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Abstract 

Development of network quality speech coders at 16 kb/s and below is an active 

research area. This thesis focuses on the study of low-delay Code Excited Linear 

Predictive (CELP) and tree coders. A 16 kb/s stochastic tree coder based on the 

(M,L) search algorithm suggested by Iyengar and Kabal and a low-delay CELP coder 

proposed by AT&T (CCITT 16 kb/s standardization candidate) are examined. The 

first goal is to compare and study the performance of the two coders. Second objective 

is to analyze the particular characteristics which make the two coders different from 

one another. The final goal is the improvement of the performance of the coders, 

particularly with a view of bringing down the bit rate below 16 kb/s. 

When compared under similar conditions, the two coders showed comparable per- 

formance at 16 kb/s. The analysis of the components and particular characteristics 

of the tree and CELP coders provide new insight for future coders. Higher perfor- 

mance coder components such as prediction, gain adaptation, and residual signal 

quantization are needed. Issues in backward adaptive linear prediction analysis for 

both near and far-sample redundancy removal such as analysis methods, windowing, 

ill-conditioning, quantization noise effects and computational complexities are stud- 

ied. Several new backward adaptive high-order methods show much better prediction 

gains than the previously reported ones. Other than a better high-order predictor for 

both coders, other suggestions to improve the performance of the coders include a new 

scheme of training of the excitation dictionary and better gain adaptation strategy 

for the tree coder. A hybrid "Tree-CELP" coder, taking the best components from 

the two archetypes is a good candidate to push coding rates below 16 kb/s. 



Sommaire 

Le codage du signal de parole de qualitd "network?' a fait rdcemment l'objet 

d'un effort de recherche considdrable portant sur le diveloppement de codeurs faible 

ddlai B 16 kb/s et moins. Ce mbmoire traite du codage par "Code Excited Linear 

Predictive" (CELP) et du codage arborescent B faible ddlai. Un codeur arborescent 

bas6 sur l'algorithme de recherche (M,L) de Iyengar et Kabal et un codeur CELP 

& faible ddlai propos6 par AT&T (candidat pour la standardisation & 16 kb/s au 

CCITT) sont utilis6s. Nous poursuivons trois objectifs. Le premier est de comparer 

la performance des deux codeurs. Le second est d'analyser les caractdristiques qui 

les distinguent. Le but final est l'amdlioration de la performance des codeurs, et en 

particulier, d'abaisser le dibit sous le seuil de 16 kb/s. 

Les deu:: codeu2s donnent, dans les m6mes conditions, des performances sirni- 

laires B 16 kb/s. L'analyse des composantes et des caractdristiques spdcifiques aux 

codeurs arborescent et CELP facilitera le ddveloppement de nouveaux codeurs. Des 

6liments plus performants du codeur (pridiction, adaptation du gain, et quantifi- 

cation du signal rdsiduel) sont ndcessaires. Plusieurs aspects de la prddiction linCaire 

par adaptation causale visant 1'Climination des redondances sont 6tudiks: les mithodes 

d'analyse, le fenetrage, le conditionnement, l'effet du bruit de quantification et la com- 

plexitd des calculs. Plusieurs nouvelles mdthodes causales d'ordre dlevd presentent un 

gain de pridiction supirieur & celui obtenu avec les mithodes connues. L'amdliora- 

tion du prddicteur n'est pas la seule suggestion: une nouvelle mdthode d'entrainement 

du dictionnaire "d'excitation" et une meilleure stratkgie d'adaptation du gain pour 

le codeur arborescent peuvent aussi amdliorer la performance du codeur. Un codeur 

hybride "arborescent-CELP" possddant les meilleures caractdristiques des deux co- 

deurs serait une bonne suggestion pour abaisser le d6bit sous le seuil de 16 kb/s. 
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Chapter 1 Introduction 

Digital representation of speech signals has many advantages. Ease of regenerative 

amplification for transmission over long distance and possibility of signal encryption 

are the most obvious ones. There is however the disadvantage of some digitization 

distortion. Loaering .his distortion often means higher bit rates resulting in higher 

transmission bandwidth. Larger bandwidth has become available as a result of use of 

the new communication channels such as fiber optics. Nevertheless, for many reasons 

including the wide use of the old media, lower bit rate and bandwidth are still highly 

desirable. Therefore, the goal of reducing the bit rate of the digital speech coders 

with high quality or low distortion remains an active research area. 

The measurement of speech quality is a difficult and long standing problem [I]. 

Other than objective measures, the subjective measure of Mean Opinion Score (MOS) 

has been commonly used. These measures are also used in this thesis. The MOS sub- 

jective measure is a subjective rating between 5 and 1 ( 5 :  excellent, 4: good, 3: 

fair, 2:poor, 1: unacceptable). A score of 4.0 is also referred to as high-quality or 

near-transparent. When the near-transparent quality is a necessary but not suffi- 

cient condition, the term network quality is used [I]. Low-delay and robustness to 

channel errors are examples of such possible additional conditions imposed by the 

communication network environment. 

Other terms often used for scaling the speech quality include: a Commentary 

or Broadcast quality which is used when there is no perceivable noise for the wide- 

band speech (bandwidth of 0-7000 Hz), a Toll-quality or Telephone quality, narrow 
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Fig. 1.1 Digital telephony standards [I] 

bandwidth speech heard over telephone network with bandwidth of 0-3400 Hz, Com- 

munication quality, with perceivable distortion but high intelligibility (MOS of 3.5), 

and Synthetic quality, with unnatural yet highly intelligible characteristic. The 

subclass of wideband speech is not the focus of this work. For the narrowband speech 

coding, Fig. 1.1 summarizes the current state of digital telephony standards show- 

ing the bit rate, quality and applications. t The CCITT coding standardization for 

low-delay high-quality speech coding at 16 kb/s is under way. Other current goals 

are the achievement of transparent or near-transparent quality at 8 kb/s and robust 

communication quality at 4.8 kb/s and lower. 

A summary of the CCITT standardization specification for the 16 kb/s low-delay 

coders is shown in Table 1 .l. 3 Note the objective low-delay of 2 ms and the required 

channel error robustness. In future, similar kinds of requirements can be expected 

t CC1TT:Consultative Committee for Telephone and Telegraph, GSM: Group Special Mobile, 
CTIA: Cellular Technology Industry Association, NSA: National Security Agency. 

$ The qdu is a quantization distortion unit where distortion is due to a single stage of 64 kb/s 
PCM coding with an "average" codec. To calibrate codecs on the qdu scale the CCITT uses the 
MNRU, a reference unit known with a qdu characteristic. The MNRU is specified in a CCITT 
recommendation. P, is the channel probability of error. G.721 is CCITT standardization of 32 
kb/s coders in 1984. 



Parameter I CCITT Requirement ( Objective 

Complexity 

Coding Delay 
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Pe = 
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for speech 

Transmit 
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Table 1.1 CCITT standardization - characteristics for low-delay 
16 kb/s coders [l] 

- < 5 ms 

- Distortion < 4 qdu 
Not worse than G.721 
Not worse than G.721 

3 asynchronous tandems 
with distortion < 14 qdu 

DTMF 

for coding at bit rates below 16 kb/s. Depending on the area of the application 

(Network, Mobile Radio/Voice Mail), the requirements can be somewhat different 

than the ones in Table 1.1. For example for Mobile Radio or in-building wireless 

applications, channel error rates can be more severe than the rates in Table 1.1. Low- 

delay coding at bit rates between S and 16 kb/s (medium bit rates) with transparent 

or near-transparent quality is the focus of this thesis. Possible additional requirement 

such as the ones in Table 1.1, are also considered. 

A Low-Delay Code Excited Linear Predictive coder (LD-CELP) coder is the 

AT&T candidate for the 16 kb/s CCITT standardization [2, 3, 4, 5, 6, 71. Iyengar 

and Kabal have suggested a Low-Delay Tree coder [8, 9, 101 (LD-TREE) based on 

the (M,L) algorithm and reported a performance quality equivalent to 7 bitslsample 

log-PCM at 16 kb/s. Under clear channel conditions (Pe = 0.0) both coders may 

be considered as potential candidate coders for the low-delay network-quality appli- 

cations. Satisfactory performance quality, under channels with transmission error, is 

also reported for the LD-CELP. The performance of the two coders however has not 

been compared under the same conditions before. This is done when results of the 

- < 2 ms 

Synchronous 
Tandems 

No annoying 
effects 

Graceful 
degradation 



simulations of the two coders are compared in this work. 

The studies and simulations of this work and the ATScT's development of the 

LD-CELP coder were concurrent. t The original early version of the LD-CELP 

described in Ref. [2] was used for simulations in this work. However the detailed 

algorithm description and subsequent modifications reported later [3-71 were also 

considered. $ 

The evolution of many speech coding techniques contributes to the structure and 

components used by the LD-CELP and LD-TREE. Any improvements leading to 

better future speech coders will benefit from the lessons of this evolution. The struc- 

ture of conventional Pulse Code Modulation (PCM) with p-law or A-law companding 

schemes is well known. First, the analog speech signal is passed through the band 

limiting filter (e.g. 3400 Hz). The sampler operates on the output of this filter to 

meet the Nyquist criteria (e.g. 8000 Hz sampling frequency). The p-law/A-law com- 

pression is introduced at this stage. At the final stage of the encoder, the amplitude 

quantizer assigns one of the uniform quantization levels (e.g. 256 levels) to the sam- 

pled and compressed signal (64 kb/s coder). The nonuniform quantization resulted 

from the combined compression and uniform quantization operations is more appro- 

priate for the speech signal (log-PCM). The decoder performs the reverse operations 

(Inverse quantization, Expanding, and Interpolation filter). As seen in Fig. 1.1, in 

1972 CCITT standardized these coders (G.711). 

Log-PCM coding scheme does not take advantage of the redundancies in the 

speech signal. Digerential Pulse Code Modulation (DPCM) and Adaptive DPCM 

(ADPCM) coding strategies, exploit some of these redundancies. Before quantization, 

a predictor filter is used to estimate the speech sample. The coder in effect quantizes 

the difference of the actual speech sample and the predicted sample. The structure of 

t Most of the work for this thesis was done during winter 1989 and bhe first half of 1990. The 
writing however was interrupted and only concluded in early 1991. This is why the results of 
the thesis was reported prior to the conclusion of the final version of the thesis [ l l ,  12, 131. Also 
the work is continued by J .  Grass, the author and others at  INRS-T616communications for the 
12 kb/s based on the recommendations of this thesis [14]. 

Other suggestions for modifications, not reported at  the time of this thesis were discussed in 
Ref. [15] (International Conference on Acoustics, Speech, and Signal Processing '91). 



such coders is more formally introduced in the next chapter. The result is a gain in 

use of transmission rate of 2:l with coding rate at 32 kb/s with equivalent toll-quality 

of 64 kb/s log-PCM coders. As seen in Fig. 1.1, the CCITT standardization of the 

32 kb/s coders took place in 1984 (G.721). The G.721 is also extended to 24 and 40 

kb/s in G.723. This 2:l compression and the so called 2.5:l gains of Time Assignment 

Speech Interpolation (TASI) or Digital Speech Interpolation (DSI) (effect of silences in 

speech) results in an effective circuit gain of 5:l over conventional telephone systems. 

The wireless applications (short distance indoor) have benefited from the G.721 for 

its simplicity. The CCITT G.EMB standards is the extended (draft version) ADPCM 

application at rates 40, 32, 24, and 16 kb/s. 

In the 32 kb/s standardization, no side information is transmitted and in order to 

minimize transmission delay, all adaptation processes are in a backward fashion [16]. 

The backward and forward adaptive prediction differ in the positioning of the buffer 

window of the samples in the prediction analysis. This means that for the back- 

ward adaptation, buffering of tens of milliseconds of the speech signal for prediction 

analysis does not include "future" samples (as it does in the forward adaptation), 

i.e. the predictor and quantizer are updated using information contained in the past 

reconstructed samples. This of course results in a small degradation in prediction 

quality. 

Lowering the ADPCM coder bit rate below 32 kb/s means lower bit rate available 

for the residual signal coding and higher quantization noise. The backward adaptive 

prediction which relies on the past reconstructed signal degrades rapidly as quantiza- 

tion noise increases. Hence, the coder toll-quality of the ADPCM algorithm can not 

be maintained at 16 kb/s. 

Although use of forward adaptation improves the performance at the cost of 

increased delay, as seen in Table 1.1, this encoding delay is specially undesirable for the 

network applications. The following paragraphs explain how other modifications are 

needed in order to simultaneously maintain coder quality and low-delay. The interface 

between the 4-wire to %wire lines with impedance mismatch generates echoes. The 

echo round trip delays result from a combination of encoding delay and (long distance) 



propagation time. The application of echo cancellers at the 4-wire/2-wire junction 

reduces this echo. The amount of tolerable echo by the canceller is a main factor used 

to define the maximum and objective coding delays in Table 1.1. 

For the 16 kb/s CCITT low-delay standardization (currently under way, Table 

1.1), the opposing goals of low encoding delay, speech quality have to be accornrno- 

dated. The backward adaptive prediction has to be used if the delay requirement of 

Table 1.1 is to be met. The computation cost of the many coding techniques combined 

in such a complex coder has to be kept limited to the computational power of the 

DSP chips available. As mentioned earlier, although channel error performance (and 

other) requirements are constrained by the limits of Table 1.1, for other applications 

such as mobile radio and indoor wireless, the channel error rate can be much more 

severe than the ones in Table 1.1. 

Both LD-CELP and LD-TREE coder belong to the class of Delayed Decision or 

Multipath search coding which is introduced in detail in the next chapter. In the speech 

model where decision on choice of an excitation sequence deriving a reconstruction 

filter has to be made, number of samples in the sequence defines the encoding delay. 

The actual coder delay is 2 to 3 times this encoding delay mostly due to buffering and 

processing time considerations. In order to obtain 16 kb/s bit rate with a sampling 

frequency of SO00 samples per second, the coder can only use 2 bitslsample. The 

choice of tree or codebook for the excitation sequence is the main difference between 

the LD-CELP and LD-TREE. 

The simulations results of this work (presented later) show that the two coders 

have comparable performance at 16 kb/s under clear channel conditions. Other con- 

tributions of this thesis include methods to improve the performance of the two coders, 

particularly with the view of bringing the bit rate below 16 kb/s (medium rates 8- 

16 kb/s). The (original) two coders used different methods and strategies for their 

components. The analysis and improvements to these components (formant-pitch 

prediction schemes, gain scaling methods of the excitation sequence, types of the 

perceptual weighting for the error signal, etc.) are also important for the purpose of 

better coders at 16 kb/s and below. The challenge is to develop high-performance 



compatible components for the target future coder, operating at bit rates between 8 

to 16 kb/s. In particular, the backward adaptive prediction component is investigated 

at length in this thesis. Suggestions to improve the two coders include an improved 

high-order predictor (applicable to both coders), training of the excitation dictionary 

as well as a better gain adaptation strategy for the tree coder. The high-order predic- 

tion alternative is compared to the conventional formant-pitch configurations. The 

performance of high-order predictors is studied and greatly improved. 

Concluding from the advantages of each of the two coders (LD-TREE and LD- 

CELP) and the choices of the individual components, suggestions are made to combine 

CELP and tree structures for future coders. A hybrid coder, taking the best com- 

ponents from the two archetypes (possibly with a "Tree-CELP" structure) is a good 

candidate to push coding rates below the current 16 kb/s. Future high-quality low- 

delay speech coding at medium rates should benefit from such combined structures 

and schemes. t 

1.1 Organization of the Thesis 

In Chapter 2 the overall structure, components, and concepts of low-delay speech 

coders in general and the two coders (LD-CELP and LD-TREE) in particular are 

discussed. Chapter 3 focuses on the backward linear prediction. Issues and methods 

of pitch and formant prediction are investigated. The experiment results on the 

backward linear prediction methods of Chapter 3 are presented in Chapter 4. Chapter 

5 gives a detailed description of the two coders algorithms. It also discusses ways of 

improving both coders. The discussion on the nature of the differences and similarities 

between the two coders leads to the recommendations for future hybrid coders which 

combine the best of both coders. Summary and recommendations for future work are 

in the final chapter. 

t The work of low-delay speech coding at 12 kb/s in Ref. [14] utilizes the above recommendations. 
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Chapter 2 Low-Delay Speech Coding 

This chapter presents a review of the various components of high-quality low-delay 

speech coders at 16 kb/s and below (medium rates 4.8 to 16 kb/s). The thesis focuses 

on LD-CELP and LD-TREE coders. The discussion provides both background and 

insight into the components of these two coders. The general techniques ~f analysis- 

by-synthesis and Delayed-Decision coding are first introduced. Then, the overall. 

structure of the LD-CELP and LD-TREE coders are presented. Various components 

of the two coders as well as similarities and differences between them are studied. 

2.1 Introduction 

Prior to toll-quality low-delay speech coding at medium rates, many barriers of 

achieving better coders with lower bit rates were broken. The bandlimiting filter 

which is used before sampling of the analog telephony signals', limits the signal fre- 

quency higher band to 3400 Hz. A sampling frequency of 8000 Hz in the conventional 

method of Pulse Code Modulation (PCM), along with the p-law or A-law companding 

methods and a uniform quantization of 256 levels (8 bits/sample) result in 64 kb/s 

coding rate. The above method of log-PCM which has the obvious advantage of zero 

delay, does not take advantage of the of the correlations among the samples. The 

method of Differential Pulse Code Modulation (DPCM) exploits these redundancies 

to bring down the coding rate. This method includes a linear predictor filter which 

produces a predicted sample value corresponding to each speech sample. The quan- 

tizer quantizes the prediction error signal which is the difference between the current 



sample value and the predicted value. If the selection of the predictor coefficients as 

well as the quantization are chosen to be adaptive to the stationary characteristics of 

the signal and the dynamic range of the predicted error signal respectively, the coding 

rate is further reduced (Adaptive Differential Pulse Code Modulation or ADPCM). 

The conventional ADPCM structure is shown in Fig. 2.1. The two components of the 

conventional ADPCM are the quantizer Q and the predictor F(z) .  It is well known 

that the quantizer Q and the predictor F(z )  (the z-transform of the prediction filter 

response f (n)) have to be in a closed-loop configuration (such as the one in Fig. 2.1) 

so as to minimize the effect of the quantizer error in the coded speech [17, 181. The 

CCITT's standardization for the speech coders at 32 kb/s uses ADPCM to produce 

toll-quali t y speech. 

u 
(a) Encoder 

u 

(b) Decoder 

Fig. 2.1 Conventional ADPCM coder 

The strategies of the method of ADPCM can not yield 16 kb/s bit rate coders 

which can maintain both toll-quality speech and low delay. As it was mentioned in 

Chapter 1, the high quantization noise and the resulted poor backward prediction 

degrades the coding quality. The alternative of forward adaptation is not considered 

since it introduces coding delay longer than network application toleration. In the 

forward adaptation, in order to estimate the parameters of an adaptive operation, 

often an analysis frame of tens of milliseconds is used. As an example an analysis 

frame of 160 samples (20 ms for the SO00 Hz sampling frequency) may be used. The 



encoder estimates these parameters based on some optimization procedure and then 

uses the obtained parameters for those 160 samples. The parameters are transmitted 

as side information to the decoder. Since it is necessary to have an analysis buffer of 

160 samples, a delay of 160 samples or 20 ms (for the sampling frequency of 8000 Hz) 

is resulted. Backward adaptation means that blocks of reconstructed signal, up to the 

present sample, are used for the analysis. Since these quantized samples are available 

both to the encoder and decoder, there is no need for transmission of side information. 

The real advantage is the elimination of the analysis buffer of future samples which 

means no delay. The cost is a small performance degradation due to two facts: first, 

the quantization error has a negative effect on the future sample quantization which is 

based on the reconstructed samples, and second the analysis window in the backward 

adaptive case only includes past samples and hence the analysis does not benefit from 

the future samples (the parameters may be "stale"). 

The general ized A D P C M  coders may use time-varying linear predictor filters to 

model far-sample as well as near-sample correlations. The near-sample filter models 

the spectral envelop with resonances (called formant) and antiresonances. The reso- 

nances are due to the poles of the vocal tract frequency response, while some spectral 

nulls are due to zeros of the response. The spectral fine structure (pitch) is mod- 

eled by the far-sample prediction filter. These models discussed in Chapter 3 remove 

the speech signal formant and pitch redundancies and hence reduce the required bit 

rate. The "noise shaping" consideration of the general ized A d a p t i v e  Predict ive  C o d i n g  

(APC) structure is an improvement over the ADPCM one. In the ADPCM model the 

output error signal is approximately white. This does not explore the human percep- 

tion characteristics. The distortion in the coded speech is less likely to be perceived 

by the human ear at frequencies where the speech signal energy is high. The desired 

noise shaping scheme, filters the quantization noise so that it has the same spectral 

shape as the input speech (increased noise energy in formant regions but decreased 

elsewhere). As a result, there is a bias toward less noise at low frequencies. This is 

because the speech spectrum masks the perceived noise to some degree and the fact 

that the ear is more tolerant to the noise at high frequency. The noise shaping filter 



system function is often chosen to be a bandwidth expanded version of the transfer 

function of the formant predictor. The generalized APC structure allows for this kind 

of control over noise spectrum. This structure which has a closed-loop configuration 

is shown in Fig. 2.2. 

(a) Encoder 

(b) Decoder 

Fig. 2.2 A closed-loop configuration coder 

Other than the two components Q and F (z )  (quantizer and formant predictor) 

which were previously seen in the conventional ADPCM of Fig. 2.1, the generalized 

closed-loop structure includes a pitch predictor P ( z )  and a noise shaping filter N(z). 

In this configuration the feedback loop is around the quantizer and the closed-loop 

includes the pitch predictor. The additional noise-shaping filter reduces the perceived 

distortion. The configuration of Fig. 2.3 is suggested for the general open-loop con- 

figuration [19]. In this structure the formant redundancy removal precedes the pitch 

redundancy removal (F-P open-loop configuration). The open-loop configuration of 

Fig. 2.3 also includes a noise feedback filter (but not explicit). This configuration 

which is used in the CELP coders, may also be used as an alternative to the closed- 

loop configuration in the APC coders. The discussion of the next section introduces 



u 
(a) Encoder 

(b) Decoder 

Fig. 2.3 An open-loop configuration APC coder with noise 
feedback 

Linear Predictive Coding (J..PC). A full discussion of the formant and pitch predictor 

used in configurations of figures 2.2 and 2.3 are postponed to the next chapter. 

Analysis- by-synthesis scheme which provides a better control over quantization 

noise is another concept used in the LD-CELP and LD-TREE -coders. Next section 

reviews the LPC model of speech in an analysis-by-synthesis configuration. The class 

of coders which make the task of high-quality low-delay speech coding possible, is 

the Delayed-Decision Coding or Multipath Search Coding. Codebook, Tree (employed 

in the LD-CELP and LD-TREE coders respectively) and trellis coding structures 

all belong to this class of coders. They employ encoding delay (here within the 

allowed low-delay requirements) to identify the best possible sequence out of a set of 

alternatives. 0 ther low-delay components such as Gain adaptation, Postfiltering are 

also reviewed in this chapter. 

2.2 LPC model and Analysis-by-Synt hesis 

The redundancies in natural speech are a direct result of human vocal tract struc- 

ture and the limitations of the generation of speech as well as human hearing and 

perception. Various coding methods exploit these redundancies taking into consider- 

ation the following facts: 



In general, vocal tract shape and thus speech spectrum change relatively slowly 
compared to the sampling frequency (although abrupt changes occur at clo- 
sures of vocal tract); 
The vocal cords vibrate rapidly but the change in the vibration rate (i.e. FO, 
the fundamental frequency) is relatively slow; 
Successive pitch periods are very similar most of the time; 
The vocal tract spectrum varies slowly with frequency, and most speech energy 
is at low frequency; 
Speech.sounds can be modeled as periodic or noisy excitation passing through 
a vocal tract filter, and each sound can be represented with a' few parameters; 
Characteristics and limitations of human audition such as higher sensitivity 
to lower frequency, insignificance of spectral zeros, phase insensitivity, and 
masking phenomena can be used [17, 181. 

The linear predictive coding (LPC) is an important speech model which uses the 

above facts and is used in many speech coders including the generalized ADPCM 

and APC. The basis for the LPC model is the production of speech via a linear 

filter system representing the human speech synthesis. An excitation source U(z) 

(representing the z-transform of time sequence u(n)) is the input to a shaping filter 

H(z) to produce S(z) the output speech. As a possible excitation signal, U(z) may 

be chosen from a carefully picked excitation dictionary. 

The time domain equivalent representation shows how a linear combination of 

the p previous output samples and q + 1 previous input samples are used to predict 

i (n)  (with a gain factor G): 

In most cases, the all-pole Auto-Regressive model (AR, q = 0) is chosen over 

the all-zero Moving Average (MA, p = 0) or the general pole/zero ARMA model 

(Eqn. 2.1). A drawback of this choice is that the spectral zeros due to the glottal 

source and/or vocal tract response in nasal and unvoiced sounds are not represented. 

However an additional 2-3 poles can approximate the zeros closely. 

When the all-pole model is used, using the z-transform of Eqn. (2.1), H(z) may 

be written as: 

G P 
H b )  = ~ ( r )  where A(z) = 1 - F(z)  = 1 - a k r - k .  

k=l 



A(%) is called the inverse filter (the inverse of the all-pole H(r)) .  If the input to  

the inverse filter A(r) is speech signal S ( z ) ,  the output is E ( t )  which is called the 

prediction error signal. 

As shown in the general configurations of the previous section, various coding 

methods use the LPC model in removing both far-sample and near-sample redun- 

dancies. The variations of these structures and adaptation schemes are discussed in 

detail in the next chapter. The generalized ADPCM and APC use such structures to 

produce high quality speech at rates between 16 to 32 kb/s. As mentioned earlier, 

the APC has the advantage of control over the noise spectrum and hence produces 

better results. When medium rate coders (4.5-16 kb/s) are needed, an even better 

control over the distortion resulted from the quantization is needed and one needs to 

increase the efficiency of the residual signal quantization. The method of analysis-by- 

synthesis improves the control over distortion by minimizing the error at the encoder 

between the reconstructed (output) signal and the original signal [20]. Fig. 2.4 shows 

an example of analysis-by-synthesis configuration which is used in the CELP and 

other coders [21, 22, 23). This configurations is explained in the next paragraphs. 

1 1 Min. MSE 

1-P(z) - 
l-F(z) A- * - s.... 

+ I 

Fig. 2.4 An analysis-by-synthesis configuration 

The reconstructed signal is the output of the speech production model. In order 

to perform the error minimization procedure, encoder must include a replica of the 

decoder so that the identical reconstructed signal becomes available at the encoder. 

As seen in the Fig. 2.4, easy incorporation of the perceptual weighting filter (W(z) = a)) is an advantage of the analysis- by-synthesis structure. The synthesis filters 

1 are all-pole filters similar to the one in Eqn. 2.2 which are used i q q  and i q q  
for near-sample and far-sample redundancies. As it is seen in the next chapter, a 



single (high order) synthesis filter may replace the two separate formant and pitch 

filters (pitch synthesis filter is eliminated in Fig. 2.4.). The discussion about the 

adaptation of parameters in F ( z )  and P (z )  is also postponed until the next chapter. 

The excitation signal is not necessarily one single sample as it is the case in the simple 

analysis-by-synthesis structure of Fig. 2.4. As seen in the next section it is possible 

to have a sequence of samples as the excitation sequence. The excitation sequence 

(or sample) is determined such that the Mean-Square perceptually weighted Error 

(MSE) between the original and the reconstructed signal is minimized. 

Adaptive gain scaling of the excitation signal (gain component after the excitation 

signal in Fig. 2.4) improves the excitation representation by reducing the dynamic 

range of the excitation set. The excitation signal is multiplied by the gain factor and 

then passed through the synthesis filter(s) to generate the reconstructed signal. This 

section of the structure is common to the encoder and the decoder. The error signal 

is passed through a perceptual weighting filter prior to the error minimization. 

Methods to decrease the computational complexity of the analysis-by-synthesis 

configuration are discussed in Section 2.7. Computational reductions are obtained by 

better placement of the perceptual weighting filter and by the separation of Zero-Input 

Response (ZIR) and Zero-State Response (ZSR) of the system. 

2.3 Delayed-Decision Coding 

The methods of Delayed-Decision Coding, which result in the CELP, Tree, and 

Trellis coding, are excitation sequence procedures which are discussed in the this 

section. Other excitation methods such as Residual-Excited Linear Prediction, Multi- 

pulse and Regular-pulse excitation coders which also belong to the class of analysis- 

by-synthesis are found in the literature [24, 25, 171. 

Through the use of Delayed-Decision Coding, an efficient representation of the 

residual signal is possible. A delayed decision is made as to which optimum residual 

quantization value has to be selected. A sequence of future values of speech signals 

as well as the current sample are used. This allows the realization of rates R < 1 



bits/sample at the cost of the introduced delay. Low-delay requirement of Table 1.1, 

limits the number of samples in the sequence to 5-8 (0.625-1.0 ms at sampling rate 

of 8000 Hz). As a result, the coding delay (usually 2-3 times sample sequence length) 

not only is less than the standardization maximum delay of 5 ms, but also meets 

the objective of 2 ms. To obtain the 16 kb/s coding rate R = 2 bits/sample is used 

(Coder bit rate=Rxsampling frequency). This section focuses on the codebook and 

tree coders which belong to the delayed-decision coding class. Trellis coding, the 

other member of this class is only briefly reviewed. 

For the Independent, Identically Distributed (i.i.d. ) sources, the delayed-decision 

coding provides closer performance to the rate distort ion bound than the zero-memory 

quantizers [26, 27, '581. The delayed-decision coding is also beneficial in the case of 

correlated signals such as speech. The quantization sequence is selected from a set 

with correlation characteristic similar to the speech signal. Fig. 2.5 shows examples 

of the 3 classes of delayed-decision coding: a) codebook, b) Tree, and c) trellis. 

If an R-ary coder sequence of length N and R bits/sample is used, the transmitted 

code C, is the index of one of: 

R N  J = ( 2  ) (2.3) 

entries of a unique non-restricted codebook. For the example in Fig. 2.5, R = 1 and 

N = 4 and hence the number of entries in the codebook are 24 = 16. In the case of 

the CELP coder of this thesis, R = 2 bits/sample and N = 5 samples/vector are used 

which results in a codebook of size of (22)5 = 1024 entries (code vectors). The actual 

number of bits transmitted over the channel for each vector is R x N, 1 x 4 = 4 for 

the example and 2 x 5 = 10 bitslvector for the CELP coder. 

In the CELP coders, a preselected excitation codebook of size J (e.g. 1024) with 

each entry being a vector with dimension N (e.g. N = 5) are stored and are available 

both at the encoder and the decoder. As easily seen, fractional coding rates (e.g. R = 

312 or 112) are also possible through variations of the codebook size J, and codevector 

dimension, N (Eqn. 2.3). 

The search for the optimum codebook entry at the encoder in the analysis-by- 

synthesis configuration is in effect systematically trying each sequence (vector), then 



CODEBOOK 

N = 4 Lench  

2N = 16 Seguenc.. 

00 1 1 optimum path 

TREE - 
L = 4 Leneh 

2L  = 16 sequences 

00 1 1 optimum path 

TRELLIS - 

Fig. 2.5 Examples of multipath search structure with R = 1, a) 
Codebook, b) Tree, and c) Trellis Coder [28] 
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selecting the one with the lowest perceptually weighted error between the original 

signal sequence and reconstructed signal sequence (exhaustive search). The index 

of the selected codebook entry is transmitted to the decoder which reconstructs the 

sequence using the identical codebook and decoding structure (codebook is the exci- 

tation signal selection in Fig. 2.4.). 

Codebook coding used in an analysis-by-synthesis structure results in the con- 

ventional CELP coder structure which is shown in Fig. 2.6. In this structure both 

formant and pitch synthesis filters are included. The LD-CELP coder replaces the 

formant and pitch synthesis filters by a single high-order synthesis filter (Fig. 2.13). 

As explained further in next chapter, high-order synthesis filter CELP coder (unlike 

formant and pitch filters configuration of Fig. 2.6) performs well in the presence of 

channel noise. 

Fig. 2.6 Conventional CELP encoder and decoder block diagram 

I n p u t  Speeeh  o u t p u t  
S p e e e h  

If the codebook size is very large, as larger size means richer codebook and bet- 

ter performance, the optimum exhaustive search of codebook may be replaced by 

the sub-optimum methods of tree and trellis coding (sub-optimum for the same size 

codebook). This is to decrease the search complexity. 

In the tree and trellis coding, different sequences have several common elements 

and individual sequences form a path in the tree or trellis. In these cases the path 
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information is transmitted to the decoder. The tree structure consists of nodes and 

branches. The number of branches b, per node is called branching factor. If ,B symbols 

per each node are used, the encoding rate R in bits per symbol is given by: 

When ,B > 1 is used, here after the term Multi-symbol/node tree is used. In effect 

this structure combines tree and codebook resulting in a Tree-CELP coder where 

codebook of ,B samples are used at each node [14]. Note that sampling frequency is a 

factor in the resulted coder bit rate in these considerations (bit rate=# of bit/sample 

x sampling frequency). Here a sampling frequency of 8000 sample per second is 

assumed. As an example fractional rate of R = 1 = 1.5 is obtained when 4 = 2 

and b = 8 are used. This example which is illustrated in Fig. 2.7, is used (sampling 

frequency of 8000 sample per second) to obtain the coding rate of 12 kb/s in Ref. [14]. 

A consistent assignment of branch number throughout the tree, results in a unique 

path map for each path sequence. At depth d (distance from the root), there are bd 

possible path maps starting from the root. ,B = 1 sample/node and branching factor 

of 4 results in rate 2 bitslsample (Eqn. 2.4). Rates less than 2 bits/sample are needed 

to obtain coding rates below 16 kb/s. 

In the configurations where ,f3 > 1 is used the main issue is how to selected 

the ,B symbols at each node. In the Tree-CELP structure, the sequences of multi- 

symbols for populating nodes (code vectors) may be selected from random numbers 

with certain distribution. Training as seen later usually improves the results. Other 

than the Tree-CELP alternative, the concept of multi-tree is suggested in Ref. [29, 301. 

The idea is that the branching factor of the tree at different depths along all paths 

changes. As seen in Fig. 2.8 example, branching factor of 2 and 4 means that along 

all paths, at depth d = odd numbers, branching factor is 2 and at d = even numbers, 

the branching factor is 4. The resulted multi-tree has a rate which is the arithmetic 

mean of the component trees: 



Pig. 2.7 Fractional rate tree of 1.5 bits/symbol using 
multi-symbol per node approach 

In the trellis coding (another sub-optimum structure) [3l,  321, the structure 

(Fig. 2.5) starts as a tree and then collapses to the specific trellis structure (lim- 

iting the n!i.mber of fan-outs). Trellis coding is not considered in this thesis. 

2.3.1 Search Methods for the Codebook and Tree Coders 

As was seen in the structure of analysis-by-synthesis of Section 2.2, each excita- 



Fig. 2.8 Fractional rate tree of 1.5 bits/symbol using multi-tree 
approach 

tion innovation sample will produce a different reconstruction output sample. The 

difference between the reconstructed sample and the speech sample, the error Sam- 

ple is passed through the perceptual filter to form the perceptually weighted error 

sample. In the CELP coder, the innovation sample sequence is chosen from the gain 

normalized excitation code vectors. These vectors are the entries in the codebook. In 

the tree coder, for each tree structure populated with the innovation samples (inno- 

vation tree), there is a corresponding tree structure populated with the reconstructed 

output samples (reconstruction tree). The innovation excitation sample sequence in 

this case is the sequence of innovation samples along a particular path in the tree. 

Hence for each innovation sample sequence there is a corresponding reconstructed 

output sequence. 

In the case of CELP (codebook) coder, the search procedure for the best codevec- 

tor may simply be by the exhaustive search through the codebook entries to find the 

entry which provides the reconstructed sequence with the minimum cost (distortion). 
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Fig. 2.9 A stochastic tree structure with branching factor b = 4, 
,8 = 1, and the resulted 2 bitslsample rate (used in the 
LD-TREE). 
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The cost function (distortion measure) is usually based on the Euclidian distance be- 

tween the vectors. The search is done on vector-by-vector basis and is by passing the 

difference between the reconstructed sample vector (sequence) and the speech vector 

through the perceptual filter. Each excitation codebook entry results in a different 

reconstructed vector and hence a different perceptually weighted error vector. The 

goal is then to select the entry which produces the minimum MSE distortion i.e. to 

find the index of the entry which results in the perceptually weighted error sequence 

with minimum norm. 

In the tree coder, the accumulated MSE distortion for each path is used. The 

sum of accumulated perceptually weighted MSE distortions of all nodes along a path 

is the cumulated MSE distortion for that path. The search goal is to find the path 

with minimum accumulated MSE distortion. The search procedure, in this case is 

less straight forward and is done on sample-by-sample basis. The tree height and the 

number of path (number of nodes at maximum depth) grow with time. Delay and 

computational complexity constraints limit the height and the number of paths in 

contention in the search procedure. The search method of (M,L) which is used in this 

study is an algorithm based on this idea [B]. The use of the algorithm in the tree 
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coder is described in the following paragraph. 

In a single path search, the search for the best innovation sequence is through 

one line of descendants from a root node, while in the multipath search, several path 

stemmed from an individual root are considered. The multipath search results in a 

better overall performance due to the fact that, while at time n,  a path i may have 

the minimum distortion among all paths, it may not maintain its lead at time n + 1 

(another path may have a lower accumulated distortion). In the (M,L) algorithm, a 

maximum of M paths are considered in the search procedure. The length of these M 

paths in contention can not grow very large since the coder delay is defined by this 

length L, and the computational complexity is increased as L gets larger. Hence the 

(M,L) search algorithm keeps a maximum of M paths in contention while number of 

samples in each path is limited to L. In this study M=16 and L=8 are chosen. The 

value of M is chosen based on the performance and complexity consideration. As 

shown in Ref. [S], the coder performance curve versus the M value increases with M 

but almost flattens around M=16. It is the low-delay requirements which restricts 

the value of L to S. 

At time instant n, each of the M (masimum) paths in contention are extended. 

The error accumulated for each of the 4M (the branching factor is 4) extended paths 

is calculated. As each of the innovation samples are passed through the adaptive gain 

multiplier and synthesis filter, a reconstructed output sample is obtained. The path 

with the lowest accumulated perceptually weighted MSE distortion is selected. The 

two bit branch code (E {00,01,10,11) in the case of branching factor 4) of the root 

of this path, L samples back, is the only information transmitted to the receiver at 

time n. Only valid paths that stem from this root are kept (maximum M) for the 

next time instant. Since synthesis, perceptual weighting filters, and possibly gain 

adaptation scheme along the M path in contention need M separate sets of memory, 

the memory requirements can become impractical. Section 2.5 outlines a method to 

overcome this problem. 



2.3.2 Innovation Sequences Population 

There are three categories of innovation sequence set (excitation codebook in the 

in the CELP coder and innovation dictionary in the tree coder) population: Deter- 

ministic, Stochastic, and Iterative. Deterministic population means that a restricted 

uniform or non-uniform alphabet (such as the one used in the R-bit quantization of 

DPCM) is used. Stochastic population of the innovation sequences is through gener- 

ation of random numbers with the desired distribution. The statistical characteristic 

of the innovation sequence set needs to match to that of the long-term histogram of 

the (gain normalized) residual samples. For the CELP and tree coders, the Lapla- 

cian and Gaussian distributions have been suggested [8, 271. The iterative or trained 

population is achieved through optimization methods based on Lloyd's basic develop- 

ment (e.g. vector generalized Lloyd algorithm of Linde et al (LBG) [34]) using a very 

large number of speech samples for the training sequence. The speech used for the 

training has to include various types of speech (various speakers and recording types 

with an appropriate selection of phonetically balanced sentences). This is to main- 

tain the coding quality for various speech types (better matching of the quantization 

innovation sequences to the actual speech innovation sequences). 

Systems based on the stochastic and iterative populations tend to produce more 

effective and refined innovation sequences for the CELP and tree speech coders [21,28] 

than the deterministic population. For the LD-TREE coder, with only 4 possible 

quantization values (branching factor of 4), the deterministic population is simple 

but not rich. Experiments of this work verified the above claims. The LBG-like 

training method used for the LD-CELP coder is designed to suit the particular CELP 

structure. The original stochastically populated tree coder of Ref. [8] was improved 

through a new iterative (trained) method. The training method used for LD-CELP 

as well as the new method of training used for the LD-TREE are outlined in Section 

2.9 and explained in detail in Chapter 5. 

To resolve the issue of the mapping of a large size stochastic innovation dictionary 

to the innovation tree nodes (uniquely assigning the tree nodes to entries in the 

dictionary), the procedure used in Ref. [S] adopts the following strategy. Starting 



with a dictionary (one sample per entry) of size 2D populated with random numbers 

with a Laplacian distribution, a unique path map is assigned to each node. This path 

map is the concatenated branch numbers from the root to the particular node (each 

branch number E {00,01,10,11) in the case of branching factor 4). The sequence 

of the D significant bits of the path maps are used as the index to the innovation 

dictionary. It is easily seen that meaningful size of the stochastic dictionary can be 

as large as 2Dmax where Dm, is the binary number representing the value 2 x L 

(for L = 8, Dm, = 2 x L = 16). Although larger size dictionary means richer 

innovation sequences, the memory requirement for the dictionary, duplicated at  the 

encoder and decoder, and the high required processing power will limit the maximum 

size dictionary. It turns out that the performance curve as a size of dictionary size 

flattens after 2D = 1024 for LD-TREE coder and a choice of D > 10 would not be 

appropriate ( D  = 10 is chosen in this work). More detail discussion and the results 

related to the above issues are discussed in Chapter 5. 

2 -4 Perceptual Weighting Filter 

Two forms of perceptual weighting (noise shaping) filter are considered. The 

simpler and more conventional form is 

1 - F(z)  P 
W(z) = where F(z/X) = C oiXizi 

1 - F(z/X) ' i= 1 

is the bandwidth expanded version of F ( z )  (e.g. X=0.85). The more general weighting 

filter has the following form 

where 

with 0 < X2 < X1 < 1 (e.g. X1 = 0.9, X2 = 0.4). 

If in the conventional closed-loop generalized APC structure of Fig. 2.2 the pitch 

predictor is removed (Fig. 2.10), the resulted configuration will be equivalent to a 
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Fig. 2.10 A predictive coder with noise feedback 

open-loop structure without pitch predictor. The choice of N ( z )  = F ( z / X )  results 

in an equivalent perceptual weighting filter of the form in Eqn. 2.5. This perceptual 

weighting filter form is also used in the conventional CELP structures. The LD-TREE 

coder which is based on the closed-loop configuration uses the simple perceptual 

weighting filter in Eqn. 2.5. As seen in Section 2.10, it is possible to equivalently 

represent the LD-TREE in an open-loop configuration similar to the one used by the 

LD-CELP in Fig. 2.13. 

When the perceptual weighting filter of the simple form in Eqn. 2.5 is used in 

conventional configurations, the disadvantage is that the weighting filter is directly 

linked to the prediction filter F ( z ) .  The more general weighting filter in Eqn. 2.6 does 

not have this disadvantage. As a result, the general form weighting filter will benefit 

from the fact that the analysis for the weighting filter coefficient adaptation can be 

based on the unquantized speech. Also, if the order of the synthesis filter is high (as it 

is the case in the LD-CELP), by using the weighting in Eqn. 2.6 with low filter order 

(e.g. 10) a better result is obtained. Use of the simple form of Eqn. 2.5 results in 

speech with artifact quality [2]. The use of separate weighting filter order and analysis 

has an additional computational complexity cost. The general form weighting filter 

easily replaces the simple form in the case of open-loop configuration usually used 



in the CELP coders (LD-CELP and also the open-loop alternative configuration for 

the LD-TREE in Fig. 2.12). For the closed-loop configuration which is used in the 

original LD-TREE, replacement of the simple form weighting filter by the general 

form is less straightforward. For the closed-loop configuration of Figures 2.2 and 

2.10, with the proper choice of noise shaping filter N ( z ) ,  it is possible to obtain the 

general weighting filter of the form Eqn. 2.6. A better alternative is discussed in 

Section 5.4.2. 

2.5 Robust Gain Adaptation 

To increase the dynamic range of the actual innovation signal, the entries of the 

excitation codebook or the innovation dictionary are chosen to be gain-normalized 

values. Hence, at time instant n, each gain-normalized innovation entry y(n), is 

multiplied by the sample (or sequence) gain G(n), to yield the actual gain-scaled 

innovation sample (or sequence) e(n) , i.e. 

The sample (or sequence) gain is updated in a backward adaptive fashion. The 

adaptation strategy may be done using one of the many suggested variance estimators 

(e.g. [8, 21). The structure of these estimators differ with each other in the "shape" 

and length of their memory. The factors to be considered are the estimator quality, 

complexity as well as robustness to channel errors. The particular structure also 

has to fit the coder structure i.e. CELP or tree. Other than the one-word memory 

Jayant gain adaptation strategy [35] which is the basis for several gain adaptation 

algorithms, two other basic strategies are considered here the gain adaptations based 

on exponentially averaged variance estimation [8] and the p- t h order logarit hmic-gain 

linear predictor structures [2]. 

The gain G(n) is proportional to the estimated standard deviation of e(n) (be (n ) )  

or equivalently the RMS value if the signal is zero mean. This estimator consists of 

a nonlinear operation plus a linear filtering operation PG(z). Although higher order 



filtering produces a better estimate for the filter input signal, the shorter the length 

of the impulse response of this filter, the more robust the gain adaptor would be. The 

effect is in how fast the memory of the estimator dies out. The value of an introduced 

leakage factor effects the channel error performance (robustness) in a similar fashion. 

Jayant one-word memory gain adaptation: This adaptation scheme ex- 

presses the sample (innovation) gain at time n as the product of the innovation gain 

of the previous time index and a multiplier M(n - 1) which is a function of the inno- 

vation sample at time (n - 1). The leakage factor ,B (with value slightly less than 1) 

is also used. We have (G(n) = +(n)) 

The multiplier values M(n - 1) are selected with values less than or greater than 1 

depending on the values of the innovation sample (small or large respectively). 

The deterministic tree can use this strategy directly. Since the number of choices 

for the innovation samples is small (4 in this case), the memory requirement is rea- 

sonable. The Jayant method is implemented by assigning a gain value to each node. 

The extended nodes gains are determined by the parent node gain, multiplied by 

the respective multiplier of the extended nodes. A modified Jayant gain method for 

stochastic trees is also mentioned in Ref. [S]. 

Exponentially averaged variance estimation gain adaptation: This 

method is the preferred method for the stochastic trees. To update the gain at 

the following formula is used 

d2(n) = Sd2(n - 1) + (1 - 6)e2(n - l ) ,  

where 0 < S < 1 (6 = 0.86 is used). In the above adaptation 6 controls the effective 

length of the exponential window (the shorter the length, the more robust the gain 

adaptor to channel error). This adaptation strategy is well suited for the stochastic 

tree coding (LD-TREE). 

In the LD-CELP excitation vectors are gain-normalized. Therefore the selected 

codevector y(n) is multiplied by the estimated gain &(n) resulting in the gain-scaled 



vector e(n) which is passed through the synthesis filter. Two methods of vector 

generalized Jayant gain adaptor and adaptive logarithmic gain predictor are suggested 

[2] . The former has a fixed coefficient and typically shorter response and thus is more 

robust to channel errors, while a higher clean channel performance may be obtained 

with the latter. 

Vector  generalized J a y a n t  gain adaptation: In this method, the multi- 

plier M(n - 1) in Eqn. 2.8 is a function of the gain-scaled vector e(n) rather than 

sample e(n). Since it is not practical to have dedicated gain multipliers for each gain- 

normalized entry in the codebook, the multiplier M(n - 1) is chosen to be a function 

(f (.)) of the root-mean-square (RMS) of the selected codevector. Let the symbol x 

represent the RMS value of the codevector y(n - 1). Only a few parameters which 

control the function f ( 0 )  are optimized. We have 

where the following parameter values are used for the 16-bit linear PCM input 

a,;, = 1, gave = 100, C1 = ln(Mmm/3), C2 = - ln(Mmin), 

iM,, = 1.8, Mmin = 0.8, P = (31/3215 = 0.853. 

for the case where there are no channel errors, P = 1 is used. As a result, the function 

f (.) consists of two exponential functions exp{Cl (x - 1)) and exp {C2(x - 1)) for the 

two ranges of 0 < x < 1 and 1 < x < 4. The function is clipped at Mma at x > 4. 

To have f (0) = Mmi, and f (4) = Mmm, the above values for C1 and C2 are selected. 

To compensate for the effect of ,B < 1, the term oiz is added. To handle very low 

input signals, the term a:;! is incorporated. To simplify the computation, a look-up 

table can be used for the multipliers M (.) for the codevectors. 

Adapt ive logarithmic gain predictor: The next adaptation strategy has a 

filter PG(z) of higher order and hence delivers a better clear channel performance at 

the cost of higher complexity. It uses a 10th order adaptive linear predictor acting in 

the logarithmic domain. The RMS values of y(n)  and e(n) are defined as ay(n) and 



ge(n) respectively. The Eqn. 2.7 for the vector case becomes 

The predictor filter PG(z) has to match the gain a(n) ,  to the RMS of the vector e(n) 

at time n (ge(n)). Expressed in the logarithmic domain, this formulation means that 

the logarithmic gain, log[a(n)], is estimated from the past samples of RMS of y(n), 

ay (n). The predictor has the following form 

where the adaptation uses a backward analysis similar to the ones discussed in the 

next chapter for the formant predictor filters. As seen in detailed algorithm for this 

gain adaptor in Chapter 5, a log-gain offset value is subtracted from the RMS value 

ay (n), to reduce adverse effects caused by the fact that the logarithmic gain is not a 

zero-mean signal. The value chosen is approximately equal to the averaged excitation 

gain level (38 dB for the 8 bit log-PCM input speech) during the voiced segments of 

the speech. Although the performance of this gain adaptation scheme is not as robust 

to channel errors as the vector generalized Jayant one (longer impulse response), the 

robustness may be improved using the bandwidth expansion method (Chapter 5). 

2.6 Postfiltering 

Postfiltering is a method by which the perceptual quality of the speech is enhanced 

through passing the output speech at the decoder through an additional adaptive fil- 

ter. The conventional CELP in Fig. 2.6, may include the postfilter block right after 

the output speech at the decoder). Because of the characteristics of the human audi- 

tory system, in addition to the noise shaping methods previously discussed, additional 

perceptual quality improvements are possible [36, 37, 35). The original LD-TREE [S] 

uses postfiltering. The poles and zeros of this filter are a damped version of the pre- 

dictor poles F(z) .  The damping factor is adapted according to the predictability of 

the signal. 



Tanderning and Non-voice signal Considerations: Postfiltering which im- 

proves the performance of the coder in the conventional ADPCM, CELP or in the 

original LD-TREE [S], is eliminated in the LD-CELP and LD-TREE studied in this 

work for severe accumulated distortion during tandem coding. The simulations in this 

study did not include tandeming performance. Ref. [4] has reported that the perfor- 

mance of the LD-CELP under asynchronous tandeming condition is worst than .the 

G.721 requirements and needs further research. When decoding non-speech (such as 

modem) signals, postfiltering resulted in phase distortion. Elimination of postfiltering 

removed the concern for this undesirable effect. t 

2.7 Computation Reductions in CELP and Tree Coders 

The complete structures of the CELP and Tree coders, as they are evolving, 

are structurally complex and computationally expensive. Computational reduction 

techniques suggested for the original two coders in this study (LD-CELP [2] and LD- 

TREE [S]) are discussed in this section. The techniques used can be divided to two 

categories; first the schemes which may be used in both tree and codebook structure 

and the ones which may be used in one of the two structures. As an example of type 

of computational complexity reductions which may be used in both LD-CELP and 

LD-TREE coders (or the general analysis-by-synthesis systems), one may move the 

perceptual filter to the left of the adder, as shown in Fig. 2.11-b. In general when 

analysis-by-synthesis is used and candidate innovation signals have to be compared, 

to reduce the computational cost, the computations which are common and constant 

are moved outside the "loop". 

2.7.1 Use of Gain/Shape Vector Quantization 

In the LD-CELP, Product Vector Quantization (PVQ) [39j is used to bring down 

t However the continuation of the work on the LD-CELP [15], suggests a "specially tuned" 
postfiltering to be used in the LD-CELP which not only does not have any adverse effects 
in the tandeming cases but also further improves the quality of the coded speech. The use of 
appropriate postfiltering is therefore recommended. The addition of postfiltering to both coders 
only can enhance the quality of both coders and does not go against the discussions in this work. 



the computation load by using a 7-bit shape and a $bit gain book (l-bit sign and 

2-bit amplitude). The codevector index in LD-CELP is the concatenation of 3 indices 

i, j, and k. The codevector is the product of pk, the sign portion of the gain vector 

(+1 or - l), gi, the magnitude portion of the gain- vector, and yj, the selected shape 

codevector (giyjpk). The gainlshape separation can have a possible positive effect 

on channel error robustness. This is due to the fact that gain information is partially 

transmitted to the decoder. 

2.7.2 Separation of ZSR and ZIR 

In the structures of Fig. 2.11 a single predictor is used. If the order of the 

perceptual weighting filter and the single high-order synthesis filter were the same, 

the cascade of synthesis and perceptual filter would have become simplified (Fig. 2.11- 

b). If the single predictor is a high-order one, the cascade filter is not simplified. 

This is because the use of high-order perceptual filter is reported [2] to result in an 

artifact synthesis quality, the cascade is not simplified (see Section 2.4 on perceptual 

weighting filter). The method of separating the Zero-Input Response (ZIR) from the 

Zero-State Response (ZSR) suggested in Ref. [22] further reduces the computational 

complexity and results in the structure of Fig. 2.11-c. The zero-input response is the 

component of the filtering operation which is also called "ringing" (memory) from 

previous excitations and is fixed throughout the search for the optimum excitation 

entry for all entries (computed only once in the beginning of the search). The second 

component in the filtering operation, ZSR, is the resulted filter output when all filter's 

memories are set to zero and the cascade filter is excited with one of the excitation 

entries. This component has to be calculated for all entries. Computational savings 

result through separating these two components [38]. 

In the LD-CELP, both separation of ZIR/ZSR and gainlshape (product) VQ are 

used to reduce the complexity of the search as follows. If F ( z )  is the synthesis filter 

transfer function and W(z) the perceptual weighting transfer function, one can form 

the cascaded filter: H(z) = F ( z )  W(z). The backward adaptive gain a(n) is known 

prior to the search. The MSE minimization of the distortion between the difference 
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Fig. 2.11 Simplifing the analysis-by-synthesis configuration 

target vector x(n) (vector version of x ( n )  in Fig. 2.11-c) and the synthesis vector 

xi,j,k = o(n)pkg iHyj  may be written as 

H is the lower triangular matrix 

I 
h(O) 0 0 0 0 
h ( l )  h(O) 0 0 

H = h(2) h(1) h(0) 0 
h(3) h(2) h(1) h(0) 0 I I h(4) h(3) h(2) h ( l )  h(O) 

and {h(O), h ( l ) ,  .., h(4 ) )  are samples of the impulse response of the cascaded filter. 

The minimization further reduces to 

D = - ~ ~ ( I Z ) / L ~ C J $ ( I Z ) ~ ~  + O ' ( I Z ) C J ~ ) E ~  or 

t D = - p ~ b i g ; ~  (n )y j  + ciEj,  



where 
2 2 

bi =20(n)gi, ci = a (n)gi , 
p(n) = ~ ' x ( n ) ,  and Ej  = I H ~ ~ ~ ~  

2.7.3 Adaptation Coefficient Updates 

Less Frequent Adaptation Updates: Since the spectral changes in the speech 

signals are relatively slow varying, significant computation load reduction is obtained 

with a minimal loss of performance by updating the coefficients less often (e.g. every 

4 or 8-th vector instead of every vector in the LD-CELP). This computational saving 

is applicable to both coders. 

Delayed Adaptation Update: The formant prediction filter coefficients are 

updated in a delayed update fashion in the LD-TREE. In Fig. 2.12 this is shown as 

{ai(. - 2L)) or {ai(n - L)) which means that the update algorithm at time instant 

n uses samples as recent as 2L or L samples back. Ref. [8] shows that L sample delay 

update strategy actually results in better prediction gains than zero delay update 

strategy. As seen in Fig. 2.12, this also results in complexity reduction of the coder 

since only one update of the prediction coefficients is done for all paths in contention 

(also see algorithm in Section 5.1). 

2.8 Channel Error Protection Methods 

Gray Coding of the Codebook Indices: Shape and gain codevector indices 

are Pseudo Gray coded [40, 411 to increase channel error robustness. This is because, 

in the case of a single error occurrence, the received codevector will tend to be close 

to the transmitted one. The result is a significant improvement in a noisy channel 

environment. The gray coding is used in the LD-CELP coder. 

2.9 Training of the Codebook 

For the CELP coder, using the gain adaptive Vector Quantization (VQ) speech 

coding of [42, 43, 381 and the product VQ training methods of [39], the shape and 



gain codebooks may be trained. In the training algorithm (described in detail in 

Chapter 5), the closed-loop design strategies include structural considerations for 

gain-shape VQ and use of adaptive gain-scaling of the excitation signal. The ini- 

tial shape and gain codebook are iteratively refined to produce the final codebooks. 

The distortion-versus-iteration does not monotonically decrease or converge for the 

closed-loop design. The codebook with the lowest distortion after a preset number 

of iterations is stored. When the individually optimized gainlshape VQ algorithm 

suggested in [39] was used, the initial shape book codevectors were chosen from num- 

bers with gaussian probability distribution, and the initial 3 bit gain codebook scalar 

values were selected from uniformly distributed gain values. In Chapter 5, a new 

method of training is outlined to improve the performance of the LD-TREE. 

2.10 Comparison of LD-CELP and LD-TREE structures 

As described in detail in Ref. [8], the LD-TREE structure is based on the closed- 

loop generalized APC structure of Fig. 2.2. The LD-CELP structure [2] is similar 

to the general CELP structure (open-loop structure of Fig. 2.3). Up to this section, 

using a conceptual approach various concepts and components of the two coders were 

discussed. In an attempt to better unify the two coders, an equivalent interpretation 

for the LD-TREE is given in Fig. 2.12. Comparing with the LD-CELP block diagram 

shown in Fig. 2.13, the following common features may be identified. 

o parameter selection using analysis-by-synthesis, 
o high performance predictors for redundancy removal, 

o gain scaling unit and the gain adaptation, 
o perceptual weighting (noise-shaping), and 

o innovation sequence dictionary or codebook with delayed search. 

The utilized concepts explained earlier in this chapter, can be summarized in this 

unifying comparison of the two coders. The use of Delayed-Decision Coding of code- 

book (CELP) and tree can efficiently represent the excitation signal. In an analysis- 

by-synthesis approach, the search for the optimum excitation dictionary or codebook 

entry at the encoder is done by systematically trying each sequence. The sequence 



with the lowest perceptually weighted error is selected. To generate the reconstructed 

signal, the encoder uses a replica of the decoder. The index corresponding to the se- 

lected sequence is transmitted to the decoder. Adaptive gain scaling of the excitation 

signal improves the excitation representation by reducing the dynamic range of the 

excitation set. The gain-normalized excitation signal is multiplied by the gain factor 

and then passed through the synthesis filter to generate the reconstructed signal. The 

error signal, the difference of the reconstructed and original signals, is passed through 

a perceptual weighting filter prior to the error minimization. Note that in Fig. 2.12 

(LD-TREE), the flow of the speech sample processing is on a sample-by-sample basis 

while in the Fig. 2.13 (LD-CELP), the flow is on a vector-by-vector basis. 

The essential difference between LD-CELP and LD-TREE coding is the corre- 

sponding difference between the block and sliding source coding. As seen in the 

discussions later, without channel error considerations, sliding window coders would 

seem to be preferable in terms of performance alone [26]. There are no block edge 

effects with sliding window techniques. However, with channel errors propagate for 

longer times within the sliding block structure. 

Both coders contain structures with similar functions. The various components 

can be mixed and matched between the coders. It must be kept in mind that in a 

backward adaptive structure, each component must perform well. For instance a good 

residual quantization results in an accurate reconstructed signal which in turn is used 

to adapt the predictor. A breakdown in either the residual coder or the predictor 

update results in breakdown of the coder. Further discussions on comparing the two 

coders is postponed so that simulation comparisons are first considered. 
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Chapter 3 Backward Linear Prediction 

This chapter reviews several approaches to backward linear prediction. The com- 

ponents of the backward linear prediction analysis are studied. To obtain the best 

prediction performance, an investigation of various schemes is conducted. The con- 

straints considered. by this thesis such ;s maximum delay of 2 ms, robustness to 

channel errors, and moderate complexity are used. 

3.1 Introduction 

The objective performance of the linear predictors is 

gain (PG) which is expressed in dB and defined by 

where 6: is the estimate of the variance of the input signal 

measured by the prediction 

( 3 4  

and 5: is the estimate of the 

prediction error variance. The index of the sum, i, is over long period of appropriate 

signal. Another objective measure which is often used is the segmental prediction 

gain (segPG). The prediction gain calculated for segments of 16 ms (128 samples) 

is calculated in dB. The average of these segment prediction gains over the entire 

speech file is the segmental prediction gain (segPG). The subjective performance (the 

listener's rating) may also be used by comparing the performance of the the linear 

predictors in a complete coder environment (eg.  APC or CELP). 

A good redundancy removal prediction scheme must consider both near-sample 

(formant) and far-sample (pitch) correlations. Predictors are characterized by an 
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analysis frame which is used to adapt the prediction coefficients. The predictor is 

then applied to a block of samples. The length and shape of this frame as well as the 

overlapping of the analysis frames (the frame update rate) have to be chosen. 

In the backward adaptive prediction analysis, where analysis frame precedes the 

block, parameters are not transmitted to the receiver and no buffering of the future 

samples is needed, allowing for lower processing delay. Estimates of the parame- 

ters are based on the past quantized speech samples which are available both to the 

encoder and decoder. Since the prediction coefficients are not transmitted in the back- 

ward prediction adaptation, an increase in the rate of update (increased overlapping 

of the analysis frames) does not result in an increased bit rate, but it does increase 

the encoder/decoder complexity. For a better tracking of the spectral changes highly 

overlapped analysis frames are desirable. 

If a single predictor is used to remove both near-sample and far-sample redun- 

dancies, the choice of the length of the analysis frame has to be a compromise to fit 

the characteristics of the near and far-sample redundancies. Hence the single pre- 

dictor, attempts to track both formant (spectral envelope) and pitch (spectral fine 

structure) variations. The desired effective analysis frame length for the near-sample 

correlations is around 5-10 ms (40-80 samples for sampling rate of 8000 Hz), while 

for the far-sample redundancies this length may be up to 50 ms (400 samples.) For 

large frames of this kind (400 samples), the stationarity assumption for the formant 

characteristic becomes invalid and the spectral formants are tracked less faithfully. 

The compromise analysis frame length has to be chosen. It is also necessary that 

the order of this all-pole single predictor be high enough so that the removal of the 

far-sample redundancies is possible. 

The alternative to a single predictor is a configuration in which two cascaded 

predictors for near-sample and far-sample correlations are used. Ref. [19] suggests 

the configuration of Fig. 2.3 in which formant redundancy removal precedes the pitch 

redundancy removal (F-P open-loop configuration). Fig. 2.2 showed the closed-loop 

F-P alternative configuration. 



The analysis frames for near and far-sample predictors, in the cascaded configu- 

ration of Figures 2.3 and 2.2 may have different effective size and update rate. Joint 

optimization methods of pitch and formant predictors are also suggested [19]. As a 

result better overall prediction gains are obtained at the cost of increased complexity. 

Due to some of the constraints of this work (backward prediction and noisy channel 

considerations) there is a drawback to the cascaded methods: channel errors result 

in a very high distortion which is due to the coupling of the two predictors. In the 

cascaded formant and pitch configuration, the pitch filter uses a backward adaptive 

pitch lag and coefficient values. The formant filter uses backward adaptive coefficient 

values. Erroneous lag estimates at the receiver can cause severe error propagation. 

Attempts to overcome this problem includes the work of Cuperman et a1 [44] in which 

the serial cascade structure is replaced by a "parallel" scheme to decouple the two 

predictor filters. The proposed method by AT&T [2] on the other hand, uses the first 

alternative of a single prediction with a very high prediction order. Higher process- 

ing power has made the alternative of a single high-order predictor possible. This 

chapter compares the two alternatives. Issues such as backward adaptation effects, 

complexity, windowing, and numerical ill-conditioning will be investigated. 

The linear predictor filter may be implemented using either of the forms of 

transversal or lattice. The transversal structure uses the direct-form digital filter, 

the classical least-squares method is used to estimate the prediction coefficients { a k ) .  

The least-squares method in the backward adaptation case means the minimization 

of the mean energy in the error signal over a frame of speech samples prior to the 

"current" sample. 

3.2 Auto-Correlat ion and Covariance Met hods 

The general analysis method of Fig. 3.1 maybe used to represent the windowing 

of data and/or error to estimate the prediction coefficients using the least-squares 

method [45, 461. The speech input s(n) is multiplied by the data window wd(n) to 

give sw(n), while multiplication of the error signal by the error window we(n) results 

in the windowed error signal e,(n). 



Fig. 3.1 Data window and error window 

The formant and pitch predictors of figures 2.3 and 2.2 have the transfer function: 

where N f  and Np are the number of formant and pitch predictor coefficients and Mp 

is the pitch lag which is updated along with the coefficients. If the pitch filter ( P ( z ) )  

order is only one, the pitch lag estimation can only be a multiple of the sampling 

frequency. The multi-tap pitch filter P(z) ( N p  = 3 .is often suggested) allows for 

pitch lag estimation with "interpolating" characteristics. Using the model of Fig. 3.1 

with prediction order P ,  the error signal for prediction adaptation update maybe 

defined as: 

The values Mk are used instead of k, to allow selection of arbitrary but distinct delays 

in the prediction filter. To employ the method of least-squares, the mean energy of 

the error has to be minimized: 

By setting the partial derivatives = 0 for k = 1.2, - . , P, the linear system of 
(2 k 

equations @a = !@ results (iP is called the covariance matrix.). If the Mk's are 



chosen as: {hil, M2, . . , hip) = {1,2, . , P) (grouped and uniformly spaced), the 

expanded covariance system of equations will have the form: 

where the entry 4(i, j )  is given by: 

The Auto-Correlation method will result when we(n)=l for all n. One charac- 

teristic of the auto-correlation matrix R (Ra = r replacing @a = 9 )  is that it is 

positive-definite and Toeplitz. Hence the Levinson recursion solves the above system 

of linear equations of order P [17]. In the Covariance methods wd(n) is set to one 

for all n. cholesky decomposition can be used for solving the linear system of equa- 

tion where the (covariance) matrix is symmetric. The choice of the error window in 

the Covariance method and the data window in the Auto-Correlation method is the 

subject of the investigation in a later section in this chapter. 

3.3 Modified Covariance Method 

The alternative method of modified Covariance method suggested in Ref. [47, 481 

guarantees the minimum phase property (this property is explained in Section 3.6.1.). 

The first two steps of this method are identical to the Covariance method. The 9 

matrix is expressed as a product of lower triangular matrix L and its transpose U = L~ 

using the Cholesky decomposition. The resulted set of linear equations is then: 

@a =9 

LUa =LY = \E Step 1 (3.7) 

y =QL-' Step 2 

As the next step, the partial correlation at delay m is found: 



where ~ ~ - 1  is the mean-squared prediction error at the (in - 1)-th step of the pre- 

diction and ym is the m-th component of the y. Finally, given partial correlations 

{rm, m = 1,2, .  . . , P), the prediction coefficients {a ; ,  i = 1,2, .  . . , P), are computed 

using the relationship: 

Based on the residual energy ratios, the above method guarantees a minimum 

phase prediction error filter by ensuring that all zeros of the polynomial (1 - F ( z ) )  

are inside the unit circle. Although the method does not minimize an error criterion, 

its properties as explained in Ref. [49] makes it a more suitable parameterization 

scheme. 

3.4 Lattice and Covariance-Lattice Methods 

The Lattice formulation of the linear prediction has the property of taking into 

consideration both forward and backward prediction error, as it makes a distinction 

between them. Fig. 3.2 shows the lattice filter of order P. At each stage m (represent- 

ing a m-pole model), fm(n) and bm(n), the forward and backward error (residual) 

signals are defined. s(n)  is the input speech, r(iz) is the final prediction error (residual) 

signal, and index n indicates the time-varying nature of the adaptations. 

Fig. 3.2 Lattice filter of order P 

Related to the Durbin recursion (in solving the linear system of equations in the 

previous sections), and in accordance with Fig. 3.2, one may express the forward and 



backward error signals, fm+l (n) and bm+1 (n), recursively as (at the stage m and 

time n): 

The initial and final conditions maybe written as: 

fob) = bob) = s(n), 

Other quantities often encountered in the Lattice methods are: 

Fm(n) = ~ { f $ ( n ) )  

Bm(n - 1) = ~ { b % ( n  - 1)) (3.12) 

Cm(n) =E{ fm(n)bm(n -- 1)) 

where E{.) is the expectation, operating on forward, backward, and cross for- 

wardlbackward residual terms. The Burg algorithm minimizes the weighted sum 

of the forward and backward residuals over the length of an analysis window w(n): 

where e%(k) is a weighted sum of forward and backward residual energies given by 

The minimization of the above weighted error with respect to the Krn(n) leads 

to the update formulation: 

Cm(n) where Km+1 (n + 1) =- 
Dm (n) 

In order for the all-zero lattice of Fig. 3.2 or its equivalent direct form 1 - 
1 a ~ z - ~  have a stable synthesis filter of the form l-zi=l a k z - k  - , y (the lattice 



stability constant) has to be chosen to be 0.5 and w(n) has to be a causal window 

function for which w(n) > 0 for n > 0 [50]. If y = 0.5 is used, the reflection coeffi- 

cient update expressed in terms of expect ation quantities (instead of windowing) of 

Eqn. 3.12 will have the form: 

I{m+l(n + 1) = 2Cm(n) 
Fm(n) + Bm (n) ' 

The adaptation of parameters in the above Burg-Lattice method is performed on a 

sample-by-sample basis. The methods of Covariance-Lattice [51, 521 use the recursion 

formulations of the regular Lattice (Burg) method to obtain a more computationally 

efficient procedure. Using the recursion formulae of 3.10, quantities of 3.12, and the 

Burg update formulation of 3.16, one may arrive at: 

m m 
(m)a(m)$(k, i) ,  F m ( n ) = C C a k  r 

k=O i=O 
m m 

(m)a!m)$(m + 1 - k, m + 1 - i) ,  Bm(n-1) = C 
b=O i=O 
m m 

C,(n) = a~m)cz~m)$(k, rn + 1 - i) ,  
k=O i = O  

$(k, i )  =E{s(n - k)s (n  - i ) ) ,  

where $(k, i) is the covariance (non-stationary auto-correlation) of the signal. Con- 

sequently, the reflection coefficients of the Lattice met hod (Equations 3.12 and 3.16) 

are updated using the estimated covariance (hence the name Covariance-Lattice). 

Using this method the computation cost will change from 5 P N  (Burg method) to 

P N  + l /6p3  + 3/2p2 (N  being the analysis window length and P the predictor 

order). 

- Another important modification to the above calculation is the one suggested by 

Cumani [52]. In an attempt to fit the method better to fixed-point arithmetic, in 

effect all quantities are scaled for better numerical stability. The price is a slight 

increase in computational complexity. The detail description of Cumani method is 



now described. First the following quantities are defined. 

m m 
-. - 

Bm( i , j )  = C Ca~mm)a)m'+( rn  + 1 + i  - k , m +  1 + j - 1), 
k=O Z=O (3.18) 
m m 

Cm(i, j )  = C aLm)arm)+(i + k, rn + 1 + j - 1), 
k=O 1=0 

$(k, i) =E{s(n - k)s(n - i)),  

with special cases of 
J'm(0,O) =Fm(n), 

Cm (0 0) = e m  (n) - 
Using the calculated covariance matrix (Eqn. 3.6) with entries {$(k, i)) , we initialize 

the algorithm with m = 0, 

Co(i7.j) =4(i, j + I).  

TO obtain Fm(n), Bm(n - l ) ,  and Cm(n), using the relationship between the reflec- 

tion and prediction coefficients in Eqn. 3.9 and the above quantities the following 

Results in Chapter 4 indicate that the Cumani method has excellent numerical 

properties in the context of backward adaptive high-order prediction (Use of Cumani 

algorithm for the high-order predictors is new.). Strobach [53] discusses this method 

further and generalizes it to the methods of Generalized Residual Energy (GRE) with 

the same numerical properties. In this general class (which also includes solution of 

the true Recursive Least-Squares (RLS) Covariance-Lattice estimation problem), co- 

efficien ts are constructed completely anew at each step, avoiding round-off error accu- 

mulation. As later seen in Section 3.6.5, the computational complexity disadvantage 



of Cumani algorithm (0(p3) )  can be overcome using Strobach Covariance-Lattice 

methods (0(p2)). The class of such algorithms is also termed Pure Order Recursive 

Ladder Algorithms (PORLA). 

3.5 N,ear and Far-Sample Redundancy Removal 

The methods of removal of both near and far-sample redundancies (prediction) 

from the speech signal using prediction analysis methods maybe summarized as fol- 

lows: 

1 - Combinational formant /pitch Single Predictor (possibly high-order): 

l (a )  With equally spaced predictor taps 
l(b) With selectively spaced predictor taps 

2- Separate pitch and formant Predictors: 

2(a) Sequential 
2(b) Jointly Optimized Sequential 
2(c) Decoupled Sequential of Ref. [44] 

- - - - - - 

The range of pitch which has to be considered for the natural speech is from 64 Hz 

to 400 Hz. Using the sampling frequency of SO00 Hz, the required upper correlation 

lag to be considered is 125 samples (120 samples is commonly used). Typical male 

speech uses a Fo (fundamental freqilency) range of SO to 160 Hz [17]. With average 

male and female Fo at 132 and 223 Hz, the corresponding distance between pitch 

spikes in the time domain signal are 61 and 36 samples. Hence for the average pitch 

lag considerations, correlations corresponding up to 61 lags are needed. 

The first method l (a) ,  attempts to remove the far-sample redundancies using the 

same predictor used to remove the near-sample redundancies by having the order 

of the prediction error filter A(z) = 1 - F(z)  very high. Ideally the order of the 

predictor has to be high enough to include past samples corresponding to the lowest 

pitch (around 120 samples). 

As mentioned earlier, this approach has the following two problems. First is 

that the computational cost of such prediction analysis would be enormous and as 

shown from the experiments of the next chapter, there are numerical problems which 
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arise at such high orders. As a compromise solution to this problem, a prediction 

order of manageable computational complexity has to be chosen (e.g. 50). Order 50 

allows "capturing" of the female speaker pitch and some portion of the male speaker 

pitch range. Hence the full range of pitch for all speakers (especially for male) which 

"extends" to delays as far back as 120 samples is not covered. 

The second problem with the very high predictor orders is related to the correla- 

tion estimations and the analysis window selection. All prediction methods are based 

on some kind of correlation estimation for which the length of the analysis window 

must be large enough to provide a valid estimate of the far-sample correlations (2-3 

times the longest lag 120, which gives a window lag of up to 400 samples long). 

If the formant structure is stationary during analysis periods of this size (400 

samples), this problem would not cause any loss in prediction gain. However since 

formant structure is not stationarity during periods longer than 100 samples, the use 

of long analysis windows results in poorer tracking of the changes in the formant 

structure. The commonly used analysis window size of around 20 ms for prediction 

order 10 proved to be a good compromise for most cases for high-order prediction 

(see the results of the experiments in the next chapter). However this compromise 

along with the numerical problems are the reasons why the prediction gains for male 

speaker only increases slightly at prediction orders around 60 to 70. One would have 

expected a higher rise (as is for the female speaker) in the prediction gain around 

these orders for male speakers. One reason that Ref. [2] probably chose order 50 is 

because they did not get significant prediction gains beyond order 50 while in fact it 

should be possible especially for male speakers. 

The second method 2 ( b ) ,  may be used with different variations in selecting the 

spacing of the prediction taps. The goal is to place the taps where correlations are high 

and the effect of redundancy removal is high both in terms of prediction gain measure 

and the subjective quality measure. Experiments were carried out to investigate the 

allocation of taps. R.esults of some of these experiments are mentioned in the next 

chapter. One attempt allocated 20 taps (delays 1-20) for formant tracking and 30 

taps for the far-sample correlation tracking. The difficulty in this case is how to 



choose the location and spacing of the far-sample taps. One way is to select them 

with fixed positions. The goal would be to use the avaliable taps to either cover the 

whole range of delays from 20 to 120 lags or use them so as they are located at more 

probable pitch lags (e.g. 30 for female and 60 lags for male). Another way to allocate 

the taps would be to set them around the current pitch lag in such a way that the 

tracking of the pitch is adaptive. The windowing problem discussed earlier is one 

difficulty encountered for this approach. A consequence of the arbitrary tap-spacing 

method is that the auto-correlation matrix would not be Toeplitz. Another problem 

which occurs more strongly in the case of arbitrary tap-spacing methods is higher 

ill-condi t ioning . 

The alternative configuration of two separate predictor (methods of 2(a), 2(b), 

and 2(c)) for pitch and formant as in Fig. 2.3 and 2.2, does not have the windowing 

problem of the method of a single predictor. Selecting two different sizes of analysis 

window used for the two predictors is now possible. Better overall prediction gain 

at the cost of higher computational cost is obtained when the pitch and formant 

coefficients are joint optimized [19] (2(b)). As discussed earlier, due to the coupling 

between the two sequential predictors, the performance of such schemes is poor un- 

der channel errors. Some success is reported, when in a special configuration, the 

two predictors are decoupled [44] (method of 2(c)). In the suggested configuration, 

a pole/zero model is used for the formant predictor. The adaptation of the pole- 

coefficients of the formant predictor (decoder of Fig. 2.3) is done not based on the 

synthesised speech but rather on the signal which does not have the pitch content 

reasserted (only formant zeros of the speech are reasserted)(see Ref. [44] for details). 

3.5.1 Pitch Adaptation in Sequential Configuration 

The adaptation of pitch parameters for the sequential pitchlformant configura- 

tion, described in detail in Ref. [46], is now briefly reviewed. Assuming that the pitch 

predictor's order is Np, and the estimated pitch lag is PIp, the z-transform of the 



predictor may be written as: 

NP 
P(z) = C b i z  -Mp- i -1  (3.22) 

i= 1  

The covariance formulation for the linear predictor using an analysis window size of 

N samples, results in the following set of equations: 

where 
N - 1  

$(i, j) = d(n - i)d(n - j) . (3.24) 
12=0 

and d(n) is the input signal to the pitch predictor (Fig. 2.3). The short form notation 

for the above set of equations is @c = q. The estimation of the pitch lag Mp is 

obtained by the minimization of the mean-squared error which has the form: c2 = 

d(0,O) - c T 9 .  Consequently c T 9  is maximized as $(O,O) is constant. Using the 

assumption that the near-sample correlations are removed from the input d(n), the 

simple approximation of 
h/ l ,+Np-l  2 

T c q z  4 (o,m> (3.25) 

m= Mp $(my 4 
results, where the off-diagonal terms in the matrix @ are neglected. 

3.6 Other Issues in the Backward Linear Prediction 

In carrying out the experiments of the next chapter, the following issues were 

found of importance: 

1- Synthesis filter stability and the minimum phase property, 
2- Optimality, 

3- Window shape and size, 
4- Computational issues related to the ill-conditioning, 
5- Complexity (including parameter update rate), 

6- Backward adaptation and quantization noise effects. 



This section discusses the above issues in the various analysis methods. The 

experiments of the next chapter complement this discussion and some of the com- 

parisons made here. The discussion and the experiments also show how factors like 

numerical stability and optimality effect each other. The choice of method of practice 

will also dependents on the real time implementation circumstances. 

3.6.1 Synthesis Filter Stability/Minimum Phase Property 

Lattice and Lattice-Covariance methods have the advantage that stability (min- 

imum phase) of the resulting synthesis filter can be guaranteed. This is by ensuring 

that all reflection coefficients are all less than one. This is equivalent to guaran- 

teeing that all zeros of the prediction error filter 1 - F ( z )  be inside the unit circle. 

Also in these meth3ds it is possible to have a control over weighting of the forward 

and backward error in minimization of the mean squared error (although stability is 

only guaranteed under the weighting factor of 0.5 for forward and backward error). 

The Auto-Correlation method and the Covariance methods lead to stable (minimum 

phase) prediction error filters while the general form of arbitrary tap-spacing methods 

does not guarantee this 1191. The equally spaced tap delay of the form Mk = kM1 is 

a special case for which the minimum phase property is true. 

3.6.2 Optimality 

In a general sense, various linear prediction methods use different optimality 

criteria. In a mean-squared forward error minimization sense however, the Auto- 

Correlation and Covariance methods are the only methods which give optimality. 

The methods of Lattice and Lattice-Covariance are only possibly sub-optimal [51]. 

One may argue that in the backward adaptation, the LLoptimality" is with regard to 

the analysis frame (and not with respect to the sample(s) for which analysis is actually 

used). Ref. [lo] suggests that the simple white noise correction actually results in a 

better prediction gain by "de-tuning" the adaptation which is too "tuned" to the 

analysis frame (past samples). 



3.6.3 Window Shape and Size Considerations 

The shape and size of the two windows of Fig. 3.1 are important elements which 

effect theperformance of the predictor. The selection of window also has cross-effects 

on other analysis components listed previously (e.g. the ill-conditioning and com- 

plexity). In the backward adaptation analysis, exponential windows which emphasis 

the more recent samples seem to perform better than commonly used Hamming and 

Rectangular windows. The length of the window (or the effective length of causal 

semi-infinite windows such as exponential windows) is chosen so that the correlation 

estimations contains enough number of samples to make the estimation valid. Once 

again the general rule of 20 ms window length maybe used where compromise has 

to be made between accuracy of estimation for long delay correlations and minimum 

averaging for short correlations. Computational complexity as well as stability of the 

resulted synthesis filter are also important when selecting the window w(n). If the 

window is chosen so that w(n) 3 0 for all n 2 0, the sufficient condition for the 

stability of the synthesis filter is satisfied. 

A class of windows obtained using the impulse response of casual pole/zero filters 

provide easy control over the shape of the window. At the same time their recur- 

sive implement ation is advantageous (complexity and implementation considerations). 

These windows may also be regarded as exponential windows since the impulse re- 

sponse may be generated as the sum of exponential terms. The z-transform of the 

general filter of this type has the form: 

Examples of windows considered in the experiments of the next chapter are the simple 



one-pole exponential and other windows with a small number of zero and poles: 

1 pole : 

- -- --2 pole : 

2 pole + 1 zero : w2pz(n) = - u ( , O ~ ) ~ ,  

where ,f3 is a number close to one (0 < ,O 5 1). 

The choice of the window shape and length (effective length in the case of expo- 

nential windows) is important. The effective length of the general window w(n) is 

defined as [50] : 

When this definition is applied to the pole/zero exponential windows of Eqn. 3.27, 

the effective length of these windows (in samples) are found: 

1 + P  1 pole: L1 =- 
1 - p 7  

2 pole : (1 + P)3 
L2 = ( I  - ,q(1 + P2)' 

3 pole : L~ = (1 + P)5 
(1 - P)( l  + 4P2 + P4) ' 

1 Q 2 Im - 
2 pole + 1 zero : LSpz = 1 2a . 

mf+&F-- 

The effect of the shape of the window maybe expressed as a function of what is 

termed as "measure of capture" in Ref. [50]. Although helpful, this factor does not 

give the full effect of the window shape in the predictor performance. This measure 

quantifies the amount :f weight which window puts on the immediate past speech or 

the amount of signal "captured" under the dominant portion of the window and is 

defined by: 



L is the effective length of the window and C is the fraction of area under this effective 

length. For the 1 and 3-pole windows, C1 and C3 are 0.9865 and 0.904 and C for the 

Rectangular window is 1. 

Slightly better results are obtained with higher order windows (2 or 3 pole over 1 

pole window) at the expense of increased complexity. Fig. 3.3 shows the time response 

of the windows obtained using a 1 pole and a 2 pole + 1 zero model. Two windows 

obtained using 2 pole model with different effective lengths are shown in Fig. 3.4. To 

emphasis the effect of the far-sample correlations, the effective length of the window 

used with the 50th order predictor should be slightly longer than the one used for the 

Fig. 3.3 1 pole window with ,B = 0.986 (dashed line) and 2 pole 
+ 1 zero window with P1 = 0.97, ,B2 = 0.95, and 
a = 0.85 (solid line) (Effective length of the dashed 
window is 142 samples and of solid line is 97 samples. 
Two windows are normalized to the same area.) 

order predictor (20 ms versus 14 ms in this case). 

The above windows may be applied to the data or error signal as was shown in 

Fig. 3.1. The exponential data-windowing of 1, 2, or 3-pole (Eqn. 3.27) was studied 

by Barnwell [54] in order to provide a recursive windowing method in generating auto- 

0.3 I I 

n e 
w 

3 

...................... 
0 100 200 



Fig. 3.4 2 pole window with P = 0,965 (dashed line) and 2 pole 
window with ,B = 0.975 (solid line) (Effective length of 
dashed window is 112 samples and of solid line is 158 
samples.) 

correlation lags in prediction analysis. For the real-time implementation, especially if 

high-order prediction analysis is used, the recursive feature is beneficial. Windows of 

Fig. 3.4 are examples of the Barnwell windows. As experiments of next chapter and 

Ref. [3] show, the Barnwell Auto-Correlation method used in the backward adaptive 

prediction analysis gives better subjective and objective prediction gains over the 

Hamming window. This is due to the fact that the exponential windows emphasis 

the immediate past samples more heavily. To ralculate the auto-correlation terms, 

the speech signal is passed through specially-structured filter banks [54]. For the one 

pole window (Eqn. 3.27), each filter in the filter bank is a first order filter which is 

used to obtain one correlation term. For the two pole window, each filter is a third 
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order filter. The transfer function of such filters are as follows. 

pml2 
1 pole (or 1 pole data window ) Wm(r) = 1 - pz-l '  

prnI2[(1 + m) + (1 - m)pz-'1 (3.29) 
3 pole11 zero lag window & ( z )  = (1 - pz-93 7 

(or 2 pole data window) 

which is the z-transform of weighting window wm(n)  applied to the lag-products 

(s(n)s(n - m ) )  with the subscript m referring to the lag number. For the two pole 

window, a preferred implementation of the above 3 pole11 zero lag window is by 

cascading two 1-pole windows and one 1-polell-zero filter. The transfer function of 

these two filters are as follows 

This implementation has computational advantages for the real- time implementation 

171 

The exponential windows are also applied to the error signal both in the Covari- 

ance method [55] and the Lattice method [50, 91. The results of the next chapter (and 

of Ref. [9]) show a better performance when the exponential error window is used in 

the Lattice method and when Hamming window is used in the Covariance method 

[55]. Once again, this is due to heavier weighing of the immediate past error 

3.6.4 Computational Issues Related to the Ill-Conditioning 

Due to gradual roll-off in the frequency response of the low-pass filter used be- 

fore the Analog- to-Digital-Convertor ( ADC) used on the speech signals, artificially 

low eigenvalues for the covariance matrix are produced (*a = \E). These eigen- 

values are related to the missing high frequency components in the sampled speech 

signal near half the sampling frequency. This condition creates an almost singular 

covariance matrix (with large eigenvalue spread) which results in non-unique solution 

for the prediction coefficients. The small eigenvalues produce artificially large valued 



prediction coefficients which if used, results in noise enhancement [48]. Here for this 

matrix "ill-conditioning" the term "Physical ill-condi tioning" is used [56]. 

Error accumulation resulting from the use of fixed-point arithmetic is another rea- 

son for ill-conditioning. An almost singular matrix can easily become singular if error 

is accumulated due to computer smaller memory word length. The term "numerical 

ill-conditioningv maybe used for this kind of condition. The high frequency correction 

procedure described in Ref. [47, 481 decreases the physical ill-conditioning. It uses a 

new covariance matrix which is obtained by adding another matrix proportional to 

the covariarice matrix of the high-pass filtered white noise to the original covariance 

matrix. The solution considered, artificially introduces the missing high-frequency 

components. The (i, j)-th entry of a new covariance matrix &, and the i-th entry of 

a new correlation vector G ,  are defined by: 

where A is a small constant (10-~-10-~), emin is the minimum value of the mean- 

squared prediction error, and p(i) is t he auto-correlation of t he high- passed filtered 

white noise at delay i. The resulted new system of equation is then solved. The 

suggested high-pass filter (cancelling the effect of the band-limiting low-pass filter 

before ADC) has the following z- transform: 

for which the white-noise auto-correlation terms are 

I: for i = 0, 

I 
1 - for i = 1, 

p ( i ) =  4 
1 - 
16 

for i = 2, 

0 for i 2 3. 

The value of rmin is obtained by the Cholesky decomposition of the original matrix 

a. If the solution to the matrix is obtained through Cholesky decomposition, this 



method requires a much higher complexity (the decomposition has to be used twice, 

once to obtain c,in from O and once to solve 8).  To avoid high computation cost 

of the above method, one may reduce the above white noise correlation technique to 

a scheme in which kmin is a small constant to and the only non-zero 

p(i) is p(0 )  = 1 (or possibly p(0) and p(1)). The effect of the white noise correction 

technique is a reduction in the dynamic range of the signal spectrum hence reducing 

ill-conditioning . 

Numerical ill-conditioning is related to the particular algorithm and the computa- 

tional procedure used. Error accumulation can be more severe for some methods. For 

example formulation of the algorithm in Cumani Covariance-Lattice method reduces 

the numerical ill-conditioning by resolving the problem anew at each step. The results 

of the next chapter for the high-order predictors show that the simplified technique 

(adding a percentage to the diagonal elements) sufficiently takes care of the inherent 

physical and numerical ill-conditioning. 

As seen in the results of the next chapter, the accumulation of numerical errors 

seem to have more severe effect in recursive methods for obvious reason. Also the 

Covariance method showed more severe problem than the Auto-Correlation method. 

In the experiments, to "cure" the "physical" and "numerical" ill-conditioning, the 

simplified white noise correction method (adding a percentage to the diagonal ele- 

ments) gave better results than the full white noise correction method (it is also less 

complex.). 

3.6.5 Computation Complexity 

Table 3.1 compares the computational complexities of the various met hods. Ex- 

amples for prediction order (P) and the resulting cost shows how the cost consider- 

ation may effect the choice of the computationally economical method for different 

orders. N is the analysis window size and M is the analysis and coefficient update 

rate (in samples). Note that the Cumani method with the best prediction gain perfor- 

mance has a very high computational cost. However, the computational disadvantage 



Method 

Auto-Correlation 

Covariance 

Lattice (Burg) 

Cov.-Lat. (Makhoul) 

Cov.-Lat . (Cumani) 

GRE (Strobach) 

Computation order * 

(PN+P~) /M 
(p fV+P3 /6+3p2 /2 ) /~  

5 P N  

( P N + P ~ / ~ + z P ~ ) / M  

(PN+4P3/3- P ~ ) / M  

( P N + ~ P ~ ) / M  

* Zeroth order terms have been neglected. 

Table 3.1 Comparison of the computation costs ( N  = 160) 

of the Cumani algorithm (0 (p3 ) )  can be overcome using the Strobach Covariance- 

Lattice methods (0 (p2 ) ) .  

In the backward adaptive prediction analysis, the parameter update may be done 

on a sample-by-sample basis or maybe done less frequently. When the update is 

not on a sample-by-sample basis (M > l), estimated prediction coefficients based on 

an analysis frame of past samples are used for the current samples and a few future 

samples. At the cost of small degradation in prediction gain, less frequent update rate 

reduces the computationa,l complexity. In obtaining a good prediction gain with an 

economical computational cost, one may choose to use a computationally expensive 

scheme but with an update rate which is not on a sample-by-sample basis. 

Some of the analysis schemes mentioned in the earlier sections may not allow up- 

date rate less frequent than the sample-by-sample update ( M  > 1). Auto-Correlation, 

Covariance, and Covariance-Lattice methods have the advantage that analysis of the 

blocks are independent and may be done at any frequency (less often than sample- 

by-sample). This computational advantage is maintained even when a semi-infinite 

window is used, since most of the computational cost is for the solution of the linear 

system. For the Lattice analysis, an update with frequency less than sample-by- 

sample is not possible. As seen in the experiments presented in the next chapter, 

the degradation in prediction gain as a result of less frequent update than sample-by- 

sample, is minimal in comparison with the computational saving resulted. 



3.6.6 Backward Adaptation Effect and Quantization Noise 

The backward adaptation does not require transmission of any side information 

(prediction coefficients) and eliminates any analysis delay due to the buffering of the 

data for the analysis. The method however has two important drawbacks. First, the 

prediction gain is slightly reduced due to the fact that the prediction analysis is based 

on the quantized signal rather that clean signal. Second, the use of past speech for 

the estimation of prediction coefficients of a present sample makes the coefficients less 

fit for that sample ("stale" coefficients). This effect is even more pronounced when 

the update rate is less frequent. 

Effects of the quantization noise in the backward adaptation may be modeled 

and studied by the incorporation of a simulated quantization noise model. For the 

purpose of this model, the following assumptions are made. (1) The quantization 

noise is white, (2) The quantizer noise energy depends on the energy of the prediction 

residual. (3) The quantizer Signal to Noise Ratio (SNR) (the ratio of the prediction 

residual energy oa to quantization error energy 0%) is fixed for an analysis frame. If 

SNRQ represents the fixed signal to noise ratio of the quantization (e.g. 10 dB), one 

may derive the following relationship for the noise variance 05: 

where PG is the prediction gain and 05 is the input speech signal variance. The 

quantization noise energy is added to the diagonal elements of the Covariance matrix 

or the auto-correlation matrix. The level of noise is iteratively adjusted for each 

analysis interval until the specified SNRQ is achieved. 

The algorithm outline is as follows. For each analysis block 

1- Start with a high level of quantization noise (a fraction of the input signal 
energy, e.g. ON = O.SaS), 

2- Calculate 9 or R matrix based on clean speech, 



3- Add 0% to the diagonal elements and perform prediction and calculate the 
residual variance, 

4- If SNRQ has converged sufficiently to the fixed value (e.g. lo) ,  stop, if not 
calculate the new U N  and go to step 3. 

In the next chapter, results of the several experiments using the above quan- 

tization model are presented. In these experiments the above algorithm converged 

rapidly (with less than 5 iterations). One observation made is that the quantization 

noise reduces the ill-conditioning as it has the same effect as the simple white noise 

correction technique. 



Experiment Results on 
Chapter 4 

Backward Linear Prediction 

This chapter presents the experimental results on the backward adaptive linear 

predictor, discussed in the previous chapter. The primary model of the study in the 

forthcoming experiments is a prediction error filter (A(z) = 1 - F(z)) ,  for which 

the backward adaptive prediction analysis uses the unquantized signal. The update 

rate of the prediction coefficients is not always on a sample-by-sample basis. In some 

of the later experiments, the quantization noise model of Section 3.6.6 is used in 

order to study the effects of the quantization noise. Many experiments are carried 

out with the goal of measuring the best prediction gain obtained over a speech file. 

For most of the experiments, the speech files OAMFS and OAKM8 (Appendix A) 

were chosen as representative female and male utterances. The reason for this was 

that, as far as the experiments of this chapter were concerned, little difference was 

found among the results using different speech files (example files in Appendix B). 

Subjective ratings are postponed to the experiments of the future chapters where a 

full coder is implemented. 

The focus of the experiments are the following issues: 

- analysis schemes, 

- window shape/size variations, 
- remedies for the ill-conditioning, and 

- near/far-sample configurations, 
- quantization noise and backward adaptation effects, 

- complexity (including frequency of parameter update). 



Although an attempt is made to study each issue independently, results show 

the inter dependance among the above issues. Hence, as it becomes clear during the 

presentation of the results, the effect of each issue on the performance may not be 

easily judged in isolation. 

4.1 Analysis Schemes 

Experiments based on the many prediction analysis methods of the previous chap- 

ter were conducted. The performance of the predictor, measured in prediction gain 

obtained over a speech file, is plotted against the order of prediction analysis. 111- 

conditioning is the main factor effecting the performance of prediction analysis at 

high-orders. In the simulations performed, a counter was used to keep track of the 

number of ill-conditioned cases (singular matrices and sometimes almost singular 

cases). To minimize this number, the simple white noise correction technique with 

the required parameter value is used. As the number of ill-conditioning cases increases 

in number, the effect is reflected in the downturn in the prediction gain curve. Some 

met hods show a more "conditioned" characteristics. Nevertheless the ill-condi tioning 

remains an inherent problem in the high-order prediction analysis. For the very high- 

order prediction analysis, white-noise correction technique always had to .be used in 

order to make the results acceptable. 

Fig. 4.1 shows the prediction gain comparison among three methods: Covariance, 

modified Covariance, and windowed modified Covariance methods. For orders up to 

10-20, the performance difference among different methods is not great. However, for 

higher order prediction analysis, the prediction gain difference can be up to 4-5 dB. 

The Covariance method showed very high level of ill-conditioning for orders higher 

than 20. White-noise correlation technique "cured" the ill-conditioning to a small 

degree. The modified Covariance method is much "conditioned". Windowing of the 

error signal (windowed modified Covariance method) improved the prediction gains 

further. This windowing and ill-conditioning inter dependance is discussed in the next 

sections. As the downturn of the prediction gain curves shows, the ill-conditioning 



problem still persists. Even when the singular Value Decomposition was used and 

the ill-conditioned cases where eliminated, the improvements of the ill-condi tioning 

problem were small. 

Fig. 4.2 shows the prediction gain comparison among the three methods which 

showed most promise: windowed modified Covariance, Barnwell windowed Auto- 

Correlation, and Cumani Covariance-Lattice methods. The Cumani Covariance- 

Lattice method is the most conditioned method and hence results in the best predic- 

tion gains at  very high prediction order. As seen, the windowed modified Covariance 

method performs almost as well at high-orders up to 50. The prediction gains ob- 

tained here (using Covariance-Lattice method) are 2-3 dB higher than the previously 

reported prediction gains in the literature. Other considerations such as computa- 

tional complexity and quantization noise effects have to be used for the final choice 

of the analysis met hod. Best performance with the less computationally expensive 

method of Auto-Correlation is obtained when Barnwell windowing is used. Use of 

other window types is discussed in the next section. 

As shown in Fig. 4.3, compare to the windowed modified Covariance method 

and Cumani Covariance-Lattice method, the Lattice method does not perform well 

at higher order prediction. It also does not have the low computational complexity 

advantage of the Auto-Correlation method at high-order prediction. The iterative 

computation procedures of the Lattice method may be the reason for the accumulation 

of error and degradation of prediction gain. The well conditioned characteristics of 

the Cumani method is clearly related to its computation procedure while the reason 

for the better conditioned characteristics of the modified Covariance method is not 

obvious. 

4.2 Window S hapeiSize Variations 

Data and error windows and the significance of the various size and shape of win- 

dows were discussed in Chapter 3. For the case of high-order predictors, the choice 

of window is resulted from the compromise made to capture near and far-sample 
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characteristics. In the Auto-Correlation method, the windowing is performed on the 

data and the estimation of the correlation lags is based on the assumption that the 

prediction order P is much smaller than the window size N .  This assumption does 

not hold-for the high-order predictors (e.g. P=50,-N=160). Also the violation of 

the assumption of iV >> P in the high-order predictors in Auto-Correlation analysis, 

causes more severe damage for male utterances and is seen in the experiment results. 

In Fig. 4.2 shows that the Auto-Correlation method performs worst than the Covari- 

ance and Covariance-Lattice methods. The gap between the prediction gain between 

the Auto-Correlation method and the other two methods is more for the male speech. 

The results of experiments indicate that the optimum window size is not much 

larger than 20 ms or 160 samples. Windows with effective size of around 20-22 

ms (160-180 samples) produced best results. For the higher order prediction 22 ms 

effective size is more suitable. This is to better capture of the far-sample correlations. 

The resulted prediction gain is not always higher for these slightly longer windows. 

However, the subjective performance as a result of use of such windows in complete 

coder experiments of future chapters is noticeable. The lack of accuracy for higher lag 

correlation estimations, resulted from violation of the assumption N >> P, will cause 

a great deal of degradation in the prediction gains. The near-sample non-stationarity 

for windows much larger than 20 ms, caused more harm than the removal of the 

far-sample redundancies. The better results obtained using the Barnwell window 

compared to the Hamming window shows that the "long tail" of the exponential 

Barnwell window allows for some of the "capturing" of the far-sample correlations. 

As well the Barnwell windows emphasis the more recent samples and hence their 

use is advantageous in the backward adaptive analysis. Fig. 4.4 shows the prediction 

gain comparison among Barnwell or Hamming window Auto-Correlation methods and 

windowed modified Covariance method. An improvement of 1-2 dB in prediction gain 

is resulted through use of Barnwell window over Hamming. The windowed modified 

Covariance method is shown for reference. This method uses Hamming window on 

the error signal. As seen in Fig. 4.1, the use of error window also improves the 

performance. 
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Although the use of higher order windows produced slightly higher prediction 

gains in the experiments performed, these differences were neither significant (within 

1 dB) nor always consistent. For example the prediction gain of the second order 

Barnwell window was not always better than the first order one (comparable predic- 

tion gain). Nevertheless, as seen from the results of next chapter, in a complete coder 

the second order exponential window produces better subjective quality. Taking into 

consideration both complexity and performance, as a compromise the second order 

window is recommended (over first and third order ones). Similar conclusion can be 

made about windowed Covariance and Lattice methods. 

4.3 Remedies for the Ill-Conditioning Problem 

The results of experiments on the remedies used to overcome the ill-conditioning 

problem is already seen in the previous sections. These experiment results showed 

how ill-conditioning can be cured to some degree using the "remedies" discussed in 

Chapter 3. The more complex white-noise correction technique of Section 3.6.4 did 

not cure the ill-conditioning to satisfaction, while the simple white-noise correlation 

technique worked very well. Fig. 4.5 shows the effectiveness of this method. 

The shape and size of window effects the ill-conditioning problem. Hence the 

discussion of the previous section in turn must be tied to the ill-conditioning prob- 

lem. In the experiments of Fig. 4.4, the ill-conditioning was less severe for the 

Auto-Correlation method than for the other methods. Also for the Auto-Correlation 

method, when Barnwell window was used instead of the Hamming window, a higher 

white-noise correction factor was required (about 100 times more to cure the increased 

ill-conditioning). The effects of the window shape on the dynamic range of correlation 

values may be one explanation for the above observations. A higher dynamic range 

can result in higher ill-conditioning and vice versa. The rectangular windowed Co- 

variance method shows great ill-conditioning at high-orders (Fig. 4.5). As seen in this 

figure, the ill-conditioning "kills" a great deal of gains obtained from the far-sample 

correlations. Ill-conditioning is almost cured in the windowed modified Covariance 

method. 
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From the observations made up to this point, one may conclude that, although 

the high-order Auto-Correlation analysis has the advantage of a better conditioned 

solution, it only partially exploits the high-order correlations. At the cost of higher 

computational cost, the Covariance and Covariance-Lat tice met hods are better suited 

for higher order prediction analysis. 

4.4 Near/Far-Sample Configurations 

The effectiveness of the far-sample redundancy removal using high-order predic- 

tion analysis may be demonstrated by a comparison between LPC spectrum estimated 

using a predictor of order 10 and one using a high-order (50) predictor. Fig. 4.6 shows 

this comparison for prediction analysis using Auto-Correlation method with a Barn- 

well window of effective size 160 samples (for comparison purposes the same window 

size is used, although it is better to use window with a shorter effective length for 

order 10). The selected frame is during the phoneme /a/ in sentences OAKF8 and 

OAKM8 (Appendix A). Fig. 4.7 shows the segmental prediction gain (segPG), over 

the whole sentence for prediction orders 10 and 50. As seen in the figure, the pitch 

capture, as a result of use of high-order predictors, is better in the female utterance. 

This is due to the fact that the average pitch period of the female (approximately 

30 samples in this case) is well within the capture range of the 50th order predictor, 

while the average pitch period of the male (in this case approximately 80 samples) is 

not well captured by the 50th order predictor. 

As mentioned in the previous chapter, the sequential formant and pitch (F-P) 

predictor configuration may be used to remove near and far-sample redundancies. A 

relatively low-order formant predictor is needed for this configuration (e.g. order 10). 

The pitch adaptation method of Section 3.5.1 is used to estimate the coefficients of 

an order 3 pitch predictor. During the unvoiced segments of the speech, the pitch 

predictor stage does not produce any prediction gain for the obvious reason. This 

stage may even be harmful due to the backward adaptation. This was encountered 

in one experiment and negative segPG's were observed. A threshold on the energy 
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of the frame of signal is used to "turn off" the pitch predictor during these speech 

segments. Nevertheless additional prediction gain is obtained as a result of removal 

of pitch redundancies in the voiced segments. 

As seen in Table 4.1, the h g l e  high-order predictor outperforms the F-P con- 

figuration (update rate is every 5 samples). The gap between the single high-order 

predictor and the overall prediction gains in the F-P configuration is more than the 

pitch prediction gain in the F-P configuration. For the high-order predictor, if an 

additional pitch predictor stage is used, further prediction gains do not occur. This 

can be seen from a comparison between results in Table 4.2 (where formant predic- 

tor order is high) and Table 4.1 (where formant prediction order is relatively low). 

Another illustration of segmental prediction gains comparison between F-P configu- 

ration (order 10+3) and a single high-order (50) configuration is shown in Fig. 4.5 

(corresponding to Table 4.1). Also segmental prediction gains comparison between 

F-P configuration of order 50+3 and a single high-order (50) configuration is shown 

in Fig. 4.9 (corresponding to Table 4.2). t 

In general, the subjective performance improvements resulted from use of a single 

high-order predictor agree with the above conclusions. Results presented in the future 

chapters show how a "crisper" coded speech is obtained when the single high-order 

predictor is used in a complete coder. It is important to consider subjective measure 

comparisons when the gap between the performance of the two methods under con- 

sideration is small. This is because the small objective prediction gain improvements 

(prediction gain in dB) do not always correspond to the similar subjective improve- 

ments. For example in the case of occasional small negative pitch prediction gains 

(see Table 4.1) the coded speech still sounds better. 

t Since the results presented in the Tables 4.1 and 4.2 are obtained using the Auto-Correlation 
method, the previous conclusions about disadvantage of this method for the male utterances is 
once again observed: For male utterances unlike the female ones, pitch prediction gains can be 
obtained even after the 50th order formant predictor. The same goes for the results in Figures 
4.8 and 4.9, where the pitch capture for the female speech using the single high-order predictor 
is apparent (consistent higher segPG) while for the male speech the segPG is not consistently 
higher. As expected, this disadvanta.ge was not found for the Covariance and Covariance-Lattice 
methods. 
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For a complete comparison between the two configurations of single high-order 

predictor and F-P configuration, other factors such as ill-conditioning and higher 

complexity of the high-order predictors have to be taken into consideration (recalling 

that the full capture of male and female pitch range requires very high-order predictors 

(at least SO).). 

In Chapter 3, the general idea of arbitrary tap spacing for the transversal predictor 

filter was discussed. The purpose of this exercise is generalization of schemes of 

better removal of formant and pitch redundancies. The simulation results were not 

promising. Further investigation is needed for a conclusive understanding of arbitrary 

tap spacing analysis configurations. From the simulations performed on various tap 

spacing suggestions of Chapter 3, several conclusions can be made: 

- arbitrary tap spacing in general can be helpful; 
- if the pitch tap locations is adaptive, the task of identification of locations for 

these taps is not easy; 
- as a result of the arbitrary tap spacing, ill-conditioning becomes even more 

severe; 
- identification of tap locations, is computationally expensive. 

4.5 Complexity (Frequency of Parameter Update) 

Results of experiments studying the effects of less frequent update of coefficients in 

different prediction analysis schemes are presented in this section. Fig. 4.10 shows how 

in the Auto-Correlation method with Barnwell windowing, the less frequent update 

rate effects the prediction gains. The loss of prediction gain due to less frequent 

update is not significant for update rates up to 40 samples. The effect of update 

rate is not as clear for the male sentence (due to poor pitch tracking capability of 

Auto-Correlation method). Pitch tracking is more sensitive to frequency of update 

in comparison with the formant tracking. For example if update rate is changed 

from every 20 samples to every 5 samples in a F-P configuration, the prediction gain 

increase is mostly in the pitch portion. This may also be seen from the results of 

Ref. [57] where a method of tracking pitch without an increase in the update rate is 

suggested. 
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4.6 Quantization Noise and Backward Adaptation Effects 

The model used in all experiments up to this point is a prediction error filter 

( A ( z )  = 1 - F (2)) with the backward adaptive prediction analysis based on the clean 

signal. If the model of Section 3.6.6 which includes the quantization noise effects is 

considered, some of the above results may get effected. Experiments were carried out 

to investigate some of these possible effects. The conclusion made is that, as a result 

of inclusion of quantization noise model, the results presented in this chapter do not 

change significantly. 



method 

Table 4.1 Comparison of prediction gains between F-P 
configuration (orders: 10+3) and single high-order 
predictor configuration (order 50) 

F-P 
Single high-order 
F-P 
Single high-order 
F-P 
Single high-order 
F-P Sequential 
Single high-order 

sentence (gender) 

0 AKF8 (female) 

OAKM8 (male) 

C ATF8 (female) 

c ~ ~ 1 \ 1 8  (male) 

method 

formant 
gain dB 

F-P 
Single high-order 

19.1 
- 

16.9 
- 

13.9 
- 

12-8 
- 

sentence (gender) 

F-P 
Single high-order 

pitch 
gain dB 

OAKF8 (female) 

F-P 
Single high-order 

Table 4.2 Comparison of prediction gains between high-order 
F-P configuration (orders: 50+3) and single 
high-order predictor configuration (order 50) 

overall 
gain dB 

1.5 
- 

-0.4 

1.0 
- 

1.7 
- 

formant 
gain dB 

OAI<Mg (male) 

F-P sequential 
Single high-order 

Table 4.3 shows the prediction gain comparison among orders 10, 30, and 50 

for the Auto-Correlation method in the two possible models (with and without the 

quantization noise). Although the resulted prediction gains for the model with quan- 

tization noise are generally lower than the model without quantization noise, the 

conclusion made about the high-order predictors do not change (increments in the 

prediction gain stay similar). One observation made was that in the model with quan- 

tization noise, the ill-conditioning is reduced. This is due to the fact that the effect 

of the quantization noise is similar to the simple white-noise correction technique. 

20.6 
22.2 
16.5 
18.7 - 
14.9 
17.6 
14-5 
15.3 

22.2 
- 

CATF8 (female) 

pitch 
gain dB 

18.7. 
- 

C A T M ~  (male) 

overall 
gain dB 

-0.5 
- 

17.6 
- 

21.7 
22.2 

-0.5 
- 

15.3 
- 

18.2 
18.7 

-1.0 
- 

16.6 
17.6 

1.3 
- 

16.6 
15.3 



Although the quantization noise model is a useful simulation tool and can give 

some preliminary idea about quantization noise effects, some of the assumptions made 

by this model (see Chapter 3), may not always hold. For example, for the case of lower 

bit rate coders where the assumption of white quantization noise does not hold, the 

model is less valid. More realistic results may be obtained by studying the backward 

adaptation in a complete coder environment. This however is a much more time 

consuming simulation task. 
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Analysis based on 

1- Clean speech 
2- Quantized speech 

Table 4.3 Comparison between prediction analysis based on 
clean signal and prediction analysis based on 
simulated quantized signal 

sentence (gender) 

1- Clean speech 
2- Quantized speech 

OAKF8 (female) 

order 10 
gairi, dB 

OAIrlvl8 (male) 

18.93 
18.51 

order 30 
gain dB 

16.84 
16.74 

order 50 
gain dB 

21.25 
20.27 

21.83 
20.83 

18.89 
18.51 

18.91 
18.17 
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LD-TREE and LD-CELP: 

Algorithms and Simulation Results 

The basic ideas of the low-delay coding using LD-TREE and LD-CELP coders 

along with various components of the two coders were introduced in Chapter 2. Chap- 

ters 3 and 4 focussed on the performance of the formant and pitch predictor com- 

ponent, studying various prediction schemes. In order to study and compare the 

performance and characteristics of complete LD-TREE and LD-CELP coders, simu- 

lations based on the original configurations [8, 21 were carried out. t 

In this chapter first, a more detailed description of the two coders algorithms is 

outlined. Then, results of the study of the comparison between the two coders, their 

similarities and differences along with the simulation results are presented. The first 

goal is to compare and study the performance of the two coders. Second objective 

is to analyse the particular characteristics which makes the two coders different from 

one another. The final goal is the improvement of the performance of the coders with 

the view of bringing down the bit rate below 16 kb/s. 

The simulations are done in FORTRAN language programs on a VAX-8600 com- 

puter. Single precision floating-point arithmetic is used in almost all the programs. 

In a few places in the program where precision is crucial, double precision arithmetic 

is utilized. The comparison between the two coders are performed using objective 

t As it  was mentioned in Chapter 1, for the LD-CELP, the detailed algorithm description and 
subsequent modifications reported later [3-71 are also considered. In particular the changes to  
parameter specification and use of Barnwell window instead of Hamming window are included. 



measures of Signal to Noise Ratio (SNR) and segmental SNR (segSNR). The segSNR 

measure is defined in a similar fashion to segPG using blocks of 16 ms (Section 3.1). 

Some informal subjective tests were also used. 

The LD-TREE and LD-CELP algorithm are presented in Sections 5.1 and 5.2. 

In Section 5.3, a comparison between the structure and methods used in the two 

coders, along with the simulation results comparing them are presented. Section 5.4 

outlines methods by which the two coders performance may be improved. Use of a 

better prediction scheme, is applicable to both coders. For the tree coder, a training 

method for the innovation dictionary is devised and outlined. Use of a better gain 

adaptation strategy is discussed. A new structure for the LD-TREE, more suitable for 

the higher-order prediction filters, is suggested. The issues related to the components 

and various schemes discussed in Chapters 2 and 3 are also considered and conclusions 

are made. Suggestions to improve the robustness of the LL)-TREE to the channel 

errors are presented. 

5.1 LD-TREE Algorithm 

Chapter 2 introduced delayed decision tree coding and other concepts used by 

the LD-TREE coder in brief. The original LD-TREE [8, 91 is a tree coder based on 

the generalized APC structure of Fig. 2.10 (closed-loop structure). In order to match 

the components of the LD-TREE to the LD-CELP original version, the postfiltering 

and pitch predictors were eliminated from the original LD-TREE. Other than this 

difference, the LD-TREE used in this study is kept identical to the original one in [8] 

and the same simulation programs are used. It was also suggested in Chapter 2 that 

the block diagram of the coder can be represented in a open-loop structure (usually 

used in the CELP coders) to show its resemblance to the LD-CELP coder. The 

resulted structure was shown in Fig. 2.12. This configuration is similar to the LD- 

CELP coder structure of Fig. 2.13. The equivalence of the two LD-TREE structures 

holds only if a similar perceptual weighting filter is used by both coders. 

The algorithm description of the LD-TREE coder as it was originally presented in 

Ref. [8] is now reviewed. First the main ideas are summarized. Then with the help of 



the algorithm block diagram in Fig. 5.1, the steps are shown. The block diagram of the 

closed-loop APC structure used by the algorithm is shown in Fig. 2.10. Occasionally, 

references to the equivalent open-loop structure shown in Fig. 2.13 are also made. 

The block responsible for the search of the best innovation sequence in Fig. 2.12, 

is identified as the (M,L) Tree search using minimum MSE distortion criteria. This 

block which is a part of the quantizer block Q in Fig. 2.10 is expanded in Fig. 5.1 to 

show the steps of tree coding quantization. The corresponding block in the LD-CELP 

coder is identified as the VQ search also using the minimum MSE distortion criteria. 

The methods of tree and codebook delayed decision coding discussed in Chapter 2, 

are used by these blocks to select one of the innovation entries in the innovation 

dictionary (LD-TREE) or the VQ codebook (LD-CELP). 

The (M,L) tree search algorithm explained in Chapter 2 (M=16, L=8) [58], is a 

MSE distortion minimization procedure in which at each time instant n, the maximum 

number of paths kept in contention is M=16 and the number of nodes in each path is 

limited to L=8. Once each of the maximum M path are extended and the accumulated 

error (MSE distortion) for these paths are updated, decision is made to select the 

path with the minimum (MSE) accumulated error. The index of the root of this 

path (a 2 bit code) is transmitted to the decoder. This tree decision making may be 

characterized as a sliding block structure in which every time a speech sample arrives, 

as a result the tree "grows" new leaves but the root gets "trimmed". This means that 

once a decision is made, the 8-sample-long (L=8) sliding block moves, bringing in the 

new leaves of the extended M path in the sliding blocks and leaving the winning root 

of the path with the least accumulated (MSE) distortion out. The new maximum M 

path kept in contention are only the ones which stem from the released root. 

In the LD-TREE algorithm, distinction is made between the innovation tree and 

reconstruction tree. The innovation tree is populated from a stochastic dictionary 

with each node having a unique path map which maps the location of the node in 

the tree to the entry in the stochastic tree. The one-to-one corresponding nodes in 

the reconstruction tree are populated with the resulted reconstructed speech samples. 

Each value is obtained by scaling the innovation sample y(n),  to obtain the gain-scaled 



innovation sample ep (n) ( ( eq  (n) = a(n)  y (n)  ). 

The stochastic innovation tree nodes are populated from a Laplacian random 

number dictionary of size 2k (in this study 2k=4096). The adaptation of the 8th 

order formant predictor F (z )  in the LD-TREE coder is using the Lattice method. The 

reflection coefficients are converted to the direct form before using in the prediction 

filter. The use of noise feedback filter N(z) = F(z/X) results in the simpler perceptual 

weighting filter of the form in Eqn. 2.5. 

The path map for each of the extended leaf nodes in the innovation tree is as 

follows. Since the branching factor of the tree is 4, each branch has a two bit binary 

index, and each path map may be uniquely identified as the concatenated sequence of 

these two bit indices representing the branch numbers from the root to the node. In 

the multi-search (M,L) algorithm M such path with length L are kept in contention. 

The stochastic dictionary of size 2D (D < 2 x L) is addressed using the D least 

significant bits in the above path map sequence. 

In the multi-search scheme the filtering operations along each path using this 

structure need separate memory. For example each of the M path j (with j = 

1, ... ,M)  require M set of filter coefficients {a:) for the filter F(z) .  Similarly, the 

noise shaping filter N(z) would have separate memories when is updated along various 

paths. As discussed in Chapter 2, it is possible to go around this large memory and 

complexity requirement, by a delayed update of the filter coefficients. This delayed 

update actually results in a better prediction gain for the backward adaptations in 

(1 - F(z)) filter of Fig. 2.10. As a consequence of the delayed update, it is not 

necessary to keep separate sets of memory for the M path. As it was mentioned in 

Chapter 2 and is seen in Fig. 2.12, the filtering operation at time n for the extended 

nodes uses the coefficient sets L samples back ({ai(n - L)). It is easily seen that 

the filtering operation for the released root would have coefficients 2L samples back 

({ai(n - 2L)) in Fig. 2.12). 

As the gain for the nodes along each path are updated using Eqn. 2.9, each 

extended node would require a separate gain update. The gain-scaled innovation 

becomes available by multiplying this gain by the unscaled-innovation sample, popu- 



lating the innovation tree (gain-normalized innovation dictionary). Note that the gain 

update strategy of Eqn. 2.9 has the advantage that there is little memory require- 

ments. If the P-th order logarithmic gain predictor adaptation strategy of LD-CELP 

were to be used, the memory requirements (keeping long memories along maximum 

of M path) and complex analysis (separately for each path) would not be practical. 

It is however possible to to adopt a delayed gain update strategy. This means that 

gain adaptation is along the already released path (single) with a small cost in quality 

degradation . The effect of such scheme needs further investigation. 

In response to the speech sample input at time n, for each path j, there is an 

output rJ(n) for the prediction error filter (1 - F ( z ) )  in Fig. 2.10 and Fig. 5.1. The 

superscript j indicates the dependance of the output on the path number j. This 

dependance would not exist for the delayed update case (Fig. 5.1). At this point we 

need to obtain the outputs of the noise-feedback filters N ( z )  for the various paths. 

This value, d ( n )  is then added to the corresponding residual values r j (n)  to obtain 

e J ( n ) .  The MSE distortion of the quantization for each of the extended node is the 

square of the difference between this value and the gain-scaled innovation value of 

the corresponding node in the innovation tree. The gain-scaled innovation value is 

updated for all extended nodes ( e i  = d ( n ) Y j  where y j  is the node innovation value, 

and d ( n )  is the gain for the node). The accumulated MSE distortion for the tree 

structure is the sum of MSE distortion for the nodes along a particular path. The 

MSE minimization procedure in the analysis-by-synthesis tree structure means trying 

all extended innovation samples using the above procedure and finding the one which 

results in the lowest accumulated MSE distortion. Among the 4M extended paths, the 

one with the lowest relative accumulated error is chosen (root code is released). Since 

only the relative errors between various path is important, only relative accumulated 

errors from the released root is accumulated. After the release of the index of the 

winner root, trimming of the tree is done by discarding the paths which do not stem 

from the released root and by only keeping a maximum of M paths with the lowest 

accumulated error. 

To present a better description for the algorithm, steps of the LD-TREE algorithm 
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Fig. 5.1 LD-TREE encoder algorithm flow block diagram 

are now summarized. The steps correspond to the algorithm flow presentation in 

Fig. 5.1 and is in accordance with the LD-TREE based on closed-loop APC block 

diagram of Fig. 2.10. The numbers in Fig. 5.1 correspond to step numbers below. 

1- The input speech sample with time index n is passed through the prediction 
error filter A ( z )  = 1 - F(z) ,  the response r (n)  is the residual sample (delayed 
update). 

r(n) = s(n) - s(n) * a(n).  

In the above formula * corresponds to the convolution operation. 
2- Multipath (M,L) tree coding with quantization noise feedback is used. Let the 

variable Npath refer to the number of path in contention in the (M,L) algorithm. 
This variable is different than M=16 which is the fixed parameter for the max- 
imum number of path in contention. The branching factor parameter in this 
case is 4 (wherever 4 is used, it refers to the branching factor). Lets assume 
that there are Npath quantization noise values (qJ  (n),  j = 1,2, . . . , Npath) 
from previous sample quantization stage. Prediction coefficients {ai) calcu- 
lated at previous stage (step 11) are converted to the noise filter coefficients 
{ni = x ~ , ~ ) .  The Npath quantization noise values of various paths are passed 
through the noise filter N(z) (separate memories are kept for the Npath filtering 
operations), 

XJ (n) = n(n) * qJ (n) j = 1,2, . . . , lvpath. 



3- Adding these noise filtered quantization error samples to the residual sample 
~ ( n ) ,  the excitation sample eJ(n) for each path j is obtained (a total of Npath 
paths), 

eJ(n) = xJ(n) + r ( n )  j = 1,2, . .  . ,  Npath. 
4- Each tree leaf is extended to obtain Npathx4 newly-extended leaves (maxi- 

mum of 5x4=64). 
5- Using the method of addressing for the stochastic innovation dictionary (con- 

catenation of branching factor, explained in Section '2.3.2), the values of the 
innovation samples are obtained from the dictionary, 

j h y '  (n) j = 1 , 2  ,..., Npath k=1,2 ,3 ,4 .  

6- Each innovation sample z)yt(n) is scaled by the j-th path gain calculated 
for each path at the previous stage (step 11). Npathx4 candidate gain-scaled 
innovation samples are obtained, 

e ik(n)  = u(n)yjyk(n) j = 1, '2,. . . , N t h  k = 1,2,3,4. 

7- These candidate gain-scaled innovation samples are subtracted from to-be- 
quantized noise-added residual samples e3(n) j = 1,2, .  . . , Npath to obtain 
quantization errors for each candidate: 

qjl'(n) = ej(n) - eiy"n) j = 1,2,. . . , Npath k = 1,2,3,4. 

8- The accumulated error for each of the newly extended path is updated. 
9- The winner path with the minimum accumulated MSE stems from the root 

whose index is transmitted to the decoder. 
f 0- The tree trimming is done: eliminating the paths which do not stem from the 

newly obtained root in step 9 and possibly eliminating paths from the newly 
extended path so that a maximum of M=16 paths with the least amount of 
cumulated error is kept. New value of Npath is the number of path which is 
resulted at this step. 

11- The gain values for the Npath paths are updated. The gain-scaled innovation 
samples (including the new extended ones) are used for this update. Also the 
prediction coefficients {ai) are updated using reconstructed speech. The re- 
constructed (quantized) speech is obtained by passing the newly selected gain- 

1 scaled innovation samples (root sample) through the synthesis filter - 1-F(z)' 
12- The quantization noise for the Npath paths (calculated at step 7) are made 

available for the next stage of the algorithm at step 1 (index k is now not 
necessary, qj(n)) 

5.1.1 Init ializat ions 

The initial tree has one saved path. The nodes are populated with zero value 

and the gain values are set to identity. The start-up filter coefficients are also zero. 

Similar intial conditions are used both at the encoder and decoder. 



5.1.2 Parameter Selection 

As explained in Ref. [S], the performance curve as a function of M flattens around 

16. The value M = 16 is used in the experiments. A similar curve plot for L presented 

in Ref. [8] suggests the use of L = 8 in the algorithm. The algorithm uses the adaptive 

Lattice algorithm with an order 8. The two pole+one zero window type of Eqn. 3.27 

with P1 = 0.97, ,B2 = 0.95, and a = 0.85 is used. As mentioned earlier, the stochastic 

innovation tree nodes are populated from a Laplacian random number dictionary of 

size 2'=4096 is used. The SNR degradation for smaller dictionary size down to 1024 

was also acceptable (less than 1 dB). 

5.2 LD-CELP Algorithm 

The LD-CELP, like the conventional CELP [21], searches the codebook for the 

best matching codevector (each vector is 5 samples long) using analysis by synthesis 

and by minimizing the perceptually weighted error. Fig. 2.13 shows the block diagram 

of the LD-CELP encoder and decoder. The algorithm based on the March 1989 

description released by AT&T [2] was implemented. t 

The algorithm description of the LD-CELP coder as it was originally presented 

in Ref. [2] is now reviewed. First the main ideas are summarized. Then with the help 

of the algorithm block diagram in Fig. 5.2, the steps are shown. The block diagram 

of the CELP structure used by the LD-CELP shown in Fig. 2.13 is also used. 

The concepts and components of the LD-CELP were introduced in Chapter 2. 

Blocks (vectors) of 5 input speech samples are formed. For each vector encoder in 

effect passes the 1024 excitation codevectors through gain scaling and synthesis units. 

The codevector which produces the minimum perceptually weighted MSE is selected. 

The index of this selected codevector is transmitted to the decoder. The details of 

the algorithm is pictorially represented in Fig. 5.2. The encoder includes a replica of 

t The simulation works based on that document had finished when a new release describing the 
algorithm in detailed Pseudo-code, was published [3]. The results obtained based on this new 
release on the DEC Work-station [14] agreed with the previous results of experiments on the 
DEC VAX. 
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the decoder. Here again, block numbers in Fig. 5.2 are referenced (the step numbers 

have no relation to the block numbers.). 

I This block groups every 5 incoming speech samples into a block (vector). Time 
index n is now used for blocks instead of samples (s(n) instead of s ( k ) ) .  

I1 This block updates the perceptual weighting filter coefficients. The update 
rate is every 5 vectors (20 samples). The process of the unit includes Barnwell 
windowing, Levinson-Durbin recursion for solving the set of Auto-Correlation 
equations, and bandwidth expansion to obtain pole/zero transversal coeffi- 
cien t s. 

I11 The n-th input speech vector s(n) is passed through the perceptual weighting 
filter. 

IV There are two synthesis filter blocks 9 and 22 in Fig. 5.2 with identical coeffi- 
cients. The coefficient update is by block 23. Barnwell windowing, Levinson- 
Durbin recursion, and simple white noise correction technique are used. The 
Bandwidth expansion with factor X = 0.9883 is also employed. 

V Backward adaptive logarithmic gain prediction (block 20) details are shown 
in Fig. 5.3. The block of one-vector-delay is done implicitly and shown for 
clarity. The input vector is the gain scaled excitation vector determined from 
previous encoded speech vector. RMS of the vector is calculated and its dB 
value is found by the next two blocks. A logarithmic gain offset value is 
determined in the coding stage and is stored in the log-gain value holder. The 
purpose of applying this offset value is to reduce some adverse effects caused 
by the the fact that the log-gain is not a zero mean signal in general (e.g. 38 
dB). This new signal is what is used as the input to the log-gain predictor. 
Barnwell windowing, Levinson-Durbin recursion,, and Bandwidth expansion 
with X = 0.9 are used. The offset is added back to the predicted logarithmic 
gain before log-gain limiter (2000) and inverse dB operations are applied. 

VI ZIR response for the input is calculated by putting the switch 5 to position 
6. Using the previous memory of the cascaded synthesis and perceptual filters 
9 and 10 ZIR is found (rZIR(n)). 

VII Block 11 computes target vector x(n) = v(n) - rZIR(n) 

VIII Codebook search is done by block 12 through 18. In this special implemen- 
tation, a 7 bit gain codebook and a 3 bit gain codebook are used. The gain 
index is further subdivided to a 1 bit sign and 2 bit magnitude. In effect the 
gain scaled excitation signals are passed though cascaded synthesis and per- 
ceptual filters (H(z) = F(z )  W(z)). To obtain ZSR (filter memories are set to 
zero), block 12 calculates response H(z) using the filter coefficients calculated 
in steps 11 and IV. 

IX The MSE minimization procedure reduced to Eqn. 2.11 (Section 2.7.2) is 
implemented by blocks 13 through 18. p(n) = ~ ~ x ( n )  in Eqn. 2.1 1 is the time 
reversed convolution computed by 13. Shape codevector convolution module 
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14 and energy table calculator 15 obtain E j  = 1 ~ ~ ~ 1 '  in Eqn. 2.11. The 
resulted error in Eqn. 2.11 with the following convenient form 

is calculated by module 17. Finally, the best codevector index is selected by 
block 18 which outputs the indices i, j, and k of the selected gain (sign and 
magnitude) and shape codevectors (i.e. y j ,  ph, and g;). This selection means 
that the 128 shape codevectors and the S gain codevectors are tried and the 
ones which result in minimum D are selected. The indices are transmitted to 
the decoder. 

X The codevector indices obtained in step IX are also used to form the excitation 
signal e(n) (also gain scaled by the gain scaling unit). i.e. 

e(n) = pbmingimin ~ i , i , o ( ~ ) -  

XI Synthesis filters 22 uses e(n) to produce the reconstructed signal. The ZIR 
filter memories for the block 9 and 10 are updated by passing e(n) (switch 5 
positioned at 7) through F ( z )  and W ( z ) .  The two sets of memory (ZIR and 
ZSR) are kept separate during encoding steps. 

Note that the decoder algorithm is identical to its replica at the encoder. 



5.2.1 Training of the Shape and Gain Codebooks 

The shapelgain training procedure for CELP structures using gain scaled excita- 

tion codevectors is outlined in [59, 39, 43, 231. The individually optimized gain and 

shape approach of [39] is used. This means shape and gain codebooks design are done 

independently. The initial gain codebook is "hand selected" (4 values plus the sign). 

The initial shape codebook was chosen from numbers with a Gaussian distribution. 

In a closed-loop gain-adaptive training algorithm, the distortion-versus-iteration does 

not necessarily decrease monotonically. The codebook with the lowest distortion af- 

ter a preset number of iterations is saved [43]. The iterative clustering algorithm 

using a different set of training speech sentences (Appendix B) than the test speech 

sentences (Appendix A) were used [23]. The 5-dimensional space is divided to 128 

Voronoi cells. The v-th cell has Nv elements. The distortion formulation of Eqn. 2.10 

is used. The total distortion for each cluster with N ,  elements is minimized. By 

taking the derivative of this total distortion with respect to the unknown centroid 

vector y and setting it to zero, a linear system of equations is obtained. The centroid 

codevectors are the solution of this linear system. Let n be the index of the training 

vector. For each training vector, there is a corresponding gain a (n)  and a cascaded 

impulse response H(n).  Hence using the Eqn. 2.10, the total distortion for the cluster 

v with Nv elements is 

Now to get the centroid vector y ,  we take the derivative with respect to the y and 

set the result to zero. The following linear system of equations is resulted: 

The matrices H ( n )  and the corresponding vectors (x(n), ~ ( n ) )  are accumulated 

separately for each cluster. The resulted linear system of equation (Eqn. 5.1) is formed 



the same way for all 128 clusters. The codebooks were trained using the above method 

using the training speech files in Appendix B. SNR improvements of about 1-2 dB 

was obtained for speech outside the training sequence (Appendix A). The published 

trained codebooks of [2, 31 gave similar results. The training of the codebooks for 

each new design feature is essential, if the results are to be compared properly. 

5.3 Comparison Between the Two Coders 

The objective (SNR, segSNR) and informal subjective results comparing the LD- 

CELP and LD-TREE are presented in this section. 

5.3.1 On the Nature of the Differences and Similarities 

The design of the original LD-TREE coder (unlike the LD-CELP) does not con- 

sider the noisy channel performance. Improving the LD-TREE coder robustness to 

channel errors is further discussed in Section 5.4.2. 

The sliding block versus the block characteristics in the LD-TREE and LD-CELP 

coders is the main difference between the two coder. The use of the 50th order 

prediction filter in the LD-CELP as opposed to the 8th order filter in the LD-TREE 

constitutes another difference. Ref. [2] reports that the prediction gains and SNR 

gains obtained as a result of using high-order predictor justify the added complexity. 

The perceptual weighting filters used in the LD-TREE and LD-CELP coders not only 

differ in form but also are different in the use of quantized or unquantized speech signal 

to update their coefficients. The use of high-order synthesis filter in the LD-CELP 

has forced the coder to use a separate predictor filter for the perceptual weighting 

filter. The advantage of the general form perceptual weighting filter used in the LD- 

CELP coder is at the cost of additional computational complexity (separate prediction 

analysis). 

The LD-CELP uses a 20 ins Hamming window or alternatively a recursive mod- 

ified Barnwell window (to distribute the computation load for implementation con- 

siderations) for the backward adaptation of the prediction filter. The method of 



choice for the analysis is Auto-Correlation and the update of the coefficients is done 

every 8th vector (5 ms). The LD-TREE on the other hand uses the Lattice adapta- 

tion algorithm to obtain reflection coefficients which are then converted to the direct 

form for use in the 8th order predictor filters. A one-pole or exponential window is 

used on the analysis data. The shape and the effective length of this window maybe 

controlled by a parameter. Computational savings are obtained by using this win- 

dow. The coefficient updates are done on a sample-by-sample basis but in a delayed 

update configuration. The Lattice adaptation algorithm used in the LD-TREE is 

suitable for the low order prediction configuration. The exponential window used in 

the LD-TREE has a computational advantage over the windowing methods used in 

the LD-CELP, yet with the one-pole exponential window the control over the shape 

and the effective length is restricted and may not be suitable for the noisy channel 

conditions. The bandwidth expansion applied to the high-order predictor of LD- 

CELP can also be applied to the predictor in the LD-TREE coder. This improves 

the robustness to channel errors by making the noise less perceivable [Z]. 

5.3.2 Objective Comparisons 

The LD-TREE coder showed great promise by producing subjective quality equiv- 

alent to 7-bitlsample log-PCM with encoding delay not more than 1.125 ms [9]. Using 

simulations of the coders in this chapter, many comparisons between the LD-TREE 

and LD-CELP coders were made. Results of a typical experiment shown in Table 

5.1, imply that the segSNR of the coded speech using the LD-TREE and LD-CELP 

coders for the two speech sentences "CAT" and "OAK" are very close. The LD-TREE 

does somewhat better for the male utterances and the LD-CELP is slightly better for 

female utterances. 

5.3.3 Subjective Comparisons 

The informal subjective tests also agree with the above conclusion. The above 

comparison is for the clean channel condition. 



I LD-CELP 1 17.9 1 19.1 1 15.4 1 20.1 1 
Coder 

I LD-TREE ( 19.1 1 19.1 1 19.6 1 19.3 1 

Table  3.1 Comparison of coders segSNR 

CAT 

Male 1 Female 

5.4 Improving the Two Coders 

OAK 

Male 1 Female 

In this section methods to improve the two coders performance are suggested. 

Some improvements are applicable to both coders and some to a particular one. 

5.4.1 Improvements  Applicable t o  B o t h  Coders  

The 50th order predictor in LD-CELP does capture pitch effects within its lag 

range. However, the use of the Auto-Correlation method does not fully exploit the 

high lag correlations because window edge effects. The Cumani Covariance-Lattice 

method does not have the above window/order problems and produces higher predic- 

tion gains [12]. The Cumani algorithm is one of a larger class of algorithms (PORLA) 

which are potentially useful for high-order prediction [53, GO, 611. 

Results of extensive experiments to obtain high-quality prediction analysis for 

high-order predictors (as presented in Chapter 4) can be used to improve the perfor- 

mance of both coders. For clean speech, the prediction gain of the Cumani Covariance- 

Lattice method [52] )  is several dB higher (approximately 2 dB for female and 3 dB 

for male utterances) than the Barnwell Auto-Correlation method. The reasons for 

this better performance were discussed in Chapter 4. Table 5.2 uses the average per- 

formance over several speech files to compare the Cumani Covariance-Lattice method 

with the Auto-Correlation method in LD-CELP (both order 50). The effect of back- 

ward adaptation based on the (noisy) reconstructed signal is such that the objective 

performance of the two methods is not noticeably different. However, informal subjec- 

tive tests indicate that the differences are either absent (both are of very high quality 



I Barnwell-Auto 1 19.6 1 21.0 1 24.1 1 22.6 1 
I Analysis Method 

I Covariance-Lattice 1 19.6 1 20.7 1 22.9 1 21.7 1 

Table 5.2 Objective coder performance comparison of LD-CELP 
with two analysis techniques (dB) 

+ 
Male 

SNR I segSNR 

with no noticeable degradations) or there is a slight preference for the Covariance- 

Lattice method (specially for male speakers). 

Female 
SNR I segSNR 

5.4.2 Improving the LD-TREE 

Starting from a stochastic tree an algorithm was devised for the training of the 

innovation dictionary. The algorithm generalizes the well known LBG approach [34] 

to the stochastic tree coders. The obtained results showed how the training of the 

innovation dictionary improves the coder performance. Use of higher order filter 

with a better prediction analysis scheme (Chapter 3 and 4) also improves the coder 

performance and allows for the capture of pitch content in the speech signal. 

In order to use a single high-order synthesis filter, the new open-loop configuration 

of Fig. 2.12 is suggested. As a result of the use this structure with modifications such 

as use of separated ZIR and ZSR (to obtain computational saving), and delayed 

prediction coefficient update, one may have a tree coder with similar advantages 

as the LD-CELP. The higher-order synthesis filter with the appropriate perceptual 

weighting filter allows for the capture of the pitch content without malfunctioning 

under noisy channel conditions. 

Training the Innovation Dictionary: The new training algorithm for the tree 

(and Tree-CELP) coder innovation dictionary is now discussed. The idea of training 

the stochastic dictionary is not as straightforward as the training of the codebook in 

the CELP coders. This is due to the fact that in the tree coder, the switching among 

selected entries in the dictionary resulted from the training is somewhat random (or 



at least is less controllable). Given the training sequence {s(n)), the key steps based 

on the Linde et a1 [34] basic algorithm is as follows: 

1- Populate the initial codebook with random numbers (example Laplacian dis- 
tribution); 

2- The coder is run using the training sequence, accumulating the unquantized 
prediction errors associated with the released node of the tree; 

3- The centroid for the dictionary entry is found and used to re-populate the 
dictionary. 

After the initial first step, steps 2 and 3 are repeated alternatively as in the 

generalized Lloyd algorithm until some convergence criteria is met. Again since the 

closed-loop design is taking place, the distortion-versus-iteration does not monoton- 

ically decrease. The dictionary with the lowest distortion after a preset number of 

iterations is saved.. It was found that 3-5 iterations results in satisfactory results. 

Note the advantage of this relatively simple design procedure is the adaptation of 

excitation dictionary to many characteristics of the system components. The disad- 

vantage is the small dimensionality (one) of the used Voronoi space (LBG algorithm). 

As a result the inter-sample relations are not exploited (as it is in the case of the 

CELP training). Other approaches similar to the ones used for the trellis [32] and 

VQ coders may result in better gains (special considerations related to the stochastic 

properties of the dictionary has to be made). Simulation results using the above sim- 

ple training algorithm resulted in SNR improvements of about 1 to 2 dB for speech 

files outside the training sequence (Appendix A). Subjective quaiity improvement was 

also noticeable. 

The New Tree Coder Structure for Higher Order: In Section 2.4, the 

two simple and general forms of perceptual weighting filters were discussed. The 

advantages of the general form alternative were shown. Among them was the fact 

that the general form is more appropriate for coders which use high-order predictors. 

Here an alternative structure for the closed-loop configuration LD-TREE which allows 

for the use of general form perceptual weighting filter is introduced. 

The block diagram of the alternative structure is shown in Fig. 5.4 [47]. The 



resulted general perceptual weighting filter has the form 

where 

J 

~ ~ ( z )  = N(z /h l )  = 2 niXizi and N2(r)  = N(z/&) = C niX&zi, 
i=O i = O  

with 0 < X2 < X1 5 1 (e.g. X1 = 0.9, X2 = 0.4). The weighting filter W(z) does not 

have a direct link to the predictor F(a ) .  The adaptation of the noise filter coefficients 

{nil can be based on the unquantized speech. The noise filter order P' and the order 

of the predictor filter F ( z )  may be different (e.g. F ( z )  order = 50 and P' = 10). 

- 
(a) Encoder 

i ( 1 2 )  

Fk) 
;") 77- (b) Decoder 

Fig. 5.4 A closed-loop configuration with generalized noise 
feedback [47] 

The following steps give the derivation for Eqn. 5.2. At the encoder we have: 

P P ' PI 
x(n) = s(n)  - C a i 9 ( ~ ~  - i )  - C n2iq(~z - i )  - C nli[s(n - i )  - 9(n - i)] (5.4) 

i= 1 i= 1 i= 1 



Now at the decoder we obtain 

i ( n )  = s,(n) + C ai2(n - i).  
i= 1 

Using Eqn. 5.3 in 5.5, we have 

P 
2(n) = x ( n )  + q(n)  + C ai3(n - i) .  

i= 1 

Substituting Eqn. 5.4 in the above, we get 

P P ' P ' 
o(n) =s(n) - ai2(n - i )  - n2iq(n - i )  - nli[s(n - i) - S(n - i)] 

i= 1 i= 1 i= 1 
P 

+ q(n) + 1 aid(n - i). 
i= 1 

Taking the z-transform, we get 

S(Z) = S(T) - P(I)S(Z) - N2(i)Q(2) - N1 (z)S(Z) + N~ (i )S(*)  + Q(z) + P(T)S(Z) 

[W - S(z)lP - Nl(4 l  = Q(4[1  - N2(4l 

Robustness to Cliaiinel Errors 

inal LD-TREE was not designed with 

and Tandeiniiig Performance: The orig- 

considerations with respect to the channels 

with non-zero probability of error (Pe). The performance of the LD-TREE coder 

as it was in the original coder of Ref. [8] sharply dropped with simulated channels 

with non-zero probability of error (even Pe = did not give an acceptable re- 

sult). The CCITT standardization specification for performance under noisy channel 

(Table 1.1) showed how channel noise performance can be an important criterion. 

Although channel error performance and tandeming were not the focus of this work, 

some simulations were carried out and from the results, the following remarks may 

be made with regard to the less robust behaviour of the LD-TREE coder. 

- Pitch predictor originally used in the LD-TREE coder is actually harmful 
under noisy channel conditions and hence can be replaced by a single high- 
order synthesis filter. Use of high-order filter requires a different structure such 
as the ones suggested above. 



- The gain adaptation plays a key role in the behavior of the coder under channel 
errors, gain adaptation with shorter impulse response is more suitable to obtain 
a better robustness to channel errors, 

- When LD-TREE is operating under noisy channel condition, catastrophic ef- 
fects resulting from switching between paths has to be overcome. In the tree 
structures, once an error occurs, the effects can last for some time. 

- The above effect can be minimized if delayed gain-adaptation strategy (sug- 
gested earlier) is implemented. This is provided that the coder behaviour is 
acceptable with this strategy (future simulations are needed), 

- Adaptive postfiltering improves the coder performance under clear channel 
conditions. When t andeming performance and robustness to channel errors 
are among the required criteria, postfiltering can be harmful. However as 
mentioned before, from the recent experiments of AT&T, a specially tuned 
postfiltering is beneficial. 



Chapter 6 
Summary and Recommendations 

For Future Research 

The network-quality 16 kb/s CCITT standardization has brought new focus to 

low-delay speech coding at 16 kb/s. In the standardization specification, additional 

requirements (e.g. delay less than 2 ms and robustness to channel errors) over the 

near- transparent quality are put forth. In future similar kinds of requirements can 

be expected for coders operating at rates between 8 to 16 kb/s. The LD-TREE and 

LD-CEEP coders may both be considered as potential candidate coders for low-delay 

network-quality applications. Performance quality equivalent to 7 bi ts/sample log- 

PCM with delays less than 2 ms under clear channel conditions is achieved by the 

two coders. Satisfactory performance quality, under noisy channel conditions, is also 

reported for the ED-CELP. 

The performance of the two coders, however, has not been compared under the 

same conditions before. Simulations in this work compared the two coders under 

similar conditions. The simulation results indicated that the segSNR7s of the coded 

speech using the LD-TREE and LD-CELP coders are very close. The LD-TREE 

does somewhat better for the male utterances and the LD-CELP is slightly better for 

female utterances. The informal subjective tests agree with the above conclusion. 

The above comparison is for the clean channel condition. The design of the 

original version LD-TREE coder (unlike the LD-CELP) does not have an emphasis 

on the noisy channel performance. The coded speech using the LD-TREE degrades 

rapidly under the noisy channel conditions while the LD-CELP withstands channel 



probability of error of and with acceptable levels of quality loss. 

The essential difference between the coders is the block versus sliding window ex- 

citation coding. Without channel error considerations, sliding window coders would 

seem to be preferable in terms of performance alone. There are no block edge effects 

with sliding window techniques. However, channel errors propagate for longer times 

within the sliding block structure. In addition, pseudo-Gray coding to mitigate the 

effect of errors is possible with block codes. Coarse simulation execution time com- 

parisons indicate that the two coders have comparable complexities. The tradeoff 

here would seem to be clean channel performance versus noisy channel performance. 

Note that there are important applications (e.g. undersea fibre transmission) in which 

channel errors are not significant. On the other hand, for other applications (mobile 

radio or in-building wireless), channel error rates can be much more severe than the 

rates in the CCITT objectives. 

Both coders contain structures with similar functions. The various components 

can be mixed and matched between the coders. It must be kept in mind that in 

a backward adaptive structure, each component must perform well. For instance a 

good residual coder results in an accurate reconstructed signal which in turn is used 

to adapt the predictor. A breakdown in either the residual coder or the predictor 

update results in breakdown of the coder. 

Under clean channel conditions, even though LD-CELP uses a 50th order predic- 

tor compared to the LD-TREE 8th order predictor, the overall speech quality is very 

similar. A small advantage accrues to the high-order predictor for female speech in 

which the pitch range falls within 50 samples. High-order predictors can be used in 

either coder. 

The perceptual weighting filters used in the LD-TREE and LD-CELP coders 

not only differ in form but also are different in the use of quantized or unquantized 

speech signal to update their coefficients. The use of high-order synthesis filter in 

the LD-CELP has forced the coder to use a separate predictor filter for the percep- 

tual weighting filter. Again this strategy can be carried out along with high-order 

predictors in the LD-TREE coder. 



The bandwidth expansion applied to the high-order predictor of LD-CELP can 

also be applied to the predictor in the LD-TREE coder. This can also improve the 

robustness to channel errors by making the noise less perceivable. 

The speech quality of both LD-CELP and LD-TREE at 16 kb/s is very high. 

LLImprovements" applied to the coders are not very noticeable. The ultimate goal is 

that such improvements will allow the high quality coding at lower rates. Of course, 

there may be substantial computational penalty to be paid for these improvements. 

The 50th order predictor in LD-CELP does capture pitch effects within its lag 

range. However, the use of the Auto-Correlation method does not fully exploit the 

high lag correlations because of window edge effects. The well-conditioned high-order 

Cumani Covariance-Lattice method does not have the above window/order problems 

and produces higher prediction gains. The Cumani algorithm is one of a larger class 

of algorithms (PORLA) which are potentially useful for high-order prediction. 

Results of extensive experiments to obtain high-quality prediction analysis for 

high-order predictors can be used to improve the performance of both coders. For 

clean speech, the prediction gain of the Cumani Covariance-Lattice method is several 

dB higher (approximately 2 dB for female and 3 dB for male utterances) than the 

Barnwell Auto-Correlation met hod. The reasons for this better performance were 

discussed in Chapters 3 and 4. The effect of backward adaptation based on the (noisy) 

reconstructed signal is such that the objective performance of the two methods is not 

noticeably different. However, informal subjective tests indicate that there is a slight 

preference for the Covariance Lattice method (especially for male speakers). 

As it is done for the LD-CELP codebooks, training of the innovation signal boosts 

the performance of the LD-TREE coder. A new training procedure was implemented 

for the LD-TREE dictionary. The segSNR improvements of about 1-2 dB were 

obtained when the stochastic innovat ion dictionary was trained using this procedure. 

When LD-TREE is operating under noisy channel condition, catastrophic effects 

resulting from switching between paills lasts for some time (characteristic of the tree 

structure). Once an error occurs, the effects propagate to the future samples. This 

problem has to be addressed by limiting the error effect along the path. 



Although the exponentially averaged gain adaptation method of LD-TREE is ad- 

equate for clean channels, a better gain adapter suited for the stochastic tree coders is 

required to overcome the malfunctioning of the LD-TREE coder under noisy channel 

conditions. Preliminary experiments have verified this effect. Simple remedies were 

applied to achieve much better robustness, but with a loss of coder performance. Use 

of more complex gain adaptation strategies similar to the ones used in the LD-CELP 

could provide error robustness with no loss or even a possible increase in performance 

with no errors. The new gain adaptation strategy however has to fit to the tree coder 

characteristics. If the gain adaptation updates are delayed (similar to the prediction 

coefficient update), the complex gain adaptation met hod becomes computationally 

practical. 

6.1 Future CCTree-CELP" Coders 

The sliding block versus the block characteristics of the LD-TREE and LD-CELP 

is the main difference between the two coder. Other advantages come from the use 

of better quality components such as the high-order predictor with highest prediction 

gain, better gain predictors, dictionary training, and the type of perceptual weighting 

and postfiltering. A Tree-CELP coder taking the best components from the two 

structures is a good candidate for future low-delay coders at medium rates of 8-16 

kb/s. For such coders, choice of open-loop or closed-loop alternatives as well as the 

type of fractional tree configuration (namely multi-sample/node tree as in Fig. 2.7 or 

multi-tree as in Fig. 2.8) have to be considered. 

The Tree-CELP coder based on the closed-loop APC configuration discussed in 

Chapter 2 was later modified in Chapter 5 (Fig. 5.4) to incorporate general perceptual 

weighting filter. The structure of a Tree-CELP coder based on the open-loop CELP- 

like structure is similar to the one shown in Fig. 2.12. These two configuration which 

can be used by the future Tree-CELP coders, have their own advantages. As it was 

discussed in Chapter 2, some computational savings can be obtained when the second 

structure is used due to ease of separation of of ZIR and ZSR. This computational 

saving strategy was explained in Chapter 2. 



Another advantage is related to the recent techniques suggested to be used in the 

CELP-like structures [62]. "Direct VQ" techniques allows for computational reduc- 

tions resulting from elimination of some convolution operations of the filters in the 

CELP-like structures. The CELP-like open-loop structure provides a more suitable 

structure for the general perceptual weighting filter (e.g . closed-loop configuration in 

Fig. 5.4 is more complex than open-loop configuration in Fig. 2.13). For the lower bit 

rate coders where the assumption of white residual quantization noise is violated, one 

may speculate that the behaviour of the closed-loop versus open-loop structure can 

be different and one structure can be more suitable. This kind of comparison needs 

further investigation. 

The multi-symbol/node or the multi-tree structures of Figures 2.7 and 2.8 (dis- 

cussed in Chapter 2) show the excitation structure for the Tree-CELP coder. The 

performance of these two structures in an open-loop or closed-loop alternative con- 

figurations at rates below 16 kb/s also needs further research. 

A hybrid Tree-CELP coder with high-quality compatible components is a good bet 

for the future low-delay coders at rates below 16 kb/s. This coder benefits from both 

sliding block and block characteristics. Using a similar innovation sequence selection 

as in the LD-TREE coder, large innovation dictionary size is possible. Other advan- 

tages comes from the use of better quality components such as high-order predictor 

with highest prediction gain, better gain predictors, dictionary training, perceptual 

weighting, and postfiltering. Choosing these components, ensuring their compatabil- 

ity, and the fine tuning of the coder is important and is a time consuming exercise. 

Consider a Tree-CELP coder coder with a trained codebook, high-order Covariance- 

Lattice predictor, appropriate pos tfiltering and a good gain adaptation strategy. Such 

a coder would probably allow for high-quality speech coding at rates of 12-14 kb/s. 

This suggestion was partially pursued in the continuation work of this thesis for 12 

kb/s low-delay coders [14]. Further work is needed for coders operating at rates 

between 8-12 kb/s. 



APPENDIX A 

Test speech files 

Male Speaker: 

OAKM8 - Oak is strong and also gives shade. 

CATM8 - Cats and dogs each hate the other. 

Female Speaker: 

OAKF8 - Oak is strong and also gives shade. 

CATFS - Cats and dogs each hate the other. 



APPENDIX B 

Speech files used for codebook and dictionary training 

Male Speaker # 1: 

ADDMS - Add the sum to the product of these three. 

OPNMS - Open the crate but don't break the glass. 

PIPM8 - The pipe began to rust while new. 

THVM8 - Thieves who rob friends deserve jail. 

Male Speaker # 2: 

DOUG1 - The birch canoe slid on the smooth planks. 

DOUG2 - Glue the sheet to the dark blue blackground. 

DOUG3 - It's easy to tell the depth of the well. 

DOUG4 - These days a chicken leg is a rare dish. 

Female Speaker # 1: 

ADDF8 - Add the sum to the product of these three. 

OPNF8 - Open the crate but don't break the glass. 

PIPF8 - The pipe began to rust while new. 

THVF8 - Thieves who rob friends deserve jail. 

Female Speaker # 2: 

VOICFl - The birch canoe slid on the smooth planks. 

VOICF2 - Glue the sheet to the dark blue blackground. 

VOICF3 - It's easy to tell the depth of the well. 

VOICF4 - These days a chicken leg is a rare dish. 
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