
The Hidden Filter Model:

Applications for

Automatic Speech Processing

Bw Nguyen

Departement of Electrical Engineering
McGill University
MontrCal - Qukbec

June 1991

A Thesis submitted to the Faculty of Graduate Studies
and Research in partial fulfillment of the requirements

for the degree of Master of Engineering

Copyright @Bm Nguyen, 1991

Abstract

This thesis examines hidden Markov filter models and their applications in speech

segmentation. A method of segmenting the speech waveform is proposed. This

method uses the Baum-Welch reestimation algorithm applied to the hidden filter

models. Since speech signals are handled at the sample level, the amount of compu-

tations needed is very large. We will show how this issue can be dealt with effectively

by using a staircase approach in the trellis calculations.

The hidden Markov filters are used to segment speech signals. Test results show

very consistent locations of phone boundaries. The hidden filter model fits vocalic

segments very well (with normalized prediction errors of less than 0.01), but performs

less well on consonants (with normalized prediction errors of up to 0.3).

The speech segmentation by hidden filters is applied to a large vocabulary speaker

dependent isolated-word recognizer at the preprocessing stage. The performances of

the recognizer with and without preprocessor are compared. The results show small

improvements in the recognition accuracy.

Sommaire

Cette thBse prdsente une ktude sur les modbles de filtre de Markov cachks et leurs

applications 8. la segmentation de parole. I1 propose une mCthode de segmentation

des signaux de parole qui utilise l'algorithme de Baum-Welch appliqud aux modbles

de filtre cachds. Comme l'analyse du signal est faite B chaque kchantillon, la quantitC

de calcul est trks grande. Nous montrons comment ce problkme est rksolu par une

approche d'kchelon dans le calcul en treillis.

Les tests de segmentation sont rCalisCs avec les bandes de donn6es de parole

continue et de mots isolks. Les rdsultats de segmentation sont trbs consistents au

point de vue de placement des marques de frontikre phonktique. Le modhle de filtre

cache reprdsente trks bien les voyelles (avec les erreurs de prkdiction plus petites que

0.01) mais il est moins bon pour les consonnes (aves les erreurs jusqu'i 0.3).

La segmentation des signaux acoustiques par filtre cachk est appliqu6e au systkme

de reconnaissance de parole sous forme d'un module de prktraitement. Les rksultats de

test avec et sans prktraitement sont comparks. Le prkt raitement acoustique apporte

une 16gkre amklioration & la prCcision du systbme de reconnaissance.

Acknowledgements

The author wishes to express his sincere thanks to his supervisor, Professor Peter

Kabal for suggesting the problem which gave rise to the present thesis. Special thanks

are due to Professor Patrick Kenny at 1'Institut National de la Recherche Scientifique

(INRS) - TClCcommunications Montrdal for his wise and inspired guidance throughout

the work, and for his careful and insightful reading of drafts of this thesis.

The author is also extremely thankful to all the staffs of speech recognition group

at Bell-Nort hern Research Montreal, especially Dr. Part hasarat hy whose technical

advise was very helpful.

The author would like to express his appreciation to his wife for her support and

continuous encouraging during the course of this work.

This project was made possible by scholarships from the Natural Sciences and

Engineering Research Council and by several computer facilities at INRS Tdld-

communications Montrdal. Their contributions are greatly appreciated.

Table of Contents

Abstract .. i
. . .. Sommaire zz

... ... Acknowledgements zzz

... Table of Contents iv

.. List of Figures v

... List of Tables vi

.. Chapter 1 Introduction 1

.......................... 1.1 Fundamentals of Hidden Markov Models 1

1.2 Linear Predictive Hidden Markov Models and Hidden Filter
.. Models 5

1.3 Speech Segmentation and Feature Extraction Using Hidden
Filter Models ... 8

...................... Chapter 2 The Hidden Filter Models 11

................................... 2.1 Hidden Filter Markov Models 11

................................. 2.2 Forward-Backward Probabilities 14

..................................... 2.3 The Posterior Probabilities 18

..................................... 2.4 The Reestimation Formulas 19

............................ Chapter 3 Speech Segmentation 24

...................................... 3.1 Segmentation Approaches 24

... 3.2 Implementation Issues 27

.. 3.2.1 Initialization 27

............ 3.2.2 Log . Compression and Approximative Computing 28

..................................... 3.2.3 St aircase Approaches 29

....................................... 3.2.4 Segment Duration 30

.. 3.3 ExperimentalResults 31

Chapter 4 Speech Recognition with the Hidden
............................... Filter Preprocessor 38

.......................... 4.1 Overview of the 60000-Word &cognizer 38

..................................... 4.2 Hidden Filter Preprocessor 40

.. 4.3 Experimental Results 41

.. Chapter 5 Conclusions 47

.. References 49

List of Figures

1.1 A simple state-based discrete HMM with two states sl, s2 and
.................................... two output symbols A and B. 2

1.2 Illustration of two types of HMMs. (a) A four-state
left- to-right model.(b) A t hree-state ergodic model 4

........................ 2.1 A standard first-order left-bright HMM.. 13

.. 3.1 The staircase approach. 30

3.2 (a)-Speech waveform of Oak is ... with segment boundaries
(variable length), (b)-The normalized prediction errors of the
segments of (a) and (c)-The normalized prediction errors of the

....................................... 16.4ms uniform segments. 34

3.3 (a)-Speech waveform of Add the.. . with segments boundaries
(variable length), (b)-The normalized prediction errors of the
segments of (a) and (c)-The normalized prediction errors of the

.. 20ms uniform segments. 35

.......................... 4.1 The Markov model for a 6-state phone.. 43

List of Tables

3.1 Results of segmentation of the isolate-word database 37

4.1 Recognition results with LPC-based cepstrum preprocessor 43

4.2 Recognition results with the 2Oms-uniform LPC-based model
and with the variable-length LPC-based cepstrum model 44

4.3 Comparisons of some differences of the top word choices in the
.. texts "Hitman7'and 'Ira" 45

. vii .

Chapter 1 Introduction

Applications of automatic speech processing based upon hidden Markov models

(HMMs) have made considerable progress in the past few years. The technique of

Markov modeling has been developed in a number of directions such as linear predic-

tive HMMs, hidden filter HMMs and mixture autoregressive HMMs. These HMMs

have been implemented in speech segmentation, enhancement and recognition.

This thesis is a study of an automatic segmentation processor based upon hidden

filter models with application to a large vocabulary speaker dependent isolate-word

recognizer.

In this chapter, we first review the theory of hidden Markov models. We focus on

one class of HMMs, namely the linear predictive HMMs, and describe the fundamen-

tals of the hidden filter models. Finally we will focus our attention to the problem of

speech segmentation and feature extraction using the hidden filter models.

1.1 Fundamentals of Hidden Markov Models

The basic theory of hidden Markov model was first published in a classic paper by

Baum [I]. A hidden Markov model is a collection of unobservable states connected by

transitions. Each transition of the model is characterized by a transition probability.

The evolution of these states (called the Markov chain) produces observable outputs.

Depending on the type of observation outputs, different Markov models are de-

fined: a discrete HMM or a continuous HMM.

- 1 -

In a discrete model, the observations are discrete symbols emitted from a finite

alphabet. An output probability distribution defines a conditional probability of

emitting an output symbol given that a transition is taken (in which case we speak of

a transition-based model) or given that a state is occupied (in which case we speak

of a state-based model).

In a continuous model, the observations are continuous symbols, or more generally,

continuous vectors. The discrete probability distribution is replaced by a probability

density function (pdf). The probability density function defines the conditional prob-

ability that an observation vector lies between a certain range given that a transition

is taken (a transition-based continuous model) or given that a state is occupied (a

state-based continuous model).

Fig 1.1 illustrates a simple example of a state-based discrete HMM with two states

sl and sq and two output symbols, A and B. When the Markov chain is in state sl,

the symbol A is observed with probability 0.8 while B is observed with probability

0.2. If the Markov chain is in state 82, we can observe A with probability 0.3 and B

with probability 0.7. While in s l , the probability of staying is 0.6 and the probability

of the transition to s 2 is 0.4. Once in s2, it will stay there forever.

Fig. 1.1 A simple state-based discrete HMM with two states s l ,
s 2 and two output symbols A and B.

Generally, a hidden Markov model is defined by:

0 A finite set of states {s) = (sly 82, ..., sN).

0 A set of transition probabilities [aij] where a i j = P(st = s ~ ~ s ~ - ~ = si) is the

probability of taking a transition from state i to state j. This probability is

- 2 -

independent of time, i.e. P(st = s ~ (s ~ - ~ = si) = P(sjlsi) for every time t.

The transition probabilities define a first-order Markov chain: at each clock

time t , a new state is entered based upon a transition probability distribution

which depends only on the previous state, P(st = sj 1st-i = si, st-2 = sl, ...) =

P(st = s j)~ t - l = si).

A set of output probability distributions or density functions:

For the transition-based discrete model: the probability of emitting

symbol k when taking a transition from state i to state j, [bij(k)].

For the state-based discrete model: the output probability of emitting

symbol k when state i of the model is occupied, [bi(k)] .

For the transition-based continuous model: the probability that the

observation vector lies between x and x + dx when taking a transition

from state i to state j, bij(x)dx.

For the state-based continuous model: the probability that the observa-

tion vector lies between x and x + dx when staying in state i, bi(x)dx.

A hidden Markov model may be ergodic: every state of the model can be reached

from every other state in a finite number of steps. Fig.l.2b illustrates an example of

a 3-state ergodic HMM.

A special type of HMM has been developed for speech recognition [2]. This model

is called a left-to-right model, because the underlying state sequence associated with

the model has the property that as time increases, the state index increases (or stays

the same). Fig.l.2a illustrates a first-order $-state left-to-right HMM with a special

skip transition.

In 1983, Rabiner, Levinson and Sondhi [2], [3] at Bell Laboratories presented an

approach to speaker-independent isolated words recognition with the use of phoneme-

based HMMs. Left-to-right HMMs with state-based discrete symbols were used in

- 3 -

Fig. 1.2 Illustration of two types of HMMs. (a) A four-state
left-to-right model.(b) A three-state ergodic model

their recognizer. The HMM's discrete symbols were obtained using the vector quan-

tization (VQ) of linear predictive coding (LPC) analysis.

The %pole LPC analysis by autocorrelation technique was performed on 45ms

frames, each being spaced lOms apart. Using an iterative reestimation technique,

these parameters were trained to provide the codebook entries of the vector quan-

tizer and the model coefficients of each word HMM. Then using the Viterbi scoring

algorithm [4], a probability score and a decision rule (which chooses the word whose

model gives highest probability) were applied to the unknown word at the recognition

stage.

Their initial experiments with this framework (in [2]) were restricted to a vocab-

ulary of 10 digits. Recognition rates from 93% to 96% were recorded. Extended tests

to a medium-size vocabulary of 129 words (in [3]) have shown that the recognition

accuracy was a function of the HMM parameters: increasing the number of states in

the model and/or the size of the VQ codebook improved performances of the HMM

recognizer.

- 4 -

1.2 Linear Predictive Hidden Markov Models and Hidden
Filter Models

For the applications in speech processing, especially in speech recognition, it

would be advantageous to use HMMs with continuous observation densities because

the observations are continuous signals. A very interesting class of continuous HMMs

that is particularly applicable to speech recognition is the class of linear predictive

(or autoregressive) HMMs.

In this model, a speech waveform Y = (yl, ..., yTl) of length T1 is decomposed into

a sequence of T observation vectors (or T segments) of length M (TI = T x M), i.e.

Y = (yl , ..., y ~ ~) = (Y1, Y2, ..., YT) where 5, t = 1,2, ..., T is an observation vector

with components (ytM, y t ~ + l , ..., y(t+l)M-l). Each segment f i is selected from a

set of S all-pole recursive filters driven by S corresponding Gaussian noise sources

2 N(0 , a,), s = 1, . . ., S. The filters are defined by polynomials As of some degree N,

i.e. As = (boJ, ..., bNb), with s = 1, ..., S and N < M. Thus:

where et, , t = 1, ..., T, s = 1, ..., S are Gaussian independent identically distributed

random variables with zero mean and variances a:. The likelihood of the observation

sequence Y is defined as:

with
2

D(YtlAs, as) = - -AsR(S)AB

4% exP 2 4

where A,* denotes the matrix transpose of As, R(&) is the autocorrelation of f i ,

as,-,s, is the transition probability, w = (so, ..., sT-1) is any T long sequence of

states and C, means the summation over all possible paths w.

The first application of linear predictive HMMs was presented by Poritz [5]

in 1982. In his work, Poritz proposed a method of modeling speech signals by

a 5-state ergodic linear predictive state-based HMM. In finding a Markov model

X = {[aij], Ai, oil , i, j = 1, ..., S which maximizes L(Y) by an iterative hill climbing

technique, Poritz found a very close relationship between states of the model and

traditional classes of speech events. His experiment with T = 4000 frames, M = 100

of 40 seconds of 12-bit PCM speech sampled at 10 kHz and with a model having

S = 5 and N = 3 (that is, 3-order autoregressive filters) showed that the power

spectra for each all-pole filter could be associated to strong voicing, silence, nasal

(liquid), stop burst and frication. The result of this paper strongly suggested that

linear predictive HMMs may be used to encapsulate important informations about

the speech waveforms.

While Poritz only considered a single Gaussian autoregressive density per state,

Juang et a1 [6] further expanded this initial work to the case of multivariate Gaussian

autoregressive densities (a mixture autoregressive hidden Markov model). Denote K

the number of mixture components in the model, the observation density bj(x) now

has the form

where cjr, is the weight of the kth mixturecomponent and bjk(x) is the basic Gaussian

pdf for the kth mixture component, all related to state j . The mixture weight C j k

satisfies the stochastic constraint

Parameters of the model to be estimated include X = {[aij], Ai, ail , i, j = 1, ..., S

and [cjk], j = 1, ..., N and k = 1, ..., K. Their extensive tests of speaker independent,

isolated digit recognition that employed highly constrained left-to-right HMMs and

mixture autoregressive densities have scored average digit error rates from 1.2% to

9.2%. Although these results were good, Juang pointed out that the model was

not as good as the continuous Gaussian density models based upon the cepstral

representation of the signal.

In the field of speech enhancement, Yphraim [7], [8] proposed a new approach for

enhancing speech signals - which have been degraded by statistically independent

additive noise - using HMMs. The process is basically an estimation problem in

which a given function of the clean speech (e.g. speech waveform, DFT or sample

spectrum) is estimated from a sample function of the noisy speech so as to minimize

a distorsion measure (e.g. mean-square errors) between the clean and the estimated

speech signals. Solutions to that estimation problem require an estimate of the joint

probability distributions (PDs) of the speech signal and the noise process. Yphraim

accomplished this task by modeling the PD of the clean speech by HMMs with mixture

of Gaussian autoregressive output, and by modeling the noise process with single

Gaussian autoregressive model. The parameter set of the HMMs is estimated by a

minimum mean square error (MMSE) approach in [8], and by a maximum a posteriori

approach (MAP) in [7]. In his experiments, the estimation stage was performed with

a training sequence using 100 sentences of clean conversation speech spoken by 10

speakers using a telephone handset. The enhancement tests were performed on 8

sentences spoken by 4 speakers (recorded in a similar manner). Typical signal to

noise ratio (SNR) improvements achieved by a MMSE approach were 4.5-5.5dB at

lOdB input SNR [S], while SNR improvements achieved by a MAP approach were

4.0-6.0dB at lOdB input SNR [7].

Recently, Kenny et al. [9] developed a new type of Markov model to account for

the correlations between successive frames of the speech signal. This model treats

the sequence of frames as a non-stationary autoregressive process whose parameters

are controlled by a left-to-right hidden Markov chain. Each transition in the Markov

chain is associated with a set of regression coefficients together with a mean vector

and a covariance matrix which serve to characterize the distribution of the prediction

error. This linear predictive model has been implemented with several variants in

a large-vocabulary speaker-dependent isolated-word recognizer. With a set of eight

mel-based cepstral coefficients (Co, . . . , C7) calculated every 10 ms using a window of

- 7'-

length 25 ms, a feature vector (C1, ..., C7, ACo, ..., ACT) was formed (ACi was the

difference between Ci over an interval of length 40 ms). Performances ranging from

78.9% to 83.0%, depending on the variant of model, were recorded with a test set of

399 words of text. These results showed that the model performed better than the

standard multivariate Gaussian HMM when it is incorporated into a large-vocabulary

isolated-word recognizer.

The models proposed by Kenny [9] are formally very similar to the hidden $1-

ter models defined by Poritz in [lo]. However, in [9] the speech signal is han-

dled at the frame level instead of the sample level as in [lo]. In fact, the hid-

den filter models considered the signal waveform Y = (y - ~ + ~ , ..., yo, ..., yT) as a

time series generated by a set of S states, each determined by an all-pole filter

As = (ao(s),al(s), ..., aN(s)), s = 1, ..., S of degree N and a positive gain factor

cr: such that

where ut - N(0, oz). The pair (A,, 0:) is referred as a hidden filter.

1.3 Speech Segmentation and Feature Extraction Using
Hidden Filter Models

While the linear-predictive HMMs have been proved to perform well in the task

of automatic speech recognition, they also presented some weaknesses. One of the

weaknesses observed in automatic speech recognition using vector-valued observations

is the use of uniform fixed-length windows to segment words into phones.

Generally, at the front end of a recognizer, the speech samples are blocked into

sequence of fixed length segments (e.g. lOms window). These segments are pa-

rameterized either by linear predictive coefficients or by cepstrum coefficients. The

recognizer will use these acoustic segments to construct the phoneme models and to

compute the likelihood scoring of the acoustic data.

The mechanics of blocking and mapping acoustic segments do not take into ac-

count the phone boundaries (e.g. boundaries between stops and sonorants, affricates

and sonorants, etc). The changing statistical characteristics of speech signal at these

boundaries fall often into one segment. This creates difficulties and erroneous in map-

ping acoustic segments into phoneme models because the recognizer must map the

segment to one of the phones.

On the other hand, the hidden filter models do not assume any fixed frame size

in their formulation (they work on a sample basis). Our strategy is to use the hidden

filter models to eliminate the above weakness inherent in the vector-valued HMMs by

windowing the speech waveform with variable frame length windows. The process is

basically an automatic segmentation. It uses the hidden filter models to automatically

segment the sequence of speech samples into successive frames of variable lengths,

taking into account the total likelihood of the observation speech sequence.

Our filter models, parameterized by linear prediction polynomials and error vari-

ances, handle the speech signal at the sample level. The Markov chain used is a

state-based continuous HMM with no skip transitions. We do not allow skip transi-

tions because all the states of the Markov model must be visited in a monotonically

increasing manner (that means left-to-right order), and the number of visits to each

state will be used as segment indication of the sequence of speech samples. The num-

ber of states, in this framework, corresponds to the number of frames for a sequence

of speech samples.

In order to segment the speech waveform, we proceed as follows: first a uniform-

window LPC analysis is performed on the input samples of speech. These LPC

coefficients are used as initial values for our filters. The Baum-Welch algorithm is

used to adjust the filter coefficients so as to increase the likelihood of the speech data.

The reestimation process terminates when the likelihood converges. The segmentation

of the data is found using a maximal a posteriori (MAP) criterion. In the process

of automatic segmentation, the LPC features of each segment are generated as a by

product.

Since our aim is to improve segment boundaries between phones during recog-

nition, we try to implement our hidden filter models at a preprocessing stage of a

large-vocabulary speaker-dependent isolated-word recognizer. Although it is a con-

venient idea, we also remark that the problem of real-time implementation persisted.

In fact, our experimentations in automatic segmentation with an average 20 ms win-

dow of speech t and 12-order LPC on a DEC station 2100 computer showed that an

average 5 minutes of CPU time was needed to provide acoustic segments of one word.

The organization of the thesis is as follows. In chapter 2, we will develop the basic

forward-backward and Baum-Welch algorithm for our hidden filter models. In chapter

3, we will look at some implementation issues for the training of the models and

illustrate how the speech segmentation is obtained as a by-product of the reestimation

procedure. We will also show some segmentations of continuous speech and isolated

word data in this chapter. Chapter 4 describes how the hidden filter models can be

used as a feature-extractor in speech recognition. It also reports experimental results

on a very large vocabulary speaker-dependent isolated-word recognition task. Finally,

chapter 5 discusses the results of our work, the drawbacks of our model and the ways

in which the hidden filter model preprocessor could be improved.

t The average time length of 20 ms is computed by dividing the total length of the sequence of
speech to the number of states associated to that sequence. This is not a fixed window.

Chapter 2 The Hidden Filter Models

The hidden filter hidden Markov models were first developed by Poritz [lo] to

model speech waveforms. Using autoregressive polynomials and error variances to

parameterize the output speech samples, Poritz derived a version of Baum-Welch

reestimation formulas for his model parameters. In this chapter, we will give a math-

ematical description of the model and explain how its parameters can be estimated

from speech data.

2.1 Hidden Filter Markov Models

Let us consider a time signal Y = (yl, ..., yT) which is a sequence of speech

samples. We treat it as the output of a doubly stochastic process (S, Y) where

S = (q , .. . , sT) is a sequence of unobservable states (the hidden Markov chain). For

our purposes, we will assume that these states are selected from a first-order left-to-

right Markov chain characterized as follows:

1- There is a finite number, say N, of states in the model {s) = (1,2, ..., N).

The state 1 is called the initial state and the state N is called the final state.

The Markov chain must enter the model by the initial state and must leave

the model by the final state. Once the Markov chain leaves a state, that state

cannot be revisited at a later time.

- 11 -

2- At each clock time t, a new state is entered based upon a first-order Markovian

property

If aii > 0, the process may remain in the state occupied at time t - 1 (the

self-loop transition in the illustrated figure 2.1). The transition probabilities

aij obey
N

Furthermore, we assume that our left-to-right model does not have any skip

transitions in the chain. This assumption is required to assure that all the

states of the model will be visited, and the number of visits will determine the

segmentation of the sequence of speech samples as shown later in chapter 3.

3- In addition to the states 1, ..., N there is a state N + l called the sink state . The

observation sequence (yl, . . . , gT) terminates when the sink state is reached, i.e.

s ~ + 1 = N + 1, so there is no acoustic distribution or transition probabilities

associated with the sink state.

4- Associated with each state s of the model (other than the sink state), we define

a hidden filter (B., u:), where Bs is the set of regression coefficients of an all-

pole filter of degree p, and 02 is the gain factor of this filter. When the Markov

chain is in state s at time t, it generates an output sample yt by applying the

filter to the most recent samples of the sequence Y = (yl, y2, ...yT) and adding

a sample of Gaussian noise of zero mean whose variance us depends on the

state s (thus, our Markov model is a state-based HMM).

Figure 2.1 illustrates the model topology we are assuming.

Now, suppose that we are at time t and at state s, the sample yt is therefore

Fig. 2.1 A standard first-order left-to-right HMM.

We assume that et at different times are independent (i.e. uncorrelated with each

other). Define
A

Xt = (Yt-1, ..-, ~ t - ~) (2.2)

where B* denotes the matrix transpose of B. Then we can write:

Let P(Y, SIX1) be the joint likelihood of Y = (yl, ..., yT) and S = (sl, ..., sT),

i.e. the event that y l is emitted at time t = 1 at state s l , a transition occurs from

sl to s2 , y2 is emitted at time t = 2 at state s2, etc, given an initial observation

x1 = (YO, Y-1, .-., Y-p).

Similarly we use P (Y IS, XI) to stand for the conditional likelihood.

Since et is a Gaussian noise N(O,0,2) we have:

From the definition of et

Hence, with independent residuals et we get:

The probability of the state sequence S = (sl, s2 ..., ST, sT+l) is

The total likelihood of the observation sequence Y for the given state sequence S

Thus

where CS means the summation over all possible state sequences.

Direct calculation of (2.10.b) involves on the order of ~ T N ~ (~ + 4)T calculations

(not counting the exponential evaluation) [I 11. This calculation is comput at ionally

infeasible even for small values of p, N and T. For example, with T = 100, N = 5,p =

6 there are on the order of 2 x 100 x 51°0 x l0lo0 = computations. Clearly, a

more efficient procedure is required to compute the total likelihood of the observation

sequence Y. Such a procedure exists and is sometimes called the forward-backward

algorithm.

The forward-backward algorithm uses two probability variables in a lattice calcu-

lation to compute the total likelihood of the observation. These variables are called

forward and backward probabilities.

2.2 Forward-Backward Probabilities

Strictly speaking, only the forward probabilities are needed to compute the total

likelihood of data. However, we will introduce the backward probabilities in this sec-

tion since they will be used to compute the posterior probabilities in the reestimation

formulas (see section s2.3).

Consider the forward probability at (i), defined for every state i = 1, ..., N and

for every time t = 1, . . . , T as

That is, at(i) is the joint probability of the partial observation sequence (until

time t) and the event that state i is occupied at time t, conditioned on XI.

In a similar manner, consider the backward probability A(i), defined for every

state i = 1, ..., N and for every time t = 1, ..., T - 1 as

i.e. Pt(i) is the probability of the partial observation sequence from t + 1 to the end,

given the joint event that state i is occupied at time t and Xt is observed.

The forward probabilities can be calculated recursively from this formula

where xKl means the summation over all possible states in the model. Recall that

L(Xt , yt, i) is the likelihood of emitting the sample yt and the event that the state i

is occupied at time t, given the p previous observation samples ((2.6.~)).

This is how (2.13) is computed: since at-1(i) is the probability of the joint event

that yl , ..., yt- 1 are observed and the state i is occupied at time t - 1, the product

at-l(i)P(st = j 1q-i = i) is then the probability of the joint event that y l , ..., yt-1

are observed and state j isreached at time t via state i at time t - 1. Summing this

product over all the N possible states i at time t - 1 results in the probability of j

at time t with all the accompanying previous partial observations. Once this is done

and j is known, it is easy to see that at (j) is obtained by multiplying the summed

quantity with the likelihood L(Xt , yt, j).

The total likelihood of the observation sequence Y ((2.10.b)) is the joint probabil-

ity of the observation sequence (yl , y2, ... yT) and the event that state N is occupied

at time T and state N + 1 (the sink state) occupied at time T + 1:

(again, we remind that the forward probabilities are sufficient to calculate the total

likelihood of data).

On the other hand, the backward probabilities can be calculated recursively from

this formula
N

M i) = Pt+i(j)P(st+l = jlst = i)L(Xt+i,w+l,j) (2.15)
j=l

Again, the reason for (2.15) is as follows: in order to have been in state i at time

t , and to account for the rest of the observation sequence, we had to make a transition

to every one of the N possible states at time t + 1, account for the observation sample

yt+l in that state, and then account for the rest of the observation sequence.

In term of the backward probabilities,

We use (2.16) in the forward-backward algorithm as a checkpoint: the forward

computation and the backward calculation must arrive to the same result which is

P(YIX1).

If we examine the computation involved in the calculation of at (i) or ,& (i), 1 5

t 5 T, 1 5 i 5 N, we see that it requires on the order of N ~ T calculation rather than

~ T N ~ as required by the direct calculation [ll]. For N = 5, T = 100 the difference

is about 3000 versus

To complete the recursion formulas, we need to define the boundary conditions

for q (i) and pT(j). By definition of the forward probabilities

For our standard left-to-right HMM, since we require the first observation sample to

be generated while the Markov chain is in the initial state, we have

L(X1, yl, i) if i = 1 (initial state)
otherwise;

This serves as an initialization for the forward probability calculations. The initial-

ization for the backward probability calculations is given by

aN,N+l if i = N (final state)
otherwise;

This is how we can write (2.19): first, by definition (2.12) of the backward probability

because, given that the state i is occupied at time T - 1 and that the final state N

must be occupied at time T, the probability to observe y~ is a i N (which accounts for

the transition from i to N), times L(XT, y ~ , N) (which accounts for the likelihood of

y~ at state N) times U N , N + ~ (which accounts for the event that the sink state must

be reached to terminate the sequence).

On the other hand, bringing (2.19) and (2.15) together gives

which shows the correct values of PT_l(i).

The evaluation of P(YIX1) can be viewed as the score of a given filter model. The

filter model is specified by the parameter set ({aij}, {(Bir 0;))) . The score indicates

how well that model matches the observation sequence. This viewpoint raises another

question: given the sequence Y, how do we adjust the model parameters to best match

the observations ? The answer to this question is the reestimation algorithm. Again,

to use this algorithm effectively, we need to define two new probability variables: the

posterior probabilities .yt (i, j) and .yt (i).

- 17-

2.3 The Posterior Probabilities

We will define the posterior probabilities +yt(i, j) and 7t(i) that will be used later

in the reestimation algorithm.

Let yt(i, j) be the probability of being in state i at time t - 1 and making a

transition to state j at time t for every time t = 1, ..., T, given the observation

sequence Y. That is

+yt(i, j) = P(st-, = i, st = jJY, XI) (2.22)

We also define the probability of being in state i at time t for every t = 1, ..., T, given

the observation sequence Y, as

In terms of the forward and backward probabilities:

because the joint likelihood of Y and the event that the system is in state i at time

t - 1 and in state j at time t is cut_l(i) (which accounts for the first t - 1 observations

ending in state i at time t - I), times aijL(Xt, yt, j) (which accounts for the local

transition from state i to state j), times pt(j) (which accounts for the path being

in state j at time t and then being unconstrained until the end of the observation

sequence).

On the other hand, we can relate cyt (i) to +yt (i, j) by summing +yt (i, j) over j,

giving

Another way to compute yt(i) is

since at (i) accounts for 91, ..., yt and state i at time t, and &(i) accounts for yt+l, ..., y~

given state i at time t. The normalization factor P(YIXl) makes .yt(i) a conditional

probability so that

In the next section we will show how we use the posterior probabilities to provide

an algorithm for the reestimation procedure.

2.4 The Reest imat ion Formulas

Ideally the hidden Markov filter parameters ({aij}, { (Bi7 o!)}) would be chosen

so as to maximize the probability of the observation sequence P(YIX1) given the

model S. There is no closed form solution to this problem. An iterative solution,

which leads to a local maximum of the likelihood function, is obtained by maximizing

the following auxiliary function:

Here M, Mo are two models corresponding to different choices for the parameter

values, and PO(S) is the probability of S conditioned on the observation sequence:

The following lemma is a simple consequence of the convexity of the logarithmic

function [12]:

Lemma 1:

The point of this inequality is that if Mo is the model corresponding to an initial

estimate of the parameters, the likelihood of the observation sequence can be increased

by choosing the new parameters of the new model M so as to maximize Q(MO, M).

- 1 9 -

From (2.9) we have:

Thus,
T+1 T

InP(Y,SIX1,M) = x lnP(stlst-1) + x l n L (X t , y t , s t) (2.31)
t=2 t= l

and

Breaking the brackets and manipulating the first term I of the right-hand-side of

(2.32) gives the following:

where
A 1 i f s t = i

6s t1 i = (0 otherwise;

Using the definition of .yt(i, j) we can identify the expression between the parentheses

Therefore:

In a similar manner, manipulating the second term I1 of the right-hand-side of

(2.32) gives

Hence,

The two terms I and I1 can be maximized independently of each other since they

depend on disjoint subsets of the model parameters.

We state here a useful lemma to help solving the maximization problem (the proof

of this lemma can be found in [13]).

Lemma 2:

If ci > 0 i=1, ..., N, then subject to the constraint Ci xi = 1, the function

attains its unique global maximum when

Now in the lemma 2, let ci be the sum of .yt(i, j) , i.e.

and let xi = aij. The first term I is maximized if

where rt(i, jlMo) denotes the posterior probability ~ ~ (i , j) of the model Mo.

Let us now consider the second term

Since In L(X t , yt, j) is independent of i , (2.41) reduces to

T 1
= C (i) [- -1n u: - (~ t - x t ~ i) ~

t=l 2 2.;

To maximize M (i) we set dM/dBi = 0, which gives

Therefore
- T T

Bi = [x ~t(i)x;xt]- ' [x a(i)x;yt] (2.44)
t=l t=1

Likewise, setting dM/8ui = 0 gives

Hence

An interesting detail is that the reestimation formula of the filter coefficients Bi in

equation (2.43) has the form of the LPC solutions by least-square covariance method

([I41 page 403). In fact, the equation of the LPC solutions by covariance method is:

for every i = 1,2, ..., p, where

(K is the time interval inside which the signal is considered). Thus

Let t = m + i and K = p, then we can write (2.50) as

The only difference between (2.50) and (2.43) is the factor zT=l yt (i). This factor

is a weighting factor. It takes into account the probability that the state i is occupied

at time t . Since there is a similarity between (2.43) and (2.50), we will see (in the next

chapter) that the value of the filter gain computed by covariance method is similar

to the value of our filter variance o2 given by (2.46).

The equation (2.40) gives the reestimation formula for the transition probabilities.

Equations (2.44) and (2.46) are the reestimation formulas for the filter coefficients

and the error variances. Together they produce a set of new model parameters M =

({aij}, {(Bi, o!)}) based upon the previous model parameters Mg . Therefore, if we

iteratively use M in place of Mo and repeat the above reestimation calculation, we

can improve the likelihood of the data Y on each iteration. The result is the estimated

model. This leads to the following iterative algorithm (referred as forward- backward

or Baum-Welch training procedure):

1. Guess an initial set of parameters ({aij}, Bi,o?).

- -
2. Compute q, Bi, and o,? according to the reestirnation formulas in Eq.(2.40),

(2.44) and (2.46).

2 - 2 3. Set a i j to q, Bi to a and oi to oi .

4. If some convergence criteria are not met, go to step 2.

Step 1 requires a good initialization technique in order to speed up the convergence

of steps 2,3 and 4 and to avoid the problem of short segments. Furthermore, the

calculation of the posteriori probabilities yt (i, j) and .yt (i) requires some mathematical

manipulations that reduces the computation load. All these implementation issues of

the algorithm will be discussed in the next chapter.

Chapter 3 Speech Segment ation

Segmenting a sequence of speech samples consists of finding a sequence of seg-

ments (or states) that has the highest likelihood of generating the observation speech

samples. This chapter will show how we use the Baum-Welch algorithm in speech

segmentation. It also discuss some problems that arise in implementing the Baum-

Welch algorithm. The results of segmentation tests on continuous speech and isolated

word speech data will be presented.

3.1 Segmentation Approaches

The segmentation problem consists of finding the optimal state sequence S ass*

ciated with the given observation sequence Y. The most widely used approach is to

find the the state sequence (path) S for which the posterior probability P(S(Y, M)

is maximal. This is equivalent to maximizing P(S, YIM) (the total likelihood of the

observation sequence Y of the model M).

A formal technique for finding this best state sequence exists, based on dynamic

programming methods, and is called the Viterbi algorithm [4]. We will briefly present

the steps of this algorithm here (without any proofs). Interested readers are directed

to [4] for a more fundamental development of the Viterbi procedure.

Define the quantity 6t(i) for every i = 1, ..., N and t = 1, ..., T as

6t(i)= max P(sls2..st=i,y1y2..ytIM)
Sl rSZ..St-l

i.e. &(i) is the score on the state sequence ending in state i at time t which best

accounts for the first t observations. An array q& (j) (also defined for every i = 1, .. ., N

and t = 1, ..., T) is used to keep track of the argument which maximizes 6t (i) for each

t and j. The complete Viterbi procedure can now be stated as follows:

L(Xl, yl, i) if i = 1 (initial state)
otherwise;

1 () { 1 = 1 (initial state)
0 otherwise;

2-Recursion for 2 5 t 5 T and 1 5 j 5 N :

3-State sequence backtracking: the optimal state sequence is qf , ..., q?, where

It should be noted that the Viterbi algorithm is similar (except for the backtrack-

ing step) in implementation to the forward-backward training procedure of chapter 2.

However, a maximum over previous states is used in place of the summing procedure

used previously.

An alternative segmentation approach - which we use in this thesis - is to employ

the posterior probability .yt(i) (which is the probability of being in state i at time t):

we will choose the state sequence S that maximizes .yt (i) at every time t = 1,2, ..., T.

More precisely, at every time t = 1,2, ..., T we select the state st whose posteriori

probability yt(st) is highest, i.e.

st = arg max yt (i) 1SiSN

Since yt (i) is computed at each time t for every state i = 1, . . . , N, the segmentation

using +yt (i) is automatically a by-product of our forward-backward training algorithm.

There is a problem that might occur with the segmentation by (3.2): the state

sequence S is chosen without regard to the neighboring (in time) states. The result is

then S might be a non-valid left-to-right Markov chain, because there is no constraint

on the event that the state i must appear in S before state j (under the condition i < j,

of course). In other word, while it seems appropriate to have a result segmentation

as

S = (~1,~1,~2,~2,s2,s3,S3,s4,-..,~~)

mathematically we might end up having a sequence

that does not fit to our model. However, several of our experiments have shown that

the unsupervised result of segmentation of the forward-backward algorithm always

yield a valid left-to-right Markov chain that satisfies all the constraints stated earlier

in chapter 2.

A more serious problem common to both the segmentation using posterior prob-

abilities and the Viterbi segmentation is that artificially short segments may be pro-

duced as a result of the Baum-Welch training procedure. The point is that the

likelihood of the data may be made very large by using a very small number of Sam-

ples to estimate the variances associated with some of the state (see [15], pp. 198-202

for a discussion of this problem in connection with the variances of the components

of mixture distributions).

One of the various techniques that can be used to solve the problem of short

segments is to start the Baum-Welch training with a good initial estimate for the

parameter set ({aij}, Bi, oi)) (1151 page 201). In fact, our experiences indicated that

when we initiated the filter parameter with an ordinary LPC analysis performed on

the input speech samples, the problem of short segments has not occured.

To be more specific, the speech waveform is first windowed to N uniform segments

(N is the number of states in the model). Linear predictive coefficients and the noise

variance of each segment are then computed. These values are used as initial values

for the hidden filters. Assuming a reasonable amount of training data exist, this

initialization method shows fairly conclusive that it is sufficient.

Another fact in our experiences is that the average ratio samples-per-state (TIN)

has a direct effect on the problem of short segments. The fewer number of states allo-

cated for a sequence of speech samples results in longer segments of speech. However,

fewer states might lead to long segments that overview the characteristics of some

short phones of speech (e.g stops, fricatives). Several of our experiments show that

with the average ratio of 320 samples/state (at 16kHz sampling frequency), no short

segments are observed.

3.2 Implement at ion Issues

In this section, we present some problems that arise in the implementation of the

Baum-Welch algorithm. They include initialization method, approximative compu-

tation, staircase approach and segment duration.

3.2.1 Initialization

We have not addressed in previous section the issue of how the statistics and

the filter parameters are initialized for the forward-backward training. While the

forward-backward algorithm guarantees an improvement every iteration, it requires

a good initial estimate for the parameter set ({aij}, Bi, 0:) to avoid the problem of

short segments (also called the problem of singular maximum likelihood) and to speed

up the convergence of the training procedure.

The transition probabilities [aij] are initialized by equal distribution such that

i f j = i o r j = i + l
otherwise;

The filter coefficients and error variance are initialized as follows: first, the speech

sequence Y = (yl , ..., yT) is uniformly segmented to N equal segments (the number

of states N is chosen according to the length of the sequence and the speech sampling

frequency as discussed later in this chapter). The linear-predictive coefficients and

the variance of each segment are then computed. This set of parameters are used as

initial values of the filter parameters.

Our tests have shown that this simple initialization technique was sufficient to

avoid the problem of short segments. It also helped the training algorithm to converge

after 3-5 iterations with a threshold of the total likelihood P(Y)X1) fixed at 30 dB.

The threshold S is defined by a difference in log domain of the total likelihood of the

observation sequence Y recorded in two successive iterations, i.e.

where Pk(Y 1x1) is the total likelihood of observation recorded at the kth iteration.

3.2.2 Log. Compression and Approximative Computing

The evaluation of q (i) and Pt(i) for 1 5 t 5 T and 1 5 i 5 N in the recursive

formulas shows that as T + m, aT(i) --+ 0 and Pl(i) -+ 0 in exponential fashion.

In practice the number of observations necessary to adequately train a model or

compute its probability will result in underflow of any real computer if q (i) and

&(i) are evaluated directly. Therefore, a scaling procedure is necessary to avoid this

underflow.

An alternative approach which we use is to represent probabilities by their loga-

rithms to deal with underflowing probabilities. If we represent probability P with its

log, logb P, we could get more precision in computing. To multiply two numbers, we

simply add their logarithms. To add two numbers, we proceed as follows:

- 28 -

- logb [b h Pl + bl% P2] logb(pl+ P2) -
- - logb [do& pl (1 + bl0gb q - l O g b P1)]

= logb PI + logb(1 + b lo& p2-logb PI)

If P2 is many orders of magnitude smaller than Pi, adding two numbers will just

result in PI.

3.2.3 Staircase Approaches

The forward and backward probabilities at (i), Pt(i) and the posterior probabilities

yt (i, j), yt (i) are computed for every time t and every state i of the model. With a

typical speech sentence of 4 sec and a sampling rate of 8 kHz, the time T is 32000.

Moreover, ordinary speech contains on average 15-20 phones per second, each phone

could be accurately modeled by 3 segments. Therefore, for the 4 sec speech sentence,

one iteration of our algorithm has to handle up to 3 x 20 x 4 = 200 segments (1 5 i 5

200) and 32000 units of time (1 5 t 5 32000). These dimensions would apply to all

vectors at (i), ,Bt (i), yt (i, j) , and 3 (i). It clearly overflows the capacity of computer.

However, in the left- to-right HMM, at time t close to T, the initial state 1 (and per-

haps states 2,3, ...) is certainly not visited, so there is no need to evaluate at(l) , &(l) ...
at that time. To optimally use our reestimation algorithm in that situation, we in-

troduce the st aircase approach.

We assume that each state i of the Markov model can only occupy a limit number

of samples, say At;. This occupation can only start at some time Ti. Therefore, the

probabilities at (i) and (i) of the state i are zero outside the interval [Ti, Ti + Ati].

We will only evaluate these probabilities inside that time interval, thus reduce the

dimension of the vectors.

The crucial point is how we choose the starting time Ti and the length Ati. Our

tests indicated that overlapped time intervals are needed to assure the same result as

the original model. More precisely, we use the intervals defined as follows: for every

i = 1, ..., N, we define

and

and the time intervals are [l,T1 + At], [TI - At, T2 + At], ..., [TN-2 - At, TN-l +
At], [TN-i - At, TI. Figure 3.1 illustrates the state occupation we are assuming.

Fig. 3.1 The staircase approach

3.2.4 Segment Duration

The segment duration problem consists of constraining the minimum number of

samples per segment. If the number of samples allocated to a segment is close to the

order p of the hidden filter, we could have a local maximum because the prediction

errors are very small. For example, a 10 ms stop burst of speech recorded at 16000

Hz is represented by 160 samples. With a minimum required 3 segments (or 3 states)

per phone (one source, one stationary and one end), that stop burst has on average

50-60 samples/segment. If we pick a female speaker with a pitch frequency 320 Hz

(hence one pitch period has 16000/320=50 samples), the 60-sample segment will cover

a length of 60/50=1.2 pitch, barely enough to perform an LPC analysis with p = 12.

- 30 -

In our first implementation of the forward-backward algorithm, we did not use

any complex duration constraint methods. We just simply isolated a sequence of

speech samples, allocated on average 20 phones per second of speech and a fixed 3

stateslphone (that gives on average 60 states/second), then ran the training pro-

gram. At the output segmentation, we checked all the segment lengths. If any

segment having fewer than 50 samples was observed (the 50-sample level was used

in both continuous-speech and isolated-word database), we reduced the number of

states (usually by 1 or 2 states) of the model and reran the training.

Our segmentation tests on the isolated-word data with an average 20ms per seg-

ment shows that about 5% of the words requires the reruns of the forward-backward

algorithm.

In the next section, we will show the test results of speech segmentation using

the posterior probabilities.

3.3 Experimental Results

The segmentation approach using the posterior probabilities yt(i) was examined

in segmenting speech waveforms of two categories of speech: continuous-speech and

isolated-word.

The speech material used for the continuous-speech category includes the follow-

ing sentences:

1- Oak is strong and also gives shade.

2- Add the sum to the product of these three.

The first sentence was spoken by a male and the second sentence by a female.

The sampling rate of these sentences is 8 kHz.

The data used in the isolated-word category include 427 words spoken by a native

English female speaker with a pause of at least 150 ms between words. The words

- 31 -

correspond to paragraphs selected from magazines, books and newspaper articles.

The sampling frequency is 16 kHz.

We apply the forward-backward training procedure to the speech data with an

order of hidden filter p = 12 (i.e 12 poles). This choice of p is based on previous LPC

analysis ([I41 pp. 419-420): generally 2 poles per kiloHertz due to the vocal tract

contribution plus 3-4 poles to represent the source excitation and the radiation load.

Figures 3.2 and 3.3 show the result of our segmentation approach when it is

applied to the two sentences of continuous speech. The graphics display

(a)- The signal time waveforms along with the segment boundaries (vertical bars)

chosen by maximizing yt(i).

(b)- The normalized prediction error E of each segment (variable lenght).

(c)- The normalized prediction error E of the uniform segments.

We present the normalized predict ion error E because it is a very useful parameter

for the determination of the optimal number of poles p and for the measure of the

spread of the data [16]. The normalized prediction error E of an LPC filter is defined

as the estimated variance of the filter scaled by the average of the square of the

segment amplitude.

To be more specific, let (y1, ..., yM) be M samples of a segment having a Gaussian

noise source N (0 , a:), then the normalized prediction error E of that segment is

Since the mean of the segment amplitude of speech is very small (x 0), this normalized

error also corresponds to the variance of the filter output scaled by the variance of

the segment speech signal a::

It is easy to see that the prediction gain P of the filter (in dB) is

Recall that there is a similarity between our filter coefficients and the filter coeffi-

cients computed by covariance method. The comparisons of our filter's normalized

prediction errors and the normalized prediction errors computed by the covariance

method should give similar results.

In Figure 3.2.(a) and 3.2.(b), the speech waveform of Oak is ... with segment

boundaries and their corresponding normalized prediction errors are shown. The

speech sequence has 3024 samples in 23 segments (average 16.4ms/segment). The

/k/ burst, located in the interval 0.22-0.25sec, is characterized by three segments of

100,78 and 181 samples (at 8 kHz sampling frequency) respectively, with a peak error

recorded for about 10ms. The vowel /O/, started at 0.04sec and ended at 0.2sec,

occupies 12 segments with normalized prediction errors E < 0.01. The period of

silence at the beginning of the sequence has small error E while the silence between

words has larger error E. With an average 131 samples/segment (16.4ms/segment),

the shortest segment (2nd from left) has 53 samples and the longest segment (belong

to the vowel / 0 /) has 239 samples. Figure 3.2.(c) shows the normalized prediction

errors of the 16.4ms uniform segments. It is easy to see that the uniform window

produces higher normalized prediction errors for the stop /k/.

Figure 3.3.(a) and 3.3.(b) show the waveform of Add the.. . with segments and the

corresponding normalized prediction errors. There are 3360 samples in 28 segments

(average 20ms/segment). Moderate amplitudes of normalized prediction errors E's

are observed at the transition from silence to vowel /A/. High values of normalized

prediction errors are seen at the fricative / 8 / (in the word "the") and again at the

silence at the end of sequence. We can see in Figure 3.3.(c) that the normalized

prediction errors of the 20ms uniform segments are generally higher than the errors

of the variable frame length segments.

It is interesting to note from these figures that the normalized prediction errors

E's for unvoiced speech (e.g. stops, fricatives) is significantly higher than for voiced

speech (vowels, diphthongs). In fact, the normalized prediction error curves show

- 33 -

T i m e C s e c >

Fig. 3.2 (a)-Speech waveform of Oak is ... with segment boundaries (variable
length), (b)-The normalized prediction errors of the segments of (a)
and (c)-The normalized prediction errors of the 16.4ms uniform
segments. The speech sequence has 3024 samples, distributed into
23 segments (average 16.4ms/segment). In (a) and (b), the shorteat
segment has 53 samples and the longest segment (belong to the
vowel /0/) has 239 samples. The burst /k/ is located in the
interval 0.2-0.25sec.

Fig. 3.3 (a)-Speech waveform of Add the ... with segments boundaries
(variable length), (b)-The normalized prediction errors of the
segments of (a) and (c)-The normalized prediction errors of the
20ms uniform segments. There are 3360 samples in 28 segments
(average 20ms/segment). In (b), moderate amplitudes of error E
are observed at transition from silence to vowel /A/. High values of
E are seen at the fricative / 8 / (in the word "the") and at the end of
sequence.

a very small range of error E (0.005-0.01) for voiced speech (such as vowels /O/ in

"Oakn, / I / in "givesnor voiced fricative / v / in "of") and a high level of error E (0.12-

0.25) for unvoiced speech (e.g. stop /k/ in "Oakn, fricative /s/ in "sumn). Also the

lengths of segments associated to voiced speech are generally longer than the lengths

of segments associated to unvoiced speech.

The reason for the above observations is that voiced speech is usually longer

(in time) than unvoiced speech (e.g. several pitch periods in vowels) and it has

a predictably waveform pattern which helps the linear predictive filters to perform

better. On the other hand, the silence may have large error E because it has very

small signal amplitudes which are in the same order of the Gaussian noise source of

the filter.

A comparison of these values of normalized errors Es with previous studies on

speech analysis by linear prediction [14], pp. 426-429, shows that our errors are

within the order of the ordinary prediction errors by covariance method.

In a second test, we apply the segmentation procedure to the isolated word

database. These words have been segmented into phones (of a set of 44 phones) by an

experimental large-vocabulary-speaker-dependent isolated-word recognizer (described

in detail in [17]). The normalized prediction errors E's of each phone are computed for

20 phones of the set and are presented in Table 3-1 (the number of occurrences of each

phone used to compute the average values is given in parentheses beside the phone

in the table). Again, by comparison with data in [14] pp. 426-429, the normalized

prediction errors E's show very accurate measurements of the phone's characteristic.

The segmentation using hidden filter model shows that it performs exceedingly

well on the difficult task of locating short phones of speech. Since our aim is to im-

prove segment boundaries between phones during recognition, we try to implement

the segmentation at a preprocessing stage of a large-vocabulary speaker-dependent

isolated-word recognizer. The next chapter will descrilje how the hidden filter models

can be used in the recognizer. It also reports experimental results of speech recogni-

- 36 -

Table 3.1 Results of segmentation of the isolate-word database

Phone

/A / (35)
/I/ (104)
l U l (6)
/ E l (48)
/o/ (14)
l a j l (23)
/;I (70)
/ u / (40)
/ e l (30)
1.1 (18)
/ ^ / (68)
/&/ (9)
l f l (31)
It/ (129)

Normalized Error E
(x 10-3)

3.03
9.09
3.59
8.07
0.978
4.52
4.79
1.44
8.07
1.51
4.01
6.81
72.81
38.38

Speech Recognition

Chapter 4 with the

Hidden Filter Preprocessor

Several large-vocabulary recognizers have been developed in the past few years

[18], [17]. Speaker independence and continuous speech pose the greatest chal-

lenges for these recognizers. Speaker independence was the most difficult constraint

to overcome because most parametric representations of speech are highly speaker-

dependent, and a set of reference pattern suitable for one speaker may perform poorly

for another speaker. On the other hand, continuous speech recognition is significantly

more difficult than isolated word recognit ion, resulting from problems of word bound-

ary, coarticulatory effects and word emphasizing.

In our first recognition tests, we choose to work only with a speaker-dependent

isolated-word recognizer. This chapter will show how we apply the forward-backward

training and segmentation procedure to a large vocabulary speaker dependent isolated

word recognizer. The segmentation is used as a feature-extractor at the preprocessing

stage of the recognizer.

4.1 Overview of the 60000-Word Recognizer

The recognizer we are using is a 60000-word vocabulary speaker trained isolated-

- 38 -

word recognizer which uses a phonemic Markov model approach to speech recognition.

The goal of the recognizer is to transcribe text spoken as a sequence of isolated word.

For each spoken word, the recognizer uses acoustic information and rough like-

lihoods in a fast search algorithm to narrow the possible word hypotheses from the

60000 words in the total vocabulary to a sequence of lexically valid, most likely

phoneme strings, together with their likelihood. One Markov model per phone for

the 44 phones is used in recognition.

The fast search algorithm of the recognizer is an A* admissible heuristic (devel-

oped by Kenny [19]) for rapid lexical access. It is capable, on demand, of generat-

ing multiple recognition hypotheses from a lexicon and a dictionary of 60000 words.

Phone duration constraints are also incorporated in the recognizer to improve the

accuracy and the speed of the search.

The acoustic information (or acoustic features) is extracted from the speech wave-

form by the parameter estimation module of the recognizer. These features are sets of

15-dimensional feature vector computed every 10 ms from the speech waveform using

25.6 ms overlapped window. The 15-dimensional vector consists of seven mel-based

cepstrum coefficients (C1, ..., C7) and eight dynamic parameters (ACO, ..., AC7).

The static cepstral coefficients (C1, ..., C7) are computed by first dividing the

spectrum between 0 and 8 kHz into 24 channels spaced according to the me1 scale

of frequency. The center frequencies for the first ten channels are spaced 100 Hz

apart, while the remaining 14 channels are spaced logarithmically. The energy in

each channel is computed by summing a triangularly weighted spectrum located at

the center of the channel. Taking the log of the channel energies yields the log channel

energies. The cosine transform of the vector of 24 log channel energies given by

where Ej is the log channel energies of the j th channel, gives us the cepstrum coeffi-

cients.

- 39 -

Co is computed as the weighted sum of the log channel energies

24

where the weights Wj, j = 1, ..., 24 are (0.0016, 0.0256, 0.1296, 0.4096, 1.0 ,..., 1.0).

The eight dynamic parameters (ACO, ..., AC7) are obtained by taking signed dif-

ferences between the corresponding static cepstral values 40ms apart. The resulting

15-dimensional feature vector (C1, ..., C7, ACo, . .., AC7) is computed every 10ms.

4.2 Hidden Filter Preprocessor

The construction of acoustic segments every lOms does not take into account the

phone boundaries (e.g. boundaries between stops and sonorants, affricates and sono-

rants etc). The changing statistical characteristics of speech signal at these boundaries

fall often into one segment. This creates difficulties and erroneous in mapping acous-

tic segments into phoneme models because the recognizer must map the segment to

one of the phones.

Our strategy is to replace the parameter estimation module by a preprocessor

which generates sets of 1Sdimensional feature vectors based upon hidden filter mod-

els. More precisely, for each spoken word in the training and test sets of the recognizer,

the preprocessor performs the forward-backward reestimation to provide segments of

speech characterized by variable time lengths, 12th order linear predictive coefficients

(BS) and normalized errors E's.

The linear predictive coefficients are translated to cepstrum coefficients (Ck, k =

1, ..., 7) using the formula (see [20] pp. 229-231 for a development of this formula):

where A(z) = 1 - biz-' - b2z-2 - ... - b12z-l2 is the impulse response of the segment

filter. We choose to work with cepstrum coefficients as acoustic features because they

- 40 -

have been shown to give improved recognition performance compared to a number of

other feature parameters used in speech recognition [21].

Only the first seven cepstrum coefficients are retained from (4.3) to form the

static cepstrum coefficients (Cl, ..., C7). CO is defined as log magnitude of the filter

variance ([20] page 230), i.e.

Co = l n a 2
(4.4)

These coefficients are called LPC-based cepstrum coefficients since they are com-

puted from the linear predictive coefficients.

The eight dynamic parameters (ACO, ..., AC7) are obtained by taking signed dif-

ferences between the corresponding static cepstral values.

The seven LPC-based cepstrum coefficients (C1, ..., C7) and the eight dynamic

parameters (ACO, ..., AC7) are put together to form a 15-dimensional feature vector

(Cl, ..., C7, ACo, ..., AC7).

Although there is no fixed-time window when we compute our 15-dimensional

feature vectors (C1, ..., C7, ACo, ..., AC7), the number of segments allocated for each

word in the training and test sets of the recognizer result on average 20ms per seg-

ment. The 20ms length is chosen to compromise the calculation time used by the

preprocessor to complete the segmentation, the computer load to sustain all arrays

declared in the forward-backward training program and the minimum duration of 50

samples per segment as stated in 93.2.4.

The preprocessor runs with either a maximum of 8 reestimation iterations or

a scoring threshold 6 of 30dB, which ever comes first. Under these conditions, we

observe that the CPU time needed to provide acoustic segments of one word is 5

minutes on average on a DEC station 2100 computer.

4.3 Experimental Results

The experimental setup consists of different sentences read in a quiet room by a

female native English speaker. The sentences are read from texts with pauses of at

- 41 -

least 150ms between the words. The texts are selected from magazines, books and

newspaper articles. Part of the texts is used for training the phone models while

the remaining is used for estimating the recognition accuracy of the system. Of

the approximately 2200 words involved in the experiment, 1299 words are used for

training the model.

Table 4.1 shows the recognition results with the 15-dimensional variable length

LPC-based cepstrum coefficient feature vectors. With 808 words of the test set, the

recognizer correctly identifies only 441 words (54.6% of accuracy).

Several possible causes could lead to this poor performance:

The average 20ms per segment could result in some misrepresentations of phone

characterizations, especially if the segment of one phone covered samples be-

long to other phones.

The number of segments allocated for each word may, in some cases, come to

fewer segments associated to a phone than the minimum number of states of

that phone in the recognition phone models.

For example, in the recognizer, the Markov model for the phone /k/ had

6 states. A left-to-right Markov chain with skip transitions for that 6-state

model is illustrated in figure 4.1. As one can see, the minimum number of

states (or segments) required to go through this Markov chain is 4: either a

path through sl - s2 - sq - s6 or sl - s3 - sq - S6 or sl - s2 - s5 - sg. A

survey of the segmentation at the preprocessor showed that, over 53 segmented

phones /k/, 12 phones had only 3 segments per phone, less than the required

minimum number of states. Thus the phone model for /k/ was not accurate.

The recognizer does not take into account the length of each segment calculated

at the preprocessor. It treats the sequence of 15-dimensional feature vectors

as a sequence of uniform-time vector-valued observations.

Fig. 4.1 The Markov model for a 6-state phone.

I input to I d recognition I
Feature vectors

Table 4.1 Recognition results with LPC-based cepstrum
preprocessor.

Tot a1 words

recognizer

variable-lengt h

LPC-based cepstrum

To correctly interpret the results of the recognizer with variable-length LPC-based

coefficients in Table 4.1, we performed another recognition test, where 20ms-uniform

LPC-based cepstrum coefficients are used to evaluate the recognition accuracy. To ob-

t ain the 20ms-uniform LPC- based cepstrum coefficients, we window the input speech

Acoustic

waveform to several segments of 20ms (uniform) and compute their linear predictive

Training

1299

coefficients by covariance method. We then translate these coefficients to cepstrum

coefficients and form the 15-dimensional vectors as we did with the variable-length

LPC-based cepstrum coefficients.

Again, we run the recognizer with the 20ms-uniform LPC-based cepstrum coeffi-

cients and compare the results with Table 4.1. Table 4.2 shows the output of this test.

Final results proves that the preprocessor actually increases the recognition accuracy

from 429 to 441 (53.1% to 54.6%). Broken down to each text, the variable-length

model outperforms the 20ms-uniform model (in term of recognition accuracy) by a

score of 5:2, i.e. in five of the seven text files used in the test set, the variable-length

Test

808

model scores higher accuracy rates than the 20ms-uniform model.

accuracy

441 (54.6%)

I I I Acoustic recog accuracy I
I Text I T o t a l w o r d s I I

Hitman

Ira

Reptiles
Riot

Soap

SPY
Women

Table 4.2 Recognition results with the 20ms-uniform LPC-based
model and with the variable-length LPC-based
cepstrum model.

105
102

Average I 808

A close analysis of the results in Table 4.2 shows that when the recognizer with

20ms-uniform coefficients correctly identifies the word, most of the time, the recog-

nizer with variable-length coefficients also correctly identifies the word. In particular,

for the data of the texts "Hitman"and "Ira", Table 4.3 shows some differences between

the top word choices of the recognizer with two set of acoustic features.

110

135

142

11 1

103

429 (53.1%) 1 441 (54.6%)

Among the words correctly identified by the recognizer with variable-lengt h co-

20ms-uniform

50 (47.6%)

59 (57.8%)

efficients (the preprocessor) and incorrectly identified by t he recognizer with 20ms-

uniform coefficients, we find some long words such as "privileges", "police", "in-

former", and some simple words such as "sincen, "other", "jail". The errors made

by the recognizer without preprocessor are usually stops (confusion with nasals or

fricatives) and fricatives (confusion with stops).

The results of this test show fairly conclusively that, if placed in the same context

(i.e. 20ms fixed window versus average 20ms segment length), the preprocessor lightly

improves acoustic accuracy of the speaker-dependent isolated-word recognizer. The

improvement comes generally from stops, nasals and fricatives, i.e. short phones.

In summary, the comparison of the results of recognition with and without pre-

variable-lengt h

58 (55.2%)

60 (58.8%)
48 (43.6%)

74 (54.8%)

81 (57.0%)

61 (54.9%)

56 (54.4%)

49 (44.5%)
76 (56.3%)

84 (59.2%)

60 (54.1%)

54 (52.4%)

Words Recognizer with Recognizer with

(with true variable-lengt h 20ms-uniform

transcriptions) LPC-based coeff. LPC-based coeff.

murder murder (C) burder (W)
/mrdr/ /mrdr/ /brdr/
since since (C) sits (W)

/sIns/ /sIns/ /sIts/

jail jail (C) tell (W)
/dzel/ /dzel/ /tell

machine machine (C) ercier (W)

/m*Sin/ /m*Sin/ /ErSir/
crime crime (C) crine (W)

/krajm/ /krajm/ /krajn*/

police police (C) felice (W)

/p*lis/ /p*lis/ /flis/
other other (C) under (W)

/ Dr/ / A o r / /^ndr/

informer informer (C) enter (W)

/*nfOmr/ /*nfOmr/ /Entr/

privileges privileges (C) pledges (W)
/prIvl*dZ*z/ /prIvl*dZ*z/ /plEdZ*z/

has hanes (W) has (C)

/h@z/ /h@ns/ /h@z/
became akeen (W) became (C)

/b*kem/ /*kIn/ /b*kem/

said set (W) said (C)

IsEd/ /sEt/ IsEd/

Table 4.3 Comparisons of some differences of the top word
choices in the texts "Hitmannand "Iran.

processor indicates that the preprocessor achieves the objective of improving the

recognition rate, but only at a modest margin. There is a discouraging finding on the

accuracy of recognition with the LPC-based cepstrum coefficients. This points out

that the phone models built from the 20ms updating analysis window (either fixed or

- 4 5 -

variable) is not a reliable model.

An obvious solution to this problem is to increase the number of states allocated

for the phones while segmenting the speech signal. Since this could lead to the problem

of short segments, a dynamic duration constraint technique should be employed in the

segmentation algorithm. Nonetheless, more extensive experimentations with various

window time lengths should be performed to achieve an optimal procedure which

assures the improvement of recognition accuracy without too much computation at

the preprocessor.

Another detail overlooked at the preprocessing stage of the recognizer is the

threshold level used to stop the forward-backward reestimation algorithm. Although

the chosen threshold (30 dB) is enough to guarantee the convergence of the likelihood

of data (P (Y IX1)), a few more iterations should be made to lower the difference 6 to

3-5 dB before determining the segment boundaries and performing the recognition

procedure. What also remains to be determined is whether a more complex method

(in the recognizer) that accounts for the variable time length of each segment could

give greatly improved performance.

Chapter 5 Conclusions

In this thesis we have shown that the technique of linear predictive modeling

and hidden filter models can be combined in a simple straightforward manner to

implement an automatic speech segmentation. We have also shown the application of

this automatic segmentation to a large-vocabulary isolated-word speaker-dependent

recognizer as a preprocessor unit.

In speech segmentation, the normalized prediction errors of the hidden filters are

compared with the normalized prediction errors of the covariance linear predictive

filters. The comparisons show that the hidden filters provides smaller normalized

prediction errors (which means higher prediction gain), especially when they are ap-

plied to segment of stop burst and aveolar fricative of speech.

The segmentation stage performs exceedingly well on the difficult task of locating

short phones of speech. The fact that some segments have very few samples ap-

pears to be primarily because of no dynamic duration constraint method had been

implemented in the algorithm. Moreover, the time interval At = TIN used by the

staircase approach might contribute to the problem of short segments, presuming that

the interval boundaries do not match the phone boundaries.

The overall performance of the recognizer running with LPC-based cepstrum

coefficients and the preprocessor is somewhat poorer than the performance of the

recognizer running with original mel-based cepstrum coefficients. The fact that the

15-dimensional feature vectors of our model are computed differently with the feature

- 47-

vectors of the mel-based cepstrum model might contribute to the overall performance.

The dynamic coefficients in the mel-based cepstrum model are computed by 40ms

intervals while our model does not have any fixed-time intervals. Furthermore, the

loudness Co in the mel-based cepstrum model is computed by weighting the sum of

the log channel energies while the variable Co of our model is simply the log filter

variance.

The recognition performance of our tests also suggests that the chosen 20ms

(average time) window is inadequate to obtain a good Markov model for the phone.

This suggestion is made plausible by considering the results of the recognition test

with 20ms-uniform LPC- based cepstrum coefficients.

A second suggestion that can be drawn from the results is that a lower level of

threshold should be used to increase the number of iterations in the preprocessor. This

requires a substantial increase in CPU time: an average 1 minute per iteration per

word is calculated at the preprocessor. With 2200 words of the experiment, increasing

one iteration of computation will require almost 40 hours of CPU. However, since the

training procedure needs to be done only once, the expense of CPU time is worthwhile.

An important fact in implementing the recognizer with preprocessor is that we

have not exploited the variable window length of each segment. In our experimen-

t ations, the recognizer only treats the sequence of 15-dimensional feature vectors

(variable length) as a sequence of uniform (in time) vector-valued observations. To

determine whether considering variable time length leads to improving recognition

accuracy, we have to rewrite all the structure of the recognizer. Such a task exceeds

the scope of this thesis; however we could answer this question by further experimen-

tations.

References

[I] L. E. Baum and J. A. Eagon, 'An inequality with application to statistical
prediction for functions of Markov processes and to a model for ecologyn, Bull.
Amer. Math. Soc., vol. 73, pp. 360-363, 1963.

[2] L. R. Rabiner, S. E. Levinson and M. Sondhi, "On the application of vector
quantization and hidden Markov models to speaker-independent, isolated-word

recognition", Bell Sys. Tech. Journal, pp. 1075-1105, April 1983.

[3] L. R. Rabiner, S. E. Levinson and M. M. Sondhi, "On the use of hidden
Markov models for speaker-independent recognition of isolated-words from a

medium-size vocabulary", Bell Sys. Tech. Journal, pp. 627-641, April 1984.

[4] G. D. Forney, "The Viterbi algorithmn, Proc. IEEE, vol. 61, pp. 268-278,

1973.

[5] A. B. Poritz, "Linear predictive hidden Markov models and the speech signaln,

Proc. IEEE Int. Con f. Acoust. Speech, Signal Processing, pp. 1291-1294,
April 1982.

[6] B. H. Juang and L. R. Rabiner, "Mixture Autoregressive hidden Markov mod-
els for speech signals", IEEE Trans. Acoust., Speech, Signal Processing, vol.

33, pp. 1404-1413, December 1985.

171 Y. Ephraim, "A minimum mean square error approach for speech enhance-

ment", Proc. IEEE Int. Conf. Acoust. Speech, Signal Processing, pp. 829-

832, April 1990.

[8] Y. Ephraim, D. Malah and B. H. Juang, "On the application of hidden Markov
models for enhancing noisy speechn, IEEE Trans. Acoust., Speech, Signal
Processing, vol. 37, pp. 1846-1856, December 1989.

[9] P. Kenny, M. Lennig and P. Mermelstein, "A linear predictive HMM for vector

valued observations with applications to speech recognition", IEEE Trans.
Acoust., Speech, Signal Processing, vol. 38, pp. 220-225, February 1990.

[lo] A. B. Poritz, "Hidden Markov models: A guided tourn, Proc. IEEE Int.
Conf. Acoust. Speech, Signal Processing, pp. 7-13, April 1988.

[ll] L. R. Rabiner and B. H. Juang, "An introduction to hidden Markov modeln,

IEEE Acoust. Speech, Signal Processing Magazine, pp. 4-16, January 1983.

[12] A. P. Dempster, N. M. Laird and D. B. Rubin, "Maximum likelihood from

incomplete data via the EM algorithmn, Journal Roy. Stat. Soc., Serie 39, pp.

1-38, 1979.

[13] L. R. Rabiner, S. E. Levinson and M. M. Sondhi, "An introduction to the

application of the theory of probabilistic function of a Markov process to au-

tomatic speech recognitionn, Bell Sys. Tech. Journal, pp. 1035-1074, April

1983.

[14] L. R. Rabiner and R. W. Scheiner (1978) "Digital processing of speech signaln,

Prentice-Hall: Englewood Clifls, NJ.

[15] R. 0. Duda and P. E. Hart (1979) "Pattern classification and scene analysisn,

Addison-Willey: New York.

[16] J. Makhoul, "Linear prediction: a tutorial reviewn, Proc. IEEE, vol. 63, pp.

561-580, 1975.

1171 V. Gupta, M. Lennig and P. Mermelstein, "Fast search strategy in a large

vocabulary word recognizer", Journal Acoust. Soc. Amer., vol. 84, pp. 2007-

201 7, December 1988.

[IS] K. F. Lee, H. W. Hon and R. Reddy, "An overview of the SPHINX speech

recognition system", IEEE Trans. Acoust., Speech, Signal Processing, vol. 38,

pp. 35-44, January 1990.

[19] P. Kenny, R. Hollan, V. Gupta, M. Lennig, D. O'Shaughnessy and P. Mer-

melstein, "A* admissible heuristics for rapid lexical accessn, Proc. IEEE Int.

Conf. Acoust. Speech, Signal Processing, vol. 1, pp. 689-692, May 1991.

[20] J. D. Markel and A. H. Gray (1976) "Linear prediction of speechn, Springer-

Verlag: New York.

[21] S. B. Davis and P. Mermelstein "Comparison of parametric representations

for monosyllabic word recognition in continuously spoken sentencesn,IEEE

Trans. Acoust., Speech, Signal Processing, vol. 28, pp. 357-365, 1980.

