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Abstract 

Time-scale modification (TSM) is a process whereby signals are compressed or 
expanded in time in a manner which preserves their original frequency character- 
istics. This work explores TSM algorithms for sampled speech. A known approach 
[2] which is based on the short-time Fourier transform (STFT) is first reviewed, 
then modified to provide high-quality TSM of speech signals at  a lower computa- 
tional cost. The proposed algorithm resembles the sinusoidal speech model (SSM) 
based approach [9], yet incorporates new phase compensatory measures to pre- 
vent excessive structural deterioration of the time-scaled signal. In addition, a 
novel incremental scheme for modifying polar parameters results in substantial 
computational savings. 

Sornrnaire 

La modification d'e'chelle de temps (MET) est un procddd qui effectue la corn- 
pression et l'expansion temporelle de signaux sans dhformer leurs caractdristiques 
frdquentielles. Cet ouvrage traite d'algorithmes MET pour la parole dchantillon6e. 
Une mdthode connue [2] dont la thkr ie  est fond& sur l'analyse de Fourier de courte 
durde est d'abord revis&, puis ensuite modifik afin d'en amhliorer l'efficacitd. 
L'algorithme proposh est semblable B un procddh MET courant qui se sert d'un 
modkle sinusoydal de la parole [9]. Cependant, le nouvel algorithme compense 
la phase des composantes frdquentielles servant B la synthkse selon une mdthode 
inidite afin de prdserver les signaux modifi6 de ddformations structurales exces- 
sive~. En outre, une nouvelle technique diffdrentielle conque pour la modification 
de paramktres polaires dconomise considdrablement le nombre de calculs. 
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Chapter 1 

Introduction 

This work explores a specific class of digital signal processing algorithms whereby 

speech signals are compressed or expanded along their time-axis in a manner which 

preserves their original frequency characteristics. A time-scale modification (TSM) 

system is capable of varying the playback rate of a digital audio recording without 

the frequency distortion which would result from linearly scaling its time-axis. 

Thus a listener perceives changes in the apparent rate of articulation of tirne- 

scaled speech, but not in the speaker-dependent features such as pitch and timbre. 

In the case of time-scaled music, only changes relating to tempo are perceived while 

the tone colors of the instruments remain the same. 

Since audio information is conveyed by a combination of temporal and spec- 

tral features, the problem of modifying time independently of frequency is indeed 

challenging, as the.two dimensions cannot be easily decoupled: linearly scaling the 

time-axis by p corresponds to linearly scaling the frequency-axis by 1/P and vice 

versa. Such is the nature of the fundamental paradox which must be addressed by 

TSM algorithms. 

Remarkably few papers have been published on the subject, a fact which does 

not reflect the true potential of TSM technology. While the cost of digital audio is 

dropping rapidly, time is becoming an increasingly expensive resource. Profession- 
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als and consumers alike may eventually expect TSM features to be incorporated 

into every conceivable digital audio reproduction device ranging from compact 

disc (CD) players to reading machines for the blind. TSM could even be used 

for audio data compaction or for more esoteric applications, such as synchronizing 

soundtracks to films and videos. The technology has yet to be perfected and, not 

unlike speech coding, challenges our understanding of the structural properties of 

sound. The lack of consensus in the literature is ample proof that some important 

questions remain unanswered. 

Early efforts ([I], 1954) achieved rate-changed speech by selectively inserting 

or deleting periodic waveform segments in or from the speech signal. Only voiced 

portions could be effectively time-scaled. Moreover, the output was susceptible to 

discontinuities and other artifacts due to the sensitivity of the method to pitch 

variations in the source signal. Current integrated circuit technology now permits 

more sophisticated solutions to be considered. 

Portnoff's 1981 paper [2] represents a significant milestone in TSM research. 

Using short-time Fourier analysis principles, the author developed a speech model 

in which time could be manipulated independently of frequency. Portnoff hinted 

at the fact that the proposed TSM scheme could not 'preserve the structure of 

[. . . ]  an arbitrary signaln, yet no further mention of this limitation was made in 

the simulation portion of the paper. Either Portnoff's rhetoric discouraged further 

investigation in this direction or the paper was considered final and authoritative, 

for no other related contribution could be found in the literature spanning the 

1981-1984 period. 

A later paper, authored by Griffin and Lim ([3], 1984), presented a radically 

different approach to the problem. Their method consisted of estimating the de- 

sired rate-changed speech by minimizing, in the mean-square sense, the euclidean 

distance between the short-time Fourier transform of the original and the rate- 
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changed sequences. The so-called least-squares error estimation (LSEE) algorithm 

was expensive in that it iteratively searched for the optimal fit for the short-time 

Fourier transform of the original sequence on the new time-scale. Each iteration 

required a forward and inverse discrete Fourier transform (DFT) computation. In 

addition, the rate of convergence depended largely on the accuracy of the initial 

estimate of the rate-changed sequence, thus on the statistics of the original. Griffin 

and Lim stated that the resulting time-scaled speech "appear[ed] to be superior" in 

quality to that generated by Portnoff's method. The nature of the subjective per- 

formance improvements was not specified in the simulation portion of the paper. 

Nevertheless, the Griffin and Lim contribution prompted further research efforts 

in this direction. 

Roucos and Wilgus ([4], 1985) accelerated the rate of convergence of the LSEE 

algorithm by improving the initial estimate of the rate-changed speech. Until then 

only noise and crude LPC estimates had been used for initializing the algorithm. 

The new approach, dubbed the synchronized overlap-add (SOLA) algorithm, con- 

sisted of calculating an initial estimate which best matched the original speech 

data in the vicinity of the sample instant of interest. 

The LSEE concept was more recently adapted by Abe et al. ([5], 1989) for 

simultaneous modification of pitch and duration of speech. Hardam ([6], 1990) 

claimed to having improved the subjective performance of the SOLA algorithm 

while reducing its complexity. Asi and Saleh ([7], 1988) applied the LSEE concept 

with an interesting twist: they showed that the rate-changed speech could be 

related to the original speech by a linear, periodically time-varying filter. The 

greatest virtue of this method was its unsurpassed simplicity. Its performance, 

however, was observed to be quite sensitive to pitch variations. Asi and Saleh later 

adapted their filtering theory to allow simultaneous scaling of time and frequency 

(PI, 1990). 
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One Portnoff-like approach can be noted in the wake of the apparent LSEE 

trend. McAulay and Quatieri ([9], 1986) demonstrated how time and frequency 

transformations could be applied to their particular sinusoidal speech model (SSM) 

[lo]. The TSM principle they used in conjunction with their SSM was essentially 

the same as that proposed by Portnoff because both approaches have common 

origins. It would be fair to say that the potential of SSM technology in the area of 

low-bit rate speech coding as well as speech modification has somewhat rekindled 

general interest in time-frequency representations. 

Despite the relative sparseness of TSM literature, one is confronted with an 

otherwise rich assortment of theoretical views and algorithm complexities. There 

are, on one hand, techniques which make virtually no assumption about the struc- 

ture of the waveform to be processed. Their overall appeal lies in the fact that 

many common speech modification objectives can be achieved by way of simple, 

robust algorithms, albeit with often expensive high-speed hardware. Then there 

are those which isolate by way of rigorous or heuristic models the desired features 

of a waveform for subsequent modification. The latter methods may sometimes 

reduce hardware speed requirements, but only at the expense of more complex 

software and hardware configurations. The performance of such systems usually 

depends much on source model accuracy. Fortunately, the modeling of speech is 

in general successful due to the primarily resonant nature of the vocal tract. By 

comparison, the modeling of arbitrary sources such as music is a much more ardu- 

ous task and will often resort to the axioms of speech production. In spite of their 

shortcomings, source models can be finely tuned to the perceptual characteristics 

of the human auditory system to improve performance. It has become more widely 

accepted that perception science is playing an increasingly important role in the 

field of audio coding [I I]. 

The subjective performance of LSEE algorithms is undoubtedly limited by the 
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fact that they are insensitive to the structure of the processed signal. Furthermore, 

the performance measures which drive them are completely arbitrary. The LSEE 

option, though popular, provides no assurance that spreading sequence estimation 

error uniformly over time and frequency is appropriate for all types of waveforms. 

The very existence of noise shaping audio coders [12] would indicate otherwise. 

No strong statement can be made in favor of the time-frequency approach either 

because the structural impact of TSM on arbitrary waveforms has never been 

assessed. Portnoff anticipated some sort of structural distortion but produced no 

experimental data in this regard. Structural distortion was observed by McAulay 

and Quatieri who attributed the fault to speech parameter estimation errors, not 

to the TSM procedure itself. 

Assuming some degree of structural distortion is unavoidable, can the perfor- 

mance of time-frequency based TSM algorithms still rival that of their iterative 

counterparts at a lesser computational cost? This question warrants further in- 

vestigation, given the potential benefits of time-frequency representations and the 

relative computational simplicity of SSM-based speech modification algorithms. 

We propose, therefore, to first study Portnoff's TSM met hod more closely and 

then determine the exact nature of the aforementioned waveform deterioration. 

It will be shown that the accumulation of phase error is chiefly responsible for 

deteriorating rate-changed speech over time. Novel methods which restrict the 

distortion within acceptable perceptual bounds will be proposed along with sev- 

eral important simplifications to Portnoff's original design. Phase modulation will 

be the preferred method in the final design. The resulting time-frequency TSM 

algorithm, which will combine a new incremental parameter modification scheme 

with the advantages of polar synthesis [lo], will be more robust than its predeces- 

sors in the way just described, while affording high-quality rate-changed speech at  

a computational cost comparable, if not less, to that of the SSM-based version. 
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The development is organized as follows: Chapter 2 formulates the TSM prob- 

lem in mathematical terms and identifies the underlying causes of structural de- 

terioration in rate-changed speech; Chapter 3 discusses several design options for 

a practical TSM system and outlines the final implementation; Chapter 4 reports 

the results obtained for a computer simulation; Chapter 5 summarizes the key 

results and suggests other research avenues. 



Chapter 2 

Theory of Time-Scale Modification 

In this chapter we establish the mathematical foundation for a short-time Fourier 

analysis based TSM system. Following a statement on the definitions and the no- 

tation conventions to be used throughout and a brief review of linear time-scaling, 

we develop a time-frequency model for speech and derive from it an expression 

for the desired rate-changed speech. The short-time Fourier transform (STFT) is 

then considered as a means for estimating the parameters required for the synthe- 

sis of rate-changed speech. In closing, it is shown that some degree of distortion 

is unavoidable under the proposed TSM approach. 

2.1 Definitions 

Discrete-Time Sequences and Transforms 

The discrete-time sequence or signal x(n) (where n is integer-valued) represents 

the samples of a continuous-time, bandlimited waveform x(t) with the sampling 

interval normalized to unity. The Fourier transform of x(n), denoted by X ( w )  

where w is continuous, is defined as [13] 
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The function X(w) is periodic in w with period 27r. The original sequence is 

recoverable via the inversion formula [13] 

If t(n, m)  represents the samples of a time-varying system, where the system 

response is viewed as a function of m at time n, it will be convenient to define its 

time-varying Fourier transform as 

and the corresponding inverse formula as 

In many instances, the time-varying Fourier transform will also be regarded 

as a sequence in n, with w  treated as a parameter or an index which further 

distinguishes the sequence. Thus the frequency dimension corresponding to the 

sequence T(n, w )  is independent of w. In general, the temporal features or time- 

varying parameters of a sequence f (n, w, . . .) appear as a function of n, whereas 

its spectral features or frequency-varying parameters, as a function of w. 

Time- Scaling 

The time-scaling factor of a sequence is represented by some rational number P. 
The range /3 > 1 corresponds to time-scale compression, and the range 0 < P < 1, 

to time-scale ezpansion. The time-scaled or rate-changed version of a sequence 

f (n , .  . .) will usually be written as fP(n,. . .). This notation should not to be 

confused with f (pn, . . .), which denotes the linearly time-scaled version off (n, . . .). 
In general, a rate-changed sequence will be obtained through non-linear means. 
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2.2 Linear Time-Scaling 

One of the goals of this section is to illustrate the interdependence of time and 

frequency by means of a continuous-time and two discrete-time examples. In so 

doing, we review the fundamental results of classical decimation and interpolation 

theory which will subsequently prove useful. 

Continuous-Time 

Linearly scaling the time-axis of a continuous-time waveform x ( t )  by P corresponds 

to linearly scaling its frequency-axis by 1 / P  for any P # 0. This is apparent from 

the continuous-time inverse Fourier expression 

The discrete-time result, though restricted by sampling rate considerations, is 

conceptually the same. For illustration, we examine the Fourier representations 

for two special cases. 

Discrete-Time 

Consider an integer time-scale compression factor PC satisfying the condition PC > 1. 

Let the compressed sequence x c ( n )  = x ( P c n )  be obtained by discarding PC - 1 sam- 

ples from x(n) at intervals of PC samples. The corresponding Fourier transform is 

WI 
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The function X,(w) is formed by overlapping shifted and rescaled copies of the 

original Fourier transform X(w). 

If the resulting sampling rate of x,(n) is greater than the Nyquist rate of x(n), 

the original sequence x(n) is in principle recoverable from x,(n). The sampling rate 

of a sequence can be reduced by a factor /3 without aliasing provided the original 

sampling rate is at least P times greater than the Nyquist rate of that sequence. 

Stated in terms of the (normalized) bandwidth w, of x(n), the equivalent condition 

is 

An anti-aliasing filter will normally be applied to x(n) before time compression. 

The operation which consists of reducing the sampling rate of a sequence with pre- 

filtering is referred to as downsampling or decimation. We now address another 

important case. 

Consider a time-scale expansion factor Pe satisfying the condition 0 < Pe < 1 

and whose reciprocal is an integer. Let the expanded sequence x,(n) = x(Pen) be 

obtained by inserting l/Pe - 1 zeros between the samples of x(n). The correspond- 

ing Fourier transform is 1141 

In this case, the function Xe(w) is obtained directly by compressing the frequency- 

axis by l/P,. 

Aliasing is of no concern here because the sampling rate is being increased. 

However, the sequence xe(n) is of no practical use in its present form, due to 

its zero samples. Non-zero samples are substituted in their place by removing 

from Xe(w) all frequency scaled images of X(w) except at integer multiples of 27r. 



Sect ion 2.2: Linear Time-Scaling 

1 : I interpolator ,-------------------------------. D : 1 decimator .-------------------------------. 
I I I 

Figure 2.1: a) System for changing the sampling rate by a non-integer factor P = DII. 
b) Simplified system in which the decimation and the interpolation filters are combined. 
(After Oppenheim and Schafer [14].) 

4.) 
&(n) 

The operation which consists of increasing the sampling rate of a sequence with 

post-filtering is referred to as upsampling or interpolation. 

6 
I 

4.) -p-J 
, I &(n) 

The above Fourier representations hold only for integer PC and I/@, factors. 

However, the decimation and interpolation procedures need not be restricted to 

integer p and l /p  factors. 

I I I I ,-------------------------------. .-------------------------------. 

I I 

: I 
i - 
: zi(n) I 

lowpass filter 
gain = I 

cutoff = n / I  

lowpass filter 
gain = I 

cutoff = min(n/I, n/D) 

Figure 2.1 depicts a system which combines the above decimation and inter- 

polation techniques to modify the sampling rate of a sequence by the effective 

ratio DII .  By choosing integers such that DII is arbitrarily close to P, we may 

approximate virtually any sampling rate conversion factor. The system configu- 

ration shown in Figure 2.1 is the best arrangement for preserving the bandwidth 

structure of x(n) while allowing both the pre- and the post-filters to be combined. 

The linearly time-scaled sequence x(@n) can be obtained directly from x(n) via 

the convolution 

pJ-- s(Pn) 
&(n) 

lowpass filter 
gain = 1 

cutoff = n/D 

I 
I 
I 

V n )  
I fi(n) , , 
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where f ( n )  is a 1 : I interpolating filter. The linear time-scaling operation specified 

by (2.9) will be referred to as ubandlimited interpolationn. 

Other filtering methods exist for implementing linear time-scaling systems for 

arbitrary ,B factors [15]. 

2.3 Speech Model 

A speech signal is characterized by a sequence of air pressure waves modulated by 

vocal tract movements 1161. Speech is often viewed in many coding, enhancement 

and modification applications as the response of a linear time-varying filter to an 

excitation source. The filter approximates the time-varying spectral characteristics 

of the vocal tract whereas the excitation source may be a periodic signal, resulting 

in voiced speech, or a noisy and aperiodic one to produce unvoiced speech. The 

major spectral difference between both speech classes is that unvoiced speech has 

no underlying harmonic structure as does voiced speech. Voicing transitions are 

not covered in the subsequent analysis; the impact of this omission will be examined 

in Section 2.7. 

Figure 2.2 illustrates the model which will serve as the basis for the mathe- 

matical representation of speech developed in this section. For voiced speech, the 

excitation source v ( n )  consists of a train of unit-samples where the unit-sample 

spacing corresponds to the local pitch period P ( n )  of the actual speech. Viewed as 

a sequence, P(n)  is slowly time-varying in the sense we shall describe shortly. The 

excitation source u ( n )  for unvoiced speech is assumed to be white noise, that is, a 

stationary random sequence having a flat spectrum. The spectral characteristics of 

the glottal source and the lossy acoustic behavior of the vocal tract are represented 
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pitch period P(n) 
I 

vocal tract 
parameters 

I train- k +.fm1 Y I generator 1 '=v v 

[ generator I 

e - 
o t(n, m) 

Figure 2.2: Terminal-analog model of the vocal system. (After Schafer and Rabiner 
1181.) 

linear time-varying 
filter 

stationary 
white noise 

by the time-varying, finite-length filter t(n, m). We recall that the filter response 

is viewed as a function of m at time n. 

4 4  

For many speech sounds, it is reasonable to assume that the speech param- 

eters remain fixed over 10-20ms intervals [17]. Changes in vocal tract geometry 

and articulator movement account for the time-varying nature of t(n, m). These 

variations, as those in P(n),  are assumed to be slower than the decay rate of the 

impulse response of the vocal tract [19]. Consequently, the filter is said to be slowly 

time-varying, or nearly fixed for the duration of its memory M,, and is referred to 

as a "quasi-stationary" system. Likewise, the time-varying Fourier transform of 

t(n, m), which is defined as in (2.3), and the pitch period P(n)  are assumed to be 

nearly fixed over Mv. Since P(n)  is slowly time-varying, the impulse train v(n) is 

said to be "quasi-periodic". 

We now address the problem of formulating a mathematical representation for 

each speech class. The remainder of this section is based upon the development 

found in [19]. 
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Figure 2.3: a) Periodic unit-sample train. b) Quasi-periodic unit-sample train. (After 
Portnoff [lg] .) 

2.3.1 Voiced Speech 

It will be shown that a voiced speech signal x ( n )  can be expressed in terms of a lin- 

ear combinat ion of time-varying complex exponentials. Specifically, t he excitation 

source v ( n )  will be modeled as a sum of exponentials and the final expression for 

x ( n )  will be obtained through superposition, since the speech output is assumed 

to be the response of a linear filter. 

We begin by formulating a representation for the periodic unit-sample train 

shown in Figure 2.3a). The goal is to establish the mathematical form of v(n). 

Let 

where the integer P denotes the period and the integer D, the distance of the first 

unit-sample appearing to the left of the time origin. The unit-sample is defined as 

1 for n = no 
6 ( n  - nd = { 

0  otherwise. 

The sequence s ( n )  is said to be periodic in n with period P.  The Fourier series 

representation for (2.10) is [20] 
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The harmonic representation for the quasi-periodic unit-sample sequence v(n)  

shown in Figure 2.3b) can be approximated by a similar expression. 

The term "quasi-periodicn implies that v ( n )  has a locally periodic behavior. 

The sequence v(no + l )  is assumed to be periodic in 4,  an integer variable, with 

period P(no)  in the vicinity of no and can be locally represented as [19] 

If no is viewed as a variable time origin, D(n0) and P(no) are the respective time- 

varying analogs of D and P .  

These quantities are assumed to be nearly fixed over the observation interval 

spanned by C, which includes the duration of the vocal tract filter memory M,. 

We therefore postulate 

over the range 

This "local stationarity" assumption will often be exploited in the sequel. 

The local harmonic representation for (2.13), given the above conditions on 

D(no) and P(no) ,  follows directly from (2.12), i.e. 

1 P("o)-' 
v(no + l )  - exp [ j2rk  (C +  no)) / p ( n o ) ]  

P(no) k=O 

P(no)-1 
=- x exp [jk (d(no) + R(no)e + h)] , 

P(no) k=O 
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where 

The quantity $(no)  is referred to as the instantaneous phase of the excitation source 

whereas Q(no)  represents the local pitch or fundamental frequency. The integer 

number I (no )  guarantees the uniqueness of the exponential phase argument over 

time as in (2.12) and has the initial condition I ( 0 )  = 0. The constant $0 will allow 

the phase offset at the time origin to be preserved under a rate-change modification 

by ensuring $ ( O )  = 0. 

Due to its dependence on P ( n o ) ,  the fundamental frequency is also slowly 

time-varying, i.e. 

R(n0 + l )  = R(n0) for Ill < M,/2 .  (2.21) 

The exponential phase argument of (2.17) may be regarded as the instantaneous 

phase corresponding to the specific time instant no + e. Consequently, the local 

representation for q5(no) is 

Setting e = -1 leads to a convenient first backward difference approximation of 

the fundamental frequency, 

The recursive structure of 4(no)  suggests that the instantaneous phase can 

be constructed by summing the fundamental frequency values over all time. We 

therefore define 
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with the initial condition d(O) = 0. The instantaneous phase +(n)  will be referred 

to as an unwrapped phase sequence because it is uniquely defined over time. 

Letting n = no + t! and applying equations (2.15) and (2.22) to the local har- 

monic representation given by (2.17),  we obtain a final model for the voiced speech 

excitation, 

Applying this excitation to the vocal tract filter t ( n , m )  generates the voiced 

speech signal x ( n )  by way of the superposition sum 

Substituting the harmonic representation for v ( n  - m )  into this expression (with 

l = -m), and using the local stationarity assumption given by (2.15),  we obtain 

P(n)-1 

x ( n )  rz t ( n , m )  {l exp [ j k ( d ( n )  - n ( n ) m  + d o ) ]  
m=-03 P ( n )  k=,, 

Interchanging the order of summation and substituting (2.3) into the above ex- 

pression yields 

A more concise form for modeling voiced speech as a linear combination of har- 

monically related complex exponentials is [19] 
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where 

1 
cdn)  = - T (n, kn(n)) exp lj k&,] 

P(n)  

lo otherwise. 

Because of their dependence on slowly time-varying quantities, the complex 

harmonic amplitudes ck(n) are also slowly time-varying and so may be regarded 

as narrowband sequences. Their bandwidths are much less than the fundamental 

frequency R(n), a property which will prove useful in a subsequent STFT analysis. 

2.3.2 Unvoiced Speech 

Since unvoiced speech has no underlying harmonic structure, speech events in this 

case are best characterized in terms of their second order statistics. A relationship 

between the time-varying power spectrum of the unvoiced speech signal x(n) and 

the time-varying parameters of the vocal tract filter t(n, m) will be established. 

The excitation source u(n) of Figure 2.2 is assumed to be.a zero-mean, white 

noise sequence, meaning that the random variables u(nl) and u(nz) are uncorre- 

lated for every nl # nz [21]. The auto-correlation sequence for u(n) is 

where the integer variable e denotes a local time interval, E j.1 is the expected 

value operator, * denotes complex conjugate and a: is the variance of u(n). 

As in the voiced speech case, the unvoiced speech signal x(n) can be evaluated 

from the superposition sum 
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The resulting sequence has zero mean and is non-stationary, yet will be referred 

to as a "quasi-stationary" random process to reflect the fact that it is the output 

of a quasi-stationary linear system. 

The time-varying auto-correlation sequence for x(n) is given by 

Since the E [-I operator is distributive and the variations in t(n, m) are presumed 

negligible over the correlation interval e, that is, 

(2.34) becomes 

= o: t(n, m + t)t*(n, m). 

The last expression is a convolution with respect to t with n treated as a parameter. 

Applying the linear system convolution property [22] to (2.36) yields 

The time-varying power spectrum of x(n) may be defined as 

Unvoiced speech will therefore be modeled as a quasi-stationary zero-mean ran- 

dom process which is characterized by its second moment R,(n, t )  or, equivalently, 

by its time-varying power spectrum S,(n, w) .  Both sequences are assumed to be 

slowly time-varying. 
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Represent at ion of Rate-Changed Speech 

We now investigate how the respective models obtained for voiced and unvoiced 

speech can be modified to represent the desired rate-changed speech xP(n). In each 

case, xP(n) can be modeled as the output of a rate-changed, time-varying vocal 

tract filter tP (n, m) driven by the appropriate rate-changed excitation source, either 

vP(n) or uP(n). 

The rate-changed version of a sequence can be obtained by linearly scaling its 

n-axis only in cases where the modification does not affect the spectral features 

of the resulting speech. For example, the following definition for the rate-changed 

vocal tract filter 

affects only the temporal features of t(n,m), not the frequency response of the 

filter at time pn. The corresponding rate-changed Fourier transform is 

~ ~ ( n ,  w) = T(pn, w). 

The rate-changed versions of the local pitch period P(n)  and the fundamental 

frequency R(n) are also obtained in this way. The effect of linearly time-scaling an 

excitation source, however, varies according to the structure under consideration. 

The remainder of this section is based upon the development found in [2]. 

2.4.1 Voiced Speech 

The model for the rate-changed voiced speech excitation vP(n) is expected to 

parallel (2.25), namely 
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The quantity @ ( n )  is the unknown rate-changed instantaneous phase sequence. 

Scaling both n and l by @ and letting e = - 1  in the local phase representation 

given by (2.22)' we obtain 

The quantity S2(@no) is recognized as the rate-changed version of R(no) .  In accor- 

dance with the instantaneous phase definition given by (2.24)' we write 

with the initial condition C$~(O) = 0 .  An estimate of the rate-changed instanta- 

neous phase is obtained by resampling d ( n )  and multiplying its values by I / @  to 

preserve the local pitch. Substituting this result into (2.41) yields the rate-changed 

excitation source 

By substituting (2.44) and (2.39) into the superposition sum given by (2.26)' 

we obtain an expression for the rate-changed voiced speech, 

where 

The only non-linear transformation involved in obtaining rate-changed voiced 

speech is the one affecting the instantaneous phase d ( n )  of the excitation source. 
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In general, the factor 1//3 will not be an integer. It is therefore important that 

+(n) be accurately represented over time, as extraneous multiples of 27r added to 

or removed from +(n), though invisible on the original time-scale, will normally 

affect (2.45). 

2.4.2 Unvoiced Speech 

We see from (2.38) that the spectral features of the time-varying power spectrum 

Sx(n, w) are not altered by a linear time-scaling operation. Thus rate-changed un- 

voiced speech may be characterized by the following time-varying power spectrum 

The corresponding time-varying auto-correlation is 

over the correlation interval It\ < Mv/2 .  Thus the rate-changed excitation source 

preserves the local statistics of the original unvoiced speech, while the rate-changed 

filter tP(n, m) scales its time-varying parameters. In contrast to the voiced speech 

case, only linear transformations are required to generate rate-changed unvoiced 

speech. 

2.5 Short-Time Fourier Analysis of Speech 

Now that the respective mathematical models for voiced and unvoiced speech 

have been established, the problem of estimating their parameters for subsequent 
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modification remains. Due to the time-varying nature of the spectral quantities 

involved, the STFT should prove adequate for accomplishing this objective, even if 

major speech parameters such as pitch and vocal tract frequency response cannot 

be exactly determined. 

We begin by defining the STFT and then examine an interpretation of the 

STFT which will serve the ensuing analysis of each speech class. 

2.5.1 STFT Definition and Interpretation 

A special case of the time-varying Fourier transform, the STFT of a discrete-time 

sequence x ( n )  is defined as [23] 

where h ( n )  is a window sequence of finite length M, commonly referred to as an 

analysis filter. Like the Fourier transform, the STFT is periodic in w  with period 

2n. Given the Fourier transform pair 

the inverse STFT definition follows directly from (2.2) with m = n, 

The condition h(0 )  # 0 must be satisfied for x ( n )  to be recoverable. All samples 

of x ( n )  which are multiplied by non-zero h(n)  samples can be recovered the same 

way. A more general inverse STFT formula incorporates a synthesis filter f (n)  

which shapes the real and imaginary parts of X ( n ,  w )  prior to synthesis, 
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Figure 2.4: Short-time Fourier transform viewed as the output of a demodulator fol- 
lowed by an analysis filter. (After Portnoff [19].) 

The constant l/  h(0) has been absorbed into f (n). 

The most useful STFT interpretation for our impending analysis views X(n, w) 

as a time-varying parameter signal (with w treated as a parameter or sequence 

index) of the form [24] 

Q(n) = Z[x(m)]h(n- m), 

where Z[.] is some transformation designed to extract a specific signal property 

from x(n). When convolved with the analysis filter h(n), Z[x(n)] yields a param- 

eter signal whose spectral characteristics depend on h(n) and the transformation 

itself. 

In STFT analysis, Z[ - ]  corresponds to a demodulator which shifts the spec- 

tral energy of x(n) downwards by w radians. If h(n) is a narrowband lowpass 

filter, X(n, w) is also a narrowband lowpass signal whose temporal features vary 

according to those of x(n) in the neighborhood of w. The system configuration 

corresponding to the interpretation just described is illustrated in Figure 2.4. The 

output satisfies 

where *, denotes a convolution with respect to n. 
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If x(n) were applied to a bank of N such systems operating in parallel with 

the analysis frequencies set at wk = 2ak/N, the collective output would consist of 

N narrowband lowpass sequences X(n, wk) which embody the temporal features 

of x(n) in the neighborhood of harmonically related frequencies. 

2.5.2 Voiced Speech 

By substituting (2.29) into the STFT formula, we obtain an expression for the 

STFT of a voiced speech signal x(n) in terms of its harmonic representation, 

+oo P(m)-1 

X ( n ,  w )  = h(n - m)ck(m) exp ij k)(m)] e-jwm. (2.56) 

We assume that the duration of the analysis filter h(n) is sufficiently short (i.e. 

no greater than 20ms [17]) so that the local pitch period P(n)  and the impulse 

response of the vocal tract appear nearly fixed over the analysis interval. The local 

approximations 

can be used to simplify (2.56) to give [19] 

m=-oo k=O 

x exp [j k ()(n) + R(n)(m - n))] e-jWm 

P(n) - 1 

= C ck(n) H ( k ~ ( n )  - w) exp [ j  (k)(n) - wn)] . 
k=O 
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If the bandwidth of H(w)  is less than half the local pitch S2(n), then X ( n ,  w )  

may be viewed as the superposition of P ( n )  non-overlapping weighted images of 

H ( w )  shifted at regular frequency intervals. A bandpass representation of voiced 

speech follows from (2.60), with 

X ( n ,  w )  = H ( k n ( n )  - w )  exp [ j  (kd(n) - wn) ] (2.61) 

over the frequency band defined by 

and X ( n ,  w )  = 0 elsewhere. The constant wh denotes the cutoff frequency of H(w) .  

If the speech parameters are to appear nearly fixed over the analysis inter- 

val, the bandwidth of H(w)  should be wide enough to pass any of the harmonic 

amplitudes with negligible distortion. 

We now investigate the magnitude and phase structure of X ( n ,  w )  in order to 

estimate the underlying speech parameters. The STFT magnitude and unwrapped 

phase sequences are defined as 

M ( n , w )  = IX(n,w)l 

O(n, w )  = arg X ( n ,  w )  + 27rI(n, w ) ,  

where I (n,  w)  is an integer which guarantees the uniqueness of O(n, w). The arg[-] 

operator is defined as 

arg X ( n ,  w) = arctan 

and generates a phase value in the -n to n range. 

According to (2.61), the magnitude of the vocal tract filter within a frequency 

band can be obtained directly from M ( n , w ) ,  albeit with a gain factor, i.e. 
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Ick(n)H(kR(n) - w) 1 for lw - kR(n)l < wh 
M(n,w) = 

otherwise. 

Unfortunately, O(n, w) combines the phase contribution of the vocal tract filter 

t(n, m), the analysis filter h(n) and the excitation source v(n). A procedure for 

estimating the individual contributions of these quantities from O(n,w) appears 

important, considering the nature of the rate-change modifications specified earlier 

for our speech model. For this purpose, we define two distinct unwrapped phase 

components, a (n ,  w) and v(n, w), such that 

where 

a (n ,  w )  = arg ck(n) + arg H (kR(n) - w) 

v(n, w) = k4(n) - wn 

over the frequency band Jw - kR(n) 1 < wh. 

The term a (n ,  w) contributes a slowly time-varying phase because the vocal 

tract filter and the fundamental frequency R(n) are nearly fixed for the duration 

of the analysis interval. The quantity cr(n,w) will be referred to as the phase 

modulation component. 

The term v(n,w), by comparison, can vary more quickly in n because the 

corresponding instantaneous frequency can be as high as wh, which is bounded by 

half the pitch of the voiced speech signal. The quantity u(n,w) will be referred 

to as the frequency modulation (FM) component. Given its dependence on the 

instantaneous phase of the excitation source, v(n, w) may be expressed as in (2.24), 

for n > 0 
v(n, w) = 

1 0  otherwise, 
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over the frequency band Iw - kf l(n) l  < wt,. The quantity Q ( n ,  w )  is the STFT 

instantaneous frequency defined as [19] 

We note that fl(n, w )  is also a slowly time-varying sequence due to its depen- 

dence on R ( n ) ,  and as such satisfies the local phase representation 

v ( n  + e, w )  x v ( n ,  w )  + Q(n,  w)! 

Setting I!( = 1 gives 

R ( n , w )  x v ( n ,  w )  - v ( n  - 1 , ~ )  

and 

R ( n ,  w )  x v ( n  + 1, w )  - v ( n ,  w).  

Since the variations in a ( n , w )  are negligible compared to those in v (n ,w) ,  the 

instantaneous frequency of the STFT can be approximated by 

fl(n, w )  8 ( n  + 1, w )  - 8(n ,  w )  

x ~ { 8 ( n ,  w ) ,  

where Vi[.] and VL[.] are the first backward and forward difference operators 

respectively. A reasonable estimate for fl(n, w )  is the average of the first backward 

and forward differences of the unwrapped STFT phase 8(n,w).  An estimate for 

the FM component can therefore be evaluated from the sum [2] 
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I C i(Vb + V!)8(r, W) for n > O 
C(n,w) = r=l 

( o otherwise, 

over the frequency band Jw - kR(n)l < wh. We now establish the criterion for 

choosing the unwrapping integer I(n, w). 

Since the STFT instantaneous frequency a (n ,  w) is bounded by the cutoff fre- 

quency of the analysis filter, B(n, w )  should in principle satisfy 

or, equivalently, 

Because the phase difference in (2.80) is modified in steps of 2n, the minimum 

value range for JV:O(n, w)l is 0 to s. Since proper resolution of the fine harmonic 

structure of voiced speech spectra requires that wh be much less than n, there may 

be no value of I (n ,  w) satisfying (2.80). Therefore, the most stringent unwrapping 

criterion that we may postulate while guaranteeing a solution for I(n,  w) is 

The unwrapped STFT phase sequence O(n,w) can be calculated by adding or 

removing multiples of 2n to arg X(n, w )  until (2.81) is satisfied. 

While O(n, w) may be smooth in that it contains jumps of no more than T, jumps 

in the n/2 to s range can still occur due to sign changes in the real and imaginary 

components of X(n,w). A smoother unwrapped phase sequence, therefore, is 

precisely the arg X(n, w) sequence with all jumps of integer multiples of n removed 
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8,(n, w) = arg X(n, w )  + .rrI(n, w). (2.82) 

Since the minimum value range for I~kB,(n,w)l is 0 to ~ / 2 ,  the unwrapping cri- 

terion for O,(n,w) is 

The phase sequence 8,(n, w) can be calculated by adding or removing multiples of 

n to arg X(n, w )  until (2.83) is satisfied. We stress that &(n, w) does not accu- 

rately represent the STFT phase because integer multiples of .rr are not necessarily 

invisible. Yet this phase sequence is better suited for FM component estimation 

because its unwrapping criterion is more stringent than the one specified in (2.81). 

Substituting O(n, w) by O,(n, w) in (2.78) should improve the FM component esti- 

mate. 

To summarize, we have shown that the parameters of the harmonic representa- 

tion of voiced speech can be approximated by STFT-based estimates under certain 

assumptions regarding the design of the analysis filter: 

1. The length of h(n) should be sufficiently short so that major speech param- 

eters such as pitch and vocal tract frequency response appear nearly fixed 

for the duration of the analysis interval. 

2. The bandwidth of H(w) should be sufficiently wide to pass each of the time- 

varying harmonic amplitudes with negligible distortion, yet narrow enough 

to pass at most one such component. The cutoff frequency wh should be less 

than half the source pitch. 

2.5.3 Unvoiced Speech 

The STFT of an unvoiced speech signal is a stochastic process. Using the inter- 

pretation of the STFT as the output of a demodulator followed by a lowpass filter, 
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I e - j y n  

jointly stationary I 

Figure 2.5: Short-time Fourier transform viewed as the output of a bandpass analysis 
filter followed by a demodulator. 

this section treats the STFT X(n, w) as a set of random sequences indexed by w 

and sketches a second order statistical representation of the STFT. 

We begin by assuming the signal x(n) is stationary. It can be shown that 

the corresponding STFT is also stationary for a given w. However, the sequences 

X(n, wl ) and X(n, w2) are in general not jointly stationary for wl # wz [19], mean- 

ing that the joint statistics between the two sequences vary over time. In order to 

simplify the development, it would be desirable to study jointly stationary STFT 

sequences. To this end, we consider an alternate interpretation of the STFT [2,25], 

The STFT can be viewed as the demodulated output of a bandpass filter h(n)ejwn. 

Since the responses of two linear time-invariant (LTI) systems to the same station- 

ary input are jointly stationary, then the sequences X (n, wl)ejwln and X(n, w2)ejyn 

are also jointly stationary (Figure 2.5). 
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The cross-correlation sequence for these modified STFT sequences is 

where 

If we substitute X ( n ,  w; ) by the STFT formula in the above expression and eval- 

uate (2.85) while relaxing the stationarity assumption on x(n) such that x(n) be- 

comes quasi-stationary in the sense previously defined, we obtain a time-varying 

cross-correlation sequence in terms of the original STFT sequences, X ( n ,  wl ) and 

X ( n , w z )  [19]. The time-varying auto-correlation sequence for X ( n , w )  is 

where S,(n,w + cp) is the time-varying power spectrum of the unvoiced speech 

signal x ( n ) .  The function H ( w )  is the Fourier transform of the analysis filter 

h(n ) .  The variable w is treated as a parameter and cp is the frequency variable 

corresponding to l .  From (2.87) we deduce that the time-varying power spectrum 

for X ( n ,  w )  is a lowpass version of the original power spectrum in the vicinity of 

w at time n, namely 

Contrary to our earlier treatment of rate-changed unvoiced speech, the rate- 

changed version of (2.87) will not be obtained simply through linear time-scaling 

as in (2.48), because the evaluation of the modified STFT X P ( n , w )  involves a 

non-linear transformation. However, the analytical approach described above will 

later serve in determining the time-varying power spectrum of a signal synthesized 

from XP(n ,  w ) . 
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If the bandwidth of H(w) is kept as narrow as in the analysis of voiced speech, 

X(n, w) is a narrowband lowpass sequence. The STFT therefore varies sufficiently 

slowly that the estimators used to calculate cr(n,w) and u(n,w) in the voiced 

speech case are believed to be adequate for the analysis of unvoiced speech [19]. 

2.6 Synthesis of Rate-Changed Speech 

The results of the preceding sections provide the necessary framework for synthesiz- 

ing rate-changed speech from appropriately modified STFT-based estimates of the 

original speech parameters. A general synthesis equation for rate-changed voiced 

and unvoiced speech will be postulated, thereby avoiding the practical problem of 

distinguishing each speech class. 

2.6.1 Voiced Speech 

The rate-changed harmonic representation obtained for voiced speech, as given 

by (2.45), suggests that the corresponding STFT modification should consist of a 

linear time-scaling operation and a non-linear phase modification. It will be shown 

that the modified STFT from which the rate-changed speech signal xP(n) can be 

synthesized is given by [2] 

x P ( n ,  w) = X(pn, w) exp (2.89) 

= M ( h  W) ~ X P  [ j  ( o ( ~ n ,  w) + v ( h  W)/B)] . (2.90) 

The magnitude, phase modulation and frequency modulation quantities were pre- 

viously defined as 

M(n,w) = l c k ( n ) H ( ~ ( n )  - w)( 

o(n, w) = arg ck(n) + arg H (kfl(n) - w) 

u(n, w) = k+(n) - wn 
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over the non-overlapping frequency bands delimited by )w - kO(n)l < wh. 

Applying the general STFT synthesis formula (2.53) to the rate-changed version 

of the superposition sum given by (2.60), namely 

we obtain [2] 

Exploiting the local representation for d ( n )  given by (2.59) with both m and n 

scaled by P ,  (2.92) becomes 

Assuming the variations in the rate-changed pitch period sequence P(Pn)  can be 

neglected over any sample interval less than the length of f (n )h ( -n ) ,  i.e. 

P ( P r )  x P(Pn)  for f ( n  - r )  h(r  - n )  # 0, (2.94) 

(2.93) can be rewritten as 
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The summation over r represents the convolution of the rate-changed harmonic 

amplitude ck(Pn) with the composite filter f (n)h(-n) .  We recall that the speech 

parameters are nearly fixed for the duration of the analysis filter h(n) .  Since the 

effective length of the composite filter cannot exceed that of h(n),  the approxima- 

tions used to derive (2.95) are justified. Equivalently, the effective bandwidth of 

the composite filter is wide enough to pass the rate-changed harmonic amplitudes 

c@n) with negligible distortion. Therefore, (2.95) reduces to 

which is the same expression for rate-changed voiced speech as (2.45). 

2.6.2 Unvoiced Speech 

It was argued in [2] that the STFT modification used to synthesize rate-changed 

voiced speech can also be used to approximate the desired rate-changed unvoiced 

speech. Based on the second order representation for the STFT outlined earlier, 

Portnoff showed that the time-varying power spectrum of the signal y(n) synthe- 

sized from (2.90) is approximately the same as that of the ideal rate-changed signal 

xP(n). 

The time-varying power spectrum of the rate-changed unvoiced speech estimate 

y(n) was evaluated as [2] 

where Sx(n,  w) is the time-varying power spectrum of the original unvoiced speech 

signal x(n) .  The function Gp(w) represents the composite effect of the analysis 

and synthesis filters as a function of the time-scaling factor P. Hence, SJn,  w )  

is a smoothed version of the desired rate-changed time-varying power spectrum 
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S&?n, w), and the degree of smearing depends on ,8. Several simplifying assump- 

tions were made in the course of the development: 

1. The underlying speech process is Gaussian. 

2. The unvoiced speech spectrum is sufficiently smooth that the spectral res- 

olution afforded by the analysis filter h(n) is adequate for calculating the 

second moments of the STFT random sequences. 

3. The effect of the phase modulation component a(n,  w) is negligible. 

Portnoff claimed that in practice the amount of spectral smearing resulting 

from the synthesis of rate-changed unvoiced speech using (2.90) is "acceptable" 

[2], an observation which confirms the inherent smoothness of unvoiced speech 

spectra [26]. 

2.7 Distortion in Rate-Changed Speech 

Using a structural interpretation of the STFT, we shall show that some degree of 

distortion in rate-changed speech is unavoidable under the proposed TSM method. 

It will be argued that the accumulation of phase error, for which the principal 

causes will be examined in order of ascending importance, gradually deteriorates 

the structure and perceptual quality of rate-changed signals in general. 

Waveform Events and Structure 

A waveform event is defined as a set of consistent temporal and spectral features 

which characterize a waveform over a finite time interval. The magnitude and 

phase quantities of the STFT of a signal x(n), expressed as a function of both time 

and frequency, offer a convenient representation for these features. We assume that 
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the temporal boundaries of an event are marked by abrupt changes in the phase 

and magnitude characteristics of the underlying waveform. 

The signal x(n) may be segmented, according to some temporal and spectral 

feature similarity measure, into a string of contiguous sub-waveforms z;(m) repre- 

senting individual events of length L;. The i-th event is defined as 

( o otherwise. 

The original signal x(n) is recovered by concatenating the x;(m) as follows, 

The STFT of the i-th event will be written as X;(m,w), which is just X(n,w) 

expressed as a function of L; and m. Each event may be represented by the inverse 

STFT formula 

zi(m) = J_:* Mj(m, w) exp Uei(ml w)] e jwm dw 0 5 m < L;, (2.100) 

where the quantities M;(m, w )  and B;(m, w) represent the STFT magnitude and 

unwrapped phase data collected for the i-t h event. The proportionality constant, 

1/2n h(O), has been absorbed into M;(m, w) for conciseness. 

As the sampling frequency f, is increased, the difference between the last sam- 

ple of z;(m) and the first sample of ~ , + ~ ( m )  decreases. Likewise, the difference 

between the last STFT of the i-th event and the first STFT of the (i + 1)-th event 

decreases. Events which satisfy the condition 

lim {Z;+~(O) - xi(Li - 1)) = 0 
f e w  
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Figure 2.6: a) Waveform events falling within scope of analysis filter h(n) at time no 
on original time-scale. The i-th event is weighted the most. b) Theoretical waveform 
event relationship after a rate-change modification. All three events now happen to be 
weighted evenly. Note that L? = LL;/PJ. 

Iim { x ~ + ~ ( o ,  w) - Xj (L;  - 1, w)} = o 
fl-- 

will be referred to as Uphase-continuous". 

The waveform structure of x;(m) depends on the phase and magnitude rela- 

tionship of the frequency components over time. That relationship is not unique 

in the context of short-time Fourier analysis. Specifically, the STFT phase and 

magnitude values calculated for a particular event x;(m) are influenced by the 

characteristics of neighboring events falling within the scope of the analysis filter 

h(n)  (Figure 2.6). For every set of magnitude values calculated from a STFT 

frame whose scope includes the event of interest, xi(m), and irrelevant events, 

xj(m) where j # i, there is a corresponding set of phase values allowing x;(m) to 

be recovered exactly from the synthesis equation given by (2.100). If one quantity 

is modified without a corresponding modification in the other, the original event 

xi(m) cannot, in general, be recovered exactly. 

For example, consider the modified event 
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where e;(m, w) is a phase modulation component. We may postulate that the wave- 

form structure of yi(m) differs from that of xi(m) unless ei(m, w )  is a constant1. 

Up to what point ti(m, w) may deviate from a constant such that yi(m) remains 

perceptually the same as xi(m) is a difficult question best answered by perception 

science. However, it is clear that waveform structure is linked in some way to the 

perceptual character of an event and that excessive structural deterioration of an 

event must lead to a corresponding deterioration in its perceived quality. 

FM Component Estimation 

It is impossible to determine the exact value of the FM component v(n, w) from the 

unwrapped STFT phase O(n, w) without a priori knowledge of the phase modula- 

tion component a(n, w).  Therefore, the phase modification term of (2.89) cannot 

be computed exactly. However, FM component estimation errors are not likely 

to be severe over quasi-stationary and quasi-periodic portions of x(n) because the 

phase modulation term a(n,w) accounts for only a small fraction of the overall 

STFT phase in such cases. 

Local Phase Representat ion 

In practice, v(n, w) will often deviate from the local phase representation given 

by (2.73) within the scope of a STFT frame. Consequently, the simple phase 

modification specified in (2.90) merely ensures that the average slope of vP(n, w) 

matches that of v(n, w) .  We must conclude that the phase modification term 
- - 

'The special case where ci(m, w) = f wno such that no corresponds to a sample offset in the 

time domain is of no interest. 
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of (2.89) itself is flawed, and that some degree of phase error in each frequency 

component would be unavoidable even if the FM component were known exactly. 

Event Boundaries 

It is not uncommon for one or more waveform event boundaries to fall within the 

scope of a STFT frame in the course of ordinary speech processing (Figure 2.6). 

Since they are marked, according to our previous definition, by abrupt changes in 

phase and magnitude characteristics, event boundaries violate the fragile quasi- 

stationarity and quasi-periodicity assumptions of the speech model. Transients 

can be expected to cause more acute phase errors for the following reasons: 

1. Sudden variations in the phase modulation component a(n, o) may compete 

with those in u(n, w) ,  leading to poorer FM component estimates. 

2. The local phase representation given by (2.73) may be completely invalid in 

the vicinity of transients, leading to poorer phase modification. 

Depending on the nature of the transients, the phase disturbances may be selective, 

thereby increasing the tendency for the phases of adjacent frequency components 

to become poorly synchronized over time. 

Memory 

A closer examination of the phase modification term of (2.89) reveals the foremost 

weakness of the TSM method proposed by Portnoff. The FM component v(n,w) 

given by (2.78) has infinite memory due to its recursive structure. This fact 

implies that each one of its phase values depends on the location of the time 

origin and that estimation errors accumulate indefinitely. The same applies to its 

rate-changed version, uP(n, w) .  
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Impact of Phase Error 

We now relate the accumulation of phase error to the waveform structure concept 

discussed earlier. 

We see from (2.89) that Portnoff's TSM method is an example of an application 

where the phases of the frequency components of xa(rn) are modified independently 

from their magnitude, i.e. 

M ; ( ~ m , w ) e x p [ j ( 9 ; ( ~ m , w ) + r ; ( m , w ) ) ] e ' w m &  (2.104) 

0 l m  < [LilP],  

The 1.1 operator rounds its parameter to the nearest integer below. For con- 

venience, the length of the i-th rate-changed event will be denoted as La. The 

structure of the original event x;(m) cannot be preserved under a rate-change 

modification because e;(m,w) is not a constant. Since the phase and magnitude 

features of x f ( m )  are consistent for the duration of the event, the resulting struc- 

tural deterioration could in fact be perceptually benign. 

Suppose now that a rate-changed speech signal xP(n) is to be constructed by 

concatenating its rate-changed events, x4(m). The individual rate-changed events 

are not necessarily phase-continuous in the sense previously defined because the 

average frequency of each component is preserved while the event durations L; are 

altered by a factor of I / / ? .  Therefore, in general, 

lim { x ~ , ( o ,  w )  - x ~ ( L ?  - 1, w ) }  # O .  
fs+oo 

(2.106) 

An example of rate-changed events which are not phase-continuous is shown in 

Figure 2.7. 
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Figure 2.7: Rate-change modification by segmentation and concatenation. a) Original 
waveform with boundaries for two events. b) Concatenation of individually rate-changed 
events. Note that for each event the average frequency and initial phase offset have been 
preserved under the rate-change modification. 

There are many ways to modify the magnitude and phase of xf(rn, w) to en- 

sure phase continuity. However, we know that the rate-changed STFT magnitude 

M;(Pm, w) is already continuous in some sense across event boundaries. Moreover, 

we are interested only in the structural impact of modifying the phase of an STFT 

independently of its magnitude. 

To this end, we define a phase-modulated version of xf (m) ,  

The rate-changed signal xP(n) is obtained by concatenating the yf(rn) as in (2.99), 

The phase modulation term p;(w) forces the starting phase of a frequency compo- 

nent w in the i-th rate-changed event to coincide (in the modulo-2?r sense) with 
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the ending phase of the corresponding frequency component in the (i + 1)-th r a t e  

changed event in the limit of large fa, i.e. 

'The STFT xLl(O,w) is "out of phasen with x ! ( L ~  - 1,w) by C ; ( L ;  - 1,w) in 

the limit of large f,. In order to make the yf(m) phasecontinuous, the phase off- 

sets induced by previous rate-changed events accumulate in p;(w) as this example 

demonstrates, 

po(w) = 0 

pl(w) = lirn ao(L: - 1,w) 
fs-00 

pz(w) = p1 (a) + lim q(Lf  - I, w )  
f s - m  

~ - 

pi(w) = C lim a7(Lf - 1 , ~ ) .  
,.=O f*+m 

The phase disturbances which accumulate in p;(w) eventually alter the origi- 

nal structure and perceptual quality of the zf(m) in a significant way. In general, 

therefore, some of degree of structural distortion in rate-changed signals is un- 

avoidable under Portnoff's TSM method. 



Chapter 3 

Design of a Time-Scale Modification 
System 

The concepts developed in Chapter 2 may now applied to the design of a TSM 

system for speech. The major design difficulty stems from the STFT itself: in order 

for the TSM system to be realizable on a digital processor, the frequency-axis of 

the STFT must be represented by a finite number of samples. Moreover, STFT 

computations are costly both in terms of real-time and memory. Consequently, 

allowances for decimating the STFT in time should also be made. Temporal and 

spectral sampling are design issues which will compromise our former theoretical 

expectations to some degree, while introducing an extra level of complexity beyond 

the original requirement of linear time-scaling. 

In this chapter we formulate our earlier STFT-based speech parameter esti- 

mates in terms of the downsampled discrete STFT and establish the theoretical 

limits on the temporal and spectral sampling intervals. The main components of a 

time-frequency based TSM system are discussed in sequence. The design includes 

a waveform structure compensation stage for preventing excessive deterioration of 

rate-changed speech signals over time. A variety of design options are presented 

and compared on the basis of complexity and audio quality. The final design is 

that of a practical TSM system capable of producing high-quality rate-changed 
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speech under varying conditions at a reasonable computational cost. 

3.1 Analysis 

DSTFT Definition 

The short-time Fourier analyzer computes samples of the STFT of the original 

speech according to the formula 

+a3 

X(sR, ~ Q N )  = C h(sR - rn)z(m) exp [- jRNm] , 
m=-oo 

where QN = 2 r l N  and R represent the spectral and temporal sampling intervals 

respectively. The sequence h(n)  is an analysis window of length M and will be re- 

garded as a finite impulse response (FIR) filter of bandwidth wh. The downsampled 

discrete STFT, henceforth abbreviated as DSTFT, can be efficiently computed via 

the Fast Fourier Transform (FFT) class of algorithms, especially if N is a power 

Temporal and Spectral Sampling 

The parameters R and N must be carefully selected so that the result of processing 

the modified DSTFT instead of the actual STFT is approximately the same. The 

optimal choice is unclear due to the non-linear nature of the TSM processing. Nev- 

ertheless, in the absence of any parameter modification ( P  = I), the original STFT 

X(n, w) should be recoverable from X(sR, kSZN). The sequence X(n, w) should be 

sampled "often enoughn in the spectral and temporal directions to prevent aliasing 

in n and its corresponding frequency dimension. Since the bandwidth of X(n,  w) 

is bounded by wh, the admissible range for the temporal sampling interval R is 

given by ( 2 . 7 ) ,  i.e. 
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R 5 n/wh.  

The admissible range for the number of frequency samples N is [28] 

N 2 M. (3.3) 

Thus the temporal and spectral Nyquist intervals are n/wh and 2n/M, respectively. 

Analysis Filter 

While it would be desirable to keep the filter length M as short as possible to reduce 

storage requirements and computational load, the bandwidth of H(w), which is 

inversely proportional to M, must achieve several aims. 

In particular, H ( w )  should be narrow enough to allow proper resolution of 

voiced speech spectra and adequate estimation of unvoiced speech spectra. Yet 

the bandwidth of the analysis filter should be broad enough to pass the tempo- 

ral features of speech with minimum distortion, such that the underlying speech 

parameters appear nearly fixed for the duration of h(n).  The short-time Fourier 

analysis of voiced speech was conducted earlier under the highly idealized assump- 

tion that H ( w )  is zero outside its passband, a design goal which is impossible to 

achieve with a practical filter. Thus we seek a lowpass FIR filter of length M 

to satisfy the conflicting requirements stated above, one having a relatively flat 

and narrow passband as well as sharp attenuation characteristics in the stopband 

region. 

Among the most commonly used analysis windows listed in Table 3.1, the 

Hamming window offers a good compromise and other notable advantages such as 

linear phase, ease of computation and non-zero samples over its entire duration. 

The peak amplitude of the sidelobes in the stopband region is about -41dB. 

The bandwidth of a Hamming window (one half the width of its main lobe) is 
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Window Tupe Width o f  Mainlobe Sidelobe Amvlitude (dB1 "- , , 
Rectangular 4 r / ( ~  + 1) - 13 
Bartlett 8 r l M  
Hanning 8 r / M  
Hamming 8 r l M  
Blackman 12rlM 

Table 3.1: Specifications for common analysis windows. (After Oppenheim and Schafer 
~ 7 1 . 1  

approximately f 4?r/M. Substituting wh by this value in (3.2) yields the theoretical 

upper bound on the temporal sampling interval R in terms of M 

According to (2.60)) the short-time Fourier spectrum of voiced speech con- 

sists of weighted images of H(w) centered about harmonics of the fundamental 

frequency R(n). It was pointed out that the representation holds provided the 

bandwidth of the analysis filter is less than one half the source pitch. Expressing 

this restriction in terms of the cutoff frequency of the Hamming window we obtain 

a lower bound for M ,  

where P,, is the pitch period corresponding to the lowest expected source pitch 

Rmi,. Male voices can be as low as 6OHz) implying that the analysis interval should 

be greater than 66ms. 

However, speech parameters cannot be considered to be "nearly fixed" for 

periods greater than 20ms; some stop bursts may be as short as 5-10ms [29]. 
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Since our speech model and all ensuing results rely on the key assumption of 

"local stationarity", we choose to limit the length of the analysis window to 20ms 

at the expense of poorer frequency resolution for low-pitched speech signals-this 

is a commonly accepted compromise in many speech analysis applications [29]. 

Expressed as a function of the sampling frequency f,, the upper bound on M is 

therefore 

The pitch range for obtaining a Kclean" STFT bandpass representation of 

voiced speech signals subject to the constraint specified by (3.7) follows directly 

from (3.6), 

For a fixed analysis window duration (in ms), increasing the sampling frequency f, 

neither improves the ability of the Fourier analyzer to discriminate the harmonics 

of a voiced speech signal nor reduces the frequency spacing (in Hz) between the 

DSTFT harmonics. In short, the frequency resolution of the Fourier analyzer is 

independent of f, if the duration of the analysis window is fixed. 

3.2 Synthesis 

3.2.1 DSTFT Synthesis 

The rate-changed speech signal xb(n) may be synthesized from the modified DSTFT 

XP(s R, k Q N )  according to the general formula 

1 N-1 +co 

zb(n) = f (n - s R)X' (s R, ~ R N )  exp URN kn] , 
k=O s=-oo 

(3.9) 
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Portnoff used this formula for generating rate-changed speech [2]. The sequence 

f (n) is a FIR filter which performs 1 : R bandlimited interpolation on both the 

real and imaginary parts of XP(sR, kRN). The proportionality constant l/h(O) has 

been absorbed in f(n). The constants flN and R are the spectral and temporal 

sampling intervals previously defined. 

Portnoff claimed that since "the non-linear rate-change modification does not 

preserve the structure of the STFT of an arbitrary signal, the synthesized signal, in 

general, depends on the design of f (n)" [2]. If it was meant that the structure of a 

rate-changed signal can be preserved solely through proper interpolation of DSTFT 

coefficients, we must differ with that statement on the basis of the arguments 

presented in Section 2.7. Structural deterioration occurs even in the absence of 

temporal and spectral sampling. 

Portnoff recommended the algorithm proposed by Oetken et al. [30] for design- 

ing the optimal f (n). The sequence XP(n, kRN) is in principle recoverable from 

its samples provided the real and imaginary parts of XP(sR, kRN) are bandlim- 

ited. This issue will be discussed further in Section 3.4. However, since f (n)  is 

non-ideal, interpolation errors are unavoidable. 

Small errors in the complex data stream could in fact amount to large phase 

errors. The non-linear arg[.] operator defined by (2.65) is sensitive, especially in the 

asymptotic regions of the arctan(-) function. The fact that the real and imaginary 

parts of XP(sR, kQN) are processed as independent bandlimited sequences in (3.9) 

raises some question. The perceptual impact of the phase disturbances caused by 

DSTFT interpolation errors is not well understood. 

In contrast, DSTFT magnitude errors are proportional to the magnitude of the 

interpolation errors in the complex data stream. 

The synthesis equation given by (3.9) is, in some respect, inefficient. We see 

from (2.89) that the STFT rate-change modification requires the computation of 
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one polar parameter, namely the phase modification term. A polar to rectangular 

coordinate conversion is needed for each DSTFT harmonic in order to generate 

the real and imaginary parts of XP(sR, k O N )  When normally implemented, the 

conversion requires four multiplications and two additions per DSTFT coefficient, 

as this example demonstrates, 

3.2.2 Polar Synthesis 

We propose to interpolate the magnitude and phase of XP(sR, k R N )  instead of 

its real and imaginary parts. The magnitude and phase sequences derived from 

an STFT are not necessarily bandlimited due to the non-linear transformations 

involved. Consequently, they cannot be recovered exactly from their samples. The 

rate-changed signal synthesized from the polar representation of XP(sR, k O N )  will 

not, in general, be an exact representation of the inverse DSTFT corresponding to 

XP(sR, k f l N )  for R # 1. 

However, the computational requirements for interpolating DSTFT polar pa- 

rameters are believed to be modest for achieving high-quality synthesis. The mag- 

nitude sequence M(sR, k R N )  is slowly time-varying, due to its dependence, as 

(2.66) indicates, on parameters which are assumed to be nearly fixed over the 

duration of the analysis interval. Furthermore, the unwrapped phase sequence 

8(sR, k O N )  is also smooth in some sense because the phase unwrapping process 

removes most of the discontinuities from the arg X(sR, k O N )  stream. McAulay 

and Quatieri used linear and cubic polynomials for magnitude and phase interpo- 

lation respectively in their SSM system [9, 101. 

The proposed synthesis equation for the rate-changed speech estimate is 



Sect ion 3.2: Synthesis 

where 

for -w < s < w. The f~[.] and fe[.] operators are 1 : R interpolating functions. 

Since not all such functions can be expressed in terms of a linear convolution, 

we have adopted a more general notation. The polar quantities M ~ S R ,  kRN) 

and @(sR, k n N )  are written as estimates because they also rely on some form of 

non-ideal interpolation. 

Since the rate-changed speech signal is always real, there are only N / 2  distinct 

harmonics and (3.11) reduces to 

The result is similar to the SSM synthesis equation used in (9, 101. The main 

difference is that the sinusoidal components of (3.14) employ fixed rather than 

time-varying base frequencies. The polar synthesis equation requires only N / 2  

multiplications1 per output sample whereas the implementation given by (3.9) 

requires a minimum of 6N (real) multiplications2. 

Informal listening tests indicate that, in the absence of any parameter modifica- 

tion ( p  = I ) ,  the speech signal synthesized from (3.14) is virtually indistinguishable 

from the original when the DSTFT polar parameters are linearly interpolated. This 

The apparent multiplication involved in calculating the linear phase term R N k n  can easily 

be avoided. 

4  x N / 2  real multiplications for the coordinate conversion and 4 N  lo& N  real multiplications 

for the actual synthesis, assuming a radix-r FFT algorithm is used. 
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would suggest that little improvement in subjective performance is to be gained 

by using Portnoff's bandlimited interpolation approach. 

3.3 Phase Unwrapping and Estimation 

3.3.1 Phase Unwrapping 

We now establish the unwrapping criterion for 8(sR, kRN) and the range of R 

over which it holds. The results are then extended to B,(s R, kRN). We recall that 

B(n, w) and 8,(n, w) differ only by an integer multiple of a. 

The sampled transform implementation of the unwrapped STFT phase is 

The most stringent phase unwrapping criterion that we may postulate for the 

unwrapped DSTFT phase is 

The expression follows from the same arguments we used to derive (2.81), the un- 

wrapping criterion for 8(n, w). Thus 8(sR, kRN) is obtained by adding or removing 

integer multiples of 27r until (3.16) is satisfied. 

Since the instantaneous frequency of the STFT, R(n, w) ,  is slowly time-varying, 

then so must be VkB(n, w) by virtue of (2.76). Consequently, 

Multiplying both sides of (2.79) by R yields the STFT instantaneous frequency 

bound for the sampled transform implementation 
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In order to satisfy (3.16), R must be chosen such that 

The temporal sampling frequency 2 r /  R should therefore be no less than 2wh, the 

Nyquist rate for sampling X(n,  w) in the temporal direction. If the analysis filter 

h(n) is a Hamming window of length M, the cutoff frequency wh is approximately 

4r lM.  Hence, R 5 M/4, which is the same bound we derived earlier for sampling 

the STFT. 

Repeating the above analysis for B,(sR, kRN), which is given by 

8,(s R, kRN) = arg X(sR, kON) + r I ( s  R, kRN), (3.20) 

we find that 

In this case, the temporal sampling frequency 2 r /R  should be no less than twice 

the Nyquist rate for sampling X ( n ,  w )  in the temporal direction. The unwrapping 

criterion for 8,(sR, kRN) holds only for R < M / 8 ,  assuming the analysis filter is 

a Hamming window of length M .  

3.3.2 FM Component Estimation 

The FM component estimator C(n, w) for the sampled transform implementation 

follows directly from (2.78), 

l otherwise 
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over the frequency band 

The unwrapped phase sequence +(sR, kON) is either O(sR, kON) or O,(sR, kON), 

depending on the desired accuracy. The quantity O,(n, w) was found to be more 

suitable for FM component estimation. 

If the FM component estimator is computed from O(sR, kON), the variations 

in the phase modulation component a(sR, EON) are implicitly neglected, i.e. 

This approach relies more on the fundamental assumption that the speech param- 

eters are nearly fixed over the duration of the analysis interval. The resulting FM 

component estimate will tend to be coarse, leading, in principle, to more rapid 

structural deterioration of the rate-changed speech. If the distortion can be toler- 

ated, it would be more economical to compute D(sR, kRN) from 8(sR, kRN) since 

the polar synthesis method already uses the unwrapped DSTFT phase. 

3.4 Parameter Modification 

The STFT rate-change modification, according to (2.89), consists of two basic 

procedures: linear time-scaling and non-linear phase modification. Each procedure 

will be treated individually. Then a novel approach specific to the polar TSM 

synthesis method will be presented. 
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3.4.1 Linear Time-Scaling 

An integral part of the TSM method proposed by Portnoff consists of linearly 

time-scaling the magnitude and phase of the original STFT. 

Since the X(sR, kON) sequences (indexed by k) are bandlimited, one way to 

achieve this objective is to apply the linear time-scaling formula given by (2.9) to 

the real and imaginary parts of the DSTFT as follows, 

where ,8 = D J I .  The interpolating FIR filter f(n) may again be designed by 

Oetken's technique [30]. The linearly time-scaled sequences B(Ps R, kRN) and 

B,(PsR, k f l ~ )  are obtained by unwrapping the phase argument of X(PsR, kaN)  

as described in Section 3.3. 

An alternate method which produces perceptually acceptable results consists 

of linearly time-scaling the polar representation of X(sR, LaN), i.e. 

for -m < r < m. The fM [.I and fe[.] operators are the interpolating functions pre- 

viously defined. The same fe[-] interpolator can be used to calculate P , (ps~ ,  kRN). 

Simplicity is the key advantage of the polar approach. As we indicated earlier, 

fM[-] need only perform linear interpolation because M(sR, kRN) is slowly time- 

varying. The fe[-] interpolator may also be simple in design, such as a first or 

third order polynomial [lo], since the unwrapped DSTFT phase is believed to be 

sufficiently smooth. 

However, the polar approach is less efficient than (3.25) due to the computations 

involved in obtaining the magnitude sequence M(sR, ~ R N ) ~ .  The computational 

2 multiplications and 1 square root operation per magnitude value. 



Section 3.4: Parameter Modification 56 

requirements of the unwrapped DSTFT phase O(sR, kaN)  are irrelevant because 

both synthesis methods described in Section 3.2 ultimately require some form of 

phase unwrapping. 

3.4.2 Phase Modification 

The phase modification step consists of dividing the the linearly time-scaled FM 

component v(pn, w) by P. This is achieved, as (2.89) indicates, by multiplying the 

linearly time-scaled STFT X(Pn, w) by a non-linear phase modification term. The 

sampled transform implementation for this term is 

exp [j (a - 1) B ( ~ s R ,  k f l ~ ) ]  . 

The implementation for the FM component estimator B(sR, kflN) was discussed 

in Section 3.3. Calculating the FM component estimator from @SR, t o N )  or 

8,(Ps R, kRN) implicitly generates P(ps R, kRN). 

If the rate-changed signal is synthesized from the DSTFT synthesis equation 

given by (3.9), the order in which the linear time-scaling and the phase modification 

procedures are performed becomes important to prevent frequency aliasing of the 

original X(sR, MIN) sequence [2]. The bandwidth of the modified sequence 

is about l /p  times the bandwidth of X(n,w). In contrast, the bandwidth of 

X(pn, w )  is p times that of the original. When both scaling methods are com- 

bined to produce the rate-changed STFT as in (2.89), the effective bandwidth is 

approximately the same as that of X(n, w).  Consequently, for time-scale com- 

pression ( p  > I ) ,  the phase modification should be implemented before the linear 
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time-scaling operation. Conversely, for time-scale expansion ( 0  < /? < I), the 

phase modification should be implemented after the linear time-scaling operation. 

The implementation order is of no concern to the polar TSM synthesis method 

because the phase and magnitude sequences are not treated as bandlimited se- 

quences. 

3.4.3 A Novel Incremental Approach 

The relative smoothness the STFT magnitude and unwrapped phase sequences 

can be exploited to simplify the parameter modification procedure for the polar 

synthesis met hod. 

We assume that the FM component estimator b(n ,  w )  given by (3.22) is calcu- 

lated from the unwrapped STFT phase O(n, w )  and that 

v;O(n ,  w )  x v{O(n, w) .  (3.30) 

The FM component estimator reduces to 

Consequently, all 

nored, i.e. 

variations in the 

for n > 0 

otherwise. 

phase modulation component cr(n, w )  are ig- 

The estimate for the rate-changed unwrapped STFT phase follows from (2.90) 
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The initial STFT phase offsets are preserved under the rate-change modification 

as desired. 

It is implicitly assumed by (3.31) that O(n, w) satisfies the local phase repre- 

sentation given by (2.73) for the FM component. Scaling both n and l by P and 

setting Z = -1 in (2.73) yields an alternate representation for the rate-changed 

STFT instantaneous frequency, 

1 
fl(Pn, W) = j ? ~ t ~ ( / 3 n ,  w). (3.34) 

Since a ( n ,  w) is slowly time-varying, we introduce the following approximation, 

By substituting n with [PnJ in (2.76) and comparing the result with (3.34), we 

obtain the local approximation 

The slope of the linearly time-scaled unwrapped STFT phase B(pn, w) is therefore 

approximately P times the slope of O(n, w) in the vicinity of the time-scaled instant 

Bn. 

Keeping in line with our usual recursive definition of unwrapped phase quan- 

tities, we propose that the phase estimate for xP (n ,  w) be 

Likewise, we propose that the magnitude estimate for XP(n, w) be 
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Index on New Time-Scale Index on Original Time-Scale 

Table 3.2: Relationship between the sample indices on the original and new timescales 
for the incremental approach. For time-scale compression ( P  = 1.25), one sample interval 
is deleted every four samples. For time-scale expansion ( P  = 0.8), one sample interval is 
repeated every four samples. 

Equations (3.37) and (3.38) define a TSM system where no explicit linear time- 

scaling nor multiplications by 1 / P  are required. Time-scale compression ( P  > I), 

is effectively achieved by periodically deleting sample intervals from the original 

signal x ( n ) ,  whereas time-scale expansion (0 < ,6 < 1 )  consists of periodically 

repeating sample intervals. The examples of Table 3.2 illustrate this point. 

The rate-changed unwrapped STFT phase sequence i b ( n ,  w )  retains essentially 

the same smoothness properties as the original due to its incremental structure. 

However, ~ ~ ( n ,  w )  is in general discontinuous. This is of no great concern because 

the original STFT magnitude sequence is slowly time-varying. 

We note that variable TSM is easily implemented by letting the time-scale 

factor ,B vary as a function of time in (3.37) and (3.38).  
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3.5 Waveform Structure Compensat ion 

From the discussion in Section 2.7, it is clear that the performance of a Portnoff- 

like TSM system could be improved if the impact of infinite memory were reduced. 

This would help restrict the accumulation of phase error which deteriorates the 

structure of rate-changed signals. Two new approaches to the problem will be 

examined. 

3.5.1 Waveform Interpolation 

We assume that the speech signal x(n) can be segmented into a string of events 

x;(m) defined as in Section 2.7. The goal is to construct the rate-changed signal 

xP(n) by concatenating its individually rate-changed events xf (m) .  It was shown 

that these are not, in general, phase continuous at their boundaries. The phase 

quantity p;(w) of (2.107) was introduced to correct the problem, but was found to 

deteriorate the structure of the rate-changed events over time. 

Waveform interpolation is suggested as an alternative for removing the discon- 

tinuity created as a result of concatenating rate-changed events. While it does not 

eliminate the accumulation of phase error over a single event, this approach does 

prevent the phase error from accumulating indefinitely. 

The basic idea is illustrated in Figure 3.1. Two rate-changed events are con- 

catenated by overlapping and interpolating the last K samples of xf- l (m) with 

the first n samples of xf (m) .  The effective length of each rate-changed event is 

therefore shortened by n samples. Sample loss can be avoided simply by defining 

original events which overlap each other by [PK] + 1 samples in the first place, i.e. 

( o otherwise. 
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P Figure 3.1: Waveform interpolation for two rate-changed events, (m) and zP(m). 
The waveform segments within the interpolation interval n are severely out of phase. 

The effective length of each rate-changed event $(m) after interpolation is LLi/pI 

as desired. We recall that the length of rate-changed events is denoted as L?. The 

rate-changed signal z@(n) is then constructed by concatenating the yf(m) as in 

(2.108). 

The interpolation interval K: should be kept as short as possible to preserve the 

character of the individual rate-changed events. Ideally, 

However, as a rule, the larger the phase mismatch between two rate-changed events, 

the longer K, must be to smooth the discontinuity. One way to alleviate the dis- 

continuity is to align the rate-changed events prior to interpolation. 

The starting index of the i-th rate-changed event is offset by e; samples such 

that the next K samples provide the 'best matchn fo; the last rr samples of the 

(i - 1)-th rate-changed event. This approach is shown in Figure 3.2. The modified 
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Figure 3.2: Waveform interpolation with time-alignment for two "extended" rate- 
changed events, yLl (m) and yf(m). The waveform segments within the interpolation 
interval n (in the middle of the diagram) are in phase as a result of discarding the first 
ti samples from y?(rn). 

version of y?(m) is defined as 

where I; maximizes the short-time correlation function 

Though the first I;  samples are discarded from yf(m), the interpolation interval n 

can be kept shorter than it would be if the events were not time-aligned. 

In order to preserve the character of the rate-changed events and to  limit the 

amount of distortion at event boundaries, the segmentation rules should be de- 

signed to satisfy the condition 
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3.5.2 Phase Modulation 

The phase modulation approach also assumes that xP(n) is constructed from in- 

dividually rate-changed events. In essence, the met hod consists of adjusting the 

phase values of the STFT frequency components such as to prevent the phase error 

from accumulating beyond a single event. Contrary to the waveform interpolation 

approach, the phase modulation method eliminates waveform discontinuities prior 

to synthesis and does not discard any samples. 

We recall that the initial phase offsets of the frequency components for each 

event are preserved under rate-change modifications, i.e. 

arg X;(O, w )  = arg x f ( 0 ,  w ) .  (3.44) 

Consequently, the quantities X;(O, w )  provide an exact description of the phase 

relationship among the frequency components at specific points along x(n) .  

We propose to restrict the accumulation of phase error by forcing the i-th 

rate-changed event to be phase-continuous with the (i + 1)-th original event. The 

amount of phase correction required at the i-th event boundary is given by 

P P O;(w)  = arg [ lim {x ,+~(o ,  w )  - Xi (L i  - I, w ) } ]  , 
fa-= 

The amount of phase correction does not exceed n in either the positive or negative 

P P direction. Since Xi+l (0 ,  w )  and Xi (L;  , w )  correspond roughly to the same sample 

instant along xP(n), the quantity Oi(w)  can in practice be approximated by 

P P Oi (w)  a d, [arg x,+~(o,  w )  - arg Xi (Li  , w ) ]  . 

The d,[.] operator adds or removes multiples of 27r to its argument until the re- 

P P sult lies in the -?r to n range. The STFT value Xi (L i  , w )  serves only in the 

computation of O;(w) ,  not in the actual synthesis of xP(n). 



Section 3.5: Waveform Structure Compensation 

We define a phase-modulated version of zf(m) as 

The proportionality constant 1/27rh(0) has been absorbed in x!(rn, w) for brevity. 

The phase modulation term p;(m, w) distributes, according to some rule, the phase 

correction amount @(w) over L! samples to ensure the yf(m) become phase- 

continuous. The rate-changed signal xP(n) is then constructed by concatenating 

the yf(m) as in (2.108). 

In order to limit the distortion in each synthesized sample, it is suggested that 

O;(w) be uniformly distributed over the i-th event, i.e. 

The average frequency of x f ( m ,  w) is therefore shifted by a fixed quantity which 

does not exceed f T / L ~ .  The term p;(m,w) is a function of present and future 

phase data. Unlike the phase modulation term p;(w) given by (2.1 lo), the effect 

of p;(m, w )  does not extend beyond the i-th rate-changed event. 

Since the amount of phase modulation is not constant across the frequency 

spectrum, we are compromising the spectral structure of the rate-changed event 

zf(m) to ensure the TSM system has finite memory while enforcing phase conti- 

nuity at the event boundaries. The phase modulation amount could be made arbi- 

trarily small by increasing L;, but only at the cost of increased temporal structure 

distortion over the i-th rate-changed event. 

Preliminary experiments using (3.47) and (3.48) indicate that there is no over- 

lap between t he perceptual tolerance regions of temporal and spectral distortion: 

one form of distortion is always apparent in the rate-changed output. Spectral 

distortion is perceived as occasional beating among the vocal tract harmonics in 

voiced speech and as occasional smearing in unvoiced speech. Temporal distortion 
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Figure 3.3: a) Phase and magnitude relationship between two frequency components, 
A and B,  both on the original and new time-scales. The phase difference between A; 
and A;-, represents the amount of phase correction required for A in the ( i  - 1)-th rate- 
changed event. Ditto for B; and B?-, . b) Application of weighting criteria to reduce the 
amount of phase correction for the perceptually most important frequency component, 
A. Vectors on the original time-scale are rotated by the constant -y. 

modifies the perceptual character of some phoneme onsets and sustained sounds 

in more subtle ways. The method must be developed further to achieve a better 

structural compromise. 

Perceptual Weighting 

It is reasonable to suppose that the amount of perceived spectral distortion is pro- 

portional to the amount of phase modulation applied to the perceptually important 

P frequency components of xi (m). 

Hence, we propose to offset the phase of x$~ (m, w )  by a constant ri+l to re- 

duce the phase correction amount Oi(w)  for the perceptually important frequency 

components. The constant €;+I can be interpreted as the complex plane rotation 

factor for the (i + 1)-th original event. An example is shown in Figure 3.3. Ac- 
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cording to our earlier postulate in Section 2.7, the constant €;+I does not alter the 

P waveform structure of (m). 

The revised definition for y f ( r n )  is 

where 

The d2,[.] operator adds or removes multiples of 27r to its argument until the result 

lies in the 0 to 2n range. The W;(w) quantity represents the perceptual weight of 

the frequency component w. The constant E; is the weighted average of the phase 

differences at the (i - 1)-th event boundary. Contrary to the phase modulation 

component p; (m,  w ) ,  the constant E; depends on past STFT data. 

Equation (3.49) may be intuitively interpreted as follows: p;(m, w )  ensures that 

yf(m) is phase-continuous with yf+,(m) while ~i reduces the perceptual impact of 

phase modulation in yf-,(m). The system memory is still limited to a single event. 

We now define the perceptual weighting function. 

Ignoring the masking and spectral energy spreading effects of the often-used 

critical band model of the human ear [12], a reasonable definition for the perceptual 

weighting function is 

where the normalization constant Xi is given by 
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However, (3.52) fails to take into account that the ear is most sensitive to spectral 

distortion in the low-frequency range of the auditory spectrum due to the narrow 

bandwidth of the critical bands in that region [31]. For example, an average 

frequency deviation of f s/ L? applied to frequency components below 1 kHz rather 

than above is much more objectionable to the ear. As it stands now, (3.52) tends 

to favor frequency components near the first formant region (IkHz), where most 

speech energy is concentrated. It is suggested that the weighting function be 

amended to reflect the position of a frequency component in the auditory spectrum. 

The revised definition is 

where 

Given the logarithmic response of the ear, it is reasonable to presume an exponen- 

tial form for C(w) which favors lower frequencies, 

w-P for w > 0 
C(w) = 

0 for w = 0, 

where p 2 1. Increasing the weighting exponent p tends to concentrate the total 

weight near w = 0. However, p should not be so large as to cancel the effect of the 

spectral energy weights. 

A heuristic upper bound for p can be defined as the value of p which attenuates 

the spectral energy weights by an amount equal to the average dynamic range D 

(in dB) of the signal over the frequency range having the highest spectral energy 

concentration, i.e. 
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Letting w = kflN, we obtain the corresponding expression for the sampled trans- 

form implementation 

For voiced speech, the frequency range of interest is 0 to 1kHz. Assuming the 

average dynamic range of the harmonics in the first formant region is about 50dB, 

we obtain (with k,;, = 1) an upper bound for p expressed as a function of the 

number of frequency samples N and the sampling frequency f,, 

p < 5 /  log(N x 1000Hz/ f,). 

3.6 Overall Design 

We now indicate the preferred design options for implementing a complete TSM 

system. We begin by summarizing the basic steps involved in computing the rate- 

changed STFT XP(n,w) for the proposed TSM synthesis methods. In order to 

simplify the notation, it is assumed that no spectral sampling takes place. 

Portnoff's method requires, in the case of time-scale expansion, 

Bandlimited D : I interpolation of the real and imaginary parts of X(sR,w) 

to obtain X(psR, w). 

Computation and unwrapping of the phase sequence corresponding to the 

linearly time-scaled DSTFT. The resulting sequence is either B(PsR,w) or 

B,(Ps R, w), depending on the desired FM component accuracy. 
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Estimation of the FM component from the unwrapped phase sequence ob- 

tained in the preceding step. 

0 Multiplication of the FM component estimate C(Ps R, w) by 1/P. 

0 A polar-to-rectangular conversion to obtain the real and imaginary parts of 

the rate-changed DSTFT estimate ~ P ( s R ,  w). 

0 Bandlimited 1 : R interpolation of the real and imaginary parts of X ~ ( S R ,  w )  

to obtain x P ( n ,  w). 

The computational steps are the same for time-scale compression, where only the 

implementation order varies. 

The polar synthesis met hod, in combination with the increment a1 parameter 

modification scheme, requires 

0 Computation of the magnitude and unwrapped phase sequences correspond- 

ing to X(sR, w). 

0 Linear 1 : R interpolation of the magnitude sequence M(sR,w) to obtain an 

estimate for M ( n ,  w). 

0 Linear or cubic 1 : R interpolation of the phase sequence B(sR, w )  to obtain 

an estimate for 8(n, w) .  

0 Estimation of the rate-changed magnitude sequence MP(n, w). 

Estimation of the rate-changed unwrapped phase sequence @(n, w). 

We recall that the rate-changed quantities of the last two steps are obtained 

through a "sample intervaln insertion and deletion process without the use of 

multiplications and explicit interpolation procedures. 
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The polar incremental method is crude compared to Portnoff's original ap- 

proach. However, the primary source of distortion in rate-changed speech is the 

structural deterioration caused by the non-linear STFT phase modification. There 

is therefore no point in striving to obtain an exact representation of a rate-changed 

STFT which is non-ideal in the first place. Furthermore, preliminary experiments 

using polar synthesis with p = 1 suggest that exact signal representations may be 

perceptually redundant. 

For these reasons, we elect to base our TSM system design on the polar incre- 

mental approach. More rapid structural deterioration of the rate-changed speech 

is, however, anticipated. Waveform structure compensation is therefore an impor- 

tant issue. 

The waveform interpolation method, which consists of overlapping and interpo- 

lating consecutive rate-changed waveform events, is straightforward. In practice, 

however, it is often difficult to hide the disturbances caused by interpolated wave- 

form events which are severely out of phase. While the time-alignment procedure 

discussed earlier alleviates the problem, the distortion becomes less obvious if the 

waveform event boundaries correspond to phoneme boundaries or are located in 

low energy regions. Voicing detection was found to be adequate for segment- 

ing noise-free speech. Unfortunately, the resulting TSM system was not robust. 

More sophisticated segmentation algorithms would be required for processing noisy 

speech. 

The phase modulation method, on the other hand, compromises the spectral 

structure of the rate-changed signal to eliminate temporal structure deterioration 

at event boundaries. This is achieved by uniformly distributing the phase differ- 

ence between consecutive rate-changed events over time. Consequently, the phase 

disturbances are never concentrated in one particular region of the signal. The 

weighting scheme suggested earlier can significantly reduce the amount of phase 
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correction required for perceptually important frequency components. In general, 

the perceptual impact of phase modulation can be further reduced by increasing 

the length of the original waveform events. However, the length of the original 

event also determines the storage requirements of the TSM system. The phase 

data for an entire rate-changed waveform event must be buffered before the phase 

modulation computations can take place. Assuming the number of distinct DSTFT 

harmonics is N/2, the total amount of phase data storage required for processing 

the i- th event is 

where L: denotes the length of the i-th rate-changed waveform event. The constant 

bs represents the amount of storage per phase coefficient. The buffering require- 

ment poses a serious practical limitation: variable length rate-changed waveform 

events cannot be synthesized at a constant rate, assuming no side information is 

available. We are therefore obliged to choose a constant waveform event length L 

and to disregard the issue of segmentation altogether. 

Despite the latter compromise, phase modulation is the preferred method, as 

it is believed to be more robust and economical. 

The block diagram for the final TSM system is shown in Figure 3.4. The 

mathematical representations for each component will be reviewed in sequence. 

Analysis 

Since the input sample index range of most practical N-point FFT algorithms is 

limited to [0, N - 11, we must modify the original STFT definition, which assumes 

that the analysis filter h(n)  slides past the input signal x(n) and is centered about 

index n. In the following definition, the position of h(n)  instead appears fixed in 
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Figure 3.4: Block diagram for the proposed polar incremental TSM system. The 
subscript Y reflects the change in the original STFT definition. Note that wk = RNk. 

I 1 

time and centered within the summation interval, while x(n) slides past h(n), 

x(n)- 

N-1 

Y(sR, kRN) = h(m - N/2)x(sR + m - ~12)e-jknNm 
m=O 

= exp Ij kRN (sR - N/2)] X(s  R, ~ R N ) .  (3.62) 

Expressed in terms of the polar quantities previously defined, the magnitude 

and unwrapped phase sequences corresponding to Y(sR, kRN) are, respectively, 

OY (~R,wk) &(n, wk) $(n, wk) 

4 w ]  l : R  TSM buffer 

& W k )  4 4  

N-point 
FFT 

and 

By (s R, kRN) = arg Y (s R, ~ R N )  + 2x Iy (s R, Lanr) 
= k(sR - N/2)RN + B(sR, ~ R N ) .  (3.64) 

N-point 
synthesis 

For a given k, the phase quantities By(sR, kRN) and B(sR, kRN) differ only by 

a constant and a linear term. Substituting (3.64) in (3.16) yields the new phase 

unwrapping criterion 

* 
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The Hamming window defined by 

h(n) = 0.54 - 0.46 cos [2r(n L ~ ~ ~ ) ]  -M/2 5 n < M/2 

is chosen as the analysis filter. The length M is fixed at 120 x 10-3fs] to afford 

adequate frequency resolution while the speech parameters appear reasonably con- 

stant over the analysis interval. The temporal sampling interval R is bounded by 

M/4 to prevent phase unwrapping errors and frequency-aliasing of Y(sR, kRN). 

The number of frequency samples N is chosen such that N > M to prevent time- 

aliasing of the windowed speech segments. A power of 2 is selected for N so that 

the efficiency of radix-:! FFT algorithms may be exploited to compute Y(sR, LON). 

Parameter Interpolation 

The estimate for the magnitude sequence My(n, kRN) is obtained by linearly in- 

terpolating its samples as in [lo], 

where 

While $(n, ERN) could be computed in the same manner, cubic interpolation 

would provide a smoother estimate. The idea was first proposed by Almeida and 

Silva [32] who used cubic interpolation in their harmonic wave synthesizer, and 

was later adopted by McAulay and Quatieri [lo]. 
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The approach assumes that &(n, kRN) is obtained over the range sR  < n 5 

(s + l )R  by sampling the continuous cubic polynomial 

Bk(t) = a + bt + ct2 +dt3 0 5 t 5 R (3.70) 

at unity time intervals, with the boundary conditions 

Bk(0) = BY (sR, ~ R N )  (3.71) 

h ( R )  = BY ((s + l)R,  ON). (3.72) 

The average frequency of the k-th harmonic is approximately kRN because the 

linear phase component ejknNn tends to dominate By(n, kRN). Using the fact 

that the instantaneous frequency is the derivative of the phase, we may postulate 

further constraints on Bk(t), i.e. 

A(0) = ek(R) kON. (3.73) 

Under the constraints defined by equations (3.71), (3.72) and (3.73), the coefficient 

solution set corresponding to (3.70) is 

a = By (sR, kRN) (3.74) 

We note that 

lim c = lim d = 0, 
R-CQ R d o o  

indicating that cubic interpolation should be no more effective than linear inter- 

polation for large temporal sampling intervals. Cubic interpolation is more useful 

in a SSM system, where in general &(o) # &(R) because the base frequencies of 

the sinusoidal components vary over time. Both the linear and cubic methods will 

be implemented for comparison. 
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Parameter Modification 

Rate-change modifications for the estimated phase and magnitude sequences are 

implemented using the incremental parameter modification equations given by 

(3.37) and (3.38).  The corresponding estimators for the final implementation are 

for n = 0 .  

(3.80) 

Phase Modulation 

The phase modulation equations for the final implementation follow from (3.50),  

(3.51),  (3.54),  (3.55),  (3.56) and (3.60).  For convenience, the constant LP will be 

used to denote the rate-changed event length [ L I P ] .  It will also be assumed that 

L is a multiple of the temporal sampling interval R. The equations are 

1 
p(n. ~ R N )  = gd ,  [arg Y ( ( i  + 1)L, kRN) - e(n + L O )  - 

( ( i  + 1 ) ~ ~ ~  k n N ) ]  ( n  - i L P ) ,  (3.82) 

where 

p < 51 log(N x 1000Hzl f,). 

The values of L and p will be determined experimentally. 
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Synthesis 

The estimate of the rate-changed version of dy(n, k R N )  can be related to that of 

d(n, k R N )  using (3.33) and (3.64), 

Substituting this result in the sampled transform implementation of (3.14) gives, 

with RN = 2n /N ,  the final synthesis equation 
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Simulation of a Time-Scale 
Modification System 

A software simulation of the polar incremental TSM system proposed in Section 3.6 

was conducted using the C programming language on a general purpose worksta- 

tion. Three audio sources form the basis of the experimental data presented in 

this chapter: a male speaker, a female speaker and orchestral music. 

4.1 Experimental Procedure 

The experimental procedure was as follows: single channel 16-bit digital audio files 

were selected from a database, rate-changed by the simulation software, stored, 

then played back on a digital audio reproduction device. Informal listening tests 

were conducted using either headphones or a single loudspeaker. 

4.2 Results 

The experimental results are presented as waveform plots so that the structural 

impact of TSM may be appreciated. Subjective terms are used to assess the quality 
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of rate-changed speech. 

The experiments were initially performed using audio files having a source sam- 

pling rate f, of 8kHz. Some sort of time-varying phase distortion could be heard 

in the rate-changed speech, along with occasional quavering in the voiced portions 

and some smearing in the unvoiced portions. The problem largely disappeared 

when the sampling rate was increased to l6kHz. We recall that any increase in f, 

does not improve the frequency resolution (in Hz) of the short-time Fourier ana- 

lyzer if the duration (in ms) of the analysis filter is fixed. However, the granularity 

of the incremental parameter modification section is decreased. By this we mean 

that the structural impact of repeating and deleting "sample intervals" diminishes 

as the sampling rate increases. Similarly, the effect of the waveform compensation 

section (i.e. phase modulation) becomes less noticeable if the duration (in ms) 

of the waveform events remains unchanged as f, increases. The reason is that 

the amount of phase correction for the i-th rate-changed event is distributed over 

larger values of Lo, the length (in samples) of the rate-changed waveform events. 

Finally, less frequency aliasing and phase unwrapping errors occur for perceptu- 

ally important frequency components as f, increases because they are shifted away 

from the Nyquist frequency. Thus, for the sake of interest, we have chosen to re- 

port the experimental data relating to audio files having a source sampling rate 

of l6kHz. Consequently, the analysis filter length M was set to 320 (20ms) and 

the number of frequency samples N, to 512 (first power of 2 greater than M). 

The upper bound for the perceptual weighting factor p of the phase modulation 

algorithm, for the given f,, is approximately 5. 

Female Speaker 

Figure 4.1 depicts an original utterance by a female speaker. The average pitch of 

the voiced portions is about 190Hz. 
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In order to verify the integrity of the polar synthesizer, we processed the ut- 

terance in the absence of any parameter modification ( P  = 1). Figure 4.2 shows 

the result of synthesizing the utterance with linear and cubic DSTFT phase inter- 

polation. The original and synthesized signals were virtually indistinguishable in 

both cases. It was therefore decided to conduct the remaining experiments using 

linear phase interpolation. 

Figure 4.3 illustrates a compressed version ( P  = 2.0) of the same utterance and 

Figure 4.4, an expanded version ( P  = 0.5). The perceptual quality of the rate- 

changed signals was excellent across the tested time-scaling factor range, 0.5 5 

,8 5 2.0. Occasional smearing could be noticed at certain unvoiced phoneme 

boundaries for time-scale factors near 0.5, but otherwise the quality of the signals 

appeared to match that of the original utterance. If some form of distortion occurs r 

in the case of time-compression, it is presumably masked by the accelerated rate 

of articulation. 

One striking observation was made: better quality was obtained using higher 

values of the temporal sampling interval R rather than lower ones. For R = 1, 

the rate-changed signal had a slightly reverberant quality. It would appear that 

preserving the characteristics of the original DSTFT phase exactly is not desirable 

under a rate-change modification. 

Figure 4.5 plots the first backward difference of the unwrapped phase sequence 

of a DSTFT harmonic over the 400-800ms portion of the utterance shown in 

Figure 4.1. The diagram reflects the variations in the instantaneous frequency 

of that harmonic over time. We chose a harmonic corresponding to a'frequency 

where many phase irregularities are likely to occur. Despite the local disturbances, 

the average first backward difference holds steady at about 2 x k / N ,  the base fre- 

quency of the k-th DSTFT harmonic. The abrupt excursions (which never exceed 

T) are caused by voicing transitions and, presumably, by spectral energy shifts 
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among adjacent harmonics. The unwrapped phase sequences for harmonics hav- 

ing the highest spectral energy, usually those in the 0-lkHz range, tended to be the 

smoothest. Thus the use of linear phase interpolation appears justified for these 

harmonics. 

The parameter values 

L = 1100 x 10-3f,J for P > 1, and L = llOOP x 10-3f,J for ,4 < 1, 

were found to give good results. We also noted that the TSM system tends to 

attenuate rate-changed signals. In order to determine the source of the attenuation, 

we set the complex plane rotation factor ~ ( n )  to zero and compared the outputs 

of the original and modified TSM systems. Thus it was determined that both 

~ ( n )  and the TSM algorithm attenuate rate-changed signals in distinct ways. For 

a single rate-changed waveform event, it appears that ~ ( n )  contributes a fixed 

amount of attenuation, whereas the TSM algorithm contributes a time-varying 

component which probably reflects the degree of structural deterioration. 

Figure 4.6 illustrates the result of concatenating individually rate-changed 

events when the waveform structure compensation stage is bypassed. The process- 

ing parameters are the same as those used in the time-scale expansion example 

of Figure 4.4. The location of the discontinuities (every 100ms) correspond to 

the waveform event boundaries. As we expected, structural deterioration is most 

severe in the neighborhood of sharp transients. For example, the onset character- 

istics of the voiced phoneme following the consonant burst labeled as 'D' are very 

different from those of the original utterance shown in Figure 4.1. 
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Male Speaker 

Figure 4.7 depicts an original utterance by a male speaker. The average pitch of 

the voiced portions is about 125Hz. 

Figure 4.8 illustrates a compressed version (/3 = 1.25) of the same utterance. 

Mild quavering was occasionally noticed in the voiced portions of the rate-changed 

signals for 1 < /3 < 2.0, especially near unvoiced-to-voiced speech boundaries, 

along with some degree of smearing in the unvoiced portions. The perceptual 

quality of the rate-changed signals was high otherwise, comparable to that of the 

original. 

Figure 4.9 shows an expanded version (P  = 0.67) of the original utterance. In 

general, the TSM algorithm did not perform as well for /3 < 1. Both the quavering 

and the smearing became more obvious as the time-scaling factor was decreased. 

For p = 0.5, the rate-changed signal was somewhat reverberant. The quality of 

expanded signals (in the male speaker category) may be described as "goodn since 

the rate-change modification does not significantly impair the intelligibility of the 

speaker. 

A spectrogram analysis of the expanded signals revealed that the harmonic 

structure of the original utterance had not be faithfully reproduced. Only the 

general formant structure had remained intact under the rate-change modification. 

The wideband spectrograms of Figure 4.10 show a voiced portion of the original 

utterance and the corresponding voiced portion of an expanded version. The 

vertical striations in the spectrogram of the expanded signal are less defined and 

more irregular. 

We recall that the minimum pitch bound for obtaining a "cleann STFT band- 

pass representation of voiced speech is inversely proportional to the duration of 

the analysis window. The minimum pitch bound for a short-time Fourier analyzer 
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which uses a 20ms Hamming window was set at 200Hz. Since the original ut- 

terance violates this bound by about BOHz, the distortion in the expanded signal 

may be attributed to insufficient frequency resolution in the Fourier analyzer. We 

tried increasing the analysis filter duration but this merely aggravated the rever- 

beration in the rate-changed signals. In contrast, t he female speaker utterance 

shown in Figure 4.1 does not violate the minimum pitch bound by more than 

10Hz; consequently, the rate-changed versions were of better quality. 

Music 

We attempted to compress a particularly busy and rich passage of orchestral music. 

Some pitches were as low as 65Hz. The results were disappointing, even for mild 

compression factors. Severe beating marred the rate-changed output. Increasing 

the duration of the analysis filter to 32ms resulted in some improvement in the 

lower-pitched portions, yet to the detriment of higher-pitched ones. We did not 

find any particular values of L and p which could eliminate the distortion. It would 

appear, therefore, that the waveform structure of music is much more fragile than 

that of speech. Significant improvements would likely result if the sampling rate 

were increased, as we did initially for speech. 

Background Noise 

We simulated a multiple speaker environment by mixing the same sample files in 

varying proportions. The quality of each voice in the rate-changed mix was very 

similar to that obtained by rate-changing the voices individually. Lastly, injecting 

the same sample music in the speech files to simulate background noise resulted 

in no significant loss of quality in the rate-changed output. 
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Figure 4.1: Original speech signal: "A dash of pepper spoils bee. . . [f stew]". Female 
speaker, f, = lGkHz, 16-bit samples. 
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Figure 4.2: Comparison of polar synthesis met hods (without any parameter modi- 
fication). Speech signal: " A  dash of pe..  .[pper spoils beef stew]". Female speaker, 
f, = 16kHz, 16-bit samples. Processing parameters: f i  = 1, M = 320, N = 512, R = 80. 
a)  Linear phase interpolation. b) Cubic phase interpolation. 
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Figure 4.3: Rate-changed speech signal ( P  = 2.0) with phase modulation: "A dash of 
pepper spoils beef stew". Processing parameters: M = 320, N = 512, R = 80, L = 1600, 
p = 2, linear phase interpolation. Female speaker, f, = 16kHz, 16-bit samples. 



Section 4.2: Results 

Figure 4.4: Rate-changed speech signal ( P  = 0.5) with phase modulation: "A dash 
of peppe.. . [r spoils beef stew]". Processing parameters: M = 320, N = 512, R = 80, 
L = 800, p = 3, linear phase interpolation. Female speaker, f, = 16kHz, 16-bit samples. 



Section 4.2: Results 

Figure 4.5: First backward difference of unwrapped phase of a DSTFT harmonic, 
k = 96 (SkHz), over 400-800ms portion of speech signal shown in Figure 4.1. The average 
value of the first backward difference is approximately 2nk/N, the base frequency of the 
k-th DSTFT harmonic. Processing parameters: M = 320, N = 512, R = 1. Female 
speaker, f, = 16kHz, 16-bit samples. 

Figure 4.6: Concatenation of individually rate-changed waveform events ( P  = 0.5), 
without waveform structure compensation. Speech signal: "A dash.. . [of pepper spoils 
beef stew]". The discontinuities (every 100ms) correspond to waveform event boundaries. 
Processing parameters: M = 320, N = 512, R = 80, linear phase interpolation. Female 
speaker, f, = 16kHz, 16-bit samples. 



Section 4.2: Results 
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Figure 4.7: Original speech signal: "Press the pants and sew a b. . . [utton on the vest]". 
Male speaker, f, = 16kHz, 16-bit samples. 



Section 4.2: Results 

Figure 4.8: Rate-changed speech signal (/3 = 1.25) with phase modulation: "Press the 
pants and sew a button on the.. .[vest]". Processing parameters: M = 320, N = 512, 
R = 80, L = 1600, p = 3, Linear phase interpolation. Male speaker, f, = 16kHz, 16-bit 
samples. 



Section 4.2: Results 

Figure 4.9: Rate-changed speech signal ( P  = 0.67) with phase modulation: "Press the 
pants an.. .[d sew a button on the vest]". Processing parameters: M = 320, N = 512, 
R = 50, L = 1000, p = 2, linear phase interpolation. Male speaker, f, = 16kHz, 16-bit 
samples. 
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Figure 4.10: Spectrogram analysis of signal: "[Press the pants and sew a] . . .button 
on . . .[the vest]". Male speaker, f, = lGkHz, 16-bit samples. 1) Original. 2) Expanded 
version (p  = 0.67) with phase modulation, same processing parameters as in Figure 4.9. 
Note that the harmonic structure of the rate-changed signal is a distorted version of the 
original, i.e. the vertical striations in the second spectrogram are not as well defined as 
those in the first one. 



Chapter 5 

Conclusion 

We have developed a simple time-frequency representation in which the temporal 

features of a signal x(n) can be, in essence, manipulated independently from its 

spectral features to effect high-quality rate-change modifications at a low compu- 

tational cost. 

We began our analysis by postulating the same speech model which forms the 

basis of Portnoff's time-scale modijcation (TSM) approach [2]. It was assumed 

that a speech signal is generated by applying an excitation source to a linear 

time-varying filter which represents the spectral features of the vocal tract. For 

voiced speech, the excitation source is a unit-sample train where the unit-sample 

spacing corresponds to the local pitch period. In the case of unvoiced speech, 

the excitation source is a white noise sequence. Voiced speech was modeled as a 

sum of harmonically related complex exponentials, whereas unvoiced speech was 

characterized by its second order statistics, namely its auto-correlation and its 

power spectrum. Both the impulse response of the vocal tract and the pitch of 

the voiced speech excitation source were assumed to be nearly fixed for a duration 

which does not exceed 20ms. 

The speech model was modified to represent rate-changed speech. It was found 

that rate-change modifications can be achieved by linearly time-scaling the speech 
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parameters. For voiced speech, however, one important exception was noted: the 

values of the instantaneous phase of the excitation source must be scaled by 1/P to 

preserve the original pitch of the speech. We recall that P denotes the time-scaling 

factor. 

It was shown how the short-time Fourier transform (STFT) can be used to 

estimate the necessary speech parameters for implementing the rate-change mod- 

ification. The key design requirements for the analysis filter h(n) were identified. 

The length of h(n)  should be sufficiently short so that the speech parameters ap- 

pear nearly fixed for the duration of the analysis interval. Proper resolution of 

voiced speech spectra requires that the bandwidth of the analysis filter be less 

than half the source pitch. It was argued that the same analysis filter bandwidth 

is adequate for estimating the time-varying power spectrum of unvoiced speech. 

The STFT rate-change modification for voiced speech which Portnoff proposed 

consists of a linear time-scaling operation and a non-linear phase modification 

aimed at preserving the instantaneous frequency of the excitation source, as in 

the rate-changed speech model. Portnoff argued that the same STFT rate-change 

modification can be used for unvoiced speech. 

It was shown that, in general, the non-linear STFT modification deteriorates 

the structure of rate-changed signals over time. We argued that the problem is 

further compounded by phase estimation errors, by sharp transients and, more 

importantly, by the infinite memory property of Portnoff's TSM method, which 

causes phase errors to accumulate indefinitely. Thus the need for waveform struc- 

ture compensation in rate-changed signals was identified. 

Several design options for the components of a complete TSM system were 

examined on the basis of complexity, audio quality and robustness. The temporal 

sampling requirement of the discrete STFT (DSTFT) raised a number of interpo- 

lation issues, both in the parameter modification and DSTFT synthesis stages. 
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Portnoff suggested the use of bandlimited interpolation on the real and imag- 

inary parts of the original and rate-changed DSTFT. We argued that it may not 

be perceptually appropriate to treat the real and imaginary parts of a DSTFT 

as independent bandlimited sequences. We also pointed out that Portnoff's syn- 

thesis equation is inefficient in that it requires a polar to rectangular coordinate 

conversion for every DSTFT harmonic. 

It was proposed instead to process the polar parameters (i.e. magnitude and 

unwrapped phase) of the DSTFT, both in the parameter modification and DSTFT 

synthesis stages. Since polar parameter sequences are not necessarily bandlimited, 

exact signal representations are generally impossible. However, the computational 

requirements for interpolating polar parameters are believed to be modest for 

achieving high-quality synthesis. For example, in the absence of any parameter 

modification, it was found that the synthesized and original signals are virtually 

indistinguishable when the polar parameters of the DSTFT are linearly interpo- 

lated. The proposed polar synthesis equation resembles the one used by McAulay 

and Quatieri for their sinusoidal speech model (SSM) [lo]. The main difference is 

that the sinusoidal components of our implementation employ fixed rather than 

time-varying base frequencies. 

A novel incremental parameter modification scheme which exploits the smooth- 

ness of the polar parameters was suggested, eliminating the need for ezplicit linear 

time-scaling and multiplications by 1/P. Rate-change modifications are effectively 

achieved by periodically deleting or repeating "sample intervalsn in the original 

signal. The scheme allows variable TSM to be implemented easily. However, the 

incremental approach shuns the original speech model in that it preserves the in- 

stantaneous frequency of the DSTFT harmonics themselves instead of that of the 

excitation source, leading, in principle, to more rapid structural deterioration of 

the rate-changed signal. 
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The primary source of distortion in rate-changed speech is the structural de- 

terioration caused by the non-linear STFT modification. Portnoff's method does 

not alleviate the problem. We therefore chose the polar incremental synthesis 

approach for its efficiency and decided to implement a waveform structure com- 

pensation section. Two options were considered. 

The waveform interpolation method consists of overlapping and interpolating 

consecutive rate-changed speech segments. A speech segment was referred to as  a 

"waveform event". 

The preferred method, phase modulation, is more robust and consists of mod- 

ulating the rate-changed DSTFT harmonics of a waveform event such that their 

phase relationship on the new time-scale at intervals of LLIPJ samples matches 

that of the original DSTFT harmonics (on the unity time-scale) at intervals of L 

samples. We recall that the constant L denotes the length of the waveform events. 

A perceptual weighting scheme was proposed to reduce the impact of the result- 

ing spectral distortion. The phase data for at least one waveform event must be 

buffered to implement this waveform structure compensation method. 

The simulation results indicated that the proposed TSM system (polar incre- 

mental synthesis + phase modulation) is capable of generating high-quality rate- 

changed versions of speech signals recorded under a variety of conditions. The 

tested time-scale factor range was 0.5 5 ,B 5 2.0, which should be sufficient for 

most applications. The best quality should be achieved for speech signals where 

the voiced portions satisfy the minimum pitch bound (in Hz) which ensures proper 

resolution of voiced speech spectra. This bound is inversely proportional to the 

duration (in ms) of the analysis filter of the short-time Fourier analyzer. The 

bound for our particular implementation (20ms Hamming window) is 200Hz. The 

duration of the analysis window cannot be increased because the variations in the 

speech parameters over analysis intervals greater than 20ms are no longer neg- 
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ligible. Consequently, some distortion due to insufficient frequency resolution is 

expected for lower pitched speech signals, such as those produced by male speak- 

ers. Time-scale compression tends to mask this distortion because the rate of 

articulation is accelerated. For time-scale expansion, however, quavering in the 

voiced portions and smearing in the unvoiced portions become more apparent as 

p is decreased. The perceptual quality of expanded speech (in the male speaker 

category) can be rated as "goodn because the speaker remains quite intelligible. 

We noticed a dramatic improvement in the perceptual quality of rate-changed 

speech by increasing the source sampling rate f, from 8kHz to l6kHz. Since 

the duration (in ms) of the analysis window is fixed, any increase in f, does not 

improve the frequency resolution (in Hz) of the short-time Fourier analyzer. There 

are, however, at least three ways in which f, affects the quality of rate-changed 

speech. 

0 An increase in f3 reduces the granularity of the incremental parameter mod- 

ification algorithm. Granularity refers to the structural impact of deleting 

and repeating "sample intervalsn. 

0 The effect of the waveform structure compensation section (i.e. phase modu- 

lation) becomes less noticeable if the duration (in ms) of the waveform events 

remains unchanged as f, increases. The reason is that the amount of phase 

correction is distributed over a larger number of samples. 

0 As f3 increases, less frequency aliasing and phase unwrapping errors occur 

for perceptually important frequency components because they are shifted 

away from the Nyquist frequency. 

The experiments suggested that, under a rate-change modification, it is not 

desirable to preserve the characteristics of the original DSTFT phase exactly. It 
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was also found that the current implementation is unsuitable for arbitrary music 

sources. 

The initial success of the proposed TSM algorithm for speech signals suggests 

that time-frequency models should not strive in obtaining exact signal representa- 

tions, as these may be superfluous. We have found that the quality of rate-changed 

signals synthesized from the STFT-based approach is compromised mainly by the 

time-frequency resolution of the analysis filter. Unfortunately, this compromise is 

irremediable. 

Future research efforts should perhaps focus on eliminating the need for wave- 

form structure compensation, as this constitutes a convenient fix, not a real solu- 

tion. The optimal estimate for the rate-changed unwrapped STFT phase OP(n, w )  

should ideally be a non-linear function of past and future rate-changed samples in 

the vicinity of n on the new time-scale. It is not likely, therefore, that OP(n, w )  can 

be estimated from phase data calculated on the original time-scale alone, without 

some form of recursion or analysis-by-synthesis. 

Since the proposed TSM approach produces a high-quality local estimate of 

the rate-changed signal, perhaps a recursive method incorporating a polar incre- 

mental TSM algorithm would require fewer iterations than the least-squares error 

estimation (LSEE) class of TSM algorithms [3, 4, 5, 61 to determine the optimal 

phase and magnitude fit of the original DSTFT harmonics on a new time-scale. 

However, the prospect of recursion compromises our initial objective of low com- 

putational cost, leaving us to wonder whether the STFT framework is too rigid for 

TSM applications. Other signal representations [33] aimed at modeling the human 

auditory process rather than the sound source might well be worth exploring. 



Bibliography 

[l] G. Fairbanks, W. L. Everitt and R. P. Jaeger, "Method for time or frequency 
compression-expansion of speech," IRE Trans. Projessional Group on Audio, 
vol. AU-2, pp. 7-12, Jan.-Feb. 1954. 

[2] M. R. Portnoff, "Time-scale modification of speech based on short-time 
Fourier analysis," IEEE Transactions on Acoust., Speech, Signal Processing, 
vol. 29, pp. 374-390, June 1981. 

[3] D. W. Griffin and J.  S. Lim, "Signal estimation from modified short-time 
Fourier transform," IEEE Transactions on Acoust., Speech, Signal Processing, 
vol. 32, pp. 236-242, Feb. 1984. 

[4] S. Roucos and A. M. Wilgus, "High-quality time-scale modification for 
speech," Proc. Int. Conf. Acoust., Speech, Signal Processing, Tampa, Florida, 
pp. 493-496, 1985. 

[5] M. Abe, S. Tamura and H. Kuwabara, "A new speech modification method 
by signal reconstruction," Proc. Int. Conf. Acoust., Speech, Signal Processing, 
Glasgow, pp. 592-595, 1989. 

[6] E. Hardam, "High-quality time-scale modification of speech signals using fast 
synchronized overlap-add algorithms," Proc. Int. Conf. Acoust., Speech, Sig- 
nal Processing, Albuquerque, NM, pp. 409-412, 1990. 

[7] M. K. Asi and B. E. A. Saleh, "A linear filter for time scaling of speech," Proc. 
Int. Conf. Acoust., Speech, Signal Processing, New York, NY, pp. 79-82, 1988. 

[8] M. K. Asi and B. E. A. Saleh, "A linear periodically time-varying filter for 
time-frequency scaling of speech," Proc. Int. Conf. Acoust., Speech, Signal 
Processing, Albuquerque, NM, pp. 405-408, 1990. 

[9] T. F. Quatieri and R. J. McAulay, "Speech transformations based on a si- 
nusoidal representation," IEEE Transactions on Acoust., Speech, Signal Pro- 
cessing, vol. 34, pp. 1449-1464, Dec. 1986. 



Bibliography 99 

[lo] R. J. McAulay and T. F. Quatieri, "Speech analysis/synthesis based on a si- 
nusoidal representation," IEEE Transactions on Acoust., Speech, Signal Pro- 
cessing, vol. 34, pp. 744-754, Aug. 1986. 

[ll] N. S. Jayant, "High-quality coding of telephone speech and wideband audio," 
IEEE Commun. Mag., pp. 10-20, Jan. 1990. 

[12] J .  D. Johnston, "Transform coding of audio signals using perceptual noise 
criteria," IEEE J. Sel. Areas in Commun., vol. 6, pp. 314-323, Feb. 1988. 

[13] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 
Prentice-Hall, Englewood Cliffs, NJ, p. 45, 1989. 

[14] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 
Prentice-Hall, Englewood Cliffs, NJ, pp. 101-112, 1989. 

[15] T. A. Ramstad, "Digital met hods for conversion between arbitrary sampling 
frequencies" IEEE Transactions on Acoust., Speech, Signal Processing, vol. 
32, pp. 577-591, June 1984. 

[16] D. O'Shaughnessy, Speech Communication, Addison-Wesley, Reading, MA, 
p. 39, 1987. 

[17] L. R. Rabiner and R. W. Schafer, Digital Processing of Speech Signals, 
Prentice-Hall, Englewood Cliffs, NJ, p. 98, 1978. 

[18] R. W. Schafer and L. R. Rabiner, "Digital representations of speech signals," 
Proc. IEEE, vol. 63, pp. 662-677, Apr. 1975. 

[19] M. R. Portnoff, "Short-time Fourier analysis of sampled speech," IEEE Trans- 
actions on Acoust., Speech, Signal Processing, vol. 29, pp. 364-373, June 1981. 

[20] A. V. Oppenheim, A. S. Willsky with I. T. Young, Signals and Systems, 
Prentice-Hall, Englewood Cliffs, NJ, p. 316, 1983. 

[21] A. Papoulis, Probability, Random Variables and Stochastic Processes, 
McGraw-Hill, New York, NY, p. 225, 1984. 

[22] A. Papoulis, Probability, Random Variables and Stochastic Processes, 
McGraw-Hill, New York, NY, p. 272, 1984. 

[23] L. R. Rabiner and R. W. Schafer, Digital Processing of Speech Signals, 
Prentice-Hall, Englewood Cliffs, NJ, p. 251, 1978. 

[24] L. R. Rabiner and R. W. Schafer, Digital Processing of Speech Signals, 
Prentice-Hall, Englewood Cliffs, NJ, p. 118, 1978. 



Bibliography 100 

[25] L. R. Rabiner and R. W. Schafer, Digital Processing of Speech Signals, 
Prentice-Hall, Englewood Cliffs, NJ, p. 266, 1978. 

[26] J .  M. Heinz and K. N. Stevens, "On the properties of voiceless fricative con- 
sonants," J. Acoust. Soc. Amer., vol. 33, pp. 589-596, May 1961. 

[27] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 
Prentice-Hall, Englewood Cliffs, NJ, p. 450, 1989. 

[28] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 
Prentice-Hall, Englewood Cliffs, NJ, pp. 527-530, 1989. 

[29] D. O'Shaughnessy, Speech Communication, Addison-Wesley, Reading, MA, 
pp. 206-207, 1987. 

[30] G. Oetken, T. W. Parks and H. W. Schiissler, 'New results in the design of 
digital interpolators," IEEE Transactions on Acoust., Speech, Signal Process- 
ing, vol. 23, pp. 301-309, June 1975. 

[31] D. O'Shaughnessy, Speech Communication, Addison-Wesley, Reading, MA, 
pp. 148-150, 1987. 

[32] L. B. Almeida and F. M. Silva, "Variable-frequency synthesis: an improved 
harmonic coding scheme," Proc. Int. Conf. Acoust., Speech, Signal Processing, 
San Diego, CA, pp. 27.5.1-27.5.4, 1984. 

[33] W. Heinbach, "Aurally adequate signal representation: the part-tone-time- 
pattern," Acustica, vol. 67, pp. 113-121, Dec. 1988. 




