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Abstract

The detection and estimation techniques that are used in array processing depend on

the spatial and temporal characteristics of the signals that arrive at the array. In this

dissertation, we consider narrowband as well as wideband signals. For narrowband signals,

a detection method based on the predictive stochastic complexity (PSC) is developed. The

PSC of data is computed for all the models with order smaller than the number of sensors.

The number of signals is selected by choosing the minimum of the PSC over all models.

The PSC criterion is on-line and can be used for time varying systems and target tracking.

We also consider wideband signals. One approach to wideband array processing is

based on sampling the spectrum of the source signals to generate narrowband signals.

Then, using a focusing approach, the information at di�erent frequency bins are com-

bined. Here, an optimal method to select a focusing subspace for the well-known coherent

signal-subspace method (CSM) is proposed. It is also shown that with the CSM method

unbiased estimation of the directions-of-arrival (DOAs) is not possible. Inspired by the

CSM algorithm, a new method for wideband array processing is developed which is based

on two-sided transformation of the correlation matrices (TCT). The TCT estimator can

generate unbiased estimates of the DOAs and has a lower resolution threshold than the

CSM algorithm.

In array processing it is frequently assumed that the signals are generated by point

sources. This is an assumption which is not satis�ed in reality. In this dissertation, a

method is developed for localization of spatially distributed sources. The method is based

on generalization of the MUSIC algorithm and is applied to coherent and incoherent

distribution of sources.
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R�esum�e

Les techniques de d�etection et d'estimation utilis�ees en traitement d'antenne d�ependent

des caract�eristiques spatiales et temporelles des signaux arrivant sur l'antenne. Dans ce

m�emoire, nous consid�erons les signaux �a bande �etroite et �a bande large. Pour les sig-

naux �a bande �etroite, nous developpons une m�ethode de d�etection bas�ee sur la compl�exit�e

stochastique de pr�ediction (CSP). La CSP des donn�ees est calcul�ee pour tous les mod�eles

d'ordre inf�erieur au nombre de capteurs. Le nombre de signaux est selectionn�e en choisis-

sant le minimum de la CSP parmi tous les mod�eles. Le crit�ere de d�etection bas�e sur la

CSP est de type r�ecursif et peut être utilis�e pour les syst�emes variant dans le temps ainsi

que pour le suivi de cible mobile.

Nous consid�erons ensuite les signaux �a bande large. Une approche au traitement

d'antenne �a bande large consiste �a �echantillonner le spectre des signaux source a�n de

g�en�erer des signaux �a bande �etroite. En utilisant ensuite des m�ethodes de focalisation,

les �el�ements d'information correspondants �a di��erentes fr�equences sont combin�ees. Nous

proposons ici une technique optimale de s�election d'un sous-espace de focalisation pour la

m�ethode dite de sous-espace signal coh�erent (MSC), laquelle est d�ej�a bien �etablie. Nous

montrons aussi que la m�ethode MSC ne permet pas une estimation non-biais�ee des di-

rections d'arriv�ee. En nous inspirant de l'algorithme MSC, nous d�eveloppons une nou-

velle m�ethode pour le traitement d'antenne �a bande large bas�ee sur une transformation

bilat�erale des matrices de corr�elation. L'estimateur qui en d�ecoule g�en�ere des estim�es

non-biais�es des directions d'arriv�ee et poss�ede un seuil de r�esolution moindre que celui de

l'algorithme MSC.

En traitement d'antenne, on suppose souvent que les signaux sont g�en�er�es par des

sources ponctuelles. En r�ealit�e, cette hypoth�ese est rarement satisfaite. Dans ce m�emoire,
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nous d�eveloppons une m�ethode de localisation pour les sources spatialement distribu�ees.

Cette m�ethode est bas�ee sur une g�en�eralisation de l'algorithme MUSIC et est appliqu�ee �a

des distributions coh�erentes et incoh�erentes de sources.
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Chapter 1

Introduction

We live in a society which places much emphasis on information. Today, information is the

fuel of business and also increasingly important for leisure activities. The revolutionary

advances in computer and telecommunications technology have spawned this information

age.

Information is conveyed through signals. A signal is an information carrying vehicle of

a physical system. It depends on time and space and assigns a unique value to each time

instant and each spatial point. The system that generates a signal is called the source.

For instance, a radio station is a source of information. The processing of signals is used

in radar, sonar, seismology, communications, speech and image transmission, biomedical

engineering, data compression, and so on.

In this thesis, we discuss the use of arrays of sensors to acquire signals. In general,

the term array is denoted to any regularly ordered or arranged set. Here, by an array we

mean a sensory device that collects signals at di�erent spatial coordinates. This de�nition

is complete in the sense that it includes both discrete and continuous arrays. A discrete

array is a combination of two or more distinct sensors located in space. As an example, our

eyes form an array of two sensors. Using two eyes, we can see objects in three dimensions

and can estimate their distance. Note that in array processing signals are sent or received

at di�erent spatial positions. If we close one eye, the image of the objects will become

2-dimensional and the range information will be lost.

1



CHAPTER 1. INTRODUCTION 2

In the past, array processing has been restricted to applications that are not cost-

sensitive. With DSP processing capabilities increasing, array processing will become more

common in a wide variety of applications. The bene�t of using array processing techniques

is that they exploit the spatial characteristics of signals for information extraction.

1.1. Array processing

From a statistical point of view signals can be categorized as having a deterministic or a

random waveshape. By a deterministic waveshape we mean a known waveform with pos-

sibly some unknown parameters such as amplitude, delay, and/or scaling. Deterministic

waveshapes are encountered in applications such as radar, active sonar, and data commu-

nications where the waveform of the transmitted signal is known to the receiver. In many

applications, the transmitted signal is unknown or is a�ected by a transmission environ-

ment whose exact impulse response is either unknown or changes with time and space. In

such a case, the waveshape is random. For a random waveshape, all the information that

can be obtained is contained in the probability distribution function.

In practice the signals are perturbed by noise or interferences. Noise and interferences

are destructive signals that mix with the useful signal and change its properties or obscure

it. Interference usually has the same characteristics as the signal and might be generated

with a similar source. Electromagnetic coupling between two adjacent wires, di�usion of

the energy of one channel into the neighboring channel in a multiplex communication,

simultaneous pick up of two or more stations by a single radio receiver, the results of

multipath transmission, and smart jamming can be counted as examples of interference.

The destructive nature of interference is due to the fact that it can be confused with the

useful signal.

Noise is usually generated by phenomena that are independent from the signal. In

array processing, the wave�elds that exist in space and are independent from the signal

can be modeled as a spatial noise-�eld. If the noise-�eld is generated by many uncorrelated

random waves propagating in all directions, a spherically isotropic noise is formed. It is

usually assumed that the noise-�eld is stationary in time and space.
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The information may also be conveyed by multi-dimensional signals. For instance, in

communication over a fading channel, a multi-dimensional signal is created using time,

frequency, or spatial diversity. In array processing, the spatial �eld is sampled by multiple

sensors. The collection of signals at di�erent channels form a multi-dimensional signal.

Often, a multi-dimensional signal has a common information along each dimension. The

combination of the information at di�erent dimensions can improve the performance of

processing. For instance, diversity in communication reduces the reconstruction error, and

using a beamformer in array processing increases the signal-to-noise ratio (SNR).

The objectives of an array processor can be categorized as signal enhancement or �eld

characterization. Signal enhancement involves improving the signal-to-noise ratio at the

array output beyond that for a single sensor. This can be performed by steering a beam

towards the direction of source and/or inserting nulls in the beampattern in the direction of

noise and interference. A conventional method of beam steering is to place delay elements

at the output of the sensors and compute a weighted sum of the delayed outputs. With

a proper selection of the delays, the signals arriving from a speci�c direction will appear

with the same phase at the output of the delay elements. This is termed beamforming.

If a source is located in the direction of the beam, the signal power at the array output

can be increased by the square magnitude of the number of sensors. For an uncorrelated

intersensor noise, the noise power at the beamformer output increases linearly with the

number of sensors. Thus, the SNR can be increased by using a conventional beamformer.

Field characterization is used to estimate the spatial properties of the sources such as

their range, azimuth, elevation, velocity, and direction of movement. Field characterization

is performed in two steps. First, the number of emitting sources is determined. This step is

called detection. Detection is followed by a localization step which is the estimation of the

signal position in space. For stationary signals, the spatial parameters of source are range,

azimuth, and elevation. If the sources are located in the far �eld of the sensors, the arriving

wave�elds are planar and only azimuth and elevation can be estimated. Furthermore, it is

frequently assumed that the sources and the array are in the same plane. In such a case,

the direction-of-arrival (DOA) is the only spatial parameter of an emitting source. Many
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array processing methods have been developed for DOA estimation. In most cases, it is

straightforward to generalize these methods to azimuth and elevation estimation.

Many present and potential canonical applications can be found where an array of sen-

sors is used to detect and localize sources or to enhance the signal-to-noise ratio. Consider

an array of antennas monitoring the air tra�c around an airport. Each airplane sends a

narrowband signal that is received by an antenna array. Location of the airplanes can be

estimated by using narrowband array processing techniques. Another example of narrow-

band array processing can be found in wireless communications. A moving transmitter in

mobile or indoor communications emits narrowband signals. The receiver consists of an

array of antennas. The array receives the original signal from the source and its re
ections

from the surrounding objects. If the location of the source is estimated, the antenna array

can steer a beam towards the direction of the source reducing the e�ect of the re
ected

wavefronts. In a transmission mode, the antenna array sends the power only in the direc-

tion of the source by forming a steered beam. This way, energy is conserved and since the

power is only transmitted in a certain direction it has a smaller interfering e�ect on other

receivers.

Array processing techniques can also be applied to wideband signals. For a wideband

signal the frequency bandwidth is relatively large compared to the center frequency. For

instance, an array of microphones can be used to localize a speaker in a room. The arriving

signal at the array is a wideband speech signal along with its re
ections from the walls

or any re
ecting object. The e�ect of the re
ections, which interferes with the direct

signal, can be compensated by steering a beam towards the direction of the speaker. A

microphone array can also be used inside a car for hands-free mobile communications. For

hands-free communications, the voice of the driver is collected by an array of microphones.

The noise of the car environment can also be reduced by forming a beampattern with nulls

in the noise direction.

Another example of wideband array processing is passive sonar. A passive sonar system

consists of a set of hydrophones that listen to the undersea sound environment. If a ship

is located within the detection range of a passive sonar, the sound of the propeller can
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be sensed by the sonar and the ship will be detected. The sound from the propeller is a

wideband signal.

So far we have considered the sources that are highly localized in space (point sources).

In some situations, point source modeling is not appropriate. An example where point

source assumption does not hold can be found in the measurements of the seabed by using

a multibeam echo sounder. A multibeam echo sounder is an active device that is used to

map the seabed. A sound signal is transmitted towards the seabed. The depth of the sea


oor is estimated by measuring the re
ected echos. Re
ection of the signal from the seabed

and penetration into the lower layers of the sea 
oor creates a spatially distributed source.

A similar e�ect can be observed in seismology. In seismology, the layers of the earth are

examined by sending sound signals into the earth. The sound is re
ected from di�erent

layers. Re
ection of the wave from di�erent layers in the earth creates a distributed source.

The received signal in a communication link that uses the ionosphere or the troposphere

as a medium for signal scattering is also observed as a spatially distributed source.

A signal which is a function of time and space is called a spatiotemporal signal. For a

spatiotemporal signal a multi-dimensional Fourier transform can be de�ned which operates

on time and space variables. The Fourier transform (spectrum) of a spatiotemporal signal

is a function of frequency and wavenumber. For random signals, the Fourier transform is

applied to the correlation function to give the power spectral density of the signal.

In Fig. 1.1 some particular examples of the spectrum of spatiotemporal signals are de-

picted. Signal A in this �gure corresponds to a narrowband signal which is highly localized

in space (point source). The spectrum of Signal A is the product of two impulses in the

frequency and wavenumber axes. Many array processing methods have been developed

for this model. Narrowband point source modeling is an appropriate assumption in some

applications. For instance, an aircraft which is transmitting a narrowband signal and is

located far from the observation point can be modeled as a narrowband point source.

In some cases, the arriving wavefronts are generated by wideband sources. Micro-

phone array and passive sonar are two applications of wideband array processing. The

frequency-wavenumber spectrum of a point wideband signal takes values on a line paral-
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Fig. 1.1 Frequency-wavenumber spectrum

lel to the frequency axis. An example of two wideband signals separated in space, each

with a bell-shaped frequency spectrum and the same bandwidth, is depicted as Signal B

in Fig. 1.1. These two signals di�er in wavenumber. The spatiotemporal processing of

wideband signals can be performed by using a wideband array processor.

A third case is when the spectrum of signal takes on values on a line parallel to the

wavenumber axis. This case corresponds to a spatially distributed narrowband source.

Signal C in Fig. 1.1 consists of two narrowband spatially distributed sources with a 
at

distribution pattern. The detection and estimation methods that are developed for nar-

rowband point source models usually do not operate well in distributed signal cases.

In general, the spectrum of a spatiotemporal signal extends in both frequency and

wavenumber coordinates. However, many applications fall into the three special cases

that we cited as Signals A, B, and C in Fig. 1.1. In this thesis, we will only discuss these

three types of signal.

A spatiotemporal signal can be localized by spatiotemporal �ltering. An array of sen-

sors with delay elements added at the output of the sensors can be used to implement a

spatiotemporal �lter. The characteristics of a spatiotemporal signal reveal a duality be-

tween time and space. All the parameters that are related to temporal behavior of a signal

have duals in spatial domain. For instance, the concept of wavelength and wavenumber
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in spatial domain are duals of period and frequency in temporal domain. With this du-

ality, the processing of signal using a uniform linear array of sensors is similar to �nite

impulse response (FIR) �ltering for temporal signals. In such an analogy, the time delay

for an FIR �lter is replaced with the traveling time of the wavefront between two adjacent

sensors of the array. A spatiotemporal �lter is designed so that it generates a desired

frequency-wavenumber spectrum.

1.2. Contributions

This dissertation contributes several new techniques for detection and parameter estima-

tion. In this section, a brief introduction to the methods is presented. Here, the aim is to

discuss the objectives of this study and the approaches taken. We will only cite the open

problems that were solved in this dissertation. A full discussion on the methods will be

presented later.

In Chapter 3, a new detection method for point narrowband signals (Signal A in

Fig. 1.1) is developed. Any detection procedure chooses between two or more hypotheses

that are possible representative models for the data. The role of the detector is to select

the best model based on some criterion. In array processing, detection is the process of

determining the number of signals that generate the wave�eld. For instance, in an antenna

array application, the number of airplanes in the vicinity of an airport is the number of

sources. One class of detection methods computes an information theoretic criterion. The

information theoretic criteria are developed based on minimizing a distance (Kullback-

Leibler distance) between the observed data and the hypothesized model. The method

that is developed in this dissertation is also an information theoretic technique. Here, the

concept of stochastic complexity is used to determine the number of signals arriving at an

array of sensors. Stochastic complexity is the codelength of data when coded with respect

to a given generating class (probability density function). The codelength minimization

is an appropriate criterion for model selection since it is directly related to the amount of

information that can be obtained for data when it is conditioned on the given model. If

a model gives more information about the data, it results in a smaller codelength. In the
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new algorithm, the data is coded with respect to each competing model considered as the

generating class. The selected model is the one that gives the smallest codelength for the

data.

One objective of introducing a new method for signal detection was to develop an

iterative technique that can be suitable for on-line use. The information theoretic detection

methods that exist in the literature operate on a batch of data. In these methods, the

detection process must be delayed until the whole batch of data is observed. In the

new method, detection is performed with each new observation and the model selection is

updated at each sample time. The dynamic structure of the new technique permits changes

in the generating class. For instance, if at some time in the window of observations the

signal of a source is turned o�, the new method is able to detect a change in the number

of sources.

It was mentioned earlier that in some applications the arriving wavefronts at the array

are generated by wideband point signals. If the frequency contents of the signals do not

overlap, they can be separated by using bandpass �lters. Di�culty arises when the signals

have the same frequency band. For such signals, wideband array processing methods

are used for localization of sources. There are di�erent approaches to wideband array

processing.

In some wideband methods, the frequency spectrum of the wideband signals is sam-

pled to generate narrowband signals. These narrowband signals have the same DOA. The

frequency of each signal depends on the sampling bin. Since the frequency of processing

for these narrowband signals are di�erent, each narrowband signal belongs to a coordinate

system that is di�erent from the coordinates of the other signals. In a coherent approach,

the data at di�erent frequency bins are transformed (focussed) into a unique coordinate

system by using some transformation matrices. The shortcoming of the well-known co-

herent signal-subspace processing method (CSM) is that it su�ers from an asymptotic

bias of estimation. In this dissertation, we show that unbiased estimation of the DOA

is not possible using a CSM algorithm. However, with a proper selection of the focusing

coordinates the bias of DOA estimation can be minimized.
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Some alternative coherent methods are evolved from the CSM algorithm that asymp-

totically can generate unbiased estimates of the DOAs. These methods however require

an increase in the computational complexity. In Chapter 5, we develop a new algorithm

for coherent wideband signal localization. The new method is evolved from the CSM algo-

rithm and uses a similar focusing approach. The focusing matrices in the new algorithm

are determined by using the correlation matrices of the array output. We show that by ap-

plying the new algorithm unbiased estimates of the DOA can be asymptotically obtained.

Furthermore, the new method shows a modest increase in the computational complexity

over that of the CSM algorithm.

Another contribution of this dissertation is a method for distributed source localiza-

tion. In many applications, point source modeling is not an appropriate assumption. For

instance in troposcatter communications the scattered waves from the troposphere appear

as a spatially distributed source. Previous work in the literature was based on the ap-

proximation of a distributed source by a combination of many point sources located next

to each other with small spacing between them. The algorithms that are developed for

point source modeling can lead to erroneous results when applied to distributed sources.

Point source approximation of a distributed source has problems in determining a unique

solution for the localization.

In this dissertation, the output of an array exposed to a distributed source is modeled

as an integral of the response of the array to a point source taken over some interval in

space. It is further assumed that the distribution pattern of the source belongs to a class

of parametric functions. With this assumption, a limited number of sensors can give a

unique solution to the localization problem of distributed sources. The model and the

results for distributed sources are, to the best of our knowledge, new.

1.3. Thesis organization

The dissertation is organized as follows. In the following chapter some basic array process-

ing techniques are reviewed. In Chapter 3, a new detection method based on the concept

of stochastic complexity is developed. In Chapter 4, an optimal method for focusing in
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wideband array processing is proposed and it is shown that by using this method the bias

of estimation can be reduced. In Chapter 5, a new algorithm for localization of wideband

sources is developed. The new method does not su�er from asymptotic bias of estimates.

In Chapter 6, a high resolution method for localization of distributed sources is intro-

duced. The techniques developed in this dissertation have been reported in conference

proceedings or submitted to journals for publication [38] [39] [40] [41] [42] [43] [44] [45]

[46] [47] [48].



Chapter 2

Array Processing Techniques

Array processing has been the subject of active research for more than three decades.

Many methods have been developed for processing of signals by using an array of sensors.

Mathematically, the localization of narrowband sources in array processing is related to

harmonic retrieval and frequency estimation. This relationship has opened the rich liter-

ature in spectrum estimation to array processing. In this chapter, we brie
y review some

important methods in array processing.

Two approaches can be taken for spectrum estimation: parametric methods, and non-

parametric methods. In a parametric approach, a model with a �xed number of parameters

is assigned to the observation and the parameters of the model are selected so that the

observed data �ts the model. In a non-parametric method, no model is imposed upon

the data. Analysis of a system by using Fourier transformation is a nonparametric ap-

proach. Any parametric method that is applied to a system identi�cation problem is

directly related to the modeling of that system. If a model of the system is available,

parametric methods are preferred. This dissertation considers parametric methods. For

these methods, a careful modeling of the arriving signals is essential for good performance.

The signals can be modeled with respect to temporal or spatial characteristics. For

instance, from a temporal point of view waveforms can be deterministic or stochastic.

The signals can also have wideband or narrowband spectrum, or they might have some

other structures such as being the realizations of AR or ARMA processes, and so on.

11
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In this dissertation, we consider stochastic signals with temporally uncorrelated samples.

Although this assumption is made for the signals, we will also review an optimal estimation

method for deterministic signals. It should be noted that in categorizing the signal as

deterministic or stochastic we follow the terminology that is established in the literature.

This terminology can be slightly misleading. A signal with deterministic waveform can also

be stochastic. An alternative terminology might be as deterministic or non-deterministic

[8], or as conditional or unconditional [34].

Spatial signals can be modeled as point or distributed sources. Most techniques in

array processing use point source modeling. In some situations point source assumption is

not realistic. In a tropospheric scatter link the signal is transmitted between two locations

through scattering from the troposphere. The signal arriving at the receiver antenna is

observed as a distributed source. In this application the rays of the signal at di�erent an-

gles are the scattered wavefronts and have random phase and amplitude. Thus, the rays at

two di�erent angles are uncorrelated. This is an incoherently distributed source. In some

applications the rays of the signal at di�erent angles can be completely correlated. Such

a signal is coherently distributed. There are not many methods which assume distributed

source modeling. One approximation to a distributed signal is to assume that the dis-

tributed source is decomposed to many closely placed point sources. This approximation

has some drawbacks that we will discuss later.

An array processing is usually performed in two steps: detection and localization. De-

tection is a terminology used for the procedure that determines the number of signals

arriving at the array. Localization (sometimes called estimation) is a process to estimate

the spatial parameters of the signals such their DOAs. The methods that are used for de-

tection and localization might be categorized as beamforming or subspace decomposition

techniques. The beamforming techniques have an easier implementation and are widely

used in practice. The resolution of these methods is lower than for the subspace decompo-

sition methods. We will review delay-and-sum, minimum variance, and linear prediction

beamforming methods. For subspace decomposition techniques we will only consider infor-

mation theoretic criteria for signal detection and the MUSIC and the ESPRIT algorithms
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for localization.

2.1. Time-space transformation

For a temporal signal, information is conveyed by variation of the signal in time. For such

a signal, the conventional Fourier transformation yields

S(!) =

Z
1

�1

e�j!ts(t)dt (2.1)

where s(t) is the signal and ! is the processing radian frequency. The inverse Fourier

transform is given by

s(t) =
1

2�

Z
1

�1

ej!tS(!)d!: (2.2)

The equations (2.1) and (2.2) are called a Fourier transform pair which are widely used

in signal processing.

In general, a signal can also be a function of space. A spatiotemporal signal is rep-

resented by s(r; t) where r is the spatial parameter and t is time. A signal which is a

function of space and time can be Fourier transformed by

S(!;k) =

Z Z Z Z
s(t; r) e�j(!t�k:r) dt dx dy dz (2.3)

where the x, y, and z are the components of the spatial vector r, and k is the wavenumber

vector de�ned as

k =
!

c
k̂ (2.4)

where c is the wave velocity and k̂ is a unit vector normal to the wavefront and pointed

to the direction of propagation. The inverse Fourier transform is given by

s(t; r) =
1

(2�)4

Z Z Z Z
S(!;k) ej(!t�k:r) d! dkx dky dkz (2.5)

where kx, ky , and kz are the components of k and are called the spatial frequencies or

wavenumbers.
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Fourier transform pair (2.3) and (2.5) suggest a duality between time and space and

their corresponding parameters. In fact the time and frequency are the duals of space and

wavenumber. The length of the wavenumber vector is the dual of the radian frequency;

the period of a temporal signal is the dual of the wavelength of a wavefront; and so on.

This can be shown as

t  ! ! =
2�

T
(2.6)

jrj  ! jkj= 2�

�
(2.7)

where T is the period of the signal, � is the wavelength and j:j is the length of vector. The

�ltering of a temporal signal in time domain can also have a dual for spatial signals. The

�ltering of a spatial signal is performed by using an array of sensors. Array processing

for spatial signals has the same e�ect of FIR �ltering for temporal signals. See [51] for a

further discussion of the similarities between array processing and FIR �ltering.

2.2. Deterministic signals

In some applications the waveform of the received signal is known and only some param-

eters such as delay and amplitude are to be estimated. The modeling of such signals is

based on a deterministic waveform assumption. A precise de�nition for deterministic sig-

nals can be found in [8] and is related to whether the signal can be predicted from its past

with zero error. Radar and active sonar are two applications in which the deterministic

signal modeling is employed. An optimal processing method for detection and parame-

ter estimation of deterministic signals is by matched-�ltering. The impulse response of a

matched-�lter is the complex conjugate of the received signal. A matched-�lter maximizes

the signal-to-noise ratio [49].

In radar or active sonar a short pulse is emitted. The re
ected signal from the target is

then received by an antenna or an array of sensors. From the delay between the transmitted

pulse and the received waveform the range of the target can be estimated. Assume that

the signal s(t); 0 � t � T is transmitted. The received echo is x(t) = �(r)s(t�2r=c), where
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r is the range of the target, c is the wave velocity, and �(r) is an attenuation factor due to

propagation and re
ection. For a moving target with a radial velocity v, r = r0 + vt and

x(t) = �(r0+ vt)s((1� 2v=c)t� 2r0=c). The variation of the attenuation factor �(r0+ vt)

with distance is usually very slow. Thus it can be approximated by �(r0). Ignoring the

attenuation factor, the output of the matched-�lter can be shown as [21]

l(�; �) =

Z T

0
~s((1� �)t)~s�(t + �)dt (2.8)

where ~s(t) is the complex envelope of the bandpass signal s(t), � = 2v=c, � = 2r0=c, and

� denotes complex conjugation. Usually the target velocity is much smaller than the wave

velocity, which yields � � 1. In such a case, it can be shown that

l(�; �) =

Z T

0
~s(t)~s�(t + �)e�j2��f0tdt (2.9)

where f0 is the center frequency of the spectrum of the transmitted signal. The square

value of the matched-�lter output is termed the ambiguity function and is denoted by

c(�; !) =

�����
Z T

0
~s(t)~s�(t+ �)e�j!tdt

�����
2

: (2.10)

The ambiguity function can be used for signal detection and range and radial velocity

estimation. A signal is detected if for some values of � and ! the ambiguity function is

larger than a threshold. The range and the velocity of the target is estimated from � and !.

A typical ambiguity function is depicted in Fig. 2.1. The name of the ambiguity function

comes from the fact that all the values of � and ! in the dashed region in Fig. 2.1 can

be estimates of the delay and the frequency. It can be shown that the volume under the

ambiguity function is constant. Thus, reducing the main lobe will increase the sidelobes.

The transmitted signal can be selected to trade o� the width of the mainlobe with the

amplitude of the sidelobes [21].
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Fig. 2.1 Ambiguity function

2.3. Stochastic signals

In many applications the received signals are random in nature or are perturbed by a

random medium. For such signals matched-�ltering is not applicable. Stochastic signals

are modeled as the realizations of stochastic sources. The modeling of a stochastic signal

depends on the application in which the signal is used. Usually it is assumed that the

signal samples have a Gaussian probability distribution function. This is an appropriate

assumption since in many cases the random signal is generated by combination of a large

number of independent sources. The central limit theorem indicates that the distribution

of such a signal is Gaussian. For Gaussian signals the second moment is a su�cient statistic

and the higher moments are either zero or can be determined by the second moment.

The correlation function of a random signal is de�ned as

Rss(t1; t2; r1; r2) = Efs�(t1; r1)s(t2; r2)g: (2.11)
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This is a function of eight variables, two time instants and six coordinates. If the signal

is homogeneous in time, the correlation is a function of time di�erence � = t1 � t2. The
cross spectral density for such a signal is de�ned as

Sss(!; r1; r2) =

Z
Rss(t1; t2; r1; r2)e

�j!�d�: (2.12)

Signals can also be homogeneous in space. For spatial homogeneity the correlation

function is shown as Rss(�; r) where r = r1 � r2. For these signals, the frequency-

wavenumber spectrum is de�ned as

Pss(!;k) =

Z Z Z Z
Rss(�; r)e

�j(!��k:r)d�dxdydz (2.13)

which is the spatiotemporal Fourier transform of the correlation function. The frequency-

wavenumber spectrum (from now on spectrum) is the transformation of the time-space

parameters of signal into the frequency-wavenumber domain. Some special cases of interest

are as follows.

For a narrowband point source the spectrum of a signal can be represented by

Pss(!;k) = �(! � !0)�(k� k0) (2.14)

where �(:) is the Dirac delta. In the frequency-wavenumber domain this is depicted by

a dot such as point A in Fig. 2.2. Note that Fig. 2.2 is a symbolic representation of the

frequency-wavenumber plane. In fact the wavenumber is a three dimensional vector.

In some applications the signals are generated by wideband point sources. The spec-

trum of these signals which can be represented by

Pss(!;k) = P (!)�(k� k0) (2.15)

takes values on lines parallel to the frequency axis. A typical example is shown as signal

B in Fig. 2.2 which consists of two wideband sources with distinct wavenumbers and the

same frequency bandwidth.
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Fig. 2.2 Frequency-wavenumber domain

The signals can also be spatially distributed. For spatially distributed narrowband

signals the wavenumber-frequency spectrum consists of lines parallel to the wavenumber

axis. The spectrum of these signals can be decomposed as

Pss(!;k) = �(! � !0)P (k): (2.16)

An example of two narrowband distributed signals with the same center frequency is

depicted as signal C in Fig. 2.2.

Note that the concepts of narrowband/wideband-point/distributed sources also exist

for deterministic signals. For deterministic signals the spatiotemporal Fourier transfor-

mation is applied to the signal waveform. A similar discussion can be used to categorize

deterministic sources by their spatial characteristics. In this dissertation, we will only

consider stochastic sources.

When two temporal signals have non-overlapping frequency contents, a bandpass �lter

can separate the signals. A similar processing can be carried out for spatial signals. If

two signals have di�erent wavenumbers it is possible to separate them by using spatial
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Fig. 2.3 An array processor

�lters. The spatial �ltering can be performed by an array of sensors. The phase and the

amplitude of the received signal at each sensor is a function of the arriving angle of the

emitting source and the relative location of that sensor with respect to a phase reference

point. The output of the sensors can be processed to �nd the spatial position of the

sources. The following section reviews some array processing techniques.

2.4. Array processing

Fig. 2.3 schematically depicts an array of p sensors exposed to two planar wavefronts. In

general, the spatial arrangement of the array sensors is arbitrary. Some typical arrange-

ments of the sensors are shown in Fig. 2.4. The methods that we will propose in this

dissertation are applicable to general array geometry. However, for simplicity of imple-

mentation we have used uniformly spaced linear arrays in the computer simulations.
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Fig. 2.4 Some array con�gurations

Throughout this dissertation we will assume that the transmission of the wave is done

in the x-y plane. It is further assumed that the array of sensors is in the same plane

as the sources. These assumptions are not restrictive and simply are made for ease of

formulation. The results that are derived here can easily be extended to general case.

With these assumptions, the only information about the position of a source is in the

direction of arrival (DOA). The DOA is the angle between the direction of the propagation

and the broadside of the array. Fig. 2.5 depicts a planar wave arriving from a DOA �.

The phase reference point is the origin of the coordinates. The received signal at point d

is equal to s(t+ d sin �=c). If the signal is narrowband, the complex envelope of the signal

will approximately be s(t)ej!d sin �=c [24].

The location vector of an array is de�ned as the frequency response of the array for

a given DOA. For an array of p sensors, the location vector is a column vector with p

components and is represented by a(!; �) where ! and � are the frequency of processing

and the DOA. The location vector is a function of the array geometry. The location vector

of a uniform linear array with the phase reference taken at the �rst sensor is given by

a(!0; �) = [1 ej
!0d

c
sin � : : : ej

!0d

c
(p�1) sin �]T (2.17)

where d is the distance between two consecutive sensors, c is the wave velocity, !0 is the

radian frequency of the source signal, and T indicates the transpose of a vector. The
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Fig. 2.5 A single planar wavefront

location vector of a uniform linear array can also be shown as

a(�) = [1 ej�
2d

�
sin � : : : ej�

2d

�
(p�1) sin � ]T (2.18)

where � is the wavelength.

In (2.18), if 2d > � there exist �1 and �2 in [��
2
; �
2
] such that

ej�
2d

�
sin �1 = ej�

2d

�
sin �2 : (2.19)

This is called spatial aliasing. In such a case, the signals that are located at �1 and �2 give

the same array output. To clarify the terminology used for this phenomenon, consider a

uniform linear array in the wave�eld of a single narrowband far-�eld source arriving from

the direction �. The received wave�eld at the line of the array is a sinusoidal wavefrontwith

the wavelength �= sin � (see Fig. 2.6). This wave�eld is spatially sampled by the uniform

linear array. Aliasing will occur if the sampling interval is larger than half the wavelength.

Since the maximum value of sin � is one, to prevent spatial aliasing in a uniform linear

array for all �, the spacing between two consecutive sensors should be smaller than

d <
�

2
: (2.20)
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Fig. 2.6 Spatial sampling by a uniform linear array

Usually, it is assumed that d is equal to half the wavelength. In such a case the location

vector of a uniform linear array is given by a(�) = [1 ej� sin � : : : ej�(p�1) sin � ]T .

If a spatiotemporal signal is observed through a continuous aperture (continuous array)

along the x-axis, the output can be expressed as

r(x; t) = w(x)s(x; t) (2.21)

where w(x) is the weighting function of the aperture. The spectrum of the observed signal

is given by

R(!; kx) =
1

2�

Z
W (kx � k0)S(!; k0)dk0 (2.22)

where W (:) is the spectrum of the aperture weighting function. For a uniform aperture

extended in an interval with the length L,

w(x) =

8><
>:

1 jxj < L
2

0 otherwise
(2.23)

and the spectrum of the weighting function is

W (kx) =
sin(kxL=2)

kx=2
: (2.24)
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The �rst zero in the spectrum W (kx) occurs at

kx =
2�

L
: (2.25)

Two closely spaced sources can be resolved if their wavenumber is separated at least by

2�
L . This is called Rayliegh criterion. Rayleigh criterion can be used to compare the

resolution capabilities of two or more apertures. For a wavefront arriving form the DOA

�, kx =
2� sin �

�
. Thus, for a uniform linear array with the half wavelength spacing between

sensors, the Rayleigh criterion, based on the DOA, is given by

� = sin�1(
2

p� 1
): (2.26)

And for large values of p it can be approximated by

� � 2

p� 1
: (2.27)

As was depicted in Fig. 2.3 the output of the sensors is imported to an array processor.

The output of the array processor depends on the application in which the array is being

used. An array processor might be applied to signal enhancement. In such a case, a

beamformer is used to create a spatial beam that is directed towards the source. The

wavefront which is generated by the source is located in the beamwidth and can be received

by the array. The signals arriving from the angles which is not covered by the beamwidth

are received with a reduced amplitude. In the following section, some basic beamforming

methods are reviewed.

2.4.1. Beamforming

Assume that an array of p sensors is receiving the wave�eld of a single narrowband source.

The output of the i-th sensor is represented by

xi(t) = s(t� �i) + ni(t) for i = 1; : : : ; p (2.28)
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Fig. 2.7 A delay-and-sum beamformer

where �i is the delay of the signal at the i-th sensor relative to the phase reference point

and ni(t) is the noise of the i-th sensor. For a uniform linear array with the phase

reference at the �rst sensor and exposed to a source at � degrees, the delays are given by

�i = (i�1)(d=c) sin�; i = 1; : : : ; p, where d is the spacing between two consecutive sensors,

and c is the velocity of wave. It is assumed that the noise components for di�erent sensors

are uncorrelated and have the same variance.

The simplest beamformer consists of a delay-and-sum con�guration which is depicted

in Fig. 2.7. The delay at each sensor depends on the location of that sensor and the signal

direction. The output of sensors are delayed so that the signal components from the direct

direction at the output of the delay elements have the same phase. If these outputs are

shown by x0i(t), we have

x0i(t) = s(t) + ni(t+ �i) for i = 1; : : : ; p: (2.29)
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The output of the adder is given by

y(t) = p s(t) +

pX
i=1

ni(t+ �i): (2.30)

The SNR of the output can be computed as

SNRp =
p2Ejs(t)j2

EjPp
i=1 ni(t + �i)j2 : (2.31)

Since the noise components are uncorrelated and have the same power,

SNRp =
p2Ejs(t)j2
pEjni(t)j2

(2.32)

= p SNR1 (2.33)

where SNR1 is the signal-to-noise ratio at the output of a single sensor. It is seen that if

the direction of source is known and the intersensor noise components are uncorrelated,

a coherent addition of the array output can increase the SNR beyond the one of a single

sensor. The array gain is de�ned as the ratio of the SNR at the output of the array to the

SNR at the output of a single sensor [20],

G =
SNRp

SNR1

: (2.34)

For the above example the array gain is p which is the same as the number of sensors.

Thus, for a single narrowband point source the array gain can be linearly increased with

the number of sensors. Later, we will see that linear increment of the array gain is not

possible for spatially distributed sources.

The beampattern of a delay-and-sum beamformer is de�ned as

F (�) =

�����1p
pX
i=1

ej!�i(�)

�����
2

(2.35)

where the summand is the Fourier transform of the delay elements. This is the normalized

impulse response of the array to a single far-�eld source located at the broadside of the
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Fig. 2.8 The beampattern of a uniform linear array of 8 sensors.

array. For a uniform linear array with half wavelength spacing

F (�) =

�����1p
pX

i=1

ej�(i�1) sin �

�����
2

(2.36)

=

�
sin(�p sin �=2)

p sin(� sin �=2)

�2
: (2.37)

The beampattern of a uniform linear array with 8 sensors is plotted in Fig. 2.8. The �rst

zero crossing point is at sin�1(2=p). For large p this can be approximated by 2=p which

is very close to Rayleigh angle (2.27). If some point sources are located at the nulls of

the beampattern, they will be blocked and do not have any e�ect at the array output.

This can be used to null out point noise source or interference. The beampattern can be

designed so that it places nulls at the direction of these destructive noises.

The beamformer structure for wideband signals is depicted in Fig. 2.9. Since the

spectrum of the wideband signals is spread in frequency, temporal �ltering of the received

data may be required to localize the sources. The output of each sensor is �ltered by an
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FIR �lter with J � 1 delay elements. The output of these �lters are then added to form

y(t) =

pX
i=1

JX
j=1

wijxi(t� (j � 1)T ): (2.38)

where xi(t � jT ) is the output of the i-th sensor at the j-th delay element and wij is

the corresponding weight. Let us de�ne x(t) = [�T (t); : : : ; �T (t � (J � 1)T )]T , where

�(t) = [x1(t); : : : ; xp(t)]
T , and w = [�T1 ; : : : ; �

T
J ]

T , where �j = [w1j; : : : ; wpj]
T . Then the

output of the array processor can be shown as

y(t) = wHx(t) (2.39)

where H indicates the Hermitian transpose. This is a general formula which also holds for

narrowband beamformers. For narrowband sources, x(t) is a p-dimensional sensor output

vector. The average power P at the array output is given by

P = E[jy(t)j2] = wHE[x(t)x(t)H]w = wHRw (2.40)

where R is the correlation matrix of the observation vector.

In the minimum variance beamformer [9] the array weights are selected so that the

contribution of the noise and interference to the array output power is minimized. Assume

that the array location vector for the desired source is given by a. The weights are selected

by

min
w

wHRw (2.41)

s.t.wHa = 1:

The constraint in (2.41) guarantees that the signal of the source will appear at the array

output without degradation. The solution to (2.41) is given by

w =
R�1a

aHR�1a
: (2.42)
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Fig. 2.9 Broad-band beamformer

Applying (2.42) in (2.40) yields

P =
1

aHR�1a
: (2.43)

The resolution of an array processer is the capability of localizing two closely spaced signals.

The resolution of the minimum variance beamformer is higher than the conventional delay-

and-sum beamformer.

We stated earlier that the beampattern can be designed so that it places nulls in

the direction of noise or interference. This can be done by using a linearly constrained

minimum variance beamformer. The approach is based on imposing constraints on the

beampattern so that the signal passes through the beamformer and the noise and interfer-

ence cancel out. The weights of the linearly constrained minimum variance beamformer

are the solutions of

min
w

wHRw (2.44)
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s.t.CHw = f

where C is the constraint matrix and f is the response vector. The weight vector that

solves (2.44) is given by

w = R�1C[CHR�1C]�1f : (2.45)

Assuming L constraints imposed on weights, C is a p � L dimensional matrix. If w is a

real vector, it is selected with p� L degrees of freedom.

An alternative formulation of the linearly constrained minimum variance beamformer

is by using a generalized sidelobe canceler [13]. Assume that the weight vector can be

decomposed into two orthogonal components, w = w0 � vn, where w0 and vn are in the

range of C and the null space of CH , respectively. Since vn is in the null space of CH , for

w satisfying the linear constraints of (2.44), we have

w0 = C(CHC)�1f : (2.46)

Suppose that the columns of the matrix Cn form a basis for the null space of CH . It is

possible to �nd wn such that vn = Cnwn. The minimum variance beamformer is now

transformed to

min
wn

(w0 �Cnwn)
HR(w0 �Cnwn): (2.47)

It is seen that the constrained minimization (2.45) has been reduced to an unconstrained

minimization (2.47). The solution to (2.47) is given by

wn = (CH
n RCn)

�1CH
n Rw0: (2.48)

Fig. 2.10 shows implementation of a generalized sidelobe canceler. This structure is very

useful for adaptive array processing since only p � L dimensional vector wn should be

adapted. The complexity is reduced by performing the adaptation in a space with a

smaller dimensionality.

The concept of linear prediction for time series can also be used for beamforming [37].
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Fig. 2.10 The generalized sidelobe canceler

The output of one sensor is predicted based on a linear combination of the outputs of the

other sensors. Let the outputs of an array of p sensors be represented by x1(t); : : : ; xp(t).

A linear prediction beamformer selects the weights w1; : : : ; wp�1 such that

�p = Ejxp(t)�
p�1X
i=1

wixi(t)j2 (2.49)

is minimized. The orthogonality principle yields [23]

E[xp(t)x
�

j (t)] =

p�1X
i=1

wiE[xi(t)x
�

j(t)] for j = 1; : : : ; p� 1: (2.50)

These equation can be arranged as

Rw = rp (2.51)

where R is a (p� 1)� (p� 1) matrix of the entries Rij = E[xi(t)x
�

j ] and rp is a (p� 1)� 1
vector with the i-th component ri = E[xp(t)x

�

i (t)]. Assuming that R is full rank, the

weights can be found from

w = R�1rp (2.52)

It can be shown that the resolution of the linear prediction beamformer is higher than

that for the minimum variance and the delay-and-sum techniques [24].
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2.4.2. Subspace decomposition methods

We saw that the width of the mainlobe of the beampattern for a uniform linear array

with half wavelength spacing is inversely proportional to the number of sensors. If two

sources have a spacing smaller than the width of the mainlobe, they cannot be resolved

by using a delay-and-sum beamformer. To increase the resolution of a beamformer it is

necessary to increase the number of sensors. In practice, physical limitations do not allow

a very large array aperture. Furthermore, the spatial correlation of the signal is often a

decreasing function of distance. If the spacing between two sensors is larger than the spatial

correlation of the signal, their output cannot be coherently added to increase the array

gain. For these reasons alternative methods which achieve the same resolution quality

with a smaller array aperture should be considered. The array processing techniques

which are based on the signal and noise subspace decomposition have higher resolution

than beamforming methods.

The objective of introducing high resolution methods is to obtain a better performance

in �eld characterization. Any �eld characterization problem can be decomposed into two

parts: detection and localization. By detection we mean a method that can determine

the number of signals which are arriving at the array. The localization methods are the

techniques that are used to estimate the spatial parameters of the sources.

Assume that an array of p sensors receives the wave�eld of q < p narrowband sources.

For a unique localization, the number of sources should be smaller than the number of

sensors [5] [58]. The i-th snapshot of the array output is represented by

xi = A(�)si + ni (2.53)

where xi is the p� 1 observation vector, si is the complex envelope of the source signals

arranged in a q�1 vector, ni is the p�1 noise vector, and A(�) = [a(�1); : : : ; a(�q)] is the

p� q location matrix. The array manifold is de�ned as A = fa(�)j� 2 �g where � is the

set of all values of �. It is assumed that the array manifold is known and any p location

vectors a(�i); i = 1; : : : ; p, with distinct �i's are linearly independent.
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The signal snapshots are modeled as independent identically distributed (i.i.d.) se-

quence of complex circular Gaussian random vectors with an unknown covariance matrix

S. The noise snapshots are i.i.d. sequence of complex circular Gaussian random vectors

with unknown covariance matrix �2I and are independent of the signal samples. General-

ization to nonwhite noise is by pre-whitening [4]. With these assumptions, the observation

vectors will be the samples of a complex circular Gaussian process with zero mean and

the correlation matrix

R = E[xix
H
i j�] (2.54)

= A(�)SAH(�) + �2I (2.55)

where � is the q � 1 vector of DOAs. As it is seen, the correlation matrix R is a function

of q; �; �2 and S: The objective in a detection and localization problem is to estimate the

number of sources q and their DOAs �.

Assume that the signals of the sources are noncoherent. The coherent case will be

considered later. The eigen-decomposition of the array correlation matrix R is represented

by

R = V�VH (2.56)

where � is the diagonal matrix of the eigenvalues �i; i = 1; : : : ; p, arranged in nonincreas-

ing order and V is the matrix of corresponding eigenvectors. It is possible to show that

[30]

�i = �2 for i = q + 1; : : : ; p: (2.57)

Since the last p � q eigenvalues of R are equal to the noise variance, they are called the

noise eigenvalues. The contribution of the signal to the correlation matrix is only along

the �rst q eigenvectors. These eigenvectors correspond to the signal eigenvalues. The

signal subspace is de�ned as the subspace spanned by the signal component. Assuming

noncoherent sources, the signal subspace is the span of the columns of the array location

matrix. The dimensionality of the signal subspace is equal to the number of noncoherent

sources q. From the structure of the array correlation matrix (2.55) the signal subspace
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is identical to the span of the �rst q columns of V. The noise subspace is de�ned as the

orthogonal complement of the signal subspace. The dimensionality of the noise subspace

for noncoherent sources is p� q.
Many array processing methods are based on the decomposition of the observation

space into the signal and noise subspaces. The �rst step in these techniques is to estimate

the signal and noise subspaces by decomposing the array correlation matrix into its eigen-

structure form. The subspace spanned by the eigenvectors ofR corresponding to dominant

eigenvalues is the signal subspace. The detection methods use the fact that the signal

eigenvalues are larger than the noise eigenvalues. These techniques estimate the number

of signals by separating the dominant eigenvalues of the correlation matrix or by choosing

the eigenvalues that optimize a given information theoretic criterion. These methods will

be reviewed in the following section.

2.4.2.1. Detection

The techniques that can be used to determine the number of sources are called detection

methods. In any detection problem there are two or more hypotheses which are represented

by Hi; i = 0; : : : ;M � 1, where M is the number of hypotheses. There is a probability

associated with each hypothesis, say p(Hi). The detection problem is then to select an

appropriate hypothesis by optimizing a cost function. In array processing it is frequently

assumed that Hi is the hypothesis that the wave�eld is being generated by i sources. For a

unique localization of the sources it is required that the number of sources be smaller than

the number of sensors. Thus, the number of hypotheses M is p. It is further assumed that

p(Hi) is uniform which indicates that no prior information about the number of sources

is available.

In the previous section, we mentioned that for a scenario of q noncoherent sources the

smallest eigenvalue of the array correlation matrix has a multiplicity p�q. This fact can be
used to detect the number of sources. Let the hypothesis Hi be that the smallest eigenvalue

of the array correlation matrix R has a multiplicity p� i. If we had the correlation matrix

of the array, we could simply count the multiplicity of the smallest identical eigenvalues.
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In practice, the array correlation matrix is estimated by using sample correlation matrix

�R =
1

N

NX
i=1

xix
H
i : (2.58)

Since the observation time is �nite, the last p�q eigenvalues of �R are not equal. In such a

case, the number of sources is estimated by examining the di�erences between consecutive

eigenvalues. We represent the ordered eigenvalues of �R by ��i; i = 1; : : : ; p. For a high

SNR and q sources, the di�erence ��q � ��q+1 is large.

There are two shortcomings with this method of detection. First, if the SNR is low,

��q is close to ��q+1 and the detection method may not be accurate. Second, if some of the

sources are completely correlated (coherent), the multiplicity of the smallest eigenvalue of

R is not equal to p� q. In other words, the coherent sources cannot be detected by using

this method. For coherent signal scenarios rank of the noise-free correlation matrix is

smaller than the number of signals. To apply this method, a smoothing process is required

to increase the rank of the noise-free correlation matrix [31].

An alternative detection method is based on the information theoretic approach. Two

major information theoretic criteria are Akaike's information criterion (AIC) [1], and Ris-

sannen's minimum description length (MDL) [25]. These methods minimize the Kullback-

Leibler distance between the hypothetical model and the observed data. Mathematically,

these two criteria are shown as

AIC(N) = � log f(XN ; �̂N ) + k (2.59)

MDL(N) = � log f(XN ; �̂N ) +
k

2
logN (2.60)

whereXN is the p�N matrix of observations up to time N , �̂N is the maximum likelihood

(ML) estimate of the parameter vector based on N snapshots, k is the number of free

elements of the parameter vector, and f is the generating model class (probability density

function). In these formulae, the �rst term is the log-likelihood function of the observation

vectors and the second term penalizes overparameterization. The detection is performed

by computing these criteria for all the models of order ~q 2 f0; 1; : : : ; p� 1g. Choosing the
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minimum of the computed criterion over all ~q gives the estimate of the number of sources.

It has been shown that the AIC detector is not consistent and tends to overestimate the

true order of the system for a large number of observations [55]. The MDL method on the

other hand is a consistent detector. In both methods bu�ering of data is required.

In Chapter 3, a new detection method is developed using the predictive stochastic

complexity (PSC). The PSC principle is based on the concept of predictive coding [27].

The PSC is the length of the coded data which is produced by a predictive encoder. The

codelength minimization is an appropriate criterion for model selection due to the fact

that the best model which �ts to data is the one that gives the most information about

it; having more information results in a smaller codelength. The predictive stochastic

complexity of the observation vector xi; i = 1; : : : ; N , is de�ned as

PSC(N) = �
NX
i=1

log f(xij�̂i�1) (2.61)

where f(xj�) is the conditional parametric probability density function of the observation

vector, and �̂i�1 is the ML estimate of the parameter vector with respect to the observa-

tions up to time (i�1). Unlike AIC and MDL, the PSC is a recursive detector and can be

used on-line. Furthermore, it is a consistent estimator and asymptotically estimates the

true order of system.

2.4.2.2. Localization

The objectives of an array processor for �eld characterization is to determine the number

of signals and estimate their spatial parameters. Parameter estimation means localization

of the signals by estimating their DOAs. In the literature, there are several approaches

to DOA estimation. Here, we only consider multiple signal classi�cation (MUSIC) [30]

and estimation of the signal parameters via rotational invariance technique (ESPRIT) [29]

which are the two most popular methods.

The MUSIC algorithm uses the fact that the span of the location matrix is the same

as the span of the �rst q eigenvectors of the correlation matrix. Since the eigenvectors
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form an orthonormal basis for the observation space, we have

aH(�i) ej = 0 for i = 1; : : : ; q; j = q + 1; : : : ; p (2.62)

where the ej ; j = 1; : : : ; p, are the eigenvectors of the correlation matrix arranged such

that their corresponding eigenvalues are in nonincreasing order. Using this property, the

MUSIC frequency estimator is given by

PMUSIC = max
�

1

aH(�)EnEH
n a(�)

(2.63)

where En = [eq+1; : : : ; ep] is the noise eigenvector matrix. To perform the maximization,

the array manifold is searched for the maxima of the MUSIC spectrum. This requires

complete knowledge of the array manifold. For practical scenarios with imperfect knowl-

edge of the sensors, a calibration step is required. The calibration of array for each angle

� is the measurement of the array response for a source located at �. This process is

cumbersome and usually needs a large memory to store the calibrated data. Furthermore,

if the characteristics of the sensors change with time, the calibration process should be

reperformed from time to time.

ESPRIT is an alternative method that does not need a calibration step. In the ESPRIT

algorithm it is assumed that the signals are received by an array of matched doublets.

Suppose that q far-�eld sources arrive at an array of p doublets. Each doublet consists

of two identical sensors. The array can be decomposed into two subarrays such that

the subarray are completely identical and are displaced from each other with a known

directional vector ~�. Fig. 2.11 shows a con�guration with two uniform linear subarrays.

The outputs of the subarrays are represented by p-vectors x(t) and y(t) with the i-th

components

xi(t) =

qX
l=1

sl(t� �i(�l)) + nxi(t); (2.64)

yi(t) =

qX
l=1

sl(t� �i(�l)� �d(�l)) + nyi(t); (2.65)
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Fig. 2.11 An array of matched doublets

for i = 1; : : : ; p, where sl is the l-th source signal, �l is angle between the wavefront of the

l-th source and vector ~�, �i(�l) is the propagation delay for the l-th source at the i-th

sensor of the �rst subarray with respect to the reference point and �d(�l) = � sin �l=c is the

delay in the propagation between the two subarrays, where c is the propagation velocity

and � is the distance between two subarrays. For linear array with uniform spacing,

�i(�l) = (i� 1)d sin �l=c, where d is the spacing between two consecutive sensors and the

reference point is at the �rst sensor of the �rst subarray. The noise components of the

subarrays are represented by nxi(t) and nyi(t).

The complex envelope representation of (2.64) and (2.65) in vector form is given by

x = As+ nx; (2.66)

y = A�s+ ny : (2.67)

In this equation,

� = diag(e�j!�d(�1); : : : ; e�j!�d(�1)) (2.68)

is the rotation matrix of the phase delays between the two subarrays. The DOAs are

found by estimating the diagonal elements of the rotation matrix � as follows [28].

Let us de�ne the vectors z and nz by

z =

2
64 x

y

3
75 ; nz =

2
64 nx

ny

3
75 : (2.69)
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The correlation matrices of z and nz are represented by Rzz and Rnn, respectively. The

generalized eigenvalue decomposition of the matrix pencil (Rzz ;Rnn) is given by

Rzz
~E = Rnn

~E� (2.70)

where � is the diagonal matrix of generalized eigenvalues arranged in nonincreasing order.

The matrix of generalized eigenvectors can be used to generate

2
64 Ex

Ey

3
75 = Rnn

~Eq (2.71)

where ~Eq is a submatrix of ~E containing the �rst q columns. We rearrange Ex and Ey in

the following form and compute the eigen-decomposition

2
64 EH

x

EH
y

3
75 [Ex Ey ] = E�EH (2.72)

Let E be partitioned into q � q matrices such as

E =

2
64 E11 E12

E21 E22

3
75 : (2.73)

The diagonal elements of � are then given by

�k = �k(�E12E
�1
22 ); for k = 1; : : : ; q (2.74)

where �k(B) is the k-th eigenvalue of B.

2.5. Wideband array processing

The MUSIC and ESPRIT algorithms were originally developed for narrowband signal

localization. They cannot be directly applied to wideband cases. For wideband signals, the

frequency-wavenumber spectrum is extended along the frequency axis. Since the spectrum
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is spread in frequency, a temporal �ltering is required to separate signals. The role of a

temporal �lter is to use the content of the frequency spectrum of the signals to extract

the useful information. There are di�erent approaches to wideband array processing.

In some methods the observation vectors are used to construct a wideband correlation

matrix. In [35] the concept of the signal and noise subspaces, which is originally derived

for narrowband signal models, is extended to wideband signals. In this method, the

elements of the vector space are the signals with rational spectrum. Using these concepts,

a MUSIC type algorithm is derived for wideband signal localization.

Alternative methods use sampling of the sensors output in the frequency domain to

create narrowband signals. In the incoherent signal-subspace method (ISM) [56], the

narrowband signals are processed to estimate the DOAs. Then these results are combined

to obtain the �nal solution. It has been shown that coherent sources cannot be resolved

by this approach. Furthermore, the e�ectiveness of this method deteriorates for closely

separated sources and low SNR.

The coherent signal-subspace method (CSM) [52] is an alternative to ISM that im-

proves the estimation by condensing the energy of narrowband signals in a pre-de�ned

subspace. This process is called focusing. The universal correlation matrix that has been

generated by focusing narrowband components, has the characteristics of a narrowbnad

correlation matrix. Any narrowband detection method can be applied to the universal

correlation matrix to localize the signals. Wang and Kaveh [52] propose using the MUSIC

algorithm for DOA estimation.

Assume that the output of sensors is decomposed into nonoverlapping snapshots of

J samples each. An FFT algorithm is applied to each snapshot to sample the signal

spectrum in J points. Let us represent these samples by xj ; j = 1; : : : ; J . The di�culty

in processing these vectors is that the signal subspace is a function of the processing

frequency and is di�erent for di�erent frequency bins. The CSM algorithm transforms

these samples into the focusing subspace by

yj = Tjxj j = 1; : : : ; J; (2.75)
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where Tj is the focusing matrix and yj is the focused observation vector for the j-th

frequency bin. In [17] the focusing matrices are the solution of

min
Tj

kA0 �TjAjk (2.76)

s.t. TH
j Tj = I (2.77)

where A0 is the focusing location matrix and Aj is the location matrix at the j-th fre-

quency bin. The signal subspaces of the yj 's are identical or very close to each other. Thus

signal subspace processing of these narrowband signals can be performed by combining the

correlation matrices of these focused observation vectors. The CSM algorithm averages

the correlation matrices at di�erent frequency bins to generate a universal narrowband

correlation matrix. Then the MUSIC algorithm is applied to estimate the DOAs.

It has been shown that the CSM improves the resolution threshold and resolves coher-

ent sources [52]. Despite the fact that CSM is very e�ective in wideband signal detection

and estimation, it su�ers from an asymptotic bias of the peaks as a result of error in

estimated focusing DOAs [36]. The bias increases with the bandwidth of the sources and

deviation of the focusing DOAs from the true directions of arrival. In Chapter 4, we will

show that with a proper selection of the focusing frequency, the estimation bias can be

decreased. However, in general, by using the CSM algorithm an unbiased estimation of

the DOA is not possible.

Two alternative methods have been evolved from the CSM algorithm that can asymp-

totically generate unbiased estimates of the DOAs. In [7] a broadband signal-subspace

spatial-spectrum estimation (BASS-ALE) algorithm is proposed. The method forms a

broadband covariance matrix with the low rank character of broadband signal observa-

tion. The dimensionality of the signal subspace is equal to the source time-bandwidth

product [6]. In this method, the estimation bias is reduced by increasing the dimensional-

ity of the location vectors. The trade-o� is an increase in the computational complexity.

A second method for bias reduction in wideband array processing was proposed in

[22]. The algorithm is based on the steered covariance matrix (STCM). In this technique,



CHAPTER 2. ARRAY PROCESSING TECHNIQUES 41

delay elements are introduced at the front-end of the array and the covariance matrix is

computed after the delays. With a proper choice of the delays, a steering beam can be

formed. It has been shown that when the steering beam coincides with a true DOA, the

STCM contains a dc term equal to the power of the corresponding source regardless of its

spectral signature. Thus, by steering the space and locating the peaks of the dc component

in STCM, the DOA is estimated. The bias is reduced by forming a broadband covariance

matrix for which the signal subspace has a rank one representation. An increase in the

computational complexity is the price to be paid.

In Chapter 4, an optimal method for focusing subspace selection in the CSM algorithm

is introduced. The method is based on minimizing a subspace �tting error. The subspace

�tting error is de�ned as the Euclidean distance between the focusing location matrix and

the transformed location matrix at each frequency bin. The subspace �tting error for the

j-th frequency is de�ned as

�j = kA0 � TjAjk (2.78)

where k:k is the Frobenius matrix norm. In the past, the focusing frequency of A0 has

been chosen to be the center frequency of the spectrum of the signals. If the spectrum of

the signal is not symmetric around the center frequency, or the sampling in the frequency

domain is not uniform, this choice is not optimal. Here, we choose a focusing frequency

which is selected by

min
f0

min
Tj

JX
j=1

wjkA0 �TjAjk2 (2.79)

s.t. TH
j Tj = I;

A0 2 A(�)

where A(�) is the set of all location matrices for given DOA �, and wj is a weighting

factor proportional to the SNR at the j-th frequency bin with
JX
j=1

wj = 1. We show that

by using the proposed method for focusing subspace selection in the CSM algorithm, the

bias of the DOA estimate is minimized and the resolution threshold SNR is reduced.
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Although we have found a method to minimize the bias of the estimation in the CSM

algorithm, it is not possible to produce unbiased estimates by using this technique. In

Chapter 5, we introduce a new method for wideband array processing. The method

is termed two-sided correlation transformation (TCT) and is based on computing the

focusing transformation matrices by

min
Uj

kP0 �UjPjU
H
j k for j = 1; : : : ; J (2.80)

s:t: UH
j Uj = I;

where Pj is the correlation matrix of the sensor output at the j-th frequency bin in a

noise-free environment, P0 is the focusing noise-free correlation matrix, and Uj is the j-th

transformation matrix. The TCT method has a lower resolution threshold SNR and a

smaller bias than the CSM algorithm. Also it is asymptotically unbiased. We show that

the generalized variance of the TCT algorithm is smaller than the CSM method. This

results in an estimation of the DOAs with a smaller variance.

2.6. Distributed sources

In array processing it is frequently assumed that the signals are generated by point sources.

However, many practical examples can be found where the point source assumption is an

unrealistic modeling of the sources. In an undersea echo beam sounder, the re
ection of

the signal and penetration into the lower levels of the seabed creates a spatial distribu-

tion of the receiving waveform [19]. In radar, the received signal is a superposition of

the re
ections of the pulse from di�erent parts of the target. If the target is spread in

range, it appears as a distributed source [50]. In sonar, multipath exhibits an angularly

extended interference [14]. This interference can be treated as a spatially distributed sig-

nal. A source distribution in space can also be observed in the transmission of radio-waves

through ionospheric and tropospheric scatter links, and the propagation of audio signals

in a reverberant room.

For narrowband point-source con�gurations, the dimension of the signal subspace is
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equal to the number of noncoherent signals. Thus, each source has a one-dimensional

representation in the signal subspace. In previous works, distributed sources have been

viewed as a combination of closely spaced point sources [19]. For a good approximation,

the number of point sources should be large. If the number of point sources increases

beyond the number of sensors, a unique solution for the localization problem may not

exist. In such a case, the corresponding location matrix spans the whole space and the

noise subspace is empty. This explains why the conventional array processing techniques

such as MUSIC [30] and ESPRIT [28], which are based on the signal and noise subspace

decomposition for point source scenarios, often lead to erroneous results when applied to

such models of distributed sources [19].

In Chapter 6, we introduce a technique for localization of distributed sources. The

method is based on generalizing the MUSIC algorithm for extended source applications.

We assume that the correlation kernel of the distributed source belongs to a parametric

class of functions. The parameter vector of the correlation kernel is estimated by locating

the peaks of

 ̂ = argmax
 

1Z �

2

��

2

Z �

2

��

2

aH(�)Enp(�; �0; )EH
n a(�

0)d�d�0
(2.81)

where a(�) is the array location vector, En is the noise eigenvector matrix, and p(�; �0; )

is the correlation kernel for the signals. The parametric assumption for the correlation

kernel is necessary for uniqueness of localization. The method has been formulated for

coherently and incoherently distributed sources. We compare the new technique with the

conventional MUSIC algorithm. The resolution SNR for the new technique is considerably

lower than for the MUSIC algorithm.



Chapter 3

Signal Detection

The �rst step in processing of spatiotemporal signals using an array of sensors is to ascer-

tain the number of the sources that generate the wave�eld. The process of determining

the number of sources is often called detection. There are di�erent approaches to signal

detection. Recently, much attention has been given to information theoretic criteria [55]

[57] [62] [59] [60]. Two important information theoretic criteria are Akaike's informa-

tion criterion (AIC) [1] and the minimum description length (MDL) [25]. These methods

minimize the Kullback-Leibler distance between the hypothetical model and the observed

data. The number of sources is detected by computing these criteria for the models of

order q̂ 2 f0; 1; : : : ; p�1g and choosing the one which gives the minimum distance. A gen-

eral class of information theoretic criteria evolving from MDL is also repored in literature

[61] [63].

The AIC and MDL criteria consist of the log-likelihood function of the observation

and an additive over-parameterization term. The over-parameterization term in the AIC

criterion is the number of free parameters. It has been shown that the AIC criterion is not

consistent [55]. AIC tends to overestimate the number of parameters as the observation

length increases. This can be attributed to the fact that the over-parameterization term

is independent of the observation length while the log-likelihood function grows with the

observation length.

The MDL is based on minimization of the length of the code that is required to describe

44
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data. Codelength minimization is appropriate for model selection since the model which

best �ts the data is the one that gives the most information about it | having more

information results in a smaller codelength. Coding of data in the MDL criterion is

performed in two steps. First, the data is coded using a uniquely decodable pre�x code.

Then the parameter vector is coded and added as a preample to the codeword of data. The

over-parameterization term in the MDL principle represents the number of digits required

to encode the parameter vector to an optimal precision [26]. Restriction of the coding

method to a two-step scheme in the MDL criterion increases the codelength. It has been

shown that the MDL is consistent [55]. For both the AIC and MDL methods, bu�ering of

data is essential.

In this chapter, we develop an algorithm based on Rissanen's predictive stochastic com-

plexity (PSC) [26] [27]. The PSC criterion is the addition of the log-likelihood functions

of the observation vectors such that at each time instant the maximum likelihood (ML)

estimate of the parameter based on the past data is used in the probability distribution

function. It has been shown that the PSC achieves the shortest codelength of the data

relative to the generating model class [27]. The algorithm is consistent and its structure

makes it suitable for on-line use.

3.1. The PSC criterion

Suppose that an array of p sensors is exposed to q < p far-�eld sources. The signals

from the sources can be partially or fully correlated. The fully correlated case (also

called the coherent case) arises from multipath propagation or smart jamming and is of

practical importance in signal processing. We assume narrowband signals with known

center frequency. If the size of the array is much smaller than the range of the sources, it

can be assumed that the array of sensors is in the far �eld of the sources. With this model,

the arriving wavefronts at the array are planar and do not carry any information about

the range of the signals. It is also frequently assumed that the source and the sensors are

in the same plane. In such a case, the only information about the position of a source is

its direction-of-arrival (DOA). Assume that the signals arrive at the array from distinct
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directions �1; : : : ; �q: The objective is to �nd the number of sources q and their directions

of arrival �q = [�1; : : : ; �q].

The i-th snapshot of the array output is represented by

xi = A(�q)si + ni (3.1)

where xi is the p� 1 observation vector, si is the q � 1 signal vector, ni is the p� 1 noise

vector, and A(�q) = [a(�1) : : :a(�q)] is the p � q location matrix. The array manifold is

de�ned by A = fa(�)j� 2 �g where � is the region of search. It is assumed that the

array manifold is known and any p location vectors a(�i); i = 1; : : : ; p, with distinct �i's

are linearly independent. The methods that we present in this chapter can be applied

to a general array manifold. However, for simplicity we have used linear arrays in our

simulations. For a uniformly spaced linear array the i-th location vector is represented by

a(�i) = [1 �i �
2
i : : : �

p�1
i ]T with �i = exp(j!0d sin �i=c), where d is the distance between

two consecutive sensors, c is the wave speed, and !0 is the center frequency of the source

signal.

The signal snapshots are modeled as an independent identically distributed (i.i.d.)

sequence of complex circular Gaussian random vectors with an unknown covariance matrix

Sq. The noise snapshots are i.i.d. sequence of complex circular Gaussian random vectors

with unknown covariance matrix �2I, independent of the signal samples. Pre-whitening

can be used to accommodate non-white noise. With these assumptions, the observation

vectors will be the samples of a complex circular Gaussian process with zero mean and

correlation matrix

Rq = E[xxHjq; �q; �2;Sq]

= A(�q)SqAH(�q) + �2I: (3.2)

The conditional probability density function of the observation vector is given by

f(xj�q) = 1

�p jRqj expf�x
H [Rq]�1xg (3.3)
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where j:j represents the determinant of a matrix.
The correlation matrix Rq is a function of the parameter set � = [q; �q; �2;Sq]: The

objective in a detection and localization problem is to estimate the number of sources

q and their DOAs �q. It might be thought that the unknown parameters of Rq can be

estimated by jointly maximizing the likelihood function. However, the maximum allowable

value of the likelihood function is an increasing function of the order of the system. In

other words, direct ML estimation always gives the maximum value for the number of

sources q. For this reason, the AIC and MDL algorithms include a second term which is

added to the log-likelihood function to penalize over-parameterization.

Mathematically, the AIC and MDL criteria are represented by

AIC(N) = � log f(XN j�̂N ) + k (3.4)

MDL(N) = � log f(XN j�̂N ) +
k

2
logN (3.5)

where XN is the p � N matrix of observations up to time N , �̂N is the ML estimate

of the parameter vector based on N snapshots, k is the number of free elements of the

parameter vector, and f is the generating model class (probability density function). In

these formulae, the �rst term is the log-likelihood function of the observation vectors and

the second term compensates for over-parameterization.

The predictive stochastic complexity of the observation vectors xi; i = 1; : : : ; N; is

de�ned as

PSC(N) = �
NX
i=1

log f(xij�̂i�1) (3.6)

where �̂i�1 is the ML estimate of the parameter vector with respect to the observations

up to time (i� 1). The PSC principle is based on predictive coding of data. At each time

instant the parameter vector is selected by using the past observations. The i-th term,

� log f(xij�̂i�1), is basically the codelength of the prediction error [27].
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3.2. Detection of noncoherent sources

It is assumed that q < p, which means q 2 P = f0; 1; : : : ; p � 1g: For any k 2 P , an
appropriate model of order k can be constructed. In order selection methods, p models

run simultaneously. The output of array for a given k 2 P is expressed as

xi = A(�k)ski + ni (3.7)

where A(�k) is the p � k parameterized location matrix with respect to the parameter

vector �k, and ski (t) represents a k � 1 signal vector. The conditional probability density

function of the observation vector for model k is given by

f(xjRk) =
1

�p jRk j expf�x
H [Rk ]�1xg (3.8)

where Rk is the correlation matrix of the observation vector for the k-th model.

In this chapter, the predictive stochastic complexity is computed for each model and

is minimized over all models to estimate q. From (3.8) the PSC for a model of order k at

time instant N is given by

PSCk(N) = �
NX
i=1

log f(xijR̂k
i�1)

=
NX
i=1

�
log jR̂k

i�1j+ xHi [R̂
k
i�1]

�1xi

�
(3.9)

where R̂k
i�1 is the ML estimate of the correlation matrix for the model of order k based

on the observations up to time (i� 1).

The sample correlation matrix

�Ri�1 =
1

i� 1

i�1X
l=1

xlx
H
l (3.10)

is used to determine the ML estimate of the true correlation matrix. Assume that

��j ; j = 1; : : : ; p, are the eigenvalues of �Ri�1 arranged in nonincreasing order with the
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corresponding eigenvectors �vj ; j = 1; : : : ; p. It is possible to show that the eigenvalues and

eigenvectors of the ML estimator R̂k
i�1 are given by [2]

�̂j = ��j for j = 1; : : : ; k (3.11)

�̂j =
1

p� k
pX

l=k+1

��l for j = k + 1; : : : ; p (3.12)

v̂j = �vj for j = 1; : : : ; p (3.13)

Using these eigenvalues and eigenvectors, R̂k
i�1 is found for each model. Then, the PSC

criterion is computed for all orders and the minimum is used to estimate the number of

signals.

The method that is proposed here for the ML estimation of Rk uses the fact that the

correlation matrix of the k-th model can be expressed as Rk = Qk + �2I, where Qk is

a positive de�nite matrix with rank k < p. The structure of Qk is not exploited in this

approach. The only information used is the multiplicity of the smallest eigenvalue. The

drawback of the method is that when applied to coherent signals it does not estimate

the true number of sources. However, it can be used successfully in noncoherent signal

detection. We have compared this version of the PSC algorithm with the method of Wax

and Kailath [55]. The results are presented in Section 3.8.

3.3. Subspace Decomposition

In order to handle coherent sources, we will make use of a subspace decomposition. Let

us assume that the p-dimensional complex observation vector space is represented by

ICp. In the subspace decomposition approach, this vector space is decomposed into two

orthogonal subspaces called the signal and the noise subspaces. The signal subspace is

a subspace which is spanned by the column vectors of the location matrix A(�q). For

noncoherent sources the column span of A(�q) coincides with the span of the eigenvectors

of Rq corresponding to the q largest eigenvalues. Assuming that a one-to-one relationship

exists between A(�q) and �q, an estimate of the signal subspace can be obtained through
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estimation of the DOAs. The ML estimate of the signal subspace for a model of order k

at time instant i is shown by ICk
si
. This is also the column span of the matrix A(�̂

k

i ). The

dimensionality of ICk
si
is k. The noise subspace, ICk

ni
, is the orthogonal complement of the

signal subspace. The dimensionality of the noise subspace for a model with k signals is

(p� k): The true signal and noise subspaces are represented by ICq
s and ICq

n, respectively.

It should be noted that once the signal subspace is known, the corresponding DOAs can be

determined uniquely. In Appendix A, we prove the following theorem on the uniqueness

of the signal and noise subspace decomposition.

Theorem 3.1. For a �xed �q the subspace decomposition is unique and for any subspace

decomposition there is a unique �q that can generate that decomposition. 2

The projection matrices onto the signal and noise subspaces are given by

Ps(�
q) = A(�q)

�
AH(�q)A(�q)

�
�1
AH(�q) (3.14)

Pn(�
q) = I� Ps(�

q): (3.15)

Using these matrices the observation vector can be decomposed into two orthogonal com-

ponents

x = Ps(�
q)x+ Pn(�

q)x (3.16)

= xs + xn: (3.17)

Note that the component of the observation vector in the noise subspace xn is due to the

additive noise only and is independent of the signal and the component of noise in the

signal subspace. Thus the correlation matrix of the array output can be represented as

Rq = Rq
s +Rq

n (3.18)

where

Rq
s = Ps(�

q)RqPs(�
q) (3.19)
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Rq
n = Pn(�

q)RqPn(�
q) (3.20)

are the projections of the correlation matrix onto the signal and the noise subspaces,

respectively. Using this formulation, the ML estimation of the correlation matrix can be

formed by adding the ML estimates of Rq
s and R

q
n.

Lemma 3.1. Let A, B be n � n Hermitian matrices orthogonal to each other such that

AHB = BHA = 0. If the matrix C is given by

C = A+B (3.21)

where C is full rank, then

jCj = �(A) �(B) (3.22)

where j:j is the determinant, and �(:) represents the multiplication of the nonzero eigen-

values.

Proof: Assume that Va and Vb are the eigenvectors of A and B corresponding to nonzero

eigenvalues. Then C can be written as

C = Va�aV
H
a +Vb�bV

H
b

= V

2
64 �a 0

0 �b

3
75VH (3.23)

where V = [VaVb]. Since C is a full rank Hermitian matrix it is unitarily diagonalizable

and the orthonormal matrix V is its eigenvalue matrix . Thus the determinant of C is

equal to

jCj = j�aj j�bj: (3.24)

Note that j�aj and j�bj are the multiplication of the nonzero eigenvalues of A and B. 2
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Since the matrices Rq
s and R

q
n satisfy the conditions of Lemma 3.1, the determinant

of the true correlation matrix can be expressed as

jRqj = �(Rq
s) �(R

q
n) (3.25)

where �(B) is the product of nonzero eigenvalues of B.

3.4. Detection of coherent sources

The correlation matrix Qk is of the form A(�k)SkAH(�k). For noncoherent signals Sk is

a k � k Hermitian positive de�nite matrix of full rank. When some signals are coherent

the rank of Sk is smaller than k. The structure of Qk can be exploited to derive a method

that can be applied to coherent signal scenarios. Note that for a full rank matrix Sk , the

column span ofA(�k) is the same as the span of the eigenvectors of the correlation matrix

Rk corresponding to the k largest eigenvalues. This is an important fact that permits use

of the subspace decomposition method. In the sequel, we use this concept to develop a

PSC algorithm that can be applied to coherent and noncoherent signal detection.

In the preceding section, we showed that the true correlation matrix of the array output

can be represented as a sum of two orthogonal matrices Rq
s and R

q
n. It was also proved

that the determinant of Rq is equal to multiplication of the nonzero eigenvalues of Rq
s and

Rq
n. In practice the true correlation matrix is unknown and is estimated by the sample

correlation matrix. Similarly, we can project the sample correlation matrix �Ri�1 onto

the signal and noise subspaces. The projected correlation matrices for the k-th model are

shown as

�Rk
si
= Ps(�

k) �RiPs(�
k) (3.26)

�Rk
ni

= Pn(�
k) �RiPn(�

k): (3.27)

We use these matrices to �nd the ML estimate of the correlation matrix for the k-th model.

The ML estimate of the correlation matrix for the k-th model and the (i � 1)-th
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snapshot can be represented by

R̂k
i�1 = R̂k

si�1
+ R̂k

ni�1
(3.28)

where R̂k
si�1

and R̂k
ni�1

are the ML estimates of the projection of the correlation matrices

onto the signal and the noise subspaces. If �̂
k

i�1 is the ML estimator of the DOAs [2]

R̂k
si�1

= �Rk
si�1

: (3.29)

With a similar method it is possible to show that R̂k
ni�1

has the same eigenvectors as

�Rk
ni�1

and a single eigenvalue with multiplicity (p� k) which is found from

�̂2(�̂
k

i�1) =
1

p� k tr
�Rk
ni�1

: (3.30)

Note that R̂k
ni�1

can be obtained by applying a linear transformation Tk
i on the matrix

�Rk
ni�1

such as

R̂k
ni�1

= Tk
i�1

�Rk
ni�1

(3.31)

Tk
i�1 =

�Vn;p�kdiag

2
4 �̂2(�̂

k

i�1)

�j( �Rni�1)

3
5 �VH

n;p�k (3.32)

where �j( �Rni�1); j = 1; : : : ; p � k, are the nonzero eigenvalues of �Rni�1 , and
�Vn;p�k is

the p� (p� k) matrix of corresponding eigenvectors. The diag[:] is a representation for a

diagonal matrix that has been formed by the elements in the brackets.

The ML estimate of the determinant of the correlation matrix is determined by the

multiplication of the nonzero eigenvalues of its projected components

jR̂k
i�1j = �(R̂k

si�1
) �(R̂k

ni�1
) (3.33)

where from (3.29) and (3.30)

�(R̂k
si�1

) = �( �Rk
si�1

) (3.34)
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�(R̂k
ni�1

) =
�
�̂2(�̂

k

i�1)
�p�k

: (3.35)

Using the de�nition of the PSC and these results, we have

PSCk(N) =
NX
i=1

�
log jR̂k

i�1j+ xHi [R̂
k
i�1]

�1xi

�

=
NX
i=1

h
log �(R̂k

si�1
) log �(R̂k

ni�1
) + xHi (R̂

k
si�1

+ R̂k
ni�1

)�1xi
i

=
NX
i=1

h
log �( �Rk

si�1
) + (p� k) log( 1

p� k tr
�Rk
ni�1

)

+xHi (
�Rk
si�1

+Tk
i�1

�Rk
ni�1

)�1xi

i
: (3.36)

Unlike the MDL method which has separate terms to account for coding the data and

coding the model, the PSC has no such easily indenti�able terms. It is seen that the

computation of PSC depends on the estimation of the angles of arrival �̂
k

i�1. In the

original version of the PSC algorithm, the ML estimate of the parameter vector is used.

In the following section, we propose a suboptimal method for DOA estimation which is

computationally more attractive. In a later section we discuss how PSC works for coherent

source detection.

3.5. Estimation of the DOAs

To obtain �̂
k

i�1 an estimation problem has to be solved. The ML estimator of the DOAs

for the stochastic signal model is given by

�̂
k

i�1 = argmin
 

k

n
log
h
�
�
Ps( 

k) �Ri�1Ps( 
k)
� �

�̂2( k)
�p�kio

: (3.37)

This is a multivariate nonlinear optimization problem and computationally expensive. To

reduce the computational complexity, we use the alternating projection method [64] with

a cost function based on ML estimation of a deterministic signal model. In each step of

this algorithm an optimization is performed to determine the best value for one parameter
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element while keeping the rest of the elements constant. Therefore, the ML estimation

is decomposed into several one-variable nonlinear optimization problems. A suitable cost

function for the alternating projection algorithm is given by

�̂
k

i�1 = argmin
 

k

flog(�̂2( k))g

= argmin
 

k

tr[Pn( 
k) �Ri�1] (3.38)

which is the ML estimator of the deterministic signal model. We use (3.38) for DOA

estimation. Although with this choice the optimality of the PSC algorithm has been

impaired, it can still be successfully applied to coherent signal detection.

To give more insight into the algorithm, we present a simple example. Suppose that we

seek the parameter vector for a model of order 3. We use the value of �̂
3

i�1 to determine

�̂
3

i . Let us assume �̂
3

i�1 = [ai�1 bi�1 ci�1]
T . To obtain �̂

3

i , a minimization problem is

solved 3 times to get ai; bi, and ci: At each step we use the latest computed values of the

elements of the parameter vector. In other words, the optimization is accomplished in the

following manner

ai = arg min
a2Da

C ( a ; bi�1 ; ci�1 )

bi = arg min
b2Db

C ( ai ; b ; ci�1 )

ci = arg min
c2Dc

C ( ai ; bi ; c )

where C is the cost function, and Da = [��
2
; bi�1]; Db = [ai ; ci�1], and Dc = [bi ;

�
2
] are

the intervals of search. It is seen that for a model of order k, the cost function is optimized

k times to get �̂
k
. Here, we use one iteration for each dimension at each sample time, but

the number of iterations can be increased to obtain more precise estimates of the DOAs.

In the following theorem, we study the asymptotic behavior of the estimator (3.38) for

true number of signals.

Theorem 3.2. For k = q, the estimator (3:38) is consistent.

Proof: See Appendix B. A proof of a related theorem is given in [60] which is based on

partial convergence of the parameter vector �̂k to �q for two cases of q � k � p=2 and
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k < q � p=2.
Since the information theoretic criteria are sensitive to the estimate of the parameter

vector, asymptotic bias in the DOA estimation degrades the performance of the detec-

tor. The alternating projection algorithm usually converges to a local minimum. If this

method is applied on a cost function that is determined by the data collected in a batch of

snapshots, such as in the MDL algorithm, a local minimum is found. If this local minimum

is far from the global optimum point, the performance of detection will deteriorate. In

an iterative method of estimation, since the location of the local minimum changes with

every new sample of data, there is a possibility that the estimator moves out of the local

minimum with the observation of next sample. For all the trials in our simulations, the

recursive estimator converged to the true DOAs within a few sample times.

3.6. Consistency of the PSC algorithm

The PSC criterion for a model of order k up to time N is described by

PSCk(N) =
NX
i=1

�
log jR̂k

i�1j+ xHi [R̂
k
i�1]

�1xi

�
(3.39)

where R̂k
i�1 is the ML estimate of the correlation matrix. In this section, we prove the con-

sistency of the PSC detector. We show that the PSC algorithm asymptotically estimates

the true order of the system. Mathematically,

lim
N!1

PSCq(N) < lim
N!1

PSCk(N) for k 6= q: (3.40)

According to the law of large numbers the sum (3.39) converges to the addition of the

expected values of its terms. We seek the asymptotic mean value of the two terms in the

summation. We consider two cases for the model order k.

� Case I. k < q

As i! 1,

R̂k
i�1 ! R̂k = Rk

s + R̂k
n (3.41)
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where Rk
s is the projection of Rq onto the signal subspace with dimensionality k and R̂k

n

is the ML estimate of the projection of the correlation matrix onto the noise subspace. If

Rk
n is the projection of Rq onto the noise subspace with dimensionality (p� k), then R̂k

n

will be a matrix with the same eigenvectors as Rk
n and an eigenvalue �̂2k with multiplicity

(p� k) which is obtained from

�̂2k =
1

p� k trR
k
n: (3.42)

First, we discuss the properties of the second term for a large number of observations.

Let the random variable bi be

bi = xHi [R̂
k
i�1]

�1xi (3.43)

= tr([R̂k
i�1]

�1xix
H
i ): (3.44)

Since xi and R̂
k
i�1 are independent, taking expectation of both sides of (3.44) gives

Ebi = tr(E[R̂k
i�1]

�1Rq): (3.45)

Let i!1, then

lim
i!1

Ebi = tr( lim
i!1

E[R̂k
i�1]

�1Rq): (3.46)

Assuming [R̂k
i ]
�1 converges to a �xed matrix, the order of the expectation and the limit

can be exchanged

lim
i!1

Ebi = tr(E lim
i!1

[R̂k
i�1]

�1Rq)

= tr([R̂k]�1Rq) (3.47)

Lemma 3.2. Let A, B be n � n Hermitian matrices orthogonal to each other such that

AHB = BHA = 0. If the matrix C is given by

C = A+B (3.48)
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where C is full rank, then

C�1 = Ay+By (3.49)

where Ay
and By are the pseudo-inverse of A and B.

Proof: Assume that Va and Vb are the eigenvectors of A and B corresponding to nonzero

eigenvalues. Then C can be written as

C = Va�aV
H
a +Vb�bV

H
b

= V

2
64 �a 0

0 �b

3
75VH (3.50)

where V = [VaVb]. Since C is a full rank Hermitian matrix, it is unitarily diagonalizable

and the orthonormal matrix V is its eigenvalue matrix . Thus the inverse of C is equal to

C�1 = V

2
64 ��1a 0

0 ��1b

3
75VH : (3.51)

Thus

C�1 = Va�
�1
a VH

a +Vb�
�1
b VH

b : (3.52)

And the proof is complete. 2

Note that R̂k is given by

R̂k = Ps(�
k)RqPs(�

k) + TkPn(�
k)RqPn(�

k): (3.53)

Assume

Ps(�
k)RqPs(�

k) = Vs�sV
H
s (3.54)

Pn(�
k)RqPn(�

k) = Vn�nV
H
n (3.55)

Then

TkPn(�
k)RqPn(�

k) = �̂2kVnV
H
n (3.56)
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where �̂2k is given by (3.42). From this (3.53) can be written as

Ps(�
k)RqPs(�

k) +TkPn(�
k)RqPn(�

k) = [VsVn]

2
64 �s 0

0 �̂2kI

3
75
2
64 VH

s

VH
n

3
75 : (3.57)

Using these results (3.47) becomes

tr

8><
>:[VsVn]

2
64 ��1s 0

0 �̂�2k I

3
75
2
64 VH

s

VH
n

3
75Rq

9>=
>; (3.58)

Note that

Ps(�
k) = VsV

H
s (3.59)

Pn(�
k) = VnV

H
n : (3.60)

Thus

VH
s R

qVs = �s (3.61)

VH
n R

qVn = �n (3.62)

VH
n R

qVs = VH
s R

qVn = 0 (3.63)

Using these equalities (3.58) can be written as

tr([R̂k]�1Rq) = tr

8><
>:
2
64 ��1s 0

0 �̂�2k I

3
75
2
64 �s 0

0 �n

3
75
9>=
>; = p: (3.64)

This equality shows that the e�ect of the second term in (3.39) fades as the number of

observations increases. Thus consistency of the PSC depends on the asymptotic charac-

teristics of the �rst term. Note that for a limited number of observations the second term

cannot be removed from the PSC algorithm.

For a con�guration with 3 uncorrelated sources arriving at a linear array of 8 sensors

we found the second term of the PSC algorithm. The results are averaged with respect
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Fig. 3.1 The averaged second term of the PSC algorithm for a linear array of 8 sensors

exposed to 3 uncorrelated far-�eld planar wavefronts at 10, 15, and 20 degrees. Each curve

represents a di�erent model order (orders, 1, 2, 3, 4).

to the number of observations and are depicted in Fig. 3.1. For all models it is seen that

1
N

PN
i=1 bi approaches 8 which is the number of sensors.

The �rst term of the summand in (3.39) can be shown as

ai = log(�( �Rk
si�1

)[�̂2(�̂
k

i�1)]
p�k) (3.65)

where �̂2(�̂
k

i�1) =
1

p� k tr
�Rk
ni�1

: Since the sample correlation matrix of the array asymp-

totically approaches the true correlation matrix, as i �! 1 we get

�Rk
si�1
�! Rk

s = Ps(�̂
k
)RqPs(�̂

k
) (3.66)

�Rk
ni�1

�! Rk
n = Pn(�̂

k
)RqPn(�̂

k
): (3.67)

In Theorem 3.2 we proved that the estimator (3.38) is consistent. Thus the determinant
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of the true correlation matrix is

jRqj = �(Rq
s) �(R

q
n)

= (

qY
i=1

�i)(�
2)p�q (3.68)

where the �i are nonzero eigenvalues of Rq
s and �

2 is the noise variance. For a model of

order k we have

�(Rk
s) �(R

k
n) = �

�
Ps(�̂

k
)RqPs(�̂

k
)
�
�
�
Pn(�̂

k
)RqPn(�̂

k
)
�
: (3.69)

The parameter vector is found by minimizing the trace of (Pn(�̂
k
)RqPn(�̂

k
)
�
. In the best

situation, the projector Pn(�̂
k) is such that it chooses a parameter vector that projects

Rq onto the subspace spanned by its smallest eigenvalues. In such a case, we have

�(Rk
s ) =

kY
i=1

�i (3.70)

�(Rk
n) = (

qY
i=k+1

�i)(�
2)p�q: (3.71)

In the PSC algorithm, we used the ML estimates of Rk
s and R

k
n which are represented by

R̂k
s and R̂

k
n. We know that

�(R̂k
s) =

kY
i=1

�i (3.72)

�(R̂k
n) = (�̂2)p�k (3.73)

where from (3.71)

�̂2 =
1

p� k
� qX
i=k+1

�i + (p� q)�2
�
: (3.74)

The next step is to show that

(�̂2)p�k > (
qY

i=k+1

�i)(�
2)p�q: (3.75)
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Lemma 3.3. For positive scalars �i; i = 1; : : : ; n, with
nX
i=1

�i = K, where K is a constant,

the maximum of

nY
i=1

�i is achieved for �i =
K

n
; i = 1; : : : ; n.

Using Lemma 3.3, (3.75) is satis�ed. Thus we can conclude that

log(

qY
i=1

�i) + (p� q) log(�2) < log(
kY
i=1

�i) + (p� k) log(�2) (3.76)

log �(Rq
s) + log �(R̂q

n) < log �(Rk
s ) + log �(R̂k

n): (3.77)

The two sides of this inequality are the asymptotic values of the �rst term of the PSC

criterion for the models of order q and k. Thus we conclude that (3.40) is satis�ed for

k < q.

� Case II. k > q

For this case, we use the following lemma [10].

Lemma 3.4. (Davisson's Formula) For a probability density function f(xnj�q) where �q

is the true parameter vector with dimension q, we have

E�q [� log f(xij�̂
q

i�1) + log f(xij�q)] = q

2i
(1 + o(1)) (3.78)

where o(1)! 0 as i ! 1 and �̂
q

i�1 is the ML estimator of �q based on the observations

up to time (i� 1).

The cumulative e�ect of the parameter uncertainty is then given by

E�q
NX
i=1

[� log f(xij�̂qi�1) + log f(xij�q)] =
NX
i=1

q

2i
(1 + o(1)) (3.79)

=
q

2
(1 + o(1)) logN: (3.80)

Assume that the PSC of two models of order q and k > q with the parameter vectors

�q and  k are compared. The Kullback-Leibler distance between the two models is shown
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by

I =

Z
f(xj�q) log f(xj�

q)

f(xj k)
dx (3.81)

which is zero if and only if f(xj�q) = f(xj k). Now we expand �q to a k-dimensional

parameter vector  k by introducing (k � q) new sources at arbitrary angles such that

the column vectors of A( ) are linearly independent. In such a case q components of

�q and  k are equal. Suppose that the power of the auxiliary sources is zero. Then the

probability distribution functions for the two models are identical,

f(xj�q) = f(xj k): (3.82)

With this assumption the Kullback-Leibler distance between the true model and the model

with the parameter vector  k is zero. The probability distribution function f(xj k) can

also be considered as the true generating class with a parameter vector which has a higher

dimensionality.

The PSC of each model is a metric that represents the distance from the true generating

class. By computing the PSC for the two models we get the codelengths

PSCq(N) =
NX
i=1

� log f(xij�̂qi�1) (3.83)

PSCk(N) =
NX
i=1

� log f(xij ̂k

i�1) (3.84)

which can also be written as

PSCq(N) =
NX
i=1

[� log f(xij�̂qi�1) + log f(xij�q)]�
NX
i=1

log f(xij�q) (3.85)

PSCk(N) =
NX
i=1

[� log f(xij ̂k

i�1) + log f(xij k)]�
NX
i=1

log f(xij k) (3.86)

Using (3.82) and Lemma 3.4 we have

E(PSCk(N)� PSCq(N)) =
k � q
2

logN: (3.87)
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The empirical procedure is to drop the expectation and compute PSCk(N)�PSCq(N) as

lim
N!1

PSCk(N)� PSCq(N)

logN
=
k � q
2

almost surely: (3.88)

Since k > q, the proof is complete.

3.7. More discussion on the coherent signal detection

A technique for dealing with coherent signals is to use the spatial smoothing [31]. There

are two shortcomings with this method. First, the spatial smoothing is only applicable to

uniform linear arrays. Second, the spatial smoothing is based on decomposing the array

into subarrays and hence it does not use the whole available array aperture. The PSC

algorithm can be applied to a general array geometry and uses the whole array aperture.

In this section we discuss how our method detects coherent sources.

A wrong number of signals might be detected if there is an ambiguity in separating

the signal and noise subspaces. The methods that choose the order of the system by

decomposing the set of the eigenvalues of the correlation matrix into the signal and noise

eigenvalues, produce incorrect results when applied to coherent source scenarios. For

such methods, there is not a unique way to choose a q-dimensional signal subspace. The

method that we have introduced here does not su�er from this shortcoming since it does

not encounter ambiguity in the signal and noise subspace decomposition.

It is possible to show that the estimator (3.38) successfully �nds the true parameter

vector even in the situations where the sources are coherent. Consider any two parameter

vectors � and  with arbitrary dimensions k and k0. Assume that � \  = �, where �

is a vector of dimension m. Let Cks (�); Ck
0

s ( ) and Cms (�) be the subspaces spanned by

A(�);A( ) and A(�), respectively.

Lemma 3.5. For k + k0 �m < p, the intersection of the two subspaces Cks (�) and Ck
0

s ( )

is identical to Cms (�).
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Proof: Take any e 2 Cks (�) \ Ck
0

s ( ). Then,

A(�)bk = e =)
kX
i=1

a(�i)bi = e (3.89)

A( )dk
0

= e =)
k0X
i=1

a( i)di = e (3.90)

Without loss of generality suppose that �rst m components of � and  are equal, i.e.

�i =  i; i = 1; : : : ; m; m � k; m � k0: Then,

mX
i=1

a(�i)(bi � di) +
kX

i=m+1

a(�i)bi �
k0X

i=m+1

a( i)di = 0: (3.91)

Independence of the steering vectors for k + k0 �m < p implies

bi = di i= 1; : : : ; m (3.92)

bi = 0 i= m+ 1; : : : ; k (3.93)

di = 0 i= m+ 1; : : : ; k0: (3.94)

In words, the vector e is in the space spanned by the steering vectors generated by the

parameter vector � = f�i; i = 1; : : : ; mg. 2

Suppose that none of the sources has zero power. This assumption implies that the

signal vector A(�q)s is not in a subspace of Cqs which is spanned by a subset of steering

vectors. This is the key point to the uniquely estimation of the parameter vector �q .

Now suppose that the model of order q is investigated. For coherent source case,

the signal vector A(�q)s spans a one-dimensional subspace of the signal space. And as

mentioned earlier A(�q)s cannot be spanned by any subset of the steering vectors. In

such a case, rank of Q = A(�q)SAH(�q) is equal to one and there are p� 1 eigenvectors

which span a subspace that is orthogonal to A(�q)s. Estimator (3.38) �nds a �̂ which

minimizes the trace of the projection of the correlation matrix into the noise subspace Rq
n.

In coherent case, every subspace with dimension p� q and orthogonal to A(�q)s can be a

candidate for the solution of the optimization problem. It is obvious that the true value of
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the parameter vector is a solution to the minimization problem. Now, suppose that there

is a  q 6= �q which also satis�es (3.38). If  q and �q contain m identical components and

if 2q �m < p, then, by Lemma 3.5, A(�q)s has to be in a subspace which is spanned by

m columns of the steering matrix. And this is in contradiction to the assumption that the

sources do not have zero powers.

It is seen that 2q � m < p is a su�cient condition for unique determination of the

signals. The worst value for q is obtained when m = 0. Hence, the maximum number

of sources which can surely be detected by a linear array is equal to half the number of

sensors. This is in agreement with the results of [58].

The projection of the correlation matrix into the signal and noise subspaces forces the

observation vectors to obtain a special form which is dictated with the location matrix. In

other words, the signal part of the correlation matrix should be in the span of a location

matrix say A(�0). Since the estimator is consistent, for a model of order q we have �0 = �q .

This is the unique DOA that can generate the signal component of the observation vector.

This is to say that there is no ambiguity in decomposing the observation space into the

signal and the noise subspaces. Thus the part of the observation vector which is coded

with the PSC criterion and corresponds to the true component of the signal. And hence

the method can be used for coherent source localization.

3.8. Simulation Results

Consider a linear array of 8 sensors exposed to 2 planar wavefronts arriving from 10 and 15

degrees. The spacing between two consecutive sensors is half the wave length. We perform

100 Monte-Carlo runs for di�erent signal-to-noise ratios and count the number of times

that the MDL and the PSC detect the true number of signals. For each trial 100 snapshots

are processed. In the �rst example, we assume that the sources are uncorrelated. The

results of the simulation for 100 independent trials are represented in Table 3.1 and Fig. 5.1.

MDL1 is the MDL algorithm of Wax and Kailath [55], PSC1 is the method of Section 3.2,

MDL2 is the MDL method of Wax [53], and PSC2 is the stochastic complexity method

given by (3.36). Both MDL2 and PSC2 use the signal subspace decomposition and are
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Fig. 3.2 The probability of resolution for the PSC and MDL algorithms using an array

of eight sensors exposed to two uncorrelated far �eld signals.

computationally more expensive than the MDL1 and PSC1. However, since they exploit

more information about the structure of the correlation matrix, they perform better.

Table 3.2 represent the results of detection for completely correlated sources. For

coherent source scenarios MDL2 shows a smaller SNR threshold than the PSC2. However,

the probability of resolution for small SNR in the PSC2 algorithm is larger than the MDL2

method. For this case, PSC1 detects only one signal.

To compare the sensitivity of the two methods for uncertainty in the DOA estimation,

we consider a single source scenario. Assume that a planar wavefront is arriving from 10

degrees at the same linear array. The array output is observed for 100 snapshots. The

PSC and the MDL criteria are computed for a model of order 1 as a function of the DOA

estimates. The results are depicted in Fig. 3.3. The MDL algorithm has a sharper slope

in the vicinity of the true DOA which makes it be more sensitive to the uncertainty in the

DOA estimate than the PSC.

It was stated earlier that the PSC method can detect changes in the number of sig-

nals. To study the performance of the PSC algorithm in a nonstationary environment, we
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detection SNR (dB)

method k �12:5 �10 �7:5 �5 �2:5 0 2.5 5 7.5 10

1 0 0 0 0 0 0 0 0 0 0

MDL1 2 0 0 0 0 0 1 100 100 100 100

3 100 100 100 100 100 99 0 0 0 0

1 100 100 100 100 84 8 0 0 0 0

PSC1 2 0 0 0 0 16 92 100 100 100 100

3 0 0 0 0 0 0 0 0 0 0

1 100 98 91 55 6 0 0 0 0 0

MDL2 2 0 2 9 45 94 100 100 100 100 100

3 0 0 0 0 0 0 0 0 0 0

1 91 86 71 24 1 0 0 0 0 0

PSC2 2 9 14 29 76 99 100 100 100 100 100

3 0 0 0 0 0 0 0 0 0 0

Table 3.1 Detection capability of the MDL and PSC algorithms for a con�guration with

two uncorrelated sources for 100 independent trials.

detection SNR (dB)

method k �20 �10 0 10 20

1 100 91 0 0 0

MDL2 2 0 9 100 100 100

3 0 0 0 0 0

1 96 70 0 0 0

PSC2 2 4 29 93 100 100

3 0 1 7 0 0

Table 3.2 Detection capability of the MDL and PSC algorithms for a con�guration with

two coherent sources for 100 independent trials.
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Fig. 3.3 The PSC and the MDL criteria for a single source arriving from 10 degrees at

a uniform linear array of eight sensors.

consider a con�guration with three sources at 10, 15, and 30 degrees arriving at a uniform

linear array of 12 sensors with half wavelength spacing. The SNR is �5 dB. It is assumed
that after 50 sample times the source at 30 degrees is turned o�. The PSC and MDL

methods were used on 2000 data samples to determine the number of signals. The MDL is

computed for all window lengths smaller than 2000. The results are reported in Fig. 3.4.

The PSC algorithm shows a change in the number of signals after about 700 samples. For

window lengths smaller than 1600, the MDL will detect two sources. The time delay for

detecting a change in the number of signals for the PSC algorithm is smaller than that

for the MDL.
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Fig. 3.4 Detected number of signals using the PSC and the MDL algorithms versus the

number of samples. Three sources are at 10, 15, and 30 degrees and arrive at a uniform

linear array of 12 sources. The source at 30 degrees is turned o� after 50 samples.



Chapter 4

Optimum Focusing

Array processing techniques can be used to locate wideband signals. A wideband signal

has a relatively large bandwidth with a value comparable to the center frequency. The

frequency-wavenumber spectrum of a wideband point signal takes values on a line parallel

to the frequency axis (Signal B in Fig. 1.1). Several methods for the processing of wideband

signals using an array of sensors have been proposed in the literature. The �rst step in

some of these techniques is to sample the signal in frequency domain [52] [7] [22]. This

sampling can be performed by using a discrete Fourier transformation of the time samples

or by using �lter banks. The samples of the spectrum can be uniformly or nonuniformly

distributed in the frequency domain.

Many array processing techniques use the concept of the signal subspace which is the

span of the location vectors of the array. Since each location vector is a function of the

observation frequency, the signal subspace depends on the frequency of the observation.

For wideband signals the signal subspaces at di�erent frequencies are di�erent and do

not overlap. This fact prevents the observation vectors at the frequency bins from being

directly added to each other. Wang and Kaveh [52] propose focusing of the observation

vectors. Focusing involves transforming the signal subspaces at di�erent frequency bins

into the focusing subspace. They choose an arbitrary frequency, say f0 the center frequency

of the spectrum of the signals, and transform all the subspaces at the frequency bins into

the subspace created by the span of the location vectors at the frequency f0. Then, they

71
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use a high resolution algorithm such as MUSIC to estimate the directions-of-arrival of the

sources. This method is called the coherent signal subspace method (CSM). Note that the

correlation matrix, which is generated by focusing, has the characteristics of a narrowbnad

signal and any narrowbnad localization method can be used to estimate the directions-

of-arrival (DOAs). Focusing in the CSM reduces the resolution threshold signal-to-noise

ratio. If the integral of the signal covariance matrix taken over the frequency spectrum is

full rank, the method can also be applied to coherent signal localization. Hung and Kaveh

[17] prove that the best performance is obtained if the mapping of the subspaces is done

through a unitary transformation. They do not discuss how to choose the best focusing

subspace.

In this chapter, we propose a method for focusing subspace selection. The method

is based on minimizing the subspace �tting error. The subspace �tting error for each

frequency bin is de�ned as the distance between the focusing matrix and the transformed

location matrix. Later, we minimize a tight bound for the error. The focusing frequency

selection is performed in two steps. First, the singular values of the location matrix

are found. Then, a one variable nonlinear minimization problem is solved to obtain the

focusing subspace.

Swingler and Krolik [36] prove that for a single-source scenario it is possible to have

an unbiased estimate of the DOA if the centroid of the source spectrum is selected as the

focusing frequency. Later we will show that for multiple-source cases the CSM algorithm

cannot provide unbiased estimates of the DOAs. However, with the method that we

propose here the bias of the DOAs estimate is minimized. The simulation results show

that with this method of selecting the focusing subspace, the resolution threshold SNR is

also reduced.

4.1. The coherent signal subspace method

Consider an array of p sensors exposed to q far-�eld wideband sources. To satisfy the

constraints for unique solution, it is assumed that the number of sources is smaller than

the number of sensors, q < p. The signals of the sources can be partially or fully correlated.
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The output of the sensors is shown by p-vector x(t) with the i-th component

xi(t) =

qX
l=1

sl(t� �i(�l)) + ni(t); 1 � i � p (4.1)

where sl is the l-th source signal, �l is the DOA of the l-th source, and �i(�l) is the

propagation delay for the l-th source at the sensor i with respect to the reference point

of the array. Using the �rst sensor as a reference point, for a linear array with uniform

spacing, �i(�l) = (i� 1)
d

c
sin �l, where d is the spacing between two consecutive sensors,

and c is the propagation velocity. It is also assumed that the observation is corrupted by

an additive noise which is represented in the model by ni(t):

In the frequency domain, after arrangement in vector form, the sensors output is

represented by

x(!) = A(!; �)s(!) + n(!) (4.2)

where x(!); s(!) and n(!) are the Fourier transforms of the observation, the signal and

the noise vectors, respectively. The p � q matrix A(!; �) = [a(!; �1) : : :a(!; �q)] is the

location matrix of the array of sensors and is assumed to be full rank. In other words, the

steering vectors a(!; �i); i = 1; : : : ; q, are independent for every !.

The signal samples are generated independently by a circular complex Gaussian distri-

bution with an unknown covariance matrix S(!). The noise samples are an i.i.d. sequence

of complex Gaussian random vectors with unknown covariance matrix �2I and are in-

dependent of the signal samples. It is assumed that the noise is spatially white. This

assumption can be relaxed if the correlation matrix of the noise is known but for a scale

factor. In that case, a prewhitening step is required to create uncorrelated intersensor

noise [4]. From (4.2) and using the assumptions on the signal and noise samples, the

covariance matrix of the observation vector at frequency ! is given by

R(!) = A(!; �)S(!)AH(!; �) + �2I (4.3)

where the superscript H represents the Hermitian transpose.
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In practice, the correlation matrix is unknown and must be estimated. A su�ciently

long duration of sensor output is observed and sampled in time. The sampled data are

divided into N snapshots, each containing J samples. In each snapshot, an FFT algorithm

is applied to transform the data onto the frequency domain. If the correlation time of the

signal is su�ciently smaller than the length of a snapshot, the Fourier transformed data

at di�erent frequency bins are approximately uncorrelated and their correlation matrix

satis�es (4.3). To obtain the sample correlation matrices, an averaging in time is required.

Let us represent the frequency samples by x
(i)
j ; j = 1; : : : ; J; i = 1; : : : ; N . Then the

samples correlation matrix at the j-th frequency bin can be found from

Rj =
1

N

NX
i=1

x
(i)
j x

(i)
j

H
(4.4)

Since the location matrix is a function of the frequency, the signal subspaces at di�erent

frequency bins are di�erent. The CSM algorithm transforms these subspaces and overlaps

them in a prede�ned subspace, the so-called focusing subspace. The focusing matrices,

Tj , are the solutions of the equation

TjAj = A0; j = 1; : : : ; J (4.5)

where Aj is the location matrix at the j-th frequency bin and A0 is the focusing location

matrix. The matricesA0 and Aj are functions of the DOAs, �. An ordinary beamforming

pre-process gives an estimate of the angles-of-arrival which can be used in (4.5). Using the

focusing matrices Tj , the observation vectors at di�erent frequency bins are transformed

into the focusing subspace. In particular, new observation vectors are formed by

yj = Tjxj ; j = 1; : : : ; J: (4.6)

These transformed observation vectors are used to construct the sample correlation ma-

trices

R
(y)
j =

1

N

NX
l=1

y
(l)
j y

(l)
j

H
(4.7)
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where the transformed data vector for frequency bin j and for batch l is represented by y
(l)
j .

An average of these aligned correlation matrices over the frequency bins gives a universal

focused sample correlation matrix that can be used for detection and estimation. If this

matrix is represented by R, we will have

R =
1

J

JX
j=1

R
(y)
j (4.8)

= A0RsA
H
0 + �2Rn (4.9)

where

Rs =
1

J

JX
j=1

Sj (4.10)

Rn =
1

J

JX
j=1

TjT
H
j (4.11)

and Sj = S(!j) is the source correlation matrix at the j-th frequency bin.

This transformation improves the e�ciency of the estimation by condensing the energy

of sub-bands in the focusing signal subspace. Yet, it creates a problem. It is seen that the

focusing removes the whiteness of the noise. This in turn changes the SNR at the output of

the processor. The focusing loss is de�ned as the ratio of the array SNR after and before

focusing. Using this quantity, Hung and Kaveh [17] show that the focusing is lossless

if Tj 's are unitary transformations. Speci�cally, they propose using the transformation

matrices which are obtained by the constrained minimization problem

min
Tj

kA0 � TjAjk (4.12)

s:t: TH
j Tj = I

for j = 1; : : : ; J . They use the Frobenius matrix norm which is de�ned by

kBk =
hX
i;j

b2ij

i 1
2 =

h
tr(BHB)

i 1
2 (4.13)
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where tr(.) stands for the trace of matrix. In factor analysis, this is known as the problem

of �nding a procrustean transformation of Aj. The solution to (4.12) is given by [15] [17]

Tj = VjW
H
j (4.14)

where Vj and Wj are the left and right singular vectors of A0A
H
j .

4.2. Focusing frequency selection

We de�ne a criterion based on the error involved in the transformation of the signal

subspaces. The minimization of this criterion gives the focusing frequency. Speci�cally,

we seek an f0 which is the solution to the following minimization,

min
f0

min
Tj

JX
j=1

wjkA0 �TjAjk2 (4.15)

s.t. TH
j Tj = I

A0 2 A(�)

where A(�) is the set of all location matrices for given DOA �, and wj is a weighting

factor proportional to the SNR at the j-th frequency bin with
JX
j=1

wj = 1.

Using (4.14) the subspace �tting error is given by

JX
j=1

wjkA0 �TjAjk2 =
JX
j=1

wj

h
kA0k2 + kAjk2 � 2<

�
tr(A0A

H
j T

H
j )
�i

= 2Jpq � 2
JX
j=1

qX
i=1

wj�i(A0A
H
j ) (4.16)

where the �i(B); i = 1; : : : ; q, are the singular values of the matrix B arranged in nonin-

creasing order, <(:) represents the real part of a complex number. Here, we have used the

equality

kAk2 =
qX

i=1

kaik2 = pq (4.17)
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which holds for an arbitrary array manifold.

From (4.16) it is seen that the minimization problem (4.15) is identical to

max
f0

JX
j=1

qX
i=1

wj�i(A0A
H
j ): (4.18)

s.t. A0 2 A(�)

Direct maximization of (4.18) is very complicated and the computational complexity in-

creases with the number of frequency samples. In the sequel, we present a suboptimal

method which is based on maximizing an upper bound to (4.18). We show that in the

vicinity of the maximum point the bound is tight. The tightness of the bound at the

maximum point indicates that the method performs very close to the optimal case. The

following lemma establishes a lower bound on the norm of the di�erence of two matrices.

Lemma 4.1. If A;B 2Mm;n (an m�n matrix) are given matrices with ordered singular

values �1(A) � : : : � �q(A) � 0 and �1(B) � : : : � �q(B) � 0, where q = minfm;ng,
then

kA�Bk2 �
qX

i=1

[�i(A)� �i(B)]2: (4.19)

Proof: See [15].

Application of Lemma 4.1 to (4.16) gives

JX
j=1

qX
i=1

wj�i(A0A
H
j ) �

JX
j=1

qX
i=1

wj�i(A0)�i(A
H
j ): (4.20)

We propose maximizing the right hand side of (4.20),

max
f0

JX
j=1

qX
i=1

wj�i(A0)�i(A
H
j ): (4.21)

s.t. A0 2 A(�)

This maximization is performed in two steps. First, the singular values of the focusing

location matrix A0 are determined. Then, using the known structure of the location
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matrix, the focusing frequency f0 is found. Let us de�ne

�i
4

=
JX

j=1

wj�i(Aj): (4.22)

Using (4.22), the maximization problem (4.21) is written as

max
f0

qX
i=1

�i�i(A0) (4.23)

s.t. A0 2 A(�):

This is a one-variable maximization problem that can be solved by searching for the best

f0 in the interval of interest.

In the following, we suggest a method that can reduce the computational complexity

of the search (4.23). The method is based on performing the search in a smaller interval.

The search interval can be made smaller if we can store the singular values of A0 for some

f0. To see that, consider the maximization problem

max
�i

qX
i=1

�i�i (4.24)

s.t.

qX
i=1

�2i = pq

�i � 0

where we have used (4.17). Using Lagrange multipliers, the solutions of (4.24) can be

determined to be

~�i =
�i
p
pqqPq

l=1 �
2
l

; i = 1; : : : ; q (4.25)

with the maximum value
q
pq
Pq

l=1 �
2
l : Because of the constraints on the structure of the

location matrix, usually the ~�i's cannot be the singular values of A0. The singular values

of A0 are continuous functions of the frequency f0. The continuum of the singular values

is a curve located on the surface of a sphere which is separated by the positive quadrants.

Fig. 4.1 depicts the relationship between f0 and the singular values. The optimum singular
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Fig. 4.1 Relationship between frequency and the singular values of the location matrix

value vector of A0 is the one who is the closest point on the singular value continuum to

~� = (~�1; : : : ; ~�q). This can be found by minimizing the following one-variable nonlinear

equation,

min
f0

qX
i=1

[�i(A0)� ~�i]
2 (4.26)

s.t. A0 2A(�):

In practice the singular values of the location matrix A0 can be computed and stored

for some coarse digitized values of f0 and DOA's. Using the pre-estimates of DOA, the

~�i's can be determined. The maximization (4.26) is then performed in the vicinity of the

stored value of f0 which has the closest singular values to ~�i's. The complexity of this

minimization is independent of the number of frequency samples.

4.3. The bias of estimation

Despite the fact that the CSM algorithm is very e�ective in wideband array processing, it

su�ers from asymptotic bias of the DOA estimates. The bias increases with the bandwidth

of the sources and the deviation of the focusing points from the true DOA. In Chapter 5,
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we introduce a new method for unbiased wideband array processing. There, we show that

using the CSM algorithm, unbiased estimation is not possible. However, our results here

show that there exists a focusing frequency that minimizes the estimation bias in the CSM

algorithm.

Note that the MUSIC estimator is asymptotically unbiased. The bias in the peak

locations which is created in the CSM algorithm is the consequence of focusing. A proper

selection of the focusing frequency minimizes the bias of estimation. We show that the

proposed method for focusing frequency selection also minimizes the peak bias. We start

by discussing the mechanism that generates the bias.

For a given ! in the source bandwidth, the array manifold is a curve in the p-

dimensional complex space that is created from the location vectors a(!; �) for all �.

For every pure delay environment, the norm of the location vector is equal to the square

root of the number of the sensors. Thus the array manifold lies on the surface of a sphere

with the radius
p
p. We represent this sphere by S: It is also important to note that the

array manifold is continuous on ! and �. The MUSIC algorithm �nds the intersection of

the subspace spanned by the eigenvectors of the correlation matrix corresponding to the q

largest eigenvalues with the array manifold. If the true correlation matrix is applied to the

MUSIC, the DOAs are estimated without bias. However, deviation from the true signal

subspace will cause bias in the estimation.

Now consider the case in which the location matrices Aj 's are transformed by the

unitary matrices Tj 's to the vicinity of the focusing location matrix A0. The transformed

location matrices form a cluster aroundA0. It is quite clear that the closer the transformed

matrices are, the better the performance is. In an ideal case all the transformed location

matrices superimpose on A0. We call this case perfect focusing. In perfect focusing, the

column vectors of the location matrix Aj are transformed to the corresponding column

vectors of A0. This is also seen from the characteristics of the Frobenius norm; the square

of the Frobenius norm of a matrix is equal to addition of the square of the Euclidean norm

of the column vectors. Hung and Kaveh [17] show that for successful application of the

unitary transformation method, it is necessary to add two extra focusing DOAs. They
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suggest placing the extra DOAs at �0:25BW (BW is the beamwidth) from the estimated

directions-of-arrival. For instance, if the i-th DOA is found at �̂i by the pre-processing step,

the focusing points for the i-th angle are chosen at (�̂i�0:25BW ; �̂i ; �̂i+0:25BW ). These

angles determine an interval on the array manifold. If this interval is small compared to

the curvature of the array manifold at �̂i, it is transformed to a corresponding interval at

the array manifold with the processing frequency !0. This is attributed to the continuity of

the array manifold and the unitary transformation. Thus, in perfect focusing the location

vectors of each frequency bin that are located at the true DOA are transformed to the

corresponding vectors at the focusing manifold; hence the estimation is unbiased.

In practice the conditions for perfect focusing are not satis�ed. The transformed

matrices are clustered aroundA0. The closest distance between these matrices is obtained

if and only if A0 is on the average of the transformed matrices. To see this take any p� q
matrix C that has column vectors on the sphere S. To have a tight cluster, we should

perform the following minimization,

min
C

min
Tj

JX
j=1

wjkC�TjAjk2 (4.27)

s.t. TH
j Tj = I (4.28)

C 2 S (4.29)

The minimum (4.27) is obtained for

C =

� JX
j=1

wjTjAj

�
K (4.30)

where K is a diagonal normalization matrix. It is seen that C is formed by the average

of the transformed location vectors for each source. The method that we proposed for

focusing subspace selection gives the closest A0 to the matrix C. This suggests that the

bias is also near the minimum value for the selected focusing frequency.
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4.4. Tightness of the upper bound

It was stated earlier that the upper bound of (4.18) is tight in the vicinity of the optimum

point. In this section we discuss this issue. It has been already shown that

JX
j=1

qX
i=1

wj�i(A0A
H
j ) �

JX
j=1

qX
i=1

wj�i(A0)�i(Aj) (4.31)

�
 
pq

qX
i=1

�2i

! 1

2

=
p
pqk�k (4.32)

where �i; i = 1; : : : ; q; are given by (4.22), � = (�1; : : : ; �J), and k:k is the Euclidean norm

of a vector. We make some observations on (4.32).

� The right-hand-side of (4.32) is independent of the focusing frequency.

� (4.24) is a convex maximization problem.

� If A0 = TjAj; j = 1; : : : ; J , then the bound is achieved.

This case corresponds to perfect focusing. It is seen that such A0 is an optimum

focusing matrix. In other words, in perfect focusing the left-hand-side of (4.32)

attains its maximum value. However, in practice perfect focusing is not ful�lled.

The criterion that we de�ned in (4.15) is the closest case to perfect focusing. Thus

the optimum value that is obtained from (4.15) is very close to the bound.

Based on these observations, we see that the proposed method operates very close to

the optimal case. This performance is, however, achieved with a considerable reduction in

the computational complexity.

The closeness of the left-hand-side of (4.32) to the bound is a function of the number of

frequency samples. Fig. 4.2 represents the left-hand-side of (4.32) normalized with respect

to k�k, as a function of the number of frequency samples for a typical con�guration of 2

sources arriving at 8 sensors. As it is seen, by increasing the number of frequency samples

the value approaches the bound
p
pq = 4.
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Fig. 4.2 The summation of the singular values of A0A
H
j normalized with respect to the

norm of the vector � = (�1; : : : ; �J) as a function of the number of frequency samples for

a con�guration with two wideband sources with a 40% relative bandwidth arriving from

10 and 14 degrees at a uniform linear array of 8 sensors.

4.5. Simulation Results

Assume that a uniform linear array of 8 sensors is exposed to 2 far-�eld wideband sources

arriving from 10 and 14 degrees. The signals of sources are uncorrelated and have a 40

percent bandwidth relative to the center frequency. The spectrum of the signals is given

by

S(f) =

8><
>:

5f � 4 0:8 � f � 1:2

0 otherwise
(4.33)

The spectrum of the signals is sampled using a 16 point FFT algorithm. The data at

each frequency bin contain 100 snapshots. Using an ordinary beamformer a single source

is detected at 13 degrees. We add two extra DOA's at 9 and 17 degrees as the focusing

angles. The subspace �tting error is shown in Fig. 4.3. It is seen that the error is minimized

at the frequency 1.1 which is 10 percent higher than the center frequency and 3 percent

higher than the centroid frequency. For a �xed SNR at 20 dB we have found the bias of
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Fig. 4.3 The subspace �tting error as a function of the focusing frequency for two

uncorrelated far-�eld wideband sources arriving at a linear array of 8 sensors with a 20

dB SNR.

the DOA estimates for di�erent focusing frequencies. The results are depicted in Fig. 4.4.

The bias of the DOA estimate for the centroid frequency is 0.1246 compared to 0.0487 for

the optimum focusing frequency.

To compare the resolution capability of the CSM algorithm for di�erent focusing fre-

quencies, we performed 100 independent trials and counted the number of times that the

method resolved the two DOAs by detecting two peaks in the spectrum of the MUSIC

algorithm. The results are compared in Table 4.1. It is seen that the resolution SNR for

the optimum focusing frequency is lower than that for the center frequency. It should be

noted that there are two facts that decrease the resolution SNR. First, optimum focus-

ing frequency has a smaller subspace �tting error and second it is higher than the center

frequency. The separation between the location vectors for higher frequencies is larger

which tends to give a better resolution performance. The resolution at 1.2 is better than

the other frequencies. However, the results of Table 4.2 and Fig. 4.4 show that for SNRs

above the resolution threshold the bias is minimized for the optimum focusing frequency.

The mean square error of the CSM algorithm for the two focusing frequencies 1 and 1.1
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Fig. 4.4 The norm of the bias vector for the DOA estimation of two uncorrelated far-�eld

wideband sources arriving at a linear array of 8 sensors with a 20 dB SNR.

is compared in Fig. 4.5.
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Fig. 4.5 The mean square error of the CSM algorithm for the two focusing frequencies

1 and 1.1 for two uncorrelated far-�eld wideband sources at 10 and 14 degrees arriving at

a linear array of 8 sensors.

SNR

f0 �5 0 5 10

0.90 0 6 36 64

0.95 0 22 86 100

1.00 2 41 99 100

1.05 1 71 100 100

1.10 6 89 100 100

1.15 9 99 100 100

1.20 11 100 100 100

Table 4.1 The resolution capability of the CSM algorithm for two closely spaced non-

coherent wideband signals at 10 and 14 degrees arriving at a uniform linear array of 8

sensors, versus the focusing frequency. The resolution capability is measured in terms of

the percentage of detection.
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SNR

f0 �5 0 5 10

0.90 { 1.22 1.48 1.55

0.95 { 1.13 1.10 0.98

1.00 1.57 0.88 0.68 0.57

1.05 0.59 0.76 0.36 0.24

1.10 1.08 0.54 0.22 0.13

1.15 0.58 0.42 0.25 0.24

1.20 0.79 0.37 0.39 0.40

Table 4.2 The norm of the bias vector for two closely spaced noncoherent wideband

signals at 10 and 14 degrees arriving at a uniform linear array of 8 sensors, versus the

focusing frequency.



Chapter 5

Correlation Transformation

In this chapter, we introduce a new technique for broadband array processing. Our method

is similar to CSM in the sense that transformation of the signal subspaces is done through

focusing matrices. A high resolution spectral estimation algorithm, such as MUSIC, is

then applied to determine the DOA. In the new method, we apply a two-sided unitary

transformation on the correlation matrix. In [17] it has been shown that unitary transfor-

mations have good performance in terms of focusing loss and relative information index.

The motivation for using the correlation matrices instead of the location vectors is based

on the fact that most of the high resolution spectral estimation algorithms use an eigen-

structure decomposition of the correlation matrix.

The new method is termed two-sided correlation transformation (TCT) wideband array

processing. The main objective of introducing a new technique for coherent wideband

array processing is to eliminate or reduce the bias of DOA estimation in the CSM method.

We compare the eigenvalues of the noise-free focused correlation matrix of the CSM and

TCT algorithm. It is shown that in the CSM algorithm, the energy of signal is extended

into the noise subspace. This signal extension acts as a colored noise with an unknown

correlation matrix. Using these results, we show that the CSM cannot asymptotically

generate unbiased estimates of the DOA. To the contrary, in the TCT algorithm the

energy is con�ned to the signal subspace. Thus, an unbiased estimation of the DOAs

can be achieved by using the TCT method. Furthermore, we show that the subspace

88
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�tting error in the TCT algorithm is smaller than that for the CSM method. A smaller

subspace �tting error results in a lower resolution threshold. It is also shown that the TCT

algorithm has a smaller generalized variance than CSM. This results in an estimation with

smaller variance.

5.1. Matrix approximation

The problem of approximating a given matrix by a matrix in a speci�ed class arises in

applications such as multivariate analysis, factor analysis, estimation of residuals in linear

models, and the theory of generalized inverse of a matrix. In each case, a minimization

problem is solved to obtain the closest distance between the two matrices. The distance

between the matrices is measured with respect to an appropriate norm. One class of norms

is known as the unitarily invariant norms. In this class, the norm of a matrix is invariant

under unitary transformation. The spectral norm and the Frobenius norm are unitarily

invariant. In this chapter, we use the Frobenius norm.

The error of the one-sided transformation used in the CSM algorithm from the previous

chapter is given by

E =
JX

j=1

kA0 � TjAjk2=
JX
j=1

h
kA0k2 + kAjk2 � 2< tr(A0A

H
j T

H
j )
i

=2Jpq � 2
JX
j=1

qX
i=1

�i(A0A
H
j ): (5.1)

The following lemma produces a lower bound on the error in (5.1).

Lemma 5.1. Let A;B 2 Mm�n (an m � n matrix) and q = minfm;ng: Denote by

�i(A); �i(B) and �i(AB
H); i = 1; : : : ; q, the nonzero singular values of the corresponding

matrices arranged in nonincreasing order. Then

qX
i=1

�i(AB
H) �

qX
i=1

�i(A)�i(B): (5.2)

Proof: See Appendix C.
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Lemma 5.1 is presented as a theorem in [16]. We have provided a self-contained proof

using a di�erent approach in Appendix C.

From (5.1) and (5.2) it is seen that the error of transformation is lower bounded as

2Jpq � 2
JX
j=1

qX
i=1

�i(A0)�i(Aj) � E (5.3)

where the error is de�ned in (5.1). This lower bound cannot be reached in general using

the one-sided transformation of the CSM method.

Now consider the alternative of a two-sided transformation. For such a transformation,

we will be able to achieve the lower bound to the error. In a two-sided transformation

the objective is to �nd the unitary matrices U and V such that the following criterion is

minimized,

min
U;V
kA�UBVHk2 (5.4)

s:t: UHU = I;

VHV = I:

Theorem 5.1. The solutions of (5:4) are given by U = EXH
and V = FYH

where A =

E�FH
and B = X�YH

are the singular value decompositions of A and B, respectively,

and the error of transformation is given by

E = kAk2 + kBk2 � 2

qX
i=1

�i(A)�i(B): (5.5)

Proof: See Appendix D

Corollary 5.1. If A and B are square Hermitian matrices, the transformation matrices

U and V will be identical and equal to EXH
where E and X contain eigenvectors of A

and B, respectively.

From Theorem 5.1 and Lemma 5.1, it is seen that the error of transformation is min-

imized for the two-sided unitary transformation. Since in practice the location matrix is

measured in combination with the source signal vector, the two-sided transformation of
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the location matrices is not practical. However, it is well known that for q noncoherent

sources, the space spanned by the location matrix is the same as the span of the eigenvec-

tors of the correlation matrix which correspond to q largest eigenvalues (signal subspace).

Our method is based on two-sided transformation of a basis for the signal subspace. This

will be discussed in the following section.

5.2. Two-sided Correlation Transformation method

In this section, a new method for wideband array processing is introduced. The method is

based on transformation of the signal-subspaces into the focusing subspace. Like the CSM

algorithm, the signal subspaces are transformed by using focusing matrices. The focusing

matrix at each frequency bin is unitary and minimizes the distance between the focusing

subspace and the transformed signal-subspace. In the new method, the transformation of

the subspaces is performed through two-sided transformation applied on the correlation

matrix. The motivation for using the correlation matrix, instead of the location matrix,

is twofold. First, a two-sided transformation can be applied which results in a lower

error. Second, many of the high resolution methods for DOA estimation are based on the

eigenstructure decomposition of the correlation matrix. Thus the closer the transformed

correlation matrices are, the better the results will be.

5.2.1. The TCT criterion

The TCT method is based on transformation of the matrices

Pj = AjSjA
H
j ; j = 0; 1; : : : ; J (5.6)

where Pj is the correlation matrix of the sensor output at the j-th frequency bin in a

noise-free environment. The matrix P0 is the focusing noise-free correlation matrix. The

TCT focusing matrices are found by minimizing

min
Uj

kP0 �UjPjU
H
j k (5.7)
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s:t: UH
j Uj = I

for j = 1; : : : ; J . From Corollary 5.1, the solution of (5.7) is obtained as

Uj = X0X
H
j (5.8)

where X0 and Xj are the eigenvector matrices of P0 and Pj , respectively. The matrix Uj

can be used to transfer the observation vector xj into yj through

yj = Ujxj : (5.9)

The observation vectors yj ; j = 1; : : : ; J are in the focusing subspace. The correlation

matrices of yj 's can be averaged to �nd the universal focused sample correlation matrix.

In computing Uj the matrices Aj and Sj are assumed to be known. In practice a

pre-processing step is required to estimate these matrices. A low resolution beamformer

is applied to estimate the number and the directions of arrival of the sources. Closely

separated and correlated sources may not be resolved at this stage. Like [17], we add two

extra directions of arrival at �0:25BW (BeamWidth) of the estimated DOA. For instance

if the i-th DOA is found at �̂i by the pre-processing, the focusing points are chosen at

(�̂i � 0:25BW ; �̂i; �̂i + 0:25BW ). In TCT, the number of focusing angles should be larger

than the true number of sources. Using the results of this pre-processing step an estimate

of the location matrix, Aj , is obtained. Then the eigenvalues of the sample correlation

matrices, R̂j ; j = 1; : : : ; J , are computed and sorted in decreasing order. The noise power

at the j-th frequency bin is estimated by

�̂2j =
1

p� q
pX

i=q+1

�i(R̂j) (5.10)

where �i(B) is the i-th eigenvalue of B. The source correlation matrix is then found from

Ŝj = (AH
j Aj)

�1AH
j [R̂j � �̂2j I]Aj(A

H
j Aj)

�1: (5.11)
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In general, the estimated source correlation matrix (5.11) may have negative eigenvalues.

However, our simulation studies have shown that as far as the estimation of the DOAs

is concerned the TCT algorithm still can be used. As an alternative to (5.10) and to

guarantee the nonnegativeness of the estimated source correlation matrix, the noise power

can be estimated from

�̂2j = �p(R̂j) (5.12)

where �p(R̂j) is the smallest eigenvalue of R̂j .

We will see later that the matrix Sj is used to determine P0, the focusing noise-free

correlation matrix. In practice, Pj is directly computed from

Pj = (R̂j � �̂2j I): (5.13)

If a good estimate of the noise power is used in (5.13), Pj can be interpreted as the

correlation matrix of the cleaned data. By the cleaned data we mean the output of a

pre-processing step that removes or decreases the e�ect of noise. The computational

complexity of (5.13) is relatively low since the Lanczos algorithm [12] can be applied to

obtain a few of smallest eigenvalues of R̂j .

5.2.2. Selecting the focusing subspace

The noise-free focusing correlation matrix P0 is a function of the DOAs, the frequency of

focusing f0, and the focusing source correlation matrix S0. The initial DOAs are found

using ordinary beamforming. We still have to choose f0 and S0. The subspace �tting

error is de�ned as

E =
JX

j=1

kP0 �UjPjU
H
j k2: (5.14)

Using this error we can select f0 and S0 in two steps. In the �rst step, we choose the

focusing source correlation matrix S0 as follows.

In an ideal case all the transformed location matrices superimpose on A0. This case is

called perfect focusing. In perfect focusing the column vectors of the location matrix Aj
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are transformed to the corresponding columns of A0, i.e.

A0 = UjAj; j = 1; : : : ; J: (5.15)

In such a case the subspace �tting error can be shown to be

E =
JX

j=1

kA0(S0 � Sj)AH
0 k2: (5.16)

Minimization of (5.16) for S0 gives

S0 =
1

J

JX
j=1

Sj : (5.17)

The estimate of the Sj , given by (5.11), can be used in (5.17).

In practice, perfect focusing cannot be achieved if the transformation is constrained to

be unitary. However, the transformed location matrices are close to the focusing location

matrix. Thus, the same focusing source correlation matrix (5.17) can be used in general

case. The focusing source correlation matrix (5.17) has yet another important property.

For coherent sources the estimated source correlation matrix (5.11) might be singular.

However, the average S0 is of full rank. Hence (5.17) removes the coherence by smoothing

the spectrum of the source signals. With this averaging, the TCT algorithm can be applied

to coherent cases.

As it is seen from (5.14), the error of focusing is a function of f0. To minimize the error

of focusing a suitable selection of the focusing frequency is needed. We seek a frequency

f0 that minimizes

E = min
f0

min
Ui

JX
j=1

kP0 �UjPjU
H
j k2 (5.18)

s:t: UH
i Ui = I; i = 1; : : : ; J:

For a �xed P0 the transformation matrices Uj are obtained from (5.8). By using these
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matrices in (5.18), the focusing error is given by

E =
JX
j=1

"
kP0k2 + kPjk2 � 2

qX
i=1

�i(P0)�i(Pj)

#
: (5.19)

Since Pj 's are independent from the focusing frequency, f0 can be determined from

min
f0

JX
j=1

"
qX

i=1

�2i (P0)� 2

qX
i=1

�i(P0)�i(Pj)

#
: (5.20)

To select the best focusing frequency we proceed as follows. First, we �nd the singular

values of the optimum focusing subspace. Then using these values the focusing frequency

is selected.

Let us de�ne

�i =
JX

j=1

�i(Pj): (5.21)

Using this de�nition the criterion (5.20) is represented as

min
f0

qX
i=1

"
J�2i (P0)� 2�i�i(P0)

#
: (5.22)

The minimum of (5.22) is achieved when

�i(P0) =
�i

J
; i = 1; : : : ; q: (5.23)

Due to structural constraint on P0, in general (5.23) is not attainable. Instead, we mini-

mize

min
f0

qX
i=1

����i(P0)� �i

J

���2: (5.24)

This is a one-variable optimization problem and a search procedure can be applied to

�nd the minimum point. In practice, it is sometimes convenient to choose a pre-de�ned

frequency such as the center frequency of the spectrum for focusing. However, to improve

the performance, a focusing frequency which produces the smallest error should be selected.



CHAPTER 5. CORRELATION TRANSFORMATION 96

5.2.3. The TCT algorithm

The TCT algorithm is summarized as follows:

1) use an ordinary beamformer to scan the space and �nd an initial estimate of the

DOAs;

2) express the output of the sensors as concatenated snapshots and apply a DFT in

each snapshot to sample the spectrum of data;

3) form the location and the source correlation matrices using the results of the pre-

processing step (5.11);

4) average the source correlation matrices to obtain the focusing source correlation

matrix as in (5.17);

5) �nd P0 = A0S0A
H
0 and the Pj 's using (5.13);

6) determine the unitary transformation matrices (5.8);

7) multiply these matrices by the sample correlation matrices and average the results;

8) use a detection method (AIC, MDL, or PSC) to �nd the true number of sources;

9) apply MUSIC or any other high resolution spectral estimation method to �nd the

DOAs;

10) to improve the performance, iterate steps 3 to 9.

Comparison of the new algorithm with the CSM method shows that the second part

of Step 3 and Steps 4 and 5 do not have counterparts in CSM. The presence of these

steps in TCT increases the complexity of computation. The increase in the computation

is due to three parts: (i) estimating the noise power in each frequency bin, (ii) estimating

the source correlation matrix from (5.11), (iii) forming the focusing correlation matrix

P0 = A0S0A
H
0 . To estimate the noise power for each frequency bin we only need to

compute a few of smallest eigenvalues of the sample correlation matrix. To �nd those
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eigenvalues the Lanczos algorithm [12] that needs O(p2) 
ops for processing can be used.

If we use (5.12) for noise power estimation, only one eigenvalue needs to be estimated.

Furthermore, if it is known that the noise is white in frequency spectrum, the noise power

estimation can be done for one frequency bin.

The source correlation matrix at the j-th frequency bin is found from (5.11) where

with de�ning Bj = (AH
j Aj)

�1AH
j can be written as

Ŝj = Bj [R̂j � �̂2j I]BH
j : (5.25)

The computation ofBj is performed by inverting (A
H
j Aj), which is a q�q Toeplitz matrix,

and multiplying by AH
j . Since (A

H
j Aj) is Toeplitz, it can be inverted in O(q2) 
ops [12].

Using Bj the source correlation matrix Ŝj is obtained with two matrix multiplications.

The focusing correlation matrix P0 can also be formed by two matrix multiplications.

It should be noted that the increase of the computational complexity is usually small

compared to the load of Step 6.

Another di�erence in the computational complexity of the two methods appears at

Step 6 where an eigenvalue decomposition is performed. To �nd the unitary matrices in

the CSM algorithm J singular value decompositions are needed. However, in TCT, (J+1)

eigenvalue decompositions of Hermitian matrices need to be performed which should result

in a smaller computational load.

5.3. The error of transformation

In this section, we compare the error of transformation for the CSM and TCT algorithms.

There are two sources of error for the transformation: the error due to noisy observation,

and the error of transformation. The concern of the present section is the later one. In this

section, we consider a noise-free environment where the error is only due to the focusing

process.

The objective of focusing is to align the subspaces at di�erent frequency bins. It should

be noted that alignment of the subspaces alone is not su�cient for a good estimation. The
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subspaces might be twisted in the process of focusing which causes augmentation of the

noise in some directions. This in turn reduces the focusing SNR and might result in a

biased estimation of DOAs. To prevent warping of the subspaces we can use unitary

matrices for focusing. However, using unitary transformation matrices for focusing does

not necessarily produce an unbiased estimate. Furthermore, there is not a unique solution

for the unitary focusing matrices. Here, we de�ne an error of focusing that can be used

as a comparison measure between di�erent focusing methods.

Since the objective is to transform the noise-free correlation matrix at each frequency

bin to the focusing noise-free correlation matrix, the subspace �tting error is given by

E = kP0 �WjPjW
H
j k2 (5.26)

whereWj is the focusing matrix. The error of transformation for the TCT algorithm can

be obtained by substituting Uj in (5.26) which simpli�es to

ETCT = kP0k2 + kPjk2 � 2< tr(P0UjPjU
H
j )

= kP0k2 + kPjk2 � 2

qX
i=1

�i(P0)�i(Pj): (5.27)

Correspondingly, the error of transformation for the CSM algorithm is represented as

ECSM = kP0k2 + kPjk2 � 2< tr(P0TjPjT
H
j ) (5.28)

where Tj is the focusing matrix given by (4.14). It is possible to show that the error of

transformation for the CSM algorithm is the same as

ECSM = kP0k2 + kPjk2 � 2

qX
i=1

�i(P0TjPjT
H
j ): (5.29)

Using Lemma 5.1, this error can be written as

ECSM � kP0k2 + kPjk2 � 2
qX

i=1

�i(P0)�i(TjPjT
H
j ) (5.30)
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= kP0k2 + kPjk2 � 2

qX
i=1

�i(P0)�i(Pj) (5.31)

= ETCT (5.32)

where we have used the property that the matrices related with the similarity transfor-

mation have the same eigenvalues [15]. Thus, the error of transformation for the TCT

algorithm is always smaller than that for CSM.

5.4. Eigenvalues of the universal focused correlation matrix

One of the major drawbacks of the CSM algorithm is the asymptotic bias of the peak

locations. It is known that the CSM algorithm generates an estimate of DOA that is

asymptotically biased [17]. The bias increases with the bandwidth of processing and

deviation of the initial DOAs from the true DOAs. In this section, we study the eigenvalues

of the universal focused correlation matrix of the CSM and TCT methods. Using the

eigenvalues of the universal focused correlation matrix, we show that the signal power in

the CSM algorithm is randomly extended into the noise subspace. This extension acts

as a spatially colored noise with an unknown correlation matrix which produces biased

estimates of the DOAs.

5.4.1. Analytical study

The universal focused correlation matrix for the CSM algorithm is found from

RCSM =
1

J

JX
j=1

TjR̂jT
H
j : (5.33)

To study the mechanism that generates the asymptotic bias, a noise-free environment is

considered. In such a case, the correlation matrix R̂j is equal to the array noise-free

correlation matrix Pj . Thus the universal focused correlation matrix will be

RCSM =
1

J

JX
j=1

TjPjT
H
j
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=
1

J

JX
j=1

VjW
H
j AjSjA

H
j WjV

H
j : (5.34)

As it is seen the focused correlation matrix is a function of the pre-estimate of the DOA

and the bandwidth of sources. In general, RCSM is of full rank and has nonzero eigenvalues

in the noise subspace. In other words, the received power is distributed in a p-dimensional

space. The components of the signal which di�use into the noise subspace act as a nonwhite

noise with an unknown correlation matrix. The MUSIC algorithm that operates on RCSM

will provide biased estimates of the DOAs if the spatial noise structure is unknown since

for colored noise case, the eigenvectors of the correlation matrix corresponding to q largest

eigenvalues are not in the space spaned by the location matrix.

For TCT the universal focused correlation matrix is given by

RTCT =
1

J

JX
j=1

UjPjU
H
j

=
1

J

JX
j=1

X0X
H
j PjXjX

H
0 (5.35)

where (5.8) has been used to compute Uj . Suppose that the diagonal matrices of the

eigenvalues of Pj ; j = 1; : : : ; J , are shown by �j ; j = 1; : : : ; J . Then for any pre-estimate

of DOA, (5.35) simpli�es to

RTCT =
1

J

JX
j=1

X0�jX
H
0

= X0(
1

J

JX
j=1

�j)X
H
0

= X0�0X
H
0 : (5.36)

Since Pj is computed directly from the sample correlation matrix using (5.13), the diagonal

matrix �0 is independent of the pre-estimates of DOA. Note that each diagonal matrix �j

has only q nonzero entries which in turn implies that �0 has only q nonzero components.

The matrix X0 is orthonormal and hence (5.36) is an eigenvalue decomposition of RTCT .
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It is concluded that in TCT the transformed subspaces for di�erent frequencies are aligned

and the eigenvalues at the noise subspace are zero. In other words, the focused correlation

matrix RTCT has eigenvalues in a q-dimensional subspace. This is an important property

of the TCT algorithm that makes it possible to provide unbiased estimates of the DOAs.

It is useful to compare (5.36) with perfect focusing. In perfect focusing the noise-free

focused correlation matrix is given byA0RsA
H
0 where Rs is de�ned in (4.10). The perfect

focusing can be obtained using the transformation matrices (4.5). These transformation

matrices are not unitary. In general it is not possible to establish perfect focusing through

unitary transformations. In (5.36), perfect focusing is achieved by applying the transfor-

mation on the eigenvectors of the correlation matrices. Since the eigenvectors form an

orthonormal basis, it is always possible to use a unitary transformation to transfer them

into another orthonormal basis. Note that the true DOA implicitly e�ects the selection of

the focusing subspace through the estimation of Sj . Thus assignment of the orthonormal

basis for the focusing subspace in the TCT method is implied by the true DOAs.

5.4.2. Experimental results

We present the results of a computer simulation to study the eigenvalues of the universal

correlation matrix of the two methods. As an example, a con�guration with 4 equipower

wideband signals arriving at a linear array of 16 sensors in a noise-free environment is

considered. The true DOAs are 8�, 13�, 33�, and 37� degrees. The spectrum of the signals

is 
at with 40% relative bandwidth. The initial DOAs are taken at 6:7�, 10:5�, 14:3�, 31�,

35�, and 39� degrees. The output of the sensors is decomposed into 50 snapshots with each

snapshot containing 64 samples. An FFT algorithm is used in each snapshot to sample the

frequency spectrum of the signals at 33 equispaced points. We applied the CSM and TCT

algorithms to obtain the focusing matrices. The eigenvalues of the corresponding matrices

are tabulated in Table 5.1. It is seen that RCSM has nonzero eigenvalues in the noise

subspace due to signal di�usion. Since the focusing matrices, Tj and Uj , are unitary,

the trace of RCSM is equal to the trace of RTCT . This means that the summation of

eigenvalues in Table 5.1 is identical for each matrix. This suggests that the energy of the
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eigenvalues RCSM RTCT

�1 900.27 918.76

�2 806.70 808.09

�3 241.68 244.14

�4 155.39 140.99

�5 4.39 0.00

�6 1.35 0.00

�7 0.40 0.00

�8 0.34 0.00

�9 0.31 0.00

�10 0.27 0.00

�11 0.22 0.00

�12 0.19 0.00

�13 0.15 0.00

�14 0.12 0.00

�15 0.09 0.00

�16 0.07 0.00

Table 5.1 The eigenvalues of the correlation matrices RCSM and RTCT for a con�gu-

ration of 4 wideband sources. The sources have 40% relative bandwidth and are arriving

from the angles 8�, 13�, 33�, and 37� degrees at a linear array of 16 sensors in a noise-free

environment.

signals after transformation in the two methods is identical. However, the TCT method

condenses the total received energy in a q-dimensional subspace and hence improves the

performance.

5.5. The Bias of estimation

One of the major motivations for introducing the TCT algorithm is to reduce the asymp-

totic bias of the peaks in CSM. It is important to note that the MUSIC algorithm is

intrinsically unbiased. The bias in CSM is introduced by focusing which implies that one

can reduce the bias of estimation with a proper selection of the focusing method. In the

sequel, we will discuss this issue and show that TCT can asymptotically generate un-

biased estimate of the DOAs. We will also generalize the work of Swingler and Krolik [36].

They showed that for a single-source scenario it is possible to have an unbiased estimate

provided that the focusing frequency is chosen at the centroid of the source spectrum.
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Here we show that for a multi-source case the bias is eliminated if the focusing correlation

matrix for the true values of DOA is at the average of the transformed correlation matri-

ces. Since the bias of estimation is independent of the noise, in the rest of this section a

noise-free environment is considered.

The noise-free universal focused correlation matrix is shown as

R =
1

J

JX
j=1

WjPjW
H
j (5.37)

where Wj is the focusing matrix for the j-th frequency bin. The following lemma gives a

necessary and su�cient condition for unbiased estimation of the DOAs.

Lemma 5.2. For q uncorrelated sources in a noise-free environment the MUSIC estimator

of the DOAs is unbiased if and only if

Spanf �A0g = SpanfVqg (5.38)

where �A0 is the true location matrix at the focusing frequency and Vq is the matrix of the

q largest eigenvectors of R.

Proof: The MUSIC estimator intersects the subspace spanned by the q largest eigenvectors

of the correlation matrix with the array manifold. Therefore if (5.38) is satis�ed the

estimation is unbiased. For the necessary condition recall that the array location matrix

is of full rank for any combination of the DOAs. Thus if (5.38) is not satis�ed, there are q

independent vectors on the array manifold which span the same space as Vq. The matrix

of these vectors is the estimated location matrix which is di�erent from �A0. 2

We showed earlier that the CSM algorithm extends the power of the sources into the

noise subspace. Thus the rank of R is larger than the rank of �A0. For an unbiased

estimation of the DOAs, the span of the column vectors of �A0 should be equal to the

subspace spanned by those eigenvectors of R that correspond to the q largest eigenvalues.

We assume that the space spanned by the column vectors of �A0 is a subspace of the span

of the columns of R. This is an appropriate assumption since otherwise the estimation will
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be biased. Note that the sample correlation matrix R is a Wishart distributed random

matrix and with probability one its q largest eigenvectors will not span the same subspace

as �A0. In other words, with probability one the CSM algorithm provides biased estimates

of the DOAs. On the contrary, TCT condenses the power of the sources in a q-dimensional

subspace. Therefore it can produce unbiased estimates provided the focusing matrix, Uj ,

transforms the space spanned by the columns of Pj into the space spanned by �A0. A

su�cient condition for unbiased estimation is given by the following lemma.

Lemma 5.3. Any focusing method that satis�es

�A0S0 �A
H
0 =

1

J

JX
j=1

WjPjW
H
j (5.39)

where S0 is a nonsingular, Hermitian, positive-de�nite matrix, produces an unbiased esti-

mate of the DOAs.

Proof: Note that (5.39) satis�es (5.38). Thus using Lemma 5.2 the proof is complete. 2

It is important to notice that (5.39) is a general condition for unbiased estimation

regardless of the method which has been applied for focusing. In [36] Swingler and Krolik

showed that for a single source scenario, an unbiased estimation of the DOA is possible

if the centroid of the frequency spectrum is chosen as the focusing frequency. Lemma 5.3

shows that in a multi-source case, the focusing correlation matrix should be the average

of the focused correlation matrices for an unbiased estimation. We show in Appendix E

that the same results as [36] can be obtained using (5.39) with diagonal focusing matrices

in a single source scenario.

For further discussion of the bias generating mechanism we consider the special case

of perfect focusing. In perfect focusing the transformed correlation matrices UjAj are

superimposed on A0. In such a case the focusing correlation matrix is an average of the

correlation matrices at the frequency bins and the following equality is satis�ed,

A0S0A
H
0 =

1

J

JX
j=1

UjAjSjA
H
j U

H
j : (5.40)
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As noted earlier, for any �̂i estimated by the pre-processing, step the focusing points for

the i-th angle are chosen at (�̂i � 0:25BW ; �̂i ; �̂i + 0:25BW ). These angles determine

an interval on the array manifold. If this interval is small compared to the curvature of

the array manifold at all the points in that interval, it is transferred to a corresponding

interval on the array manifold at the processing frequency f0. This is a consequence of the

continuity of the array manifold and the unitary transformation. Thus in perfect focusing

the location vectors of each frequency bin that are located at the true DOA are transferred

to the corresponding vectors at the focusing manifold. It is seen that in such a case the

estimation of DOA can be unbiased.

In practice, perfect focusing is not plausible. The transformed matrices are clustered

around A0. However, as far as the equality (5.39) is satis�ed for the true DOA, estimation

could be unbiased. It is straightforward to show that the TCT algorithm forms a very

good approximation of (5.39). Taking gradient of (5.18) with respect to P0 and equating

to zero proves that the minimum of (5.18) is achieved if and only if P0 is the average of

the matrices UjPjU
H
j ; j = 1; : : : ; J . The TCT algorithm is based on the minimization

of (5.18) which means that it places the focusing correlation matrix at the centroid of

the matrices UjPjU
H
j ; j = 1; : : : ; J . However, because of unknown DOAs and structural

constraints on the correlation matrix it is not possible to satisfy (5.39) with equality. The

TCT algorithm provides a very close approximation to (5.39) which explains its capability

to provide asymptotically unbiased estimates.

5.6. The e�ect of noise on estimation

It is possible to show that the sample correlation matrices of the two methods, CSM

and TCT, are Wishart distributed [3] with JN degrees of freedom with the correlation

matrices RCSM and RTCT, respectively. Note that simply considering the degrees of

freedom is not su�cient for comparison, since any transformation of the signal subspaces

results in a correlation matrix which is Wishart distributed with JN degrees of freedom.

The important factor is how the transformed observation vectors are distributed in the

p-dimensional subspace. In this section, we will show that the variance of the noise is
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smaller for the TCT which results in a better estimate of the directions of arrival.

The observation can be considered as a p-dimensional signal vector in the q-dimensional

signal subspace perturbed by a p-dimensional noise vector. It is important to note that

the noise component in the signal subspace has no e�ect in the estimation process since

the MUSIC algorithm estimates the DOA's by intersecting the signal subspace with the

array manifold. If the noise is restricted to the signal subspace, there will be no error in

the estimation. However, the power of the noise in the noise subspace is very important

in introducing error in the estimation. The e�ect of the orthogonal noise can be discussed

based on the theory of generalized variance [3]. The generalized variance of a multivariate

random vector is de�ned as the determinant of the correlation matrix. The generalized

variance is a metric for the spread of the observation and is equal to the sum of squares

of the volumes of all di�erent parallelotopes formed by using any p observation vectors as

the principal edges.

In a noise-free environment the observation vectors are constrained to the signal sub-

space and all the parallelotopes have zero volume in the p-dimensional observation space.

Thus, the generalized variance in such a case is zero. This is the key point to the estimation

of the DOA's without error. When the noise is introduced in the system, the observation

vectors are expanded into the noise subspace. Extension of the signal vectors into the noise

subspace results in a nonzero volume and hence a nonzero generalized variance. Thus, for

a noisy environment the estimation of DOA's is usually yielded with error. The smaller

the volume of the observation vectors is, the better the DOA's are estimated. Therefore

a small generalized variance results in a small variance of estimation. In what follows we

show that the generalized variance of the TCT algorithm is smaller than that for CSM.

Consider the following maximization problem

max jRj (5.41)

s:t: trR =
JX

j=1

trR̂j

R> 0
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where j:j stands for the determinant of a matrix and R > 0 means that the matrix is

positive-de�nite. The �rst constraint in (5.41) assures that the energy is not lost during

the focusing process. It is known that the maximum of jRj is obtained if all the eigenvalues
are equal. The maximum corresponds to an equilibrium point where the energy is equally

distributed in all dimensions. Assume that the eigenvalues are components of a vector.

The vector of the eigenvalues that satisfy the constraints of (5.41) are located in a portion

of a hyperplane that is cut by the positive quadrant. The equilibrium point which is the

solution of (5.41) is at the centroid of this region. The maximization (5.41) is a convex

problem. Thus, the farther we are from the equilibrium point, the smaller jRj will be.
We have shown in Section 5.4 that in the CSM algorithm, the signal energy is extended

into the noise subspace. In other words, the eigenvalues of RTCT in the noise subspace

are smaller than the eigenvalues of the RCSM while the sum of eigenvalues for the two

methods are equal. Thus, the vector of eigenvalues is farther from the equilibrium point

in the TCT algorithm than in the CSM algorithm. This means that the universal focused

correlation matrix of the TCT algorithm has smaller determinant or generalized variance.

The smaller generalized variance of the TCT algorithm results in a smaller variance in the

estimation of DOA's.

5.7. Performance comparison

Recently, Doron and Weiss [11] introduced a method for wideband array processing using

Signal Subspace Transformation (SST). The focusing matrix in their method is found

from minimization of kA0D0A
H
0 �TjAjDjA

H
j T

H
j k, where D0 and Dj are any Hermitian

positive de�nite matrices. They used identity matrices for D0 and Dj in their simulation.

The results of the simulation shows that the method is biased. There are two major

di�erences between the TCT and the SST algorithms. First, in TCT, the average of the

estimated source correlation matrices at the frequency bins is chosen as the focusing source

correlation matrix in place of D0. Second, instead of AjDjA
H
j the estimated noise-free

correlation matrices Pj are used for focusing matrix determination. Note that inAjDjA
H
j

the estimated DOAs are utilized, however, for Pj the true DOAs are implicitly used.
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There is also a di�erence between the model equations of the CSM and the TCT

algorithms. In CSM, the focusing model equations are TjAj = A0. The solution to

this equation is not unique and might be singular. It has been shown [17] that from

an estimation point of view, unitary transformations of signal subspaces are the most

e�ective focusing methods for direction �nding. In contrast, in TCT, the model equations

are UjPjU
H
j = P0, where Pj = R̂j � �̂2j I, and P0 = A0S0A

H
0 , where S0 is given by

(5.17). Note that the noise-free correlation matrix Pj is directly estimated from the data

and the pre-estimate of the DOAs is not used in its determination.

5.7.1. Simulation results

Here, we present the simulation results for two DOA estimation scenarios. In the �rst ex-

ample a con�guration with two sources is considered. For this example, we have compared

the bias, the resolution threshold, and the spatial spectrum of the MUSIC algorithm of the

CSM and TCT methods. The second example is a multi-group DOA estimation problem

with the angles taken from [17]. We have found the bias of the estimation of the CSM

and TCT algorithms and compared them. We have also shown that the TCT algorithm

can locate coherent sources.

Two sources

In the �rst example, we investigate a con�guration with two equipower uncorrelated

sources arriving from the angles 11� and 13� degrees o� broadside. The signal-to-noise

ratio is 10 dB. A linear array of 8 sensors is used. The spacing between adjacent sensors

is equal to half the wavelength at the center frequency. A preliminary beamformer output

gives a peak at 12 degrees. Two extra focusing points are added at 9� and 15� degrees.

Sources are sampled with 33 frequency bins in the frequency domain. We imported the

actual correlation matrix to the CSM and TCT algorithms and used the high resolution

MUSIC algorithm for DOA estimation. The results of the estimation for 40 and 100 per-

cent bandwidth and for di�erent focusing frequencies are given in Table 5.2. The bias

columns in this table are the Euclidean norm of the bias vectors. TCT does not have bias
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BW = 0.4 CSM TCT

f0 11 13 bias 11 13 bias

0.8 11.89 12.13 1.24 11.00 13.00 0.00

0.9 11.25 12.75 0.35 11.00 13.00 0.00

1.0 11.01 12.99 0.01 11.00 13.00 0.00

1.1 10.88 13.12 0.17 11.00 13.00 0.00

1.2 10.78 13.22 0.31 11.00 13.00 0.00

BW = 1.0 CSM TCT

f0 11 13 bias 11 13 bias

0.8 � 12.01 � 11.01 12.99 0.01

0.9 11.42 12.58 0.59 11.00 13.00 0.00

1.0 11.12 12.88 0.17 11.00 13.00 0.00

1.1 10.95 13.05 0.07 11.00 13.00 0.00

1.2 10.84 13.16 0.23 11.00 13.00 0.00

Table 5.2 The estimation results for the �rst example.

regardless of the bandwidth of processing.

For this example, we can investigate the threshold SNR for the two methods. The

output of each sensor is separated to 50 snapshots of 16 samples each. Then an FFT algo-

rithm is applied in each snapshot to sample the spectrum of the observation. To �nd the

resolution threshold 100 trials of the same scenario was run for each SNR. The number of

times each algorithm resolved the sources was counted to estimate the probability of reso-

lution. The sources were assumed to be resolved when two peaks in the spatial spectrum

of the MUSIC algorithm were observed. Fig. 5.1 shows the probability of the resolution

for the two methods. Two versions of the CSM algorithm are used here. By UCSM and

DCSM we mean unitary and diagonal versions of the CSM algorithm, respectively. For

DCSM the focusing angle is chosen at 12� degrees. It is seen that TCT has a lower SNR

threshold compared to the UCSM and DCSM algorithms.

We also examine the resolution capability of the two algorithms. We increase the

number of sensors to 16 and consider a 40 percent bandwidth. It is assumed that only

20 snapshots of data are available. Again at each snapshot a 64-point DFT is applied to

obtain 33 frequency samples in the frequency domain. The resolution criterion is de�ned
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Fig. 5.1 The probability of resolution for two closely separated sources using the TCT

and CSM algorithms.

as the di�erence between the average of the spatial spectrum at the peak points in the

MUSIC algorithm and the spatial spectrum in the valley. It is measured on a dB scale for

di�erent SNR's. The results are given in Fig. 5.2. As it is seen the performance of TCT

is about 6 dB better than CSM. The spatial spectra of the two methods are overlapped

in Fig. 5.3 for comparison.

Four sources

For the second con�guration we investigate Example 1 in [17]. The same array has been

used to estimate the DOA of 4 equipower uncorrelated sources impinging from 8�, 13�,

33� and 37� degrees. The bandwidth of the sources is equal to 40 and 100 percent of the

center frequency in two di�erent trials. The pre-estimates of the DOA are given by 6:7�,

10:5�, 14:3�, 31�, 35�, and 39� degrees. The true cross correlation matrices are used for

estimation. Table 5.3 presents the results of estimation for this example. Although TCT

performs better, it is not an unbiased estimation procedure. To improve the resolution

and reduce or eliminate the bias, we can iterate the algorithm. We consider an array of

16 sensors with the same signals as the second example. Application of the TCT method
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Fig. 5.3 The MUSIC spatial spectrum for the two methods, TCT and CSM.
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BW=0.4 CSM TCT

f0 8 13 33 37 bias 8 13 33 37 bias

0.8 { 11.75 34.25 { { 8.03 13.03 32.98 36.98 0.05

0.9 8.42 12.55 33.90 { { 8.01 13.01 32.98 36.98 0.03

1.0 8.07 13.01 33.12 36.82 0.23 8.02 13.02 32.97 36.97 0.05

1.1 7.87 13.21 32.53 37.35 0.64 8.07 13.06 32.92 36.91 0.15

1.2 7.72 13.29 32.22 37.66 1.10 8.17 13.13 32.83 36.81 0.33

BW=1.0 CSM TCT

f0 8 13 33 37 bias 8 13 33 37 bias

0.8 { 11.17 34.22 { { 8.04 13.08 32.86 36.88 0.20

0.9 { 11.85 33.88 { { 8.07 13.09 32.88 36.89 0.20

1.0 8.25 12.53 33.58 { { 8.10 13.10 32.87 36.87 0.23

1.1 7.98 12.93 33.21 36.97 0.22 8.15 13.13 32.85 36.85 0.29

1.2 7.85 13.13 32.78 37.44 0.53 8.22 13.19 32.72 36.71 0.50

Table 5.3 The estimation results for the second example. The blank entries mean that

CSM did not resolve the DOA.

BW=0.4 CSM TCT

f0 8 13 33 37 bias 8 13 33 37 bias

0.8 8.04 12.99 33.03 36.90 0.11 8.00 13.00 33.00 37.00 0.00

0.9 8.02 12.99 33.03 36.95 0.06 8.00 13.00 33.00 37.00 0.00

1.0 7.99 12.99 33.04 37.03 0.05 8.00 13.00 33.00 37.00 0.00

1.1 7.99 13.01 32.98 37.03 0.04 8.00 13.00 33.00 37.00 0.00

1.2 7.98 13.03 32.94 37.03 0.08 8.00 13.00 33.00 37.00 0.00

Table 5.4 The estimation results for the second example after two iterations.

gives the estimates of the DOAs at 7:94�, 13:03�, 33:09� and 37:08� degrees. We use the

following angles for the pre-estimates: 7�, 7:94�, 9�, 12�, 13:03�, 14�, 32�, 33:09�, 34�, 36�,

37:08� and 38� degrees. The results for the two methods are given in Table 5.4. As it

is seen the TCT algorithm outperforms CSM and removes the bias of the estimation. In

general to eliminate the bias this procedure must be iterated several times.

We can also investigate the capability of the TCT algorithm to resolve coherent sources.

In Fig. 5.4, the MUSIC spatial spectrum for the coherent source scenario at 10 dB SNR

is depicted. It is assumed that the source at 13� is a delayed version of the source at 8�

with a one sampling time delay. As it is seen the TCT algorithm resolves all the sources

including the coherent ones.

To study the performance of the TCT algorithm for a limited number of observations,
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Fig. 5.4 The MUSIC spatial spectrum for four sources at 8�, 13�, 33�, and 37�. The

source at 13� is a delayed version of the source at 8�.

the same 4 sources are received by a linear array of 16 sensors. The observation interval

is decomposed into 40 snapshots with each containing 32 samples. The focusing angles

are taken at 6:7�, 10:5�, 14:3�, 31�, 35�, and 39� degrees. The SNR is varied and the

bias and the variance are averaged over 100 independent trials. In Fig. 5.5 and Fig. 5.6

the norm of the bias and the variance vectors for the two methods are compared. These

examples show that the TCT algorithm has smaller bias and variance for a limited number

of observations.
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Chapter 6

Distributed Source

In array processing it is frequently assumed that the signals of interest are generated by

point sources. This is a modeling constraint that is seldom satis�ed in reality. Many

practical examples can be found where the point source assumption does not hold. In an

undersea echo beam sounder, the re
ection of the signal and penetration into the lower

levels of the seabed creates a spatial distribution of the receiving waveform [19]. Another

example arises in the context of radar using short signal pulses. The received signal is

a superposition of the re
ections of the pulse from di�erent parts of the target. If the

target is spread in range, it appears as a distributed source [50]. A source distribution

in space can also be observed in the transmission of radio-waves through ionospheric and

tropospheric scatter links and the propagation of audio signals in a reverberant room.

For narrowband point-source con�gurations, the dimension of the signal subspace (de-

�ned as the span of the correlation matrix in a noise-free environment) is equal to the

number of noncoherent signals. Thus, each source has a one-dimensional representation in

the signal subspace. In previous work, distributed sources have been viewed as a combi-

nation of a large number of closely spaced point sources [19]. The corresponding location

matrix generally spans the whole space and the noise subspace is empty. This explains

why the conventional array processing techniques such as MUSIC [30] and ESPRIT [28],

which are based on the signal and noise subspace decomposition for point source scenarios,

lead to erroneous results when applied to such models of distributed sources.

115
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In this chapter, we propose a parametric approach to distributed narrowband source

localization (Signal C in Fig. 1.1). We assume that the angular cross-correlation kernel

is chosen from a parametric class of functions with each function in this class being rep-

resented by a parameter vector. With this assumption, the localization problem becomes

the one of parameter estimation. The proposed method is based on an extension of the

MUSIC algorithm for distributed source localization. In this approach, the noise-free ob-

servation vector is modeled as the output of a linear operator. Using the adjoint of this

operator, the noise eigenvectors are transformed back into an appropriate source subspace.

The parameter vector is estimated by minimizing a norm of the transformed noise eigen-

vectors. Two cases are considered for the distributed source. If the signal rays of the

source for all the angles at the distribution width are completely correlated, the signal

is coherently distributed (CD). When the signal rays at di�erent angles are uncorrelated

the source is incoherently distributed (ID). The proposed localization method is based on

generalization of the MUSIC algorithm and is applied to both CD and ID signals.

The dimension of the signal subspace depends on the assumptions on the signal dis-

tribution. For CD signals the dimension of the signal subspace is equal to the number

of sources. For this case, the generalization of the MUSIC algorithm involves de�ning a

new array manifold which is based on the integration of the conventional array location

vector weighted by the angular signal density. If the signals are incoherently distributed

the dimension of the signal subspace is generally equal to the number of sensors and the

signal component spans the whole observation space. In such a case, the algorithms which

are based on the signal and noise subspace decomposition are not applicable directly.

We study the shortcomings of beamforming techniques by examining the array gain.

For distributed signals, the array gain is bounded and cannot be increased linearly with

the number of sensors. Speci�cally, it is shown that for coherently distributed sources the

array gain decreases for a very large number of sensors.

To compare our method to the conventional MUSIC algorithm we have performed a

numerical study of the two methods. The simulation results show a dramatic improvement

in performance for the new algorithm. In our example, the resolution SNR threshold for
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the new method is considerably lower than for the MUSIC algorithm. It is also observed

that, unlike MUSIC, the new method is asymptotically unbiased.

6.1. Models for spatially distributed sources

Consider an array of p sensors monitoring a wave �eld of q spatially distributed narrowband

sources in additive background noise. For simplicity, it is assumed that the sensors and

the sources are in the same plane, however, the method can be easily extended to the

3-dimensional case. The complex envelope representation of the array output observation

vector at the k-th snapshot is given by

xk =
qX

i=1

Z �

2

�
�

2

a(�)si;k(�; i)d� + nk (6.1)

where a(�) is the p� 1 location vector of the array, si;k(�; i) is the angular signal density

of the i-th source in the direction �, and nk is the p�1 additive noise vector. A parametric

representation is assumed for si;k(�; i) with  i being the corresponding parameter vector.

Examples of the parameters are the two limits of the direction of arrival (DOA) for a

uniform angular signal density or the angle of maximum power and the �3 dB extension

width for a bell-shaped density. In the sequel, we drop the snapshot subscript k for

simplicity of notation.

For a uniform linear array the location vector is given by a(�) = [1 �� : : : �
p�1
� ]T ,

where �� = exp(j!0d sin(�)=v), and T indicates the transpose of a vector. In �� , d is the

distance between two consecutive sensors, v is the wave speed, and !0 is the frequency of

the source signal. We have assumed that the phase reference point is at the �rst sensor.

If the distance d is equal to half the wavelength at frequency !0, �� will be given by

�� = exp(j� sin �). The localization method that we present is applicable to an array with

arbitrary geometry. However, in this chapter a linear array has been used in the computer

simulations.

The signal and noise snapshots are modeled as independent, zero-mean, circular, com-

plex Gaussian random variables. The signals and noise are also assumed to be uncorre-
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lated. The correlation matrix of the noise vector n is known but for a scale factor, �2n.

In the sequel, we will consider only spatially white noise. Generalization to the nonwhite

case can be done by pre-whitening. With these assumptions the correlation matrix of the

observation vector x is given by

Rx = E(xxH)

= Rs( ) + �2nI (6.2)

where

Rs( ) =

qX
i=1

qX
j=1

Z �

2

�
�

2

Z �

2

�
�

2

a(�) �ij(�; �
0; i; j) a

H(�0) d� d�0 (6.3)

is the noise-free correlation matrix, I is the p� p identity matrix, and

�ij(�; �
0; i; j) = E[si(�; i)s

�

j (�
0; j)] (6.4)

is the angular cross-correlation kernel which is parameterized with the unknown parameter

vectors  i and  j . The superscripts H and � represent Hermitian transposition and the

complex conjugation, respectively.

If the signals from di�erent sources are uncorrelated, the angular cross-correlation

kernel simpli�es to

�ij(�; �
0; i; j) = �(�; �0; i)�ij (6.5)

where �ij is the Kronecker delta. Here, it is assumed that the shape of the angular

correlation kernel is �xed and just the parameters of the shape change. The noise-free

correlation matrix (6.3) is then given by

Rs( ) =

qX
i=1

Z �

2

�
�

2

Z �

2

�
�

2

a(�) �(�; �0; i) a
H(�0) d� d�0: (6.6)

In the rest of the chapter, we assume that the sources are uncorrelated. Note that this

is not a restrictive assumption. If the sources are correlated, they can be treated as a

single source with a new angular correlation kernel which is the addition of the angular
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correlation kernels of the sources. We consider two cases.

Case I { Coherently distributed signal

A kernel �(�; �0; ) is called separable if it can be written as

�(�; �0; ) =
KX
k=1

�k�k(�; )�
�

k(�
0; ) (6.7)

where K is a �nite integer, �k is a scalar and �k(�; ) is a function of � and the parameter

vector  . This kernel is frequently invoked in multi-target radar problems where K is the

number of targets [50]. For a single target the separable kernel is shown as

�(�; �0; ) = �g(�; )g�(�0; ) (6.8)

where g(�; ) is a complex-valued deterministic angular signal density de�ned in the in-

terval [��
2 ;

�
2 ]. In our study, it is convenient to normalize the function g(�; ),

Z �

2

�
�

2

g(�; )d� = 1: (6.9)

With this normalization, the scalar � in (6.8) represents the signal power observed at the

reference point of the array. A signal with the angular correlation kernel (6.8) is termed

a coherently distributed (CD) signal.

Case II { Incoherently distributed signal

In some applications, the signal rays arriving from di�erent directions can be assumed

uncorrelated. For example in the transmission of the radio-waves through tropospheric

scatter links, the signal rays re
ected from di�erent layers of the troposphere have un-

correlated phases. A similar e�ect is observed when the signal rays are the re
ections

from di�erent parts of a rough surface1. The angular correlation kernel for such a case is

1According to the Rayleigh criterion, a surface is rough if h sin � > �=8, where h is the height of the

roughness in the surface, � is the re
ection angle measured from the normal, and � is the wavelength of

the re
ected signal.



CHAPTER 6. DISTRIBUTED SOURCE 120

written as

�(�; �0; ) = �(�; )�(� � �0) (6.10)

where �(�) is the Dirac delta function. A distributed source with the angular correlation

kernel (6.10) is called the incoherently distributed (ID) signal. The noise-free correlation

matrix of these signals is shown as

Rs( ) =

qX
i=1

Z �

2

�
�

2

a(�) �(�; i) a
H(�) d�: (6.11)

In this chapter, the main objective is to locate the distributed signals. The localization

is done by estimating the unknown parameter vectors  i of the angular correlation kernel

�(�; �0; i). In the following section, we propose a localization technique for CD and ID

signals. In practice an intermediate situation might occur that corresponds to a partially

correlated signal where the rays of signal which are arriving from di�erent angles are

partially correlated. Partially correlated signals can also be localized using the same

method as proposed for the ID signal.

6.2. Localization

For the distributed source model of the preceding section a maximum likelihood (ML)

estimator can be derived. However, ML localization is complex. In fact, if the dimension

of the parameter vector for each source is given by m, a nonlinear search on a q � m-

dimensional space, where q is the number of signals, must be performed.

In this section, we propose a parametric localization technique which is based on a

priori knowledge of the distribution pattern of the signals. It is assumed that the angular

correlation kernel of the signal is chosen from a parametric class of functions. With this

assumption, the localization of distributed sources is the same as a parameter estimation

problem. The new algorithm trades o� optimality and computational complexity. We

use the concept of linear operators to generalize the MUSIC algorithm for the distributed

source model.



CHAPTER 6. DISTRIBUTED SOURCE 121

6.2.1. A generalization of the MUSIC algorithm

Let us denote by L2[��
2
; �
2
] the Hilbert space of all complex valued square integrable

functions de�ned over the interval [��
2
; �
2
]. The inner product and the norm in this

subspace are de�ned by

hsi; sjic =
Z �

2

�
�

2

s�i (�) sj(�) d� (6.12)

ksikc =
q
hsi; siic (6.13)

where the subscript c denotes a norm of the continuous waveform. According to (6.1), the

observation vector x at the array output can be expressed as

x =

qX
i=1

Lsi(:; i) + n (6.14)

where L is a linear operator that maps L2[��
2
; �
2
] into a p-dimensional complex observation

vector space ICp according to

L : L2[��
2
; �
2
] �! ICp (6.15)

Ls =
Z �

2

�
�

2

a(�) s(�) d�: (6.16)

The inner product and the norm in ICp are de�ned by

hxi;xjid = xHi xj (6.17)

kxikd =
q
hxi;xiid (6.18)

where the subscript d indicates a norm of discrete functions.

The adjoint operator L+ : ICp ! L2[��
2
; �
2
] satis�es

hLs;xid = hs;L+xic: (6.19)
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For the linear operator (6.16), we have

hLs;xid = [Ls]Hx
=

Z �

2

�
�

2

s�(�) aH(�) d� x

= hs; aHxic: (6.20)

Thus the adjoint is given by

L+x = aH(�)x: (6.21)

As a starting point, we want to extend the de�nition of the signal and noise subspaces

to distributed sources. Note that the source signal si(�; i) in (6.14) is a random signal

which is also a function of the DOA � and the parameter vector  i. By the source subspace

we mean the span of all realizations of the source signals si(�; i); i = 1; : : : ; q where the

 i's are �xed. This subspace is shown by S and is de�ned as

S = Spanfsi(�; i) : i = 1; : : : ; q; and all realizationsg: (6.22)

The source subspace S is a subspace of L2[��
2
; �
2
]. The range of the linear operator L

under S is the signal subspace and is represented by

R = fLs : all s 2 Sg: (6.23)

The orthogonal complement of R is the noise subspace and is denoted by R?. It can be

shown that the range of the adjoint operator L+, when the domain is restricted to the

noise subspace R?, is the orthogonal complement of S which is represented by S?. Fig. 6.1
schematically depicts the relationship between the linear operators and the subspaces.

The above concept of the signal and noise subspaces can be reconciled with the con-

ventional de�nitions for the point source case as follows. The angular signal density of a

point source at the DOA �i can be shown as

si(�) = �i�(� � �i) (6.24)
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Fig. 6.1 Geometry of the linear operator and the adjoint operator.
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where �i is the complex envelope of the i-th signal. The source subspace for a point source

scenario is then given by

S = Spanf�(� � �1); : : : ; �(� � �q)g: (6.25)

Applying the linear operator L to (6.25) gives the signal subspace

R = Spanfa(�1); : : : ; a(�q)g (6.26)

which corresponds to the conventional de�nition of the signal subspace for point sources.

We now use these concepts to interpret the MUSIC algorithm for the point sources

given in (6.25). Suppose we know a basis for R?, say ei 2 R?; i = 1; : : : ; p� q. Then

L+ei = aH(�)ei 2 S?; i = 1; : : : ; p� q: (6.27)

Since the back-transformed vector is in the orthogonal complement of the source subspace,

it is orthogonal to any vector in the source subspace,

Z �

2

�
�

2

aH(�) eis(�) d� = 0; for any s(�) 2 S; and i = 1; : : : ; p� q: (6.28)

Using (6.25) we have

Z �

2

�
�

2

aH(�) ei �(���j) d� = aH(�j)ei = 0; for i = 1; : : : ; p�q; j = 1; : : : ; q: (6.29)

De�ning En = [e1; : : : ; ep�q], we have

aH(�j)En = 0; for j = 1; : : : ; q: (6.30)

The MUSIC algorithm estimates the DOAs of multiple point sources by maximizing the

following \frequency detector" with respect to the DOA parameter � 2 �, where � is the
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parameter set,

P
MUSIC

(�) =
1

aH(�)EnEH
n a(�)

(6.31)

=
1

kaH(�)Enk2 : (6.32)

We use the same approach to derive a MUSIC type algorithm for distributed source

parameter estimation. Suppose that R? has dimension p� q and we have a basis for R?,
say e1; : : : ; ep�q, and let En = [e1; : : : ; ep�q]. Since ei's are in R?, their transformation
under L+ will be in S?, i.e.

L+ei = aH(�)ei 2 S?; i = 1; : : : ; p� q: (6.33)

Thus for all s(�) 2 S we have

Z �

2

�
�

2

aH(�)En s(�) d� = 0: (6.34)

In (6.22) the source subspace S was de�ned as a span of the functions si(�; i). Hence

(6.34) can be written as Z �

2

�
�

2

aH(�)En si(�; i) d� = 0 (6.35)

for all realizations of si(�; i), and for i = 1; : : : ; q. Since si(�; i) is a random function,

this is equivalent to

E[k
Z �

2

�
�

2

aH(�)En si(�; i) d�k2] = 0; for i = 1; : : : ; q: (6.36)

Using (6.5) this equation can be expressed as

Z �

2

�
�

2

Z �

2

�
�

2

aH(�)En �(�; �
0; i)E

H
n a(�

0) d� d�0 = 0; i = 1 : : : ; q: (6.37)

Following the approach of the point source case leading to (6.32), we propose that the
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parameter vector be estimated by locating the peaks of

 ̂ = argmax
 

1R �

2

�
�

2

R �

2

�
�

2

aH(�)En �(�; �0; )EH
n a(�

0) d�d�0
: (6.38)

We call this method the distributed signal parameter estimator (DSPE). The algorithm

is implemented in two steps. First, the array is calibrated using signals with known

parameter vectors from the same family of kernels and the results are stored. Then

using these results, the spectrum of the DSPE algorithm is searched in an m-dimensional

space for q largest local maxima. The maximum points correspond to the estimates of

the parameter vector. The calibration step is due to imperfect knowledge of the sensors

response. If the response of the sensors is known, the calibration step is not required.

6.2.2. The coherently distributed source localizer

The criterion (6.38) can be further simpli�ed for coherently distributed sources. For CD

sources, the rays of arriving waves at di�erent angles are delayed and scaled version of the

same signal. In such a case, the angular signal density can be represented as

si(�; i) = 
ig(�; i) (6.39)

where 
i is a random variable and g(�; i) is a deterministic angular signal density. Let

us de�ne

b( ) =

Z �

2

�
�

2

a(�)g(�; )d�; (6.40)

and let B( ) be the matrix of the column vectors, b( i); i = 1; : : : ; q. The correlation

matrix of the array is then given by

R = B( )�BH( ) + �2I (6.41)

where � is a correlation matrix with the ij-th component de�ned as E[
i

�

j ]. If the

sources are uncorrelated with each other, � will be diagonal. From (6.41) it is seen that
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for CD signals the signal subspace is spanned by the eigenvectors of the correlation matrix

corresponding to the q largest eigenvalues. The number of signals can be estimated to be

the rank of the noise-free correlation matrix. The localization criterion (6.38) for the CD

sources with the angular signal density g(�; ) is given by

 ̂ = argmax
 

1R �

2

�
�

2

R �

2

�
�

2

gH(�; ) aH(�)EnEH
n a(�

0) g(�0; ) d� d�0
(6.42)

which is found from using (6.8) in (6.38). With the de�nition of b( i) the criterion (6.42)

simpli�es to

 ̂ = argmax
 

1

kbH( )Enk2 (6.43)

which is similar in form to (6.32). The di�erence is that the array manifold for the

distributed source is an integral of the location vector a(�) weighted by the angular signal

density g(�; ). To instrument the estimation, the array is calibrated with the new array

manifold which is shown by b( ) and the results are saved for later use. For localization,

a search step is performed on an m-dimensional space to �nd the maxima of (6.42). These

maxima are the estimates of the signal parameter vectors.

6.2.3. The incoherently distributed source localizer

For ID sources, the noise subspace is generally zero and (6.38) which is based on the signal

and noise subspace decomposition cannot be directly applied. However, for a uniform

distribution we show that with a proper choice of the signal and noise subspaces, it is

possible to use the DSPE algorithm. By a uniform distribution we mean an angular

correlation kernel which is 
at over its extension width. The study of uniform extension

gives insight into the ID source localization problem. Later we will generalize the method

for nonuniform kernels.

Although for uniform ID signals the whole observation space is occupied by the signal

components, most of the energy of the signals is concentrated in a few eigenvalues of

the array correlation matrix. The number of these eigenvalues is denoted as the e�ective

dimension of the signal subspace which can be used in the localization algorithm. In what



CHAPTER 6. DISTRIBUTED SOURCE 128

follows, we derive an analytic expression for the e�ective dimension of the signal subspace

for a single ID source case. For correct localization, the number of the signal eigenvalues

in the DSPE algorithm should be chosen equal to or greater than the e�ective dimension

of the signal subspace.

Assume that an ID source with the uniform correlation kernel

�(�; ) =

8>><
>>:

1

2�
if j� � �0j � �

0 otherwise

(6.44)

is observed by a linear continuous array. In a continuous array, the signal is observed at

every point z in the interval [�L
2
; L
2
] where L is the array length. Using (6.1), we can show

that for a single ID source uniformly distributed in a noise-free environment, the spatial

cross-correlation function is given by

E[x�(z)x(z0)] = ej
2�

�
(z0�z) sin �0sinc[

2

�
(z0 � z)� cos �0] (6.45)

where x(z) is the output vector of the array observed at the point z, and sinc(x) =

sin �x=(�x).

To �nd the e�ective dimension of the signal subspace we need to perform an eigenvalue

analysis of (6.45) by solving

Z L

2

�
L

2

ej
2�

�
(z�z0) sin �0sinc[

2

�
(z � z0)� cos �0]�n(z

0) dz0 = �n�n(z): (6.46)

The eigenfunctions �n(z) are the angular prolate spheroidal functions given by [32]

�n(z) = S0n(c;
2

L
z) (6.47)

where c is a parameter de�ned as

c = ��
L

�
cos �0: (6.48)
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The eigenvalues �n are equal to

�n = 2[R
(1)
0n (c; 1)]

2 (6.49)

where R
(1)
0n (c; 1); n = 0; 1; : : :, are the radial prolate spheroidal functions [32].

For a �xed c the radial prolate spheroidal function R
(1)
0n (c; 1) decreases exponentially

with n. From the tables of the prolate spheroidal functions [33] it can be seen that more

than 95 percent of the energy is concentrated in the �rst dce eigenvalues where dce indicates
the smallest integer number larger than c. The e�ective dimension of the signal subspace

is the number of signi�cant eigenvalues in a noise-free environment, which we will take to

be dce. Once the signal subspace dimension is determined, the DSPE algorithm is used to

localize the sources.

From the above discussion it is seen that the e�ective dimension of the signal subspace

is directly related to the parameter c which is a function of the extension width, array

length, signal wavelength, and the signal location in space. For a linear array with a half

wavelength spacing, c becomes

c =
�

2
�(p� 1) cos�0: (6.50)

In practice if c is underestimated, a large error in localization will be occurred. That is

because some of the eigenvectors that contribute to the signal subspace are not used in the

localization process. When c is overestimated, no great loss of performance is observed.

In such a case the resolution capability is slightly reduced due to the importation of some

noise components in the signal subspace.

For general nonuniform ID sources an analytic expression for the e�ective dimension

of the signal subspace is not available. An eigenvalue analysis can be used to determine

the number of signi�cant signal components. With this approach, the DSPE algorithm

can be applied to multiple source cases.
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Using (6.10) the DSPE criterion for ID sources simpli�es to

 ̂ = argmax
 

1R �

2

�
�

2

aH (�)En �(�; )EH
n a(�) d�

: (6.51)

This criterion can also be represented as

 ̂ = argmax
 

1

tr(EH
n H( )En)

(6.52)

where tr(:) stands for the trace of a matrix and H( ) is de�ned by

H( ) =

Z �

2

�
�

2

a(�) �(�; ) aH(�) d�: (6.53)

Note that H( ) is independent of the observation and can be computed and stored in the

calibration process. For a uniform linear array, H( ) has a Hermitian Toeplitz form. In

such a case, only p complex numbers need be computed for each parameter vector  .

For partially correlated distributed signals, the e�ective signal subspace dimension is

between q and dce. Using the number of dominant eigenvalues as the e�ective dimension of
the signal subspace, the DSPE algorithm can be used for partially correlated distribution.

6.3. The array gain

Beamformers improve the array output SNR by steering a beam towards the direction of

signal. Because of the ease of implementation, these methods are practically important.

However, they have relatively low resolution. In a conventional beamformer, to achieve a

higher resolution, a large number of sensors must be used. For point sources the array gain

can be improved by increasing the number of sensors. Here, we show that for distributed

sources the spatial correlation function of the signal is upper bounded by an exponentially

decreasing function. Then, we derive the array gain and show that it is bounded and

cannot be linearly increased with the number of sensors. For the speci�c case of CD

sources, we show that the array gain attains a maximum and decreases exponentially for
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very large number of sensors.

The gain of an array of sensors is de�ned as the ratio of the SNR at the array output

to the SNR at a single sensor [20]. Assuming that the noise is spatially white and that a

conventional beamformer is used, the array gain is given by

Ga =
aHRsa

aHa
(6.54)

where a is the location vector of the array steered towards the direction of interest and

Rs is the correlation matrix of the array output in a noise-free environment.

6.3.1. Coherently distributed sources

Assume that the array output can be observed along a continuous linear array. If the

observation at point z is shown by x(z), for a CD source in a noise-free environment we

have

x(z) =

Z �

2

�
�

2

ej
2�z

�
sin �
g(�; )d� (6.55)

where 
 is a zero-mean complex Gaussian random variable and g(�; ) is the normalized

deterministic angular signal density. Assuming that the source is uniformly distributed by

g(�; ) =

8>><
>>:

1

2�
if j� � �0j � �

0 otherwise

(6.56)

the observation vector can be written as

x(z) = 

1

2�

Z �0+�

�0��
ej

2�z

�
sin �d�: (6.57)

For a small �, it is straightforward to show that

x(z) � 
ej 2�z� sin �0sinc(
2z

�
�cos �0): (6.58)

From (6.58) we arrive at the following result.
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Fig. 6.2 The spatial cross-correlation for a uniform CD source. (The �rst sensor is

placed at the phase reference point.)

Property 6.1. For a uniform CD source (with small extension) the spatial cross-correlation

function at z1 and z2 in a noise-free environment is bounded by

jE[x(z
1
)x�(z

2
)]j � Kz�1

1
z�1
2

(6.59)

where K is a positive scalar.

An example of the correlation between two points on a linear array for a uniform CD

source is depicted in Fig. 6.2. It is assumed that the �rst point is the phase reference

of the array. The second point varies along the array. The envelope of the correlation

function exponentially decreases with distance. Thus, as the aperture length of the array

increases, the correlation between far end sensors decreases. In other words, the signals at

widely separated sensors cannot be coherently added to increase the SNR. This suggests

that the array gain does not increase linearly with the number of sensors.
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For a uniform linear array with half the wavelength spacing between sensors, the

component of the observation (6.58) at the position of the l-th sensor is

xl = 
ej�l sin �0sinc(l�cos�0): (6.60)

Assuming that the power of the source is unity and �0 = 0, the array gain is given by

Ga =
1

p

h p�1X
l=0

sinc(l�)
i2
: (6.61)

Note that for � = 0 the array gain is equal to p which is the gain of a point source scenario.

For � 6= 0 and large p, the sum in (6.61) is approximated by �=2 which reveals that the

array gain decreases with a rate of 1=p. The array gain for a CD source as a function

of the number of sensors p is illustrated in Fig. 6.3. The array gain has a maximum

which depends on the extension width. Increasing the number of the sensors beyond the

maximum point decreases the array gain. We have found that at the maximum point the

array length p
MAX

can be approximated as

p
MAX
� 40

��
(6.62)

where �� is the extension width measured in degrees.

6.3.2. Incoherently distributed sources

From (6.45) we can easily arrive at the following result.

Property 6.2. For an ID source uniformly distributed with a small extension width, the

spatial correlation function decreases exponentially with distance and is upper bounded by

jE[x(z
1
)x�(z

2
)]j � K

z
1
� z

2

(6.63)

where K is a positive scalar.
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Fig. 6.3 The array gain for a uniform CD source for di�erent extension widths � in

degrees.

Since the spatial correlation function decreases exponentially with distance, the array

gain cannot increase linearly with the number of sensors. For a uniform linear array with

half the wavelength spacing between sensors, the spatial cross-correlation function between

the l-th and the k-th sensors is given by

E[xlx
�

k ] = ej�(l�k) sin �0sinc[(l� k)� cos �0]: (6.64)

Assuming that �0 = 0, the array gain is given by

Ga =
1

p

h p�1X
l=0

p�1X
k=0

sinc[(l� k)�]
i
: (6.65)

Again it is seen that for � = 0 we get the same result as a point source case. With a

change of variable the array gain can be represented as

Ga =
1

p

h
p+ 2

p�1X
r=1

(p� r)sinc(r�)
i
: (6.66)
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Fig. 6.4 The array gain for a uniform ID source for di�erent extension widths � in

degrees.

The array gain for an ID source is depicted in Fig. 6.4. For a �xed extension width, the

maximum array gain for the ID source is higher than for the CD source.

6.4. The uniqueness problem

A natural question that might be raised is: \Using the observations at the output of an

array, are the distributed sources uniquely localizable?" Equation (6.1) shows that the

output of an array exposed to a distributed source in a noise-free environment is an integral

of the location vector weighted by the angular signal density. Using this interpretation

the uniqueness is stated as: For a given array output in a noise-free environment, a unique

angular signal density can be found that generates that observation.

The array output for a distributed source can be approximated by the superposition of

the array response to a large number of closely spaced point sources. The approximation

error decreases by increasing the number of point sources and/or decreasing their spacing.

In the limit a distributed source corresponds to an in�nite number of point sources. In

this approximation the number of free parameters increases with increasing the number
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of point sources. If a classical point source localization method, such as ordinary MUSIC,

is applied to this scenario, a unique solution may not be attained due to a limited number

of sensors. For a unique solution, the number of point sources must be smaller than the

number of sensors.

Note that the correlation matrix of these point sources is related to the kernel of

the distributed source. If this kernel belongs to a parametric family, the number of free

parameters will usually be much smaller than the number of point sources. In this section,

we show that if the point sources are related through some parametric constraints, then

for any observation at the array output, almost surely there is a unique solution which

generates that output. From this, we conclude that everywhere except in a set with

probability zero, a unique solution can be found for the localization problem of an extended

source. We use the concept of the \topological dimension" of a set. The topological

dimension of a set is the number of free (real) parameters that are required to describe all

the elements of that set. For a detailed discussion of the topological dimension see [18].

The same concept has been used by Wax [54] to �nd the number of resolvable sources

when the source signals are constrained to some real or complex loci.

We will discuss the uniqueness problems separately for the CD and ID sources. For

each case a legitimate set is found which contains all the signals that are chosen from the

parametric class of the angular correlation kernel. Every element in the legitimate set can

be a candidate for the localization problem. The ambiguity set is a subset of the legitimate

set that contains all the signals that can generate nonunique solutions for the localization

problem. The objective here is to �nd the conditions under which the ambiguity set has

a smaller dimension than the legitimate set. In such a case, it can be shown that the

probability of the ambiguity set is equal to zero.

6.4.1. Coherently distributed sources

Let the interval [��
2
; �
2
] be quantized into a grid of ~q points. It is assumed that a distributed

source with the angular signal density g(�; ), where  is an m-dimensional parameter

vector, is discretized so that it can take values on the quantized grid. Initially, we assume
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a single source scenario.

The output of an array of p sensors in a noise-free environment for N snapshots can

be represented as

X = AS( ) (6.67)

where A is the p� ~q location matrix of the array, S( ) is the ~q�N source signal matrix,

and X is the p�N observation matrix. Since the source is coherently distributed in space,

the rank of the matrix S( ) is equal to one. The source signal matrix can be expressed

as S( ) = [s1( ) S2( )] where s1( ) is a ~q� 1 vector and S2( ) is a ~q� (N � 1) matrix.

Similar to [54] we can show that it su�ces to solve the uniqueness problem only for

x1 = As1( ): (6.68)

The source signal matrix s1( ) can be shown as

s1( ) = 
1g( ) (6.69)

where g( ) is a ~q�1 vector with its i-th component equal to the value of g(�; ) computed
at the location of the i-th quantized DOA, and 
 is a complex level scale. The vectors that

satisfy (6.69) for all  , generate a set which is called the \legitimate set" and is denoted

by G. Since it is assumed that there is a one-to-one relationship between g( ) and  , to

determine s1( ) we need to determine 2+m real parameters. Thus the dimensionality of

G is equal to 2 +m.

A nonunique solution for the localization problem can be found if

x1 = As1( ) = As01( 
0) (6.70)

which also be written as

A(
1g( )� 
01g( 0)) = 0: (6.71)

The legitimate vectors that satisfy this equality for any  and  0, form the \ambiguity set"
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which is represented by D. To represent each vector in the form of (
1g( )�
01g( 0)) we
need to determine 2(m+ 2) real parameters. However, (6.71) shows that for the vectors

in the ambiguity set 2p constraints should be applied to their parameters. Thus, total

number of parameters that can freely be set to satisfy (6.71) is equal to 2(m + 2) � 2p.

This is the dimensionality of D. Since s1( ) is a random vector, a unique solution for the

localization problem can be found with probability one if

dimD < dim G (6.72)

where \dim" is the dimension operator. This criterion is equal to

m < 2p� 2: (6.73)

As far as (6.73) is satis�ed, with probability one a unique solution for the localization

problem can be found. Note that (6.73) is independent of ~q the number of quantized

sources. Thus in�nite number of point source (an extended source) are localizable if they

are related through some parametric constraints.

A multi-source case can be treated similarly with an angular signal density equal to

the addition of the angular signal density of the single sources. For a multi-source scenario

the dimensionalities of G and D are equal to q(m + 2) and q(m + 2) � 2p, respectively,

where q is the number of coherent sources. Thus the uniqueness constraint implies that

q <
2p

m+ 2
(6.74)

Note that for point source case m = 1 and we have q <
2p

3
, which is the well known

su�cient condition for unique localization of coherent point sources [58].

6.4.2. Incoherently distributed sources

The sample correlation matrix is a Hermitian random matrix with jointly Wishart dis-

tributed elements [3]. The true correlation matrix is the limit of the sample correlation
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matrix when the observation time tends to in�nity. In the sequel, we �nd the dimen-

sionality of the true correlation matrix, keeping in mind that it is the limit of a random

matrix. The error between the true and the sample correlation matrices can be arbitrarily

reduced by increasing the observation time. We consider a subset of the sample correlation

matrices which generate ambiguous solutions for the localization problem. Then we show

that this set converges into a set that has a smaller dimension than the set of all possible

correlation matrices.

Assume that the interval [��
2
; �
2
] is uniformly sampled into a grid of ~q points. A dis-

tributed source with the angular correlation kernel �(�; �0; ), where  is anm-dimensional

parameter vector, takes its values on this grid in a noise-free environment. Again initially

assume a single source in a noise-free environment. The correlation matrix of the array

output is shown as

Rx = A(�)RsA
H(�) (6.75)

where A(�) is the p � ~q dimensional location matrix of the array and Rs is the ~q � ~q

correlation matrix of the point sources. Since the point sources are the samples of the

distributed sources, their cross-correlation matrix satis�es

Rs = P( ); for some  2 	 (6.76)

where 	 is the parameter set and the components of P( ) are the values of the angular

correlation kernel of the distributed source �(�; �0; ) computed on the grid. All the

correlation matrices Rx that satisfy (6.75) with the constraint (6.76) form the \legitimate

set" G. Since P( ) is a function of m free (real) parameters, the topological dimension of

the legitimate set is m.

Let us de�ne

F = A(�)P( )AH(�)�A(�)P( 0)AH(�) (6.77)

for some  and  0. The set of all matrices which can be represented by (6.77) has a
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dimensionality 2m. A nonunique solution for the DOA estimation problem is found if

F = 0: (6.78)

Note that for ID sources, P( ) is a diagonal matrix. Thus (6.78) provides p2 complex

constraints but only p of them are independent. The number of parameters that can be

chosen freely to satisfy (6.78) is equal to 2m� p. De�ne the ambiguity set as

D = fRx : A(�)P( )A
H(�) = A(�)P( 0)AH(�)g: (6.79)

The elements of D produce nonunique solutions for the DOA estimator. The topological

dimension of D is equal to 2m� p. With probability one, a unique solution can be found

for the localization problem if

2m� p < m; or m < p: (6.80)

This suggests that distributed sources are uniquely resolvable if they are chosen from a

parametric class of angular correlation kernels with the dimension of the parameter vector

smaller than the number of sensors.

A multi-source case can be treated similarly with an angular correlation kernel equal to

the addition of the angular correlation kernels of the single sources. In a multi-source case

with q uncorrelated sources the dimensionality of G and D are equal to qm and (2qm�p),
respectively. The uniqueness criterion is then given by

qm < p: (6.81)

For point sources m = 1, and we have q < p, which is the well known su�cient condition

for unique localization of uncorrelated sources [58].
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6.5. Simulation results and performance comparison

A) CD sources

We investigate a con�guration with two equipower uncorrelated narrowband CD sources

arriving at a uniform linear array of 20 sensors. The spacing between adjacent sensors is

equal to half the wavelength at the operating frequency. The angular signal density of the

i-th source is given by

g(�; i) =
Ki

1 + j ���i
�i

i = 1; 2 (6.82)

where Ki is a normalization factor, �i is the central angle of arrival, and �i is the �3
dB extension width. The parameter vector in this example is  i = (�i;�i). The angular

correlation kernel for such a signal density is given by

�(�; i) =
K2

1 + ( ���i
�i

)2
(6.83)

which has a Butterworth spectrum and is proposed in [14, chap 3] as a model for noise

sources. In our simulations, �1 and �2 are taken as 10 and 13 degrees with the extension

widths �1 = 1 and �2 = 2 degrees. It is seen that the sources have a signi�cant overlap

in space.

A Monte-Carlo simulation of 50 independent runs with 50 snapshots for each trial

was performed for di�erent signal-to-noise ratios. The resolution performances of the

conventional MUSIC and the DSPE are compared in Fig. 6.5. For the conventional MUSIC

algorithm, the two signals are considered to be resolved when two peaks are observed in

the MUSIC spectrum. For the DSPE algorithm each source is considered detected if the

estimates of �i and the distribution widths �i are within 1 degree of the true values. Note

that these de�nitions of detection tends to favor the MUSIC algorithm more than the

DSPE estimator. The resolution threshold of the DSPE is about 15 dB lower than the

conventional MUSIC algorithm.

For this source con�guration we found the bias and the standard deviation of the

MUSIC and the DSPE estimators. For both sources the estimated central DOA is biased
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Fig. 6.5 The probability of resolution for the conventional MUSIC and the DSPE versus

SNR.

in the conventional MUSIC algorithm and the bias cannot be decreased by increasing the

SNR (see Fig. 6.6 and Fig. 6.7.) The DSPE algorithm provides a smaller bias in the DOA

estimation. Furthermore, the bias can be reduced by increasing the signal-to-noise ratio.

Fig. 6.8 and Fig. 6.9 show that the standard deviation of the DSPE estimators is less than

that for the MUSIC algorithm.

B) ID sources

For the ID signal scenario we examine a con�guration with two uniformly distributed

sources with the angular correlation kernel

�(�; i) =

8>><
>>:

1

2�i
if j� � �ij � �i; i = 1; 2

0 otherwise

(6.84)

arriving at an array of 20 sensors. In our simulation, the central DOAs are selected

as �1 = 8 and �2 = 15 degrees with extension widths �1 = 1 and �2 = 1:5 degrees,

respectively. The signal-to-noise ratio is 30 dB and 200 snapshots are observed. For a
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Fig. 6.6 The bias of estimation versus SNR for the source at 10 degrees.

single source with 3 degree extension width, the parameter c is smaller than 1.6. The

eigenvalues of the sample correlation matrix for this scenario are shown in Fig. 6.10. It is

seen that the �rst 4 eigenvalues dominate. This number agrees with the value given by the

analytical study of the e�ective dimension of the signal subspace. The DSPE algorithm

was run for this example with 16 noise eigenvectors. The DSPE spectrum is illustrated

in Fig. 6.11. The two prominent peaks estimate the central DOAs at 7.92 and 15.04

degrees with extension widths 1.86 and 3.10 degrees, respectively. Note that when � = 0

the DSPE algorithm coincides with the MUSIC algorithm. The MUSIC spectrum is the

� = 0 case in Fig. 6.11.
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Fig. 6.7 The bias of estimation versus SNR for the source at 13 degrees.
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Fig. 6.8 The standard deviation versus SNR for the source at 10 degrees.
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Fig. 6.9 The standard deviation versus SNR for the source at 13 degrees.
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Chapter 7

Summary and Conclusions

This dissertation concerns the detection and localization of spatiotemporal signals. A

spatiotemporal signal is function of time and space. An spatiotemporal signal can be

Fourier transformed into the frequency-wavenumber domain. We have considered three

special cases of interest: narrowband, wideband and spatially distributed signals.

In Chapter 3, we have introduced a new information theoretic method for detection

of the number of narrowband point signals. The approach is based on the predictive

stochastic complexity (PSC). The PSC is the length of a predictive code that encodes the

data. We have derived two versions of the PSC algorithm. The �rst method is based on the

maximum likelihood (ML) estimate of the correlation matrix. Since the only information

used in this approach is multiplicity of the smallest eigenvalue of the correlation matrix,

it can only detect noncoherent sources. In the second approach, we have exploited the

structure of the correlation matrix and decomposed it into two parts in the signal and

noise subspaces. The ML estimation of the correlation matrix in this method is based on

the ML estimation of the direction-of-arrival (DOA). We have shown that this method

detects coherent as well as noncoherent sources.

To reduce the computational complexity in the ML estimation of the parameter vector,

we used a hill climbing method. The simulation results show that the performance of the

PSC algorithm is better or comparable to the MDL method. It has also been shown that

the new algorithm has a smaller sensitivity for the uncertainties in the DOA estimates.

147
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Both MDL and PSC have been developed for large data size.

In Chapter 4, a method to determine the optimal focusing frequency for the coherent

signal-subspace method (CSM) with unitary transformations is proposed. We have de�ned

a criterion based on the subspace �tting error and optimized a tight upper bound to it.

The optimization was done in two steps. First, the singular values of the focusing location

matrix are obtained. Then a one-variable nonlinear minimization problem is solved to

obtain the focusing frequency. The simulation results show that the method successfully

�nds the global optimum value and improves the performance of the estimation by reducing

the bias and the resolution signal-to-noise ratio (SNR) threshold.

In Chapter 5, we have introduced a new method for localization of broadband signals.

The method is based on the two-sided unitary transformation of the correlation matrices.

The motivation for this work was to reduce the error of the subspace �tting and to remove

the asymptotic bias of estimation that is involved in the CSM algorithm. The bias of

estimation in the CSM is a function of the focusing points and the bandwidth of processing.

We have shown that the noise-free universal focused sample correlation matrix has nonzero

eigenvalues in the noise subspace. This nonuniform expansion of the source energy into

the noise subspace acts as a colored noise with an unknown correlation matrix. Since the

form of the signal extension is unknown, the estimation will be biased in general.

It has been shown that the TCT algorithm does not su�er from this shortcoming. For

a scenario with q noncoherent sources, the noise-free universal focused correlation matrix

of the TCT algorithm has q nonzero eigenvalues and its columns span a q-dimensional

subspace regardless of the processing bandwidth. With iterative use of the TCT algorithm

it is possible to get this q-dimensional subspace to coincide with the true signal subspace;

hence resulting in unbiased estimation. We have also shown that the generalized variance

of the TCT algorithm is smaller than its counterpart for the CSM. Thus, in a noisy

situation, TCT can generate more robust estimates of the DOAs.

In Chapter 6, we have discussed the problem of localizing spatially distributed sources.

It has been assumed that the angular cross-correlation kernel of the source signals belongs

to a parametric class. We proved that this assumption guarantees a unique solution for the
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localization problem. We have proposed a MUSIC type distributed signal parameter esti-

mator (DSPE) which is based on minimizing a norm of the transformed noise eigenvectors

in the source subspace.

The method was applied to two cases. First, we used the DSPE algorithm to localize

coherently distributed (CD) signals. For the coherent distribution of signals it has been

shown that the new method is similar to the MUSIC algorithm with an array manifold

which is the integral of the location vector weighted with the angular signal density. We

have also considered incoherently distributed (ID) signals. For these signals, it has been

shown that the e�ective dimension of the signal subspace is a function of the product of

the extension width, the array aperture, wavelength, and the signal location. The DSPE

algorithm is applied to ID sources using the e�ective dimension of the signal subspace.

We have found the spatial cross-correlation of the coherently and incoherently dis-

tributed signals and shown that in both cases the spatial correlation decreases exponen-

tially with distance. For uniformly distributed CD and ID signals, the array gain is

bounded and cannot be increased linearly with the number of sensors. In both cases the

maximum array gain changes with the extension width; increasing the extension width

decreases the array gain.

Computer simulations were conducted to compare the new method and the conven-

tional MUSIC algorithm. It was shown that the resolution threshold for the new method

is lower than that for the MUSIC algorithm. The DSPE algorithm has a smaller bias,

and unlike the MUSIC estimator, the bias can be reduced by increasing the SNR. It was

also shown that the DSPE method has a smaller standard deviation than the MUSIC

algorithm.

7.1. Future work

An extension of the work of Chapter 3 can be to compare the sensitivity of the MDl and

PSC methods as a function of the number of observations. Although it was proposed that

the PSC algorithm can be applied to time varying systems, a computer simulation for time

varying environments have not been conducted. We have demonstrated that the PSC can
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detect a change in the number of signals faster than the MDL method. For the future,

the capability of the PSC method for detecting sources in a nonstationary situation needs

to be studied.

We have explained that the DSPE algorithm needs a calibration process. The results

of calibration are saved to be used for the search process. Note that the calibration should

be implemented for an m-dimensional set where m is the dimension of the parameter

vector of the angular cross-correlation kernel. This makes DSPE computationally more

complex than the MUSIC algorithm.

Future work for the results of Chapter 6 can be in the direction of avoiding the calibra-

tion process by using an ESPRIT-type method. In the ESPRIT algorithm, it is assumed

that the signal wave �eld is sampled with an array of perfectly matched doublets. For a

distributed source, we have shown that the spatial correlation function is exponentially

decreasing with distance. This fact should be considered in deriving an ESPRIT-type

algorithm for the distributed source case.

More works is warranted on the DSPE method for localizing extended sources. We

have started in this direction by calculating the Cramer-Rao bound for the estimation of

extended sources and in particular coherent sources. The performance of DSPE relative

to this bound needs to be evaluated.



Appendix A

Uniqueness of the Subspace

Decomposition

In this appendix we prove Theorem 3.1. The objective is to show that for every signal

subspace ICq
s = spanfa(�i)j i = 1; : : : ; qg there is a unique set � = f�ij i = 1; : : : ; qg

that generates that space and vice versa. Note that the location vectors a(�i) 2 A are

independent and form a basis for the signal subspace. We claim that this basis is unique.

If it is not the case, there will be another set 	 = f ij i = 1; : : : ; qg with a( i) 2 A which

is also a basis for ICq
s. Then every vector in ICq

s could be represented with respect to this

basis. Take for instance a(�1). The independence of the location vectors suggests that �1

has to be in the set 	. The continuation of this argument implies 	 = �.

The inverse is straightforward. If 	 = �, then A(�q) = A( q). Since the signal

subspace is the span of the columns of A(�q), the proof is complete.
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Appendix B

Consistency of the Estimator

In this appendix, we show that the estimator (3.38) is consistent. In other words, as the

number of observations approaches in�nity the true DOAs are estimated. As i!1, the

sample correlation matrix tends to the true correlation matrix. In the limit the criterion

(3.38) is equal to

�̂ = argmin
 

tr[Pn( )R
q]: (B.1)

Using Pn( ) = I�Ps( ), the optimization criterion can be shown as

�̂ = argmax
 

tr[Ps( )R
q] (B.2)

= argmax
 

tr[AH(�q)Ps( )A(�
q)S] (B.3)

where the true angle of arrivals is shown by �q. The source correlation matrix S can be

represented by its eigenvalues and eigenvectors as

S =

qX
i=1

�iviv
H
i : (B.4)

Substituting (B.4) in (B.3) yields

�̂ = argmax
 

qX
i=1

�iv
H
i A

H(�q)Ps( )A(�
q)vi (B.5)
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= argmax
 

qX
i=1

�ib
H
i Ps( )bi (B.6)

where bi = A(�q)vi is a linear combination of the true location vectors. The projection

operator Ps( ) is a positive-semide�nite matrix with q eigenvalues equal to 1 and the rest

equal to zero. Using Rayleigh-Ritz theorem [15], we have

bHi Ps( )bi � jbij2: (B.7)

Therefore
qX

i=1

�ib
H
i Ps( )bi �

qX
i=1

�ijbij2: (B.8)

As it is seen the upper bound of the criterion is independent of  . This bound is achieved

if and only if Ps( ) is a projection onto the subspace spanned by the columns of A(�q),

i.e.

Ps( )bi = bi 8i: (B.9)

This equality also holds for all b 2 Cs = spanfbi; i = 1; : : : ; qg. Using the de�nition of bi,

Ps( )A(�
q)vi = A(�q)vi 8i: (B.10)

This equality should hold independent of the source correlation matrix. Thus

A( )[AH( )A( )]�1AH( )A(�q) = A(�q): (B.11)

It is obvious that �q satis�es the equation (B.11). Since Ps(�
q) is an orthogonal projection,

it is unique. We claim that �q is also unique. Suppose it is not the case. Then there is

 0 6= �q for which
Ps( 

0)b = b 8 b 2 Cs: (B.12)

Uniqueness of the orthogonal projection implies

Ps( 
0) = Ps(�

q): (B.13)
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The set of independent vectors A( 0) = fa( 0i); i = 1; : : : ; qg form a basis for a q-

dimensional subspace. Since it is assumed that any p location vectors are independent,

there is at least one vector in the set A( 0) which cannot be represented with respect to

the basis A(�q) = fa(�i); i = 1; : : : ; qg. The projector Ps( 
0) is the projection matrix

onto the subspace spanned by the vectors of the set A( 0) which is di�erent from the

true signal subspace spanned by the columns of A(�q). This is in contradiction to (B.13).

Thus, no  0 6= �q can satisfy (B.13).



Appendix C

Singular Values of a Matrix

Product

In this appendix Lemma 5.1 is proved. The following lemma is adopted from [15].

Lemma C.1 . Let A;B 2 Mm�n be m � n matrices with q = minfm;ng. Denote by

�i(A); �i(B) and �i(AB
H); i = 1; : : : ; q, the nonzero singular values of the corresponding

matrices arranged in nonincreasing order. Then for U 2Mm�m;V 2Mn�n being unitary

max
U;V
f< trAVHBHUHg =

qX
i=1

�i(A)�i(B): (C.1)

We use Lemma C.1 to prove Lemma 5.1. Suppose that the singular value decompo-

sition of the matrices A and B are given by

A = E�aF
H (C.2)

B = X�bY
H : (C.3)

Then

qX
i=1

�i(AB
H) = < tr(ABH)

= < tr(�aF
HY�bX

HE): (C.4)
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De�ne

V = YHF (C.5)

U = EHX: (C.6)

Hence
qX

i=1

�i(AB
H) = < tr(�aV

H�bU
H): (C.7)

Using Lemma C.1 , the maximum of the right-hand side of (C.7) is given by the multipli-

cation of the singular values of the diagonal matrices �a and �b. Thus, we have

qX
i=1

�i(AB
H) �

qX
i=1

�i(A)�i(B): (C.8)

And the proof is complete.



Appendix D

Minimization of the Subspace

Fitting Error

In this appendix we prove Theorem 5.1. The error of the two-sided unitary transformation

is given by

E = kA�UBVHk2

= kAk2+ kBk2 � 2< tr(AVBHUH): (D.1)

Minimization of (D.1) with respect to the unitary matrices U and V is identical to maxi-

mization of

max
U;V

< tr(AVBHUH) (D.2)

s.t. UHU = I

VHV = I (D.3)

subject to V and U being unitary transformations. From Lemma C.1 it is seen that the

maximum value of (D.2) is given by

qX
i=1

�i(A)�i(B). Let us represent the singular value
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decomposition of the two matrices A and B by

A = E�aF
H (D.4)

B = X�bY
H (D.5)

where the diagonal elements of �a and �b are the singular values of A and B, and E,

F, X, and Y are the corresponding left and right matrices of singular vectors. It is

straightforward to show that with

U = EXH (D.6)

V = FYH (D.7)

the maximum is achieved. This completes the proof.



Appendix E

Unbiased Condition for a Single

Source

In this appendix, we show that for a single source scenario and the diagonal unitary

transformation matrices

Tj = diag[1; e�j(!0�!j)�0 ; : : : ; e�j(p�1)(!0�!j)�0 ] (E.1)

where �0 is the propagation delay estimated by the pre-processing, the result of Lemma

5.3 is in agreement with the work of Swingler and Krolik [36]. Using the diagonal matrix

(E.1), the condition of lemma (5.39) can be shown as

s0a0a
H
0 =

1

J

JX
j=1

sjbjb
H
j (E.2)

where the transformed column vector bj is given by

bj = [1 e�j!0�0+j!j(�0��1) : : : e�j(p�1)!0�0+j(p�1)!j(�0��1)]T (E.3)
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where �1 is the true DOA and the superscript T stands for transpose. The direction of

arrival is estimated by equating

s0 e
�j!0 �̂1 =

JX
j=1

sje
�j!0�0+j!j(�0��1)

= e�j!0�0
JX

j=1

sje
j!j(�0��1) (E.4)

where �̂1 is the estimate of �1. Assuming

!j(�0 � �1)� 1; (E.5)

we can approximate (E.4) to get

s0 e
�j!0 �̂1 � e�j!0�0

JX
j=1

sj [1 + j!j(�0 � �1)] (E.6)

= s0 e
�j!0�0 [1 + j(�0 � �1) 1

s0

JX
j=1

sj!j ] (E.7)

= s0 e
�j!0�0 [1 + j(�0 � �1)�!] (E.8)

= s0 e
�j!0�0 ej(�0��1)�! (E.9)

where �! is the centroid frequency. Equating the exponents gives

!0�̂1 = !0�0 � (�0 � �1)�! (E.10)

which is the same result as Swingler and Krolik [36].
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