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Abstract 

In selecting the boundary of a signal constellation used for data transmission, the objective 

is to minimize the average energy of the set for a given number of points from a given 

packing. Reduction in the average energy because of using the region C as the boundary 

instead of a hypercube is called the shape gain of C. The price to be paid for shaping 

is: (i) an increase in the factor CER, (Constellation-Expansion-Ratio), (ii) an increase 

in the factor PAR (Peak-to-Average-power-Ratio), and (iii) an increase in the addressing 

complexity. In this thesis, the structure of the region which optimizes the tradeoff between 

the shape gain and the CER, and also between the shape gain and the PAR in a finite 

dimensional space is found. Analytical expressions are derived for the optimum tradeoff. 

The optimum shaping region can be mapped to a hypercube truncated within a simplex. 

This mapping has properties which facilitate the addressing of the signal points. We 

introduce several addressing schemes with low complexity and good performance. The 

concept of the unsymmetrical shaping is discussed. This is the selection of the boundary 

of a constellation which has different values of power along different dimensions. The rate 

of the constellation is maximized subject to some constraints on its power spectrum. This 

spectral shaping also involves the selection of an appropriate basis (modulating waveform) 

for the space. Finally, we discuss the selection a signal constellation for signaling over 

a partial-response channel. In the continuous approximation, we introduce a method to 

select the nonempty dimensions. This method is based on minimizing the degradation 

caused by the channel memory. In the discrete case, shaping and coding depend on each 

other. In this case, a combined shaping and coding method is used. This concerns the 

joint selection of the shaping and coding to minimize the probability of the symbol error. 
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Chapter 1 

Introduction 

1 1 Preliminaries 

This thesis is concerned with the problem of designing a data transmission system. The 

data is encoded such that in each signaling interval one of M equiprobable waveforms is 

transmitted. The overall transmission system can be modeled as a discrete-time system. 

In the discrete model, the channel provides us with a given number of dimensions per 

signaling interval. For instance, in a conventional quadrature modulation, a 2-D (2- 

dimensional) array of signal values is generated for each channel use. If a signaling interval 

consists of N / 2  channel uses, we get an effective N-D signal space. 

To achieve the transmission, we select M points over the channel space. Each of the 

transmitter waveforms (source symbols) corresponds to one of these points. This is called 

a signal constellation. We restrict our consideration to signal points which are selected 

from a regular array of points, specifically a lattice. Different arrangement of points give 

rise to lattices with designations such as Zs and E8. An excellent reference work for the 

theory of lattices is [4]. For instance Z8 is a rectangular grid of points in 8 dimensions 

and Es is a subset of points of Z8 which are congruent modulo 2 to the codewords of the 

binary Reed-Muller code RM(1,3) = (8,4,4), [13]. 

In the design of a signal constellation, the overall objective is to minimize the prob- 



ability of the symbol error at the receiver side. Our tools are: (i) the selection of the 

internal structure of the constellation (channel coding), (ii) the selection of the constel- 

lation boundary (shaping), and (iii) the selection of the constellation basis (modulating 

waveforms). We propose implementable schemes which have some benefits over the ex- 

isting methods. The figure of merit is the reduction in the required average energy with 

respect to a reference scheme. This is denoted as the overall coding gain which is composed 

of the channel coding gain and the shaping gain. 

In the process, if the channel is nonflat, the constellation shaping in conjunction with 

an appropriate modulator can produce a nonflat power spectrum to match the channel 

characteristics. 

The problem of the channel coding is a well established subject in the theory of 

communications. For example, by selecting the constellation points from the lattice E8, 

we obtain a channel coding gain of 3 dB over the uncoded case (lattice Z8). This lattice 

has a minimum distance of 4 resulting in 6 dB gain, and a redundancy of 4 bits per 8 

dimensions (IZs/E81 = 24) resulting in 3 dB loss, 3 = 6 - 3. 

Ungerboeck proposed the idea of producing dense packings by the use of a trellis 

diagram. The use of trellis-based packings resulted in a breakthrough in coding theory. 

For example, by using the lattice E8 with a 64-state trellis, the coding redundancy reduces 

from four bits to one bit. This scheme, in conjunction a simple shaping method, results 

in an overall gain of 5.4 dB, [42]. 

Unfortunately, the situation is not as good as the conventional calculation methods 

based on the minimum distance to the nearest neighbor shows. For example, Forney 

mentions in [12] that, in a general coset coding scheme, considering the effect of the error 

coefficient, after the initial 3-4 dB, it takes on the order of a doubling of complexity to 

achieve each 0.4 dB further increase in the effective coding gain. Consequently, to achieve 

higher gains, it is worthwhile to invest part of the complexity in shaping rather than in 

more complex channel codes. 

In shaping, one tries to minimize the average energy of the constellation for a given 

number of points from a given packing. The reduction in the average energy due to the 



CER, PAR 7, M 

Table 1.1 : Performance of the optimum shaping region in dimensionalit 

last row corresponds to a spherical region. 

,y N = 64, the 

use of the region C as the boundary instead of using a hypercube is called the shape gain 

of C and is denoted as y,(C). The price to be paid for shaping involves: (i) an increase 

in the factor CER, (Constellation-Expansion-Ratio)l, (ii) an increase in the factor PAR 

(Peak-to-Average-power-Ratio), and (iii) an increase in the addressing complexity2. 

For a given dimensionality N,  a spherical shaping region SN, is the region with the 

highest possible y, but also with high values for CER, and PAR. As N+m,  the shape 

gain of SN tends to 1.53 dB, [l l] .  This is an upper bound for the shape gain of all regions 

and is achievable at the price of CER, = oo and also PAR = m. However, as we will 

see later, an appreciable amount of this upperbound can be achieved over a reasonable 

dimensionality and with low values of CER, and PAR. Table 1.1, contains some examples 

of the achievable shaping performance over dimensionality N = 64. Column M denotes 

the required number of points of the 2-D (two dimensional) subconstellations in a scheme 

carrying 7 bits per two dimensions. For the same bit rate, an unshaped constellation 

needs 128 = 2' points per 2-D subconstellations. 

The major problem associated with shaping in a high dimensional space is the ad- 

lThis is the ratio of the number of points per two dimensions to the minimum necessary number of 

points per two dimensions. 

2Addressing is the assignment of the data bits to the constellation points. 



dressing complexity. For example, for 2-D subconstellations composed of 128 points, in 

an N = 32 dimensional space, a direct addressing scheme using a lookup table requires a 

block of memory with 112 x 2'12 bits per N dimensions, where 112 arises from 7 bits per 

channel use times 16 channel uses per signaling interval. This is undoubtly impractical. 

1.2 A simple example of shaping 

In Figs. 1.1 and 1.2, we see two examples of a 64-points 2-D signal constellation from the 

half integer grid. The one shown in Fig. 1.1 has a cubic shaping region. The average 

energy of this constellation is equal to 5.25 . The constellation in Fig. 1.2 is obtained 

by replacing the four points of the highest energy in the cubic constellation with another 

four points of lower energy. These are the points marked by the circles. As a result of 

this replacement, the average energy has reduced to 5 . This corresponds to the shape 

gain, y, = 10 x log1,(5.25/5) = 0.2 dB. 

The cubic constellation employs 8 points per dimension. This is the minimum nec- 

essary number of points per dimension to have 64 points in two dimensions, 8 x 8 = 64. 

However, in the shaped constellation, we have employed 10 points per dimension. As- 

suming that CER, is measured on a one dimensional basis, this corresponds to, CER, = 

1018 = 1.25. 

The peak of energy per dimension of the cubic and the shaped constellations are 

equal to 12.25 and 20.25, respectively. The average energies per dimension are equal to 

5.25 and 5, respectively. Assuming that PAR is measured on a one dimensional basis, the 

PAR'S are equal to, 12.2515.25 = 2.33 and 20.2515 = 4.05, respectively. 

In the cubic constellation, to map the six bits of data to a constellation point, we 

can use three bits to select a point along one dimension and another three bits to select a 

point along the other dimension. However, in the shaped constellation, this method is not 

applicable. In this simple example, we can use a lookup table with 64 memory locations 

to achieve the addressing. However, for the same number of bits per dimension, namely 

3, in dimensionality 24, we need a lookup table with 272 memory locations which is not 



practical. 

Fig. 1.1: A 64-points 2-D cubic constellation from half integer grid. 

1.3 Previous relevant works 

1.3.1 Const ellat ion Shaping 

In the work of Wei, [42], shaping is a side effect of the method employed to transmit a 

nonintegral number of bits per two dimensions. This method provides moderate shape 

gain for low values of CER,. The addressing of this method is achieved by a table 

lookup. Forney and Wei elaborate and generalize this method under the topic of the 

generalized cross constellations in [9]. They also present an existence argument for the 

optimum shaping region in an infinite dimensional space and calculate the corresponding 

tradeoff. This is based on finding the optimum induced probability distribution on the 2-D 



Fig. 1.2: A 64-points 2-D shaped constellation from half integer grid. 

subspaces. Conway and Sloane in [5] introduced the idea of the Voronoi constellation based 

on using the Voronoi region of a lattice A, as the shaping region. In these constellations the 

set of the points form a group under vector addition modulo A,. This property is used to 

achieve the addressing. The complexity of the addressing is that of a linear mapping plus 

the decoding of the shaping lattice A,. The Voronoi constellations are further considered 

by Forney in [lo]. In [I], Calderbank and Ozarow introduced a shaping method which is 

directly achieved on the 2-D subconstellations. In this method, the 2-D subconstellations 

are partitioned into equal sized subregions of increasing average energy. A shaping code 

is then used to specify the sequence of the subregions. The shaping code is designed 

so that the lower energy subregions are used more frequently. They also calculate the 

optimum probability distribution on the 2-D subregions. Lang and Longstaff in [40] 

use an addressing scheme which first divides the final constellation into shells. Then, 

a point in a shell is found by successively decomposing the space into lower-dimensional 

subspaces via generating function techniques. The idea of the trellis shaping is introduced 



in [14]. This is based on using an infinite dimensional Voronoi region, determined by a 

convolutional code, to shape the constellation. 

1.3.2 Block-based signaling over partial response channels 

The structure of the optimum modulator for a zero state block-based signaling scheme 

over a partial response channel together with a method to select the nonempty dimensions 

is introduced in [24]. The problem of designing codes for partial response channels is 

discussed in [24], [44] and [41]. The selection of a signal constellation by performing an 

optimization procedure over the discrete set of the constellation points was proposed for 

the first time in [16]. In a more general approach, [19] (also refer to [20]) discusses the 

optimization of a signal constellation for signaling over a partial response channel. In [19], 

two methods are studied. In the first method, the constellation at channel output is a 

finite portion of a dense lattice and the shaping region at the channel input is a sphere. 

In the second method, a gradient search algorithm is used to find a locally optimum 

constellation. 

1.3.3 Spectral Shaping 

The problem of the spectral shaping is a well established subject. The major difference 

between our approach and most of the works reported in the literature (two excellent 

references are [22] and [2]) is that in our case the memory of the code is confined to the 

elements within a block. This fact facilitates the calculation of the entropy (rate of the 

constellation). For a general code, the exact calculation of the entropy appears to be very 

difficult, [22]. 

1.4 Major contributions of the thesis 

The major contributions of this thesis are: 



Finding the structure of the shaping region which optimizes the tradeoff between 

the 7, and the CER, and also the tradeoff between the y, and the PAR in a finite 

dimensional spaces. 

0 Finding analytical expressions for the optimum tradeoff curves. These curves pro- 

vide an upperbound to the achievable shaping performance in a finite dimensional 

space. This upperbound, in the same way as the channel capacity in the channel 

coding or the rate distortion function in the source coding, serves as a benchmark 

against which practical schemes can be measured. 

0 Finding practical addressing schemes to achieve tradeoff points near to the knee of 

optimum curves. Specially, the shell mapped Voronoi constellation based on the 

lattice Dt and the address decomposition method are good candidates for practical 

implementation. 

As an example of the complexity of our addressing methods, for N = 32, we use a 

block of memory with M, = 44 kilo-bytes per N dimensions to achieve a shape gain 

of y, = 0.89 dB with CER, = 1.19 and PAR= 2.8 or, M, = 36 kilo-bytes per N di- 

mensions to achieve?, = 1.02, CER, = 1.41 and PAR= 3.42. With VLSI technology, 

these memory sizes are available in a single memory chip. 

0 Discussing the concept of the unsymmetrical shaping. This is the selection of a 

signal constellation which has nonequal second moments along different dimension. 

For example, this nonequal energy allocation in conjunction with a nondiagonal 

modulating matrix can be used to shape the power spectrum of the transmitted 

signal. 

Introducing some methods to combine shaping and coding for signaling over a non- 

flat channel. This concerns using an optimization procedure, partly integer, to 

jointly select the shaping and coding. 

0 Finding analytical expressions for the eigensystem of the 1 f D and 1 - D2 partial- 

response channels. 



0 Finding analytical expressions for the weight distribution of the scaled D4 and E8 

lattices. 

Finding an analytical method to calculate the absolute first moment of a lattice 

Voronoi region and presenting closed form formulas for the specific examples of the 

D, and %D, lattices. 

1.5 Organization of the thesis 

A common thread for this work is the use of a lattice to define the signal points. 

In Chapter 2, we have some definitions. 

In Chapter 3, we discuss the structure of a general coset coding scheme with the 

emphasis on the shaping aspects, specifically, the interaction between the shaping and 

the channel coding. 

In Chapter 4, two approaches for shaping based on a continuous approximation are 

introduced. In the first method, a 2-D sphere is the boundary of the 2-D subspaces and 

an N-D sphere is the boundary of the whole space. This method results in the optimum 

tradeoff between y, and CER, and also between 7, and PAR. Analytical expressions 

determining the optimum tradeoff are calculated for a finite number of dimensions. In 

the second method, a 2-D sphere is the boundary of the 2-D subspaces, an N'-D sphere, 

N' > 2, is the boundary of the N'-D subspaces and an N-D sphere is the boundary of 

the whole space. Analytical expressions determining the tradeoff are calculated. 

In Chapter 5, practical methods of addressing are discussed. One class of the ad- 

dressing schemes is based on using a lookup table. We introduce two methods to facilitate 

the hardware realization of the lookup table. The first method makes use of a specific 

property of the optimum shaping region and results in a logical table with many don't 

care entries. The second method, denoted as the address decomposition, is based on 

decomposing the addressing into a hierarchy of the addressing steps each of a low dimen- 

sionality. This avoids the exponential growth of the memory size. This method has a 



negligible suboptimality and is easy to implement. Another class of addressing schemes is 

based on using a Voronoi constellation in a space of half the original dimensionality. Using 

this method, we achieve a single point with low addressing complexity on the optimum 

tradeoff curve. We also introduce a hybrid multi-level addressing scheme which combines 

the two classes. This scheme provide single points with moderate addressing complexity 

near to the knee of the optimum tradeoff curve. 

In Chapter 6, the concept of the unsymmetrical shaping is discussed. This concerns 

the selection of the boundary of a constellation which has nonequal values of power along 

different dimensions. The objective is to maximize the rate of the constellation subject 

to some constraints on its power spectrum. We also consider the selection of a basis 

(modulating waveforms) for the space. An unsymmetrical region is obtained by scaling 

of a symmetrical baseline region. We show that the baseline region can be selected 

independently of the scale factors and the basis. The structure of the optimum baseline 

region with the corresponding addressing scheme is discussed. The scale factors and 

the constellation basis are computed by an optimization procedure. This reduces to 

maximizing the determinant of the correlation matrix subject to linear constraints on its 

elements. The optimum scheme and also a computationally efficient scheme based on the 

sine transform are studied. 

In Chapter 7, we discuss the selection a signal constellation for the signaling over 

a partial-response channel. The design steps are: (i) selecting the internal structure of 

the constellation (channel coding), and (ii) selecting the constellation boundary (shaping). 

The objective is to minimize the degradation caused by the combined effect of the additive 

Gaussian noise and the channel memory. Assuming continuous approximation, shaping 

and coding are selected independently. The selection procedure is similar to the case of 

a flat channel with the difference that here some of the dimensions can be empty. We 

introduce a method to select the nonempty dimensions. In the discrete case, shaping and 

coding depend on each other. In this case, we introduce two joint optimization methods, 

partly integer, to select the shaping and coding (combined shaping and coding). In the 

first method, the minimum distance to noise ratio along all the nonempty dimensions is 



the same. In the second method, this restriction is relaxed. As part of the calculations, 

we have found a closed form formula for the weight distribution of the scaled D4 and E8 

lattices. 

Finally, Chapter 8 is devoted to some concluding remarks. 



Chapter 2 

Shaping of a Constellation, 

Definitions 

A 2-D (two-dimensional) signal constellation C2 is a finite set of 2-D points bounded 

within a shaping region C2. In using such a constellation for signaling over a channel, 

the energy associated with different signal points is not the same. By using the points 

of the higher energy less frequently, one can obtain a higher entropy for a given average 

energy, [I]. Such a nonuniform probability distribution reduces the entropy of the set and, 

consequently, one needs more points to transmit the same rate. Increasing the number 

of signal points in the constellation is a price to be paid for the reduction in the average 

energy and is denoted by the factor CER, (shaping-Constellation-Expansion-Ratio). To 

expand the constellation, some points of higher energy are added around the existing 

points. This increases the PAR (Peak-to-Average-Power-Ratio) of the constellation. The 

PAR affects the sensitivity of the constellation to the nonlinearities and other signal- 

dependent perturbations. 

In using a nonequiprobable signaling scheme with a signal constellation Cz, we are 

potentially faced with the following problems: First, the rate associated with some points 

may not be an integer. Second, as the rate transmitted per channel use is not constant, we 

may have variable delay in the transmission. A practical way to avoid these problems is 



given in [I]. Another method is to use an N-D signal constellation, CN ( N  > 2), selected 

as an appropriate subset of the N/2-fold cartesian product of C2 with itself. This subset 

is selected by the shaping region CN. In this case, using the points of the CN with equal 

probability induces a nonuniform probability distribution on the points of the Cz's. This 

is the concept of the constellation shaping. The reduction in the average energy per two 

dimensions due to the use of the region C as the boundary instead of using a hypercube 

is called the shape gain of C and is denoted as r,(C). 

Addressing is the assignment of the data bits to the constellation points. If CN 

is equal to, { c ~ ) ~ / ~  (N/2-fold cartesian product of C2), the addressing in CN can be 

achieved independently along each C2. For a shaped constellation, which is a subset of 

{C2)N/2, independent addressing is not applicable and we need a means to specify that 

certain elements of { c ~ ) ~ / ~  are not allowed. This means that the use of shaping increases 

the addressing complexity. For a fixed number of bits per dimension, a multidimensional 

constellation can have a huge number of points. This makes the addressing of such a 

constellation a complicated problem. 

In all our discussions, we assume that the dimensionality is even and the constellation 

points are used with equal probability. 

By selecting CN as the boundary of the constellation (instead of a hypercube), the 

average energy per two dimensions, P2, reduces by the factor, [9], 

where V(CN) is the volume of CN. This is called the shape gain of CN. 

For a given integer I, assume that the space dimensions are indexed by j = Zp + m, 

where p = 0,. . . , (N/Z) - 1 and m = 0,. . . , I -  1. The subspaces spanned by the set of 

vectors with the same index p are called the (constituent) I-D subspaces, [9]. The region 

CN is called 2-dimensionally symmetrical if its projection on the constituent 2-D subspaces 

is the same, [9]. All our discussions are based on 2-dimensionally symmetrical regions. 

The Constellation-Expansion-Ratio, CER,, is the ratio of the number of points per 



two dimensions to the minimum necessary number of points per two dimensions, [9], i.e., 

As an alternative to CER,, we define the shaping redundancy in bits per N dimensions 

by, 
N 

rs (CN) = (,) log, (CERS) . (2.3) 

Let's Ep (C2) denotes the peak energy of C2. The Peak-to- Average-power-Ratio, PAR, 

is defined by, [9], 

In general, there exists a tradeoff between the y, and the CER, (or equivalently r,) 

and also between the y, and the PAR. By an optimally shaped region, we mean a region 

which optimizes both of these tradeoffs. This region has the minimum second moment 

for a given volume, given CER, and given PAR. 



Chapter 3 

Shaping and Coding on Lattices 

Part of this chapter have been reported in [25]. 

A general coset coding scheme based on the lattice partition ZN/A, ZN is the N - D  integer 

lattice and A is a sublattice of ZN, is composed of two different parts. The first part selects 

a finite number of points from ZN as the signal constellation. This selection is based on 

minimizing the average energy of the set for a given number of points and given CER,. 

The second part selects a coset of A within the signal constellation. In the case that the 

selected coset has more than one point, a third part is used to address one point within 

that coset. The first and second parts have to do with shaping and coding, respectively. 

In continuous approximation, the discrete set of the constellation points is approxi- 

mated by a continuous uniform density within the shaping region. Assuming continuous 

approximation, all the parameters concerning shaping like y,, CER, and PAR are deter- 

mined by the first part and all the parameters concerning channel coding are determined 

by the second part. The third part scales the number of the constellation points. 

Figure 3.1 shows the block diagram of the coding scheme under consideration. Signal 

space has N = 2 n  dimensions and carries Q bits per two dimensions. There is also one 

bit of coding redundancy per N dimensions. The 2-D subconstellations are selected 

from the cross constellation, [ l l ] .  In the case that we need a nonintegral bit rate per two 
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Fig. 3.1: Block diagram of the coding system. 

t 

dimensions, the necessary number of points of the least energy from the larger constellation 

are added around the existing points. Each 2-D point is labeled by a two part label. The 

first part of the label is determined by the shaping block. The second part of the label is 

determined by coding block. 

For shaping, the two dimensional subconstellation containing M points are parti- 

tioned into K shaping shells of equal size and increasing average energy. The shells have 

four way symmetry. Each shell contains P = 2p points, M = K x P ,  and is referenced by 

[log, K1 bits. All the P points within a shaping shell use these bits as their shaping 

label. We refer to this partitioningllabeling as the shaping partitioningllabeling. Figure 

3.2 shows an example of a 256 points constellation divided into 4 shells. In all cases, a 

finer partitioning of 2K shells can be obtained from a constellation already divided into 

I< shells by subdividing each shell into two subshells. 

The 2-D shaping shells partition the N-D space into Kn, n = N/2, shaping clusters. 

Shaping is achieved by selecting T = 2t clusters of the least average energy. The t shaping 

pn - kc - 1 bits 
C 

Point 
Selector 



Fig. 3.2: Example of the 2-D shaping shells. 

bits entering the shaping encoder are used to address one of these T clusters. The shaping 

encoder adds r, redundant bits to the incoming bits and the t + r, = n [log, K1 bits at its 

output are used in parallel to address one shaping shell within each 2-D subconstellation. 

The total information rate is equal to pn + t - 1 bits. 

For coding, the signal constellation is partitioned into the cosets of A in ZN. Assum- 

ing that A is a binary lattice, each coset of A is labeled by log, IZN/AI = kc + 1 bits. The 

points within each coset have its label as their coding label. This is denoted as the coding 

partitioning/labeling. In the case that A is one of the Barnes-Wall lattices, [13], coding 

partitioningllabeling is achieved by applying the Ungerboeck partitioning/labeling rules 

to the two dimensional subconstellations, [42]. Most of the interesting lattices, like D4, 

SchlafE lattice, and E8, Gosset lattice, belong to this group, [13]. In the coding part, kc 



bits enter the encoder. After adding one bit redundancy, the kc + 1 bits at the encoder 

output are used to select one of the 2"+' cosets of A in the shaping cluster already se- 

lected by the shaping part. For this selection to be possible, each N-D cluster should have 

an equal number of points from each coset of A. If A is one of the Barnes-Wall lattices, 

this condition is satisfied if in the shaping partitioning of the 2-D subconstellations, each 

shaping shell contains an equal number of points from each partition of the Ungerboeck 

partition chain, [42]. This is the point where the shaping and coding potentially interfere 

with each other. 

To transmit Q bits per two dimensions with one bit redundancy, we should have, 

pn + t = nQ + 1, or, t = n(Q - p) + 1. For the coding partitioning to be possible, we should 

have 2"+' 5 2Pn or p 2 (kc + l ) /n .  To transmit the total (coded) rate of nQ + 1, we 

should also have, n(p + log, K )  2 nQ + 1, or, log, I( 2 Q - p + ( l ln) .  

Fig. 3.3: An M = 24 point constellation divided into K = 6 shells. 

An example of this partitioning with M = 24 and K = 6 (P = 4) is shown in Fig. 3.3. 

The coding partitions are denoted by At ,  00, BH 10, CC) 11, DH 01. The shaping 



shells are denoted by the 0- 000, @I t, 001, 8 o 010, 8 o 011, * 100, and O o  

101. The first two bits of the label of each point is the coding label and the last three 

bits is the shaping label. Considering the condition 2kc+1 5 2pn, this constellation can be 

used as long as IzN/hl < 2*, for example when h= E8, IZ8/E81 =24, or when A =  D4, 

p4/~41 = 23. 

The CER, of this scheme is equal to, 

In the receiver, we first do the channel decoding and decide which point is transmitted 

along each two dimensional subspace. After that, shaping labels of these points are 

concatenated and are passed through a system which inverts the effect of the shaping 

encoder to recover the original shaping bits. 



Chapter 4 

Optimum Shaping, Shell Mapping 

Part of this chapter have been reported in [26], [27]. 

4.1 Introduction 

In this chapter, we study two methods for shaping. In the first method, a 2-D sphere 

is the boundary of the 2-D subspaces and an N-D sphere is the boundary of the whole 

space. The final region, which is denoted as AN, results in the optimum tradeoff between 

the ys and CER, and also between the ys and PAR. In this case, the ratio of the radii 

of the two spheres determines the tradeoff. By applying a shell mapping, the optimum 

shaping region is mapped to a hypercube truncated within a simplex. This mapping has 

properties which facilitate the addressing of the signal points. Analytical expressions are 

presented for the tradeoff as a function of the dimensionality. We describe a method to 

achieve a point with low addressing complexity on the optimum tradeoff curves. When 

the dimensionality increases, the point achieved moves towards the initial parts of the 

curve (low 7,). In this case, to achieve points with higher y,, a second shaping method 

with two degrees of freedom is used. In this method, first an AN, region is employed along 

the N1-D subspaces and then the cartesian product {AN,)"', n1 = N / N 1  is further shaped 

by the use of an N-D sphere. Using this structure, we introduce a method to achieve a 



curve or single points with low addressing complexity near to the optimum curves. 

4.2 Shaping using one level of shell mapping 

In an optimally shaped region, a 2-D sphere of radius R2, S2(R2), is the boundary of the 

2-D subspaces and an N-D sphere of radius RN, SN(RN), is the boundary of the whole 

space. The final region is denoted by AN, i.e., 

We say that the shaping of AN is achieved in two steps; the first step uses the S2's and 

the second step uses the SN. The projection of the region AN on any constituent 1-D 

subspace, I being an even number greater than two, is the region A/ with the same value 

of p. 
The optimality of AN as far as trading off y, versus CER, is due to: 

1. Considering (2.2)) in so far as V(C2) and V(CN) are constant, changing the C2 does 

not change the CER,. On the other hand, among all 2-D figures, a sphere has the 

least second moment for a given volume. This implies that a sphere should be the 

boundary of the 2-D subspaces. 

2. The final region should be selected as a subset of { & ( R ~ ) ) ~ / ~  which has the min- 

imum second moment for a given volume. This implies that the boundary of the 

whole space is an N-D hypersphere. 

Furthermore, it can be shown, [9], 

But, a sphere is the 2-D figure which maximizes y,(C2) and minimizes the PAR(C2). Using 

these facts and also the optimality of the tradeoff between y, and CER, in (4.2)) proves 

the optimality of the tradeoff between y, and PAR. 



By applying the change of variable, 

to (4.1), the region AN is mapped to the following n-D solid, 

This is a hypercube of edge length one truncated within a simplex of edge length P. 
We refer to the N-D space as the N-domain and to the n-D space as the n-domain. 

This mapping, which is denoted as the shells mapping, is the key point to most of our 

discussions. Figure 4.1 shows an example for N = 4. 

Shell mapping has the following properties: 

A uniform density of points within AN results in a uniform density of points within 

TC,. This property allows us to achieve the shaping and the addressing on the 

equal volume partitions of TC,. This property can be developed from the basic fact 

that for a uniform density in a spherically symmetric region in 2-D (a circle in our 

case), the transformation from the rectangular coordinates (Xo, XI) to the spherical 

coordinates (U = X i  + X;,  O) gives a uniform U .  

Unlike the AN region, the boundaries of TC, are hyperplanes. This makes the 

partitioning and addressing of TC, an easier task than that of AN. 

For p = n/2, the simplex in (4.4) divides the hypercube into two congruent parti- 

tions each of volume 112 . The Ti, region is equal to one of them. This is equal to 

the Voronoi region of the lattice DL in the positive coordinates. This allows us to 

use a Voronoi constellation1, [lo], for the addressing. 

'For a brief description of the Voronoi constellations refer to Appendix G. 



t n-domain 

Fig. 4.1: Example of A4 constellation, one-level shell mapping. Each 2-D subspace in 

the 4-D space is mapped to one of the axes of the 7Cz.  

4.2.1 Shape gain tradeoff 

In Appendix A, the integral of a function of the general form F ( X i  + . . . + Xi-,) over 

the AN region is calculated as, 

lP1 (' - 1' F {R: [(@-k)r + k]) rndr  . (.%)" C(-1) c n  
k=o (n - I)! 

This integral is used to calculate the volume and the second moment of the AN 

region. The results, together with V(C2) = aRi  and EP(C2) = Ri, are used in (2.1), (2.2) 

and (2.4) to calculate the y, the CER, and the PAR. Figure 4.2 shows the corresponding 

tradeoff curves for different values of N. The curves corresponding to N = oo are extracted 

from [9]. In Appendix B, it is proved that as N + oo, the induced probability distribution 



along 2-D subspaces of the AN region tends to a truncated Gaussian distribution. This 

justifies the use of the curves obtained in [9] for the A, regions. Obviously, this is a 

consequence of the optimality of these regions. 

Referring to Fig. 4.2, it is seen that in general the initial parts of the optimum tradeoff 

curves have a steep slope. This means that an appreciable portion of the maximum shape 

gain, corresponding to a spherical region, can be obtained with a small value for CER, 

and PAR. 

We use II, = pin (n = N/2) as the normalized parameter for the AN region. The 

complete notation for the region is AN (II,). For II, = 1, ( p  = n, RN = JnR2),  we have, 

AN = {S2(R2)In. This results in the starting point on the tradeoff curves. For l / n  < II, < 1, 

(1 < p < n, R2 < RN < f iR2) ,  by decreasing II,, we move along the tradeoff curve. Finally, 

is case corre- for II, = l l n  (p = 1, RN = R2), we obtain the spherical region SN (RN). Th' 

sponds to the final point on the tradeoff curves. The two cases of II, > 1, and 0 < II, < l l n ,  

result in the regions {&} N/2 and SN ( m R 2 ) ,  respectively. 

Table 4.1: A set of the important points from the optimum tradeoff curves. 

Table 4.1 contains a set of points from the optimum curves. These are the points 

marked on the curves in Fig. 4.2. The S-points correspond to a spherical region and 

achieve the maximum shape gain in a given dimensionality. The I<-points correspond 

to r, = N/4 bits per N dimensions (CER, = (2)'12 = 1.41). They achieve almost all of 
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Fig. 4.2: The optimum curves as well as a set of important points on them. 



shape gain of the S-points but with a much lower value of CER, and PAR. The L-points 

correspond to r, = N/8 bits per N dimensions (CER, = (2)'l4 = 1.19). They achieve a 

significant y, with a very low CER, and PAR. The A-points correspond to the ad- 

dressing scheme based on the lattice Dc. They result in r, = 1 bits per N dimensions, 

CER, = (2)2/N. For N = 4, this point corresponds to a spherical region. We will discuss 

the B-points later. 

From Fig. 4.2, it is seen that for N < 16, the A-points with r, = 1 bits per N di- 

mensions are located near the knee of the optimum curves. For larger dimensionality, 

they are closers to the initial parts of the curves. This is due to the fact that one bit of 

redundancy per N dimensions is too small for N > 16. A solution in a space of dimen- 

sionality N = n' x N' is to use the lattice Dc, n = N1/2, to shape the N1-D subspaces and 

then achieve another level of shaping on the n l=  N/N1-fold cartesian product of these 

subspaces. This is one example for the application of a mutli-level shapingladdressing 

scheme. 

More generally, consider an AN($) region. This region has an AN~(N$/N1) region 

along each of its N1-D subspaces. The basic idea is that we can modify the ANt(N$/N1) 

subregions such that the complexity of the addressing is decreased while the overall sub- 

optimality is small. Specifically, in some of our schemes, (i) the ANr(N$/N1) region is 

replaced by the region AN1(1/2) and/or (ii) this region is partitioned into a finite number 

of the energy shells and then the cartesian product of the N1-D subspaces is shaped by a 

lookup table. These are the basis for the multi-level shell mapped constellations and the 

address decomposition met hod of the next chapter. 

In the following, this idea is explained by the use of a more general approach. 

4.3 Shaping using two level of shell mapping 

In this method, shaping is achieved in three steps. In the first two steps an AN! region is 

employed along the N1-D subspaces. In the third step, from the n' = N/N1-fold cartesian 

product of the AN# with itself, a subset with a given volume and least second moment 



is selected. As before, such a subset is selected by a hypersphere. This results in two 

degrees of freedom in selecting the final region. This region is denoted by A;' and we 

have, 

A;' = {dNIln' n SN(RN) = {s~(R~)}""' n {sNI(RNI)}"' n sN (RN) . (4.6) 

In the case that AN! is selected as {S2}", this method is equivalent to the previous method. 

The space dimensions are indexed by j = N'q + 2p + m, where q = 0, . . . , n' - 1, 

n' = N/N1, p = 0, . . . , n - 1, n = N1/2 and m = 0, l .  Using the change of variable, 

the region A:' reduces to, 

This is an nl-D simplex of edge length pp' truncated within a hypercube of edge length 

p. The nl-D space is denoted as the n'-domain. 

The normalized parameters are selected as $ = /3/n and $' = /3'/n1. The complete 

notation for the region is A$'($, $ I ) .  For $' = 1, we have, A$'($, 1) = {ANl($)}"'. In 

this case, y,, CER, and PAR are equal to their corresponding values in AN'($). 

Now, consider the region dE1(1/2, $ I ) .  This region has an AN1(1/2) region along 

the N1-D subspaces2. In Appendix C, the integral of a function of the general form 

F ( X i  + . . . + Xk-,)  over the region A:' is calculated. This integral is used to calculate 

'The corresponding shaping region in the n-domain is the Voronoi region of the lattice Di in the 

positive coordinates. This is a useful property and is used in the next chapter to partition the N'-D 

subspaces by the use of a lattice partition chain. 



the tradeoff in the A:'(1/2, tjl) region. The result of these calculations for N = 16,32 

is shown in Fig.4.3. The starting point of the curves (t j t= 1) corresponds to the region 

dNt(1/2). It is seen that for relatively high y,, and for nt = 2, the curves are very near to 

the optimum t radeoff curves. 

In practice, we partition each dN1(1/2) region into K energy shells of equal volume 

and select a subset in their nl-fold cartesian product. These partitions correspond to equal 

volume partitions in the n-domain produced by the radial hyperplanes and are denoted 

by a set of the points {U;, i = 0, . . . , K )  along each dimension of the Tint. An example 

for N = 8, N1 = 4 and K = 4 is shown in Fig.4.4. 

A point U; on a dimension of TC,I corresponds to the region AN# with p = U;. Using 

(4.5)) the volume of this region is equal to, 

where n = N1/2. To obtain partitions of equal volume, the points U; should satisfy, 

The summation on the right hand is equal to the volume of the region 7Cn(1, n/2) which 

is equal to 112 . Substituting in (4.11), we obtain the following equations for the points 

The partitioning of the N1-D subspaces results in K"' equal volume partitions in the 

N-domain. Each of these partitions corresponds to a parallelepiped in the nl-domain. A 

parallelepiped located at point (UIo,. . . , UInI-l), IjE(O ,..., n'-l) f (0,. . . , K )  is shown by, 
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Fig. 4.3: Tradeoff between the CER, and y, in the A{'(1/2, $ I 1 )  regions, N = 16,32. 
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Fig. 4.4: Example of the two-level shell mapping. 

Shaping is achieved by selecting T  of the N-D partitions with the least second moment. 

In the example of Fig. 4.4, we have T = 10. Considering that the first moment of IC,I is 

proportional to the second moment of A:', the selected subset corresponds to the paral- 

lelepipeds with the least average first moment. This procedure in fact uses a quantized 

version of Ten!, denoted by QX!,I, as the shaping region in the n'-domain. The final 

region is denoted by Q&'(K, T ) .  

In a parallelepiped the average first moment is equal to the sum of the average first 

moments along different dimensions. Using this fact, we obtain, 



This is used to calculate the average first moment of the selected subset of the paral- 

lelepipeds, Frn(Q3Cnt). The average energy of the N-domain is equal to, 

It is easy to show that the volume of as '  is equal to, 

The equations (4.15) and (4.16) can be used to calculate the tradeoff. 

From Fig. 4.3, it is seen that for N' = N/2 (n' = 2), the tradeoff curve for the A:' 

regions lies very near to the optimum curve. This suggests selecting N' = N/2 for the A:' 

and also for the Qd;' regions. Figure 4.5 shows the tradeoff curves of the Qd$12 regions 

as a function of K. It is seen that in general, the suboptimality caused by applying a 

coarse quantization to 7Cnt is negligible. In the following we explain an addressing scheme 

to achieve the marked points. 

For $' = 112, the region Tint is equal to the Voronoi region of the lattice Di, in the 

positive coordinates. Unlike the case of the AN regions, we cannot use this property to 

achieve a point on the corresponding tradeoff curve. This is due to the fact that in this 

case the density of points within Tin! is no longer constant. However, we can still use 

this property to achieve points very near to these curves. 

To do this, the equal volume partitions of AN! are mapped to the equally spaced points 

along a dimension. The Voronoi region of D,* = 322' is used to select half of the points in 

the cartesian product. This results in r, = 3 bits per N dimensions, CER, = (8)'IN. The 

point marked in Fig. 4.5 corresponds to such a region for K = 128. It is seen that the 

degradation is small. The B-points in Table 4.1 and Fig. 4.2 have the same CER, as the 

point achieved here but with about 0.1 dB degradation in y,. 

4.4 Summary and conclusions 

In this chapter, we have found the structure of the regions which provide the optimum 

tradeoff between the CER, and y, and also between the PAR and y, in a finite dimensional 
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Fig. 4.5: Tradeoff between the CER, and y, in the QAE'2(~, T) regions. 

space. Analytical expressions are derived for the corresponding tradeoff. In general, the 

initial part of the tradeoff curves has a steep slope. This means that an appreciable 

amount of the maximum shape gain, corresponding to a spherical region, can be achieved 

by a small value of CER, and PAR. We have presented an addressing scheme to achieve a 

point on the optimum tradeoff curves. For dimensionality less than 16, the point achieved 

is near the knee of the curve. For higher dimensionalities, we use a more general shaping 

region to achieve a point near to the knee of the optimum curves. 



Chapter 5 

Shaping of Sets, Addressing 

Decomposition 

Part of this chapter have been reported in [25], [28], [29], [30], [31]. 

5.1 Introduction 

The structure of the optimum shaping regions is discussed in the previous chapter. In 

general, the initial portion of the optimum tradeoff curves has a steep slope. This means 

that an appreciable part of the maximum shape gain, y,, corresponding to a spherical 

region, can be achieved with a relatively small CER, and PAR. In this chapter, we 

introduce some practical methods to achieve this goal. 

We discuss using a lookup table to move along the optimum tradeoff curves and a 

method to facilitate the hardware realization of this lookup table. We also introduce a 

method to decompose the addressing by a lookup table into a hierarchy of the addressing 

steps each of a low dimensionality. As the memory size has an exponential growth with 

the dimensionality, this scheme results in a substantial decrease in the complexity. In this 

case, by using a memory of a practical size, we can move along a tradeoff curve which has 

a negligible suboptimality. This scheme is completely adaptable to the coding schemes of 



[42]. This scheme makes it possible to achieve the shaping in spaces of high dimensionality 

and use the subspaces of lower dimensionality for the channel coding. 

Another class of addressing schemes is based on using a Voronoi constellation in a 

space of half the original dimensionality. In this case, we introduce a method to achieve 

a single point on the optimum tradeoff curves. This point has significant shape gain with 

low addressing complexity and low CER, and PAR. Finally, in a multi-level addressing 

scheme, we combine the Voronoi constellations of the previous method with a lookup table 

to move along a curve which is nearly optimum. To further reduce the complexity of this 

method, we replace the lookup table by a Voronoi constellation and thereby achieve a 

single point near to the knee of the optimum tradeoff curve. 

We use both continuous approximation and discrete analysis to calculate the perfor- 

mance of our schemes. Usually, the continuous approximation underestimates the actual 

performance. To justify this effect, consider a shaping region which is the union of some 

unity volume Voronoi regions. The centroid of the Voronoi regions are the constellation 

points. Using the orthogonality principle, the average second moment of the region with 

respect to the origin is the sum of two terms, namely, the average second moment of the 

centroids and a second term which is the second moment of a single Voronoi region. In 

the discrete analysis, the second term is not present. 

First, we give some definitions. 

Discrete cube, Cn(K): 

This is equal to the cartesian product {C1(K))" where Cl(K) = {J + 0.5, J = 0, .  . . ,I( - 1). 

The point j+ (0.5)" E Cn(K) is indexed by I= (Jo,. . . , Jn-1). 

We have ICn(K)I = ICl(K)In = Kn. 

Symmetrical discrete cube, SC,(K): 

This is equal to {SC1(K))" where, Z l ( K )  = {f (J + 0.5), J = 0, . . . , K - 1). 

We have ISC,(I()I = IZl(K)ln = (210". 

First moment shell, Fn(K, L): This is the first moment shell of Cn(K), i.e., 



Truncated discrete cube, En(I<, L, T): 

This is the set of F,(K, l)'s, 0 < 1 < L - 1, and a selected subset of F,(K, L) such that 

ITC,(K, L, T)I = T. We use the notation E n ( K ,  L) when the F,(K, L) is completely 

included. It is easy to show that, 

5.2 Shell mapped constellations, AN 

The AN constellations are based on a shaping region as close as possible to the optimum 

shaping region AN($) introduced in the previous chapter. Let's SN(R) denotes an N-D 

(N-dimensional) sphere of radius R. In AN($) region, an S2(R) is the boundary of the 2-D 

subspaces and an SN(&$R), n = N/2, is the boundary of the whole space. In Chapter 4, 

by a change of variable denoted as the shell mapping, the energy shells of S2's are mapped 

to the points along a dimension. As a result, the N-D space (N-domain) is mapped to 

an n = N/2-D space (n-domain). The AN region is mapped to an n-D hypercube of edge 

length one truncated to a simplex of edge length n$. This is denoted by 7Cn(1, n$). 

This mapping has a useful property that a uniform density of points within AN results 

in a uniform density of points within the TC,. Using this property, shaping is achieved 

by partitioning the n-domain into equal volume partitions and then selecting a subset of 

them. For $ = 112, we have another interesting property that 7Cn(1, n/2) is equal to the 

Voronoi region of the lattice Di in the positive coordinates. In this chapter, this property 

is extensively used to facilitate the addressing and also the partitioning of the n-domain. 

In the following, the idea of shell mapping is extended to the discrete case. This 

is achieved in two steps. In the first step, the region TC, is replaced by a discrete set 

TC,. In the second step, the circular region S2(R) is replaced by the circular constellation 

S2(M), M denotes the cardinality. 



Step I: 

Using K concentric circles, each S2(R) is partitioned into K shells of equal volumes. 

These are indexed by J = 0,. . . , K - 1. The radius and the average energy of the J ' th 

shell satisfy, R( J )  = J W A R  where AR = R I ~  and E ( J )  = ( J  + 0.5)(AR),. The shells 

are mapped to the points Y = J + 0.5. This results in the set Cn(K) in the n-domain. 

Each point of Cn(K) corresponds to a shaping cluster of volume T " ( A R ) ~  in the N- 

domain. The average energy of the cluster indexed by 1 is, ~(1) = (AR)2(0.5n + C, J,). 

This means that the points located on Fn(K, 1)'s represent the clusters with the equal 

energy. Using this fact, the shaping is optimally achieved by selecting a subset of these 

points with the least C, J,. This results in the shaping set TC,(K, L) in the n-domain. 

The overall shaping is optimum to the extent that the resolution of the partitioning of 

the 2-D subspaces allows. 

It is easy to show that assuming R = 1, the average energy per two dimensions of the 

selected subset is equal to, 

This formula together with CER, = K/ITC,(K, L)I1/" are used to calculate the tradeoff 

curves given in Fig. 5.1. The two discrete set of points correspond to the discrete analysis 

with M = 128 points per two dimensions. The computational method will be explained 

later. The optimum curves are extracted from Fig. 4.2. 

The lookup table is a block of I E n ( K ,  L) I memory locations each with n log, K bits. 

Fig. 5.2 shows the tradeoff between the y, and the size of the memory. Referring to 

Fig. 5.1, for small values of CER, (which are of practical interest), I( = 4 achieves almost 

all the shape gain. This effect is also observed in [I]. However, referring to Fig. 5.2, K = 4 

results in a substantial decrease in the memory size comparing to K = 8. 

Step 11: 

We assume that the projection of the constellation on the 2-D subspaces is a finite portion 

of Z 2  + (1/2), where Z N  + (112)~  denotes the N-D half integer grid. This assumption 
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Fig. 5.1: Tradeoff between CER, and y, in AN constellations N = 8,24, K 
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Fig. 5.2: Tradeoff between the memory size and y, in AN constellations, 



holds for most of the dense lattices, [42]. The points of Z2 + (1/2), are grouped in the 

order of the increasing energy into K shells each with 2p = M/K points. Each shell has 

four way symmetry and contains an equal number of points from each partition in an 

Ungerboeck partition chain. These are important issues for practical implementation of 

a multi-dimensional trellis coding scheme, [42]. The J ' th shell is mapped to the point 

Y = J + 0.5 along a dimension. The shaping set in the n-domain is selected as, 

TC,(K, L, 2') = {? : P E Fn(K, I), I < L or ? E Fn(K, L), E(?) < O} , (5.4) 

where L selects the first fully filled shells and O selects the least energy points on the 

last shell. This method is not necessarily optimum because, unlike the case of Step I, the 

points located on the Fn7s do not represent the N-D clusters with the equal energy. But, 

since the energy differences are small, the suboptimality is negligible. 

For p = 2 (shells of four points), the energy of the points within each shell are the 

same. This results in the best shaping ability in the n-domain. By changing M for a fixed 

K ,  we can change the total rate of the constellation for fixed lookup table complexity, 

fixed CER, and essentially fixed y,. For continuous approximation in the 2-D subspaces 

(Step I), y, remains fixed. 

The whole constellation is denoted as AN(M, I<, 2t), IAN(M, K, 2t)I = 2t+pn, 2p = MIK,  

n = N/2, and CER, = I( x 2-tln. The lookup table has t input and n [log, K] output lines. 

Example: 

Figure 5.3 shows the structure of the A4 constellation, M = 32, I< = 4. The average energy 

of the shells are, {E(J)} = {1.5,3.5,6.5,8.5}. Assuming continuous approximation (Step 

I), we obtain, (AR)2 = 8/7r and {E(J)} = {1.27,3.82,6.37,8.91}. The difference between 

the elements of these two sets is the main cause for any suboptimality. The available 

signal space in the n-domain is the set C2(4). Each point of the n-domain corresponds 

to 8 x 8 =  64 points in the N-domain. The shaping set in the n-domain is equal to 

w 2 ( 4 ,  L), 1s L 5 6. The two dotted lines corresponds to shaping sets w 2 ( 4 ,  1) and 

r 2 ( 4 ,  4), respectively. For the solid line, we have the Voronoi region of D,* = $12Z2 where 

$12 denotes the rotational operator, [12]. 



\ 1 n-domain \ 

Fig. 5.3: Example of A4 constellation, one-level shell mapping, V(A) denotes the Voronoi 

region around the origin of the lattice A. 

In the following, we introduce a method to facilitate the hardware realization of the 

addressing lookup table in the AN constellations. 

5.2.1 Structure of the lookup table for the AN constellations 

We assume that the shaping set in the n-domain is equal to %(I{, L) C Cn(IC). We 

use a property of E n ( K ,  L) to simplify the hardware realization of the lookup table. In 

general, the projection of TC,(K, L) on any m-D subspace is equal to the set W m ( K ,  L). 

We partition the projections on the 2-D subspaces, which are TC2's, into subsets such 

that the addressing can be achieved directly on them. This results in a logical table with 

many 'don't care' entries. We first show that for a uniform probability density on the 

points of the AN, the induced probability density on the E 2 ' s  depends only on the sum 

of the coordinates. 



The dimensions of the n-domain are labeled by Yo, . . . , Yn-l. To compute the induced 

probability density on the points of TC2(K, L) in the Yo, & subspace, we draw from every 

point (E, . . . , Yn-l) E TC,-2(K, L), a 2-D plane parallel to the &, subspace and find 

the part of it which is located inside of TC,(K, L). The intersection of such a plane with 

the TC,(K, L) is the set TC2(K, L- Jp) where Jp = Y,  - 0.5. The points of this set 

are mapped to the Yo, subspace. By counting the number of times that a given point 

is used, the induced probability density is calculated. The total number of times that the 

set F2(K, b) is used is equal to the total number of times that the sets E 2 ( K ,  a), a 2 b 

are used. The number of times that the set TC2(K, a) is used is equal to I Fn-2(K, L - a) 1. 
Using this fact, the frequency of F2(K, b) is found as, 

From 5.5, it is seen that the frequency of the points of F2(K, b) are equal to each 

other. This means that if we partition the 2-D subspaces of Z ( K ,  L) into F2(K,1), 

1=0, . . . , min(2K-2, L), the set TC,(K, L) can be expressed as a subset of the n/2-fold 

cartesian product of these partitions. In practice, we should further partition each F2(K, I )  

such that the number of points in each of the final partitions is an integral power of two. 

Similarly, the frequency of the 2-D shells are found as, 

The corresponding probabilities are, 

which results in the average power, P2 = EF.0' P(J)E(J). This is used to calculate the 

discrete set of points in Fig. 5.1. 

We already claimed that the continuous approximation underestimates the actual 

performance. In Fig. 5.1, for low values of CER,, this is not the case. This is mainly 



due to the suboptimality of the shaping set in the n-domain. However, it is seen that the 

difference is negligible. 

Example: 

In the constellation AN(M, K, 2" = A8(128, 4,64), the 2-D subconstellations of 128 point 

are partitioned into K = 4 shells each of 2P = 32 points. The average energy of the shells 

are equal to, {E(J ) )  = {5,15.5,25.5,36}. Assuming continuous approximation, we ob- 

tain, {E(J))  = {5.09,15.28,25.46,36.65). There are K" = 44 = 256, N-D partitions and 

shaping is achieved by selecting 2t = 64 of them. We have lANl = 26 bits and r, = 2 bits, 

CER, = 1.41. The lookup table has 6 input and 8 output lines. The output lines are 

divided into four groups each with two lines. These are used to select a shell within each 

2-D subspace. Another group of 20 bits, divided into 4 groups of 5 bits, is used to select 

a point within each 2-D shell. 

To specify the TC(4, L, 64), we need to find L. Using (5.2), we obtain, 

It is seen that c$=-, F4(4, 1) = 66. This means that L = 4 and only 29 points of the 31 

points in F4(4, 4) are included in E4. In the following we discuss how to select these 

points. 

If all the points of F4(4, 4) were included, the frequencies of the 2-D shells would 

be, {Nl(J))  = {32,20,10,4}. The two points of F4(4,4) with the highest ~ ( f )  are the 
+ 

points J = (1,1,1,1) with ~ ( f )  = 62 and the point f =  (0,1,1,2) with ~ ( f )  = 61.5,'. If 

we discard these two points, the induced probability density on different dimensions 

of E 4 ( 4 ,  4,64) will be no longer the same. For the first dimension the frequencies 

are {32,18,10,4) and for the second, third and the fourth dimensions {32,18,10,4), 

{32,19,9,4) and {31,19,107 4)) respectively. This results in the average energy of 13.094, 

13.094, 12.938 and 13.254 along the first to the fourth 2-D subspaces. The overall average 

lThere are 24 points with E(J> = 61.5. These are the points indexed by the permutations of (0, l , 1 ,2 )  

and (0,0,1,3), twelve points from each. 



energy is P2 = 13.095 resulting in 7, = 0.614 dB. Using continuous approximation, the 

maximum shape gain for N = 8 and CER, = fi is y, = 0.698 dB. 

The finest partitioning is obtained by K = 32 which results in 7, = 0.727 dB. This 

requires a lookup table with 18 input and 20 output lines. The size of the memory with 

respect to K = 4 (6 input and 8 output lines) has increased by the multiplicative factor 

10240. As a result of this large increase in the complexity, the shape gain has just increased 

by about 0.1 dB. This justifies our previous claim that K = 4 is a reasonable choice. 

To build up the lookup table, we partition F2(4, l), 1 = 0,1,2,3, of w 2 ( 4 ,  4) into 

subsets each with an integral bit rate, Fig. 5.4. The first moment shells are denoted by A, 

B, C, D and E. The addressing subsets have the same subscript and also the same sign. 

If F4(4, 4) were included completely in TC4 (4,4,64), we could specify all the points of 

Fig. 5.4: The %(4,4) partitioned into the addressing subsets. 

TC4(4, 4,64) with this partitioning. For this example, we need a finer partitioning. This 

can be avoided by discarding the point indexed by (O,0, 2,2) with E = 61 ,2 instead of the 

point indexed by (1,1,2,0) with E = 61.5. This results in the average power P2 = 13.097. 

The loss in the shape gain comparing to the previous case (P2 = 13.096) is negligible. 

Table 5.1 shows the index vector of the points of n;h. The indices are obtained from the 

'There are six points with E = 61. These are the points indexed by the permutations of (0, 0 ,2 ,2) .  
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Points n/ E Points n/ E 

Table 5.1: Points of the shaping set in the n-domain of the AS( 128,4, 26) constellal 

permutations of the given vectors. Also given is the number of points obtained from each 

vector, n/, and the average energy of the N-domain clusters, E. 

We reach the conclusion that the points of F,(K, L) have almost the same E and 

selecting an arbitrary subset of them results in negligible degradation. This subset should 

be selected on the basis of the addressing complexity. 

Table 5.2 contains a prefix code for the addressing in the n-domain. The don't care 

entries can be used to construct a logical table of reduced complexity. Of course, for a 

constellation like A24(128, 4, 222) which needs a lookup table with 22 input and 24 output 

lines, the effect of the 'don't care' entries will be more pronounced. 

5.3 Address decomposition 

For a fixed rate per dimension, the complexity of an addressing scheme using a lookup 

table grows exponentially with the dimensionality. This can result in an impractically 

large memory. In this section, we describe a method to decompose the addressing into 

steps of low dimensionality and thereby avoid the exponential growth of the complexity. 

Consider an N'-D unshaped constellation, i.e., AN, = {s2) N'/2. This constellation is 

partitioned into K energy shells of equal volume. The 2-fold cartesian product of the set 

of the partitions is shaped by using a lookup table. Assuming continuous approximation, 



Table 5.2: A prefix code for the addressing in the n-domain of the A8(128, 4, 26) constel- 

lation. The ' x ' denotes the 'don't care' entries. 

the calculation of the tradeoff is quite similar to the one presented in section (4.3). The 

final result is shown in Fig. 5.5. 

The main point is that for a moderate value of K ,  we can essentially achieve the 

optimum tradeoff. This phenomenon can be considered as a generalization of a similar 

effect observed over dimensionality two in [I]. This property allows us to decompose 

the addressing of a constellation into some intermediate steps achieved on the 2-fold 

cartesian product of a set with low cardinality3. We call this method as the address 

decomposition. For a dimensionality N = 2u, this results in u - 1 addressing steps. The 

i'th step, i E [O,u - 11, is achieved on the 2 i - ~  subspaces and results in dimensionality 

2i+1. We assume that the subspaces involved in the i'th step are partitioned into Ki = 2ki 

shells. Referring to Fig. 5.5, we select {Ki, i = 1, . . .) = {64,64,128,256, . . .). Actually, 

'We already observed in Fig. 4.5 that the same property is valid for the ~ ~ ' ~ ( 1 / 2 , 4 ' )  regions. This 

means that the address decomposition procedure discussed here can be applied to that case too. 



Fig. 5.5: Tradeoff between CER, and y, using a finite number of the energy shells in the 

N/2-D subspaces. 

for a 2-D subconstellation with M points, one can achieve the maximum shape gain with 

Kl = M/4 shells. This is usually less than K1 = 64. 

The i'th addressing step requires a memory with 2ki x 22ki bits. The last step requires 

21c; x 22ki-Ts bits. An upperbound to total memory size, Ms, is obtained by setting r ,  = 0. 

As an example, for N = 32, the upperbound is equal to, 168 kilo-bytes per N dimensions. 

Figure 5.6 shows the final tradeoff curves. It is seen that the suboptimality is neg- 

ligible. This addressing scheme does not have the problem of ties or the constraint on 

the constellation total rate as encountered in the Voronoi constellations. Also, it can be 

easily used in conjunction with the coding schemes of [42]. 

An alternative to the addressing by a lookup table is the use of a Voronoi constella- 

tion, [5], [lo]. In the following, the idea of the shell mapping is extended to this case. 
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Fig. 5.6: Tradeoff between CER, and y, using the address decomposition method. 

5.4 S hell-mapped Voronoi constellat ions 

Consider a lattice A:, such that the projection of its Voronoi region on any dimension 

is the region [-I, 11. Let's Vn(KAi), denote a subset of Zn + (112)" bounded within the 

Voronoi region around the origin of KA;. This is the Voronoi constellation based on the 

half integer grid Zn + (112)" and the shaping lattice KAi,4. The shell-addressed Voronoi 

constellations are based on using the points of such a set to shape the n-domain. The 

complexity of the addressing is that of a linear mapping plus the complexity of decoding of 

A;. Assuming binary lattices, to have an integral total rate, M and K should be integral 

powers of two, i.e., M = 2m and K = 2 k .  

In the AN constellations, the available signal space in the n-domain is restricted 

to positive coordinates. To obtain symmetry, the 2-D shells are further partitioned into 

two subshells each with 2 p - I  points. The two subshells of the J ' th shell are mapped to 

the point Y = f (J + 0.5). This results in the set SC,(2k) in the n-domain. Shaping is 

4For a brief description of the Voronoi constellations refer to Appendix G.  
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achieved by selecting the set Vn(2";) c SC,(2k) to shape the n-domain. It is easy to 

show that, 

and, 

where, 

L, 

CER, = 
( I Z ~ / A .  I)'/" ' 

is the absolute first moment of the region R. 

It is seen that y, is determined by the absolute first moment of the n-domain. Con- 

sequently, in selecting A;, one should try to minimize the absolute first moment of the 

lattice Voronoi region for a given volume. A lattice with a pyramid Voronoi region results 

in a spherical constellation. We know that such a lattice exists only in dimensionality 

two, [6]. An analytical method to calculate the absolute first moment of the lattices is 

given in Appendix D. Numerical results are presented for the lattices D, and %D,. 

For the lattice D,, using IZn/DnI = 2 in 5.9, we obtain, 

CER, = 2 x 2-'ln, (5.12) 

and using the result of Appendix D for F, in (5.10), we obtain, 

For example, for N = 8 (n = 4)) we have, CER, = 1.682 and y, = 0.54 dB. 

For the lattice XD,, using ]Zn/%D,I = 2 x (2),12 in (5.9), we obtain, 

CER, = h x (2)-'In , (5.14) 

and using the result of Appendix D for F, in (5.10), results in the shape gains of Table 

5.3. 



Table 5.3: Shape gain of the shell-addressed Voronoi regions based on the lattice RD,. 

For A: = D:, we obtain the constellation AN(2", 2" 2kn-1). This corresponds to the 

point r,  = 1 bit/ N-D, CER, = (2)lIn, on the optimum tradeoff curves. These are the A- 

points in Table 4.1. For N = 4, n = 2, we have DZ = %Z2 and the constellation is spherical. 

This is the case in Fig. 5.3. 

The major complexity in a Voronoi constellation is that of decoding the shaping 

lattice. The decoding of D: is efficiently achieved using the following definition, [4], 

To decode a vector x ,  we first find the two nearest integers on the two sides of each 

component of x. Let's x;" and x;0 denotes these integers along the i'th dimension where 

superscripts e / o  stands for even/odd. The point xe = (xp, i = 0,. . . , n - 1) is the nearest 

point of 22" to x. Similarly, the point xO = (xg, i = 0,. . . , n - 1) is the nearest point of 

2Zn + (1)" to x.  The nearest of the two points xe, x0 is the nearest point of the lattice 

D: to x.  

The decoding of D: is much simpler than the decoding of the popular lattices used in 

the standard Voronoi constellations. For example, consider the lattices E8 and (Leech 

lattice). The decoding of these lattices is achieved by decoding their trellis diagram. The 

E8 lattice has a 4-state trellis and the lattice has a 256-state trellis, [13]. 

In the following, we show that the point corresponding to the lattice Di is the only 

nontrivial point that a shell-mapped Voronoi constellation can achieve on the optimum 

tradeoff curve. Another point is the trivial case of a cubic constellation. 

Referring to the definition of the region 'TC, in (4.4)) to achieve an optimum point, 



the first condition is that the points [on-', f 21, [ . ] denotes the set of all the points 

obtained by the permutations of the components within [ . I ,  should be the nearest points 

to the origin along each dimension of A:. Also, to realize a point with the parameter 

l / n  5 11, 5 1, we should have, [(f 2 ~ ) ) ~ ]  E A:. Using the group property of the lattice, this 

requires that [On-', f (4 - 4$)] E A: and also [On-', f 411,] E A:. This contradicts the first 

condition for all the range of 11,s 1 except for 11, = 112 and 11, = 1 where 11, = 1 results in a 

cubic constellation. 

For N < 16, the point achieved by the shell-mapped Voronoi constellation based on 

the lattice D i  is located near the knee of the tradeoff curve. As N increases, this point 

moves toward the initial parts of the curve. It should be mentioned that .  in a practical 

scheme, this part of the curve may be the most interesting part. 

5.5 Two-level shell-mapped constellat ions 

In the following, we introduce a method to achieve a higher y, for N 2 16. This is based on 

a multi-level addressing procedure which combines the shell-mapped Voronoi constellation 

method with a lookup table to move along a curve which is nearly optimum. In this case, 

the addressing by the lookup table is achieved in a space of dimensionality two and has a 

low complexity. In the rest of the chapter, we make frequent use of Fig. 5.7 to explain our 

schemes. The actual values corresponding to this figure will be written inside of double 

braces { . ]. 

The two level shell-mapped constellations A:' are based on a shaping region as close 

as possible to the region A;' introduced in the previous chapter. These constellations 

provide a means to move along a curve which is nearly optimum. Examples of such 

curves are given in Figs. 4.3 and 4.5. The structure of the A:' {A~]constellations is as 

follows: A constellation & 1 ( 2 ~ ,  2k, 2kn-1), n = N1/2, is employed along each N1-D sub- 

space. The shaping set in the n-domain is equal to Vn(2kD3 {&(4PZ2)]. By using a 

partitioning lattice AP, {2Z2]which has 2kD;*1 {4PZ2]as a sublattice, Vn(2kDi) is parti- 

tioned into 2k' = lA:/2kDiI {23 = 12Z2/4PZ21)shaping clusters each with 2k" = IZn/AP,I 
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Fig. 5.7: Example of a multi-level constellation, N = 8, N 1  = 4 ,  n = 2, n1 = 2, k = 2, kt = 3, 

kl1 = 2, 2kD: = 4XZ2, A: = 2Z2 and 2k1~:, = 8%Z2. 



%22 = IZ2/2Z21Bpoints. This is based on the decomposition, 

obtained from the partition chain Z " / A P , / ~ ~  D: %Z2/2Z2/4%Z2)). In the matrix notation, 

we have, 

z " = ~ ~ D ; ' , + ~ G + ~ H ,  (5.17) 

where G and H are generators for [Zn/A:] Q [Z2/2Z2]))and [ A K / ~ ~  D:] Q [2Z2/4RZ2])), 

respectively, a is a binary kt'-tuple and b is a binary kl-tuple. Using (5.17), each coset 

of [Z"/~~D;]  #[Z2/4%Z2]]is labeled by (a, b). Each shaping cluster in the n-domain is 

the set of the points with the same a.  In other words, b determines a cluster within the 

n-domain and a determines a point within that cluster. 

The partitioning of the N1-D subspaces results in 2k1n1, n l =  (N/N1) %26]shaping 

partitions in the N-domain. The third step of shaping is achieved by using a lookup table 

to select 2t of these N-D partitions of the least average energy. The whole constellation is 

denoted by, AE1(2", 2k, A:, 2t). The lookup table has t input lines and k'n' output lines. 

The output lines are divided into n' groups. Each group is assigned to one of the N'-D 

subspaces and is used as the b part of the label in (5.17). Another kl'n' data bits, divided 

into n' groups, are used as the a part of the label in (5.17). Finally, another N(p - 1)/2 

data bits select one point within each 2-D subspace. 

Referring to Figs. 4.3 and 4.5, it is seen that for relatively high CER,, the sub- 

optimality of this addressing method is negligible. In this case, assuming the simplest 

partitioning lattice namely Dn with IZn/Dn I = 2, the size of the memory with respect 

to a direct addressing scheme decreases by the factor 22n1. By using other partitioning 

lattices, one can further decrease the size of the memory at the cost of a small loss in 7,. 

The BE' 8 B,4]constellation is devised to achieve a single point near to the tradeoff 

curve of A$' without using the lookup table. These are the marked points in Fig. 4.5. The 

shapinglpartitioning of the N1-D subspaces is the same as in the A$' constellations. How- 

ever, in this case, the shaping clusters of the N1-D subspace are mapped in the order of the 

increasing energy to the points of 2 + (112) bounded within [-2k', 2*'] Q [-23, 23]) .-In 



Fig. 5.7 just the positive part of the nl-domain is shown. The positive and the negative 

points are mapped to the same cluster. Each point is labeled by the label of the cor- 

responding cluster, namely the k'-tuple b in (5.17), and an extra bit which is selected 

according to the sign of the point. This sign bit is used as one bit of the k"-tuple a in 

(5.17). This results in the set ~ ~ 1 ( 2 ~ ' )  {X2(8)%, in the nl-domain. The shaping set 

in the nl-domain is selected as, V,I (2k' D:,) c ~ % ~ 1 ( 2 ~ ' )  {b(8%Z2) c SC2(8)]. In the A;' 

constellation, this part of the shaping was achieved by the lookup table. 

In each signaling interval n1(k'+l) - 1 data bits are used to select one point in the 

nl-domain. The label of each component of the selected point (which is the kl-tuple b 

plus a sign bit) with another k" - 1 data bits are used in (5.17). To store the labels, we 

require a block of memory with M, = k' x 2k' bits (comparing to the A:' constellations 

which requires n'k' x 2"Ik' bits.). 

The whole constellation is denoted by, ~ $ ( 2 ~ ,  2k, A:). The total rate is mN/2 - n' - 1 

and the shaping redundancy is r, = 1 + n'. As in the case of the A;' constellations, we 

have the appropriate choice of n' = 2. In the sequel, we assume that n' = 2. 

5.5.1 Performance measure 

To calculate the shape gain, first, by using (LIT), the average energy of the N1-D points 

mapped to each shaping cluster in the n-domain are calculated. Then, by adding the 

average energies along different dimensions of the nl-domain, the average energy of the 

final subset of the N-domain is found. 

As an example, Table 5.4 shows the shape gain of the B,8,(32,4, A:) constellation 

for different partitioning lattices. For this constellation, we have r, = 3 (CER, = 1.3). 

By changing m, we can change the total rate of the constellation for fixed lookup table 

complexity, fixed CER, and essentially fixed y,. As an example B,86(64, 4, Z4) results in 

y, = 0.72 dB and Bk(128,4, Z4) results in y, = 0.71 dB. 

Assuming continuous approximation, the maximum shape gain for CER, = 1.3, N = 16 

is equal to, y, = 0.85 dB. Assuming M = 128 points per 2-D subconstellations, the ad- 



Table 5.4: Shape gain of the B&(32,4, A:) constellation for CER, = 1.3, M, denotes the 

required memory size in kilo-bytes per N dimensions. 

dress decomposition method needs Ms = 11 kilo-bytes per N dimensions to achieve the 

optimum shape gain (within a small fraction of dB). 

5.6 Mult i-level shell-mapped constellations 

As long as the shaping region in a domain is selected as the Voronoi region of a lattice, 

it can be easily partitioned into shaping clusters of equal volume. This provides us with 

a way to achieve another level of shapingladdressing on the cartesian product of the 

clusters. This can be done several times to produce a multi-level (nested) form of shaping. 

Similarly to the B:' constellations, this can be used to achieve single points with high 

shaping redundancy near to the optimum tradeoff curves. 

The notation B ? " " ' ~ ~  (2m,  2k, AP A&, . . . , AKq) is used as the complete notation for 
NI r....Nq-l this constellation. This constellation has a constellation BNq (2m,2k)A~l , - -m,A:q-l )  

along each of its Nq-D subspaces and the lattices AEq, and Dtq,  nq = N/Nq, are used 

to partitionlshape the cartesian product of the  BE:^'."^^-^ ' s. Addressing in BN N1,...,Nq 

requires a set of q memory blocks with ki, i = 1,. . . , q input and output lines where 

2ki+1 = l~:,/2~: D,~ 1, k{ = k, nl = N1/2. 

The total rate is equal to mN/2 - rs and rs = 1 + N &(l/N;). 



5.7 Comparison with other techniques 

In the following, we compare our addressing schemes with the pioneering works of [lo], 

[I] and [14]. 

In the Voronoi constellations, the Voronoi region of a lattice is used as the shaping 

region, [5], [lo]. The complexity of the addressing is that of a linear mapping plus that 

of the decoding of the shaping lattice. In [I], the 2-D subspaces are partitioned into the 

circular shells of equal volume. Then, a multi-level shaping code is used to specify the 

sequence of the 2-D subregions. In [14], the Voronoi region of an infinite dimensional 

lattice obtained from a convolutional code is used as the shaping region. The addressing 

complexity is that of a linear mapping plus the decoding of the code trellis diagram. 

The major problem in the Voronoi constellations based on the binary lattices is 

that they have a cubic 2-D subconstellation (instead of spherical). For a given CER,, 

this decreases the achievable y, and also increases the PAR. The Voronoi constellation 

also suffer from the the problem of ties which occurs when some points are located on 

the boundary of the shaping region. The ties complicate the addressing procedure and 

potentially may result in a constellation which is not symmetrical. 

The shell-addressed Voronoi constellations introduced here have a spherical 2-D sub- 

constellation. Their addressing is achieved by a Voronoi constellation of half the original 

dimensionality. This reduces the addressing complexity. Also, an important class of our 

schemes achieving a point on the optimum tradeoff curve are based on the lattice Dl 

which has a simple decoding algorithm. In a shell-addressed Voronoi constellation, the 

ties, although still existing, do not result in addressing problem or unsymmetry. 

The schemes of [I] also use a spherical 2-D subconstellation and do not have the 

problem of ties. But, to have a fair comparison of [1] with this work or with [lo] and 

[14], it remains: (i) to find an appropriate shaping code which has an integral bit rate 

per signaling interval (to avoid the problem of the nonintegral bit rate) and (ii) to find 

an addressing scheme to map the data bits to the code words. As mentioned in [I], the 

addressing problem is not a major issue. However, the problem of the nonintegral bit 



rate, needs to be further discussed. 

As we are essentially able to achieve any point up to the knee of the optimum tradeoff 

curves, in table (5.5), we have compared some of the values obtained in [lo] and [I] with 

the optimum values calculated in the fourth chapter. 

Table 5.5: Comparison between the the Voronoi constellations (VC) and the Calderbank, 

Ozarow method (C/O) with the optimum constellations, the values in the parenthesis are 

the optimum values of CER,, PAR for the given y,. 

It should be mentioned that by extending the peak constraint technique introduced 

in [14] to the case of the finite dimensional lattices, it is possible to modify the Voronoi 

constellation in such a way that the 2-D points outside a circle of selected radius are not 

allowed. This constraint can be applied to the minimum distance decoder, [13], of the 

lattice. Such a modification, to some extent, remedies the deficiencies caused by a cubic 

2-D subconstellation. For example, our simulation results show that for the lattice E8, 

one can achieve almost all the shape gain given in table (5.5) but with CER, = 1.7 and 

PAR = 4 instead of CER, = 2 and PAR = 6.98. It should be mentioned that most probably 

for the higher dimensional lattices (like A24), the improvement due to this technique will 

be more pronounced. 

As a more detailed comparison, a four state trellis diagram of [14] (in conjunction 

with the peak constraint technique) achieves y, = 0.97 dB, CER, = 1.5, PAR = 3.75. For 



N = 32, a two-level shaping code of [I] achieves, y, = 0.86 dB, CER, = 1.46, PAR = 3.40. 

For N =32 and M = 128 points per 2-D subconstellations, our address decomposition 

method needs M, = 44 kilo-bytes per N dimensions to achieve y, = 0.89, CER, = 1.19 

(r, = 4 bits per N dimensions) and PAR = 2.8. This tradeoff point can not be distinguished 

from the L-Point in table 4.1. As an alternative, our method needs M, = 36 kilo-bytes 

per N dimensions to achieve y, = 1.02, CER, = 1.41 (r, = 8 bits per N dimensions) and 

PAR= 3.42. This is very near to the K-Point in Table 4.1. On the other hand, to realize 

the L-PointslK-Points, the appropriate number of shells per 2-D subspaces is equal to 

418. As an example refer to Fig. (5.1). For these numbers of partitions, a direct addressing 

scheme requires a lookup table with M, = 1 .O5 x 106/6.5 x lo9 kilo-bytes per N dimensions. 

In addition to the better (nearly optimum) performance, the address decomposition 

method has two other advantages over the examples given in [I] and [14] : 

0 The examples given in [I] and [14] achieve tradeoff points with relatively high CER, 

(about 1.5). The achieved points are relatively far from the knee of the optimum 

tradeoff curves. Also, in a coding scheme carrying a high bit rate per dimension, 

CER, E 1.5 may be hard to implement. However, our method is not confined to a 

specific tradeoff point. Specifically, for CER, = 1.19 (L-Points in Table 4.1), we can 

achieve a higher y, than the examples of [I] or almost all the y, of the examples of 

[14] with a substantial decrease in CER, and PAR. It should be mentioned that it 

is possible to find other examples for the application of the ideas introduced in [I] 

and [14] achieving different, possibly better, tradeoff points. 

0 It seems that our address decomposition method which is just a block of memory 

(no associated computation) is easier to implement. 

However, the schemes of [14] and [lo] have an advantage over all other known shaping 

methods that in their case the constellation points form a group under vector addition 

modulo the shaping lattice. This property can be used to combine the shaping and the 

precoding for signaling over the partial response channels, [15], [8]. 



5.8 Summary and conclusions 

We have introduced several practical addressing methods. These are based on partitioning 

the constellation into clusters of equal volume and selecting a subset of them with the 

low average energy. In one class, the addressing is achieved by a lookup table. By using 

the address decomposition method, we have substantially decreased the complexity while 

the suboptimality is negligible. In another class, the addressing is based on the use of 

the Voronoi constellations. One can also implement hybrid multi-level schemes which 

combine both classes. 



Chapter 6 

Unsymmetrical Boundary Shaping, 

Spectral Shaping 

Part of this chapter have been reported in [32], [33], [34], [35]. 

6.1 Introduction 

In this chapter the concept of the unsymmetrical shaping is discussed. This is the selection 

of the boundary of a constellation which has nonequal values of power along different 

dimensions. The objective is to maximize the rate of the constellation subject to some 

constraints on its power spectrum. 

Assuming continuous approximation, the selection of the constellation is composed 

of selecting a basis for the space (modulating matrix) and a boundary (shaping region) 

for the points. This is formulated in terms of an optimization problem. The objective 

function (to be maximized) is the rate of the constellation. There is always a constraint 

on the total energy. We impose an additional constraint on a factor denoted as the 

Constellat ion-Expansion-Rat io, CER, , and also some constraints on the resulting power 

spectrum. Due to the continuous approximation, the structure of the shaping region 

appears as an independent factor in the objective function. This reduces the complexity 



of the optimization procedure. Selection of the basis depends on the specific set of the 

spectral constraints. However, shaping can be studied in a more general context. Because 

of this reason, we first consider the shaping. 

In the continuous approximation, the entropy and the energy per signaling inter- 

val are determined by the volume and the second moment of the shaping region. In a 

conventional shaping problem, one tries to maximize the volume of the shaping region 

subject to a fixed total second moment. This leads to equal energy being allocated in 

each dimension. Without additional constraints, spherical regions are optimum. 

In some applications, we need a constellation which has nonequal second moments 

along different dimensions. For example, this nonequal energy allocation in conjunction 

with a nondiagonal modulating matrix can be used to shape the power spectrum of the 

transmitted signal. This results in an unsymmetrical shaping problem. In this case, one 

tries to maximize the volume of the shaping region subject to having the second moment X i  

along the i'th dimensions. Without additional constraint, elliptical regions are optimum. 

The case of the elliptical shaping region is already discussed in [24] and [19]. In this work, 

we impose an additional constraint on the factor CER, of the shaping region. The factor 

CER, for the case of the unsymmetrical shaping will be defined later. 

The body of the chapter is as follows : In Section 6.2, the block diagram of the system 

is introduced. In Section 6.3, we discuss the idea of the unsymmetrical shaping in more 

detail. In Section 6.4, we discuss how to maximize the rate of a constellation (volume of 

the shaping region) subject to some constraints on the power spectrum. The following 

constraints are considered in detail : (i) A fraction of the total power equal to F, is located 

in the frequency band [0, w,], and/or (ii) The spectrum has spectral nulls at zero and/or 

at the Nyquist frequency. It is shown that this maximization is equivalent to maximizing 

the determinant of the autocorrelation matrix subject to some linear constraints on its 

elements. In an optimized basis analysis, the optimum autocorrelation matrix is found. 

In a fixed basis analysis, the eigenvectors of the autocorrelation matrix are fixed and the 

eigenvalues are optimized. The eigenvectors are selected to reduce the computational 

complexity of the modulation by using fast transform algorithms. 



Fig. 6.1: System block diagram. 

6.2 System block diagram 

1 

F i g ~ r e  6.1 shows the block diagram of the system under consideration. We use a discrete 
I ..' 

ti& model and block based processing. Each signaling interval is composed of M 

time multiplexed impulses. The available energy per time impulse is normalized to unity. 

In each signaling interval, a binary data vector i is encoded. The shaping block maps 

the vector i to the point a in the baseband constellation. This is a finite set of the 

N-D points bounded within the shaping region R,. We assume that the points a are 

uniformly distributed within R, and are used with equal probability. The second moment 

along the i'th dimension of R, is equal to Xi. The diagonal matrix A, is defined as, 

ha = diag [Ao, . . . , 
Normalizing the volume of the Voronoi region around each constellation point to 

unity, the entropy of a is found as, 

Shaping 
a - 

where V(R,) is the volume of R,. This is due to the assumption that the points a are 

uniformly distributed within R, and are used with equal probability. 

The columns of the M x N, M 2 N (modulating) matrix M are the dimensions of 

the constellation (line codes). We have M t M  = I where I is the N x N identity matrix. 

This results in H(a) = H(y). The objective is to maximize the H(y),  or equivalently 

V(R,), subject to a constraint on the CER, of R, and also some constraints on the 

power spectrum of y.  This is denoted as the spectral shaping. Our tools are the selection 

of the region R, and the matrix M.  In the following, we first consider the selection of 

the shaping region R,. 

Modulator (M) Y 



6.3 Unsymmetrical shaping 

For a given set of second moments Xi's, the shape gain (7,) of the region R, is defined 

as the reduction in the average energy comparing to a using cubic shaping region with 

the same volume and with the second moments proportional to Xi's. Using continuous 

approximation over the hypercube, we obtain, 

Assume that the projection of R, on the i'th dimension is the region [- L;, L;] . Define 

the binit rate along the i'th dimension of R, as log(2L;). The shaping redundancy, r,, is 

defined as the difference between the average binit rate and the entropy per dimension of 

R,. The CER, is defined as, CER, = eTs. This results in, 

A higher y, is achieved at the price of a higher CER, and there exists a tradeoff 

between these two factors. An optimally shaped region is the one which optimizes this 

tradeoff. 

From (6.2) and (6.3), it is seen that CER, and y, are invariant to the scaling of 

the coordinates. This means that the regions obtained by scaling have the same shaping 

performance. This allows us to relax the constraints on the individual Xi's to a single con- 

straint on xi Xi. This reduces the problem of the unsymmetrical shaping to a conventional 

shaping problem. 

Define a symmetrical region as a region which is closed under the permutations and 

sign changes of the coordinates. The unsymmetrical versions of a symmetrical region 

are obtained by scaling that region along different dimensions. For a given total second 

moment, a symmetrical region has a larger volume than its unsymmetrical versions. The 

reduction in the volume is the price associated with the unsymmetrical shaping. 

We assume that region R, is obtained by scaling a symmetrical baseline region B 

by the scale factor S; along the i'th dimension. Projection of the region B on the space 



dimensions is the region [- 1, 11. The scale factors are equal to Si = where E 

denotes the average energy per dimension of B. In this case, as we will see later, the 

power spectrum of y depends only on the matrices A, and M. This allows us to select 

the baseline region and the scale factors independently. The baseline region is selected 

to maximize the y,(B) for a given CERs(B). Substituting A; = E and L; = 1 in (6.2) and 

(6.3), it is easy to verify that this objective is equivalent to maximizing the volume for a 

given second moment. The scale factors (or equivalently A,) and M are selected to shape 

the, power spectrum. 

6.3.1 Optimum baseline region 

An optimally shaped B should be selected as a subset of the hypercube 1-1, 1IN, N-fold 

product of [-I, 11, which has the maximum volume for a given second moment. This 

subset is selected by a hypersphere. This is based on the same general idea as in the 

fourth chapter. By changing the radius of the hypersphere, P, we can tradeoff y, and 

CER,. This region is denoted by AX) .  If we label the dimensions by Xi, i E [0, N - 11, 

we have, 

Figure 6.2 shows the region A:) for three different values of P. 
For /3 5 1, region A$) is a sphere. It has the maximum y, (for a given N) but also 

large value for CER,. For P 2 N, region AE) is a hypercube. This corresponds to no 

shaping, i.e., y, = 1 and CER, = 1. By changing ,f? in the range 1 5 ,B < N, we move 

along the optimum tradeoff curve between these two extreme points. 

6.3.2 Addressing 

The main difference between the addressing of an unsymmetrical shaping region and the 

addressing in a conventional shaping problem is that in the unsymmetrical case there are 



Fig. 6.2: The At )  region for three different values of p. 

diferent number of points along diferent dimensions. 

We assume that the addressing is achieved in two steps. The first step is on the one- 

D subconstellations and the second step is on their cartesian product. We also assume 

that the points of the one-D subconstellations belong to the half integer grid 2 + (112). 

This is the case for the coding schemes of [42]. The points of the Z + (112)'s are divided 

into K energy shells of equal cardinality. There are Pi points in the shells of the i'th 

dimension. Each shell contains an equal number of points from each partition in an 

Ungerboeck partition chain. This is an important issue in using the constellation in a 

multi-dimensional trellis coding scheme, [42]. 

The one-D energy shells divide the available signal space into K ~ ,  N-D shaping 

clusters of equal cardinality. The second level of the addressing is achieved by selecting T 

of the N-D clusters with the least average energy. The CER, of this scheme is equal to, 

To transmit an integral number of bits per signaling interval, the T and Pi's should 

be integral powers of two, i.e., T = 2t and P, = 2p i .  In this case, each N-D shaping cluster 

corresponds to the constant integral rate Cipi. The total rate is equal to, t + xi pi. 

Addressing is achieved by a lookup table with t input lines and N [log K1 output 

lines. In each signaling interval, t bits enter the lookup table and the N [log K1 bits at the 

output selects an energy shell within each one-D subconstellation. Another Ci p; data bits 

select the final point within each of the one-D shells. The complexity of the addressing 

lookup table can be subst antially decreased by using the address decomposition method 

of the fifth chapter. 



In the shaping regions of the fourth chapter, the boundary of the 2-D subconstel- 

lations is a circle. The 2-D subconstellations are partitioned into the energy shells of 

equal volume. The main property is that in this case, the average energy of the 2-D shells 

depends linearly on their index. This is the key point to a set of the addressing schemes in 

the fifth chapter. In the case of the dc) region, by partitioning the 2-D subconstellations 

(which are 2-D cubes) into the energy shells of equal volume, the same addressing schemes 

are applicable. However, in this case, the linear relationship between the average energy 

and the index is slightly violated. This results in a small degradation in the shaping 

performance. 

6.4 Spectral shaping 

6.4.1 Preliminaries 

The autocorrelation matrix of a sequence of M-D, blockwise uncorrelated, real vector 

y is equal to, R, = E [yyt], where E[ . ] denotes the expectation. Obviously, R, is a 

symmetrical matrix. Define d, ( k )  as, 

where R,(i, j)'s are the elements of R,. Using the results of [3], the power spectrum of y 

is equal to, 
i M-I 
1 -  - 

s,(w) = , d,(k) cos (wk). 
k=O 

For the model of Fig. 6.1, we have R, = MRaMt where R, is the autocorrelation 

matrix of a. It can be shown that if the shaping region R, is obtained by the scaling 

of a symmetrical baseline region B, the autocorrelation matrix R, will be diagonal, i.e., 

R, =A,. In this case, the spectrum of y is equal to, 



where Si(w) is the power spectrum of the i'th dimension of M. This means that S,(w) 

depends only  on matrices M and A,. More specifically, it does n o t  depend on the structure 

of the baseline region 8. 

Assuming R, = A,, to realize a given R,, it is enough to select the matrices M and 

A, as the matrices of the eigenvectors and the eigenvalues of R,, respectively. All our 

following discussions are based on this structure. 

Using (6.2), and considering that H(y) = H ( a )  = log [V(R,)], we obtain, 

If all the eigenvalues are nonzero, we have xi log [A; (R,)] = log (IR, I )  where I . 1 denotes 

the determinant. Considering (6.9), it is seen that the baseline region B and the matrix A, 

have independent effects on H(y) .  T h i s  property allows US t o  select t h e m  independently.  

The baseline region B is selected by the boundary shaping considerations. The objective 

is to maximize the y,(B) for a given CER,(B). The matrices M and A, are selected by 

the spectral shaping considerations. The objective is to maximize the second term in (6.9) 

subject to some constraints on the power spectrum of y.  

6.4.2 Linear filtering 

Consider a linear system with the M x N,  N 5 M, transfer matrix A. The input eigenvec- 

tors of A, mi, i E [0, N - 11, are the eigenvectors of AtA with the eigenvalues 4;. Similarly, 

the output eigenvectors mi, i E [0, M - 11 are the eigenvectors of AAt. Assuming M > N,  

AAt has N nonzero eigenvalues equal to the same q$'s and Mo = M - N eigenvalues equal 

to zero. The eigensystem of A satisfies, 

Since AtA and AAt are both symmetrical, the input and the output eigenvectors form 

an orthonormal basis. Obviously, the input eigenvalues are nonnegative. Furthermore, 



all our subsequent discussions are based on systems which have strictly positive input 

eigenvalues . 
For the system A, the autocorrelation matrix of the N-D input vector x and the 

M-D output vector y are related by, R, = ARxAt . For a positive-definite Rx (IR,I # 0), 

M - N eigenvalues of R, are zero and the product of the N nonzero eigenvalues is equal 

By the appropriate selection of A, we can impose some constraints on the spectrum of y. 

6.4.3 Performance loss of a nonflat spectrum 

The price to be paid for a nonflat spectrum (unsymmetrical shaping) is a reduction in 

the signal space volume. This is measured in terms of the power loss with respect to a 

reference scheme with the same dimensionality and with a white spectrum. In this case, 

equating the entropies, the power loss, Pl, is defined as the ratio of the total energies. As 

already mentioned, the energy per time interval is normalized to unity, i.e., Ci A; = M.  

For a cubic baseline region, assuming a cubic shaping region for the reference scheme, we 

obtain, 

For N = M, or N z M when N and M are large, (6.12) reduces to, 

6.4.4 Asymptotic behavior assuming a spherical baseline re- 

gion 

Assume that the shaping region is elliptical (spherical 23). The volume is equal to, 



where I?( . ) is the gamma function. This is the maximum volume obtainable for a given 

set of Xi's. 

For all the shaping regions, as N tends to infinity, the distributions along different 

dimensions become independent of each other. For an elliptical region, the distributions 

tend to independent Gaussian ones. In this case, using (6.14), it can be shown the 

entropy along the i'th dimension is equal to 0.51og (2weX;). This is an upper bound to 

the entropy of a process with the energy Xi. Also, for N + m, the eigenvectors tend to 

complex exponentials, exp(-jw), and the eigenvalues tend to the power spectrum, Sy(w). 

In this case, using (6.14), it is easy to show that the average entropy per time dimension 

of y tends to, 
I " WY) = - / log [2aeSy (w)] dw = I log (2weX), 47T -T 2 

where, 
7r 

x = e x p { I  2w J -7r log [sY(w)l d~). 

To have the same entropy with an infinite dimensional spherical region, the required energy 

per dimension is equal to X given in (6.16). This is closely related to the innovation power 

of y. 

It can be shown that the asymptotic value of Pl for an elliptical shaping region with 

respect to a spherical reference scheme is the same as given in (6.13). This reduces to, 

4 = exp {-l JT log [S,(W)] dw } . 
2w -7r 

Equation (6.17) can be also deduced from (6.16). 

6.4.5 Spectral shaping using an optimized basis 

We are going to select M and A, such that the power spectrum of y satisfies certain 

constraints and the entropy of the y is maximized. Considering (6.9), for a given y,(B), 

H(y) is maximized by maximizing the ni Xi(Ry), Xi(Ry ) # 0. 

Due to the linear relationship between the spectrum and the dy's in (6.7)) most of 

the spectral constraints can be formulated as linear constraints on the d,'s. The total 



number of such constraints is denoted by L. There is always a constraint on the total 

energy. We study two other constraints, namely the Fp-constraint and/or the spectral 

null. 

Define the power-ratio of a spectrum as the fraction of the total power in the fre- 

quency band [0, wc]. The Fp-constraint is the constraint of having a power-ratio less than 

or equal to F,. Integrating (6.7), the Fp-constraint is expressed as, 

M-1 

d,(i) sin (w,i)/i 5 rMFP.  
i=O 

A spectral null at the zero frequency or at the Nyquist frequency results in at least 

one zero eigenvalue for R,. In this case, we consider y as the output of a system A with 

the same spectral null and reformulate the problem at the system input, x. As x has no 

spectral null, R, is positive-definite. Considering (6.11), for a given A, to maximize H ( y ) ,  

one should maximize IR, I. Using R, = AR,At , the linear constraints on the elements of 

R, are transferred to the linear constraints on the elements of R,. The energy constraint 

reduces to, 
M-1 N-1 N-1 

where, 

These are the elements of the matrix U = AtA. Similarly, the Fp-constraint reduces to, 

where, 

The final optimization problem is as follows : 

( Maximize log (IR, I), 
N-1 N-1 

Subject to: B ( i , j ) ( i , j )  e 1 E [O,L-11, (6.23) 
i=O j=O 

I R, is positive-definite. 



It can be shown that the logarithm of the determinant of a positive-definite matrix 

is a convex n function, [21]. In Appendix E, it is shown that the set of the constraints in 

(6.23) determines a convex region. This results in a convex optimization problem. As a 

result, the maximum point is unique and can be found by using the Lagrange method. 

Define an active constraint as a constraint for which the equality holds. The set of 

the active constraints are denoted by A,. The Lagrange multipliers are denoted by $1, 

1 E A,. Calculating the derivatives and considering that the derivative of the determinant 

with respect to the (i, j)'th 

adjoint matrix, we obtain, 

element is equal to the determinant of the corresponding 

where adj [R,] is the adjoint matrix of R, and Bl is the matrix of the elements Bl(i, j )  

in (6.23). For the spectral null constraint, we have B1 = U = AtA. For the Fp constraint, 

we have B2 = V where the elements of V are given in (6.22). 

To calculate the Lagrange multipliers, we first calculate R, using, 

R, = ladj R,[& x (adj [R,]),])-' , (6.25) 

and then apply the active constraints to the result. By iteratively satisfying the con- 

straints, the multipliers are found. 

It is easy to show that for the spectral nulls and/or the Fp-constraint, the energy con- 

straint is always active. For Fp E [F-,, Fmax], the Fp-constraint is active. For Fp < F-, 

the optimization problem has no answer. For Fp > Fmax, the Fp-constraint is not active 

and the power-ratio is equal to F,,,. The FmaX can be calculated by relaxing the F,- 

constraint and finding the power-ratio of the answer. Without spectral null constraint, 

this results in a white spectrum and Fmax = w,/n. Later, we show that for a spectral null 

at zero frequency, the optimum code is obtained by allocating equal energy to the output 

eigenvectors of the 1 - D system. This will be used to calculate the Fmax with a spectral 

null. 



If the spectral null constraint is relaxed, we have A =I (M = N) resulting in, 

6.4.6 Spectral shaping using fixed basis 

This concerns selecting a fixed M and using only A, to maximize the entropy. This 

method has a lower degree of freedom and is suboptimum. However, by the appropriate 

selection of M ,  one can decrease the computational complexity. For a spectrum with 

spectral nulls, M is selected as an orthonormal basis with the same set of nulls. For the 

case of no spectral null, sine basis is used. First, we discuss the basis with spectral nulls. 

If the system A has spectral null at certain frequencies, its output eigenvectors form 

an orthonormal basis with the same set of nulls. For a null at zero/Nyquist frequency, A 

is taken as 1 - D/1+ D system. The 1 f D systems have an ( N  + 1) x N transfer matrix 

with the i'th column equal to, [(o)" d / 2 ,  f d / 2 ,  (o)~-'-". For a null at both zero 

and Nyquist frequency, A is taken as 1 - D2 system. This has an (N + 2) x N transfer 

matrix with the i'th column equal to, [(o)~,  4 / 2 , 0 ,  -&'/2, (o)~- ' -~] .  These are three 

important examples of the partial response channels, [23]. The eigenvectors/eigenvalues 

of these systems are calculated in Appendix F. The eigenvectors are closely related to the 

sine basis. This reduces the computational complexity of the modulation by using a fast 

sine transform algorithm. 

Using (6.8)) the F,-constraint is formulated as, 

where, 

Similar to the case of the optimized basis, the energy constraint is always active. This 



results in the following convex optimization problem, 

N-1 

Maximize log (Xi), 
i=O 
N-1 

Subject to :  x XiBi(wc) 5 Fp, 
i=O 
N-1 

Assuming that the Fp-constraint is active and using the Lagrange method, we obtain, 

where $1 and $2 are determined by solving, 

N-1 

C Bi (wc) N-1 

=Fp, and C 1 

;=o $1 Ba(wc) + $2 
= M. 

i=o $1 Bi(wc) + $2 
(6.31) 

In the case that the Fp-constraint is not active, the answer is obtained by allocating equal 

energy to all the dimensions. 

For a spectral null at zero frequency, A is selected as the 1 - D system. In this case, 

by changing the Xi's while keeping xi Xi = N + 1, one can tradeoff the width of the null 

and the entropy of the code. One interesting case in this tradeoff corresponds to, 

where 4;'s are the eigenvalues of the 1 - D system. This results in, 

and, 

S,(w) = 1 - cos (w). 

In this case, using the results of Appendix F, we obtain, 

Using Eqs. (6.17) and (6.34)) or equivalently, Eqs. (6.13) and (6.35)) the asymptotic value 

of PI is found to be equal to 3 dB. 
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Fig. 6.3: Spectrum of the highest entropy (narrowest null width) with spectral null. 

Another interesting case corresponds to the spectrum with the maximum entropy. 

This is obtained by using a symmetrical shaping region, i.e., 

Using Eq. (6.13), the asymptotic value for 8 is zero dB. The power spectrum is equal to, 

where Si(w)'s are the spectrum of the output eigenvectors of 1 - D system. Figure 6.3 

shows the resulting spectrum for different values of N. 

This is the optimum spectrum with a spectral null at the zero frequency over dimen- 

sionality M = N + 1. This means that the optimized basis analysis results in the same 

answer. To verify this claim, using (6.24), we obtain, 

adj [R,] = $1U, (6.38) 

where U = AtA is a matrix with all the diagonal element equal to one, all the elements 

on the two subdiagonal adjacent to the main diagonal equal to - 112 and all the other ele- 

ments equal to zero. In this case, it can be shown that (6.38) results in the (symmetrical) 



matrix, 
2 

R x ( i , j ) = - ( N - i ) ( j + l ) ,  for i 2  j ] .  
N 

It can be also shown that, 

and, 

~ h $ ,  results in a matrix R, = AR,At , with all the diagonal elements equal to one and 

all the nondiagonal elements equal to -1/N. This matrix has one zero eigenvalue and N 

eigenvalues equal to ( N  + l ) /N.  Using the resulting R,, it can be shown that the Fma, 

with the spectral null is equal to, 

w, 2 N + l - i  
Fmax = - - - sin (w,i)/i. 

* * Z N ( N + ~ )  

6.4.7 Numerical results 

In this subsection, by a spectral null, we mean a first order null (M = N + 1) at zero 

frequency. 

Table 6.1 shows the performance loss of a nonflat spectrum, with or without spec- 

tral null, using optimized or fixed basis schemes, different normalized cutoff frequencies 

( fc = wc/w), cubic shaping region, M = 5 and Fp = 0.1. 

Figure 6.4 shows the Pl as a function of the f,, with and without spectral null, using 

optimized basis, cubic shaping region, Fp = 0.1 and M = 4. 

Figure 6.5 shows the Pl as a function of the f,, with and without spectral null, using 

fixed basis, cubic shaping region, F, = 0.1, M = 4,8,16. 

From the given results, it is seen that for high value of f,, having a spectral null at 

zero frequency results in a better performance. In general, the curve corresponding to a 

spectral null of a given order, in a similar way as in Fig. 6.4 or Fig. 6.5, crosses the curves 

corresponding to a spectral null of a lower order. 
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~ a h l e  6.1: Performance loss (in dB) for a cubic shaping region, M = 5, Fp = 0.1, ( 0 )  

means optimized basis, (F) means fixed basis, (N) means with spectral null. 
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Fig. 6.4: Performance loss (in dB) as a function of the fc, with and without spectral 

null, using optimized basis, cubic shaping region, Fp = 0.1, M = 4. 
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Fig. 6.5: Performance loss (in dB) as a function of the f,, with and without spectral 

null, using fixed basis, cubic shaping region, Fp = 0.1, M = 4,8,16. 

Figure 6.6 shows the Pl as a function of the f,, without spectral null, using fixed 

(sine) and also optimized basis, cubic shaping region, Fp = 0.1, M = N = 4,8,16. 

The other conclusion is that increasing the space dimensionality can be very useful, 

specifically, for higher values of f, (wider null width). For example, referring to Fig. 6.5 

and Fig. 6.6, for moderate values of f,, increasing the dimensionality from 4 to 16 results 

in about 1 dB saving in the energy. 

6.4.8 Example 

We assume fixed basis with a spectral null at zero frequency. For N = 2, this basis (output 

eigenvectors of 1 - D system) is equal to, 



Fig. 6.6: Performance loss (in dB) as a function of the f,, without spectral null, using 

4 

fixed and optimized basis, cubic shaping region, F, = 0.1, M = N = 4,8,16. 
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For this matrix, the shaping region of y, denoted as R,, is located at the subspace Y, + 
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Y, + & = 0. We assume that the baseline region is of dt) type. After some manipulation, 

projection of R, into the (Yo, K )  subspace is found as, 

( 6  + o . ~ Y , ) ~ / S , ~  + 0 . 7 5 ( ~ / S l ) ~  5 0.5P, 

-JZ 5 (Y, + 0.5K)/So 5 JZ, (6.44) 

-&I3 2 K/Sl 5 &/3. 

where So, Sl and S2 are the scale factors. Similarly, projection on (Y,, &) subspace is 

equal to, 

(Yo - &)"S,2 + 3(Y, + Y2)2/s,2 I 2p, 

- h / 2  5 (& - &)/So 5 h / 2 ,  (6.45) 

- h / 3  5 (Y, + &)IS2 5 &/3. 

Projection on (Y,, &) subspace can be obtained by replacing Yo by & in (6.44). By 

changing P in the rage 1 5 ,B 5 2, one obtains different regions corresponding to different 

points on the optimum tradeoff curve. Figures 6.7 and 6.8 show the regions of (6.44) and 

(6.45) for P =  1.1 . 
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Fig. 6.7: Projection of R, of the example on (Yo, K )  subspace. 
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Fig. 6.8: Projection of R, of the example on (Yo, Y2) subspace. 
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Fig. 6.9: Power spectrum of the example. 

Within a scale factor, the shape of the power spectrum is determined by the ratio of 

So and Sl. By changing this ratio, we can tradeoff the width of the null and the entropy 

of the code. Figure 6.9 shows the corresponding spectrums. 

6.5 Summary and conclusions 

We have studied the selection of a constellation for spectral shaping. This is composed 

of selecting a basis for the space and a boundary (shaping region) for the constellation. 

The constellation has the power Xi along the i'th dimension. Shaping region is selected 

as a region with the second moments Xi's and with a volume as large as possible. This is 

denoted as an unsymmetrical shaping problem. The unsymmetrical region is obtained by 

scaling of a symmetrical baseline region. The selection of the constellation is decomposed 

into two independent parts, namely, (i) selection of a baseline region, (ii) selection of a 

basis for the space together with a set of the scale factors for the dimensions. Part (i) 

is expressed in terms of a conventional shaping problem. The structure of the optimum 

baseline region with the corresponding addressing scheme is discussed. Part (ii) is com- 



puted by an an optimization procedure. This optimization procedure maximizes the rate 

of the constellation subject to some constraints on the resulting power spectrum. In the 

optimized basis analysis, we considered the selection of the basis and also the correspond- 

ing scale factors. In the fixed basis analysis, the basis is fixed and is selected to reduce 

the computational complexity of the modulation. 



Chapter 7 

Block- based Signaling over 

Part ial-Response Channels 

Part this chapter have been reported in [36], [37], [38]. 

7.1 Introduction 

In this chapter, we discuss the selection of a signal constellation for signaling over 

a partial-response channel. Using a baseband channel for L subsequent time intervals 

results in an L-D space. Selection of an N-D signal constellation, N 5 L, over this space 

is composed of three different parts, namely, channel coding, shaping and modulation. 

The objective is to minimize the probability of error between the constellation points 

for a given total rate and total power (energy per channel use). The error is caused by 

the combined effect of the channel memory and the additive noise. Shaping concerns the 

selection of the constellation boundary at the channel input. Channel coding concerns the 

selection of the internal structure of the constellation at the channel output. Modulation 

concerns the selection of a basis, including the dimensionality, N, for the constellation. 

Consider the transmission system shown in Fig. 7.1. We assume a discrete time 

model and block-based processing. Each block is composed of L subsequent channel uses. 



Fig. 7.1: System block diagram. 

The additive noise is zero mean white Gaussian. Without loss of generality, the power 

gain of the channel and also the variance of the additive noise are normalized to unity. 

The channel has a memory length of Mo symbols. The channel memory results in in- 

tersymbol interference (ISI) between successive transmissions. The last Mo transmissions 

of each block are zero. As a results, at the beginning of each block, the channel is in the 

zero state. In this case, the IS1 is confined to the elements within a block and different 

blocks are uncorrelated. This property is obtained at the price of loosing Mo dimensions 

per each block. We refer to this scheme as the zero state block-based signaling. This is 

the same scheme as used in [24]. Because of the zero transmissions, the transfer matrix 

of the channel, C ,  is written in L x M form where M = L - Mo. The i'th column of C is 

the zero state impulse response of the channel to an impulse at time i. For a memoryless 

channel Mo = 0 and C is the L x L identity matrix. 

From the available M = L - Mo dimensions, N 5 M are used as a basis for the con- 

stellation. When N is strictly less than M, there are M - N empty dimensions. In each 

block interval, the data bits select a point a within the input constellation. This is a set 

of N-D points bounded within a shaping region RN. We assume that the constellation 

points are used with equal probability. The columns of the M x N, M 2 N (modulating) 

matrix M are the basis for the constellation. We have MtM = I where I is the N x N 

identity matrix. 

At the channel output, we receive the L-D vector y. The N x L demodulator matrix 

D is selected such that DCM = I where I is the N x N identity matrix. The whole system 

is equivalent to an N-D identity channel with an additive Gaussian noise of autocorrelation 

matrix DDt. A nondiagonal DDt corresponds to a colored noise. For a nondiagonal 



DDt, the decisions along different dimensions are not independent of each other. We 

assume a suboptimum decoding method in which the decision for each dimension is made 

independently. In this case, the noise power along the i'th dimension, a;, is equal to 

the i'th diagonal element of DDt. For a channel with memory, DDt depends on M. 

Consequently, unlike the case of a flat channel, the selection of the modulating waveforms 

plays a role in the overall performance. 

Our numerical examples are based on the 1 f D and 1 - D2 channels. These chan- 

nels have a special importance in partial-response signaling, [23]. The 1 - D channel 

has a spectral null at zero frequency, 1 + D has a spectral null at the Nyquist fre- 

quency and 1 - D2 has spectral nulls at both zero frequency and the Nyquist frequency. 

The 1 f D channels have an (M + l ) x  M transfer matrix with the i'th column equal to 

[(o)", a / 2 ,  f a / 2 ,  (o)"-'-~]~. The 1 - D2 channel has an (M + 2) x M transfer matrix 

with the 9th column equal to, [ (o)~,  4 / 2 , 0 ,  - a / 2 ,  (0)M-'-"t. 

The organization of the chapter is as follows: In Section 7.2, we discuss the appli- 

cation of the continuous approximation. Assuming continuous approximation, shaping, 

channel coding and modulation can be selected independently. In this case, the selection 

of the basis is optimally achieved using the method of [24] and the selection of the shaping 

and the channel coding is similar to the case of a flat channel. The main difference is 

that here some of the dimensions may be empty. We propose a method to select the 

nonempty dimensions. This is based on minimizing the degradation caused by the chan- 

nel memory. This degradation is measured in terms of the power loss with respect to a 

reference scheme over a unity gain flat channel with the same additive noise. Numeri- 

cal results for the optimum basis and also for the Fourier basis over 1 f D channels are 

presented. It is shown that using the optimum basis over the 1 f D channels results in 

about 0.5 dB saving in energy with respect to the conventional case of the Fourier basis, 

while the modulation can be achieved by the use of the fast sine transform algorithms 

and has almost the same complexity. In the discrete case (practical restrictions on rate), 

shaping and coding depend on each other. In this case, a combined shaping and coding 

method is used. This concerns the joint selection of the shaping and coding to minimize 



the probability of error. In Section 7.3, we propose two methods for this joint selection. 

In the first method, the minimum distance to noise ratio along all the dimensions is the 

same. In the second method, this restriction is relaxed. This freedom is used to reduce the 

effective number of the nearest neighbors of the coding lattice. Neither of these methods 

increases the complexity over the conventional schemes. The second method outperforms 

the first one. 

7.2 Continuous approximat ion 

In continuous approximation, as far as coding is concerned, the constellation is assumed 

to be an infinite array of points without boundary and as far as shaping is concerned, it 

is assumed that there are infinite points uniformly distributed within the shaping region. 

Assuming continuous approximation and zero state block-based signaling, it is easy to 

show that shaping, channel coding and modulation can be selected independently. 

Shaping is similar to that for a flat channel with the difference that here some of the 

dimensions may remain empty. The structure of the optimum shaping region is discussed 

in Chapter 4. This region has equal second moments (energy) along different dimensions. 

In using such a region over a partial response channel, the dimensions are used in an on-off 

manner. In other words, a dimension has either zero energy or an amount of energy equal 

to other nonempty dimensions. This is compatible with the results obtained for the case 

of the spherical shaping region in [24]. 

Channel coding in this case is similar to that for a flat channel with the difference 

that here the coding lattice is scaled along the i'th dimension with a factor proportional 

to ai. This results in equal minimum distance to noise ratio along all the nonempty 

dimensions at the demodulator output. The proportionality factor is selected to adjust 

the total rate. 

The optimum modulating basis is the basis which minimizes the product of the noise 

powers, [24]. This basis is found in [24] to be composed of the input eigenvectors of C, 

i.e., the eigenvectors of CtC. In a generalization of [24], it can be shown that when some 



of the dimensions are empty, the optimum basis is composed of the eigenvectors of CtC 

corresponding to the largest eigenvalues. Using the optimum basis results in 0: = I /#  

where 4:'s are the largest eigenvalues of CtC. For the optimum basis, DDt is diagonal 

and the noise along different dimensions is uncorrelated (independent), [24]. Later, we 

will introduce a method to find the value of N where N 5 M. 

In the conventional methods, to reduce the computational complexity, the optimum 

basis is usually replaced by the Fourier basis. Appendix F contains the eigensystem of 

the channels under consideration. The eigenvectors are closely related to the sine basis. 

This reduces the computational complexity of the modulation by using fast sine transform 

algorithms. 

7.2.1 Performance loss, capacity 

As the decision along different dimensions is made independently, the capacity is equal to 

the sum of the capacities along different dimensions. The capacity is calculated by using 

the water filling analogy, [17]. Also, it can be shown that the basis which maximizes the 

capacity is composed of the eigenvectors of CtC corresponding to the largest eigenvalues. 

Mathematically, the capacity per channel use is calculated from, 

I 1 
C = - C log, 

2L i:ol<s (5) 9 

where Ei is the energy allocated to i'th dimension and E is the available energy per 

channel use. 

Let's consider the 1 f D channels with the optimum modulator. Using the results of 

Appendix F for the eigenvalues, we obtain, 



Using (7.2) in (7.1) and considering that the noise powers are in decreasing order, we 

obtain, 

where N is the largest integer in the range [I, L - 1] satisfying the right hand side in- 

equality. 

As the reference scheme, we use a flat channel with the same additive noise. The 

loss with respect to the reference scheme is defined as the ratio of the total energy of the 

two systems when the capacities per dimension are the same. Figures 7.2 and 7.3 show 

the loss of 1 f D channels considering the optimum basis and also the Fourier basis for 

The two curves corresponding to block-based signaling will be explained later. 
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Fig. 7.2: Performance loss in 1 f D channels, L = 9. 

An L-D, L even, 1 - D2 channel is obtained by time multiplexing two L/2-D, 1 - D 

channels. Consequently, the capacity of this channel is equal to two times the capacity of 

a 1 - D channel with a half block dimensionality. 
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Fig. 7.3: Performance loss in 1 f D channels, L = 28. 

Using the results of Appendix F, for 1 f D channels, we have, 

and for 1 - D2 channel, we have, 

As the block length tends to infinity, using (7.1), (7.4) and (7.5) and assuming that the 

Ea's are large enough such that Ei E B, it is easy to verify that the capacity of the 1 f D 

and 1 - D2 channels are 0.5 bits per dimension less than the capacity of the reference 

scheme. This corresponds to 3 dB loss of energy. 

We already mentioned that in using an optimum shaping region over a partial re- 

sponse channel, a dimension has either zero energy or an amount of energy equal to other 

nonempty dimensions. This strategy may seem to be in contradiction with the water 

filling method. This can be explained by considering that: 

1. In achieving the capacity, each dimension can be extended infinitely in time. This 

allows for the use of the infinite dimensional shaping regions. As a result, the 



calculation of capacity reduces to finding an appropriate probability distribution at 

the channel input1. However, in a finite dimensional block coding scheme, (i) the 

space dimensionality is fixed and, (ii) the constellation points are used with equal 

probability. 

2. For a Gaussian channel subject to an average power constraint, capacity is achieved 

by a Gaussian distribution and for such a distribution there exists a one to one 

relationship between the energy and the entropy. This means that in maximizing 

the capacity, we have just one degree of freedom. On the other hand, in a zero 

state block based signaling scheme, the energy and the rate can be distributed 

independently. 

3. Capacity is determined by the volume of the signal space at the channel output. 

This volume is maximized by having equal signal plus noise energy along all the 

nonempty dimensions. However, in a zero state block-based signaling scheme, the 

rate is determined by the volume of the signal space at the channel input. This is 

maximized by having equal energy along all the nonempty dimensions. 

If the rate (or equivalently the energy) per dimension is sufficiently high, we obtain, (i) 

M = N, (ii) B = E; + a: II E;. In this case, the two strategies are equivalent. 

For a fixed energy per dimension, the rate of a block-based signaling scheme is upper 

bounded by the rate associated with an infinite dimensional spherical shaping region. 

This induces an independent Gaussian distribution along each dimension. This is the 

same distribution as the one achieving capacity, but, here, the energy allocated to the 

nonempty dimensions is the same (instead of water filling). 

'It is known that for any probability distribution on the space dimensions, there exists an infinite 

dimensional shaping region such that a uniform density of points within that region induces that distri- 

bution along each dimension while the distributions along different dimensions are independent. 



7.2.2 Performance loss, zero st ate block-based signaling 

Assuming continuous approximation, the rate of a block-based signaling scheme is de- 

termined by the ratio of the volume of the shaping region, V(RN), and the volume of 

the Voronoi region around each constellation point, V(VN). We assume that the constel- 

lation is composed of the points of the scaled half integer grid, ZN + ( 1 / 2 ) ~ ,  bounded 

within a hypercube. This can be easily generalized to other coding lattices and shaping 

regions. Without loss of generality, we assume that the scale factor along the i'th dimen- 

sion is equal to a;. This results in a minimum distance to noise ratio of one along all the 

nonempty dimensions. 

As the reference scheme, we use an L-D cubic constellation (no shaping) over a flat 

channel. The total rate and the minimum distance to noise ratio of the two schemes are 

equal. The rate to be transmitted per channel use is equal to r j  = log2 Tj where Tj is 

the edge length of the shaping hypercube of the reference scheme. For the flat channel, 

we have, Vf(RL) = (Tj)= and Vf(VL) = 1. The edge length of the shaping hypercube over 

the partial-response channel is denoted by T,. For the partial-response channel, we have 

V(RN) = ( T , ) ~  and V(VN) = n:i1 0;. Equating the total rates, we obtain, 

Using continuous approximation over a hypercube, the average energy of the coded scheme 

and the reference scheme are equal to, E, = N(T,)'/12 and Ej = L(Tj)'/12, respectively. 

Using (7.6)) the loss in energy with respect to the reference scheme is found as, 

The number of nonempty dimensions is determined by minimizing (7.7) over N 5 M where 

M = L - Mo. The result is affected by two conflicting phenomena: (i) A larger number 

of empty dimensions decreases V(VN) = nzil 0;. (ii) For a fixed total second moment, 

decreasing the dimensionality results in a lower V(RN). The results of these calculations 

for L = 9,28 and 1 f D channels using the optimum basis and also the Fourier basis are 



shown in Figs. 7.2 and 7.3. Different slopes correspond to different number of empty 

dimensions. 

In general, for higher rate and/or for lower dimensionality, the difference between 

the optimum basis and the Fourier basis is more pronounced. For a moderate rate per 

dimension and a moderate dimensionality, the saving in energy due to  the use of the 

optimum basis instead of the Fourier basis is in the order of 0.5 dB. As the computational 

complexity of the optimum basis (sine basis) and the Fourier basis are almost equivalent, 

this gain is obtained with no additional cost. 

As we implicitly mentioned in the previous section, for large values of rate, the loss 

given in (7.7) is equal to the performance loss obtained by equating the capacities. Figures 

7.2 and 7.3 show this fact in the specific case of 1 f D channels. 

7.3 Discrete case 

In the discrete case, shaping and coding are interrelated and one gains by using a joint 

optimization procedure. The major coupling is due to the addressing scheme. To obtain 

a tractable addressing complexity, one should impose restrictions on the rate distribution. 

For example, in our case, the number of the points in each 2-D subconstellation is of the 

form 2Rj(l + 2/N) where N (constellation dimensionality) is an integral power of two and 

the Rj's are integer numbers greater than or equal to log,(N/2). 

7.3.1 Shaping method 

We generalize the shaping method introduced in [42] to the case that there are different 

number of points in different 2-D subconstellations. In general, to transmit R bits per 

two dimensions in an N = 2n-D TCM (Trellis-Coded-Modulation) scheme with one bit 

redundancy, a signal constellation with 2nR+1 points is needed. Assume that the rate 

allocated to the j'th subspace is equal to Rj. To construct the constellation, the 2- 

D subconstellations are divided into an inner group and an outer group. The number of 



 able 7.1: Average energy per two dimensions as a function of the rate for a minimum 

distance of one, N = 8. 

points in the inner group of the j'th subconstellation is equal to 2Rj. The integer numbers 

Rj  satisfy Cj Rj = nR. The number of points in the outer group is l / n  of that in the 

inner group. This is possible if n is a power of two and Rj 2 log,(n). The inner and the 

outer group of the 2-D subconstellations have the same structure as in [42]. The N-D 

constellation is constructed by concatenating n such 2-D subconstellations and excluding 

the N-D points corresponding to more than one 2-D outer point. Addressing is achieved 

by a lookup table with (1 + n log, n) input lines and n [log,(l + n)l output lines. 

Similar to the case of [42], for each 2-D subconstellation, the inner group is used 

N - 1 times as often as the outer group. This means that the average energy per two 

dimensions is equal to ( N  - 1) lN times the average energy of the inner group plus 1/N 

times the average energy of the outer group. Table 7.1 shows the average energy per two 

dimensions, A, for N = 8 and for a minimum distance of one, as a function of the rate per 

two dimensions, R. The A values will be used later. Column A,(R) is the energy obtained 

by applying continuous approximation to a cubic shaping region, A,(R) = 2(R+0.25)/6. 

The A,(R) values are provided to indicate the accuracy of a continuous approximation. 

7.3.2 Channel coding 

The points of the 2-D subconstellations belong to the half integer grid. Different 2-D 

subconstellations are scaled with different scale factors. Consequently, the N-D points 



belong to a scaled version of the N-D half integer grid. This is partitioned into the cosets 

of a (scaled) sublattice shifted to the point (112)~ .  The unscaled version of this sublattice 

is denoted as the baseline lattice. It should be mentioned that scaling does not change 

the group property of the lattices. Consequently, the coset decomposition has the same 

properties as the unscaled case. 

. In each signaling interval some of the data bits are encoded and used to select one of 

the ,cosets. The rest of the data bits select a point within the selected coset. We assume 

that the dominant error event is the error within a coset. This is the case in most of 

the'TCM schemes. The numerical examples are based on dimensionality eight and the 

baseline lattice E8. 

7.3.3 Weight distribution of the scaled lattices 

The weight distribution of a set of points A with respect to a given center is defined as, 

[4, P-451 , 
en (q )  = C q 1 1 u 1 1 2  = C N ( X ) ~ ~ ,  

uE A x 
(7.8) 

where llull is the norm of vector associated with point u and N(x) is the number of 

the points at square distance x from the center. For a set of points with the distance 

invariance property, the weight distribution function is independent of the center. This is 

the case for a scaled lattice (a consequence of the group property). 

Assume that the square minimum distance along the j'th 2-D subconstellation ( j  E 

[O, N/2 - 11) is equal to Dj. We use the trellis diagram of the lattice, [13], to calculate 

the weight distribution of the scaled lattice. Each branch in the diagram is labeled by the 

weight distribution of the corresponding 2-D coset. The weight distribution of a path is 

obtained by multiplying the weight distribution of its branches. The weight distribution 

of the scaled lattice is obtained by adding the weight distribution of the parallel paths in 

the diagram. Using this approach, we have derived new results for the weight distribution 

of the scaled D4 and E8 lattices. The final results are, 



and, 

8e2(qo)e2(ql)~2(q2)~2(~3)e3(~o)~3(~1)~3(~2)e3(q3), 

qj = q403, j = O,l,2,3, 

where 42 and e3 are the Jacobi theta functions, [4, p. 1011. To the extent of our knowledge, 

this is the first time that the above weight distributions have appeared in the literature. 

Later, the weight distribution will be used to calculate the error probability. 

7.3.4 Probability of error 

For an additive Gaussian noise of power a2,  the probability of error between two points 

with distance d is upper bounded by, [4, pp. 69-73], 

1 
po < - exp (-d2/8a2), 

2 
(7.11) 

Using (7.11) in the union bound results in an upper bound for error probability. This 

bound is equal to, [4, p. 731, 

where OA is given in (7.8). 

In practice, we truncate the weight distribution to the set of the nearest neighbors. 

For the lattice Es, truncating (7.10) to the set of the 240 nearest neighbors, results in, 



where Zj = exp (-Dj/2Nj) and Nj,Dj are the noise power and the square minimum 

distance in the j'th 2-D subspace. We use the notation P, = F(Zj ,  j = 0,1,2,3) to 

indicate the function in (7.13). 

7.3.5 Problem statement 

We .have a zero state block-based signaling scheme with M dimensions. The number of 

nonempty dimensions is equal to N. The total energy is equal to Et. We use the Fourier 

basis for modulation. The two dimensions with the equal noise power constitute a 2-D 

subchannel. A 2-D subconstellation is employed over each subchannel. 

The nonempty subchannels are indexed by i E [0, . . . , n - 11, n = N/2. These are 

divided into K groups each of N, dimensions. Each group uses an independent TCM 

scheme. The total rate is equal to Rt = nR + K corresponding to R bits per each nonempty 

subchannel and one bit redundancy for each coding group. 

The 2-D subconstellations are indexed by (k, j) where k E [0, K - 11 is the index of 

the group and j E [0, n, - 11, n, = Nc/2 is the index within the group. The noise power, 

the square minimum distance and the minimum distance to noise ratio (protection) of the 

(k, j)'th 2-D subconstellation are shown by, Nf, D: and P" 3 respectively. The 

corresponding rate and energy are related by, 

where A(R) is given in Table 7.1. 

The total gain of the system, yt, is defined as the savings in energy with respect to 

a reference system with the same probability of error. The reference system uses a one-D 

flat channel with unity gain and is composed of the points of the one-D half integer grid 

(no coding) bounded within [-2(QI2)-l, 2(QI2)-'1 (no shaping), Q denotes the rate per two 

dimensions of the reference scheme and is given by, Q = NRIL. 

For the reference system, we assume continuous approximation and use (7.11) for the 

error probability. Assuming continuous approximation, the average energy per dimension 

of the reference scheme for a minimum distance of one is equal to, 2Q/12. The number 



of the nearest neighbors in the reference system is equal to 2. For an additive Gaussian 

noise of unity power and total energy E,, the probability of error of the reference system 

within a block of length L is approximately equal to, 

3 -  

Eqiiating the error probabilities, yt is equal to the ratio of the energies, i.e., 

The .yt reflects: (i) the shaping gain, (ii) the coding gain, and (iii) the degradation caused 

by the channel memory. This degradation is due to a loss in dimensionality and/or 

having ni ai greater than one. Unlike to the case of the continuous approximation, it is 

not possible to separately identify the effects of these three factors in yt 

We are looking for R:'s, Et's and a rule for grouping the subchannels. The grouping 

rule is expressed in terms of the one-to-one assignment (j, k)-i, where (j, k) is the index 

of the 2-D subconstellation and i is the index of the 2-D subchannel. The objective is to 

maximize yt or equivalently to minimize P,. As R is an integer, it is usually impossible 

to change N while keeping the total data rate, NR/2, constant. As a result, different 

systems obtained by changing N cannot be easily compared. This means that N should 

be considered as a fixed parameter and then the scheme can be compared with the other 

possibilities. 

7.3.6 First method: 

For equal protection, we set 

formulated as: 

I Maximize 

Subject to: 

Equal protection along the subchannels 

P: = Po, Vj,  k. In this case, the optimization problem is 



where N is the set of integers. Combining (7.14) and (7.17) results in, 

k=0 j=O 

Using (7.18), the optimization problem in (7.17) reduces to, 

K-1 nc-1 

Minimize x A(R!)N: 
k=O j=O 
K-1 nc-1 (7.19) 

Subject to: x R: = nR, R: E N, R: 2 log2 (nc). 
k=O j=O 

In this case, the assignment (j, k)- i  is arbitrary. This problem is solved by the following 

algorithm: 

1. Set R: = log,(nc), Vj, k. Another n[R - log(n,)] bits remain to be distributed. 

2. Allocate one bit to the 2-D subconstellation with the smallest [A(R: + 1) - A(R:)] N;. 

Update the rates. If there are still bits to be distributed go to step 2, otherwise 

quit. 

7.3.7 Second method: Nonequal protection along the subchan- 

nels 

In this case, we minimize the average error probability of the whole system. This is 

formulated as, 

/ K - 1  

Minimize ~(Z:, j=0,1,2,3),  z ~ = ~ x P ( - D : / ~ N ; )  
k = O  
K - l n c - 1  

Subject to: x x R: = nR, R: E N, R: 2 log2(nc) (7.20) 
k = O  j = O  
K - I n c - 1  x x E:=E~, Ek 3 > - 0, 

\ k = O  j = O  

where D: is related to Ef and R: by (7.14). The ratelenergy distribution and the as- 

signment rule (j, k ) e i  are determined by a two part iterative procedure. The first part 



itself is another iterative procedure and finds the optimum rate distribution for a given 

energy distribution and vice versa. As the starting point, we use the answer obtained 

by applying the first method. In the second part, we find the optimum assignment rule 

(j, k)-i for the final answer of the first step. Then the two parts repeat to improve on 

the 'solution. 

Part 1: Optimum rate distribution for a given energy distribution 

Follbwing algorithm is used to find the rate distribution: 

1'. Set R: = log2(n,), Vj,  k. ~ n o t h e r n [ ~  - log(n,)] bits remain to be distributed. 

2. Arrange the 2-D subconstellations according to the value of E:/A(R:)N: (protec- 

tion) in the decreasing order and index them with il E [0, n - 11. 

3. Arrange the 2-D subconstellations according to the value of E,*/A(R: + 1)N: in 

decreasing order and index them with i2 E [0, n - 11. 

4. Find the smallest integer m 5 n such that for il ,  i2 E [0, m - 11 the elements in the 

set indexed by il are obtained by the permutation of the elements in the set indexed 

by is. These 2-D subconstellations are the candidates for receiving the next bit. 

5. Allocate one bit to the candidate which by receiving it will result in the least increase 

in the objective function. 'Update the rates. If there are still bits to be distributed 

go to step 2, otherwise quit. 

It can be shown that this method gives the same answer as if the same search is performed 

over the set of all the subconstellations. 

Part 2: Optimum energy distribution for a given rate distribution 

The objective function in (7.20) is a convex U function of Ef's. As a result, the global 

optimum point over the convex region determined by the energy constraint is determined 



by the Lagrange method. This results in the following set of equations for E;'s, 

( k=o j=O 

This set of equations is solved by an iterative method. 

~ s i i ~ n r n e n t  (j, k ) ~ i  

Th$ problem is solved by the following algorithm: 

1. Arrange the nonempty subchannels according to the value of the noise power in 

increasing order and index them by il E [0, n - 11. 

2. Arrange the 2-D subconstellations according to the value of P) (protection) in the 

increasing order and index them by i2 E [0, n - 11. 

3. Assign the members of the two sets with the same index to  each other. 

It can be shown that for a given rate and energy distribution, this assignment rule mini- 

mizes the probability of error. 

Special cases 

We can show that if there exists a rate distribution such that A(R:) N: = constant, then 

this is optimum for the energy distribution E: = Et/n and vice versa. This results in 

equal protection along the subconstellations. Another special case arises when in a given 

energy updating step we obtain E; = Et/n. In this case, if the total rate is a multiple of 

n, the optimum rate distribution will be of the form R: = R. The converse is true if the 

noise powers along different dimensions are equal. 

Note: The proof of the optimality of the methods and the claims in subsubsection 7.3.7 

are based on certain properties of the function F ( Z j )  given in (7.13). The same properties 

are valid in the case of the lattice Dq. 



Example: 

In this example, a zero state block-based signaling scheme over (1 f D) channels is stud- 

ied.; The total number of dimensions is equal to L = 28,30 and N = 24 dimensions are 

nonempty. We consider R = 2,3, corresponding to a total data rate of NR/2 = 24,36 bits. 

 here are K = 3 coding groups each of dimensionality N, = 8. Lattice Es is used as the 

baseline lattice. Over a flat channel, the corresponding TCM scheme results in a total 

gaid of 5.41 dB (channel coding gain plus the shaping gain), [42]. This gain does not 

inclr;de the effect of the error multiplicity. We apply both of our design methods to this 

pr6blem. The performance is measured in terms of the total gain, rt, and the probability 

of error. Figures 7.4 through 7.7 show these parameters as a function of the energy per 

dimension, Et/ L. 

In general, the improvement of the second method is almost equivalent to multiplying 

the probability of error by a constant factor. This can be considered as reducing the 

number of the nearest neighbors to some smaller effective value. A justification of this 

phenomenon is obtained by referring to (7.13). This equation is composed of the sum of 

240 terms. Each term corresponds to one of the nearest neighbors of the lattice Es. It is 

seen that the protection (square minimum distance to noise ratio) from the center to 1/15 

of the neighbors is determined by the protection along only one 2-D subconstellation. 

The protection to 6/15 of them is determined by the sum of the protections along two of 

the 2-D subconstellations. Finally, the protection to 8/15 of the neighbors is determined 

by the sum of the protections along all the 2-D subconstellations. When the protections 

are added it makes no difference which subconstellation has a larger effect on the sum. 

This flexibility is used by the optimization algorithm to reduce the effective number of 

the nearest neighbors. We note that for lattices like the Leech lattice with 196560 nearest 

neighbors, [4, p. 1331, the improvement due to the second method will be more pronounced. 
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Fig. 7.4: Total gain as a function of the energy per dimension ( E t / L )  for L = 28, N = 24, 

R = 2. 
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Fig. 7.5: Probability of symbol error as a function of the energy per dimension (E t /L )  

for L = 28, N = 24, R = 2. 
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Fig. 7.6: Total gain as a function of the energy per dimension ( E t / L )  for L = 30, N  = 24, 
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Fig. 7.7: Probability of symbol error as a function of the energy per dimension ( E t / L )  

for L=30 ,  N = 2 4 ,  R = 3 .  



7.4 Summary and conclusions 

We have discussed the selection of a signal constellation for signaling over a partial re- 

sponse channel. Assuming continuous approximation, shaping, channel coding and mod- 

ulation are selected independently. The only unknown in this case is the selection of the 

nonempty dimensions. In the proposed scheme, this selection is based on minimizing the 

loss; with respect to a reference scheme. It is shown that using the optimum basis over 

the 1 f D channels results in about 0.5 dB saving in energy with respect to the Fourier 

basis, while the computational complexities are almost equivalent. In the discrete anal- 

ysis", shaping and coding are jointly selected to minimize the error probability. This is 

denoted as the combined shaping and coding. In the combined case, instead of deal- 

ing with the rate as a continuous variable and then rounding the result, we have used 

an integer optimization procedure for the rate allocation. Two different schemes have 

been proposed. The first scheme has equal minimum distance to noise ratio along all the 

nonempty dimensions. In the second scheme, this constraint is removed. On the basis 

of the average error probability, the second method outperforms the first one. Neither of 

the two schemes increases the complexity over the conventional schemes. As part of the 

calculations, we have found a closed form formula for the weight distribution of the scaled 

D4 and E8 lattices. 



Appendix 7 A 

Integral of F ( X ~  + . . . + x&-~)  over 

the AN region 

We are going to calculate the integral of the function F(X; + . . . + X&-,) over the region 

AN defined by (4.1). The calculation is based on decomposing the region TC,, defined 

by (4.4)) into the union and intersection of the simplexes and applying the Dirichlet's 

integral, [43], to each of them. An example of this decomposition for N = 4, n = 2 is 

shown in Fig. A.1. 

Applying the change of variable in (4.3), we obtain, 

where TC, is defined in (4.4). 

Define the n-D regions, 

. . . . . . 
a,-1 5 Yn-l 5 (B + a,-, - Yo - . . . - Yn-2) ; 

where B = p - xi ai , 



Fig. A.l: Example of decomposing into simplexes. 

Cn(ao ,a l , . .  .,an-1) = {Yp, p = 0,1, ... , n  - 1) 

: apIYpI1+ap ,  

and, 

Q n ( a ~ , a l , . - - , a n - l )  = {Yp, P =  O, l , . . . , n -  1) 

: Yp > 'up . 
(A.4) 

Using these notations, the region 7Cn can be written as, 

where io, . . . , in-l is an n-tuple with k ones and n-lc zeros and the summation is calculated 

over all the Ct possible combinations of this type. Using these definitions, we can write, 



Using (A.7) in (A.5) we obtain, 

It ij easy to verify that, 

, . , 

wh&e 1/31 denotes the largest integer smaller than P. Combining (A.6) and (A.8) and 
.i?. 

we obtain, 

where the second summation is calculated over all the combinations of (io, . . . , in-l) with 

k ones and n - k zeros. An example of this summation is shown in Fig. (A.l). 

The integrand in (A.l) is symmetric with respect to the variables and any permu- 

tation of the variables does not change its value. Consequently, the integral over the 

region Sn(io,. . . , in-l; /3) is independent of the permutation applied to io, . . . , in-l. We 

calculate this integral over one of these regions, say over Pn(k, /3) = S, ( ( I ) ~ ,  (o)"-~; /3) . 
and multiply the result by Ck. This results in, 

The integral over the region Pn(k, P) in (A.ll) can be written as, 

The region of integration in (A.12) is a simplex of edge length /3 - k. Applying the 

Dirichlet's integral, [43], to this simplex results in (4.5). 



Lgmiting behavior for the AN region 

To study the asymptotic behavior of the optimum shaping region as the number of dimen- 

sions tend to infinity, we find the induced probability distribution along the 2-D subspaces 

and show that as the number of dimensions tends to infinity these distributions become 

independent truncated Gaussian distributions. It is easy to show that a uniform distribu- 

tion within the N-D region AN defined by (4.1) results in a uniform distribution within 

the n dimensional region Tin defined by (4.4). Using (4.5) to find the volume, we cal- 

culate the induced probability distribution along a given dimension, say Y, of Ti,. For 

0 2 Y < p- [PJ, we obtain, 

and for p- Lp] I Y I 1, we obtain, 

In (B. 1) and (B .2), the denominator is equal to the volume of the region 7Cn (1, P )  defined 

by (4.4) and the numerator is equal to the volume of the region (1, P - Y). Equation 



(B.2) can be written as, 

In (@.3), we have, 0 < Y - ,O+ 181 < 1, as a result, as n tends to infinity, the second term 

in the numerator tends to zero. Assuming an integer value for P, we obtain the following 

Equation (B.4) is expressed as, 

Using the identity, C,k = c,~I: + C,k-, , it is easy to show that the function D(n, 8, Y) and 

its derivative satisfy the following recursions, 

' - 
{D(n - 1, P, Y) - D(n - 1, P - 1, Y)} + D(n - 1, P - 1, Y) , (B-7) D(n, P, Y) = - n 

Recursion (B.7) can be used to express D(n, P ,  Y) as a function of D(a ,  a, Y) where a is 

an integer smaller than or equal to ,8. Using the properties of the Stirling numbers of the 

second kind, it can be shown that D(a,  a, Y) = 1, Va. 

To show that the probability distribution on each 2-D subspace is a Gaussian distri- 

bution truncated within a circle, it is enough to show that P(Y) is of exponential form, 

or equivalently, 
1 R P ( Y )  = [ -- 1 BP(Y)]' 

P(Y) d2Y P(Y) dY 



Usii)g (B .6), we can write, 
.. . 

(B.7) for large values of n and defining T,!J = n/p,  we obtain, 

Using (B.8), we also obtain, 
?. 

Combining (B.12)) (B. 13) and (B.14), results in, 

Assuming, 

for large values of p and n, we can write, 

Combining (B.17) and (B.18), results in, 

Using (B.17) and (B.19) in (B.15), we obtain, 



Using (B.17) in (B.16), we obtain, 

(B.21) 

co&bining (B.10), (B.l l)  (B.20) and (B.21) results in (B.9). As a result P(Y) is of 

exponential form and considering that its integral over the range 0 5 Y 5 1 should be 

equd to one, we obtain, 

P(Y)  = e - ~ ' ;  O S Y  51. (B.22) 
1 - e-A 

From this argument, we can also say that the value of A in (B.17) does not depend 

on Y. To calculate the value of A, considering the definition of D(n, P, Y) in (B.5), we 

can write, 

D(n - 2 , p -  1,O) = D(n -2,/3,1). (B.23) 

As A does not depend on Y, we can set Y = 0 in (B.17) and obtain, 

Combining (B.23) and (B.24), we obtain, 

Finally, combining (B.6) for large values of n with (B.25), results in, 

To calculate the constant A, substituting, 

in (B.21) and using (B.26) for the value of A, we obtain, 

Equation (B.28) can be solved to obtain the constant X as a function of II, = n/P. 



Finally, applying the change of variable (4.3) to (B.22), probability distribution along 

each 2-D subspace is calculated as, 

where, 

In the extreme case of + + oo, which corresponds to a hypersphere as the boundary 
9 ,  

of tbe constellation, from (B.28), we obtain X ci $. This results in a Gaussian distribution 

with variance R;/2X. In the other extreme case of $ + 1, which corresponds to no 

shaping, from (B.28), we obtain X ci 0. This results in a uniform distribution on the 2-D 

subspaces as expected. 

To show that for N + oo, the probability distributions along the subspaces become 

independent of each other, we proceed as follows: With an approach similar to that used 

in deriving (B.6), it is easy to verify that for large values of n, the joint probability 

distribution along j dimensions of the n-D region Ti, is equal to, 

(B. 30) 

Substituting the value of A from (B.26) in (B. 17) and using the result together with (B.27) 

in (B.14), we obtain, 

For large values of n, we have, 

Using (B.32) recursively with the initial value of (B.31), we obtain, 



Using (B.6), we obtain, 

~ d t i ~ l ~ i n ~  (B.33) and (8.34) and using the result in (B.30), we obtain, 

which means that the random variables Yo, . . . , q-1 are independent. 



Appendix C 

A generalization of the shaping 

N' regions AN and AN 

Assume that the CER, and the PAR are measured on an 1-D basis, 1 being an even integer 

greater than two. In the case, the optimum shaping is equal to, 

The main difference is that here the first level of shaping is achieved by employing a 

sphere as the boundary of the 1-D subspaces. With a similar approach as in Appendix A, 

the integral of the function F(X:  + . . . + X k - , )  over the region A;) is calculated as, 

x I' F {R: [ (p - k)7 + k ] )  T$-io--.-ik-~-l d ~ .  

Similarly, the two level shell mapped region can be generalized to the region, 

where n' = n / l  and n" = N/n .  In this case, using the change of variable, 



and defining P1 and P" by, 

the region A$$") can be written in the following n'n" = N/I form, 

Using the change of variable, 

the region in (C.6) is mapped to, 

q=O 

In the following, we calculate the integral of the function F ( X i  + . . . + X&-,) over 

the region A t n ) .  To express the integration over the region TC,II, we need a relation 

between the incremental volume of the region A$") and the incremental volume of the 

region IC,II. To obtain such a relations, we use the fact that a point Zq on the dimension 

q of TC,II corresponds to the region A!) with ,8 = 2,. The volume of this region can be 

calculated as, 

(C.9) 

The dimension q of IC,. corresponds to dimensions qn, . . . ,qn + n - 1 of Afin). Using 

this fact and differentiating (C.9) with respect to Zq, we obtain, 



~ u & i ~ l ~ i n ~  (C. 10) for different values of p we obtain, 
:i: 

It is seen that Zq, q = 0, . . . , n" - 1 appears in the limits of summations in (C. 11). This 

makes the integration difficult. To avoid this problem, we subdivide each dimension 

of ~C,II  with the points of integer value. These points subdivide each dimension into 

regions. The first [PI] regions are of length one and the last one is of length 

a = ,B1 - LP'J This subdivides the region TC,II into rpln" disjoint subregions. A 

total of L,f3'Jn1' of these regions are hypercubes of edge length one located at points 

(LZo], . . . , LZ,ll-lj) E {O, 1, . . . , LPIJ - I}"", where {O, 1, . . . , LP'j - 1)"" is equal to 

the n"-fold cartesian product of the set {0,1, . . . , [PI] - 1) with itself. The remaining 

nll - LpJ "I1 regions are parallelepipeds. At least one edge length of each parallelepiped 

is equal to, a = p' - [PI]. In each of these regions, the value of [Zql, appearing in the 

limit of summation in (C.l I) ,  is constant. 

To calculate the desired integral over a subregion which is a hypercube located at 

point ([ZoJ, . . . , LZn~~-lJ), we first shift the origin to that point. The region of integration 

is an dl-D simplex with edge length, 

truncated within a hypercube of edge length one (7Cn~t(1, L)). With a procedure similar 



where, 

It is seen that the result is independent of the permutation applied to (LZo], . . . , [Znl~-l]). 

This fact can be used to further simplify (C.13). 
I ntJ-T For a region which is a parallelepiped located at point (LZoJ, . . . , LZT-l] , LP 1 ), 

again, the origin is shifted to that point. The region of integration in the shifted coordi- 

nates is written as, 

where, 

I 11- if 0 5 P ,8 LZo] - . . . - LZT-lJ -(n" - r) x LPIJ 5 n", 
L1 = { (C.15) 

nI1 if PIP"- lZoj - . . . - lZT-l] -(n" - r) x [PI] 2 n", 



and;the summation on the right hand side of (C.14) is calculated over ( 4 , .  . . , knr-1) such 
::. 

t h d ,  

is dsitive, the regions S, and Q, are defined in Appendix A. 
r f 

: The integral over Sn(ko, . . . , kT-1, a x k,, . . . , a x ~ , I I - ~  ; L') can be calculated with 
I .  

a itocedure quite similar to the Appendix A. The result is, 

where, 

Adding up (C. 13) and (C.16) over different regions, the final result is found as, 

LP'J -1 1P'j -1 nl'-1 LP'J-1 LP'J-1 

120 J =O LZ,rt-lJ=O T=O [zOJ=o Lzr-1 J =O 

In deriving (C. l7), we have used the fact that there are CAI, subregions with the 

integral Iz(r; [ZO], . . . , [ZT-l] ) given in (C.16). We also notice that the argument of the 



first summation in (C.17) is independent'of the permutation applied to ([Zo], . . . , LZ,II-~]) 

and the argument of the second summation is independent of the permutation applied to 

(lZo], . . . , lZT-lj). This facts can be used to simplify the calculations. 



Appendix D 

Calculation of the absolute first 

moment of a lattice Voronoi region 

We are going to calculate the integral of, 

where V ( A i )  denotes the Voronoi region of the lattice A;. The calculation is based on 

decomposing the Voronoi region into the congruent simplexes and applying the generalized 

midpoint method of integration, [18], to each simplex. According to this method the 

integral of any linear function over a simplex is equal to the volume of the simplex times 

the value of that function at its centroid. For the methods of calculating the centroid and 

the volume of the simplexes refer to [4]. The decomposition into simplexes is based on 

expressing the Voronoi region of the lattice by the Coxeter diagram. In the following, we 

first give a brief description of the Coxeter diagram, [4]. 

The Voronoi region of a root lattice An is the union of the reflections of a spherical 

simplex into its walls. This simplex is known as the fundamental simplex of the lattice. 

The resulting reflection group is shown by W ( A , ) .  The Coxeter diagram of a lattice 

represents its fundamental simplex in two different ways. In the first way, the nodes of 

the diagram represent the reflecting hyperplanes which are the walls of the fundamental 

simplex. The equation of each wall is written besides its corresponding node. The angle 



between two walls is indicated by the branch of the diagram. If the hyperplanes are at an 

angle of ~ / 3 ,  the nodes are joined by a single branch. If the angle is ~ / 4 ,  they are joined 

by a double branch. If the angle is n /P ,  P > 4, they are joined by a branch labeled 

P. Finally, if the hyperplanes are perpendicular the nodes are not joined. In the second 

way, the nodes in the diagram are taken to represent the vertices of the fundamental 

simplex. Each node represent the vertex opposite to the corresponding hyperplane. The 

components of each vertex (vertex vector) are written besides its corresponding node. The 

node corresponding to origin is shown as a black node. Normally, there is no reflection 

hyperplane at this node. Adding this hyperplane to the spherical simplex results in 

an ordinary simplex. The corresponding reflection group is an infinite group shown by 

W,(A,). The images of the simplex under W,(A,) are distinct and tile the space. The 

image of a point located at origin under W,(A,) is the set of all points of A,. For further 

information about the Coxeter diagram refer to [7]. 

Case I: A: = D, 

The two interpretations of the Coxeter diagram for lattice D, is shown Fig. D.1. By 

Fig. D.l:  The two interpretations of the Coxeter diagram for the lattice D,. 

referring to the equations of the reflecting hyperplanes, it is seen that the reflection group 

is composed of n permutations and n - 1 sign changes. This means that if we consider 

the vertex vector of the simplexes as the rows of an n-D matrix (denotes as the vertex 



matrix), the effect of the reflection group can be considered as permutating the columns 

of this matrix (a subgroup of order n!) or changing the sign of n - 1 columns (a subgroup 

of order 2"-'). The reflection group is the product of these two subgroups. The order of 

such group is equal to, IW(Dn)I = 2n-1 x n!. Neither permutation nor sign changings of 

the coordinates changes the first moment. As a result, all the images under the reflection 

group has the same value for the first moment. 

This argument indicates that the first moment of Vn(D) is equal to 2"-' x n! times 

the first moment of its fundamental simplex. The problem in applying the generalized 

midpoint method is that one vertex of the fundamental simplex has negative value for 

Yo. This makes the function lYol + . . . + (Yn-l 1 nonlinear. To avoid this problem the 

fundamental simplex is divided into two regions. The first region corresponds to Yo > 0 

and the second one to Yo < 0. In both of these regions, the function lYo 1 + . . . + IYn-' 1 is 

linear. The first region itself is a simplex. By writing the second region as the difference 

between the main simplex and the first region, the desired integrals is calculated. Using 

this procedure, we obtain, 

Case 11: A; = %D, 

Figure D.2 shows the two interpretations of the Coxeter diagram for this lattice. The 

Fig. D.2: The two interpretations of the Coxeter diagram for the lattice SRD,. 
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diagram in Fig. D.2 is obtained by applying the rotation operator to the diagram of 

Fig. D.1. It is seen that the components of all the edges of the fundamental simplex 

are positive. To obtain the images of the fundamental simplex, we apply the operator 8 

to the corresponding images of D,. As we already saw these images were obtained by 

permutating or n - 1 sign changings of the columns of the vertex matrix. It is easy to 

verify that if we interchange the two columns 2q and 2q + 1, q = 0,. . . , (7212) - 1 with each 

other and apply R to the result, it is equivalent to first applying 8 and then changing 

the sign of the second column. This means that the second moment of the fundamental 

simplex and its image under this operation are equal. In a similar way, if we change the 

sign of some of the columns and then apply R, it is equivalent to first applying R and then 

changing the sign of some columns or permutating some of the columns with each other. 

None of these operations changes the first moment. Consequently, the only operations 

which (possibly) change the first moment are those which change one of the columns 2q, 

2q $1 with one of the columns 2q1, 2q' + 1, q,ql = 0,. . . , (n/2) - 1. The total number 

of these operations is equal to, (2)-"I2n!/(n/2)!. We refer to this operations as the first 

moment changing operations. 

It can be shown that if all the components of the vertex matrix, V ,  of a simplex are 

positive, its first absolute moment using the midpoint method is equal to, 

where S(V) denotes the sum of the elements of V and d(V) denotes its determinant. To 

calculate S(V)  for different images of the fundamental simplex, we proceed as follows: 

Using Fig. D. 1, the columns of the vertex matrix of D, are found as, 

In this case, if in the process of permutating the columns of the vertex matrix with each 

other, vectors Cp and C,I, p,pl = 0,. . . , n - 1 are assigned to the columns 2q and 2q + 1, 



q = 0 , .  . . , (7212) - 1, the sum of the elements of these two columns after applying ?J? will 

be equal to, 

max (p, p') + 1 if max (p, p') # n - 1 

max (p, p') + 2 if max (p, p') = n - 1 . 
(D.5) 

This facilitates the calculation of S(V) necessary in (D.3). It can be shown that for the 

lattice %Dn, the determinant of the vertex matrix is equal to, d(V) = 4 x (2)-"I2. If 

the average value of S(V) over the set of the moment changing operations is equal to 

E [S(V)], we obtain, 
(2)'+? x E [S(V)] 

F m  [Vn (%On)] = 
n + l  



Appendix E 

Proof of the convexity of the 

optimization region 

In this appendix we prove that the region determined by the set of the constraints in 

(6.23) is convex. Obviously, the linear constraints result in a convex region. We consider 

the more general case of the set of the positive-semi-definite matrices, i.e., Xi(R,) 2 0, 

Vi. To prove the convexity, we use the following theorem: 

Let A and B be N-D symmetrical matrices and let the eigenvalues Xi(A), X;(B) and 

&(A + B), i E [0, N - 11, be arranged in the increasing order. For each k E [0, N - 11, we 

have, 

Xk(A) + Xo(B) I Xk(A + B) (Eel) 

Now, assume that R: and R: are two symmetrical positive-semi-definite matrices. Sub- 

stituting A = aR: and B = (1 - a)R: in (E.l) and considering that X;(aA) = aX;(A), 

results in, 

a X k ( ~ ; )  + (1 - ~ ) X O ( R : )  I X k [ a ~ :  + (1 - a)RE] (E-2) 

For a E [0, 11, the left hand side of (E.2) is nonnegative and consequently the right hand 

side is also nonnegative. This proves the desired result. 

The final region is located at the intersection of two convex regions and is convex. 



Appendix F 

Block-based eigensystem of the 1 * D 

and 1 - D~ systems 

This chapter have been reported in [35]. 

For the 1 - D system, the input eigenvectors are equal to, 

and the corresponding eigenvalues are equal to, 

This can be verified by considering Eq. ( F . l )  as a periodic function with period N + 1. 

This function is zero at n = i ( N  + 1) - 1, Vi. This means that the signal itself provides 

zero initial conditions for the N-D blocks. Consequently, the response of the system in 

each block is equal to its steady state response. Note that, in steady state, a sinusoid is 

the input eigenfunction of any linear system. 

To give a formal proof, we consider AtA as the transform matrix of a linear time 

invariant system with the transfer function H ( D )  = O.5(1- D ) ( l -  D-I). This is the trans- 

form of c(n)  * c(-n) where c(n) = { - I / &  1/.\/2) is the impulse response of the 1-D 

system. To be consistent with the block-based processing, we apply a causal input and 



truncate the output to positive time. In this case, if m(n) is an eigenvector with the 

eigenvalue 4, we should have, 

where M(D) is the transform of m(n). Calculating (F.3) at time zero, we obtain, 

Combining Eqs. (F.3) and (F.4), we obtain, 

Equations (F.5) and (F.4) are satisfied by the eigenvectors and eigenvalues given in 

Eqs. (F.l) and (F.2). 

Let m i  denote the output eigenvector corresponding to the i'th eigenvalue. Using 

(F.l) in Ami = a m i ,  we obtain, 

h (n)  = dg cos n(k + l)(n + 0.5) , n=O ,..., N, k = O  ,..., N-1. (F.6) N + l  

The input and output eigenvectors of the 1 + D system are obtained by multiplying (F.l) 

and (F.6) with (- 1)". The eigenvalues are the same as the 1 - D system given in Eq. (F.2). 

In general, the product of the nonzero eigenvalues is equal to, 

where lAtAl is the determinant of AtA. This product is an important parameter of 

the systems based on the system A. For example, in a transmission system using the 

optimum modulating basis, the volume of the Voronoi region at the system input is 

proportional to (n &)-It2 and the required energy is proportional to (n 4k)-11N. For 

the 1 f D systems, assuming lAtAI = 2-NAN and expanding the determinant, we obtain 

AN = AN-1 + 1. Solving this recursive equation with the initial value A1 = 2 results in 

AN = N + 1. Consequently, for the 1 f D systems, we have, 



An N-D, N even, 1-D2 system can be considered as two time multiplexed N/2-D, 

1-D systems. Consequently, the eigenvalues are in pair equal to, 

The two eigenvectors corresponding to a pair of eigenvalues are of the general form 

almk(2n) + a2mk(2n + 1 )  where a: + a: = 1 and mk(n)  is the eigenvector of the 1 - D 

system given in (F. 1 ) .  For the 1 - D2 system, we have, 



Appendix G 

Voronoi constellat ions 

A real n-D lattice A, is a discrete set of n-D vectors in Rn which form a group under 

ordinary vector addition. A sublattice 11: of a lattice A, is a subset of elements of A, 

that is itself a lattice. A binary lattice of second depth m is an integer lattice (sublattice 

of 2") which has 2"Zn as a sublattice. Around each lattice point is its Voronoi region 

consisting of all points of the space which are closer to that point than to any other. 

A sublattice A: induces a partition of A, into equivalence classes modulo A:. The 

order of this partition is shown by IA,/A; I .  The lattice A, is the union of IA,/A:l cosets 

of A:. The set of the cosets form a group under addition modulo A;. This is called the 

quotient group and is denoted by [A,/A;]. In general, any element of A, can be written 

as the sum of an element of A: plus an element of the quotient group, i.e., 

A Voronoi constellation is the set of the coset leaders (minimum energy points) 

of these IA,/A;I cosets. This means that a Voronoi constellation based on the lattice 

partition A,/A: is the set of points of A, (or some translate A, + a of A,) that fall within 

the Voronoi region around the origin of the lattice A;. The lattice A: is denoted as the 

shaping lattice. If A, and A: are binary lattices, the order of the constellation will be an 

integral power of two. For binary lattices, the resulting 2-D subconstellation is a square 

constellation, [lo]. 



G .  1 Address decomposition for the Voronoi const el- 

lat ions 

In the Voronoi constellation the set of the constellation points form a group under the 

vector addition modulo the shaping lattice. This is an important property of these con- 

stellations and is used to facilitate the addressing. The complexity of this addressing 

method is that of a linear mapping plus the decoding of A;. 

A partition chain AA/Ai / .  . . /A: induces a multitermcoset decomposition chain with 

a term corresponding to each partition, i.e., 

In the case that A t ,  A:, . . . , A: are binary lattices with the second depth m, the order of 

the set [Ai/Aj,]  will be a power of two, say 2L, and each element of this set can be expressed 

as aG = El algl where a = (ao, al ,  . . . , is a binary L-tuple and the generators gl 

are taken from the coset representatives of 2mZn in Zn (n-tuples of integers modulo-2"). 

This provides a way to label the cosets by a label which has q - 1 parts obtained by 

concatenating different a's. The decoding is achieved by extracting the different parts of 

the label in steps. The label extraction is achieved by using the following property: If a 

point of the Voronoi constellation based on the partition Ai/A: in Eq. G.2 is calculated 

modulo one of the intermediate lattices, say A;, the result will be equal to a point of the 

Voronoi constellation based on Zn/Ak and its label is the first i - 1 parts of the original 

label. In the following, we describe two methods for labeling. 

The first labeling method is based on the partition chain ~ ~ / 2 ~ ~ i / 2 ~ + ~ ~ ~ .  If 

Zn/Ai/2Zn is a partition chain with IZn/Ail = 2J, the Voronoi constellation based 

on the partition Zn/2kAi will consist of 2""+-' points and we have the partition chain 

Zn/Ai/2Ai/ . . ./2"i which induces a chain decomposition of the form, 

Assume that the (n x n) matrix H is a generator for the set [Ai/2Ai] and the (J x n) 

matrix G is a generator for the set [Zn/Ai]. By considering the fact that the generators 



of the set [2i-1Ai/2iA;] may be taken as 2;-l times the generators of the set [Ai/2Ai], 

we can write, 

Zn = 2 k ~ i + a ~ + b ~ ,  

where a is a binary J-tuple and b is an n-tuple of integers modulo 2k. 

The second labeling method is based on the partition chain z ~ / ~ ~ z " / ~ ~ A ;  which 

induces the following decomposition, 

By considering that [ z ~ / ~ ~ z ~ ]  = [ z / ~ ~ z ] ~ ,  where [ ~ / 2 ~ 2 ]  is the set of integers modulo 

2" and also [2kZn/2kA3 = 2k[Zn/Ai], we obtain the following matrix form for the 

decomposition, 

Zn = + b' + 2 k a ' ~ .  (G-6) 

Again, a' is a J-tuple modulo-2, I Zn/Ai I = 2J, b' is an n-tuple modulo 2k and the (J x n) 

matrix G is a generator for [Zn/Ai]. This form explicitly reflects the separability of the 

labeling as discussed by Forney in [lo]. 

In both labeling methods, the obtained point is calculated modulo 2kAi to obtain 

the minimum energy point of the corresponding coset. Relations (G.4) or (G.6) provide 

a method for labeling the cosets of 2"; in Zn by a two part label (a, b) or (a', b'), 

respectively. 

Next, we consider the complexity of using a lookup table for the addressing of a 

Voronoi constellation. We know that in the partition chain ~ " / 2 ~ A 3 2 ~ + '  Zn, the Voronoi 

region of 2kA; is a subset of the Voronoi region of 2"'Zn and as a result the Voronoi 

constellation based on the partition ~ " / 2 ~ A i  is a subset of the Voronoi constellation 

based on the partition Zn/2k+1 Zn. But, the Voronoi constellation based on the partition 

Z n / 2 k + ' ~ n  is a cubic constellation with 2k+' points along each dimension. This is the 

n-fold cartesian product of the Voronoi constellation based on the partition Z/2k+1Z. 

In this case, labeling can be achieved independently along each dimension and have a 

trivial complexity. Now, all we need is a means to specify the desired 2kn+J points of the 



constellation based on the partition Z n / 2 k A i  among the 2"+" points of the constellation 

based on the partition Zn/2"l 2". This can be achieved by employing a lookup table 

with k n  + J input lines where J is given by I Z n / A i  I = 2 J ,  and with words of length k n  + n 

bits. 

6 . 2  Voronoi constellations based on the lattices Dn, 

XDn and Di 

The lattice D ,  is defined as, [4 ] ,  

Dn = { ( X o ,  . . . , Xn-1) E Z n ;  X o  + . . . + Xn-1 even). (G.7) 

We have J Z n / D n  1 = 2  and 1Dn/2Zn1 = 2"-l. The set of 2 n ( n  - 1 )  nearest neighbors in this 

lattice are located at points [(f (0)n-2]  where a vector within [ ] sign denotes the set 

obtained by all the possible permutations of the components of that vector. The Voronoi 

cell in D ,  is determined by the set of the nearest neighbors. The constituent 2-D sublattice 

of D ,  is equal to % Z 2 .  The Voronoi constellation obtained from the partition Z n / 2 k D n  

consists of 2"+' points. Its constituent 2-D subconstellation is a Voronoi constellation 

based on the partition Z 2 / 2 k % Z 2 .  

The Voronoi constellations based on the partition Zn/2k%Dn carry one more bit per 

two dimensions than the constellations based on the partition Z n / 2 k  D ,  and its constituent 

2-D subconstellation is the Voronoi constellation based on the partition Z2/2"l Z 2 .  

The lattice D i  is defined as, [4 ] ,  

This lattice can be obtained by scaling the dual lattice of D ,  by a factor of two. We have 

( Z n / D ;  I = 2"-' and 1 D;/2Zn1 = 2.  In this lattice the closest points to the origin in the 

first set consist of 2n points of the form [(A 2 ) ,  (0)"-'1 and the closest points in the second 

set consist of 2" points of the form [(f l)"]. The Voronoi cell is the intersection of the 



Voronoi cells determined by these two sets. The first of these is a hypercube centered at 

zero with the vertices [(f l)"] and the second is a generalized octahedron with vertices 

[f (n /2 ) ,  (0)"-'1. The lattice Di is a sublattice of D, with I Dn/D: I = 2n-2. 

The Voronoi constellation obtained from the partition Zn/2k Di consists of 2 ( k f  'In-' 

points. Its constituent 2-D subconstellation is a Voronoi constellation based on the par- 

tition Z2/2"l Z2.  
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