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Abstract

The purpose of this thesis is to examine techniques for efficiently coding speech
Linear Predictive Coding (LPC) coefficients. Vector Quantization (VQ) is an efficient
approach to encode speech at low bit rates. However its exponentially growing com-
plexity poses a formidable barrier. Thus a structured vector quantizer is normally used

instead.

Summation Product Codes (SPCs) are a family of structured vector quantizers
that circumvent the complexity obstacle. The performance of SPC vector quantizers
can be traded off against their storage and encoding complexity. Besides the complexity
factors, the design algorithm can also affect the performance of the quantizer. The con-
ventional generalized Lloyd’s algorithm (GLA) generates sub-optimal codebooks. For
a particular SPC such as multistage VQ, the GLA is applied to design the stage code-
books stage-by-stage. Joint design algorithms on the other hand update all the stage

codebooks simultaneously.

In this thesis, a general formulation and an algorithm solution to the joint code-
book design problem is provided for the SPCs . The key to this algorithm is that every
SPC has a reference product codebook which minimizes the overall distortion. This joint

design algorithm is tested with a novel SPC, namely “Predictive Split VQ (PSVQ)”.

VQ of speech Line Spectral Frequencies (LSF’s) using PSVQ is also presented.
A result in this work is that PSVQ, designed using the joint codebook design algo-
rithm requires only 20 bits/frame(20 ms) for transparent coding of a 10th order LSF’s

parameters.
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Sommaire

L’objectif de cette these est d’étudier des techniques efficaces de codage de co-
efficients & prédiction linéaire (CPL). La quantification vectorielle (VQ) est I’approche
la plus eflicace pour compresser la parole a un débit aussi faible, mais sa complexité
exponentiellement croissante empeéche son application directe. Ainsi, on a normalement
recours a des procédures sous-optimales de quantification vectorielle structurée, qui per-

mettent de troquer la performance du codage contre une réduction en complexité.

On distingue habituellement deux facteurs de complexité: la complexité de codage
(effort de calcul), et la complexité de stockage (capacité de mémoire). En faisant varier
ces facteurs, on obtient différents types de quantificateurs vectoriels structurés: MSVQ,
SVQ, --- Mais la performance d'un code dépend aussi de ’algorithme de construction
du code. L’algorithme généralisé de Lloyd fournit normalement des livres de code sous-

optimaux, parce que la construction du livre de code se fait de fagon itérative.

D’un autre coté, l'algorithme “conception jointe, mise-a-jour jointe” essaie de
mettre & jour tous les livres de code en méme temps, en résolvant une équation ma-
tricielle. La clef de voiite de cet algorithme est que chaque code-produit SPC a un livre
de code-produit de référence qui minimise la distorsion totale. Cette conéeption jointe
du livre de code est appliquée a une famille de quantificateurs vectoriels structurés,
les codes-produit de sommation (SPC). En particulier, on teste cet algorithme avec un

quantificateur vectoriel structuré SPC particulier” Predictive Split VQ (PSVQ).

Des résultats avec des quantificateurs & Lignes de Fréquences Spectrales (LSF)
sont aussi présentés. Une des conclusions importantes de ce travail est qu’un quantifi-

cateur PSVQ), concu avec l’algorithme de conception jointe.
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Chapter 1

Introduction

Digital speech coding is a subject that has received tremendous amount of attention.
The goal of speech coding is to transmit speech with the highest possible quality at
a given bit rate or to minimize the bit rate at a given distortion level. Typically, the
efficiency of speech coders is positively correlated with coder complexity. Finding the
best tradeoff between coded speech quality and complexity is a key issue in speech coder

design.

There are two basic classes of coders, waveform coding and model based coding.
Waveform coding tries to match the incoming signal waveform with the coded signal as
accurately as possible. Model-based coders on the other hand parameterize the input
signal using models which characterize the human speech production mechanism and/or
the human auditory system. Key parameters of the model are being transmitted to
the decoder end so that the speech signal can be reconstructed using the same produc-
tion model. Model based coders can significantly reduce the bit rate by exploiting the

redundancies of speech while maintaining high quality.

One of the most widely used techniques in speech coding for representing the

short-time spectral envelope information of speech is linear prediction or all-pole synthe-
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Residual Signal
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Figure 1.1: Simulation model for vector quantization of LPC coefficients

sis. In a typical application, the input speech samples are passed through a preémphasis
filter. The filter output sequence is parsed into frames of 10 to 30ms each. Each frame
consists of 100 to 300 samples, depending on the sampling rate. An autocorrelation
sequence is then computed from each frame, and then the linear prediction coefficients
(LPQ) are obtained using Levinson Durbin recursion [28]. After obtaining the LPC co-
efficients, the frame of speech samples can be processed by the prediction filter to obtain
a residual signal. The different natures of the residual signal and the LPC coefficients

result in different strategies for coding the two.

Since only the coding of LPC coeflicients is investigated in this work, the residual
is passed directly to the receiver without any coding and thus without any degradation.
Therefore, the effects of quantizing the LPC coefficients can be isolated from the effects
of coding the residual signal. Fig(1.1) shows a simulation model for the coding of LPC
coefficients. The LPC Analysis block determines the LPC coefficients and inverse filter
the input speech signal to produce the residual signal. The vector quantization (VQ)
block codes the LPC coeflicients. The quantized LPC coefficients are then given to the
LPC Synthesis block which uses them to filter the residual signal and produce the output
speech.



Chapter 1. Introduction 4

In narrow band coding of speech sampled at 8 kHz, a prediction order of ten is
typically used. The order of an LPC model refers to the number of coefficients in linear
prediction. It has been shown that a smaller order starts to have large increase in error
while increasing the order to greater than 10 does not improve the performance of the
quantization of the parameters [29]. However, the LPC coefficients are known to be
inappropriate for quantization because of their relatively large dynamic range and their
complex relationship to filter stability. Various sets of LPC parameters representing the
same spectral information have been studied, e.g. cepstral coefficients and reflection co-
efficients. The line spectral frequency (LSF) representation, proposed by Itakura [9], has
both a well-behaved dynamic rangé and a filter stability preservation property. It can
be used to encode the spectral information of speech more efliciently. Any assessment
of signal quality implies a fidelity measure. For most communication systems, this mea-
sure 1s difficult to specify quantitatively because it involves human perception. Extensive
perceptual performance testing of speech coders is time consuming while quick compar-
isons are required in the early stages of design. An earlier study [12] produced objective
criteria that characterizes transparent coding quality, (i.e., there is no distinguishable
difference between the quantized LPC parameters and the original unquantized version)

for LSF parameters.

For low bit rate speech coding applications, the goal is to achieve transparent
coding quality using the least possible number of bits to quantize the parameters. Vector
quantization has been proven to be a highly effective technique for minimizing the bit
rate. It considers the entire set of LPC parameters as a vector and allows for the direct
minimization of quantization distortion. The disadvantage of using unstructured VQ
for transparent coding of LPC information is that approximately 20 bits are needed
to quantize one parameter vector. This poses an insurmountable search and memory
complexity and an inordinate amount of training data. One method to correct this
complexity barrier is by imposing a special structure on the quantizer at the cost of

higher distortion. Some of the most well-known structures are tree-search VQ (TSVQ),
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multi-stage VQ (MSVQ), split VQ (SVQ). They can be grouped into a class of structured
vector quantizers called Summation Product Code (SPC). In the conventional training
process for summation structured VQ, each stage is designed independently using the
Generalized Lloyd Algorithm. A new joint-codebook design algorithm was recently
proposed [35].

1.0.1 Contribution of the thesis

The main intention of this thesis is to present a survey of the Summation Product Code
family and examine the efliciency and characteristics of the joint-design algorithm on
some of the members of the SPC family. A novel SPC structure is also presented. This
structure, called Predictive Split VQ, is a hybrid of MSVQ and SVQ. The new PSVQ

configuration is evaluated by using it to quantize speech LSF parameters.

1.0.2 Organization of the thesis

This thesis is divided into six chapters. Chapter two reviews the theoretical background
of the linear prediction model. The line spectral frequencies representation is examined.

Several distortion measures are also discussed.

Chapter three examines the quantization theory. The theory of scalar quanti-
zation is studied and is then extended to vector quantization. After the principles are
reviewed, different summation product code structures are presented together with their

various degrees of storage and encoding complexity.

Chapter four reviews the conventional Generalized Lloyld codebook design algo-
rithm for SPC design. In this chapter, a new joint-codebook design is introduced. The
example of a joint design MSVQ method is described.

In the first part of Ché,pter five, the effectiveness of the joint-codebook design
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algorithm on summation product code structures are evaluated for Gaussian sources. In
addition, a new summation product code structure, Predictive Split VQ), is presented.
In the second part of the chapter, the performance of PSVQ and Split VQ for quantizing

LSF parameters is investigated.

Finally, Chapter six presents a summary on the experimental results and indicates

areas for further investigation.



Chapter 2

Linear Predictive Coding Of Speech

2.1 Introduction

A source-production model for speech depends on a parametric description of the vocal-
tract transfer function. This parametric description can take a variety of forms, for
example, values of the short-time amplitude spectrum of the speech signal evaluated
at specific frequencies as done in a channel vocoder; linear prediction coefficients that
- describe the spectral envelope as used in Code-Excited Linear Predictive (CELP) Coding
[28]; and frequency values of major spectral resonances, commonly used in formant

coders, etc.

Linear predictive coding is widely used among today’s low-bit-rate speech coders.
This popularity stems from the fact that the linear prediction model defines an “all-pole”
synthesis spectrum that matches very well the short-term spectral envelope of speech.
The basic idea in linear prediction is to approximate a speech sample as a linear combina-
tion of past speech samples. By minimizing the mean square error between the original
speech and the prediction, a unique set of predictor coeflicients can be determined.

Considerable work has been done in the past to develop quantization procedures, both
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scalar and vector, to represent this information with a small number of bits. However,
linear prediction coeflicients have some major disadvantages with respect to maintain-
ing the stability of the synthesis filter and catering to the distribution of the parameter
values. As a result, an equivalent representation is often used instead. For example,
Viswanathan and Makhoul[38] used the log area ratios (LARs) for scalar quantization
of LPC parameters. Gray and Markel [17] used arcsine reflection coefficients for the
- same purpose. Itakura [10] proposed the line spectral frequency (LSF) representation
which has been shown to be an efficient representation for scalar quantization of LPC
information [29]. Paliwal and Atal [15] used split VQ with LSF parameters and obtained
“transparent coding quality” at 24 bits/frame. Paksoy et al. [16] used LSF parameters
for VQ and achieved transparent quality at 21 bits/frame.

The choice of distortion measure is another important factor in designing a speech
coder. A distortion measure can be used to guide the quantization search and to evaluate
the performance of a speech coding systems. Even though the sound quality of a given
speech coder is best evaluated by the human ear, this is time consuming and quick
comparisons are required in the early design phase. Different distortion measures will
be discussed in this chapter; however, emphasis is placed on measures that preserve

perceptually important speech-model parameters, such as spectral distortion measures.

2.2 The Characteristics of Speech Signals

Source coding reduces the bit rate by exploiting the natural redundancies that exist in
the source signal. Therefore, an understanding of human speech communication system
before investigating any kind of speech modelling is beneficial. Speech communication
involves two processes: the speech generation process and auditory process. In the
speech generation process, an excitation flow is generated by forcing air from the lung

through the vocal cords into the vocal tract. This excitation flow can either be (quasi-
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)periodic or randomly fluctuating (turbulent). To generate a voiced sound, (such as
/a/,/e/,[i],/o/,/u]) , the air flow is interrupted (quasi-)periodically by the vocal fold.
The opening and closing of the vocal tract determines the fundamental frequency or the
pitch. Moreover, this excitation signal of strongly periodic nature has smooth glottal
waveform transitions most of the time. The vocal tract, starting from the vocal cord,
and ending at the lips, can be modelled as an acoustic tube. By varying the shape
of this tube, different sounds can be produced. This vocal tract acts as a filter, and
amplifying energy near the formant frequencies, while attenuating frequencies between

the formants.

An unvoiced sound (such as /k/,/p/,/f/,/v/), on the other hand, is generated
at a narrow constriction in the vocal tract and the vocal cords do not vibrate. The
spectrum of an unvoiced fricative is typically broad in bandwidth with gentle attenuation
at the band edge. For coding purposes, the excitation source for voiced sounds can
be represented by a periodic pulse generator. The source for unvoiced sounds can be

represented by a random noise generator.

In speech auditory processing, the middle ear acts as a low pass filter with a
cutoff frequency of 1500-2000 hertz, and a gain ratio of 15 to 1. The inner ear has
thousands of sensory hair cells attached to the basilar membrane. The studies of human
ear sensitivity have shown that the human ear is more sensitive at low frequency than
high frequency. Moreover, it is found that the ear is more sensitive to the peaks than

valleys of the power spectrum.

The intent of the brief description of the human speech production and auditory
apparatus [28] is a motivation for predictive coding. By appropriately modeling the
glottal excitation and the vocal track with only a few parameters to be transmitted,
substantial bit savings can be achieved. Furthermore, by exploiting the limitations
and properties of the human auditory system such as masking phenomena, increased

sensitivity to lower frequencies and the insignificance of spectral zeros, the perceived
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speech quality can dramatically be improved.

2.3 Linear Prediction Model

The speech model used in Linear Predictive coding is based on the discrete speech signal
z[n] being the output of a system with an input u[n]. The model can be represented

mathematically as follows,
M N
gln] = =) arz[n — k] + G buln—1], b =1. (2.1)
k=1 I=0

where ar,1 < k < M, b;,1 <1 < N and the gain G are the parameters of the system.
The model shows that the output speech samples, z[n], is a linear combination of past
speech samples as well as past and present input signals u[n]: By taking the 2-transform
on both sides of Eq(2.1), the transfer function of the system H(z) can be represented as
X(z)
U(z)
1+ Z£i1 axz™k .

H(z)
(2.2)

where X(z) and U(z) are the z-transform of z[n] and u[n] respectively. H(z)in Eq(2.2) is
the general pole-zero model, known also as the Auto-Regressive Moving Average( ARMA)
model. For simplicity, most speech coders only consider the poles from the model and

simplify Eq(2.2) to
1
14+ XM apz*

Here M is the order of LPC analysis. The all-pole synthesis model of linear prediction

H(z) =G (2.3)

considers only the past output speech samples and the present input samples. It reduces
the amount of computation required to determine the filter coefficients but the simplifi-
cation has a major disadvantage as the zeroes in the vocal/nasal tract response and the
glottal source are neglected. The effect of neglected zeroes is reduced as the number of

poles used increases. The all-pole model is a desirable choice also due to the fact that
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human ear sensitivity is higher at spectral formants where the poles are located and
lower at spectral valleys where zeroes are located. Assuming the input u[n] to be totally
unknown, the signal z[n] can be predicted approximately by a linear combination of past

samples. If the predicted value of the signal is denoted by &[n] where

M
Zn] = - axz[n— k] (2.4)
k=1
then the error between the actual value z[n] and the predicted value Z[n] is given by
: M
e[n] = z[n] — &[n] = z[n] + ) arz[n — & (2.5)
k=1
As a result, a speech model can be derived from the above equation. With an excitation

signal e[n]| passing through a shaping filter H(2) (Fig(2.1)), the reconstructed speech

z[n] is reproduced. H(z) is known as the synthesis filter and can be expressed as

1 1 v
H(z) = 1+ 30, apz® - A(z) (26)
where o
Alz)=1- a;z7* (2.7)
k=1 :

is the inverse filter to remove the formant structure from the original speech file. If
the prediction system is based on past original speech samples, it is referred as forward
adapted prediction because the predictor coeflicients have to be sent to the receiver
as side information. However, if the prediction system is based on past reconstructed
speech samples, then it is called backward adaptive prediction and no side information
is transmitted. The backward adaptive predictor coefficients can be calculated both at

the transmitter and the receiver end.

The predictive coefficients a;, can be obtained as a result of minimizing the mean

square error with respect to each of the parameters, using the least square method.
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X][n] > O—= ¢e[n]
| i k =N
| Z a .z | X[n]
| k=1
Prediction Model.
. o
eln] >GA? x[n]

Synthesis Model

Figui‘e 2.1: Predictive filter and synthesis filter
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2.4 Linear Predictor Coefficients

One of the major tasks in linear predictive coding is to obtain the predictive coefficients
and the gain in order to minimize the error energy. The speech signal itself is not
stationary and its statistics are not usually known. It is commonly assumed that the
speech signal is stationary over a short interval of time (about 20ms). The predictor
coefficients can thus be estimated from a sequence of speech samples obtained from an

interval over which the signal is considered to be stationary.

Windowing the sampled signal is the first step in any linear prediction parameter
calculation. Several techniques have been developed to compute the predictor coefhi-
cients. Among these, two classical methods are commonly used: the Autocorrelation

method and the Covariance method.

2.4.1 Autocorrelation method

Autocorrelation least-square technique multiplies the speech signal by a time window,
typically a Hamming window before filtering it using the inverse filter A(z) defined in
previous section.

z[n| = w(n]s[n] (2.8)

The window limits the speech signal to a finite interval, 0 <n < N — 1. The energy in

the residual signal is then

0o oo M 2
E= > &hnl= Y |z[n]-> axzn—Fk (2.9)
n=—oo n=—o0o k=1
The least-square method minimizes the energy by differentiating the energy with respect
to ax, k= 1,2,..., M, and setting the equation to zero.
6E

- 2.1
5o (2.10)
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The resulting equation becomes
) M o)
> zln—izn]=) ar > z[n—ilzn—kl,i=1,2,... M. (2.11)
n=—00 k=1 n=—o0
The autocorrelation function of the time-limited signal z[n] is defined as
N-1
R(i) =) z[nlz[n—1], i=1,2,... M. . (2.12)

The term R(0) is equal to the energy in x[n]. It should be noted that R(z) is an even

function such that
R(2) = R(—1) (2.13)

Substituting the autocorrelation function into Eq(2.11), the system of equations can be

expressed in matrix form as Ra = r. The expanded form of the system is

R(0) R1) ... RM—-1) | [ a [ R(1)
R(.l) R(-O) R(ﬂ{ —9) o | _ R('2) .18
| R(M -1) RM—-2) ... R(0) ||au| |R(M)]

where each entry R;; in the matrix R is given by R;; = R(|¢ — j]). The matrix is
symmetric and Toeplitz and Eq(2.14) is in fact the Yule-Walker equation. This equation

can be solved by using the Levinson-Durbin recursion [28] method.

2.4.2 Covariance method

The covariance method, on the other hand, determines the predictor coefficients by
windowing the error signal e[n] rather than the speech signal z[n]. As a result, the error

in the residual signal becomes

oo [=)

E= Y &njwn] = ) s[n]—kz_:aks[n—k] win] (2.15)

n=—oo n=—oo
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The error is minimized over a finite interval 0 < n < N—1 as determined by a rectangular

window function win] to reduce Eq(2.15) to

E= Z_o sin] = Y- axsln | win (2.16)

Differentiating the residual energy with respect to ax, b = 1,2,..., M and setting the

equation to zero will result in the set of equations given by

N-1 M N-1
> sln—is[n] =Y ar Y zln — klz[n — i (2.17)
n=0 k=1 =0
where ¢,k = 1,..., M. The covariance function of z[n] is defined by
N-1
$(i,k) = Y s[n — k]s[n — 1] (2.18)
n=0 :

Substituting the covariance function into Eq(2.16), the system of equation can be ex-

pressed in matrix form as ®a = ¢ or

BL1) #(12) ... sL,M) |[a ] | 401
| ¢(M71) ¢(M72) ¢(M7M) 1| eM | L ¢(O7M) |

The covariance matrix is also a symmetric but not Toeplitz and can be solved by using the
Cholesky decomposition method. One major requirement for the predictor coefficients
is dictated by the stability of the synthesis filter. Stability of the synthesis filter is
guaranteed by having all the zeros of the inverse filter A(z) inside the unit circle in the
z-domain, i.e. minimum phase. The autocorrelation method always results in a stable
synthesis filter. The covariance method, unfortunately, does not guarantee a minimum

phase inverse filter though it may result in better performance.

2.4.3 Reflection coefficients

The reflection coefficients are an alternative representation for the LPC Coefficients.

They arise as intermediate variables when solving for predictor coefficients in the auto-
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correlation method, using what is called Levinson-Durbin recursion. The procedure is
as follows: for1=1,2,3,..., M,
Eo = R(0)
_ B~ S eca(RRG - B)
E;,_, ’
ai(t) = ki,

k;

ak(i) = ak(z - ].) - k,'a,i_k(i — 1), k= 1,2,3, e ,’i — 1,
E,=(1-k)E;, (2.20)

The reflection coefficients are the k;’s while the predictor coefficients are
ap = ak(M), k= 1,2,3,... ,M

The reflection coefficients can be computed directly from the predictor coefficients using
the Schur Cohn procedure. The reflection coeflicients can be used to construct the lattice
form of the inverse filter A(z). The lattice filter corresponds to an acoustic tube model
of the vocal tract with the k; coefficients representing the reflection coefficients at the
boundaries of the tube sections. An important property of the reflection coefficients is
that if their magnitudes are less than unity, then the inverse filter is minimum phase
and invertible. If the predictor coefficients are known, the reflection coefficients can be

determined by the following recursion for m =M, M —1,...,3,2

ar = am(k),

am(t) + kmam(m — 1)
1—-k2, ’

amo1(d) = i=1,2,...,m—1 (2.21)
km—l = am—l(m - ]-)

With this recursion, predictor coefficients can be checked for stability by converting them

to reflection coefficients.
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2.5 Line Spectral Frequencies

Line Spectral Frequencies (LSF’s) are another representation of the LPC coefficients
which have been shown to be useful for speech coding. The distributions of the LSF
frequencies are plotted in Fig(2.2) as histograms. It is clear that the distribution range

varies from one LSF histogram to another [11]. In order to define the LSF’s, the inverse

filter polynomial, A(z) =1—a; — ... — ayz"¥, is used to construct two polynomials.
P(z) = A(z)+z MMA(z ™) (2.22)
Q(z) = A(z)— 2z M4 (2.23)

The roots of P(z) and Q(z) uniquely characterize the LPC filter and are called LSFs.
The transformation from linear predictive coefficient to LSF parameters is reversible.
The LSF’s corresponds to the angular position of the roots of Q(z) and P(z). The roots
all lie on the unit circle and occur in complex-conjugate pairs. There are M LSF’s lying
between 0 and 7. In addition, there are two extraneous roots at w = 0 and w = 7.

Three methods of calculating the LSF’s parameter are presented in the following:

The first method is introduced by Kang and Fransen [11]. They use an iterative
approach to find the roots on the unit circle based on the all-pass ratio filter

2~ (M) A(z71)

TPy

(2.24)

The phase spectrum of this filter is then determined from Eq(2.24). The LSF’s corre-
spond to the frequencies where the phase response takes on values which are multiples
of 7. A second approach, also proposed by Kang and Fransen [11], makes use of two

polynomials to determine the LSF’s.

G(z) = -1% and H(z)= 1(_9_(2)_1, M even (2.25)
G(z) = P(z) and H(z)= Q(z)z M odd. (2.26)

1—2-
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These polynomials are of degree 2M and may be expressed in terms of their coefficients

as

2l
G(z) =Y (gz 7" + giiz” M), go =1, (2.27)
=0
2m )
H(z) =Y (hiz ™ 4 hmoaz ™), ho =1, (2.28)
=0

where | = m = M/2 for M even and [ = (M + 1)/2,m = (M — 1)/2 for M odd.
The polynomials G(z) and H(z), by separating their linear phase components can be
expressed as
G(z) = e G (w
() = ) 229)
H(z) = e H'(w)

where

G'w) = 2% jgicos(l—1)w

(2.30)
H(w) = 2%, hicos(m —i)w

The second method proposed by Soong and Juang[29] determines the LSF’s
by applying a discrete cosine transformation to the coefficients of G(z) and H(z) in
Eq(2.28,2.27). The roots, corresponding to the LSF’s, are found by searching along the
w = [0, 7] range iteratively for sign changes in the polynomials G(z) and H(z).

The third method by Kabal and Ramachandran|9] makes use of Chebyshev poly-
nomials

Tm(z) = cosmw, z=cosw. (2.31)

The function z = cos(w) maps the upper semicircle in the z-plane to the real interval
[-1,+1]. The polynomials G'(w) and H)(w) can be expanded using the Chebyshev
polynomials as follows,

G'(z) = 2%t ogT

(2.32)
H'(z) = 2¥7ohTm

The roots of these Chebyshev expansions give the LSF’s after the inverse trans-
formation w = cos™!(z). The roots are determined iteratively by searching for sign

changes along the interval [—1, +1].
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Figure 2.2: The Distribution of line spectral frequencies (from Kang [11])
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2.5.1 Properties of line spectral frequencies

The polynomials P(z) and @(z) have the following properties which make LSF more
amenable to efficient encoding than other LPC representation: A(z) is minimum phase
if and only if all the roots of P(z) and Q(z) lie on the unit circle, and the roots of P(z2)
and (Q(z) are interlaced with each other. Thus, the stability of the LPC synthesis filter
can be ensured by quantizing the LPC information in LSF domain. The LSF parameters

satisfy the ordering properties,
O=wi<w) <wy <...<wpy—1 <wy <Wyp1 =7 (2.33)

Therefore, in order to guarantee stability for the LSF synthesis filter, the quantized
version of the LSF parameters must satisfy the ordering property. This property makes
LSF¥’s more attractive than the original LPC parameters for quantization since the latter
needs to be transformed to reflection coefficients for the stability testing. The LSF’s
correspond to the local minima of the power spectra of the polynomials G'(w) and
H'(w). Also, since the P(z) polynomial is even and the Q(z) polynomial is odd, it is

possible to decompose the power spectrum || A(w)]|?:

[A@W)I* = (IP@)I* + 1Qw)II*)/4 (2:34)

Therefore, the power transfer function associated with H(z) can be calculated as follows:

IHE@)P = M}W (2.35)
4
= P@ET 0@ (2:36)

Eq(2.36) implies that LSF parameters can be interpreted as a representation of an all-

pole filter by means of the location density of discrete frequencies, namely [wy,ws, . . ., wn],
in the frequency domain. If the spectrum has resonant frequencies, the LSF’s become
closely spaced near these frequencies (Fig(2.4)) because the phase angle of the ratio filter

changes rapidly in the region. Moreover, the spectral sensitivities of LSF’s are localized
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Figure 2.3: Effect of changing LSF on LPC power spectrum. The original spectrum is
shown by solid line and the changed spectrum by dotted line. The first figure makes a
change of the fourth LSF from 1285 to 1310 Hz. The second figure has a change of the

eighth LSF from 2725 to 2690 Hz.



Chapter 2. Linear Predictive Coding Of Speech 22

40 T T T T v T T

il |

20F B

2 10r 4
!
ot i
I BN
/ I
\\/
-10F 8
20 L . . \ L . L
0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)
40 T T T T T T T
aol [\ 1
20 r\ E
2 1of ]
A
of J
-1oF i
20 L 1 . L L L !
0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

Figure 2.4: LPC power spectrum and associated LSE’s



Chapter 2. Linear Predictive Coding Of Speech 23

as shown in Fig(2.3). In other words, any change in a given LSF produces a change
in the LPC power spectrum only in a neighbourhood. For the other representations,
such as the reflection coefficients, the log area ratios, and the predictor coefficients, the
spectral variation due to deviation of a single parameter usually is not localized. This

is another indication that the LSF’s are superior to the other representations.

2.6 Distortion Measures

The techniques used to estimate the LPC parameters in the previous section effectively
fit the power spectrum of the associated synthesis filter to that of the speech signal. In a
similar manner, vector quantization of LPC parameters can be viewed as selecting from
a quantization codebook the LPC vector that yields the best matching spectral envelope
to the given spectrum of a short frame of speech. The matching criterion can be based
on minimizing the energy of the speech error incurred after quantizing the LPC parame-
ters. However, even with moderate size codebooks, the computational load is very large.
Therefore quantitative distortion measures that directly match the candidate LPC code-
vectors to LPC source parameter vector are needed. The Euclidean distance between a
source vector and a candidate codevector has been widely used in early vector quantiz-
ers. The limitations of such a measure reveal themselves in unsatisfactory reconstructed
speech quality. Taking perceptual considerations into account, the Euclidean measure
can nevertheless be appropriately modified to achieve high-quality quantization, namely
by appropriately weighting the individual components of the LPC parameter vector.
Since the modified distortion measures quantitatively compare the candidate codevector
and the LPC parameters in the frequency domain, they are termed “spectral distortion
measures”. Depending on the selected parameter domain for quantization, an appro-
priate distortion measure is used as a selection criterion for a codevector. A spectral
distortion measure and the Euclidean LSF distance will be briefly introduced in this

chapter.
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2.7 Spectral Envelope Distortion Measures

The basis for defining and comparing the spectral envelope distortion measures is the
comparison of the original speech LPC spectrum obtained from the synthesis filter 1/A(z)
and the power spectrum of the synthesis filter associated with the quantized LPC pa-

rameters, 1/A'(z). Both spectrum are taken on a frame-by-frame basis.

2.7.1 Spectral distortion measure

The spectral distortion measure has been used extensively in the past to measure LPC
quantization performance. Earlier studies have used an average spectral distortion of
1 dB and a number of outlier criteria to characterize the spectral coding transparency.

Spectral distortion for the i** frame, D,:, is defined in(dB) as follows

D! = /2 " [10ogo(Pi()) — 10 Togo( B(1))] " df (2.37)

where F, is the sampling frequency in Hz and P;(f) and 151( f) are the LPC power spectra -
of the :tB frame given by

1
M) = gy e (238
and
B(f) = : (2.39)

G
where A;(z) and /lz(z) are the unquantized and quantized version of the LPC polynomials
respectively for the 0 frame. Spectral distortion is computed for all the frames in a data
set X. One major disadvantage of using the Spectral Distortion Measure for codebook
design is its computation complexity. As a result, another distortion measure is used to

approximate this spectral distortion measure to avoid the high computation complexity.
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2.7.2 Weighted Euclidean distance

Exploiting the relationships between LSF’s and the spectral envelope, a weighted Eu-

clidean (squared error) distance measure may be used.

D= é[ciwi(m[i] — &[4])P (2.40)

As shown in Fig(2.2), the LSF’s spread out in frequency between 0 and 4 kHz. Since
the sensitivity of the human ear to speech sounds decreases as the frequency increases,

more weight should be given to the low frequencies. Thus, the following weight values

are used by Paliwal & Atal [15]:

¢ = 1 for 2=1,2,...,8 (2.41)
= .8 for =9 (2.42)
= 4 for i=10 (2.43)

The peaks of the spectral envelope correspond to formant frequencies which are consid-
erably more important for human speech intelligibility than the valleys of the spectral
envelope. Advantage can be taken of this physical characteristic of the human ear by
weighing the LSF’s near the formant frequencies more than the LSF’s in the spectral
valleys. As a result, the weights, w;, are varied from frame-to-frame depending on the

LPC power spectrum. The weighing w; is determined as
w; = [P(f) | (2.44)

1 T

= _ 2.45
11— 352 ajeri |2 (249)

The value of the exponent 7 is in the range of 0 < » < 1. A value of 0.25 is chosen.

2.8 Comparison of Distortion Measures

The most important question that arises from examining the many distortion measures

in the previous section is which measure is the most useful. The two main purposes of
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the distortion measure in this work are for evaluating the performance of speech coders
and selecting vectors from a codebook in vector quantization. In vector quantization,
the codebook consists of a set of LSF vectors. These LSF vectors represent the spectral
envelopes. The distortion measure is used to select a codevector whose spectral envelope
best perceptually matches the spectral envelope to be coded. Thus, it is crucial for the
distortion measure to correspond to the perceptual error between two spectral envelopes
as heard by the human ear. An important point when evaluating speech coders is that
not only is the average distortion critical but so is the error distribution. A large error
in one frame of data can ruin the sound quality of an entire sentence. Hence the amount
of large errors that occur must be monitored. Thus, just average distortion alone is not
adequate for evaluating the performance of speech coders. As mentioned earlier, 1dB
is often used as the boundary for transparent cdding quality when using the average
spectral distortion. In addition, the number of frames of speech that have distortions
between 2dB and 4dB must be strictly less than 2% and the number of frames of speech
that have distortion greater than 4dB must be equal to 0% [16]. Unfortunately, the
spectral distortion measure is hard to use directly during the design phase because of
the huge computation complexity entailed . Therefore, an approximation to the spectral
distortion measure is selected instead. The most common measure for codebook design
is the Weighted Euclidean distance measure with a weighting values motivated by speech

properties.
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Vector Quantization

3.1 Introduction

Vector Quantization (VQ) is a powerful source coding technique, commonly used in
audio and visual signal compression. Quantization implies a many-to-one mapping, and
VQ operates on k-dimensional input vectors. A quantizer may be viewed as a cascade
of an encoder and a decoder. The encoder identifies in which region of the source vector
space the input vector lies according to some criteria and assigns a binary index. The
decoder utilizes this index and generates the output reproduction vector drawn from a

look-up table or codebook.

Utiliiing vector quantization instead of scalar quantization can result in dramatic
performance improvements for a given level of distortion fidelity. This benefit of VQ
relative to scalar quantization was first explained in a classic paper on Information
Theory by Shannon. Lookabaugh et al. [32] describe three categories of VQ advantage,
namely the space filling advantage W.hich depends on the geometry of the partition cells,
the shape advantage which corresponds to the “shape” of the marginal density, and

the memory advantage which relies on intersample correlation. However, only the first

27
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advantage is source independent. Thus, it is desirable to quantize high dimensional
vectors at a given bit rate in order to fully exploit the statistical advantage for a given
source. Despite this gain in pe‘rforrnadnce7 the computational and storage complexity of
VQ, which grow exponentially with the product of the vector dimension and the bit rate,

presents a major barrier to exploiting the full power of this compression technique.

Several methods have been proposed to circumvent this complexity obstacle. One
approach, using a fast search algorithm [3], [4] ,[5], involves an intensive one- time pre-
computation which results in an efficient non-uniform tree-structure. This non-uniform
structure enables the search process to eliminate a large number of codewords in each
search step. However, this approach often trades an increase in storage complexity for a
decrease in arithmetic search complexity. Another approach is to put restrictions on the
structure of the codebook. Structured quantizers can surmount both the exponential
memory complexity and search complexity, and yet they never achieve the same low
distortion as full search of the best unstructured VQ codebook. On the other hand,
for a given complexity, a well-designed structured VQ can outperform the unstructured
counterpart. The crucial justification for a structured VQ depends on its performance-
complexity tradeoffs. There are two basic types of complexity, codebook storage com-
plexity and encoding complexity. By varying these two complexity-performance trade-
offs, different structured VQ can be achieved. The purpose of this chapter is to review
a family of structured VQ, called summation product code VQ [6] with a synthesis
function £ = y; + ... + yp where y;,72 = 1,..., P are residual codevectors and P is the
number of stages. That is, the reproduced output vector can be synthesized by summing
P residual codevectors. Various well known structured VQ family such as multi-stage

VQ, tree-structured VQ, and split VQ [7] all belong to this group.



Chapter 3. Vector Quantization 29

Y
X = O = X=Q(X)

Figure 3.1: Additive noise model of a quantizer

3.2 Scalar Quantization

Before studying quantization in higher dimensions, an understanding of one-dimensional
scalar quantizer is essential. An L-level one-dimensional quantizer, ), consists of L + 1
decision levels A = [ag, a1, as, . .. ,ar] and a corresponding output set Y = [y1,¥s,...,yL].
The a; specify a set of partition intervals where the quantizer output is y; when an input
sample z falls within the interval S; : [a;—1 < z < @] as in Fig(3.2). The collection of
partition intervals forms the partition S = [51,55,...,5.]. The value of y; is usually
chosen to lie within the interval S;. The end levels ag and ay, are generally chosen to be

the smallest and largest values the input samples may obtain.

The quantization process can be modelled as in Fig(3.1). A random error or
noise component o = @(z) — =, dependent upon the amplitude of the input signal z,
is added during quantization to form the output signal. The quantization noise can be
categorized into two forms. The first noise form, granular noise, is bounded in magnitude
and occurs when the input sample lies within the finite region defined by decision levels
a, < = < ag-1. The amplitude of the noise signal is restricted by the size of the interval
the input signal lies within. The second noise form, overload noise, occurs when the

signal lies in one of the end regions and is unbounded in amplitude.
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Figure 3.2: A scalar quantizer

One of the most common distortion measures is the mean square error
L s ,
D= [" (e—v, f(e)da (3.1)
7=1 aj—

where f(z) is the probability density function of z.

For a large L, each interval S; can be made quite small with the exception of the
overload regions. It is reasonable to approximate the probability density function f(z)
as being constant in S; so that the probability p(z) ~ p(y;) and letting p(z) ~ 0 for the
overload regions. Bennett [7] shows that if the number of output levels is large with the
output levels lying close to the midpoints of the corresponding quantization intervals,
and if successive input samples are only moderately correlated, then the quantization
noise is approximately white. Bennett also used a companding model for non-uniform

quantization and approximated the scalar distortion by

11 o) |
b= 12L2/J:§(m)2dw’ (32)
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where E'(z) is the slope of the compressor curve. This equation assumed that the
overload decision levels ag and ay, are chosen so that overload noise is negligible compared

to the granular noise.

In general, necessary conditions for the optimality of the quantizer follow from

the minimization of Eq(3.1)

6D
— =0for 7=1,2,...,L -1 3.3
by, | @3
8D
— = 0;f ) =0,1,2,...,L .
= Oifor =012, | (3.4)

The above equations indicate that the partition boundaries satisfy

go= YT Y o

=" 1<j<L-1 (3.5)
and the output y; satisfies
o zf(z)de
—1 .
yj = —o——— for 1<j< L. 3.6
Pl @ (29)

Thus, the optimal partition boundary lies in between each quantized output point. The

optimal output point, in return, located at the centroid of the interval.

3.3 Vector Quantization

The extension of scalar quantization to higher dimensions leads to vector quantization.
For a b bit, 2> = L level quantizer, an input vector z = (zo, ..., k1), where k is
the dimension of the vector, is assigned by the encoder a reproduction index i. Define
cell S; = {z : E(z) = 1}, where E() is the encoder mapping of the quantizer. The
set S = [S;;2=1,...,L] forms partition with L regions. The index ¢ is used to look
up a reproduction codebook Y = [yi;i =1,...,L], to generate a reproduction output
y; = D(1), where D() corresponds to the decoder mapping of the quantizer. The optimal

partition region S; is determined by minimizing the distortion measure d(z,y). For any
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Figure 3.3: A Voronoi partition

vector quantizer, with a fixed decoder, the encoder partition that minimizes the squared

error distortion satisfies
o ~y5l|* < llz —wll®,5 #4 forall jicL (3.7)

This equation generate a Voronoi partition of R*. An input vector may fall onto the
boundary of the regions, that is, there is more than one codevector at the same minimum
distance from the input vector z. In this case, a tie breaking rule is used to assigned the

input vector to an arbitrary codevector.

For a given partition, the codebook that minimizes the mean square error distor-

tion satisfies
y; = E[z|z € 5] (3.8)

Since Eq(3.7) generates a Voronoi partition, illustrated in Fig(3.3), whose regions are

strictly convex, and y; is always inside S;.

Asymptotic quantization theory, an extension of the classic Bennett integral

Eq(3.2) to vector quantizers, shows quantitatively how the mean-squared error of a
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many point VQ depends on the distribution of the output points and the shapes of
the partition cells. At high bit rates, the best quantizer will have cells that approxi-
mate the optimal polytope Q that can tessellate R* and has the least moment of inertia
among all other possible tessellating polytopes. For example, triangles, quadrilaterals,
and hexagons are all admissible tessellations for ¥ = 2, but hexagons are the optimal
polytopes in two dimension. In addition, at high resolution, the codewords are at the

centers of the hexagons.

3.3.1 Quantization distortion

Since the cells S; in VQ can be approximated by suitably rotated , translated and scaled
optimal polytope @, the expected mean squared distortion D is
L

D = L7"/*C(k) > P)V(S) PYCS) I (3.9)
where A(y;) is the point density of the VQ which is inversely proportional to the volume
of the cells in the vicinity of y;. C(k) is the coefficient of quantization for squared error
distortion, and p(z) is the probability density function of the source vector z. Gersho
conjectured that the coefficient of quantization is determined by the moment of inertia

of the cell shape as

Ll
C(k) = kqegkfp T (3.10)

where 7 is the centroid and V(@) is the k-dimensional volume of ¢. For a uniformly
distributed random variable, C'(k) may be thought of as the mean distortion of the
normalized polytope for a squared error distortion measure. Assuming the point density
A(z) is

A(z) = cp(a)F/*+? (3.11)

where ¢ is chosen to make A(z) integrate to one. Then the distortion becomes

D(L; k) = C()L™ () lu/ero (3.12)
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where (|p(2)||k/k+2 1s defined as

]I-I—Z/k

I(@)lyssz = | [ pla)+2da (3.13)

This is the well-know Zador-Gersho [24] formula which gives the least distortion of any k-
dimensional quantizer for high bit rates. Eq(3.9) is essentially an extension of Bennett’s

one-dimensional formula to &£ dimensions.

3.3.2 Vector quantization advantages

By comparing the distortion of the vector quantizer with that of the scalar quantizer
using a squared error criterion, Lookabaugh and Gray [32] expressed vector quantization

gain as the distortion ratio

A(k) = —gg’ ,3 (3.14)
By substituting Eq(3.12) into Eq(3.14)

C(k) [lp*(@)llkscrs2) lIP(2) ks a2y
where p(z) is the marginal density. Define

p*(z) = ]jﬁ(:z:z) (3.16)

as the distribution that would result if the vector coordinates z; were in fact independent.

The gain were then decomposed into three components.

The first component: space filling advantage defined by

F(k) = g—&% (3.17)

depends only on the coefficient of quantization which, in turn, relies on the moment of

inertia of the polytope Q.

A classic isoperimetric result states that every convex polytope has a greater

moment of inertia with respect to its centroid than a k-dimensional sphere with the
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same volume. This leads to a lower bound on C(k) and an upper bound on F(k). Under
this spherical upper bound assumption, as the dimension k approaches oo, the ratio
F (k) approaches a value of (2re)™'. This value coincides with the other bounds such
as Conway and Sloane’s conjectured upper bound, lattice lower bound and the Zador’s

lower bound. Thus, the maximum contribution by the space filling advantage is 1.43dB.

The second advantage of vector quantizer over scalar quantizer is called “shape
advantage”, defined as

1@y - |
S0 = T @) wrerm (318)

This advantage only considers the shape of the marginal probability density function.
The vector quantizer has different performance for a different probability density func-
tion. For example, the maximum shape gain for square error distortion and Gaussian

source with infinite dimension is 2.81dB, while the gain for Laplacian source is 5.63dB.

The last component of VQ advantage is called “memory advantage”. It captures
the non-linear characteristic of the source distribution. The ratio is defined as
M(p) = @y (3.19)
1P(2) e/ (k+2) -
The value M (k) depends on the correlation factor. If the vector components are totally
independent and identically distributed, the ratio M(k) is unity. The more dependent
the components of the vector, the larger is the value M(k).

In unstructured VQ, each source vector z of dimension k is to be encoded with
a single codebook. This codebook consists of L = 2° codewords, where b = kr, and r
is the number of bits per vector dimension. This quantizer encodes the source vector
in such a way that minimizes the total distortion d(z, ), by searching through the L
codewords. Thus both the encoding complexity and codebook storage complexity is
equal to L which grows exponentially with the bit rate. To reduce the encoding and
‘the storage complexity, we introduce a family of structured quantization schemes in the

following sections.
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3.4 Summation Product Code

A summation product code VQ reduces the storage and encoding complexity associated
with unstructured VQ by allocating the & bit to P-stage of feature codebooks. The
term ”product code” implies a structure of several component vectors, each derived
from a separate codebook, with their Cartesian products jointly representing the source
vector. The storage cost of a b-bit product code is lower than the storage cost of a b-bit

unstructured codebook.

While the storage cost is reduced through the use of a product code, computa-
tion cost is reduced only by using certain assumptions and approximations. .Normally,
the encoding technique used By the product code can be based on either sequential or
joint search. Joint-search product code has the same computational cost as unstruc-
tured VQ and incurs a distortion that may be only slightly worse than unstructured
VQ. Joint-search involves searching over the entire equivalent product codebook (every
possible combination of the P feature codebooks) to find a reproduction to minimize
the overall distortion measure. Aé a result, a joint-search induces the smallest distortion
error among all product code search techniques at the expense of high computational
complexity. Other techniques can drastically reduce this computational complexity but

at the cost of increasing distortion.

In sequential quantization, one of the component vectors is quantized first, then
the quantized value of that vector is used in the quantization of a second component
vector, and so on. The “gain-shape” product code is an example where the best product
code vector can be obtained by quantizing the “shape” first, then using the quantized
“shape” vector to quantize the gain such that the overall distortion is minimized. In

practice, sequential quantization is suboptimal solution to reduce computations.
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<)

Figure 3.4: Summation product code

3.4.1 Formulation

In a summation product code all feature vectors are summed up to generate the repro-
duction (Fig(3.4)). Let = be a source vector of dimension k. A P-stage SPC quantizer
consists of a finite sequence of P quantizers Q*;1 < 7 < P, which is ordered such that
Q' quantizes the source vector z and @*,2 < 7 < P quantizes the residual vector from
stage ¢+ — 1. The SPC structure divides b bits among P stages of codebooks, such that
P, b = b, with b; be the number of bits allocated to stage 7. The sizes of the stage fea-
ture codebooks are L; = 2%,4 = 1,... P. In each stage %, there are M; feature codebooks,
C; ;;, each comprising 2% codevectors. Thus, it is necessary to index the codevectors as
Ys,5:.pi, Where 1 <4 < P, indexes the stages, 1 < j; < M; , is associated with the address
of the codebook in stage 7, and 1 < &; < 2% corresponds to the index of the codevector
. Moreover, associated with each codeword y; j; ;, is a pointer y; j, ., = m;. The pointer

Wi j; k; determines which codebook is to be used in the (¢ 4+ 1) — th stage. The mapping
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Q' applied to the input z yields an output codeword which minimizes the distortion
Az, y110) < d2,Y11,4),P1 F# 1, where py,q1 = 1,2,...2%, Taking the difference of
z and ¥y, produces an error vector e; = & — y1,1,, as an input to the second stage
quantizer Q2. In general, @° maps the error vector e;,_; to an output residual vector
Yiui,p; @0d an error vector e; = €i-1 — Yipi_y,p:- Lhe reproduction vector is formed by

adding all the P-stage residual vectors

P
&= Zyi:ﬂi—l,Pi (3.20)
=1

3.4.2 Storage complexity-distortion tradeoff

In general, the memory storage complexity of the summation product code structure is
of the order of Zf:l M;2%E . The degree of fanout M;, or the number of codebooks in
each stage, is no more than the number of codewords stored in the codebooks of the
previous stage, that is, 2%-1 M;_;. The computation complexity for a sequential search

is of the order of 337, 2% which is independent of the degree of fanout.

By varying the storage complexity and/or independently the encoding search
complexity of the summation product code, different performance-complexity tradeoffs
can be achieved. There are generally three ways to vary the storage complexity. The
first one is to vary the degree of codebook sharing or the codebook fanout in each
stage. Specific examples of fanout variation are tree-structured VQ and multistage VQ,
with respectively maximum and unity fanout. A second way is to simply vary the bit
allocation among the stages. A third way is to vary the number of vector components
in each stage as in split VQ. Split VQ is equivalent to summing codevectors of the
same dimension but each having non-zero components in a mutually exclusive interval

of component locations.

Tree structured codebooks
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Figure 3.6: Binary tree structured vector quantizer

Tree structured VQ (TSVQ) is formed (Fig(3.5)), when every summaﬁon product code-
vector branches out to a new succeeding codebook,. In other words, each codevector
except the leaf codevectors of TSVQ), has a unique descendant codebook and no code-
book is shared. TSVQ can be considered as a fast search approach which reduces the
encoding complexity at the expense of using much more memory and incurring lower
SNR performance than would be obtained with an optimal unstructured codebook. In
each intermediate step in a conventional TSVQ codebook search, a decision is made to
determine which branch to be taken for the next step. As a result, a large part of storage
the codebook can be regarded as guiding for the search. For an M-ary balanced tree-
structure quantizer, the input vector is compared with M pre-designed codevectors at
each stage. The nearest neighbour code vector determines which one of the m paths to
take in order to reach the next stage. The computational complexity of tree-structured
VQ increases only linearly with the number of tree level. On the other hand, the memory

required is twice the memory needed for standard unstructured VQ.

Most of the time, binary tree-searched VQ is used for its simplicity. It partitions
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the space in such a way that the search complexity proportional to log, L rather than
L where L is the number of reproduction vectors. Specifically, for binary TSVQ, the
k-dimensional source vector space is first divided into two regions, then each of the two
regions is divided further into two subregions, and so on, until the space is divided into
L regions or cells. Here, L is restricted to be a power of 2, L = 2B where R = kr is an
integral number of bits. Associated with each region is its centroid. At the first level,
there exists only two centroids, V; and V,. At the second level, there are four regions
with centroids V3 through Vs. The number of centroids increases exponentially with the
level. And at the last level, the L codevectors y;,7 = 1,... L are stored. An input vector
= is quantize by traversing (searching) the tree along a path that gives the minimum
distortion at each node as shown in Fig(3.6). Thus the distortion between z, V; and
Vj11 is compared. If d(z,V;) < d(z, Vj;1), for instance, then the path leading to Vj is
taken. Clearly, the total number of distortion computations is equal to 2log, L. The
storage cost, however, has increased due to the additional storage of the intermediate
codevectors. Besides the storage obstacle, the traditional design of binary tree faces
another obstacle: empty cells. During codebook design, as the tree is grown and the
training set partitioned into smaller subsets, there is a high probability that no training
vector will fall into some cells. This prevents the maintenance of a balanced tree. As a
result, TSVQ is used with limited number of levels or limited number of bits. Normally

the number of levels range up to around 12.

Multistage VQ (MSVQ)

As discussed in the previous section, the advantage of binary TSVQ is the substantial
decrease in computation cost relative to full search, at the price of relatively small
increase in distortion. However, the storage cost is doubled relative to unstructured
VQ. A multistage VQ is a unity-fanout summation product code where only a single

codebook is stored in each stage. MSVQ reduces storage as well as computation cost.
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Figure 3.7: Multistage vector quantizer

In tree-search VQ, one is trying to find the desired codevector by searching fhe space
in a systematic manner; at each step, one gets closer and closer to the desired code
vector. The role played by the intermediate vectors V as in Fig(3.6) is .simply to guide
the search; the desired code vector is found at the end of the search. Multi-stage VQ,
on the other hand, sums up all the residual codevectors from the stages and forms the
output codevector. The difference between MSVQ and TSVQ is that TSVQ stores at
each stage intermediate reproductions where as MSVQ stores at each stage differences

between the intermediate reproductions from two successive stages.

In multistage VQ, the encoding task is divided over multiple stages, where the
first stage performs a relatively crude quantization of the input vector using a small
codebook. Then a second stage quantizer operates on the error vector between the
original and qﬁa.ntized first stage output. The quantized error vector then provides a

second approximation to the original input vector thereby leading to a refined or more
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accurate representation of the input. A third stage quantizer is then used to quantized

the second stage error vector to provide a further refinement and so on.

In multistage VQ, as shown in the Fig(3.7), The input vector z is first quantized
using a b; bit vector quantizer. The first stage residual error e; is formed by taking the
difference between the original vector « and the quantized vectors y;. The residual error
is then used as an input to a by bit VQ stage whose output is y,. The process can be
repeated by feeding the second stage error e, into a third stage vector quantizer, and
so on. For a P-stage MSVQ), the final quantized value of z is simply the sum of the P

quantized residual vectors y; ...yp

Q@) =2=2 u. (3.21)

The performance of multistage VQ tends to deteriorate as more stages are used, due to
greater structural constraints on the equivalent product codebook. On the other hand,
a major appeal of MSVQ is its provision for decreasing both the storage and encoding

complexity by increasing the number of stages. The computational and storage costs for

a P-stage MSVQ are simply 5, 2%.

Constrained storage VQ

It is well known that MSVQ does not perform as well as TSVQ. In order to see why
MSVQ gives larger distortion than TSVQ with the same dimension and rate, note that
in the training process for multistage VQ, after the first stage, the errors from different
partition cells are pooled together to form the training data for designing the second
quantizer. If all the cells in the first stage have the same size, shape, and orientation,
and if the probability density function is approximately flat on each cell, then pooling

of errors from different cells is justified. However, generally this is not the case.

According to asymptotic quantization theory, it can be argued that when the first
stage of an MSVQ is operating in a high-rate region, the probability distributions of the
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conditional residual sources in the second stage are all similar in shape but different from
each other by rotation and scaling of the suppbrt regions. As a result, there are some
similarity between the residual sources. With this assumption, a constrained storage
VQ algorithm was introduced [35] to exploit the similarities between the conditional
residual sources, by assigning a small number of codebooks to be shared amongst the
sources. By clustering together sources with similar statistics, one could reduce the
storage requirement of TSVQ while suffering only a marginal performance degradation.

CSVQ provides a bridge between the full fanout of TSVQ and the unity fanout of MSVQ.

However, to directly measure the statistical similarity between sources is difficult,
especially, when the source distributions are known only from training data. Another
approach is to directly design a set of M codebooks that optimize an overall performance

objective without an explicit measure of similarity.

Let z be a k-dimensions source. Suppose that there are M codebooks in each
stage, and the first stage has only a single codebook. The first stage quantizer Qo
produces a set of 2 residual sources. Let’s represent each of such sources by a k

dimensional random vector Z;,1 = 1...2%. Let, the overall distortion objective for

CSVQ be

2b1

D=Ypk (d(Z:, Quis(Z:)] (3.22)

where u(i) € {1,...,M, M < N} for N sources sharing M codebooks Ci,...,Cuy, and
N p; =1,p; > 0,Vi. Two necessary optimality conditions are provided in [6] as the

basis for an iterative design algorithm. Firstly, for each m, u(n) = m only if
Ed(Z;,Qm(Z:)) < Ed(Z;, Q;(%:)) (3.23)

Secondly, assuming that the pointer function u(.) is given, p(i) = m, then the codebook
Cr should be the optimal codebook for the pdf that is a weighted average of the pdf’s

of those random vectors that are to be quantized with codebook C,,
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Figure 3.9: Split vector quantizer

Split VQ

A simple way to reduce the search and storage complexity in coding a high dimensional
vector is to partition the vector into two or more subvectors. Thus an k-dimensional in-
put vector ¢ = (z1, 3, ..., o) can be partitioned into two vectors z, and z; of dimension

m and k — m respectively. For the squared error distortion measure,
e = &* = flza — y2)I* + flze — 2l® (3.24)

the encoder can simply find the nearest code vector to y; in codebook (; and inde-
pendently, the nearest codeword ¥, in the codebook C,. Furthermore, codebook design
involves deriving two separate training sets T, and Ty of m-dimensional and (k — m)-
dimensional vectors respectively, from the original training set T of k-dimensional vec-

tors, and separately designing a codebook for each training set.
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Entanglement
Problem

Figure 3.10: Voronoi partition of MSVQ with sequential search

3.4.3 Encoding complexity-distortion tradeoff

Besides the tradeoff between distortion and storage complexity, the encoding complexity
can also be traded with distortion by adjusting the number of survivors used in encoding.
The single-survivor search in conventional sequential search SPC induces a partition
which is highly suboptimal with respect to the equivalent product codebook. In general,
the partition is optimal only if an exhaustive search is performed over the product
codebook. A sequential search SPC replaces the hyperplane boundaries making up the
optimal partition by another set of hyperplanes which are suboptimal with respect to
joint search SPC. The suboptimal partition is built hierarchically by partitioning the
confined region that is defined by the previous quantizer into a set of subregions as
shown in Fig(3.10). As a result, some of the the source vectors will not be assigned to
their nearest neighbour reproductions. Moreover, this sequential search of SPC VQ can
produce a serious inefficiency, the so-called entanglement problem (Fig(3.10)), i.e., some
of the equivalent codeword falling out of the regions boundary. The problem becomes

more acute as more stages are introduced. Keeping multiple survivors or using the M-
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Figure 3.11: Voronoi partition of MSVQ with 2-survivor search

algorithm [2] is equivalent to making a delayed decision on choosing the regions the input
vector falls. The survivors define a neighbourhood in which finer hyperplane partitioning
is induced when the descendants of the survivors are compared. As more survivors are
kept (Fig(3.11)), the partition in the neighbourhood can be a better approximation of
the optimal exhaustive-search partition. It is quite conceivable that only a relatively
small number of survivors are required, since only a small neighbourhood is needed to
approach the quality of the optimal partition; this is so because each partition cell is

neighbour to only a small subset of all the cells.

To conduct a multiple survivor search for the P-stage SPC, the input vector is
encoded with the first stage quantizer which produces 2% distortion values. The indexes
of the N; codevectors which give the N; least distortion values are retained in a set
of indexes G;. If there are two identical distortion values, a tie-breaking rule is used
to decide Which codevector to use. Each of the N; residual vectors will be encoded
with the second stage quantizer. A total of N;2%2 distortion values are generated. Then

the N, codevectors associated with the N, least distortion values are kept as survivors
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to form the index set G,. The remaining encoding process is the same until it gets
to the final stage where there is only one survivor corresponding to the least of the
Np_,2°7 distortion values. Summing up the last-stage residual codevector together with

the ancestor stage codevectors on its survivor path synthesize the reproduction .

In terms of total number of distortion computations, the encoding complexity is
*_; N;—12% where Ny = 1. In most applications, the number of survivors for each stage
is the same, that is N; = NVi, so that the complexity becomes N 337_, 2% 4 2%, When
M =1, this reduces to the encoding complexity of a strict sequential search product

code. Normally, by keeping a small number of survivors, a substantial drop in distortion

1s achieved.

Since N7, 2% < TI,_,2% = 2° for small N, SPCs can achieve a low and
tractable encoding complexity and a comparatively low distortion level. When the max-
imum number of survivors is allowed to keep from stage to stage, sequential search

attains its best possible performance.



Chapter 4

Joint Codebook Design For
Summation Product Codes (SPCs)

The codebook design algorithm often impacts the performance of a quantizer. Tradi-
tionally, SPC quantizers are designed using the generalized Lloyd algorithm (GLA) [13].
The stage codebooks are populated sequentially to minimize the average squared error
distortion at each stage. This method does not optimize the SPC as a whole. Joint-
codebook design, on the other hand, implies designing/optimizing the stage codebooks
as a whole to minimize the overall average distortion. In this chapter, a joint design
algorithm will be elaborated. Application of the joint design method to MSVQ will also
be presented.

4.1 Greedy Design Using GLA

The generalized Lloyd’s algorithm was first employed for designing unstructured VQ
codebooks. The GLA is based on the nearest neighbour and centroid optimality condi-
tions, specified in Eq(3.7) and Eq(3.8), to iteratively improve the codebook. The equa-

50
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tions Eq(3.7) and Eq(3.8) apply only to a known source distribution. However, most
practical sources do not have known distributions. This difficulty may be circumvented
by using a long training sequence of data. The training sequence, [z;;7=1,...,N],

where N is the number of training vectors, may be used to form the time-averaged

distortion D, defined as
1 ¥ .
D= N > d(@i, £:). (4.1)
=1
where Z; is the quantized vector. This approximates the expected distortion E [d(;, Z;)]

with respect to the training sequence, provided the number of training vectors is large.

The generalized Lloyd algorithm for designing a codebook based on a set of

training vectors can then be described as follows.
1) The initialization step involves finding an initial codebook.

2) Given a set of training vectors, assign each of the vectors to the codevector
which minimizes the distortion measure. Each of the codevectors is then replaced by
the average of the training vectors currently assigned to it. If the change in average
distortion between one iteration and the next is small enough, then the codebook is

considered to be determined.

The execution time of this algorithm is variable because the required number of
iterations cannot be predicted ahead of time. Experience indicates that execution time
grows quickly as the training set gets larger, as the number of code words increases,
and as the vector dimension increases. In this algorithm, by far the most complicated
task is to come up with an acceptable initial codebook. A splitting algorithm is used
for codebook initialization. This splitting algorithm utilizes a binary tree initialization
which generates a large codebook from a small one. For a training sequence X =
[zo, Z1,...,zn] where N equals the number of training vector, the splitting algorithm
starts by taking the centroid yo of the entire sequence and then splitting it into two

codewords o + 0,90 — ¢. One choice of o is to make it proportional to the eigenvector
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corresponding to the largest eigenvalue of the covariance matrix of the training set.
Each of these two codewords can split again in exactly the same manner. The process
continues until it produces the required codebook size. Since the GLA can only design
one codebook at a time, SPC quantizers the GLA has been applied to, treat each of the
stage codebooks as a single codebook. The residuals generated in each stage are pooled
together to form the training source for the succeeding stage. Thus, each codebook
is trained independently and sequentially by using the residuals generated from the
previous stage. As a result, the codebook generated in each stage is not optimal with
respect to the overall distortion measure. we term the GLA algorithm as a greedy design

method since it finds each stage codebook as if there were only one stage.

4.2 Joint Codebook Design Algorithm

The goal of joint codebook design for SPC quantizers is to design all the stage code-
books simultaneously so that they are optimal for a given overall distortion criterion.
Suppose a vector source X of dimension k is to be encoded at a rate of r bits per vector
component. Each of the 25" encoder partition regions for unstructured VQ corresponds
to one codevector, hence a one-to-one correspondence between the encoder partition
regions and the codevectors. On the other hand, every SPC has an equivalent prod-
uct codebook. From a SPC with P stages of codebooks Cy,C,,...Cp with codebook
sizes Ly, Ly, ..., Lp respectively, the equivalent product codebook Cs with codebook

size Lg = [I5_, L; can be produced by summing up the codevectors orderly. That is

CS = O1U02U...Cp
= Ya+ty1+...+yp1
Y11+ Y21+ ...+ Ypo (4.2)

yl,Ll + '!/2,L2 + .. 'yP,Lp'
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th th

where y; ; represents the j** codevector in the i*" codebook. Corresponding to this,
product codebook is a nearest-neighbour partition that minimizes the overall distortion
and is the best the SPC encoder can use. Unfortunately, the encoding complexity is

equal to that of an exhaustive search unstructured VQ.

For a conventional sequential search encoder, which makes a nearest neighbour
encoding decision at each stage, an equivalent partition with 2% regions is induced.
Sequential search only induces a suboptimal partition. However, this suboptimality can
be improved by increasing the number of survivors maintained in the search. Given any
partition, optimal or not, a “reference product codebook ” can be formed by taking the
centroid of each of the partition regions. If the SPC stage codebooks can be made to
have an equivalent product codebook that approximates this reference codebook, then
the stage codebooks can be improved. Based on this ideé, a joint\ codebook design

method was developed [34].

4.2.1 A necessary condition for optimal encoding

Assume that the decoder is fixed. The encoder partition that minimizes distortion is

the nearest-neighbour partition with 2% partition regions. The partition regions are
g g p g

denoted S;,7 =1,...,2.

Let X be an k-dimensional random vector source. A P-stage SPC quantizer
consists of a sequence of P stage quantizers Q% 1 < i < P. Inside the stage s quantizer,
there are M, codebooks. And within each of the M, codebooks, there are L; = 25
codevectors, where Y7, b; = kr. The address of the codebook to be used in stage s is
determined by a codebook pointer fim, , (wherem € {1,... M,_1}andn € {1,..., L,_1})
associated with the previous stage codevector. The overall distortion of a SPC quantizer

using the mean squared distortion criterion is

D = E|IX — QXe:) - @(e2)) — ... — Q% (ep)|1? (4.3)
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where e, = €,-1 — @* *(e,-1),s = 2,...P — 1, is the residual vector generated by the

stage s — 1 quantizer and e; = X. The necessary condition for this encoder at stage s is

d(es, yx) <= d(es,y;) (4.4)

where yx,y; k,7 = 1,..., L, and k # j, are the codevectors in one of the M, codebooks.
The address is provided by the codebook pointer pm » associated with the previous stage

codevector.

4.2.2 A necessary condition for optimal decoding

Assume the encoder is fixed. Regardless of the degree of fanout, bit allocations and
number of survivors maintained during encoding, there will be 2* partition regions
S;,;i=1,...,2% and 2F" equivalent reference codevectors ¢;,i = 1,...,2%". These refer-
ence codevectors are simply the centroids of the 25" regions. Let X be an n-dimensional
random vector source. The reference codevectors will be equal to ¢; = E[X|X € S%].

And the overall distortion of Eq(4.3) can be rewritten as
gkr
D=YpE[|X-i+c-al’s] (4.5)
1=1 .
where p; is the probability of the region S; and z is the decoder reproduction for that

region. Expanding this quadratic to

D = ijz-E [1X — il X € S42] + ZpiE [lle: — 21X € Si?] (4.6)
+§3piE [(X — CilX € Si)T(Ci - :f:‘X S Sz)] (47)

The last term is equal to zero since ¢; = E[X|X € S;] . Therefore the overall distortion
is equal to

D = Dpin + Dey (4.8)
where Dpnin = S5 piB (| X — cilX € Sil?) and Do = T piE [lle; — 31X € Sif|?)-
Thus, for a given encoder, the optimal decoder should use equivalent product code

vectors that minimized the excess distortion.
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4.2.3 Joint codebook design algorithm for MSVQ

As an illustration of how the joint design algorithm operates, a two stage MSVQ
with unity fanout is used. A two stage MSVQ, with the size of the first and sec-
ond stage codebook equals to L; = 2% and L, = 2% respectively, have a total of
Ly + Ly codevectors, where by + b, = kr. In addition, there are 2*" equivalent prod-
uct codevectors ¢;;,2 = 1,...,L1,7 = 1,...,L, and 2 encoding partition regions
Sijyi=1,...,L1,7=1,...,Ly. Let Y = {y1,¥2,...,YyL, } be the first stage codevectors
and Z = {z1,2s,...,21,} be the second stage codevectors. The overall MSE distortion

can then be written as

D = Yt X2 E (| X — yi — 25]2|55]
= Yt S22 v B || X — cij + hijl|?[Sig]
Ly Ly Ly Ly
= 3 piE [|X = il?1S5] + 30 Y pisE [[1hs]*1S:)
3'=1 =1 le j=1 ) (4_9)
Drmin Dea
Ly Ly T
+23° 3 piE [(X — i) hij| Sii]
=1 j=1

~ /

=0
where p;; is the probability of cell S;j, hij = ¢;j — y; — 2; is the difference between the
reference codevector and the reproduction synthesized from the stage vectors y; and z;.
Since MSE is a per dimension distortion measure, the excess distortion can be summed

over all the dimension of the error vector ez;;.

k Ly Ly

Dew =323 i [|less|*1Si) (4.10)

=1 1=1 j=1
Obviously each dimension can be optimized independently. The scalar representation of

the excess distortion of Eq(4.10) for one dimension becomes

Ly Ly

Dex =33 pislei —yi — 2)° (4.11)
=1 j5=1

We aim to minimize the excess distortion between the reference and the equivalent prod-

uct codebook. By letting the vector v be the L+ L codevectors v = [yi,...,Yr,, 21, . - .7, sz]T,
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and vector b be the 2% reference codevector b = [c11, €12, -, €115, €21y - - - cLle]T, Q@ be

an (Ly + Ly)x2*" structured matrix with the square root probability g;; = (pi;)'/? in the

diagonal, and A be an (L; + L3)x2* structure matrix

v 0 ... 0 I
0 « ... 0 I
A= 0 0 w ... [
0 0 u I

Eq(4.11) can be rewritten as

De(l) = [|Q(Av — B)|”

(4.12)

(4.13)

The u and 0 are L;-dimensional column vectors of 1’s and 0’s respectively, and [ is an

L; x L, identity matrix. Therefore, by differentiating D, and set it equal to zero, a

solution to the minimization is formed.

(QA)'QAv = (QA)Qb (4.14)
This can be reduced to
Bv=d (4.15)
where
L L T
d=| Y2 pyei; o Y521 PrLijCr Yorks Pici Y Pir, G, (4.16)
Ef; pi; O co P11 PiL, W
0 - 0 . .
B = 0 T Z]Lil Pr,; Pr;1 PL.L, (417)
P11 e Prq1 Zfil pa O '
: 0 0
pL, - PL, 0 Y piL, |
By solving this matrix equation, the first and second stage codevectors [ Y1 Y2 - YL ]

and | z; 2z, --- 2z, | can be determined.
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4.2.4 The joint design framework

The algorithm for SPCs follows:

1) The initial codebooks are obtained using the conventional GLA. In addition,
the pointer function pim, » is obtained using the CSVQ algorithm and the counter a is set

to 1.
Z)Encoder:

Find for each vector z;,t =1, -+, N in the training set the corresponding parti-
tion S; using the nearest neighbour condition. This encoding process may use a sequen-
tial search, possibly with multiple survivors, to approximate the exact nearest neighbour

condition.

3)Let the distortion measure d = % SN e — 4||%, where &; is the reproduced
vector. If the quotient ||d* — d**?||/d® is less than a predetermined small positive thresh-

old § or if a has reached a predetermined upper limit, the algorithm terminates.
4)Decoder:

By minimizing the excess distortion defined in Eq(4.8), and solving the matrix

equation as in Eq(4.15). The new codevectors for all the stages can be obtained.

Increment a by 1 and Goto step 2.



Chapter 5

Simulation and Results

We design quantizers to achieve transparent coding of speech LPC parameters. Trans-
parent quantization means no audible distortion. The reconstructed speech using the
unquantized LPC parameters should be perceptually indistinguishable from the version
obtained by using the quantized parameters. An average of spectral distortion 1dB has
been traditionally considered to be the threshold for transparent quantization. How-
ever, outliers corresponding to speech frames with spectral distortion greater than 1dB,
can severely degrade the perceptual quality of the coded speech, even if average spec-
tral distortion is below 1dB. An additional requirement along with the average spectral
distortion will therefore be the minimization of the number of outliers. The formal

characterization of “transparent quantization” is [16]:
(a) average spectral distortion of about 1dB,
(b) no outlier frames with spectral distortion larger than 4dB,

(c) less than 2% of the number of frames with spectral distortion in the range

2-4dB.

For scalar quantization of LSF parameters [11], it was found that 32 to 40 bits
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per frame were needed to achieve transparent quantization. This rate is too high for low
bit rate transmission. The alternative for bit rate reduction is vector quantization(VQ).
The average spectral distortion of a 10 bit/frame unstructured VQ scheme is about
3.3dBJ[12], clearly insufficient for high quality speech coding. Using more bits implies a
larger codebook. A larger set of training data is also required which will then increase the
complexity of the training process, notwithstanding the prohibitively expensive storage
and computational requirement in coding the parameters. Transparent quantization has
to be obtained using suboptimal structured VQ schemes. The performance of a struc-
tured VQ depends on its storage complexity, encoding complexity, the design algorithm,
etc.. Since any good design algorithm will only affect the computational complexity
during the design phase and will not change the encoding and storage complexity of the
VQ structure, any improvement by the design algorithm will be a free gain. Thus, the
first part of this chapter is a comparative study of the conventional GLA versus joint
design of SPC for first order Gaussian Markov source. This is followed by a section
examining a novel SPC quantizer, namely the predictive split VQ designed using both

the GLA and joint design codebook algorithm.

5.1 The Performance of Summation Product Codes

Using A Joint Design Algorithm

The Joint design Algorithm, discussed in the previous chapter, updates the 2-stage
MSVQ codebooks by solving a matrix equa,tioﬁ (4.15). The elements of the matrix A are
the probability values p;;. With the property that the sum of all the probability values
pij is always 1, the matrix A is rank deficient. Thus, the matrix equation can be solved
only if one or more of the unknowns is fixed. Our first approach to solving the equation
is an iterative procedure. Let M be the total number of codevectors to be updated and

L = 2 be the size of the reference product codebook. First, set N of the M unknown
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NO. of variables | The indexes Joint Lloyld’s
kept constant | kept constant | Design(SNR dB) | Method

2 1,2 14.25 13.38

2 2,3 14.20 13.38

2 3.4 14.25 13.38

2 4,5 14.24 13.38

2 8,9 14.19 13.38

3 1-3 14.22 13.38

3 2-4 14.24 13.38

3 4-6 14.24 13.38

3 7-9 14.26 13.38

Table 5.1: Joint design vs GLA algorithm for 2-stage MSVQ. Number of bits/stage
equalt to 3. AR(1) Gauss-Markov with correlation factor=.95

vector v to their initial codebook values. The matrix now becomes full rank and the
remaining M — N codevectors can be solved using for example Gaussian Elimination.
In the next iteration, the N codevectors can be updated while the remaining M — N

codevectors fixed to their previous values.

Table (5.1) summarizes different arbitrary subsets. The result is based on a
number of training vectors of 25000, the dimension is 2, and the number of bits/dim
is 3. The first column of the table indicates the number of codevectors in the first
stage fixed. The second column indicates the index of the variables fixed during the
first iteration. Since the simulation is using a MSVQ quantizer, the indexing of the
codevector starts with the first stage codebook and then the second stage codebook.
The table compiles SNR results for joint design method and the GLA algorithm. It
should be noted that the results for the various choices of subsets are comparatively

close. As a result, one can conclude that any subset is likely to be equally effective.
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By restructuring the matrix A,

F rPl|luM c
= (5.1)
PT B|| N D

with F' and B are diagonal matrices, and M and N respectively contains the codevectors
of the first and second codebook. By dividing the matrix into blocks, two equations are

generated as follows
FM+PN=C —M=F"1'[C—-PN] (5.2)

PTM+BN=D — N=B"|D-P"M]| (5.3)

These two equations can be solved iteratively when one of the codebooks is fixed. This
method is related to the joint design method proposed in [35]. The rest of the simulation

results are based on solving the above matrix equation.

5.1.1 Variation on storage and encoding complexity

Since the quantizer design algorithm is an iterative procedure, design time is determined
partly by the number of iterations. The maximum number of iterations is chosen to be

15 in the subsequent simulations.

We tested the joint design algorithm on a simple MSVQ structure. At each step,
different complexity variations were tested. The search complexity, degree of fanout and
the number of stages were varied. The test were performed with a first order Gauss-

Markov source, with 25000 training vectors and 5000 test vectors.

Fig(5.1) shows the gain of the joint design over the GLA design for various cor-
relation values and number of survivors. The joint design gain over conventional stage-
by-stage design increases with source correlation. The design gain for an i.i.d Gaussian

source is very small. As the source becomes more correlated, the design gain increases.
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Joint Design Gain vs Correlation Factor
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Figure 5.1: Joint design gain vs Gauss-Makov correlation source; no. of stages=2;
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No. of || Correlation storage Joint design | Joint design

sur factor Complexity SNR gain

1 1 16 6.71dB 0.05dB

2 1 24 7.02dB 0.09dB

6 1 56 7.24dB 0.24dB

1 RY 16 12.47dB 0.12dB

2 9 24 12.70dB 0.24dB

4 9 40 12.72dB 0.25dB

6 9 56 12.73dB 0.28dB
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Table 5.2: SNR and the design gain of Joint-design algorithm vs number of survivors.

By increasing the number of survivors, the joint design algorithm can yield a
better performance even for an i.i.d Gaussian source. However, only a small number of
survivors are needed. Additional survivors increase the encoding complexity while more
or less the same SNR performance is obtained as seen in Table(5.2). For a fixed design
gain level, the number of survivors appears to be inversely related to the correlation fac-
tor. That is, the number of survivors required to achieve the best performance decreases

as correlation increases.

The next complexity factor varied was the number of stages. With conventional
GLA design the distortion tends to increase as the number of stages increases for the
same bit rate. However, it may be desirable to increase the number of stages so as to
lower the search and storage complexity of the quantizer. Fig(5.2) shows the joint design
gain versus the number of stages. It shows that joint design has a small but steady gain
over GLA design for an i.i.d Gaussian source as the number of stages increases. On the
other hand, the design gain increases rapidly for a high correlation factor. Moreover, in
Table(5.3), the joint design method narrows the SNR performance gap between the var-

ious configuration with different number of stages. For low correlation values, (Fig(5.2))
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1 Joint Design Gain vs Number of Stages
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Figure 5.2: Joint design gain vs number of stages GLA algorithm.

the joint design gain remains relatively constant as the number of stages increases. On
the other hand, for a high correlation factor, the joint design gain increases more or less

linearly as the number of stages increases.

With the number of stages increases for an iid. source, a better design gain can

be achieved by keeping multiple survivors (Fig(5.3)).
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. Number of Stages

NO. of || No. of | Correlation | Joint design | GLA Gain
bit/stage || stage factor Method Method
1 6 1 4.11dB 4.04dB | 0.07dB
2 3 1 4.20dB 4.18dB | 0.02dB
3 2 1 4.37dB | 4.36dB | 0.00dB
1 6 D 5.37dB 5.11dB | 0.25dB
2 3 D 5.40dB 5.21dB | 0.18dB
3 2 ) 5.45dB 5.38dB | 0.07dB
1 6 9 10.18dB 9.64dB | 0.54dB
2 3 9 10.38dB 10.17dB | 0.21dB
3 2 .9 10.62dB 10.54dB | 0.08dB

Table 5.3: Signal to noise ratio (dB) vs number of stages. Dimension =6.
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Joint Design Gain vs Degree of Fanout
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Figure 5.4: Joint design gain vs degree of fanout; i.1.d Gaussian.

Constrained storage VQ

For a 2-stage MSVQ structure with various degrees of fanout, the initial stage codebooks
and the pointer function were designed using the GLA algorithm [35]. Fig(5.4) and
Fig(5.5) show joint design gain versus degree of fanout. As the degree of fanout increases, -
the design gain decreases. Fig(5.6) and Fig(5.7) show SNR performance against the
number of survivors. For an 1.i.d. Gaussian source, with multiple survivor search,
the SNR performance of the joint design MSVQ with degree of fanout equal to 2 is
slightly better than the joint design MSVQ with unity fanout. Only for high correlated
source, the CSVQ has a higher SNR performance than MSVQ. Moreover, the joint design
MSVQ always outperform the modified GLA-design CSVQ (with fanout equal to two).
Table(5.4) is a simulation results of the design gain for different correlation factor and
number of survivors. The design gain increases as the number of survivors increases

and/or the correlation factor increases.
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Simulation and Results
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Figure 5.5: Joint design gain vs degree of fanout; Gaussain AR(1), correlation factor

=.9.
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SNR vs Number of Survivors
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Figure 5.6: Signal to noise ratio vs number of survivors; number of stages=2; dimension

of vectors =4; Gaussian AR(1), correlation factor=.9.
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Figure 5.7: Signal to noise ratio vs number of survivors; i.i.d. Gaussian source.
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Correlation || No. of | Encod | Joint design | Design
factor sur | Complex. | SNR(dB) gain
1 1 16 6.77 0.03dB
1 2 24 7.08 0.10dB
il 4 40 7.2 0.15dB
5 1 16 7.86 0.10dB
5 2 24 8.14 0.14dB
5 4 40 8.21 0.17dB
9 1 16 12.57 0.12dB
.9 2 24 12.76 0.18dB
9 4 40 12.83 0.25dB

Table 5.4: Design gain vs number of survivor and correlation factor. Dimension =4,

number of stages=2; number of bits/stage=3; degre of fanout =2.
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No. of || bit/ | Corr. | No. of Reference(SNR) | Gain

stage || stage | fact. | Nsur | SNR | N=1,M=1 | (dB)
6 1 1 2 | 6.12d4B 6.40dB (0.28)
3 2 4 | 6.06dB 6.27dB (0.21)
6 1| 5 2 | 6.47dB 6.87dB (0.40)
3 2 | 5 4 | 8.89dB 9.33dB (0.44)
6 N 2 |11.07dB|  11.92dB (0.85dB)
3 2 | .9 4 |13.34dB 14.08dB (0.74dB)
6 1 .95 2 13.35dB 13.89dB (0.53dB)
3 2 | 95 | 4 |1568dB| 16.51dB | (0.82dB)

Table 5.5: Multi-stage joint design using N survivors for design and M survivors for

actual testing, N > M; where M = 1, dimension =4.

Multiple survivor

Even though multiple-survivors help to increase joint-design gain, there is no advantage
in keeping more survivors during design phase than the number actually used in encod-
ing. It is not beneficial to a codebook for M-survivor encoding with N-survivors, where
N > M. In fact, the performance of the codebook deteriorates if more survivors are
used in design than encoding (Table(5.5)). We conclude that the number of survivors

for design and actual encoding should be the same.

5.2 Predictive Split VQ (PSVQ)

As pointed out in the previoué chapter, SVQ is related to MSVQ in that some compo-
nents of the feature vectors in MSVQ are constrained to zero. Hence, the performance

of SVQ is upper-bounded by that of MSVQ. Between MSVQ and SVQ, we formed a
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Figure 5.8: Predictive split vector quantizer

71



Chapter 5. Simulation and Results 72

hybrid structured VQ, namely PSVQ.

Let X be a source of vector dimensions k. Suppose that there are only two stages
of PSVQ. The first stage of PSVQ contains a codebooks C; of dimension k and size L; =
251 The second codebook C has dimension k; and size L, = 2b2. Fig(5.8) shows the
structure of PSVQ. For encoding, the first stage codebook can be regarded as consisting
of two codebook C, and Cp with dimensions k—k; and k; respectively. Correspondingly,
the input vector X is divided into two subvectors X, and X, of dimensions k — k; and
k; respectively. For a MSE distortion criterion, the first subvector X, is encoded by

searching through the codebook C, to produce index i, where
150 = Yol < 1 Xa —yayl|* 4 # (5.4)

Ya; and y,; are the entries codewords in the codebook C,; and 7,5 € {1,2,...,L:}. The
index 7 is then used to obtain from a predictive codebook (4, a codevector y,,. The
initial predictive codebook C} is obtained by first assigning the training vectorvinto its
corresponding regions using the index provided by encoding with codebook C, and then
taking the centroid of each regions as the codevector. This encoding process uses the
first £ — k; components to predict non-linearly the last k; components of the vector. A
residual vector e w}hich is the difference between the input vector X, and codevector
yp,; is fed to the second stage quantizer which then generate output y,. The reproduced
vector £ is the sum & = y; + y; where y; is y,, concatenated with ys,, and y,' is a zero
vector of dimension k£ — k; concatenated with y,. PSVQ encoding search has about
the same search complexity as SVQ. One major difference between SVQ and PSVQ
encoding is that the error vector e instead of the original input subvector X, is fed into

the second stage quantizer.

As shown in Fig(5.9),(5.10),(5.11), PSVQ designed using the GLA performs worse
than SVQ for a low correlation source. GLA-designed PSVQ performs better than SVQ
only for a high correlation source. Thus, the greedy GLA design is not suitable for
generating PSVQ codebooks. For subsequent simulations, PSVQ is designed using the
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Joint Design Gain vs Split Configuration
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Figure 5.12: Joint design gain vs split configuration. Split configuration : k& — ky, &;.

joint design algorithm, and the initial codebooks are generated using the GLA algorithm.

The term “joint design gain” used in the remaining section is the gain of joint design

PSVQ over SVQ.

Fig(5.12) and Table(5.6) show the joint design gain versus different split con-
figurations for 1 bit/dim. The joint design gain of PSVQ over SVQ increases as the
number of bits assigned to the first stage decreases (i.e. k; increases) for an i.i.d Gaus-
sian source. On the other hand, by increasing the number of bits for the first stage for
the high-correlated source, we increase the joint-design gain. Fig(5.13) shows that for
low correlation, assigning more bits/dim to the second stage residual quantizer improves
the overall performance. However, for high correlation source, assigning more bits/dim
to the second stage quantizer degrades the performance. Thus, the optimal split config-
uration is source dependent. For low correlation, there is only a moderate gain of PSVQ
over SVQ as seen in Fig(5.14). However, as correlation increases, the performance of

joint-design PSVQ approaches the performance of joint design M‘SVQ. Moreover, with
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Split Corr. PSVQ SvVQ PSVQ Gain
Config- || factor Storage Storage (SNR) | Over
uration for Complexity | Complexity SVQ

1-5 ind 172 162 4.67dB | 0.11dB
2-4 ind 88 72 4.51dB | 0.11dB
3-3 ind 72 48 4.47dB | 0.07dB
4-2 ind 104 72 4.55dB | 0.04dB
5-1 ind 194 162 4.62dB | 0.03dB
1-5 9 172 162 9.11dB | 0.33dB
2-4 9 88 72 9.91dB | 0.64dB
3-3 9 72 48 10.22dB | 0.95dB
4-2 9 104 72 10.33dB | 1.04dB
5-1 9 194 162 10.57dB | 1.75db

Table 5.6: PSVQ vs SVQ, with bit/dim=1. Split configuration : k — k1, ky
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SNR vs Split Configuration
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Figure 5.14: Signal to noise ratio vs AR(1) Gaussian. Split configuration : k& — kq, ky
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Joint Design Gain vs AR(1) Correlation Factor
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Figure 5.15: Joint design gain vs AR(1) Gaussian.

(i

multiple survivor search, (Fig(5.17)), we can improve the joint design gain of PSVQ

over SVQ. We conclude that the number of components & — k; needed for prediction is

proportional to the correlation source.
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Figure 5.16: Signal to noise ratio vs AR(1) Gaussian; 3 bits/stage.
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Figure 5.18: Constrained storage predictive split vector quantizer

5.3 Counstrained Storage Predictive Split VQ (CPSVQ)

As we increase the degree of fanout as shown in Fig(5.18), another new SPC structure is
obtained: constrained storage predictive split VQ (CSPVQ). The way to construct the

multiple codebooks is as in regular constrained storage VQ [34].

Let X be a source of dimension k. Let us assume there are only two stages. The
first stage contains a single codebook C; dimension k and size L, = 2% . The second stage
quantizer contains M codebooks {Cy1,...,C2}. Each codebook C3; has a dimension
k; and size Ly = 2%2. Fig(5.18) shows the structure of CPSVQ. Encoding in CPSVQ
is the same as in PSVQ. The first stage quantizer encodes the input vector X with the
modified nearest neighbour condition Eq(5.4). The decision is based on the first £ — k;

components of the input vector X using codebook C;. The quantizer produces an index
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Figure 5.19: Signal to noise ratio vs AR(1) Gaussian. Split configuration: k — ki, ks

1, a residual vector e, which is the difference between the last & components of X and
Y1, and the value of the pointer p; giving the address of the second stage codebook.
The residual vector e is then encoded by a second stage codebook whose address is
given by u; and quantized to the output vector y;. The reproduced vector X = Y1+ Y2
Table(5.7) for PSVQ with fanout equal to two, an even split configuration which consists
of the lowest storage complexity, has a better distortion-performance tradeoff than the
rest. Fig(5.20) and Fig(5.21) show the SNR performance of the CPSVQ versus number
of survivors. For the high correlation source, a small number of survivors is needed
to achieve the best performance a CPSVQ quantizer can furnish. By assigning more
bits/dim to the first stage, we get a better quantizer performance. Fig(5.22) shows that
the performance of the quantizer improves when the degree of fanout is increased to two

and then levels off when the fanout is further increased.

Moreover, when comparing the performance of joint design CPSVQ and GLA-
designed CSVQ with degree of fanout equal to two for a fixed bit allocation, Table(5.7)
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Split Corr. Storage Storage PSVQ Gain
Config- || factor | Complexity | complexity SNR Over
uration for CPSVQ | for CSVQ CSvVQ

2-4- ind 152 216 4.248dB | 0.016dB

3-3 ind 96 216 4.467dB | 0.071dB

4-2 ind 112 216 4.238dB | 0.047dB

2-4 9 152 216 10.416dB | 1.267dB

3-3 9 96 216 10.209dB | 0.935dB

4-2 .9 112 216 9.574dB | 0.432dB

Table 5.7: Joint design CPSVQ vs GLA design CSVQ, with degree of fanout=2, and 3
bits/stage. Bit allocation fixed. Split configuration: k — ky, k;

shows that joint design CPSVQ actually outperforms conventional design CSVQ for
the high correlation source. There is a significant decrease in both search and storage
complexity. However, for a low correlation source, there is no performance gain over

CSVQ), but only gaining in searching and storage complexity.

5.4 Line Spectral Frequency Parameters

The performance objective to be minimized is the average spectral distortion (SD) be-
tween quantized and unquantized LPC parameter vectors. However, due to the complex
dependence between LSF’s and the spectral envelope and the complexity of SD compu-
tation, there is no easy way of incorporating SD into the codebook design algorithm. For
this reason, a weighted Euclidean distortion measure (defined in Section 2.7.2) is used
to design the codebooks. Such a distance measure gives more weight to perceptually

significant vector components. While SD is difficult to use in codebook design, it can
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Figure 5.22: Signal to noise ratio vs degree of fanout, correlation factor =.9.

be used in encoding. However, because of the computational cost of calculating SD,
it is not realistic to perform the entire codebook search using that distortion function.
On the other hand, in a multiple survivor search, SD can be used to select the best
candidate from the final stage survivor set. This was done in our simulation of SVQ and
PSVQ, where m survivors were kept for each feature and the SD was used to select the

best quantized output from the last survivor set.

One of the major advantages of the LSF representation is that as long as the
ascending order of the LSF vector components is preserved in the quantization process,
the quantized synthesis filter is guaranteed to be stable. When the initial codebook of
SVQ are designed using the generalized Lloyd algorithm (modified for the WMSE distor-
tion measure Eq(2.40)), the centroid for each quantization region is obtained by simply
averaging all training vectors in that region, as would be done for the MSE criterion,
and thereby stability is guaranteed. For PSV(Q codebooks, due to its constituent stage

structure, a stability check is imposed in each iteration during the design phase. If any
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Split Ave. | 2 —-4dB > 4dB
Configuration || SD. | % outlier | % outlier

11-10 1.33 5.47 0.0
10-11 1.24 2.92 0.0
11-11 1.17 1.88 0.0
12-11 1.12 1.36 0.0

Table 5.8: Performance of SVQ with LSF parameters.

of the updated codevectors has an ordering problem, that particular updated codevector

will be replaced by the previous updated value.

A 24.5 minutes of speech signal is first passed through a low pass filter at a cut
off frequency of 3.4kHz and sampled at a sampling frequency of 8kHz. Frames with
energy below a threshold were classified as ”silence” and rejected of the training set.
The digitalized speech signal is analyzed using a 10th order LPC and a 20ms window.
Moreover, consecutive analysis frames overlap by half a frame, resulting in a training
set size of 144000 vectors. Bandwidth expansion was also used: the ith prediction
coefficient is multipled by 4%, where 1 = 1,...,10 and 7 is a constant equal to 0.996.
The performance of the quantizer was then evaluated with a test set comprising of 7700

vectors which were generated independently from the training set.

When comparing SVQ and PSVQ, there is a steady 0.04dB SD gain for one
survivor encoding. This is not a significant gain. However, when the number of survivors
increases to 8, there is a 0.08dB gain, which is almost a gain of one bit. Therefore, PSVQ
saves 1 bit/frame over SVQ.
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Figure 5.23: Number of survivors vs spectral distortion.

Split Ave. | 2—-4dB | > 4dB
Configuration || SD. | % outlier | % outlier

10-10 1.29 5.86 0.0
10-11 1.20 3.71 0.0
11-11 1.14 3.00 0.0
12-11 1.08 2.05 0.0

Table 5.9: Performance of PSVQ for LSF parameters.
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Split Ave. | 2 —-4dB > 4dB
Configuration || SD. | % outlier | % outlier

10-10 1.26 4.01 0.0
10-11 1.18 2.56 0.0
11-11 1.11 0.82 0.0
11-12 1.03 0.35 0.0

Table 5.10: Performance of SVQ for LSF parameters, survivor=8.

Split Ave. | 4—-2dB | > 4dB
Configuration || SD. | % outlier | %outlier

10-10 118 |  1.65 0.0
10-11 10| 117 | 0.0
11-11 1.03 | 0.93 0.0
11-12 0.97 | 0.5 0.0

Table 5.11: Performance of PSVQ for LSF parameters, survivor=8.
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Conclusion

The purpose of this thesis is to examine candidate vector quantization techniques for
coding Linear Prediction (LP) coeflicients and the efficiency of a joint design algorithm
for various summation product code structured quantizers. LP coeflicients are used of-
ten in low-bit rate speech coders as they provide an economical representation of the
spectral envelope of speech signals. Thus, efficient representation of the LPC parame-
ters is a central issue in speech coding. The most often used representation of the LP
coeficients are reflection coeflicients and the Line Spectral Frequencies (LSF). The LSF
parameters have two properties which make them amenable to quantization: their or-
dering property which relates to the stability condition and their localization property.
Due to these properties, for the same quantization scheme, quantizers which operate on
LSF parameters are more efficient than quantizers Which operate on many other LPC

representations.

Transparent quantization of LPC parameters is a crucial condition for achieving
toll-quality. Vector quantization is one of the techniques which is capable of yielding
less than 1dB spectral distortion at low bit rates. However, complexity problems quickly

arise with unstructured vector quantization as the codebook size grows. The summation
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product codes (SPC) afe a family of structured VQ’s that can circumvent this complex-
ity obstacle. The performance of the SPC quantizer can be varied against its storage
and encoding complexity. Apart from the storage and encoding complexity of the SPC
VQ, the design algorithm can also affect the efficiency of the quantizer. The Generalized
Lloyd’s Algorithm (GLA) is traditionally used to design the constituent codebooks of
a SPC on a stage-by-stage basis. However, it has been shown in this thesis that joint
codebook design can construct better stage codebooks. We have studied a joint design
algorithm which updates all the codebooks simultaneously by solving a weighted least
squares system of equations. These equations are derived from the notion that every
SPC quantizer has an equivalent reference prdduct codebook which minimizes the overall
distortion. This equivalent reference codebook can be determined by first encoding the
source vectors into their corresponding partition regions and then taking the centroid of
all the source vectors assigned to each particular region. By minimizing the difference
between the reference product codebook and the equivalent reproduced product code-
book, a matrix equation is obtained. However, this matrix equation is rank deficient.

An iterative method is used in this paper to solve this rank deficient system.

Using 25000 training vectors, 5000 test vectors and a mean squared error (MSE)
distortion criteria, the performances of GLA design and joint design were compared.
Simulation was first performed for MSVQ, and the following conclusions were drawn.
The joint design gain over conventional GLA design increases as source correlation in-
creases. The design gain also increases with the number of stages. With GLA design,
the average distortion increases when complexity is reduced by increasing the number
of stages. However, joint design can result in a relatively stable signal-to-noise ratio
(SNR) even the number of stages increases. This indicates that joint design can im-
prove the complexity-distortion tradeoff significantly. Unfortunately, joint design does
not improve the codebook with a single survivor search at low bit rates. In order to im-
prove the performance at low bit rates, multiple survivors have to be maintained. Since

the encoding complexity of multiple survivor search at low bit rate is relatively small,
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keeping multiple survivors is justified. By increasing slightly the number of survivors,
the joint design algorithm can yield significantly better performance. Also the number
of survivors needed is inversely proportional to source correlation. However, there is no
benefit to performing a joint design with more survivors than necessary. In fact, when
more survivors than required are used in design , the SNR performance of the quantizer
dropped. Thus the number of survivors for both design and actual encoding should be

the same.

A further examination of the joint design algorithm was done for SPCs with
greater than unity fanout. It has been found that the joint design algorithm improves
the performance of CSVQ only moderately. In fact, SPC with unity fanout can perform
better than the one with degree of fanout greater than one. As a result, there is no

advantage to do a joint design on SPCs with fanout greater than one.

An innovative SPC structure codebook, predictive split VQ (PSVQ), is also tested
in this thesis. PSVQ has the same encoding complexity as split VQ (SVQ) but with
a higher storage complexity. Designing PSVQ with GLA results in performance worse
than regular SVQ for a low correlation source. In fact, the PSVQ quantizer designed
using the GLA algorithm only performed slightly better than SVQ for a high correlation

source.

On the other hand, with the joint design algorithm, the performance of PSVQ
can perform better than SVQ. The performance of PSVQ also depends on the correlation
of the source. For low correlation, PSVQ has only a slight performance gain over SVQ.
With increasing correlation, the performance of PSVQ approaches that of joint design
MSVQ. The choice of the split configuration is also source dependent. For low correlation
and a fix rate (bit/dim) for each stage, the performance of the quantizer improves as
the number of bits assigned to the first stage decreases. On the other hand, with high
correlation, the number of bits assigned to the first stage has to be increased in order to

produce better performance. By increasing the degree of fanout in PSVQ, we achieved a
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new structure: constrained storage predictive split VQ (CPSVQ). Joint-design CPSVQ
can perform slightly better than CSVQ but with lower storage and search complexity.

In conclusion, the joint design algorithm can improve the performance of SPCs
without inducing any increase in real time complexity. As a result, it is almost a free
gain. However, there is a major disadvantage of using the joint design algorithm. The
procedure of generating the codebooks using this joint design algorithm is very time

consuming.

Lastly, the PSVQ quantizer was used for coding LSF parameters. The perfor-
mances of PSVQ and SVQ were examined. By using the joint-design algorithm, PSVQ
introduced a significantly lower average spectral distortion and fewer outlier than SVQ.
A 23 bit PSVQ quantizer yielded an average spectral distortion of 1.03 dB, 0.93% outlin-
ers in the range 2-4dB, and 0.03% outliners in the range > 4dB and achieved transparent
quality. Comparing with SVQ, a reduction of 1 bit/frame for coding LSF parameter can
be achieved by using PSVQ with eight survivors.

6.0.1 Suggestions for further investigation

One area of improvement that can be explored is in the structure of SPCs. In this
thesis, each stage consists of only codebooks. However, a more sophisticated structure
can be formed by considering each stage as a structured VQ by itself. One example is
the Tree-MSVQ proposed by Chemla et al [37]. Another area that is worth investigating
is the technique of prediction used for generating the second-stage codebook in PSVQ.
It has been shown that the prediction method used in this paper is not sufficient when
low-correlation source is used. One suggestion is to use linear prediction to-predict
the second stage of PSVQ. Finally, better results than those achieved in this work can
probably be obtained by solving the matrix equations of the joint design method with

a better technique .
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