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Abstract

The purpose of this Thesis is to study adaptive acoustical echo cancellation for

signals with variable-rank covariance matrices. Solutions based on the least-mean-

square (LMS) algorithm are presented, with the focus being on discrete-cosine-

transform- (DCT) domain �nite-impulse-response (FIR) �lters.

In speech-related applications, the covariance matrix of the reference signal is

often nearly singular, i.e., rank-de�cient, which has the e�ect that some of the

transform-domain tap coe�cients stop adapting and e�ectively \freeze". During

this low-rank phase, the frozen taps can retain any value without e�ect on the mean-

square error (MSE), while the remaining taps track the evolution of the system and

keep the MSE at a minimum.

When the covariance matrix becomes nonsingular, however, there are no longer

any frozen coe�cients, and a unique tap coe�cient vector yields minimum MSE.

The MSE abruptly \jumps", and convergence of the taps to the unique vector will

take additional time due to the (obsolete) values of the previously frozen coe�cients.

To remedy the situation, one applies a method dubbed \spectral shaping".

The objective of spectral shaping is to replace, during the low-rank phase, each

frozen coe�cient by an estimate of the corresponding coe�cient of the unique full-

rank solution. This is achieved in the transform domain by a combination of forward

and backward linear predictors. By using spectral shaping, the frozen coe�cients

are thus \prepared" to be unfrozen when the covariance matrix gains full rank,

resulting in a reduced jump in the MSE.
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Sommaire

Ce m�emoire a pour objet d'�etudier la cancellation adaptive des �echos d'un signal

dont la matrice de covariance a un rang variable. Les solutions sont bas�ees sur

l'algorithme LMS, et utilisent principalement des �ltres a r�eponse impulsionnelle

�nie, op�erant dans le domaine de la transform�ee discr�ete du cosinus (DCT).

Souvent, dans le cas de la parole humaine, le signal de r�ef�erence est dot�e d'une

matrice de covariance de bas rang, ce qui cause certains des coe�cients du �ltre �a

\geler". Durant cette p�eriode de bas rang, les coe�cients gel�es ne produisent aucun

e�et sur l'erreur carr�ee moyenne (ECM), tandis que les autres coe�cients continuent

�a suivre l'�evolution du syst�eme en minimisant l'ECM.

Cependant, lorsque la matrice de covariance devient invertible, aucun des coef-

�cients ne reste gel�e, et il n'y a qu'un seul vecteur qui minimise l'ECM. L'erreur

augmente brusquement, et il faut un temps suppl�ementaire aux coe�cients pour

converger vers le minimum unique. Pour rem�edier �a ce ph�enom�ene, on utilise une

m�ethode appell�ee la \formation spectrale" (spectral shaping).

Durant le temps o�u la matrice de covariance a un bas rang, la formation spec-

trale a pour but de remplacer chaque coe�cient gel�e par un estim�e du coe�cient

correspondant de la solution unique. Dans le domaine du DCT, ceci est accompli

avec l'aide de la th�eorie de la pr�ediction lin�eaire. Une fois la formation spectrale

appliqu�ee, les coe�cients sont mieux \pr�epar�es" �a a�ronter une augmentation du

rang de la matrice de covariance, ne menant ainsi qu'�a une l�eg�ere hausse de l'ECM.
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Chapter 1

Introduction

The presence of acoustical echoes can severely degrade the performance of a hands-

free communication system [1]{[6]. The need to improve the quality of such systems

is stimulated by the increasing popularity of, for example, teleconferencing and

hands-free car telephones. Although the idea of cancelling acoustical echoes is very

simple, its implementation is complicated, and much research is being conducted

in this area in order to ultimately o�er a satisfactory solution to the problem (see

references in [6]).

In the literature, echo cancellation has come to signify the removal of echoes

in a telephone circuit, which are due to reections at various points (e.g., hybrid

transformer boundaries) along the line [7, 8]. Acoustical echoes, on the other hand,

are due to reections o� of walls or objects inside a room, as a signal makes its way

from the loudspeaker to the microphone. Many ideas applied to the cancellation

of acoustical echoes do stem from the standard echo cancellation literature, yet

there are certain unique considerations: the signals involved are almost exclusively

baseband speech signals, and the echoes are caused by a more rapidly time-varying

system.

Various adaptive �lter structures have been developed to solve the acoustical
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CHAPTER 1. INTRODUCTION 2

echo cancellation and related problems; for example, the transversal, multistage lat-

tice, systolic array, and recursive implementations. Among these, transversal �nite-

impulse-response (FIR) �lters are often used, due to stability considerations, and to

their versatility and ease of implementation [9, 10]. Moreover, many algorithms have

also been developed to adapt these �lters, including the least-mean-square (LMS),

recursive least-squares, sequential regression, and least-squares lattice algorithms.

The LMS algorithm is computationally the least demanding, as it requires neither

matrix inversion nor the calculation of correlation matrices, and therefore is often

selected to perform the adaptation of the �lter coe�cients [5, 10]. The remainder

of this Thesis focuses on transversal, transform-domain FIR �lters, being adapted

by the LMS algorithm.

Organization of the Thesis

In order to introduce the problem at hand, Chapter 2 presents the loudspeaker-

microphone environment along with the associated acoustical echo cancellation setup,

and explains the implementation of the adaptive �lter. The concept of an error sur-

face is introduced, and the classical LMS algorithm is presented. Also in Chapter 2,

the transform-domain LMS algorithm is developed, which improves the LMS al-

gorithm's often poor convergence rate. Chapter 3 shows how certain coe�cients

\freeze" when the reference signal covariance matrix is of low rank. Furthermore, it

is reasoned that the frozen coe�cients cause an abrupt increase in MSE, occurring

when the covariance matrix gains full rank. Several \spectral shaping" solutions

based on linear predictive methods are proposed, which constitute the key contri-

bution of this work. Chapter 4 de�nes an experimental setup and compares the

di�erent methods of spectral shaping, whereby it is shown that spectral shaping

enhances performance in all cases. Finally, Chapter 5 summarizes the work in this

Thesis.



Chapter 2

Cancellation of Acoustical Echoes

2.1 The Acoustical Echo Canceller

2.1.1 The Loudspeaker-Microphone Environment

A typical setup of a hands-free communication system is illustrated in Figure 2.1.

The human talker emits a signal s0(t) and the loudspeaker emits a \reference" signal

r0(t). Both signals travel through the air and reect o� of walls, people, and objects

inside the room, i.e., the signals reverberate. The e�ects of the room are modeled

by a linear �ltering operation, represented mathematically as the convolution of the

signal with hAB(t; � ), the room impulse response from point A to point B at time

t as a function of the delay � . Generally, people or objects inside the room are in

motion, and the system must be treated as time-varying.

In a discrete-time framework, where sampling above the Nyquist rate is assumed,

the situation can be modeled by the block diagram in Figure 2.2. In theory, the

impulse responses hre(n; k), htm(n; k), and hrm(n; k) are in�nite in length. Neverthe-

less, they can be truncated to a �nite number of coe�cients; an appropriate number

depends on the type of enclosure. For environments such as the interior of an au-

tomobile, the impulse response can be neglected after approximately 30 ms [11],

3
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mic

loudspeaker

talker

s (t)
r (t)

0
0

Fig. 2.1 The loudspeaker-microphone setup: the signal received by

the microphone is a mixture of the talker's signal and that originating

from the loudspeaker. Each is contaminated by a number of echoes.

h (n;k)re hrm(n;k)er(n)

s(n)
h (n;k)s (n) tm0

(ear)

(mouth)

talker

loudspeaker

d(n)mic

r (n)0

Fig. 2.2 Block diagram of the discrete, linear, time-varying system.

The impulse response hrm(n; k) models the distortion between loud-

speaker and microphone caused by the room acoustics.
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which corresponds to 240 coe�cients at a sampling rate of 8 kHz. In the case of

a large room, however, signi�cant delays may occur at 200 ms or later [2], which

would correspond to 1600 taps at the same sampling rate.

Simulating the Impulse Response

Rather than measure the actual impulse response of an enclosure, one can rely on

methods that have been devised to simulate it. One such method is the well-known s-

room algorithm [12]. The room model is a rectangular enclosure with a loudspeaker-

to-microphone impulse response. The theory behind the s-room algorithm uses the

fact that the enclosure is rectangular in order to create a mesh of \rooms", each

containing an image of the source, as illustrated in Figure 2.3. When the source

is excited, so is each image, thus creating spherical sound-pressure waves which

simultaneously propagate away from each image point. A typical room impulse

response generated by s-room is shown in Figure 2.4 for the parameters listed in

Table 2.1. At a sampling rate of 8 kHz, one sees from Figure 2.4 that the e�ect of

delays after the 512th sample is negligible for the simulated empty, o�ce-sized room.

One would expect the presence of furniture and other sound-absorbing materials to

further lower the length of the room impulse response. Nevertheless, the remainder

of this Thesis assumes the empty-room scenario, in which the impulse response is

truncated at the 512th sample.

2.1.2 The Adaptive Filter

The role of an adaptive �lter is to reduce the interference due to the reverberated

reference signal. One must keep in mind that although the system is time-varying,

it is assumed to be varying slowly enough so as to allow for adequate tracking by the

adaptive �lters described in this Thesis. The distortion to s0(n) passing through

htm(n; k) is unavoidable and is not further considered: the \original transmitted
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x

receiver (microphone)

source (loudspeaker)

Fig. 2.3 Illustration of the image method used for developing the s-

room algorithm. The rectangle with the thick border represents the room

along with the source (�) and receiver (x), while the other rectangles

in the grid represent the images of the room, containing images of the

source (�).
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Desired impulse response length (samples) 1024

Desired sampling rate (Hz) 8000

Length, Width, Height of the room (meters) 5, 4, 3

Location of the source (loudspeaker) 1, 1, 1

Location of the receiver (microphone) 3, 2, 0.8

Reection coe�cient of walls 0.8, 0.4, 0.4, 0.4

Reection coe�cient of ceiling 0.8

Reection coe�cient of oor 0.4

Table 2.1 Parameters used for the generation of a typical room impulse

response, shown in Figure 2.4.

100 200 300 400 500 600 700 800 900 1000
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Fig. 2.4 A typical room impulse response, as given by s-room using

the parameters in Table 2.1. The response can be truncated at the 512th

sample without consequence.
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signal" is instead taken to be s(n). Moreover, distortion to the reference signal

r0(n) due to hre(n; k) does not a�ect the signal captured by the microphone, and is

therefore ignored. By using its access to r0(n) and d(n), the adaptive setup shown

in Figure 2.5 recovers e(n) = ŝ(n), and thus attempts to compensate for the echoes

caused by hrm(n; k). For the sake of notational simplicity, hrm(n; k) shall from now

on be referred to as h(n; k).

hrm
(n;k)

r (n)0

+s(n)

ADAPTIVE
FILTER

d(n)

s(n)e(n) ^=

Fig. 2.5 Setup of an adaptive �lter. Both r0(n) and d(n) are available,

and are used to form e(n), the estimate of s(n). The inside of the box

labelled \adaptive �lter" is shown in Figure 2.6.

A transversal FIR adaptive �lter, shown in Figure 2.6, performs a convolution:

y(n) =
N�1X
i=0

b(n; i)r0(n� i): (2.1)

Letting b(n; k) = h(n; k) for k 2 [0; N), one obtains:

e(n) = d(n) � y(n) (2.2)

=

 
s(n) +

N�1X
k=0

h(n; k)r0(n� k)

!
�

N�1X
i=0

b(n; i)r0(n� i) (2.3)

= s(n): (2.4)

It has thus been shown that perfect cancellation is achieved if the taps are matched
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Z
-1

Z
-1

Z
-1

r (n) r (n-1) r (n-2) r (n-(N-2)) r (n-(N-1))

e(n)

Σ

b(n;0) b(n;1) b(n;2) b(n;N-1)b(n;N-2)

+
d(n)

0 0 0 0 0

+
- y(n)

Fig. 2.6 Transversal �ltering viewed as a convolution. The condition

b(n; k) = h(n; k) 8 k 2 [0; N ] is su�cient but not necessary in order to

achieve perfect cancellation.
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to the impulse response coe�cients:

fb(n; i) = h(n; i); i 2 [0; N)g ) fe(n) = s(n)g : (2.5)

However, the reverse implication is not always true. For example, in the trivial case

r0(n) = 0, any coe�cient vector will yield perfect cancellation. Clearly, uniqueness

of the coe�cient vector which yields perfect cancellation depends on the structure

of r0(n). It will later be shown that an in�nite number of perfect solutions exist

when the rank of the N �N autocovariance matrix of r0(n) is less than N .

Before analyzing this phenomenon, however, a fundamental question must �rst

be answered: how does the adaptive �lter update its coe�cients and actually per-

form the cancellation? A common approach is to use the least-mean-square (LMS)

adaptation algorithm, which is introduced next.

2.2 The LMS and Transform-Domain LMS Algorithms

2.2.1 Derivation of the LMS Algortihm

The output of the transversal adaptive �lter in Figure 2.6 is given by:

e(n) = d(n)� y(n) (2.6)

= d(n)�
N�1X
i=0

b(n; i)r0(n� i) (2.7)

= d(n)� b
T
n rn (2.8)

where

rn =

2
666666664

r0(n)

r0(n � 1)

� � �

r0(n �N + 1)

3
777777775

and bn =

2
666666664

b(n; 0)

b(n; 1)

� � �

b(n;N � 1)

3
777777775
: (2.9)
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Squaring and taking expectations yields the mean-square error (MSE):

MSE(n) = E[e2(n)] = E[(d(n)� bTn rn)
2] (2.10)

= E[d2(n)� 2d(n)bTn rn + bTn rnr
T
nbn] (2.11)

= E[d2(n)]� 2bTnE[d(n)rn] + bTnE[rnr
T
n ]bn: (2.12)

De�ning p = E[d(n)rn] as the N -tuple of cross-covariances between the echo-a�ected

signal and the reference signal, and R = E[rnr
T
n ] as the N �N covariance matrix of

the reference signal1, one obtains:

MSE(n) = E[d2(n)]� 2bTnp+ bTnRbn: (2.13)

Assuming that d(n) and r0(n) are wide-sense stationary random processes, both p

and R are constant, and the MSE is a quadratic function of the tap coe�cients. In

other words, the error surface is an N -dimensional hyper-paraboloid, as illustrated

in Figure 2.7 for N = 2.

Searching the Error Surface

A consequence of the shape of the error surface is that there exists a global minimum

at the bottom of the \bowl". The method of steepest descent [10, 13] seeks this

minimum by adjusting the taps of the adaptive �lter in the direction of the gradient

of the error surface at each iteration:

bn+1 = bn + �(�rn) (2.14)

where � is a constant that regulates the step size and convergence speed, and

rn =
@MSE(n)

@bTn
=

2
666666664

@MSE(n)

@b(n;0)

@MSE(n)

@b(n;1)

� � �

@MSE(n)

@b(n;N�1)

3
777777775
: (2.15)

1Both d(n) and r0(n) are assumed to be zero-mean signals.
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Fig. 2.7 The error surface is an N -dimensional hyper-paraboloid; in

this case, N = 2. Steepest-descent algorithms search for the bottom of

the \bowl" by incrementing the tap coe�cient vector in the negative

direction of the gradient.
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Referring to (2.13), this becomes:

rn = 2Rbn � 2p: (2.16)

To reduce the complexity of gradient estimation incurred by computation of R and

p, the LMS algorithm [9, 10] dispenses with expectations and considers e2(n) itself

to be an estimate of the MSE. Though merely an approximation, this results in a

very simple procedure:

rLMS
n =

@e2(n)

@bTn
= 2e(n)

@e(n)

@bTn
: (2.17)

Now, di�erentiating (2.8) gives

@e(n)

@bTn
= �rn (2.18)

and thus

rLMS
n = �2e(n)rn: (2.19)

Using rLMS
n instead of rn in (2.14) yields the LMS algorithm:

e(n) = d(n) � bTnrn (2.20)

bn+1 = bn + 2�e(n)rn: (2.21)

In the case of complex signals, the analogous algorithm [9, 14] is given by

e(n) = d(n) � bTn rn (2.22)

bn+1 = bn + 2�e(n)r�n (2.23)

where \�" denotes complex conjugation.

Convergence Characteristic

The factor �must be large enough to permit convergence and small enough to ensure

stability. In [10], it is shown that convergence of the tap coe�cient vector mean is

guaranteed for

0 < � <
1

�max

(2.24)
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where �max is the largest eigenvalue of R. A more detailed discussion of convergence

properties can be found in [10]. If (2.24) is satis�ed, then the convergence rate is

governed by the disparity in the eigenvalues of R [9, 14, 16, 15, 17]. For example, if

the reference signal consists of stationary, uncorrelated white noise with

E[r0(n� i)r0(n� j)] =

8><
>:

c 2 R+ i = j

0 i 6= j

then

R = cI

and

�0 = �1 = : : : = �N�1;

and thus, with an appropriate value for �, convergence of the LMS algorithm is

relatively fast. On the other hand, a reference signal whose covariance matrix is ill-

conditioned will cause the LMS algorithm to converge slower. Since speech signals

often have near-singular covariance matrices [6], one can therefore expect the LMS

algorithm to perform poorly in speech-related applications.

2.2.2 The Transform-Domain LMS Algorithm

Derivation of the KLT LMS Algorithm

As inferred by the above, convergence can be accelerated by reducing the eigenvalue

spread of R, the reference signal covariance matrix. This would have the e�ect of

improving how well changes in the system (i.e., h(n; k)) are tracked. One way to

reduce the eigenvalue spread is to pass the input through a unitary transform. First,

R is diagonalizable [13], as it is positive semi-de�nite2:

E[rnr
T
n ] = R = PT�P (2.25)

2Since the eigenvalues and eigenvectors of a positive semi-de�nite matrix are purely real [18],

the ordinary transpose is appropriate.
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where

� =

2
666666664

�0 0 : : : 0

0 �1 : : : 0
...

...
. . .

...

0 0 0 �N�1

3
777777775

(2.26)

and P is the matrix of eigenvectors of R. Continuing, one has

E[(Prn)(Prn)
T
] = � (2.27)

E[(�� 1

2Prn)(�
� 1

2Prn)
T] = I: (2.28)

Hence, using�� 1

2Prn instead of rn gives a new covariance matrix Iwhose eigenvalues

are unity, and there is no eigenvalue spread. The transformation Prn is known as the

Karhunen-Lo�eve transform (KLT) [13, 14] and, in combination with the normalizing

factor ��1

2 , yields a rapidly converging LMS algorithm:

e(n) = d(n) � bTn�
� 1

2Prn (2.29)

bn+1 = bn + 2�e(n)�� 1

2Prn: (2.30)

Now, let

b0n = bn�
� 1

2 : (2.31)

The above equations thus become

e(n) = d(n) � (b0n)
TPrn (2.32)

b0n+1�
1

2 = b0n�
1

2 + 2�e(n)�� 1

2Prn: (2.33)

By multiplying (2.33) by ��1

2 and removing the 0 symbols, one has slightly reduced

the computational requirement [14], and the KLT-domain algorithm becomes

e(n) = d(n)� bTnPrn (2.34)

bn+1 = bn + 2�e(n)��1Prn: (2.35)
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A more signi�cant source of computational complexity arises from the fact that

P is an eigendecomposition of R. This is expensive to perform at each iteration,

although several recursive methods (see, e.g., [20, 21]) have been developed. Fur-

thermore, a practical calculation of the expectation E[rnr
T
n ] is at best an estimate of

R, and errors in this estimation may jeopardize the accuracy of the already expen-

sive eigendecomposition. In order to reduce the complexity of the algorithm, there

exists a variety of �xed, unitary transforms that approximate the KLT for di�erent

types of signals, including speech.

The Discrete Fourier Transform

Among the many transforms proposed for decorrelating a signal, i.e., diagonalizing

its covariance matrix, one �nds the discrete Fourier and discrete cosine transforms.

It is shown in [25] that as N !1, the discrete Fourier transform (DFT) asymptot-

ically approaches an eigendecomposition when the signal in question is wide-sense

stationary. In other words, for large N , the DFT successfully decorrelates sinusoids

and other stationary signals, and is thus retained as a transform of interest. More-

over, in addition to being computable in O(N log2N) operations using a fast Fourier

transform (FFT), it o�ers an intuitive, frequency-domain view of the problem. The

N -point DFT of a signal y(n) is de�ned as

YDFT;N (k) =

s
1

N

N�1X
i=0

y(i)e�j
2�ik

N ; k = 0; 1; : : : ; N � 1: (2.36)

The unitary DFT matrix operating on a column vector of length N is similarly

de�ned by

G =

8<
:G(l;m) ; (l;m) 2 [0; N)� [0; N)

������G(k; n) =
s

1

N
e�j

2�ml

N

9=
; : (2.37)
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The Discrete Cosine Transform

There are various de�nitions of the DCT, the one used here being based on [22].

Given a signal y(n), the N -point DCT is computed as:

YDCT;N(k) =

s
2

N
c(k)

N�1X
i=0

y(i) cos

 
�(2i+ 1)k

2N

!
(2.38)

k = 0; 1; : : : ; N � 1 c(k) =

8><
>:

1p
2

k = 0

1 k 6= 0
: (2.39)

For the purpose of decorrelating a signal, it has been shown that the discrete cosine

transform (DCT) comes even \closer" to emulating the KLT for speech signals than

does the DFT [14]:

N�1X
i=0

j�i � YDCT;N (i)j �
N�1X
i=0

j�i � YDFT;N(i)j: (2.40)

The DCT matrix operating on a column vector of length N is de�ned by

G =

8<
:G(l;m) ; (l;m) 2 [0; N) � [0; N)

������G(l;m) =

s
2

N
c(l) cos

 
�(2m+ 1)l

2N

!9=
;
(2.41)

where (l;m) is the element in row l and column m. In order to clarify notation to

be used in the sequel, let h(n; k) be a given room impulse response of length N at

time n as a function of the delay k. Then the DCT of h(n; k) at the same time n as

a function of its index k will be:

H(n; k) =

s
2

N
c(k)

N�1X
i=0

h(n; i) cos

 
�(2i+ 1)k

2N

!
: (2.42)

In matrix notation, this is expressed as2
666666664

H(n; 0)

H(n; 1)

� � �

H(n;N � 1)

3
777777775
= Hn = Ghn =G

2
666666664

h(n; 0)

h(n; 1)

� � �

h(n;N � 1)

3
777777775
: (2.43)
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It can be veri�ed that G is indeed a unitary transform, i.e., that GGH = I. In

fact, a key property of the DCT is that it is real-valued, thus it is also orthogo-

nal, i.e., GGT = I. The real-valued property of the DCT, and its similarity to

the discrete Fourier transform in terms of mathematical structure, enable its fast

computation. Algorithms have been developed to compute it using a 2N -point fast

Fourier transform (FFT) [23] or, after rearranging the data, using an N -point FFT

[22].

Comparing Fixed Transforms to an Eigendecomposition

To compare these transforms, one revisits (2.27), and uses a �xed, possibly complex

transform G instead of the KLT:

(Grn)(Grn)
H = �0 (2.44)

' � = E[(Prn)(Prn)
T] (2.45)

Figure 2.8 shows how, for di�erent types of reference signal, the elements along the

diagonal of �0 compare to the actual eigenvalues, which are the elements along the

diagonal of �. For this �gure, 128-sample blocks were taken from an uncorrelated

noise source, a segment of 8 kHz sampled voised speech, a segment of 8 kHz sampled

unvoiced speech, and a sinusoid at 1
64

rad/s. From Figure 2.8, it can be seen that

the DCT closely approximates an eigendecomposition for both noise and speech,

whereas the DFT replicates such a decomposition for sinusoids.

The Fixed-Transform LMS Algorithm

Unifying the above developments, the transform-domain LMS algorithm is given

by a �xed-transform version of the KLT-domain algorithm. Thus, in (2.34) and

(2.35), P is replaced by a �xed transform G, and � is replaced by �0 from (2.44).

Furthermore, to safeguard against the possibility of one or more diagonal elements of
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Fig. 2.8 Comparing �xed transforms to an eigendecomposition. The

values have been sorted and the axes expanded to di�erent intervals for

easier visualization. For all types of reference signal except sinusoids,

the DCT is found to emulate an eigendecomposition more closely than

the DFT. (Note that in the case of unvoiced speech, all but the last three

DCT values are closer to the eigenvalues than are the DFT values.)
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�0 being zero, a small constant is added to its main diagonal. The transform-domain

LMS algorithm is thus given by

e(n) = d(n) � bTnGrn (2.46)

bn+1 = bn + 2�e(n)(�0 + "I)�1Grn: (2.47)

The conditions under which perfect cancellation occurs can be found by rewriting

(2.46):

e(n) = d(n)� bTnGrn (2.48)

=

 
s(n) +

N�1X
k=0

h(n; k)r0(n � k)

!
� bTnGrn: (2.49)

Now, let

hn =

2
666666664

h(n; 0)

h(n; 1)

� � �

h(n;N � 1)

3
777777775

(2.50)

and replace bn by G�hn. One then obtains:

e(n) = (s(n) + hTrn)� hTGT�

Grn (2.51)

= s(n) + hT(I�GHG)rn (2.52)

= s(n); for G unitary. (2.53)

It has thus been shown that for the transform-domain LMS algorithm,

fbn = G�hn ; i 2 [0; N)g ) fe(n) = s(n)g : (2.54)
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However, the reverse implication is not always true. Consider the case where Grn

has its q-th component equal to zero. Then

bTGrn =

�
b(n; 0) � � � b(n; q) � � � b(n;N � 1)

�

2
66666666666666666664

g0rn

� � �

gq�1rn

0

gq+1rn

� � �

gN�1rn

3
77777777777777777775

(2.55)

where gi is the i-th row of G. One sees from (2.55) and (2.48) that b(n; q) will have

no e�ect on e(n), and thus can be arbitrary. Furthermore, one sees from (2.47) that

the adaptation of b(n; q) depends on the value of gqrn, which in this case is zero.

Hence, b(n; q) \freezes".

In a more general sense, many coe�cients of Grn may be null, forming a \gap"

in the transform spectrum of the reference signal. In return, the corresponding

components of bn will be frozen and will not a�ect the error e(n). This observation,

combined with (2.54), implies that perfect cancellation and minimum MSE occur

when

b(n; k) �! g�khn; gkrn 6= 0 (2.56)

b(n; k) arbitrary; gkrn = 0: (2.57)

The e�ects of gaps in the reference signal transform spectrum on the mean-square

error of the adaptive �lter are studied more closely in the following Chapter.



Chapter 3

Spectral Shaping

3.1 Preamble: Revisiting the Error Surface

3.1.1 The E�ect of Gaps on the Error Surface

At the end of the previous chapter, it was shown that if there is a \gap" in gkrn

for k 2 [k1; k2], then the transform-domain coe�cients b(n; k); k 2 [k1; k2] can

retain arbitrary values and still satisfy the condition of minimum MSE. In terms

of the error surface, this means that its minimum is not unique, and in fact is of

dimensionality M = k2 � k1 + 1. For N = 2 and M = 1, the concept is illustrated

in Figure 3.1. The minimum of the corresponding time-domain error surface is not

unique, either, and as is now explained, the connection between the two domains is

somewhat deeper.

Let there be a gap of size M in the reference signal transform spectrum. The

minimum of the transform-domain error surface is thus a subspace of dimensionM .

Since the transform itself is unitary (and hence nonsingular), the minimum of the

time-domain error surface must also be an M -dimensional subspace. The e�ect of

the transform G is therefore not to change the dimensionality of this minimum, but

22
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Fig. 3.1 Non-uniqueness of minimum of the transform-domain error

surface (N = 2 andM = 1, whereN is the number of tap coe�cients and

M is the dimensionality of the error surface). In this simple example, it

is clear that the gap is comprised of the single coe�cient b(n; 0), since

it does not a�ect the MSE, regardless of its value.
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rather to rotate1 it so that it lies orthogonal to a set of axes in the transform domain,

as shown in Figure 3.2.

Recalling that the transform matrix G tends to approximate an eigendecom-

position, one can proceed one step further and ask what happens when a true

eigendecomposition is actually performed. In fact, in addition to aligning the M -

dimensional minimum with M orthogonal axes, the entire error surface is reshaped

so that previously ellipsoidal contours of equal MSE become spherical (Figure 3.3).

The latter property of an eigendecomposition, commonly studied alongside the LMS

algorithm [9, 10], graphically distinguishes it from a �xed transform.

3.1.2 The E�ect of Spectral Shaping

The presence of a gap in the reference signal transform spectrum will cause the tap

coe�cient vector bn to remain �xed in the M -dimensional subspace described in

x3.1.1, while adaptation continues in the remaining N �M dimensions.

When the gap vanishes, M becomes unity, and the minimum of the transform-

domain error surface collapses to the single point H�
n = G�hn. Due to the convexity

of the error surface, the speed of convergence to H�
n from a given point is inversely

proportional to its distance fromH�
n. Since bn has been frozen to values which may

be obsolete, the distance to H�
n may be large.

It is thus desirable to select the one point ~bn on thisM -dimensional hyper-surface

which, based on the coe�cients in the surrounding dimensions, is estimated to be

closest to H�
n. This reasoning justi�es the minimization of (3.23) and lies behind

the method of spectral shaping. Figure 3.4 pictorially summarizes this concept, as

seen from the point of view of the error surface.

1Unitary matrices preserve length and angle, and thus can be visualized as rotations [18].
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Fig. 3.2 Rotation of a subspace by the unitary transform G: (a) the

time-domain error surface and (b) the transform-domain error surface.

Note how the axes of the elliptical contours of equal MSE become aligned

with the axes in the transform domain. It is understood that the coef-

�cients referred to as b(n; k) are to be interpreted in the corresponding

domain (time or transform).
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Fig. 3.3 E�ect of eigendecomposition on contours of equal MSE. The

key observation is that the contours become circular instead of elliptical.
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Fig. 3.4 (a) Spectral shaping is applied when the reference signal

covariance matrix has low rank, i.e., when the minimum of the error

surface is not unique. Its purpose is to choose ~bn such that it lies closer

to H�
n than does bn. (b) Consequently, when the gap vanishes and the

minimum becomes unique, the associated jump in the MSE is greatly

reduced, and the steepest-descent algorithm converges after a shorter

search, i.e., after fewer iterations.
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3.2 Motivation

To illustrate the need for spectral shaping, let zn(k) be the transform of the reference

signal at time n, i.e.,

2
666666664

z(n; 0)

z(n; 1)

� � �

z(n;N � 1)

3
777777775
= zn = Grn =

2
666666664

g0rn

g1rn

� � �

gN�1rn

3
777777775

(3.1)

where G is unitary. Suppose that jzn(k)j = 0 for k 2 [k1; k2] and n1 � n < n2.

Then there is a gap of size M = k2 � k1 + 1 in the transform spectrum of the

reference signal between coe�cients k1 and k2 inclusively, as shown in Figure 3.5.

One therefore has, for n1 � n < n2:

zn =

2
666666666666666666666666664

z(n; 0)

� � �

z(n; k1 � 1)

0

� � �

0

z(n; k2 + 1)

� � �

z(n;N � 1)

3
777777777777777777777777775

: (3.2)

Recalling (2.47), one observes that b(n; k) continues to be updated correctly for

k 2 [0; k1)[(k2; N), but the zeros in positions k1 through k2 leave the corresponding

coe�cients \frozen"; adaptation of the coe�cients outside the gap keeps the MSE

at a minimum. As a generalization of (2.56) and (2.57),

b(n; k) �! H�(n; k) k 2 [0; k1) ; n1 � n < n2 (3.3)
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Fig. 3.5 Illustration of the concept of a gap in the reference signal

transform spectrum. The N -point frame of the reference signal r0(n)

[in (a)] is transformed, which gives z(n; k) [in (b)].
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b(n; k) = b(n1; k) k 2 [k1; k2] ; n1 � n < n2 (3.4)

b(n; k) �! H�(n; k) k 2 (k2; N) ; n1 � n < n2 (3.5)

where H�(n; k) = g�khn and gk is the k-th row of G. The situation is illustrated in

Figure 3.6.

Vanishing Gap and the Purpose of Spectral Shaping

Now, let zn(k) be the transform of the reference signal for n � n2 and suppose that

jzn(k)j 6= 0 8 k. The gap in the reference signal spectrum has vanished, and b(n; k)

will converge to H�(n; k) 8 k:

b(n; k) �! H�(n; k) k 2 [0; k1) ; n � n2 (3.6)

b(n; k) �! H�(n; k) k 2 [k1; k2] ; n � n2 (3.7)

b(n; k) �! H�(n; k) k 2 (k2; N) ; n � n2: (3.8)

From (3.3) through (3.8), it is clear that although the coe�cients outside the gap

continue to successfully track H�(n; k), additional convergence time is required for

the frozen coe�cients to converge to H�(n; k) from b(n1; k). The purpose of spectral

shaping is to reduce this convergence time by accomplishing the following (while

n1 � n < n2):

� EstimateH�(n; k) inside the gap, based on b(n; k) = H�(n; k) outside the gap,

and denote these coe�cients by bss(n; k) ; k 2 [k1; k2];

� Since the coe�cients inside the gap do not a�ect the MSE, replace b(n1; k)

with bss(n; k) for k 2 [k1; k2].

In this way, the coe�cients are better \prepared" to begin adapting once the gap

in zn vanishes.
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Fig. 3.6 (a) A gap in zn exists between k1 = 21 and k2 = 30. (b)

After convergence to minimum MSE, b(n; k) = H�(n; k) for k 62 [21; 30],

while the value of b(n; k) within the gap will be frozen to its previous

value, b(n1; k), without a�ecting the MSE.
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Intuitive Meaning of a Gap

It is interesting to know what types of reference signals have gaps in their transform

spectra. Recalling the de�nition of zn from (3.1), one notes that gaps occur when

jz(n; k)j = 0 for some k. Furthermore, recalling from (2.44) and (2.45) that each

transform attempts to perform an eigendecomposition, i.e.,

znz
H
n = (Grn)(Grn)

H
= �0 (3.9)

' � = E[(Prn)(Prn)
T]; (3.10)

one sees that the zero components of zn are the zeros along the diagonal of �0,

and are closely related to the null eigenvalues2 of R. Insofar as G approximates

an eigendecomposition, rank-de�ciency of the reference signal covariance matrix is

accompanied by the presence of gaps in the reference signal transform spectrum.

IfG is chosen to be the discrete Fourier transformmatrix, then gaps are perceived

as nulls in the frequency spectrum of r0(n). Assuming that G approximates an

eigendecomposition, one can say that changes in the rank of R relate to changes in

the bandwidth of r0(n). Convergence problems due to vanishing gaps are therefore

linked to the concept of r0(n) increasing in bandwidth. As was discussed in x2.2.2,

the DCT often outperforms the DFT in terms of decorrelating the reference speech

signal. Since the remainder of this Thesis deals exclusively with the DCT, it would

be desirable to obtain an intuitive description of the gaps in a given signal's DCT

spectrum.

In [24], it is shown that the DCT has a spectral envelope identical to that of

the DFT and a modulating term, which adds a rapidly varying component to its

spectrum. More precisely,

YDCT;N (k) = c(k) jYDFT;2N j cos(�DFT;2N(k)�
�k

2N
) (3.11)

2Signals whose covariance matrices have zero eigenvalues (and for which the LMS algorithm is

known to perform poorly) are termed rank-de�cient [26].
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where YDCT;N(k) is the N -point DCT of y(n), YDFT;2N is the 2N -point DFT of y(n)

padded with N zeroes, and �DFT;2N(k) is the phase of the complex quantity YDFT;2N .

The vertical bars denote the operation of taking the magnitude of the given complex

quantity.

Hence if YDCT;N (k) vanishes, so does YDFT;2N , andone can immediately see the

close link between the two spectra. In conclusion, therefore, gaps in the DCT

spectrum of a signal can be thought of as corresponding to certain zero-energy

regions of the frequency spectrum.

3.3 DCT Spectral Shaping

3.3.1 Introduction

Let H(n; k) be the DCT of h(n; k), i.e.,

2
666666664

H(n; 0)

H(n; 1)

� � �

H(n;N � 1)

3
777777775
= Hn = Ghn =G

2
666666664

h(n; 0)

h(n; 1)

� � �

h(n;N � 1)

3
777777775

(3.12)

where G is de�ned as in (2.41). The DCT of a typical room impulse response is

illustrated in Figure 3.7. Now, let

jz(n; k)j = 0; k 2 [k1; k2]: (3.13)

Moreover, suppose that n � n1 and

b(n; k) =

8>>>>><
>>>>>:

H(n; k) k 2 [0; k1)

b(n1; k) k 2 [k1; k2]

H(n; k) k 2 (k2; N)

: (3.14)

In other words, there is a gap in the reference signal DCT spectrum, and the tap

coe�cients have converged toH(n; k) = H�(n; k) outside the gap, but have remained
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frozen within the gap3.
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Fig. 3.7 The DCT of a typical room impulse response; N = 512. From

(2.42), the magnitude and frequency of the dominant cosinusoid are due

to the magnitude of the �rst nonzero value of the impulse response, and

the delay at which it occurs.

The e�ect of spectral shaping on b(n; k); k 2 [k1; k2] is illustrated in Figure 3.8,

where ~b(n; k) is de�ned as

~b(n; k) = S[b(n; k)] =

8>>>>><
>>>>>:

b(n; k) k 2 [0; k1)

bss(n; k) k 2 [k1; k2]

b(n; k) k 2 (k2; N)

(3.15)

3Since the DCT is a real-valued transform, H�(n; k) = H(n; k), and thus H(n; k) is used

throughout the remainder of this section.
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where S is a particular method of spectral shaping, e.g., linear predictive spectral

shaping. The transform-domain LMS algorithm directly uses ~b(n; k) as the new set

of tap coe�cients:

e(n) = d(n) � bTnGrn (3.16)

bn+1 = bn + 2�e(n)(�0 + "I)�1Grn (3.17)

bn+1 = ~bn+1 = S[bn+1] (3.18)

3.3.2 Linear Predictive Spectral Shaping

Consider applying linear predictive theory [13] in order to �nd ~b(n; k). To introduce

the required notation, let Pf and Pb represent the forward and backward orders of

the predictor, respectively:

bss(n; k) =

PfX
i=1

cikb(n; k1 � i) +
PbX
i=1

dikb(n; k2 + i) (3.19)

Since b(n; k) = H(n; k) for k outside the gap, this is also equal to

bss(n; k) =

PfX
i=1

cikH(n; k1 � i) +
PbX
i=1

dikH(n; k2 + i): (3.20)

De�ning

ck =

2
666666664

c1k

c2k

� � �

cPf k

3
777777775
dk =

2
666666664

d1k

d2k

� � �

dPbk

3
777777775
Hf =

2
666666664

H(n; k1 � 1)

H(n; k1 � 2)

� � �

H(n; k1 � Pf )

3
777777775
Hb =

2
666666664

H(n; k2 + 1)

H(n; k2 + 2)

� � �

H(n; k2 + Pb)

3
777777775

(3.21)

one obtains

bss(n; k) = cTkHf + dTkHb: (3.22)
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Fig. 3.8 The e�ect of spectral shaping. (a) As explained thus far in

this Chapter, the coe�cients outside the gap continuously track H(n; k)

and those inside the gap will be frozen to values which become obsolete

with time. The MSE will not be a�ected by the actual values of the

frozen coe�cients until R increases in rank, in which case the coe�-

cients inside the gap must converge to H(n; k). (b) Spectral shaping

uses information contained in the neighboring \correct" coe�cients to

produce an estimate of H(n; k) = H�(n; k) inside the gap. Hence, large

increases in the MSE due to an increase in the rank of R are averted.
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The mean-square estimation error, de�ned as the mean-square di�erence between

H(n; k) and bss(n; k) for k 2 [k1; k2], will thus equal
4

MSEest(k) = E[e2est(n; k)] = E[(H(n; k)� bss(n; k))
2]: (3.23)

As mentioned in x3.1.2, the idea behind linear predictive spectral shaping is to select

ck and dk for each k 2 [k1; k2] so as to minimize MSEest(k).

Forward LP

In forward linear prediction, Pb = 0 and thus from (3.22) and (3.23):

bss(n; k) = cTkHf (3.24)

MSEest(k) = E[(H(n; k)� cTkHf)
2] (3.25)

= E[H2(n; k)]� 2cTkE[H(n; k)Hf ] + cTkE[HfH
T
f ]ck : (3.26)

Di�erentiating with respect to cTk , one obtains

@MSEest(k)

@cTk
= �2E[H(n; k)Hf ] + 2E[HfH

T
f ]ck: (3.27)

Setting this equal to zero yields

E[HfH
T
f ]ck = E[H(n; k)Hf ]: (3.28)

The matrices involved may be expanded to give

E[H(n; k)Hf ] =

2
666666664

E[H(n; k)H(n; k1 � 1)]

E[H(n; k)H(n; k1 � 2)]

� � �

E[H(n; k)H(n; k1 � Pf )]

3
777777775

(3.29)

4Note that MSEest(k) is de�ned only for k 2 [k1; k2].
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E[HfH
T
f ] =

2
666666664

E[H(n; k1 � 1)H(n; k1 � 1)] � � � E[H(n; k1 � 1)H(n; k1 � Pf )]

E[H(n; k1 � 2)H(n; k1 � 1)] � � � E[H(n; k1 � 2)H(n; k1 � Pf )]

� � � � � �

E[H(n; k1 � Pf )H(n; k1 � 1)] � � � E[H(n; k1 � Pf )H(n; k1 � Pf )]

3
777777775
:

(3.30)

Consider using an unbiased estimator with window size W for the practical calcu-

lation of the autocovariance function5 of H(n; k):

E[H(n; k)H�(n; kB)] '
1

W � kB

W�1X
i=kB

H(n; i)H(n; i� kB) (3.31)

= qn(kB) ; kB > 0: (3.32)

Note that the autocovariance function is only calculated on the points available

inside the window. For kB < 0, it is de�ned as

E[H(n; k)H�(n; kB)] '
1

W � kB

W�kB+1X
i=0

H(n; i)H(n; i� kB) (3.33)

= qn(kB) ; kB > 0: (3.34)

When H(n; k) is a sinusoid in k (and more generally, a sum of sinusoids), one has

qn(kB) = qn(�kB) as is now shown. First, let

H(n; k) = sin

 
2�!nk

N

!
: (3.35)

Then

qn(k; kB) =
1

W � kB

W�1X
i=kB

sin

�
2�!ni

N

�
sin

 
2�!n(i� kB)

N

!
(3.36)

=
1

W � kB

W�1X
i=kB

�
1

2

 
cos

 
4�!ni

N
�

2�!nkB

N

!
�

5Although H(n; k) is real, the conjugate symbol \*" is preserved in order to be consistent,

and to encourage the use of this method with other, possibly complex transforms. The unbiased

covariance estimator used is that on p. 237 of [13].
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cos

 
2�!nkB

N

!!
(3.37)

=
�1

2(W � kB)

W�1X
i=kB

cos

 
4�!ni

N
�

2�!nkB

N

!
+

1

2(W � kB)
cos

 
2�!nkB

N

!
(3.38)

= qn(kB): (3.39)

On the other hand,

qn(k; kB) =
1

W � kB

W�kB+1X
i=0

sin

�
2�!ni

N

�
sin

 
2�!n(i+ kB)

N

!
(3.40)

=
�1

2(W � kB)

W�kB+1X
i=0

cos

 
4�!ni

N
+

2�!nkB

N

!
+

1

2(W � kB)
cos

 
2�!n(�kB)

N

!
(3.41)

= qn(�kB): (3.42)

Performing the change of variables x = i� kB, one obtains:

qn(�kB) =
�1

2(W � kB)

W�1X
x=i+kB

cos

 
4�!n(x� kB)

N
+

2�!nkB

N

!
+

1

2(W � kB)
cos

 
2�!n(�kB)

N

!
(3.43)

=
�1

2(W � kB)

W�1X
x=i+kB

cos

 
4�!n(x)

N
�

2�!nkB

N

!
+

1

2(W � kB)
cos

 
2�!n(�kB)

N

!
(3.44)

= qn(kB) (3.45)

Hence, using the fact that H(n; k) is the DCT of an impulse response, and is there-

fore a sum of sinusoids, one has qn(kB) = qn(�kB), and the expectations in (3.29)
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and (3.30) now become

E[H(n; k)Hf ] '

2
666666664

qn(k � k1 + 1)

qn(k � k1 + 2)

� � �

qn(k � k1 + Pf )

3
777777775

(3.46)

E[HfH
T
f ] '

2
666666664

qn(0) qn(1) � � � qn(Pf � 1)

qn(1) qn(0) � � � qn(Pf � 2)
...

...
. . .

...

qn(Pf � 1) qn(Pf � 2) � � � qn(0)

3
777777775
: (3.47)

To solve the forward linear prediction problem, one uses (3.46) and (3.47) to solve for

ck in (3.28). The result is then inserted into (3.24) to obtain bss(n; k) for k 2 [k1; k2].

With regard to computation, (3.47) needs to be computed only once, whereas (3.46)

needs to be obtained for each k in the gap. Further analysis of the computational

complexity is o�ered in x4.3.

Backward LP

Along the same lines as forward linear prediction, backward LP sets Pf = 0 and uses

H(n; k); k 2 [k2 + 1; k2 + Pb] to predict H(n; k); k 2 [k1; k2]:

bss(n; k) = dTkHb : (3.48)

Following a similar reasoning as for forward LP, one obtains

E[HbH
T
b ]dk = E[H(n; k)Hb] (3.49)

where

E[H(n; k)Hb] =

2
666666664

qn(k � k2 � 1)

qn(k � k2 � 2)
...

qn(k � k2 � Pb)

3
777777775

(3.50)
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E[HbH
T
b ] =

2
666666664

qn(0) qn(1) � � � qn(Pb � 1)

qn(1) qn(0) � � � qn(Pb � 2)
...

...
. . .

...

qn(Pb � 1) qn(Pb � 2) � � � qn(0)

3
777777775
: (3.51)

In summary, one computes dk from (3.49), then �nds bss(n; k) from (3.48), thus

obtaining an estimate of H(n; k) inside the gap. The computational complexity is

identical to that of forward LP for the same predictor order.

Simultaneous LP

When both a forward and a backward linear predictor are desired, both Pf and Pb

are nonzero, and

bss(n; k) = cTkHf + dTkHb: (3.52)

The mean-square estimation error is calculated as follows:

MSEest(k) = E[(H(n; k)� (cTkHf + dTkHb))
2] (3.53)

= E[H2(n; k)]�

2E[H(n; k)(cTkHf + dTkHb)] +

E[(cTkHf + dTkHb)(c
T
kHfd

T
kHb)

T] (3.54)

= E[H2(n; k)]

�2cTkE[H(n; k)Hf ]� 2dTk E[H(n; k)Hb]

+cTkE[HfH
T
f ]ck + cTk E[HfH

T
b ]dk

+dTkE[HbH
T
f ]ck + dTk E[HbH

T
b ]dk: (3.55)

Di�erentiating with respect to cTk and dTk , and noting that

cTkE[HfH
T
b ]dk =

�
cTk E[HfH

T
b ]dk

�T
= dTk E[HbH

T
f ]ck (3.56)

and

dTk E[HbH
T
f ]ck =

�
dTk E[HbH

T
f ]ck

�T
= cTk E[HfH

T
b ]dk; (3.57)
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one obtains:

@MSEest(k)

@cTk
= �2E[H(n; k)Hf ] + 2E[HfH

T
f ]ck + 2E[HfH

T
b ]dk (3.58)

@MSEest(k)

@dTk
= �2E[H(n; k)Hb] + 2E[HbH

T
f ]ck + 2E[HbH

T
b ]dk: (3.59)

To solve for ck and dk, one sets both equations to zero, thus obtaining2
64 E[HfH

T
f ] E[HfH

T
b ]

E[HbH
T
f ] E[HbH

T
b ]

3
75
2
64 ck

dk

3
75 =

2
64 E[H(n; k)Hf ]

E[H(n; k)Hb]

3
75 (3.60)

where E[HfH
T
f ], E[H(n; k)Hf ], E[HbH

T
b ] and E[H(n; k)Hb] are de�ned as before,

and

E[HfH
T
b ] =

�
E[HbH

T
f ]
�T

=2
6666666666664

qn(k1 � k2 � 2) qn(k1 � k2 � 3) � � � qn(k1 � k2 � (Pb + 1))

qn(k1 � k2 � 3) qn(k1 � k2 � 4) � � � qn(k1 � k2 � (Pb + 2))

qn(k1 � k2 � 4) qn(k1 � k2 � 5) � � � qn(k1 � k2 � (Pb + 3))

� � � � � �
. . . � � �

qn(k1 � k2 � (1 + Pf )) qn(k1 � k2 � (2 + Pf )) � � � qn(k1 � k2 � (Pb + Pf ))

3
7777777777775
:

(3.61)

The large, left-hand side matrix in (3.60) is symmetric, but unlike the matrices

in simple forward or simple backward LP, it is not Toeplitz. The computational

complexity of the solution is analyzed in x4.3.

Convex-Combination LP

To save computation time but still maintain some form of forward and backward

prediction, one may opt for convex-combination LP. The idea is to calculate ck as

for forward LP and dk as for backward LP, and then to form

bss(n; k) = �(k) cTkHf + (1 � �(k))dTkHb (3.62)
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where

�(k) =
k2 � k + 1

k2 � k1 + 2
; k 2 [k1; k2] (3.63)

weights the prediction towards either forward or backward LP, as shown in Fig-

ure 3.9. It is implicit in the de�nition of convex-combination LP that the variation

of �(k) with k is linear. This particular shape was chosen to illustrate the concept

of a transition region between forward and backward LP, rather than to stress the

merits of a linear dependency on k.

Figures 3.10 to 3.13 show typical results obtained using the linear predictive

method of spectral shaping described in this Section. Preliminary observations

suggest that the values of H(n; k) in the gap can be quite successfully estimated

from values outside the gap. A more detailed and measurable assessment of the

performance of LP spectral shaping is o�ered in Chapter 4.

3.3.3 Limitations of Linear Predictive Spectral Shaping

The single most important limitation of the LP spectral shaping method is the

requirement that the gap be a contiguous block with Pf and Pb points available,

contiguously, on either side. In other words, there must be enough \room" around

a gap in order to apply linear predictive methods. This condition can be relaxed,

however, by allowing a more general, albeit more complex formulation of the prob-

lem. Though not treated here, such a reformulation would employ much of the

groundwork set forth in this Thesis.

The fact that exclusive treatment has been give to the DCT throughout this

work can also be considered as a limitation. The preliminary phase has involved the

DCT, and future work may involve the application of spectral shaping to a wider

variety of transforms. Nevertheless, spectral shaping in the DCT domain yields

some useful results, as is shown in the following chapter.
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Fig. 3.9 The shape of �(k). The relative inuence of forward or back-

ward LP in the estimation of a particular coe�cient inside the gap de-

pends on its relative position. Forward LP is used to shape coe�cients

at the \left" end, which gradually mixes with backward LP as the co-

e�cients move \right". Finally, backward LP assumes control at the

\right" end.
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Fig. 3.10 An example of forward LP with k1 = 137, k2 = 156, Pf = 8

(top), Pf = 32 (bottom). The solid line represents H(n; k) and the

dotted line represents the estimate obtained using LP spectral shaping,

i.e., bss(n; k).
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Fig. 3.11 An example of backward LP with k1 = 137, k2 = 156,

Pb = 8 (top), Pb = 32 (bottom). The solid line represents H(n; k)

and the dotted line represents the estimate obtained using LP spectral

shaping, i.e., bss(n; k).
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Fig. 3.12 An example of simultaneous LP with k1 = 137, k2 = 156,

P 0
f = P 0

b = 4 (top), P 0
f = P 0

b = 16 (bottom). The solid line represents

H(n; k) and the dotted line represents the estimate obtained using LP

spectral shaping, i.e., bss(n; k).
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Fig. 3.13 An example of convex-combination LP with k1 = 137, k2 =

156, P 0
f = P 0

b = 4 (top), P 0
f = P 0

b = 16 (bottom). The solid line

represents H(n; k) and the dotted line represents the estimate obtained

using LP spectral shaping, i.e., bss(n; k).



Chapter 4

Results

4.1 Experimental Protocol

Consider the transform-domain acoustical echo cancellation scenario shown in Fig-

ure 4.1, where h(n; k) is taken as in Figure 2.4 and simulates propagation through

a room. In addition, consider the following assumptions:

� All coe�cients of the 512-tap DCT-domain adaptive �lter have been initialized

to zero at time n = �1;

� The talker's signal is null, i.e., the microphone signal contains pure echoes;

� There is a gap in the DCT of the reference signal in positions 137 through

156, between time n 2 (�1; 0);

� After an initial convergence period, for time n 2 (�1; 0), the �lter coe�cients

b(n; 1) through b(n; 136) and b(n; 157) through b(n; 512) will properly track

changes in Hn, while coe�cients b(n; 137) to b(n; 156) \freeze" and retain

their initial value of zero.

At time n = 0, the reference signal covariance matrix gains full rank, i.e., its

transform no longer contains any gaps. (Since the DCT is computed at every sample,

49
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Fig. 4.1 The simulation setup used to test the merits of linear pre-

dictive spectral shaping. The resulting signal, e(n), is compared to the

talker's signal s(n). The latter has been conveniently set to zero, allow-

ing easy calculation and comparison of the MSE. The LMS algorithm

used is taken from (2.46) and (2.47).
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it will take 512 samples before the gap vanishes entirely from the spectrum; for

shorter �lters used in enclosures with faster-decaying impulse responses, this delay

is correspondingly reduced.) As a result, the previously frozen coe�cients begin

adapting from their value at time n = 0. If the coe�cients have remained frozen to

their initial value of zero, a large jump will result in the MSE.

However, if each coe�cient in the gap is spectrally shaped, its value at time

n = 0 is closer (in a mean-square sense) to the optimal value of the DCT of the

room impulse response H(0; k) for k 2 [137; 156]. Consequently, the jump in MSE

is signi�cantly reduced, as shown by the dotted curve in Figure 4.2. The term

\performance improvement" is de�ned as the mean separation (in dB) between the

two curves after time n = 0.

4.2 Performance vs. Predictor Order

Using this experimental test bench, the performance improvement was calculated for

various predictor orders, and is shown in Figure 4.3. The total number of predictor

coe�cients is de�ned as the sum of the forward and backward predictor orders.

At �rst glance, the improvement gained by using spectral shaping is evident. In

e�ect, the performance improvement leads to a quicker decay of the MSE and to a

more e�ective cancellation of the acoustical echoes. Generalizing the results of this

simulation to the real-world situation, the interference due to the reference signal

is reduced. A more complete description of Figure 4.3 and subsequent curves is

provided in x4.5.
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Fig. 4.2 The curves illustrate the variation of the MSE as a function

of time. For n < 0, rank(R) is low, and a gap is present in the DCT of

the reference signal; at n = n1 = 0, rank(R) increases to 512, its maxi-

mal value, though its e�ect is felt gradually by taking the DCT at every

sample. The solid curve represents MSE(n) that results from the coef-

�cients in the gap being frozen to zero, i.e., their value at initialization.

The dotted curve, on the other hand, shows MSE(n) that results from

having spectrally shaped the coe�cients in the gap in anticipation of

the increase in rank(R). The improvement in performance is calculated

as the mean value of the di�erence between the two curves for n > 0.
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Fig. 4.3 Performance improvement vs. total number of predictor co-

e�cients. As well as demonstrating the clear performance advantage

of using spectral shaping, this graph compares the relative merits of

forward, backward, simultaneous, and convex-combination LP.
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4.3 Complexity vs. Predictor Order

In the forward and backward LP methods, replacing a coe�cient in the gap with

its spectrally shaped counterpart requires solving a system of the form

[TP ]x = b (4.1)

where TP is a �xed symmetric Toeplitz covariance matrix of order P 2 fPf ; Pbg,

while the right-hand cross-covariance vector varies with k, i.e., with the position

in the gap. The solution to such a system requires 2P 2 oating-point operations,

or ops [27]. In the case of simultaneous LP, one is faced with a positive-de�nite

system of the following form: 2
64 TP 0

f
M

MT TP 0

b

3
75x = b (4.2)

where TP 0

f
and TP 0

b
are symmetric Toeplitz matrices of the corresponding order,

and M is a P 0
f � P 0

b matrix. The entire matrix is thus symmetric, but not Toeplitz.

An e�cient approach to solving this system computes the Cholesky decomposi-

tion [27] in (P 0
f +P 0

b)
3=6 ops, then solves two lower-triangular systems, each requir-

ing (P 0
f +P 0

b)
2=2 ops. For convex-combination LP, the computational requirement

is equivalent to that of forward LP in addition to that of backward LP, with Pf and

Pb replaced by P 0
f and P 0

b, respectively.

The reason for appending \primes" to Pf and Pb in the case of simultaneous

and convex-combination LP stems from the observation that performance must be

compared \fairly" for each type of predictor. Hence the notion of total number

of predictor coe�cients, which allows each method of LP spectral shaping to be

compared on an equal basis:

Ptotal = Pf + Pb + P 0
f + P 0

b: (4.3)

For example, the following combinations have the same Ptotal: forward LP with

Pf = 8, Pb = 0, P 0
f = 0, P 0

b = 0; backward LP with Pf = 0, Pb = 8, P 0
f = 0, P 0

b = 0;
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ops ops ops for bss(n; k) total ops

for ck for dk given ck;dk for bss(n; k)

Forw LP 2P 2
f 0 Pf 2P 2

f + Pf

Back LP 0 2P 2
b Pb 2P 2

b + Pb

Sim. LP 1
6
(P 0

f + P 0
b)
3 + (P 0

f + P 0
b)
2 P 0

f + P 0
b

1
6
(P 0

f + P 0
b)
3 + P 0

f

+(P 0
f + P 0

b)
2 + P 0

b

C.C. LP 2(P 0
f )

2 2(P 0
b)
2 P 0

f + P 0
b + 2

2(P 0
f )

2 + 2(P 0
b)
2

+P 0
f + P 0

b + 2

Table 4.1 Computational requirements of LP spectral shaping. The

two additional ops needed for convex-combination LP reect the need

for multiplication by � and 1� �.

simultaneous LP with Pf = 0, Pb = 0, P 0
f = 4, P 0

b = 4; convex-combination LP with

Pf = 0, Pb = 0, P 0
f = 4, P 0

b = 4. Parallel comparison of the four methods would not

be possible without the additional notation.

A summary of the computational complexity comparison is presented in Ta-

ble 4.1. Based on this data, the actual number of ops required to compute bss(n; k)

for each of the spectral predictors is shown in Figure 4.4 for di�erent values of Ptotal.

4.4 Performance vs. Complexity

Finally, the performance improvement obtained using LP spectral shaping is com-

pared directly with complexity, by combining the two preceding plots (Figure 4.5).

The complexity again refers to the number of ops required to compute each coe�-

cient in the gap for a given Ptotal. This third plot clearly depicts simultaneous and
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Fig. 4.4 Computational complexity vs. total number of predictor co-

e�cients. The complexity of simultaneous LP increases as the cube of

the total predictor order, while that of forward, backward, and convex-

combination LP increases as the square. Moreover, the complexity of

convex-combination LP asymptotically approaches half that of forward

or backward LP.
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convex-combination LP as having the highest gain for almost any level of complexity.
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Fig. 4.5 Performance vs. Computational Complexity. As can be seen,

simultaneous and convex-combination LP almost always outperform for-

ward and backward LP, for a given complexity.

4.5 Observations and Explanations

For a given complexity or Ptotal, the best improvement in performance is generally of-

fered by simultaneous or convex-combination LP. This result is intuitively expected,

as the two hybrid methods combine the bene�ts of both forward and backward linear

prediction.
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Forward and backward LP di�er at low predictor orders, but o�er similar per-

formance at higher predictor orders. This is likely due to an \edge e�ect", whereby

in this example H(n; k) is smoother for k < k1 than for k > k2, hence allowing

forward LP to predict the remainder of the spectrum more accurately than back-

ward LP. The leveling occurs as the order increases because the importance of the

local topography around the gap edge is gradually lost, giving way to an average

smoothness on either side of the gap.

The complexity of simultaneous LP increases as the cube of Ptotal, while that

of forward and backward LP increases as the square. The complexity of convex-

combination LP is asymptotic to half that of forward or backward LP.

In all cases, LP spectral shaping reduces the jump in MSE caused by a vanishing

gap in the DCT spectrum of the reference signal. Overall, one observes a reduction

in MSE on the order of 1 dB. Although the improvement may not be dramatic in

therms of dB, this result nevertheless that LP spectral shaping can be successfully

applied to a practical situation.



Chapter 5

Summary and Conclusions

The discussion in Chapter 2 led to the implementation of a transversal FIR �lter

in order to cancel acoustical echoes in a room. The algorithm that is used must be

adaptive, as the room impulse response is time-varying. Such an algorithm is the

widely used LMS, which unfortunately su�ers from a poor convergence rate, result-

ing in poor tracking of the room impulse response. To alleviate this problem, x2.2.2

introduces the transform-domain LMS algorithm, which substantially increases the

convergence speed by closely replicating an eigendecomposition and e�ectively nor-

malizing the transform spectrum of the reference signal. Since evidence in the

literature points to the discrete cosine transform (DCT) as the transform of choice

in speech-related applications, the DCT-domain LMS algorithm was adopted as the

primary cancellation technique studied in this Thesis.

Chapter 3 analyzed in detail the phenomenon that occurs when the reference

signal covariance matrix is rank-de�cient: the presence of \gaps" in the transform

spectrum causes \freezing" of the respective tap coe�cients. While the remaning

coe�cients continue to adapt and respond to the changing room dynamics (and

drive the MSE to a minimum), the frozen coe�cients do as their title implies: they

retain their value. In other words, after convergence, the resulting tap coe�cient

59
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vector is one of many optimal vectors at the multi-dimensional minimumof the error

surface. However, the full-rank solution is unique, and though it is located on that

same hypersurface of minimum MSE, this unique solution may be \far" from the

present solution containing frozen coe�cients.

The undesirable consequence of the above is that the MSE will \jump" when

the reference signal covariance matrix gains full rank. This occurs since there are

no longer any gaps, and the (previously) frozen coe�cients must converge to the

unique solution. One can decrease the magnitude of this jump by \preparing" the

frozen coe�cients while the rank of the covariance matrix is still low. This is done

by choosing a point on the multi-dimensional error surface which is closer to the

unique full-rank solution. The selection of this point (which occurs during the time

when the covariance matrix has low rank) is based on the values and positions of

the coe�cients which are outside the gap. From the theory of linear prediction thus

arises the method of linear predictive (LP) spectral shaping.

Chapter 3 also describes several methods of LP spectral shaping which can be

applied to a single, contiguous region of the spectrum, occupying the position of

a gap in the reference signal DCT spectrum. Two of these are the conventional

forward and backward methods. One also sees the introduction of simultaneous LP,

which couples both forward and backward prediction into a single set of equations.

The complexity of this hybrid predictor increases as the cube of the total number

of predictor coe�cients, in comparison to the square-law behavior of forward or

backward LP. Finally, convex-combination LP is introduced. Instead of coupling

both forward and backward LP into one set of equations, convex-combination LP

�nds both a forward and a backward solution (for each coe�cient in the gap), and

then weights the set of coe�cients to be used towards either method, depending

on the position of each coe�cient in the gap. In contrast to simultaneous LP, the

complexity of convex-combination LP is only half that of either forward or backward
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LP.

The experiment performed in Chapter 4 consisted of shaping the coe�cients in

a portion of the spectrum corresponding to a gap of size 20. The gap vanished,

i.e., the rank of the covariance matrix increased to its maximum, and the MSE

was compared to that which would be obtained if the coe�cients had been frozen

to their initial value of zero. The performance improvement was substantial for all

methods of LP spectral shaping, among which simultaneous and convex-combination

LP consistently yielded the best performance for a given complexity.

There are, of course, limitations to the method of spectral shaping. For example,

in the cases considered in this Thesis, it is necessary that there be a su�cient number

of consecutive coe�cients available on both sides of the gap, so as to accommodate

the order of the chosen predictor, and to increase the reliability of the autocovariance

function. In addition, the gap is assumed �xed in terms of its size and position.

Future work could therefore focus on relaxing these constraints. Also, by de�ning

a gap to be a set of DCT coe�cients of value less than or equal to " (instead of

zero), one is leaving the door open for further investigation. Finally, the approach is

based solely on the DCT, and on only one transform-domain adaptation algorithm.

An exhaustive study would require extending the experiment to a wider range of

transforms and algorithms.

Nevertheless, the simpli�ed cases studied here have served to promote LP spec-

tral shaping as an e�ective method to counter the negative e�ects of a reference

signal with a variable-rank covariance matrix. In addition, the methods developed

in this Thesis may be directly applicable to linear predictive coding or signal recon-

struction, when the estimation of two or more consecutive samples is required.
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