k1;

int Lmin, Lmax, Lstep, Nmin, Emax, Nstep;

int jlm, max_num, chk, 1, m;

void ADAPTIVEMSE();

char choice, filename[10], file_n1[13]), file_nla[14];

int n, Ditf_Mag, done;

float NO, magsum;

double point [SIMP+1], qam_mag[MAX+1], v29_mag[MAX+1], freq[MAX+1];
double integral, hvalue[SIMP+1], factor, fac, sqsum[MAXTAPS+1];
double amt [SIMP+1];

printf ("Enter FILENAME to be written to(Max 8 characters) :“);
scanf ("%s" ,filename);

1p = fopen(filemame,”a");

if (fp == WULL)
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{
printf(“Cannot open File");
exit(1);

}
/ ssessesIEEIIRIEES sssnasssess e/

printf (“ENTER NUMBER OF EXTRA PATHS IN CHANNEL: “);
scanf("%d", \\num_ch); /+ Number of paths in channel */
fprintf(£fp,“\nkumber of paths = %2d\n",num_ch);
printf ("Nunmber of paths = %2d\n",num_ch);
tor (i=1;i<=mum_ch;i++)
{
printt(“\nFor PATH #Jd, enter parameters\n",i);
printf("Path Magnitude Response - Gc_mod :");
scanf ("%£", \\Gc_mod[i]);
printf ("Path Angle Response in Degrees - Gc_ang :");
scanf ("%f", \\Gc_ang[il);
Ge_ang[i] = Gc_ang[i]/180.00;
printf(“Path Time Delay in units of T - delay :");
scant (*%2", \\delay[il);
}
for (i=1;i<=num_ch;i++)
{
fprintf (fp,"Path #%2d Gc_mod=7.3f, Gc_ang=)7.3f,
delay=Y%7.3f\n",i,Gc_mod[i]) ,Gc_ang[i]}*180,delay[il);

}
senee * L1 */
/+* Uging Simpson’s Rule to Evaluate an integral * /
/ L . /
for (n=0;n<=SIKP;:n++)
{
point[n] = - 1.0/2 + 1.0 » n / SIMP;
3}

integral = 0.0;

for (n=0;n<=SINP;n++)

{
hvalue[n] = 0.0;
value[n] = Complex(0.0,0.0);
for (i=1;i<=num_ch;i++)

{
addi = Complex(Gc_mod[il*cos(Gc_ang[il+PI),
Ge_mod[i)*sin(Gc_ang[i]1+PI));
add2 = Complex(cos(2*PI*delay[il*pointn]),

-sin(2¢PI*delay[i]l*point[n]));
addi = Cmul(addl,add2);

value[n] = Cadd(value([n],add1);
}
value[n] = Cadd(value[n],Complex(1.0,0.0));
hvaluein] = 1.0 / ( Cabs(value[n]) * Cabs(valuelnl) );
}

for (n=0;n<=SIMP;n++)
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integral += hvalue[n] ;
integral -= 0.5 ® ( hvalue[0] + hvalue[SINP] );
integral /= SINP;
tprintf (£p,"\nIntegral =%8.41" ,integral);
2f1ush(2p);

/s*ssssssssPulge Shape sssssssssnsssns /
printf ("Enter Roll factor between O and 1:");
scant ("%2", \\roll);
fprintf(fp,"\nRoll factor =%8.4f“,roll);

/ sehese EEEEREERESRERRERRS /
/* Determine the overall impulse response of s/
/* transmitter, channel and »/
/* receiver. */
/*ensssess sesnas wn/
for (k=0;k<=MAXTERMS;k++)
{

glx] = Complex(0.0,0.0);
X1 = k - OFFSET;
glkl.r = sin(PIsk1)/(PIsk1)#
cos(Toll*PI*k1)/(1 -(2¢rollski)=(2sxroll=ski));
it (k1 ==0) g[OFFSET].t = 1.0000;
for (i=1;i<=num_ch;i++)
{
kdel[i] = k1 - delayl[i];
it ((kdell[i] != 0.0000) \\ \\ (roll == 0.0))
{
glkl.r += Gc_mod[i] ® cos(Gc_ang[i]+PI)
» gin(PI*kdel[i] )/ (PIs#kdel[i]);
glkl.i 4= Gc_mod[i] » sin(Gc_ang[i]+PI)
®» sin(PIskdel[i])/(PI*kdel[i]);
)}
else it ((kxdel[i] != 0.0000) \\ \\ (roll != 0.0))
{
glkl.r += Gc_mod[i] w cos(Gc_ang[i]+PI)
% gin(PIskdel[i])/(PIskdel[i])
% cos(rollsPI*kdel[i})
/ (1 - (2*rollskdel[i])s(2*rollekdel[i]));
glx].i += Gc_mod[i] % sin(Gc_ang[i]*PI)
% gin(PI*kdel[il)/(PIskdel[i])
% cos(rollsPI*kdel[i])
/ (1 - (2#rollskdel[i])*(2*rollskdell[il));
}
else
{
glk]l.x += Gc_mod[i] * cos(Gc_ang[il*PI);
glk]l.i += Gc_mod[i] # sin(Gc_ang[il*PI);
}
}
/*
it ((x%¥m)==1) fprintf(fp,"\n");
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tprintf (2p,“gl%edl=%8.41,%8.42j " ,x1,g(k].r,glkl.i);

./
}
£f1ush(2p);
/wessinnsrnnsnns EERERER *he /
/* Determine receiver response for channel additive noise »/
/3svennes seas SEsERRERREE *enbnn/
for (k=0;k<=MAXTERMS;k++)
{

ki = k - OFFSET;
2[k] = Complex(0.0,0.0);

if (roll == 0.0) £[OFFSET].r = 1.0;
else
{

for (i=0;i<=SINP;i++) amt(i] = 0.0;

for (i=0;i<=SIMP;i++) amt[i]

sqrt (1-sin(PI*(2+i/SINP -1)/2));

/essss gven ki1 ssssss/
it ((x1 !'= 0) \\ \\ (k1%2 == 0))
{
fstore = Complex(0.0,0.0);
for (1=0;i<=SIMP;i++)
fstore.xr += 2 ® amt[i] ® cos(roll#PI*ki*(2+i/SIMP - 1));
fstore.r -= (amt[0] + amt[SIMP]) * cos(roll+PI*ki);
fstore.r *= (roll/SINP/sqrt(2.0));
£[x].r = sin(k1*PI*(1-10ll))/PI/k1 + fstore.r ;

for (i=0;i<=SINP;i++)
fatore.i += 2 » amt[i] ® sin(rollePIski=(2+i/SINP - 1));
fstore.i -= (amt [SINP] - amt[0]) ® sin(rxo0llsPI*k1);
fstore.i *= (roll/SIMP/sqrt(2.0));
f[x].i = tstore.i;
}
/*serx odd k1 *xsssse/
else if ((k1 != 0) A\ A\ (k1%2 = 0))
{
fstore = Complex(0.0,0.0);
foxr (i=0;i<=SIMP;i++)
fstore.xr += 2 * amt[i] * cos(roll*PI«kis=(2+i/SINP - 1));
fstore.r -= (amt[0] + amt[SIMP]) ®» cos(xroll*PI=k1);
fstore.r *= (roll/SIKP/sqrt(2.0));
f[x].r = sin(k1*PI*(1-xoll))/P1/k1 - fstore.r ;

for (i=0;i<=SIMP;i++)
fstore.i += 2 » amt{i] ®» sin(rollsPIxk1*(2+i/SINP - 1));
fstore.i —-= (amt[SIMP] - amt[0]) » sin(xoll*PIsk1);
fstore.i *= (roll/SINP/sqrt(2.0));
£[k].i -= fstore.i;
}
else it (k1 ==0)
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fstore = Complex(0.0,0.0);
for (1=0;1<=SIMP;i++)

fstore.r += 2 * amt[i];
fstore.r -= (amt[0] + amt[SIMP]);
fstore.r *= (roll/SINP/sqrt(2.0));
£[OFFSET).xr = 1 - roll + fstore.r;

}
}

3}

f£flush(fp); 7
/ssasrsanans * £ax
/* Determine the input data signals */
/* Either PSK, QAM, V29 or other, ¥=2,4,8,16,32,64,128,266 »/
/ sene L sune ws/

for (i=0;i<=MAX;i++) SIG_SET[i] =
for (i=0;i<=MAXTAPS;i++) sqsum[i]
Sum = 0.0;

Printf("\n WHAT SIGHNAL COXSTELLATION IS DESIRED?\n");
printt(” Enter P or p(PSK), Q or q(QAM), V or v(V29)");
printf(“ or something else \n\t:");

scanf ("%s”, \\choice);

Complex(0.0,0.0);
= 0.0;

if ((choice == ’p’) || (choice == ’P’))
{
printf(“PSK Chosen: How Many Points?: ");
scant (74", \\N);
fprintf (£p,"\n\n%dPSK" M) ;
for (k=1;k<=M;k++)
{
SIG_SETIk].r = cos(2#PI*k/M);
SIG_SETI[k].i = sin(2+«PI*k/X);
}
}
else if ((choice == 'Q’) || (choice == q?))
{
print2("QAM chosen: How Many Points?: *“);
scanf (*%d", \\M);
tprintf (£p,"\n\n%2dQAN" ,K) ;
M1 = (int)(float)sqrt(1.00%K);
for (k=0;k<=Mi1-1:k++)
{
for (k1=1:;k1<=M1;k1++)
{
SIG_SET[k#M14ki].r = (2.0%k1 - M1 - 1);
SIG_SET[k*M1+ki1].i = (2.0%k - M1 + 1);
Sum = Sum + SIG_SET[k*Mi+ki].r = SIG_SETIkeM1+k1].r +
SIG_SET[k#Mi+k1].i ®» SIG_SET[k*M1+k1].i;
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printf(“\nSum of squares= %8.4f",Sum);
Sum = sqrt(Sum/N);
Ditt_Mag = 0;
for (i=1;i<=MAX;i++) freqlil = 0.0;
for (i=1;i<=MAX;i++) qam_mag[i] = 0.0;
for (k=0;k<=M1~1:;k++)
{
for (ki=1;ki<=M1;k1++)
{
SIG_SET[k+Mi+k1].r /= Sum;
SIG_SET[k*M1+k1].i /= Sum;
mag = Cabs(SIG_SET[keM1+ki]);
done = 1;
for (i=1;i<=Diff Mag;i++)
{
it (qam_magl[i] == mag)
{
treq[i] += 1.0/M;
done = 0;
}
3}
it (done == 1)
{
Ditf_Mag++;
qam_mag[Diff_Magl = mag;
treq[Diff_Magl += 1.0/M;
}
}
}

for (i=1;i<=Diff_Mag;i++) sqsum[1] += freq[il/qam_maglil/qam_magli];

for (i=1;i<=Diff_Hag;i*+)
for (j=1;j<=Diff_Mag;j++)
sqsum[2] += freq[i] » freq[j] /(qam_mag[i]+qam mag[i])

/(qam_mag[i]+qam_mag([jl);
for (i=1;i<=Diff Mag;i++)

for (j=1;j<=Diff_Mag;j++)
for (k=1;k<=Diff_Mag;k++)
sqsun[3] += freqli] » freq[j] * freqlk]
/ (qam_magl[i)+qam_mag[j]+qam_mag[x])

/ (qam_mag[i)+qam_mag[j]+qam_maglk]);
for (i=1;i<=Diff_Mag;i++)

for (j=1;j<=Diff_Mag;j++)
for (k=1;k<=Diff_Mag;k++)
for (1=1;1<=Diff_Mag;l++)
for (m=1;m<=Diff_Mag;m++)
sqsum[5] += freq[i]l » treq[j] * freq[k] » freq[l] » freq[m]
/(qam_mag[i] +qam_mag[jl+qam_mag[k])+qam_mag[1] +qam_mag[m] )

/(qam_mag[i]+qam_mag[j]l+qam_mag[kx]+qam_mag[l]+qam_magim]);
for (i=1;i<=Diff_Mag;i++)
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{
fprint?(2p,“\nQam_Mag= %8.4f, Freq = %8.41",qam_mag[il,treqfi]l);

for (i=1;i<=5;i++)
{
it (i!=4) fprintf(fp,“\nsqsum[’d]= %8.4f",i,sqsum[i]);
}
} ‘
else it ((choice == *'¥’) || (choice == 'v?))
{
printf("V29 chosen: How Many Points?: *);
scanf (“%d", \\M);
printf("%d V29 SIGNAL SET",.M);
tprintf (£p,"\n\n}2dVv29" ,X);
M1 = N/8B;
print£("\nM1 ==Yd",M1);
mag = 1.0;
Diff_Mag = M1 » 2;
for (i=0;i<=MAX;i++) v29_mag[i] = 0.0;
for (i=0;i<=Mi-1;i++)
{
j =8=+=1+1;
for (k=j;k<=j+3;k++)
{
SIG_SETIk].r = mag = cos(PI*(2+k-1)/4);
SIG_SET[k].i = mag » sin(PI*(2%k-1)/4);
Sum = Sum + SIG_SET[k].r = SIG_SET[k].r
+ SIG_SET[x].i #» SIG_SETI[k].i;
}

v29_mag[2¢i+1] = mag;
mag = mag ® (2+i+3) / (2+i+1) / sqrt(2.0);
for (k=j+4;k<=j+7;k++)
{
SIG_SET[x].r = mag ® cos(PI*k/2);
SIG_SET[k].i = mag ® sin(PI*k/2); .
Sum = Sum + SIG_SET[k].r ®» SIG_SET[k].r
+ SIG_SET[x].i » SIG_SET[x].i;
}

v29_mag[2+i+2] = mag;
mag *= s8qrt(2.0);
}
printf ("\nSum of squares= %8.4f",Sum);
Sum = sqrt(Sum/NM);
for (k=1;k<=M;k++)
{
SIG_SETIk].r /
SIG_SET[x].i /
}
tor (i=1;i<=Diff_Mag;i++) v29_magl[i] /= Sum;

.
Sunm;

.
Sunm;
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for (i=1;i<=Diff_Mag;i++)
sqsunf1] += 1.0/(v29_mag[il)/(v29_magli]) ;

for (i=1:;i<=Diff_Mag;i++)
for (j=1;j<=Diff_Mag;j++)
sqsum(2) += 1.0 /(v29_maglil+v29_mag[j])
/(v29_magl[il+v29_mag[jl);
foxr (i=1;i<=Diff_Mag;i++)
for (j=1;j<=Diff Mag;j++)
for (k=1;k<=Diff_ Mag;k++)
sqsun[3]) += 1.0 /(v29_mag[i)+v29_mag[j]l+v29_maglkl)
/(v29_mag[i)+v29_mag[j]l+v29_maglk]l);
for (i=1;i<=Diff Mag;i++)
tor (j=1;j<=Diff_Mag;j++)
for (k=1;k<=Diff_Mag;k++)
for (1=1;1<=Diff_Mag;l++)
for (m=1;m<=Diff_Mag;m++)
sqsun[5] += 1.0
/(v29_mag[i)+v29_mag[j]l+v29_mag[k]+v29_mag[1]+v29_magim])
/(v29_mag[i]+v29_mag[j]+v29_mag[k]+v29_mag[1]+v29_magln]);
for (i=1;i<=6;i++)
sqsum[i] /= pow( (double) Diff_Mag, (double) i);
fprintf (fp,"\n");
for (i=1;i<=5;i++)
tprintf (2p,"%8.12" ,pov( (double) Diff Mag, (double) i));
for (i=1;i<=Diff_Mag;i++) '
{
fprinttf (£p,"\nV29_Mag= %8.42",v29_mag[il);
}
for (i=1;i<=5;i++)
{
it (i!=4) fprintf(fp,"\nsqsumnl’dl= %8.4f",i,sqsum[il);
}
}
else /+ ANY OTHER SET s/
{
printf("\n Enter Kumber of Points in Signal Constellation:\n");
scanf ("%d", \\N);
fprintf (fp,"\n\nSignal Set not PSK or QAM ox V29");
for (k=1;k<=M;k++)
{
printf(*sI6[%d].r =",k);
scanf ("%t",SIG_SET[k].r);
print2(“SIG[%d]).i = ",k);
scanf ("%ft" ,SIG_SET[x].i);
Sum = Sum + SIG_SET[k].r » SIG_SET[k].r +
SIG_SET[k].i » SIG_SETIX].i;
}
printf ("\nSum of squares = %8.4f",Sum);
Sum = sqrt(Sum);
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for (k=1;k<=M;k++)

{
SIG_SET[X] .r /= Sum;
SIG_SETIk].i /= Sum;

/
/ sae sass+ Print Constellation Set *ssssssss
/

for (k=1;k<=M;:k++)
{
it ((x%Em) == 1) fprintf(fp,"\n");

tprintf(tp,"s[%3dl=%8.4f,%8.4¢j *,k,SIG_SETIX].r,SIG_SET[x].i);

}
2f1lush(fp);

/-A-A - - - e e al e

/% What are the step-sizes that are used

VA ) Y * sERpkd L i 2] 2 *s
for (i=0;i<=Em;i++) vallil= 0.0;
printf (“\nlumber of ALPHAS to be entered:");
scanf (*%d", \\max_num);
for (chk=1;chk<=max_num;chk++)
{
printf("Enter ALPHA[Y2d]:",chk);
scanf (%2, \\vallchk]);
}
/ cheR -

/% Determine Noise Power

yA I 1 - *
scant (“%z", \\NO);
fprintf (fp,"\n\nko/2= %8.4f 4B",N0);
¥0 /= 10.0;
%0 = 1.0/pow(10.0,¥0);
fprintf (£p,"\nk0/2= %8.4f ",N0);
££lush(2p);

/ * »

/% Determine L and ¥ ranges and steps

/e i *

scant (*%d”, \\Emin);
scanf ("%d”", \\Nmax);
scanf (*%d", \\Nstep);
scanf ("%d", \\Lmin);
scanf ("%d", \\Lmax);
scant ("%d", \\Lstep);

/%% Perform Simulations

.L.L.:/
*/

/* * .
for (N=0;N<=Nmax;N=N+NEstep)
{
{
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fprintf(fp,"\n\number of Equalizer Taps besides C[0] = %24",N);
££1ush(£p) ;
MMSE = MINMEANSQERR(M,¥,SIG_SET,g,f,fp,val,NoO);
tprintf (£p,"\nN=Y%2d, \tMMSE=%8.4f\n" ¥ ,NMSE) ;
221lush(tp);
for (L=Lmin;L<sLmax;L=L+Lstep)
{
it (L != 4)
{
tprintf(fp,"\nL = %24 “,L);
magsun = 0.0; factor = 0.0; fac = 0.0;
it ((choice == ’p’) || (choice == 'P?))

{
magsum = 1.0 & L;
factor = L © NO ¢ integral / (magsum ® magsum);
fac =1 - (0.5 & factor ¢ factor);
LMMSE = 1 - (1-MMSE) e fac ¢ fac;
1printt(tp,"HHSE=%8.4f",LHHSE);
}
else if ((choice == ’q’) || (choice == ’Q?))
{
factor = L & NO » integral * sqsum[L] ;
fac =1 - (0.5 * factor * factor);
LMNSE = 1 - (1-MMSE) e fac * fac;
fprinte(fp, MMSE=Y8.4¢" ,LMMSE) ;
}
else if ((choice == ’v?’) || (choice == 'V?))
{
factor = L ¢ NO ¢ jintegral ¢ sqsum[L];
fac =1 ~ (0.6 ¢ factor ¢ factor);
LMMSE = 1 - (1-MMSE) e fac ¢ fac;

fprintf (1p,“MMSE=%8.41" ,LMNSE) ;

}

else fprintf(fp,”\n PROGRAM NOT AVAILABLE FOR SIGNAL SET");
£21ush(2p);

it (¥ == 8) && (L == 3)

{

scanf ("%s",file_nl);
21 = fopen(file_nl,"w");
it (£1 == NULL) printf(“Cannot open File"); exit(1);
sprintf(file_nla,"%sl)c",file_nl,’a’);
22 = fopen(file_nla,"w");
it (£2 == NULL)
{
printf(“Cannot open File"); exit(1);
}
ADIPTIVEHSE(L.H,I.SIG-SET.g,t.tp,tl.t2.va1,l0);
fclose(f1);
fclose(£2);
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3

}
}

}

fclose(fp);
}
CINV.C
PALL LI LD o el Ll L «/
/essssessss CINV() - Taken from: Numerical Recipes in C s»»x/
/#sssesssns Altered to invert complex matrices wnen/
/wsssusssss instead of just real matrices wnen/
/ * /

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

#define MAITAPS 40
#define TINY 1.0e-20

typedet struct FCOMPLEX {
doudble r,i;
} zfcomplex;

fcomplex Cadd(),Csub(),Cmul(),Cdiv() ,RCmul(),Complex();
double Cabs();
/* /
/® LUBKSB »» /
/ /
void lubksb(i,N,indx,b)
fcomplex A[MAXTAPS+1] [MAXTAPS+1], bIMAXTAPS+1];
int ¥, indx[MAXTAPS+1];
{

int i, ii=o0, iP- b H

fcomplex sunm;

for (i=1;i<=N;i++)
{
ip = inax[il;
sum = blipl;
blip] = bl[i];
ir (ii)
for (j=ii;j<=i-1;j++) sum = Csub(sum,Cmul(A[i]l[j],b[j1));
else if (Cabs(sum)>0.000) ii= i;
b[i] = sum;
}
for (i=N;i>=1;i--)
{
sum = b[i];
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tor (j=i+1;j<=N;j++) sum = Csub(sum,Cxul(A[i][j],b[j]));
it ( cabs(a[i][i]) > 0.00)

{
vli] = Cdiv(sum,A[i])[i]);
}
else bli]=sunm;
}

}
/ - S wes/
/assnsans LUDCHP sus s e/
/ennne . /

void ludcmp(4,¥,indx,d)

int ¥, indx[MAXTAPS+1];

double *d;

fcomplex A[MAXTAPS+1] [MAXTAPS+1];

{

int i, imax, j, k;

double big, dum, temp;

double ®vv, svector();
fcomplex sum, dum2, dum3;
void nrerror(), free_vector();

vv = vector(1,N);
«d = 1.0;
for (i=1;i<=N;i++)
{

big = 0.0;

for (j=1;j<=N;j++)

it ((temp = Cabs(A[il[3j1)) > big) dbig = temp;
}

if (big == 0.0) nrerror("Singular matrix in routine LUDCMP");
vv[i] = 1.0/big;
}

for (j=1;j<=N;j++)
{

for (i=1;i<j;i++)
{
sum = A[i]1[j];
for (k=1;k<i;k++)
sun = Csub(sum,Cmul(A[i) [x],AlXx]1[j1));
A[i][j] = sum;

}

big = 0.0;

for (i=j;i<=N;i++)
{

sum = A[i11§];
for (k=1;k<j;k++)
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sum = Csub(sum,Cmul(A[il[x],Alx](j]1));
Ali1[j1 = sum;
it ((dum= vv[i) @ Cabs(sum)) >= big)
{
big = dum;
imax = i;
}
}
it (j!=imax)
{
for (k=1;k<=N;k++)
{
dum2 = A[imax][x];
Alimax] [x] = A[310x];
A[j]1[x] = dum2;
}
sd = - (»d);
vv{imax]=vv[j];
}
indx[j] = imax;
12 (Cabs(A[j1[j1) == 0.0) /#sess Question *+/
{
printf ("\nTIKYYY’d",j);
printf("\nd = %8.42+%8.4235" ,A[j1[§].x,A[5](5].4);
A[j1[3].x = TINY;
A[31[5]1.4 = 0.00;
}
it (§1=N)
{
dum3 = Complex(1.0,0.0);
dum? = Cdiv(dum3,Alj]1[31);
for (i=j+1;i<=N;i++) A[i)[3§] = Coml(A[i] [j],dum2);
}

}

free_vector(vv,1,N);
}
/ L L L2 /
/ewesssnessr matrix Inversion program ssssssssss/
/ P . . /
#define iim 3

void cinv(a,y,N)
fcomplex A[MAXTAPS+1] [MAXTAPS+1]1, y[MAXTAPS+1][MAXTAPS+1];
int N;
{
int §, j, indx [MAXTAPS+1], k;
fcomplex IDIMAXTAPS+1] [MAXTAPS+1] LAL[MAXTAPS+1] [MAXTAPS+1];
fcomplex col[MAXTAPS+1];
double 4;
int jim;
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/esssnsss Save Matrix A in AA /
for (i=1;i<=N;i++)

for (j=1;j<=K;j++)

{

y[il1[j] = Complex(0.0,0.0);
AA[1] (3] = ALid 3]
}
/ . * INVERT NMATRII ssessssssssatss /

ludcmp(A,N,indx, \\d); /* Decompose matrix just once */
for (j=1;j<=N;j++)

/# Find inverse by columns */
for (i=0;i<=N;i++)
{
col[i] = Complex(0.0,0.0);
}
col[j] = Complex(1.0,0.0);
lubksb(A,N,indx,col);
for (i=1;ic<=N;i++) y[il[j] = collil;
)}
/*ssssensnsnsRecover A matrix from Adss* * s/
for (i=1;i<=N;i++)
for (j=1;j<=N;j++)
Ali1[3] = aalil[3];

RANDOM.C

#include <stdlib.h>
#include <math.h>

#define MAXS 98

/ SEEBEERES /
/#ssssssss Returns uniform r.v from 0.0 to 1.0 oy
/esansnnns shasnnnk/
/#%ssssees From: Numerical Recipes in C. Ch.7 pg.207 ssssssuss/

float ranO(idum)
int *idunm;
{
static float y, maxran, v[MAXS];
float dum;
static int i11=0;
int j;
unsigned int i, k;
void nrerror();

if (+idum < 0 || iff ==0)
{
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irs
i
do
{
k
i

= i
i< 1;

} shile (1);
maxran = k;
srand(*idunm) ;
sidum = 1;

for

(§=1;J<MAXS; j++)

dum = rand();

for
v

}
i=1

(3=1; J<MAXS;j++)
[j] = rand();

+ y o (MAXS -1)/maxran;

if ((5 > (MAXs-1)) |l (3 < 1))
nrerror(“RANO: THIS CANNDT HAPPEN");

y=v

0il;

vlj] = rand();
return(y/maxran);

}

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

M1 259200
IA1 7141

IC1 54773
RM1 (1.0/M1)
M2 134456
IA2 8121
IC2 28411
RM2 (1.0/M2)
M3 243000
IA3 4561
IC3 51349

/sensan
/eesnen
/essnns
AL LT

*/

*s*+ returns a uniformly distributed r.v from 0.0 to 1.0 *=ux/
ssa¢ Set idum to any negative value to initialize or

s+#+ reinitialize the sequence.

#s»s From: Numerical Recipes in C. Ch.7 pg 210

wnx/
suns/
*oun/

float rani(idum)
int =idum;

{
stati
stati
float
stati
int j

¢ long ix1, ix2, ix3;
c float r[98];

temp;
¢ int i1£=0;

void nrerror();
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it (eidum < 0 || iff == 0)

{
iftt = 1;
ix1 = (IC1-(*idum)) % M1;
ix1 = (IA1*ixi+IC1) % Mi;
ix2 = ix1 % M2;
ix3 = ix1 % M3;

for (j=1;§<=97;j++)
{
ix1 = (TA1six1+IC1) Y M1;

ix2 (IA2+1x2+1IC2) Y% M2;
r[jl= (ix1+ix2+RM2)*RM1;
}
sidum = 1;
}
ix1 = (Ta1+ix1+IC1) % Ni1;
ix2 = (IA2+ix2+1C2) ¥% M2;
ix3 = (IA3+ix3+IC3) % M3;
j =1+ ((97%ix3)/M3) ;

it (3>97 1! j<1) nrerror(“RAN1: This cannot happen");
temp = r[jl;
r[j] = (ix1+ix2#RM2)*RMi;
return(temp);
}
/#senessssnnsnsee sesErRReS Lbdddl shes /
/#%%% Returns a normally distributed deviate with ®»=s/
/*%%% zero-mean and unit variance, using rani(idum)ssss/

/%*%% ag the source of uniform deviates swen/
/*%%* From Numerical Recipes in C. Ch 7.3 pp.216-7 #sex/
/ *aen * */
float gasdev(idum) i

int *idum;

{

static int iset = 0;
static float gset;
float fac, r, vi, v2;
float rani();

it (iset == 0)
{ /* We don’t have an deviate handy so */

do

{
/ seans . . st es * /
/** pick two uniform numbers in the square ext- =%/
/%* ending from -1 to +1 in each direction s/
/#» See if they are in the unit circle, if not »#/
/%* try again s/
/ * * bt »/
vl = 2.0 * rani(idum) ~ 1.0;
v2 = 2.0 » rani(idum) - 1.0;
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r =vl*vl+ v2 ®y2;
}
wvhile (x>= 1.0);
fac = sqrt(-2.0+log(x)/x);

[enwen »e sexanas srar ./
/*= Now make the Box-Nuller Transformation to get »s/
/%% two normal deviates. Return one and save the #s/
/%% other for the next time. »x/
/e » * .
gset = vi ® fac;
/ Lt Ll */
/** Set flag. s/
T T R TP PR P S T T Ly
iset = 1;
return(v2sfac);

}

else

{
/t‘t“it.t...t.###‘#‘t lt‘t.tttt#l#“/
/*+ Ye have an extra deviate handy, so unset the =/
/%* tlag, and return the extra deviate. 274
/enenn SRREeEE =/

iset = 0;
return(gset);

COMPLEX.C

#include <stdio.h>

#include <math.h>

typedef struct FCOMPLEX {

double r,i;
} Zfcomplex;

fcomplex Cadd(a,b)
fcomplex a,b;
{

fcomplex c;

c.r = a.r + b.r;
c.i=a.i+0b.i;
return(c);

}

fcomplex Csub(a,b)
fcomplex a,b;
{
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fcomplex ¢;

c.r = a.r - b.r;
c.i=a.1-09.i;
return(c);

}

fcomplex Cmul(a,b)
fcomplex a,b;
{

fcomplex c;

c.r=a.r *b.r - a.i* b.i;
c.i=a.isb.r+a.r=*b.i;
return(c);

3

fcomplex Cdiv(a,b)
fcomplex a,b;
{
fcomplex c;
double r,den;

if (fabs(b.r) >= fabs(b.i))
{
r=b.i/b.r;
den =
c.r= (a.r+r* a.i)/den;
= (a.i - r o a.r)/den;

.x/ b.i;
b.i+xrebdb.x;

(a.x *r + a.i)/den;
(a.i * r - a.r)/den;

-]
« e g
" Hnneo

return(c);

}

fcomplex Complex(re,im)
double re,im;
{

fcomplex ¢;

€.T = re;
c.i = im;
return(c);

}
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double Cabs(z)
fcomplex z;
{

double x, y, ans, temp;

x = fabs(z.r);
y = fabs(z.1);
if (x==0.0) ans = y;
else if (y==0.0) ans = x;
else it (x>y)
{
temp = y/x;
ans = x ®sqrt(1.0 + temp # temp);
}
else
{

temp
ans
}

return(ans);

}

x/y;
y ® 3qrt(1.0 + temp * temp);

fcomplex Conjg(z)
fcomplex z;
{

fcomplex c;

c.r = z.r;
c.i=-z.1i;
return(c);

}

fcomplex Csqrt(z)
fcomplex z;
{
fcomplex c;
double x, y, ¥, I;
it ((z.r == 0.0) \\ \\ (z.i == 0.0))
{
c.r=c.i=0.0;
return(c);
}
else
{
x = fabs(z.r);
y = fabs(z.1i);
it (x >= y)

= y/x;
¥ = sqrt(x) * sqrt(0.5+(1.0 + sqrt(1.0+xr * 1)));
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3

else
{

T = x/y;

v = 8qrt(y) * sqrt(0.6+(r+sqrt(1.0 + r * r)));

it (z.r >= 0.0)

{

w;

z.1/(2.0 = w);

c.xr
c.i
}
else
{
c.i
c.T
}
return(c);
}
}

(z.i>=0) 7w : -w;
z.i /(2.0 = c.i);

fcomplex RCmul(x,a)
double x;
fcomplex a;

{

fcomplex c;
€C.r=x "a.r;
c.i=xwma.i;
return(c);

}

fcomplex Arg(z)
fcomplex z;
{
fcomplex c;
c.r = z.r/Cabs(z);
c.i = z.i/Cabs(z);

return(c);
}
UTIL.C
/e* SRRSREEE » s/
/esrssness Utility program: Numerical Recipes in C sesssuss/
/ * * seves /

#include <malloc.h>
#include <stdio.h>

108



void nrerror(error_text)
char error_text[);
{

void exit();

tprintf (stderr,"Numerical Recipes run-time error..\n");
fprintf (stderr,"%s\n",error_text);
fprintf(stderr,”...now exiting to system...\n");
exit(1);

}

double svector(nl,nh)
int nl, nh;
{

double *v;

v=(double *)malloc((unsigned) (nh-nl+i)#*sizeof(double));
if (!v) nrerror(“allocation failure in vector()");
return(v-nl);

}

void free_vector(v,nl,nh)
double *v;
int nl, nh;
{

free((char*) (vinl));
}
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