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Abstract

Acoustic echo cancellation can be used to remove the annoying talker feedback in hands-free

(teleconferencing) systems. The echo canceller identifies the response between the loud-

speaker and the microphone, and produces an echo replica which is then subtracted from

the signal. Adaptive filtering techniques are employed to determine the echo path response.

The speech signal (or the reference signal) is used to train the algorithm. Fast convergence

and good tracking capabilities can not be achieved by classical transform domain adaptive

filtering algorithms when the reference signal has variable rank autocorrelation matrix. In

this thesis, we examine the DCT-LMS algorithm and we emphasize on the role played by

the Discrete Cosine Transform. This fixed transformation reduces the eigenvalue spread of

the input autocorrelation matrix by partially decorrelating the inputs.

The autocorrelation matrix of speech signals is often rank-deficient. During the low rank

phases, some of the transform-domain tap coefficients become irrelevant to the adaptation

process and stop adapting. When the autocorrelation matrix gains full rank, there will be

no longer any “frozen” weights. However, the weights that have been frozen are “far” from

the optimal point; they require additional convergence time to track again the changes in

the room impulse response. In this dissertation, we present a new method that uses the

information contained in the other coefficients to move the frozen weights closer to the

optimal point and, consequently, reduce the overall convergence time.

By modeling the changes in the impulse response that result from an alteration in the

spacing between the microphone and the loudspeaker by a single delay, we were able to

develop the “Spectrum Delay Update” method. It consists of replacing, during low-rank

phase, each frozen coefficient by a delayed version of the previous full-rank solution. To

estimate the corresponding delay, a novel DCT-domain delay estimation algorithm was

derived.

Simulation results demonstrate the efficiency of SDU for acoustic echo cancellation, the

gain in Echo Return Loss is substantial. The experimental performance analysis confirms

the expected reduction in the Euclidean Distance between the filter weights and the actual

room impulse response DCT. Furthermore, it shows that spectrally updating the filter

weights reduces the MSE jump when the autocorrelation matrix gains full rank.
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Sommaire

L’annulation des échos acoustiques est utilisée pour éliminer le retour non désirable du

signal du locuteur dans les systèmes de communications à main-libre (téléconférence).

L’annuleur d’écho identifie la réponse entre le haut-parleur et le microphone, et synthétise

une copie de l’écho; cette dernière sera ultérieurement soustraite du signal. Des tech-

niques adaptatives de filtrage sont employées pour déterminer la réponse de la trajectoire

d’écho. Le signal de la parole (le signal de référence) est utilisé pour entrainer l’algorithme.

Quand ce signal a une matrice d’autocorrelation à rang variable, les algorithmes classiques

de filtrage adaptatif opérant dans le domaine transformé sont incapables de réaliser une

convergence rapide avec une bonne poursuite de l’évolution de la réponse impulsionnelle.

Dans cette thèse, on examine l’algorithme DCT-LMS et on s’attarde sur le rôle joué par la

transformée en cosinus discrète (DCT).

La matrice d’autocorrelation de la parole a souvent un rang défectueux. Pendant ces

périodes de rang faible, quelques coefficients du filtre deviennent non-pertinents au pro-

cessus d’adaptation et arrêtent de s’ajuster. Quand la matrice d’autocorrelation atteint

le rang complet, aucun coefficient ne restera “figé”. Mais en cessant de s’ajuster pour

quelques instants les coefficients figés s’éloignent du point optimal; ils requièrent un temps

de convergence additionel pour suivre de nouveau les changements dans la réponse im-

pulsionnelle de la pièce. Dans ce mémoire, on présente une nouvelle méthode qui utilise

l’information contenue dans les coefficients non-figés pour rapprocher les coefficients figés

du point optimal, et par consequent, réduire le temps total de convergence.

En modélisant par un délai unique les changements dans la réponse impulsionnelle qui

résultent d’une modification de la distance entre le microphone et le haut-parleur, on a pu

développer la méthode dite “Spectrum Delay Update” (ou SDU). Cette méthode consiste à

remplacer, pendant la période de rang faible, chaque coefficient figé par une version retardée

de la précédente solution à rang complet. Pour estimer le delai correspondant, on a conçu

un nouvel algorithme d’estimation du délai qui opère dans le domaine de la DCT.

Les résultats de simulation démontrent l’efficacité de la SDU dans l’annulation des

échos acoustiques; l’amélioration en “Perte de Retour d’Echo” est substantielle. L’analyse

expérimentale de la performance confirme la réduction attendue de la distance Euclidienne

entre les coefficients du filtre et la DCT de la réponse impulsionnelle de la pièce. De plus,

cette analyse montre que l’usage de la SDU réduit le saut de l’erreur carrée moyenne quand
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la matrice d’autocorrelation change de rang.
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Chapter 1

Introduction

In teleconferencing, two geographically separate groups of people meet in a “virtual” way.

By doing so, they avoid the waste of time and the expenses associated with traveling. The

word “teleconferencing” means different things to different people; it can range from a

conference call with speaker phones to a full scale audio for video conferencing system with

satellite feeds. Regardless of the type of teleconferencing, how the audio portion of the

conference is handled will ultimately determine the success of the event.

Among many phenomena which affect the quality of the communication in telecon-

ferencing, the “acoustic echo” is the most important one. Acoustic echo appears when

the conference room is operating with open microphones and loudspeakers in full duplex

mode (anything either party says is heard by the other, whether or not the other party

is speaking). The decoupling of the handset from the head introduces the teleconference

room as another component in the audio circuit and creates an acoustic path between the

loudspeaker and the microphone as shown in Fig. 1.1. Therefore, the transmitted signal is

picked up by the open microphone and retransmitted to the near-end room. The result is

that a person will hear his own voice coming back to him from the far room with a delay,

thus the undesired echo or the “acoustic echo”. Echo feedback may also produce howling,

which is a major annoyance for the users in both rooms.

One should distinguish this unwanted echo from the signal of the far-end talker and the

room reflections of that talker’s signal. These reflections convey an overview of the acoustic

properties of the far-end room and make the transmitted signal sound “natural”; therefore

they should not be suppressed. On the other hand, acoustic echo is not only annoying, but



1 Introduction 2

Near-End room Far-End room

Acoustic
   path

 

Fig. 1.1 Standard teleconferencing model.

can also be of such a level that makes it difficult to carry on a meaningful conversation.

The alleviation of these deleterious effects is an active research area and will be the subject

of this thesis.

The standard approach to eliminate the acoustical echo is to use an adaptive filter at

the receiver where the echo is predominant. The so-called adaptive filters differ from fixed

filters in that their impulse responses are adjusted as data flow through the filter. In this

application, the adaptive filter is used to characterize the changing acoustical path between

the speaker and the microphone, thus generating a synthesized replica of the acoustical echo.

This replica is then subtracted from the microphone signal, leaving the transmitted speech

undistorted.

The motions of people or objects during the conference cause fast and non-easily pre-

dictable variations of the echo path impulse response [1]. Consequently, acoustic echo

cancellers must respond quickly to these variations. Numerous filter structures and adap-

tation algorithms (the algorithms used to adjust the parameters of the adaptive filter) have

been proposed in the literature to perform this task. While a transversal Finite Impulse

Response (or FIR) filter has been the classical structure, many alternative implementations

have been proposed to overcome its limits. In [2], it was shown that a recursive structure

(or an Infinite Impulse Response structure) reduces the number of filter taps required. Fur-

thermore, some neural network structures have been suggested to surmount the inability

of transversal filters to effectively cancel the nonlinearities which are generated in the loud-

speaker during large signal peaks [3]. On the other hand, the transversal FIR structure is

still appealing due to its ease of implementation and versatility[4].

The most widely used adaptation algorithm is the least mean squares or LMS algorithm.
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The principle underlying LMS is extremely simple; it consists of defining an error function

as the average square difference between the filter output and its target, and iteratively

minimizing this error function over the filter coefficient space using a gradient based method.

Its main disadvantage is its slow convergence under certain input conditions (input signals

which have an autocorrelation matrix with high eigenvalue spread). Many modifications

can be brought to the LMS to ameliorate its convergence properties. In [5], it was proposed

to process the signal in subbands, i.e., divide the signal into smaller frequency bands and

independently cancel echoes in each subband. Since narrower frequency bands have a

smaller eigenvalue spread compared to the fullband case, the convergence speed can be

increased. The aliasing that might result from the down sampling process can be avoided by

the use of some special techniques [6]. A drawback of this structure is the delay introduced

by the filter banks.

Another adaptation algorithm that has been suggested for acoustic echo cancellation [7]

is the recursive least squares or RLS algorithm (see e.g.[8]). In RLS, the filter weights are

made equal at each iteration to the best approximation of the Wiener solution that can be

calculated based on all the data the system has seen so far. The preprocessing of the inputs

by an estimate of the inverse input autocorrelation matrix, in the fashion of RLS, makes

the adaptation algorithm computationally intensive and prone to numerical instabilities.

One solution that tries to combine the advantages of both LMS and RLS consists of

preprocessing the inputs to the LMS filter with a fixed transformation that does not depend

on the actual data and that decorrelate partially the inputs. This will reduce the eigenvalue

spread of the autocorrelation matrix (and consequently improve the convergence speed of

the filter) without increasing drastically the computational cost. In addition, the robustness

and tracking capability of LMS will be preserved. These algorithms are called transform-

domain LMS algorithms. A block diagram of these algorithms is shown in Fig 1.2.

Transformation
Data Independent

vector
Input 

Loudspeaker

Echo
replica

LMS
Algorithm

output

Fig. 1.2 Block diagram of the transform-domain LMS algorithm.

The performance of these algorithms clearly depends on the orthogonalizing capabilities
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of the data-independent transform used to preprocess the inputs. No general proof exists

that demonstrates the superiority of one such transform over the others. A classic bench-

mark is the Karhunen-Lòeve Transform (KLT), which performs an exact decorrelation of

the input data by projecting them onto the eigenvectors of their autocorrelation matrix [9].

However, KLT is impractical in real time applications because it is a data dependent trans-

formation. Discrete Fourier Transform LMS (or DFT-LMS), which was first introduced by

Narayan [10], has a strong appeal because of the familiar frequency domain interpretation

of the transformed data. On the other hand, for a wide range of signals, the Discrete

Cosine Transform (or DCT) offers a better approximation to KLT. Indeed, for a stationary

zero-mean, first-order Markov process, the DCT is asymptotically equivalent to the KLT,

with this asymptotic equivalence being demonstrated both as the sequence length increases

and also as the correlation coefficient tends to one [11]. In addition, the DCT-LMS has the

advantage of having real transformed coefficients. In this thesis, we will focus our analysis

on the DCT-LMS algorithm.

Speech signals possess properties one has to account for in the adaptive filtering al-

gorithms. The dynamic character of speech, including the variations in the rank of the

autocorrelation matrix, slows down the convergence of the DCT-LMS algorithm. Dur-

ing low rank periods, some of the transform domain tap-coefficients stop adapting and

effectively “freeze”; they are irrelevant to the adaptation process. These frozen taps can

retain any value without affecting the Mean Square Error (MSE); on the other hand, the

remaining taps track the evolution of the system and keep the MSE at a minimum.

It is important to note that in most cases rank deficiency is accompanied with the

presence of spectrum gaps. When the autocorrelation matrix becomes nonsingular (or

when the spectrum gap vanishes), all the filter weights become relevant and start adapting.

However, the weights that have been frozen to values which are probably obsolete are “far”

from the optimal point (the actual room impulse response DCT). Consequently, a large

jump in the MSE is expected and additional convergence time is required for the frozen

coefficients to track again.

The purpose of this thesis is to reduce this convergence time by moving the frozen

weights closer to the optimal point, anticipating a change in the rank of the autocorre-

lation matrix. Updating the weights in that form make them better prepared to begin

adapting when the gap vanishes. This process uses the information contained in the “cor-

rect” coefficients to produce an estimate of the room impulse response DCT inside the
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gap. In [12], several Linear Predictive (LP) methods, applied to the DCT spectrum, were

suggested. The estimates in the gap were obtained by linearly combining the tracking

coefficients—with the parameters calculated by LP analysis.

The key contribution of this work is to model the changes in the echo path impulse

response (which we will refer to throughout the thesis as the room impulse response) that

result from a change in the spacing between the microphone and loudspeaker by a single

delay. This model allows us to synthesize any missing parts of the room impulse response

(or its DCT) by simply delaying the original (or before the movement) impulse response.

Accordingly, any filter coefficient that has frozen during the low rank phase, can be updated

and brought closer to the actual room impulse response DCT by the same mechanism, which

is dubbed the “Spectrum Delay Update” method. Since the adaptive filter tracks the DCT

of the response, the delay estimation is done in the DCT domain.

In addition to the reduction of the Euclidean Distance between the filter weights and

the actual room impulse response DCT, we found that Spectrum Delay Update improves

substantially the echo canceller Echo Return Loss and reduces the corresponding MSE.

Thesis Overview

Chapter 2 provides the acoustic echo cancellation background. After a detailed introduction

to room acoustics, the loudspeaker-microphone environment is presented along with the

echo canceller structure. We follow with an overview of adaptive linear filters, emphasizing

on the LMS algorithm and on the Transform-Domain LMS.

After presenting the relevant properties of the DCT in Chapter 3, we develop the DCT-

LMS algorithm and justify intuitively its use. We then study the impact of variable rank

autocorrelation matrix (of the reference signal) on the convergence speed. Also in Chap-

ter 3, we propose the idea of weight updating to reduce the MSE jump. After describing

how to model the changes in the room impulse response by a single delay, we present in

detail the Spectrum Delay Update method.

Chapter 4 is devoted to create a delay estimation algorithm in the DCT domain. This

algorithm will be based on the the general DCT shift property derived at the beginning of

the chapter.

We define in Chapter 5 an experimental setup that will be used to evaluate the per-

formance of Spectrum Delay Update. We also formulate several performance measures.
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Their evaluation for different gap sizes and receiver displacements indicate clearly a major

enhancement in the performance.

We conclude in Chapter 6 by summarizing the thesis, adding some comments, and

listing several points that would be of interest for further study.

The major contributions to knowledge of this work can be summarized as follows:

• Generalization of the DCT one sample shift property to a k-samples shift property.

• Development and implementation of a delay estimation algorithm in the DCT domain.

• Representation of the changes in the room impulse response by a single delay.

• Introduction of Spectrum Delay Update method in which the non tracking DCT-LMS

filter coefficients are brought closer to the optimal point. This will reduce the jump

in the MSE when the reference signal autocorrelation matrix gains full rank (after a

low rank period), and a faster convergence is achieved.
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Chapter 2

Acoustic Echo Cancellation

2.1 Room Acoustics

The loss mechanisms which reduce the energy of sound waves when they are reflected from

walls as well as during their free propagation in the air are of considerable importance to

the acoustics of a room. They influence the strengths of the direct sound and of all reflected

components and therefore all acoustical properties of the room.

2.1.1 Room impulse response

We shall regard the sound transmission between two points of a room as formally rep-

resented by the impulse response of the transmission path. Let x = (a, b, c) denote the

position vector of a fixed omnidirectional point source and x′ = (a′, b′, c′) the position vec-

tor of an omnidirectional point receiver. According to the image model technique [13], the

acoustic signal produced at position x′ by an impulse excitation at position x at time t = 0

is given by

h(t) =
1

4π

∑
r

βr

|xr − x′|δ(t−
|xr − x′|

c
) (2.1)

where r is the image index (r = 0 usually corresponds to the source itself), xr is the position

vector of the image indexed by r, βr is the corresponding composite reflection coefficient,

δ(.) is the Dirac delta function, and c is the speed of sound in air. This impulse response

is obtained by adding the responses produced at x′ by multiple image sources located at
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positions xr: the term |xr −x′|/c inside the delta function represents the propagation delay

from the rth image to the receiver, while the multiplicative factor 1/|xr − x′| represents
the amplitude attenuation for spherical wavefront propagation (the impulse response will

provide the signal amplitude and not the signal power). The factor βr accounts for the

attenuation produced by successive reflections on the planar boundaries.

It should be noted that in this approach the reflection coefficients are assumed to be

frequency-independent. To reduce the amount of computation involved, it can be fur-

ther assumed that the wall reflectivities are independent of the angle of incidence. It is

then possible to pre-compute and store the composite reflection coefficients βr prior to the

application of the image model technique.

For a rectangular room, the image distribution forms a three-dimensional rectangu-

lar lattice and can be calculated easily. One such method is the well-known s-room

algorithm[14]. This algorithm uses the fact that the enclosure is rectangular in order

to create a mesh of “rooms”, each containing an image of the source. When the source

is excited, so is each image, thus creating spherical sound-pressure waves which simulta-

neously propagate away from each image point. A typical s-room impulse response (with

the corresponding room dimensions and acoustic properties given in Table 2.1) is shown

in Fig. 2.1. It should be kept in mind that the s-room algorithm is a crude model that

does not take into account the presence of objects in the room. However, we can compen-

sate for presence of furniture and other reflective materials in the room by changing the

surroundings refection coefficients.

Table 2.1 Room dimensions and acoustic properties

Room Size (meters) Length=6,Width=4,Height=4

Walls: 0.4
Reflection coefficients Ceiling: 0.4

Floor: 0.4

Location of the source (a = 2, b = 2, c = 2)

Location of the receiver (a′ = 1, b′ = 1, c′ = 1)

To limit the computations, it is desirable to truncate the impulse response. For envi-

ronments such as the interior of an automobile, the impulse response can be neglected after

30 ms [15], which corresponds to 240 coefficients at a sampling rate of 8 kHz. For larger



2 Acoustic Echo Cancellation 9

0 100 200 300 400 500 600 700 800 900 1000
−0.005

0

0.005

0.01

0.015

0.02

0.025

samples

Im
pu

ls
e 

re
sp

on
se

 m
ag

ni
tu

de

256

Fig. 2.1 A typical 1024 sample (8000 Hz sampling rate) s-room impulse
response, where the room dimensions and acoustic properties are described in
Table 2.1

rooms, significant delays may occur at 100 ms, which correspond to 800 taps at the same

sampling rate. If we want to truncate to a shorter length, some energy will be lost. In

the above example, 0.26 % of the total energy is present after the 256th sample. However,

the computation reduction achieved by using 256 samples impulse responses outweighs the

truncation error incurred. In the remainder of the thesis, impulse responses truncated at

the 256th sample will be used.

Remark on reflections

Under certain conditions a reflection can become a distinct “echo”. In that case, it is heard

consciously as a repetition of the original signal. This is frequently observed outdoors with

sound reflections from the walls of houses and cliffs. In closed rooms such experiences are
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less familiar, since the echoes are masked by the general reverberation of the room and

the proximity of the reflective boundaries. Whether a reflection will become an echo or

not depends on its delay with respect to the direct sound, on its relative strength, on the

nature of the sound signal, and on the presence of other reflections which will eventually

mask the reflection under consideration.

2.1.2 Acoustic classification of rooms

It is known that the acoustic quality of a room depends on aesthetic and psychophysiological

criteria, but we will worry about more objective factors which may serve to establish the

concept of a “good” room on firm grounds. The hope is to identify a single variable, or at

least a finite number of them, which will allow one to characterize the acoustic quality of

a room, and which provide unambiguous criteria for deciding what makes a “good” room.

Wallace Clement Sabine experimentally showed that an important criterion is the more

and less persistence of a sound after the source is stopped, which he called reverberation.

To measure this important effect he defined the reverberation time as the duration for

the mean square pressure of a suitably chosen distribution of sound waves to diminish to

one-millionth of its original intensity. Under certain statistical assumptions [16], the Sabine

reverberation time T for a room of volume V is defined as

T = 6 ln(10)
4V

c
∑

k

αkSk

(2.2)

where c is the velocity of the sound in the air, and αkSk is the equivalent absorption area

for an absorber of true area Sk and absorption coefficient αk . The absorption coefficient α

is related to the reflection coefficient γ by: α = 1−γ. An example of Sabine’s reverberation

time computation is shown in Fig. 2.2.

Note that T does not depend on the observer’s position in the room. Hence it is well

suited to characterize the overall acoustic properties of a room, neglecting details which

may vary from one place to another.
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Fig. 2.2 An example of Sabine’s reverberation time computation

2.2 Echo cancellation

Echo is the phenomenon in which a delayed and distorted version of an original sound

or signal is reflected back to the source. Echoes can be generated electrically, due to

impedance mismatches at points along the transmission medium (telephone lines). Such

echoes are called line echoes. When the telephone connection is between one or more hands-

free telephones or between two conference rooms, a major source of echoes is the acoustic

coupling between the loudspeaker and the microphone at each end. Such echoes have been

called “acoustic echoes”, and they will be the major topic of this thesis. Comparing typical

impulse responses of these two kinds of echo paths, it becomes obvious that acoustic echo

cancellation is a far more challenging task than the line echo cancellation: the duration of

the impulse response of the acoustic echo path is usually several times longer. In addition,

the acoustic echo path may change rapidly at any time e.g. due to a door opening or a

person moving. Although we will be dealing with acoustically generated echoes, we will

only consider cancellation of these echoes in the electrical portion of the circuit. We will

not discuss the related, but much more difficult, problem of cancelling echoes acoustically.

2.2.1 The Loudspeaker-Microphone model

In hands-free communication, the decoupling of the handset from the head introduces the

room as another element in the voice system. The result is multiple reflections of the

near-end talker’s signal transmitted back to the near-end room and conceived as delayed
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replicas of the original speech. This acoustic feedback is shown in Fig. 2.3. The nature

of the acoustic echo patterns can change rapidly due to variations in the environment, the

system must therefore be treated as time varying. Thus, the echo path impulse response —

which we will refer to throughout the thesis as the room impulse response— h(n; k) should

be characterized by two parameters: the time n and the delay k.
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Acoustic room reflections

Near-End room Far-End room

x(n)

s(n)
Speech

Microphone

Fig. 2.3 Acoustic coupling between the loudspeaker and the microphone.
The loudspeaker output or “the reference signal” is x(n) and the far-end input
speech is s(n).

It is assumed in this thesis, that the system is varying slowly enough to allow for

adequate tracking by the echo canceller.

2.2.2 Configuration of an acoustic echo canceller

The standard approach to eliminating the acoustical echo is to use a discrete time linear

adaptive filter at the receiver where the echo is predominant. This filter is used to quanti-

tatively characterize the acoustical link between the loudspeaker and the microphone, thus
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generating an electronically synthesized replica of the acoustical echo. This replica is then

subtracted [17] from the echo received by the microphone to decouple the loudspeaker and

the microphone as shown in Fig. 2.4; the adaptive filter identifies the impulse response

h(n; k) between the loudspeaker and the microphone. An echo replica y(n) is then sub-

tracted from the real echo r(n) (which represent the convolution of x(n) with h(n; k)) to

give the residual echo e(n).

Echo replica

+
-

Received signal

filter
Adaptive 

echo path
Acoustic

x(n)

r(n)

s(n)

d(n)

y(n)

e(n)

Fig. 2.4 Configuration of an acoustic echo canceller: the received signal and
d(n) are available to the adaptive filter and are used to form an estimate of
s(n).

A linear transversal (tapped delay line) filter is the chosen realization for the echo-

cancelling filter. Perhaps the number of filter parameters could be reduced by modeling

the acoustic echo path as a recursive, infinite impulse response (IIR) filter. However, even

though the impulse response may be long, the IIR filter still has few degrees of freedom.

Which will limit the ability of the adaptive filter to represent all the variations in the

impulse response. Therefore, adaptive transversal finite impulse response (FIR) filters as

shown in Fig. 2.5 are still the filters of choice. The output of the transversal filter is given

by

y(n) =
N−1∑
i=0

w(n; i)x(n− i) (2.3)
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Fig. 2.5 Linear Adaptive filter of length N with tap-delayed inputs

If w(n; k) = h(n; k) for all k (i.e the filter taps are matched to the impulse response

coefficients) y(n) will be equal to r(n) and consequently perfect cancellation will be achieved

e(n) = s(n) + r(n)− y(n) = s(n) (2.4)

It is important to note that the uniqueness of the filter taps that yield perfect cancel-

lation depends (as it will be shown later in the thesis) on the structure of x(n).

2.3 Adaptation Algorithms for linear filtering

The task of the adaptation algorithm is to iteratively minimize some error criterion, where

by error we mean a measure of how distant the actual outputs are from the desired outputs.

Let the weight vector be wn = [w(n; 0) w(n; 1) . . . w(n;N − 1)]T and let the input

vector be xn = [x(n) x(n − 1) . . . x(N − 1)]T where T denotes the vector transpose. The

filter output signal y(n) can be then expressed as the dot product of the weight and the

input vectors, y(n) = wT
nxn.

Typically, the error criterion ζ is chosen to be the expectation of the square of the
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difference e(n) between the reference signal and the filter output (which is called the Mean

Square Error). The MSE can be expressed as

ζ(w) = E[e(n)2] = E[(d(n)− y(n))2] (2.5)

where the expectation E[.] is taken over the input space. Expanding, we obtain

ζ(w) = E[d(n)2] +wTRw− 2wTp (2.6)

where R is the autocorrelation matrix of the inputs R
def
= E[xnx

T
n ]

1 and p is the cross-

correlation between the inputs and the reference signal p
def
= E[d(n)xn].

The error ζ(w) is a quadratic function of the weights and assumes the shape of a

hyperparaboloid as illustrated in Fig. 2.6 for a 2-weight case. The sections of the error

surface ζ = constant, are hyperellipsoids (ellipses in the 2-D case). The orientation and

the shape of these ellipsoids depend on the eigenvalues of the input autocorrelation matrix

R. It is easy to show that the axes of the hyperellipsoids are aligned with the eigenvectors of

R and that their lengths are inversely proportional to the square roots of the corresponding

eigenvalues. In the 2-D case, if the two eigenvalues are very different the ellipses are thin

and long, while, if the eigenvalues are equal the ellipses degenerate into circles.

The weight vector that minimizes the error ζ(w) corresponds to the “bottom of the

bowl”. It is obtained mathematically by taking the derivative of ζ(w) with respect to the

weights, setting it to zero, and solving for w.

The solution wopt, which is a special case of the Wiener solution 2, is equal to

wopt = arg(min
w
ζ(w)) = R−1p (2.7)

The minimum achievable mean square error is obtained by replacing w with wopt in (2.6)

ζmin = E[d(n)2]− 2pTR−1p = E[d(n)2]− 2pTwopt (2.8)

This is the function that the adaptation algorithm has to minimize.

1Since the inputs are tap-delayed, the matrix R is Toeplitz, i.e R(l, m) = R|l − m| ∀(l, m)
2The filter that best maps, in a least squares sense, an input signal into a given desired output is in

general of infinite length. Limiting the number of filter taps to N constraints wopt to be of finite length
but it also increases the minimum achievable error.
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Fig. 2.6 Error surface for a 2-weight adaptive filter

Typically, adaptation algorithm works as follows. The filter weights are initially set to

zero or random values. Then, at each iteration, the weights are adjusted so as to travel

down the error surface and eventually reach its minimumwopt or a vicinity of it. The speed

at which this happens, the precision of the solution after convergence, the overall robustness

of the algorithm, its simplicity, the number of calculations required per iteration, . . . are all

factors that must be taken into account when comparing different adaptation algorithms.

In the following sections, we will successively discuss three families of algorithms: the least

mean squares (LMS) algorithms, the recursive least squares (RLS) algorithms, and the

transform domain LMS algorithms.
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2.3.1 The LMS Algorithm

In this section we summarize the main features of the most widely used adaptation algo-

rithm named the least-mean-squares (LMS) algorithm by its originators, Widrow and Hoff

(1960)[4], insisting only on the properties that will influence the remaining of this thesis.

A significant feature of the LMS algorithm is its simplicity. Moreover, it does not require

measurements of the pertinent correlation functions, nor does it require matrix inversion.

Indeed, it is the simplicity of the LMS algorithm that has made it the standard against

which other adaptive filtering algorithms are benchmarked.

Derivation of the LMS Algorithm

The LMS algorithm minimizes the error function ζ using a stochastic steepest descent

approach, that is, at each iteration the weights are updated proportionally to an estimate

of the error gradient. Let ∇n denote the true error gradient at time n, and ∇̂n its estimate.

The true gradient of the MSE function is given by

∇n =
dζ(wn)

dwn
(2.9)

=
dE[(d(n) −wT

nxn)
2]

dwn
(2.10)

The gradient estimate ∇̂n is simply obtained by omitting the expectation in (2.10) hence

the name “stochastic gradient”:

∇̂n =
d (d(n) −wT

nxn)
2

dwn
(2.11)

= −2(d(n)−wT
nxn)xn (2.12)

= −2e(n)xn (2.13)

Noting that e(n) = d(n)−wT
nxn. By adjusting the weights proportionally to the stochastic

gradient instead of the true gradient, LMS follows on the error surface a zig-zag path

whose average course is the exact steepest descent path. The whole motivation behind this

stochastic approximation is to avoid the cost of computing an expectation over the whole

input space at each iteration.
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The LMS weight update is thus given by the simple formula:

wn+1 = wn − µ∇̂n (2.14)

= wn + 2µe(n)xn (2.15)

where the learning rate µ is a constant that governs the speed of convergence of the algo-

rithm; large µ’s allow fast convergence, but also lower the precision of the weight vector

after convergence has been reached. Moreover, large µ’s can create instability problems.

Choosing the right value for µ is an important consideration.

In the case of complex signals, the analogous complex LMS algorithm [8] is given by:

wn+1 = wn + 2µe(n)x∗
n (2.16)

e(n) = d(n) −wT
nxn (2.17)

where “∗” denotes complex conjugation.

Fig. 2.7 shows a signal-flow graph representation of the LMS algorithm in the form of

a feedback model. This graph clearly illustrates the simplicity of the LMS algorithm: it

requires 2N + 1 complex multiplications and 2N complex additions per iteration yielding

O(N) computational cost. In the remainder of the thesis, we will consider only real signals,

and the“∗”will be dropped.

Properties of the LMS Algorithm

The exact analysis of the LMS is quite complicated. Most of the published proofs about

the convergence of LMS are based on the average behavior of the algorithm rather than

its stochastic behavior. In the following, we consider convergence of the mean tap weights

which leads to a simple condition on µ. Other convergence criteria such as convergence of

the variance of the tap weights error require further simplifying assumptions and a more

complex analysis [8].

Widrow based his preliminary analysis on the exact steepest descent algorithm [4]:

wn+1 = wn − µ∇n (2.18)
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Fig. 2.7 Signal-flow graph representation of the LMS algorithm [8].

The exact error gradient at time n can be expressed as

∇n =
dζ(wn)

dwn
(2.19)

= 2Rwn − 2p (2.20)

= 2R(wn −wopt) (2.21)

Let vn be the translated weight vector

vn
def
= wn −wopt (2.22)

vn+1 = (I− 2µR)vn (2.23)

where I is the identity matrix. The next step consists in performing a rotation of the

translated weights.

v†
n

def
= QTvn (2.24)
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where the unitary matrix Q contains the eigenvectors of R, that is R = QΛQT , where Λ

is a diagonal matrix containing the eigenvalues of R

Λ =



λ0 0 . . . 0

0 λ1 . . . 0
...

...
. . .

...

0 0 0 λN−1


 (2.25)

(2.23) can then be rewritten as

v†
n+1 = (I− 2µΛ)v†

n (2.26)

This last formula can be iterated from time 0 to time n to give

v†
n = (I− 2µΛ)nv†

0 (2.27)

where v†
0 is the initial value of the transformed weight vector. Also the error at time n can

be expressed in the transform weight space [4]:

ζn = ζmin +
N∑

i=0

v†20iλi(1− 2µλi)
2n (2.28)

The implications of this equation are extremely important. The error decreases as a sum

of a geometrical series (or exponentials if the adaptation is interpreted as a continuous

process). Each exponential corresponds to one weight and evolves independently of the

others (this is due to the decorrelation of the weights resulting from their transformation

by the matrix Q). The time constants of the exponentials are given by

τi =
1

4µλi
(2.29)

where λi is the eigenvalue associated to the i
th weight. Small eigenvalues (low energy modes)

correspond to long time constants and slow down the overall convergence of the adaptive

filter (it should be kept in mind however, that the contribution of the small eigenvalues to

the total error is small). High eigenvalues, on the other hand, can cause the modulus of
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(1 − 2µλi) to be larger than one, thereby causing the algorithm to diverge. In [4], it was

shown that convergence of the weight vector mean is guaranteed for

0 < µ <
2

λmax
(2.30)

where λmax is the largest eigenvalue of R. A more detailed discussion of the convergence

properties can be found in [8]. The divergence can be avoided by reducing the learning rate,

but decreasing µ will have direct consequence of slowing down even further those modes

that are already slow because they correspond to small eigenvalues. Input signals with

high eigenvalue spread will therefore always result in poor convergence performance. Since

speech signals often have near-singular autocorrelation matrices [18], one can therefore

expect the LMS algorithm to converge slowly in speech-related applications.

Clearly the problem faced by LMS when its input eigenvalues are very spread apart is

due to the fact that it has a single learning rate that must accommodate all the weights. The

importance of the problem would be scaled down if we could associate to each decorrelated

weight v†(i) a specific learning rate µi such that the product µiλi is more or less constant

over i. However this reasoning is valid only in a weight space that has been previously

orthogonalized. Otherwise, each weight would be associated to a combination of modes in

the error function instead of just one mode.

2.3.2 The RLS Algorithm

The Recursive Least Squares (RLS) algorithm implements recursively an exact least squares

solution [8]. As shown before, the Wiener solution for an adaptive filter of finite length

is given by wopt = R−1p where R is the autocorrelation matrix of the inputs and p is

the cross-correlation between inputs and the reference signal. At each time frame, RLS

estimates recursively R−1 and p based on all past data and computes the weight vector as

wn
def
= R−1

n pn, which is thus the best to-date approximation to the Wiener solution.

The weight update formula can be written [8] as

wn = wn−1 + µnR
−1
n−1αnxn (2.31)
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where

αn = d(n)−wT
n−1xn (2.32)

µn =
β−1

1 + β−1xT
nR

−1
n−1xn

(2.33)

β is a constant slightly smaller than one.

This formulation places in evidence the decorrelation operation performed by RLS on

the input data: the stochastic gradient αnxn is pre-multiplied by an estimate of the inverse

autocorrelation matrix, which has the effect of decorrelating the inputs of the adaptive

filter. This reduces the sensitivity of the algorithm to its input eigenvalue spread. The

pre-multiplication by R−1 can unfortunately hurt the stability of the filter if the matrix

R is ill-conditioned; a situation that arises each time the filter contains more weights than

necessary.

Compared to LMS, RLS has the advantage of fast convergence rate and low sensitivity to

the input eigenvalue spread. But on the other hand, it is computationally intensive (O(N2))

and prone to numerical instabilities. One solution, which we will further discuss in this

thesis, consists of preprocessing the inputs to the LMS filter with a fixed transformation that

does not depend on the actual input data. The decorrelation will only be approximative,

but the computational cost will remain O(N) and the robustness of LMS will be preserved.

These algorithms are generally called transform-domain LMS or frequency-domain-LMS

algorithms.

2.3.3 Transform-Domain LMS Algorithms

The structure of this family of algorithms consists of two stages [19, 10]:

1. The input vector xn is transformed into a corresponding vector of uncorrelated vari-

ables.

2. The transformed vector is used as the input to an LMS algorithm.

The first objective may be realized by using the Karhunen-Lòeve Transform (KLT).

Specifically, given an input vector xn of zero mean, drawn from a wide-sense stationary
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environment, the KLT is defined by (for real-valued data)

rni = q
T
i xn i = 0, 1, . . . , N − 1 (2.34)

where qi is the eigenvector associated with the ith eigenvalue λi belonging to the autocor-

relation matrix R of the input vector. The individual outputs of the KLT are zero-mean

uncorrelated variables:

E[rnirnj] =

{
λi, j = i

0, j �= i (2.35)

Thus the autocorrelation matrix of the vector produced by the KLT will be the diagonal

matrix Λ given by (2.25):

E[(QTxn)(Q
Txn)

T ] = Λ (2.36)

Multiplying both sides by Λ−1 [20], we obtain:

E[(Λ− 1
2QT rn)(Λ

− 1
2QTxn)

T ] = I (2.37)

Hence, using Λ− 1
2QTxn instead of xn gives a new correlation matrix I whose eigenvalues

are unity; which means that there is no eigenvalue spread. In addition, it should be noted

that the vectors Λ− 1
2QTxn and xn span the same space. Consequently, the same optimal

solution that was achievabale with the original basis, is attainable with the new orthogonal

basis.

The second step consists in feeding the transformed vector to an LMS algorithm. The

combination of the two stages yields a rapidly converging LMS algorithm[10]:

wn+1 = wn + 2µe(n)Λ−1QTxn (2.38)

e(n) = d(n)−wT
nQ

Txn (2.39)

The KLT is a signal-dependent transformation, the implementation of which requires

the estimation of the input autocorrelation matrix and the diagonalization of this matrix.

These heavy computations make KLT impractical for real time applications. Fortunately,

there exists a variety of fixed, unitary transforms that approximate the KLT for different
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types of signals.

While no general proof exists that assesses the superiority of one transform over the

others, there are some results that show which transform performs better on which class of

inputs. For sinusoidal signals, the Discrete Fourier Transform asymptotically approaches

an eigendecomposition as N → ∞ [21]. But most importantly, for first order Markov

signals (which are deemed to be sufficiently general in signal processing) the Discrete Cosine

Transform (which will be discussed in the next chapter) provides a predetermined set of

basis vectors that forms a good approximation to the KLT. The asymptotic equivalence is

presented in [11].

Other fixed, data-independent transformations have been considered in the literature

to replace the KLT: the Discrete Hartley Transform (DHT) [22], the Walsh-Hadamard

transform [23] etc.

In the rest of the thesis, we will focus on the structure in which the DCT is used as

a preprocessing transformation and we will refer to this algorithm as DCT-LMS. Fig. 2.8

shows a block diagram of this filter. It consists of two stages, with stage I providing

the implementation of a sliding DCT algorithm and stages II implementing a normalized

version of the LMS algorithm.

Estimate

response
of desired

Stage IIStage I

Input vector Sliding 
discrete-cosine
 transformer

LMS

learning rate
with normalized

algorithm

Fig. 2.8 Block diagram of the DCT-LMS algorithm
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Chapter 3

DCT-LMS Algorithm

3.1 The Discrete Cosine Transform

Since its introduction in 1974 by Ahmed et al. [24], the discrete cosine transform (DCT)

has become a significant tool in many areas of digital signal processing. The original

motivation for defining the DCT was that its basis set provides a good approximation to

the eigenvectors of the class of Toeplitz matrices that constitutes the autocorrelation matrix

of a first order Markov process (with the result that it had a better performance than the

Discrete Fourier Transform or DFT). Besides being real, the attractiveness of the DCT was

further accentuated by the introduction of fast algorithms.

3.1.1 Preamble

The DCT may be defined in several different ways. We shall now present the definitions

for the four discrete cosine transforms as classified by Wang [25]:

In defining the DCT, only the kernel matrix (which will operate on the input vector)

will be given. The notation [.] denotes a matrix, the order of which is represented by a

subscript inside the pair of square brackets, while the version number is represented by a

superscript. With these annotations, the four versions of the DCT matrices are:
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[CI
N+1] =

√
2

N
[kmkn cos(

mnπ

N
)] m,n = 0, 1, . . . , N (3.1)

[CII
N ] =

√
2

N
[km cos(

m(n+ 1
2
)π

N
)] m,n = 0, 1, . . . , N − 1 (3.2)

[CIII
N ] =

√
2

N
[kn cos(

n(m+ 1
2
)π

N
)] m,n = 0, 1, . . . , N − 1 (3.3)

[CIV
N ] =

√
2

N
[cos(

(n+ 1
2
)(m+ 1

2
)π

N
)] m,n = 0, 1, . . . , N − 1 (3.4)

where

kj =




1 if j �= 0 and j �= N,
1√
2

if j = 0 and j = N.
(3.5)

The DCT-II is the discrete cosine transform first reported by Ahmed et al. [24]. This

version of the DCT is the one that will be used in the remainder of the thesis due to

its superior decorrelating capabilities [11]. It will be referred to as the DCT. DCT-III is

obviously the transpose of DCT-II, and DCT-IV is the shifted version of DCT-I.

The basis functions of the DCT-II with N = 16 are shown in Fig. 3.1. These ba-

sis functions are related to the zeroes of the Chebyshev polynomials [26]; where the mth

orthonormalized one is given by

Tm(u) =

√
2

N
km cos[m cos−1(u)] (3.6)

The unitarity of the transform matrices (the rows are orthogonal to one another and

have Euclidean norm one) is assured since they are the similarity transform matrices in a

diagonalization problem [24]:

[CII
N ]−1 = [CII

N ]T (3.7)

From this point on [CII
N ] will be referred to as C.

Based on (3.2) and (3.7) the forward and inverse DCTs for a signal x(n) can be defined
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Fig. 3.1 Basis functions of the DCT-II with N=16. There are 16 basis
vectors, indexed from 0 to 15 as shown on the y-axis, each of dimensionality
16. The dashed line is the reference (or the zero value) for each plot.
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as follows:

Forward:

XDCT ,N (m) =

√
2

N
km

N−1∑
n=0

x(n) cos
[(2n + 1)mπ

2N

]
m = 0, . . . , N − 1 (3.8)

Inverse:

x(n) =

√
2

N

N−1∑
m=0

kmXDCT ,N (m) cos
[(2n+ 1)mπ

2N

]
n = 0, . . . , N − 1 (3.9)

where km is given by (3.5). To simplify the notation, the subscript N in XDCT ,N will be

dropped whenever there is no ambiguity.

3.1.2 Relation to the DFT

It was shown in [27] that the DCT is related to the DFT of an extended sequence of length

2N . Let y(n) be defined as

y(n) =

{
x(n) n = 0, 1, . . . , N − 1

x(2N − 1− n) n = N,N + 1, . . . , 2N − 1
(3.10)

Note that y(n) is obtained by extending x(n) symmetrically with respect to index N +1/2

as shown in Fig. 3.2.

The 2N point DFT of y(n) is defined as:

YDFT (m) =

√
1

2N

2N−1∑
n=0

y(n) exp
−j2πmn

2N
(3.11)

= exp
jπm

2N

√
2

N

N−1∑
n=0

x(n) cos[
(2n + 1)mπ

2N
] (3.12)

Thus the DCT of x(n) can be obtained from YDFT according to the relation

XDCT (m) = km exp
−jπm
2N

YDFT (m) m = 0, 1, . . . , N − 1 (3.13)

Another way of expressing a N point DCT in terms of a 2N point DFT can be obtained



3 DCT-LMS Algorithm 29

0 1 2 3 4 5 6 7

1 2 3 40
Time
  (a)

x(n)

y(n)

 (b)
Time

Fig. 3.2 (a) the original signal x(n) of length 4, (b) the symmetrically ex-
tended signal y(n) used in the DCT.

by considering the spectral interpretation of the DCT [9]. Given a 2N point sequence u(n)

such that u(n) = x(n) for 0 ≤ n ≤ N − 1 and 0 elsewhere. Denoting |U(m)| and θm as the

magnitude and phase of the 2N point DFT of u(n), it was shown in [27] that

XDCT (m) = km|U(m)| cos(θm − πm

2N
) m = 0, 1, . . . , N − 1 (3.14)

Thus, the DCT has a spectral envelope which is identical to that of the DFT and a mod-

ulating term which imposes a rapidly changing spectral component.

3.1.3 DCT filtering

In many cases, it is more convenient to perform the filtering by multiplication in the spectral

domain. In this section, we present the convolution property for the DCT.

It was shown in [11] that the product of the DCT of two sequences is the DCT of the

convolution of these two sequences and a third function that will be defined below. In ad-

dition, the convolutions are circular convolutions of the symmetrically extended sequences.
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Consider two sequences f(n) and g(n), n = 0, 1, . . . , N − 1. Construct the 2N sym-

metrically extended sequences, as explained in (3.10), f̂ (n) and ĝ(n). Let FDCT(k) and

GDCT (k) denote the DCT of the two original sequences. The DCT convolution theorem

can be stated as follows [11]:

DCT [ĥ(n) ∗ f̂ (n) ∗ ĝ(n)] = FDCT(m)GDCT(m) (3.15)

For m = 0, 1, . . . , N − 1. Where ∗ denotes circular convolution and ĥ(n) is defined as

ĥ(n) =
2√
2N

{( 1

2
√
2
− 1

)
+ exp

[j(2n − 1)(N − 1)π

4N

]sin[(2n− 1)π

4

]
sin

[(2n− 1)π

4N

]
}

(3.16)

Since the DCT posses the circular convolution-multiplication property, it is advanta-

geous to carry out the filtering process in the discrete cosine transform domain rather than

in the Fourier domain, which would require further forward and inverse transformations

[28].

3.2 DCT-LMS algorithm

In this section, we describe the DCT-LMS algorithm and show how to model it in order to

simplify its analysis. As shown in Fig 2.8, this algorithm consists of two stages: the first

stage (the sliding DCT) acts as a preprocessor that performs the “pseudo-orthogonalization”

of the input vector. For that purpose the DCT uses a sliding window, with the computa-

tion being performed for each new input sample. This, in turn, enables the LMS algorithm

—the second stage— to operate at the incoming data rate as in its conventional form. A

general block diagram of the DCT-LMS algorithm is given in Fig. 3.3.

The vector xn (consisting of delayed samples of the input signal x(n)) is first transformed

into another vector zn:

zn = Cxn (3.17)

zn = [z(n; 0) z(n; 1) . . . z(n;N − 1)]T (3.18)

Referring to Fig. 3.3, wn represents the transform domain weight vector, and d(n) the
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Fig. 3.3 Block diagram of the DCT-LMS adaptive filter.
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reference signal. The error signal e(n) is

e(n) = d(n) −wT
nzn (3.19)

The weight update equation is

w(n+ 1; i) = w(n; i) + 2µie(n)z(n; i) i = 0, 1, . . . , N − 1 (3.20)

where

µi =
µ

E(z(n; i)2)
i = 0, 1, . . . , N − 1 (3.21)

is the adaptive step size for the ith DCT component and µ is a positive constant that

governs the rate of convergence.

To highlight the similarity of the above algorithm to the KLT based LMS, described in

(2.38), the weight update equation can be rewritten in a vector form as follows:

wn+1 = wn + 2µe(n)(Λa)−1Cxn (3.22)

where Λa is an approximation to Λ, the diagonal matrix containing the eigenvalues of R

and defined in (2.25).

(Cxn)(Cxn)
T = Λa (3.23)


 Λ (3.24)

The adaptive filter will track the DCT of the room impulse response

hn = [h(n; 0) h(n; 1) . . . h(n;N − 1)]T . (3.25)

If the filter taps match exactly the DCT coefficients of the room impulse response, i.e. if
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wn = Chn, perfect cancellation will follow

e(n) = d(n)−wT
nCxn (3.26)

= s(n) + hT
nxn − (Chn)

TCxn (3.27)

= s(n) + hT
n (I−CT C)xn (3.28)

= s(n) (3.29)

The reverse implication is not generally true. In the case where some coefficients ofCxn are

zero (forming a “gap” in the transform spectrum of the reference signal), the corresponding

components of wn will not affect the error e(n), and can thus be arbitrary while still

achieving perfect cancellation.

Furthermore, the presence of nulls in the DCT spectrum also affects the weights up-

date. It can be seen from (3.20) that if z(n; i) = 0 no ≤ n ≤ nf for a given i and if µ is

bounded, w(n; i) will “freeze” to the original value w(no, i) and retain this value until the

gap vanishes (n = nf ). This point will be treated in greater detail in section 3.4.

3.3 Intuitive Justification of DCT-LMS

3.3.1 Geometrical Approach

The first geometrical interpretation of the DCT-LMS algorithm was given in [29]. The DCT

matrix C is unitary, and unitary transformations perform only rotations and symmetries,

they do not modify the shape of the object they transform.

The MSE of an LMS filter is a quadratic function of its weight vector (see section 2.3).

For a constant MSE, the function of the weights is a hyperellipsoid in the N−dimensional

weight space. The DCT of the input rotates this hyperellipsoid and brings it into approx-

imate alignment with the coordinate axes. The slight imperfection in alignment is due to

the leakage in the DCT (as demonstrated in the next section). This is shown in Fig. 3.4

where the 2-D slice of a higher-dimensional ellipsoid is illustrated.

Fig. 3.4(a) shows the original MSE ellipsoid, Fig. 3.4(b) shows the same ellipsoid after

transforming the input by a DCT (this will correspond to DCT-LMS MSE). The shape of

the ellipsoid, and equivalently the eigenvalues of the autocorrelation matrix, are unchanged.

The amplitude normalization, on the other hand, forces the MSE to cross all the coordinate
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axes at the same distance from the center. Since this transformation is not unitary, it does

modify the eigenvalues of the autocorrelation matrix. Indeed, the new ellipsoid is more

round and the eigenvalues are less spread apart. The combination of the two steps (DCT

with amplitude normalization) approximates asymptotically the optimal eigendecomposi-

tion which reshapes the entire error surface so that MSE contours have a round shape, as

shown in Fig. 3.4(c), and so that the eigenvalue spread becomes unity [8].

Remark

In the 2D case, the eigenvectors making up the KLT are the same as the DCT basis vectors.

Consequently, for this particular case, the DCT is optimal (if normalized properly) and this

is illustrated in Fig. 3.4(b) where no misalignment is noticed.

3.3.2 Filtering Approach

The DCT essentially decomposes the input signal into frequency-like bins. Although the

DCT does not separate frequencies the way DFT does, it is a powerful signal decorrelator.

After identifying the bins, the energy is redistributed almost equally between all the bins

and this is done to make all the modes equally fast during adaptation. The N -point DCT

can be viewed as N linear transformations from the N -dimensional input vector xn to the

N outputs z(n; 0) , . . . , z(n;N − 1). Each transformation is characterized by an impulse

response gm(n) =

√
2

N
km cos(

m(n+ 1
2
)π

N
). The corresponding transfer function is given

by [30]:

Gm(ω) =
N−1∑
n=0

gm(n) exp(jωn) (3.30)

=

√
2

N
km cos(

mπ

2N
)
(1− exp(−jw))(1− (−1)m exp(−jwN))

1− 2 cos(mπ
N
) exp(−jw)− exp(−2jw) (3.31)

Fig. 3.5 shows the magnitude response of one of the 64 transfer functions (N = 64). These

transfer functions represent a bank of bandpass filters whose central frequencies span the

interval [0, π] [10]. The sinusoidal nature of the basis of the DCT explains the presence of

two symmetrical peaks. Moreover, the sidelobes are the source of the leakage in the DCT

bins, yielding some correlations between the outputs.
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Fig. 3.4 A 2D slice of the MSE hyperellipsoid (of dimension 3) (a) before
transformation (b) after DCT (c) after KLT.
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Fig. 3.5 Magnitude of the 20th bin transfer function for a 64-point DCT:
|G20(ω)|2.

3.4 Effect of spectrum gaps on the DCT-LMS algorithm

3.4.1 Spectrum gaps

If the DCT of the reference signal is null between the frequencies mo and mf we will say

that the spectrum of the reference signal contains a gap of sizeM (M = mo−mf ) starting

at mo. If a gap is present between time no and nf , the transform vector zn will be of the

form

zn = [z(n; 0) . . . z(n,mo − 1) 0 . . . 0 z(n;mf + 1) . . . z(n;N − 1)]T (3.32)

for no ≤ n ≤ nf . An illustration of this observation is given in Fig. 3.6.

One observes that if zn is given by (3.32), the weight update equation (3.20) will become

w(n+ 1;m) = w(n;m) for mo ≤ m ≤ mf and no ≤ n ≤ nf (3.33)

In other words, the filter weights at positions mo through mf will freeze and stop adapting;
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Fig. 3.6 Illustration of the concept of a spectrum gap. In (a) a 64-point
frame of the reference signal xn is shown. The 64-point DCT of xn (zn) is
displayed in (b). Note the presence of a gap of size 8 starting at index 40 in
the spectrum of the reference signal.
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they will retain the original tap value w(no;m). On the other hand, w(n;m) continues to

be updated correctly for m ∈ [0, mo − 1] ∪ [mf + 1, N − 1].

In summary:

w(n;m) −→ H(n;m) m ∈ [0, mo − 1] and no ≤ n ≤ nf (3.34)

w(n;m) −→ w(no;m) m ∈ [mo, mf ] and no ≤ n ≤ nf (3.35)

w(n;m) −→ H(n;m) m ∈ [mf + 1, N − 1] and no ≤ n ≤ nf (3.36)

where H is the DCT of the room impulse response, i.e.,

Hn = Chn = C



h(n; 0)

h(n; 1)

. . .

h(n;N − 1)


 =



H(n; 0)

H(n; 1)

. . .

H(n;N − 1)


 (3.37)

The DCT of a typical room impulse response (defined in Table 2.1) is illustrated in Fig. 3.7.

3.4.2 Effect of gaps on the error surface

As shown previously, the presence of a spectrum gap between mo and mf allows the corre-

sponding filter weights {w(n;m) m ∈ [mo, mf ]} to take arbitrary values and still achieve

perfect cancellation. In terms of the error surface, this means that the minimum of the

MSE is not unique, it is actually independent of the coordinates corresponding to the frozen

coefficients. Therefore, the minimum of the MSE will be of dimensionalityM . An example

of the MSE (ζ) when N=2 and M = 1 is shown in Fig. 3.8.

We see from this plot that the error is invariant with respect to one of the weight axis,

the y axis. This means that there is an infinity of optimal solutions to the problem, all

lying in the “valley” of the error function. In a typical adaptation run, the weight vector

—initially set to some random value— will follow the path of steepest descent and settle

at the nearest location in the valley.

The above phenomenon happens whenever the size of the LMS filter is overdetermined.

Furthermore, the minimum of the corresponding time-domain LMS MSE is also of dimen-

sionality M since the transform is unitary; the DCT only rotates the minimum so that it
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Fig. 3.7 The 256-point DCT of a typical room impulse response. The cor-
responding room characteristics are given in Table 2.1.

lies parallel to the irrelevant axes.

3.4.3 Meaning of a gap

To motivate later analysis, it is important to know what types of signals have gaps on their

DCT spectra. Recalling that,

zn z
T
n = (Cxn)(Cxn)

T = Λa 
 Λ (3.38)

one sees that nulls in zn correspond to zeros along the diagonal of Λa which approximates

the eigenvalues of R. In [31] a signal whose autocorrelation matrix R has zero eigenvalues

(or does not have full rank) is dubbed rank deficient. In most cases (certainly the practical

ones) rank deficiency of the reference signal autocorrelation matrix is accompanied with
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Fig. 3.8 Non Uniqueness of the transform-domain error surface: In this
example the number of tap coefficients N is 2 and the dimensionality of the
error surface M is 1. It is clear that the y coordinate (which represents one
filter tap) does not affect the MSE, this weight can take any value.

the presence of spectrum gaps.

Recalling (3.14), it was shown that the DCT has a spectral envelope which is identical

to that of the DFT of an extended sequence. Consequently, gaps in the DCT spectrum

correspond to some zero-energy regions of an equivalent frequency spectrum.

3.4.4 Impact of spectral gaps on the convergence speed

For no ≤ n ≤ nf

There exists a gap of size M between mo and mf , consequently {w(n;m) mo ≤ m ≤ mf}
will freeze to the original value w(no;m) and stop adapting. On the other hand, the

remaining N −M weights are successfully tracking the DCT of the room impulse response.
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Thus

w(n;m) −→



H(n;m) m ∈ [0, mo − 1]

w(no;m) m ∈ [mo, mf ]

H(n;m) m ∈ [mf − 1, N − 1]

(3.39)

Furthermore, the reference signal autocorrelation matrix has low rank and the minimum

of the error surface is of dimensionalityM .

For n ≥ nf

The reference signal autocorrelation matrix gains full rank and the minimum of transform

domain MSE surface collapses to a single point. The gap vanishes and all the filter weights

are adapting and converging to Hn:

w(n;m) −→ H(n;m) ∀m (3.40)

Since M components of wn have been frozen to values which are probably obsolete —

knowing that the room impulse response is constantly changing— the distance between

wn and Hn may be large (many distance measures will be defined later). Noting that the

speed of convergence is inversely proportional to the distance, additional convergence time

is required for the frozen coefficients to converge from w(no;m).

The purpose of the rest of the thesis is to reduce this convergence time by moving the

frozen weights toward the optimal point Hn anticipating a change in the dimensionality of

the error surface. In other words, make the weights better prepared to begin adapting once

the gap vanishes. This becomes even more important when the room impulse response is

changing rapidly, and a large jump in the MSE is expected at the end of a gap.

3.5 Spectral Updating

3.5.1 Objective

The aim is to estimate the changes in the room impulse response (more precisely the DCT

of the room impulse response) during the low rank periods by monitoring the variation

of the “tracking” coefficients. Latterly, the frozen weights will be updated to follow the
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changes in the room impulse response. Since DCT-LMS is the algorithm used, all the

processing should be done in the DCT domain, hence the term “Spectral Updating”.

Accordingly, the updated weight vector will have the following form:

SU [w(n;m)] =



w(n;m) m ∈ [0, mo − 1]

wsu(n;m) m ∈ [mo, mf ]

w(n;m) m ∈ [mf − 1, N − 1]

(3.41)

Where SU is a particular Spectral Updating method. The DCT-LMS algorithm directly

uses SU [w(n;m)] as the new set of tap coefficients. The complete process is described in

Fig. 3.9.
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Fig. 3.9 During low rank phase, the frozen coefficients are updated to track
the variation of the room impulse response. The change in the room impulse
response is estimated by monitoring the adapting weights fluctuations.

3.5.2 Modeling the changes in the room impulse response by a delay

The room impulse response changes with the movement of the source (loudspeaker) or the

receiver (microphone) and with the variation of the reflective materials. In teleconferencing,

the movement of the talker (to whom the microphone is attached) is the major variable

that will alter the room response. Our goal is to quantify the changes in the room impulse

response, and come up with a set of parameters based on which the “modified” impulse

response can be deduced, given the original response.
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A radial movement of the source or the receiver with respect to the other, will delay

the room impulse response (the term delay can mean either a time advance or a time lag:

positive delay values represent time advance and negative delay values reflect a time lag).

Therefore, a simple model will try to represent all the changes in the room impulse response

as a time shift. Fig. 3.10 illustrates how we were able to model the effects of the movement

of a far-end talker (from position (1, 1, 1) to position (1.05, 1, 1) in the room described

in Table 2.1), by a single delay in the room impulse response. Fig. 3.11 illustrates more

clearly the similarity of the delayed response to the actual room impulse response. In the

remainder of the thesis, we will refer to the movement of the far-end room talker who has

the microphone attached to him as the “receiver movement”.

A major setback to this model is that multiple images (originating from different walls)

will arrive with different delays. In the example given above, the actual delays for all

the images (or lobes) are given in Table 3.1. This phenomenon will limit the accuracy of

modeling the whole change in the impulse response by a single delay. Fig. 3.12 illustrates

the discrepancy between the delayed room impulse response and the actual one due to this

fact.

Having the dominant role in the convolution, the main lobe of the impulse response

(corresponding to the direct path) will be the major element in estimating the delay.

Table 3.1 Change in the delay for various impulse response lobes when the
talker moves from position (1, 1, 1) to position (1.05, 1, 1)

Room impulse response Lobe Change in the delay (samples)

Main +1.04
Second +0.80
Third +0.67
Fourth −1.13
Fifth +0.40

3.5.3 Spectrum Delay Update

Assume at first, that the reference signal autocorrelation matrix has full rank for n ≤ no.

Subsequently, a gap appears in zn between no and nf and vanishes afterward for n ≥ nf .
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(b) Room impulse response after the speaker has moved to (1.05,1,1)
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(c) a one sample delayed version of the original room response
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(a) Original room impulse response (speaker at (1,1,1))

Fig. 3.10 Change in the room impulse response due to movement of the
talker from position (1, 1, 1) to position (1.05, 1, 1). The room dimensions and
characteristics are described in Table 2.1. The change in the original room
impulse response (a) is modeled by a one sample delay, and the resulting
delayed response is shown in (c). This will be used to approximate the actual
impulse response given in (b).

.
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(a) Original room impulse response (speaker at (1,1,1))
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(b) Room impulse response after the speaker has moved to (1.05,1,1)
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(c) a one sample delayed version of the original room response

Fig. 3.11 Same as Fig. 3.10 with all the impulse responses upsampled by 30
and only displaying the first lobe of each impulse response. The correlation
between the delayed response and the actual response is very high.

.
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−3 (a) Original room impulse response (speaker at (1,1,1))
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−3(c) a one sample delayed version of the original room response

Fig. 3.12 Illustration of the multiple delay phenomenon: the fourth impulse
response lobe, which is the image coming from the wall the talker is moving
away from, will arrive with a longer delay and will lag the original one as
shown in (b). In this case the delayed impulse response shown in (c) will be
incorrect.

.
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The delay based spectral updating algorithm—which we will refer to as the “Spectrum

Delay Update” or SDU algorithm—models the change in the room impulse response as a

pure delay, and modifies accordingly all the frozen coefficients to track the delayed version

of the original room response. It can be summarized by the following steps:

1. Store w(no − 1;m). This vector will serve as a reference for the delay estimation

(delay with respect to it). It will be treated as the original room impulse response.

2. Estimate the delay between w(n;m) and w(no − 1;m) using only the tracking coeffi-

cients (m �∈ [mo, mf ]) for no ≤ n ≤ nf . The DCT delay estimation algorithm is the

topic of the next chapter.

3. Use the delay estimate to modify the frozen weights. Knowing the original weight

vector wno−1 and the delay δ(n), the updated weights wsu(n;m) m ∈ [mo, mf ] can

be calculated.

The block diagram for the Spectrum Delay Update is given in Fig. 3.13.
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no ≤ n ≤ nf

w(n;m) m �∈ [mo, mf ]

w(no − 1;m) m �∈ [mo, mf ]

Estimation
Delay
DCT

Spectral
Update

S
in
gle

d
elay

estim
ate

δ(n
)

wsu(n;m) m ∈ [mo, mf ]

w(no − 1;m) m ∈ [mo, mf ]

Fig. 3.13 Spectrum Delay Update: the original weight vector wno−1 and the
delay estimate (obtained from the tracking coefficients) are used to update the
frozen coefficients.
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Chapter 4

Delay estimation in the DCT domain

4.1 Shift property of the DCT

Given an original data vector x = [x(0) x(1) . . . x(N − 1)]T , the one sample left-shifted

vector x+ will be [x(1) x(2) . . . x(N)]T , where x(N) is the new sample pushed into the

vector.

The first objective is to express the DCT of the one sample shifted vector, X+
DCT , in

terms of the DCT of the original vector, XDCT . Before presenting the shift property of the

DCT, we recall the definition of the DCT

XDCT (m) =

√
2

N
km

N−1∑
n=0

x(n) cos
[(2n + 1)mπ

2N

]
m = 0, . . . , N − 1

km =




1 if m �= 0 and m �= N,
1√
2

if m = 0 and m = N.
(4.1)

and we introduce the N -point Discrete Sine Transform XDST (more precisely the DST-II

as labeled by [25]) of the vector x

XDST (m) =

√
2

N
km+1

N−1∑
n=0

x(n) sin
[(2n + 1)(m+ 1)π

2N

]
m = 0, . . . , N − 1 (4.2)
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where km+1 is defined in (4.1). Then the shift property of the DCT will be given by [32]

X+
DCT (m) = cos

(mπ
N

)
XDCT (m) + sin

(mπ
N

)
XDST (m)

+

√
2

N
km cos

(mπ
2N

){(−1)mx(N)− x(0)}

m = 0, 1, . . . , N − 1

(4.3)

The proof of this property —not shown in [25]— is presented in Appendix A. The equivalent

DST shift property is [32]

X+
DST (m) = cos

(mπ
N

)
XDST (m)− sin

(mπ
N

)
XDCT (m)

+

√
2

N
km sin

(mπ
2N

){x(0)− (−1)mx(N)}

m = 0, 1, . . . , N − 1

(4.4)

Note that if x(0) = x(N) = 0, the shift property of the DCT and DST can be simplified:

X+
DCT (m) = cos

(mπ
N

)
XDCT (m) + sin

(mπ
N

)
XDST (m)

X+
DST (m) = cos

(mπ
N

)
XDST (m)− sin

(mπ
N

)
XDCT (m)

m = 0, 1, . . . , N − 1

(4.5)

The next objective is to derive a more general shift formula, where the shift is not restricted

to be one sample only (this case is not discussed in the literature).

Consider the k-samples left shifted vector xk+

xk+ = [x(k) x(k + 1) . . . x(N + k − 1)]T (4.6)

We wish to derive the relation between its DCT Xk+
DCT and the transforms of the original

vector. We will only consider the case where the k pushed samples (x(N) . . . x(N + k− 1))

and the first k samples (x(0) . . . x(k)) are zero. This condition is not restrictive when x(n)

represents a room impulse response, where the leading samples are always zero (since the

speed of sound is finite). On the other hand, this condition will greatly simplify the general
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shift formula. With the above assumption, the general shift property of the DCT and DST

is given by

Xk+
DCT (m) = cos

(mπk
N

)
XDCT (m) + sin

(mπk
N

)
XDST (m)

Xk+
DST (m) = cos

(mπk
N

)
XDST (m)− sin

(mπk
N

)
XDCT (m)

m = 0, 1, . . . , N − 1

(4.7)

The proof of (4.7) is done by mathematical induction and is given in Appendix B.

It is desirable to obtain the same properties for a right shift. Thus, for signals with no

energy in the last k samples (x(N − k) = . . . = x(N − 1) = 0) and shifting in zero values,

the k samples right shift property is the same as (4.7) with −k replacing k.
To complete the analysis, the reciprocal shift property should be derived. From (4.7) it

is clear that

XDCT (m) = cos
(mπk
N

)
Xk+

DCT (m)− sin
(mπk
N

)
Xk+

DST (m)

XDST (m) = sin
(mπk
N

)
Xk+

DCT (m) + cos
(mπk
N

)
Xk+

DST (m)

m = 0, 1, . . . , N − 1

(4.8)

4.2 Relation between the DST and the DCT

The DST and the DCT of a sequence are interrelated, we will give in this section a method

of composing the DST from the DCT. The procedure for obtaining the sine transform of a

sequence x(n) is composed of three steps [33]

1. Invert the signs of all odd numbered data to form a new sequence x(n) defined as

x(n) = (−1)nx(n) n = 0, 1, . . . , N − 1

2. Compute the DCT of x(n)

3. Reverse the sequence order of the data produced by step 2 to obtain the DST of the

sequence x(n).
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This procedure may be represented in the form of matrix multiplication. Letting SN

and CN be the DST and DCT matrices of order N respectively, then

SN = INCNDN (4.9)

where IN is the opposite diagonal identity matrix, DN is the odd sign-changing matrix

defined as

DN =




1 0

−1
1

. . .

1

0 −1




(4.10)

4.3 Estimation of the delay k

Given the shifted vector DCT and the original vector DCT and DST, we want to estimate

from (4.7) by how much the shifted vector is delayed or advanced with respect to the

original one. Since the DCT and the DST are interrelated, it is enough to provide the

DCT, and the corresponding DST will be calculated locally using the above algorithm.

4.3.1 One frequency solution candidates

We start by considering one fixed frequency m = mo, and try to solve for k from this single

equation

Xk+
DCT (mo) = cos

(moπk

N

)
XDCT(mo)− sin

(moπk

N

)
XDST (mo) (4.11)

Letting α =
πmo

N
, a = Xk+

DCT(mo), b = XDCT (mo) and c = XDST (mo), (4.11) becomes

a = b cos(αk) + c sin(αk) (4.12)
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Using the change of variable x = cos(αk) and y = sin(αk), we will have to solve

{
a = bx+ cy

x2 + y2 = 1
(4.13)

Geometrically, this correspond to solving for the intersection of a line with the unit circle

as shown in Fig.4.1.

1

ηγ

1

1

ηγ

1
bx + cy = a

x

y

Fig. 4.1 Geometrical interpretation of the delay estimation

For c �= 0, the above system of equations is equivalent to

(c2 + b2)x2 + (−2ab)x+ (a2 − c2) = 0 (4.14)

The discriminant of this second order equation is given by

∆2 = 4a2b2 − 4(c2 + b2)(a2 − c2)
= 4c2(b2 + c2 − a2) (4.15)
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Thus, if a2 < b2 + c2, the two solutions will be given by

x =
ab± c√b2 + c2 − a2

c2 + b2
(4.16)

and the corresponding y will be y =
a− bx
c

.

Since the objective is to solve for k, the next step would be to take the arccosine of

x. For each x, cos−1(x) gives two principle angles (between 0 and 2π), but taking into

consideration the sign of y, only one angle will be retained. (An alternative solution is to

use the arctan2 function). Thus, two uniquely defined principle angles η and γ (modulo

2π) will form the solution of the above problem (as shown in Fig. 4.1). If c = 0, on the

other hand, x becomes
a

b
which will yield two symmetrical angles η and γ = −η (the line

is parallel to the y-axis).

Consequently, the possible values for the delay k will be

η

α
,
γ

α
,
η + 2π

α
,
γ + 2π

α
,
η + 4π

α
,
γ + 4π

α
, . . . (4.17)

or (replacing α by its value)

ηN

πmo
,
γN

πmo
,
ηN

πmo
+
2N

mo
,
γN

πmo
+
2N

mo
,
ηN

πmo
+
4N

mo
,
ηN

πmo
+
4N

mo
,
γN

πmo
+
4N

mo
, . . . (4.18)

In fact, k is only modulo N the above sequence, because of the wrap around. Therefore,

not all the above values are distinct. The next objective is to identify and enumerate the

distinct solutions.

In the two sequences

ka
n =

ηN

πmo
+
2nN

mo

ka
n =

γN

πmo
+
2nN

mo

n = 0, 1, 2, . . .

(4.19)

the solutions start repeating when
2nN

mo

becomes a multiple of N . The smallest n (or ns)

satisfying the above condition determines the number of distinct solutions.
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If mo is even, ns will be
mo

2
, yielding

mo

2
distinct solutions per sequence. The overall

solution (sequences a and b combined) might have some overlap between the two sequences,

thus, we can only give the maximum number of possible distinct solutions which is 2
mo

2
=

2mo. Similarly, if mo is odd, ns will be mo and the maximum number of possible distinct

solutions will be again 2mo.

Principle angle solution

If we want to obtain the delay k from the principle angles (which will greatly simplify the

estimation procedure), k should be such that k < 2N/mo. In other words, if we know the

maximum possible delay kmax, choosing mo such that mo < 2N/kmax will guarantee that

k is obtained from the principle angles. It is important to note that for kmax � N , it is

always possible to solve for k using only the principle angles (assuming there is energy at

the first frequencies).

4.3.2 No solution case

If the line does not intersect with the circle, i.e if a2 > b2 + c2 in (4.14), the two vectors are

not exact delayed versions of each others.

In this case, the closest point to the line on the unit circle (point z in Fig. 4.2) should

be found, the corresponding angle η will provide an approximative delay estimate. The

procedure to find z is as follow:

1. Obtain the equation of the line orthogonal to bx+ cy = a passing through the origin:

its leading vector is (b, c), thus, its equation would be −cx+ by = 0.

2. Find the intersection of this line with the unit circle (two possible points).

3. The point that is closest to the line bx+ cy = a will be z.

4.3.3 Combining various solutions to form a single delay estimate

In practice, only frequencies between some mmin and mmax are used in the estimation

process. Our task is to obtain the best delay estimate based on the knowledge of all

candidate solutions in the available frequency range.
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1

1

1

1

x

y
bx + cy = a

z

−cx + by = 0

η

Fig. 4.2 Obtaining an approximative delay estimate when there is no solu-
tion.

Assuming that the shift is frequency-independent, the actual delay should appear as

one of the solution candidates at each frequency. Therefore, our objective is to find the

path through the solution candidates with the minimum variance. This path will identify

the actual delay.

Correspondingly, the algorithm for obtaining a single delay estimate could be summa-

rized as follow:

Step 1 From each solution candidate at mmin, initiate a path (line).

Step 2 Connect the closest points (in terms of the Euclidean Distance), at consecutive fre-

quencies.

Step 3 Associate with each path a metric defined as the sum of the deviations (square of the

distance between the point and the line).

Step 4 Compare all the metrics and save the path with the smallest metric (called the sur-

vivor path).

Step 5 Deduce the delay from the survivor path.
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A simple illustration of the above algorithm is shown in Fig. 4.3.
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Fig. 4.3 Example of how to obtain the best delay path. The vectors used
in the estimation process are of dimensionality N = 16 (which corresponds
also to the maximum possible delay). With mmin = 1 and mmax = 15, the
survivor path (the solid line) yield a delay estimate of 2 samples.

In determining the survivor path, it was proved experimentally that disregarding some

outliers (with a threshold to be determined) improves the accuracy of the delay estimation

process.

4.4 Delay estimation example

We want to apply the delay estimation algorithm developed in the previous section to

model a specific receiver movement (in various room environment) as a delay in the impulse

response.
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4.4.1 Settings

In a room of dimensions 5 × 4 × 3 m, let the receiver be located at position (1, 1, 1) and

the source at position (3, 2, 1). The receiver is moving in the x-direction with an unknown

speed as shown in Fig. 4.4.

Source

1 2 3 x

1

2

y

d2

d
1 

Receiver

Fig. 4.4 Top view of the receiver movement

The time lag with which an excitation arrives at the receiver depend on the source-

receiver distance d and the speed of sound c. Therefore, the difference in the arrival

times or equivalently the relative delay between the impulse responses, when the receiver is

moving as shown in Fig. 4.4, will depend on d1−d2. More precisely, the actual delay (which

we will try to estimate) for an x-direction movement of ∆x with a sampling frequency fs

will be

(d1 − d2)fs

c
(4.20)

samples. Where d1 =
√
5 and d2 =

√
(3− 1−∆x)2 + 1.

Fig. 4.5 shows the evolution of the impulse response when ∆x increases from 0 to 0.1

meter, with fs = 8000Hz.

Before proceeding, it is important to obtain some limits on the displacement of a person.

The fastest walking speed recorded in the Olympics was 3.8 m/s, it would be fair to claim

that a talker in teleconferencing would have a slower motion. Assuming that the DCT

coefficients are updated each 256 samples or 32 ms (which corresponds to the zero overlap
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Fig. 4.5 Waterfall display illustrating the effect of the displacement of the
talker on the room impulse response. The original impulse response (receiver
located at position (1,1,1)) is the first plot (toward the time axis). The second
plot shows the impulse response when ∆x = 0.05 m and the last one displays
the impulse response when ∆x = 0.1 m. It is clear that as ∆x increases the
relative delay increases.
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case), the maximum displacement of the talker will be 0.12 m. If we update the DCT

coefficients more frequently (approaching the continuous update considered before), the

consecutive DCT spectra will have some overlap and the maximum displacement of the

talker will be less than 0.12 m, but the computation load will be bigger.

For this example, mmin and mmax are chosen to be 36 and 210 respectively, and the

outliers threshold is taken to be 0.85. For each talker movement, two delay estimates are

computed depending on whether we approximate the “no solution” cases or not.

4.4.2 Results

Four different acoustic environments, characterized by Sabine reverberation time Ts, are

considered to test the delay estimation algorithm (with the room impulse responses gener-

ated by the s-room algorithm described in Chapter 2 at a sampling frequency of 8000 Hz):

• “Perfect” room environment: all reflection coefficients are zero and Ts = 0.103 s. The

resulting estimated delays are given in Table 4.1.

• “Good” room environment: walls reflection coefficients are 0.2 and those of the floor

and ceiling are 0.1, yielding a reverberation time of 0.123 s. The results are shown in

Table 4.2.

• “Medium” room environment: all reflection coefficients are set to 0.4, Ts is conse-

quently 0.173 s. Table 4.3 gives the estimated delays.

• “Bad” room environment: walls reflection coefficients are 0.8 and those of the floor

and ceiling are 0.4 resulting in a reverberation time of 0.280 s. The corresponding

estimated delays are shown in Table. 4.4.

For each acoustic environment, the average difference between the estimated delay and

the actual delay value is computed. The results are given in Table 4.5, they clearly demon-

strate that the delay estimation algorithm is performing well. In the worst case (“bad”

room), the estimates and the actual delays differ by only 0.14 sample on average.

Remark

There exist simple time-domain delay estimation algorithms which yield accurate results.

However, in the DCT-LMS algorithm, the time waveform are not available, as the filter
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Table 4.1 Delay estimation results for the “Perfect” room example. All
reflection coefficients are zero and Ts = 0.103 s.

Movement Actual Estimated delay Estimated delay
(x-direction) delay (Approx. for ∆ < 0) (Ignoring ∆ < 0 cases)

0.05 m 1.05 1.05 1.05
0.06 m 1.26 1.26 1.26
0.075 m 1.58 1.58 1.57
0.09 m 1.88 1.89 1.87
0.10 m 2.09 2.10 2.08
0.12 m 2.51 2.51 2.50

Table 4.2 Delay estimation results for the “Good” room example. Walls
reflection coefficients are 0.2 and those of the floor and ceiling are 0.1,
Ts =0.123 s.

Movement Actual Estimated delay Estimated delay
(x-direction) delay (Approx. for ∆ < 0) (Ignoring ∆ < 0 cases)

0.05 m 1.05 1.05 1.05
0.06 m 1.26 1.30 1.31
0.075 m 1.58 1.60 1.59
0.09 m 1.88 1.91 2.24
0.10 m 2.09 2.11 2.18
0.12 m 2.51 2.50 2.50

weights track the DCT of the room impulse response. Therefore, if time-domain delay

estimation algorithms were to be used, the original and delayed filter tap vectors would

have to be transformed to the time domain (by an inverse DCT) prior to the estimation

process. This will slow down the convergence of the adaptive filter and defeat the purpose

of the introduction of Spectrum Delay Update.

The maximum correlation method is one of the most effective-time domain delay esti-

mation algorithms: to obtain the relative delay between an original signal and a delayed

version of it, the original signal is delayed progressively (with one sample increment) and

then multiplied by the second signal. The resulting cross-correlation is then normalized

by dividing by the square root of the product of the energy of the two signals. The maxi-
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Table 4.3 Delay estimation results for the “Medium” room example. All
reflection coefficients are set to 0.4, Ts=0.173 s.

Movement Actual Estimated delay Estimated delay
(x-direction) delay (Approx. for ∆ < 0) (Ignoring ∆ < 0 cases)

0.05 m 1.05 1.12 1.14
0.06 m 1.26 1.25 1.29
0.075 m 1.58 1.62 1.68
0.09 m 1.88 1.88 1.85
0.10 m 2.09 2.08 2.12
0.12 m 2.51 2.45 2.56

Table 4.4 Delay estimation results for the “Bad” room example. Walls
reflection coefficients are 0.8 and those of the floor and ceiling are 0.4,
Ts = 0.280 s.

Movement Actual Estimated delay Estimated delay
(x-direction) delay (Approximating ∆ < 0 cases) (Ignoring ∆ < 0 cases)

0.05 m 1.05 1.33 1.40
0.06 m 1.26 1.25 1.37
0.075 m 1.58 1.66 1.78
0.09 m 1.88 1.94 3.15
0.10 m 2.09 2.09 2.42
0.12 m 2.51 2.95 2.55

mum of the normalized cross-correlation yields the relative delay between the two signals

as shown in Fig. 4.6.

To obtain a more precise delay estimate—to the fraction of a sample— both signals

should be upsampled. In the above example, the delays estimated with this method (up-

sampling the weights 20 times) are on average 0.01 sample different from the actual delays

in all acoustic environments.
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Table 4.5 Average differences between the actual and estimated delays (Ap-
proximating ∆ < 0 cases)

Room environment Average difference

Perfect 0.01 sample
Good 0.02 sample

Medium 0.03 sample
Bad 0.14 sample

−250 −200 −150 −100 −50 0 50 100 150 200 250
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

samples

Fig. 4.6 Normalized cross correlation between the original and the delayed
signals. The delay is the index for which the the cross correlation is maximum,
in this case it is estimated to be 2 samples.
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Chapter 5

Performance Analysis

5.1 Preamble

5.1.1 Implementing the DCT-LMS algorithm

The DCT-LMS adaptive filter, the dashed box of Fig. 5.1, is implemented in Matlab.

The inputs to this filter are the reference signal d(n) and the loudspeaker output x(n). In

addition, a constant step size and an initial weight vector should be provided to start the

adaptation process. The algorithm returns a “clean” (or echo cancelled) signal that will

be transmitted back through the telephone network and a matrix that keeps track of the

progression of the tap coefficients.

In continuing operation, the filter weights track the DCT of the room impulse response.

To test the implementation, the sentence “Cats and Dogs each hates the other” is taken as

the loudspeaker output; the resulting filter weights and “clean” signal are shown in Fig. 5.2.

Since the far-end talker signal is taken to be zero, the “clean” signal should be as close as

possible to zero. Comparing Fig. 5.2 (a) and Fig. 5.2 (b), we note that the amplitude scale

of e(n) is two order of magnitude less than the amplitude scale of x(n) and we observe that

e(n) is converging to zero. Furthermore, it is clear from the comparison of Fig. 5.2 (c) and

Fig. 3.7 that the final values of the filter weights approximate very closely the DCT of the

room impulse response.



5 Performance Analysis 65

 Z
-1

 Z
 Z

-1
-1

L
M

S

D
C

T

--
+

C
le

an
 s

ig
na

l

T
al

ke
r 

si
gn

al
(a

ss
um

ed
 to

 b
e 

0 
he

re
)

L
ou

ds
pe

ak
er

ou
tp

ut

 Z
-1

 Z
 Z

-1
-1

L
M

S

D
C

T

--
+

C
le

an
 s

ig
na

l

T
al

ke
r 

si
gn

al
(a

ss
um

ed
 to

 b
e 

0 
he

re
)

L
ou

ds
pe

ak
er

ou
tp

ut

∑ y
(n

)

w
ei
gh

ts
A
da

pt
iv
ew

(n
;1

)
w

(n
;0

)
w

(n
;N

−
1
)

w
(n

;2
)

z
(n

;1
)

z
(n

;0
)

z
(n

;2
)

z
(n

;N
−

2
)

z
(n

;N
−

1
)x
(n

−
N

+
1
)

x
(n

−
2
)

x
(n

−
N

+
2
)

x
(n

−
1
)

d
(n

)

e(
n
)

s(
n
)

h
(n

;k
)

x
(n

) r(
n
) F
ig

.
5.

1
T
he

si
m
ul
at

io
n
be

nc
h

us
ed

to
ev

al
ua

te
th

e
pe

rf
or

m
an

ce
of

th
e
D
C
T
-L

M
S
ec
ho

ca
nc

el
le
r

w
it
h

Sp
ec
tr
um

D
el
ay

U
pd

at
e.

s(
n
)
is

ta
ke

n
to

be
ze
ro

to
re
du

ce
th

e
co

m
pu

ta
ti
on

an
d

to
si
m
pl
ify

th
e
co

m
pa

ri
so

n
of

th
e
cl
ea

n
si
gn

al
(o

r
er
ro

r)
e(

n
)
w
it
h
th

e
id
ea

lc
as

e
(e
(n

)
=

0)
.



5 Performance Analysis 66

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
−2

−1.5

−1

−0.5

0

0.5

1
x 10

4

samples

 (a) 

0 20 40 60 80 100 120 140 160 180 200
−4

−2

0

2

4
x 10

−3

Filter weight

 (c) 

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
−150

−100

−50

0

50

100

150

samples

 (b)

Fig. 5.2 An echo cancellation example: x(n) shown in (a) is the speech
sentence “Cats and Dogs each hates the other” and s(n) is set to zero to
simplify the calculations. The step size µ is chosen to be 0.0001 and the initial
filter weights are set to zero. The resulting “clean” signal is shown in (b) and
the final values of the filter weights are displayed in (c). The room used in
this experiment is given by Table 2.1. Note the scale of the vertical axis in
the three plots.
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5.1.2 Performance measures

Given a room impulse response DCT vectorH and a filter weights vectorw we are interested

in knowing “how far apart” they are. Most of the distances used in speech applications

are particular cases of the Minkowski distance defined as follows: Let Hk denote the kth

component of the N -vector H. Then the Minkowski distance of order s or ls between

vectors H and w is

ds(H,w)
def
= s

√√√√ N∑
k=1

|Hk −wk|s (5.1)

The particular case that we will be using is the l2 or the Euclidean Distance

d2(H,w) =

√√√√ N∑
k=1

|Hk −wk|2 (5.2)

The objective of Spectrum Delay Update (SDU) which replaces the frozen coefficients

by a delayed version of the previous full rank impulse response DCT is to decrease the

jump in the MSE when the gap vanishes again. Consequently, the average reduction in the

MSE will reflect the improvement gained by SDU.

Another measure used to describe the performance of the echo canceller is the echo

return loss (ERL), which estimates the amount of echo removed by the echo canceller [34],

and is defined as

ERL = 10 log
xTx

eTe
(5.3)

where xTx is the far-end loudspeaker output power and eTe is the power of the uncancelled

echo.

5.2 Experimental set-up

Consider the following assumptions:

• Room dimensions are 5× 4× 3 m, the receiver is located at position (1, 1, 1) and the

source at position (3, 2, 1).
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• The reference signal is created by filtering a speech segment by the Chebyshev type

II bandstop filter, whose frequency response is shown in Fig. 5.3. The resulting signal

will contain a gap in the DCT spectrum; the size and position of this gap will depend

on the the size and position of the reject band of the filter.

• All coefficients of the 256-tap DCT-LMS filter have been initialized to zero at time

n = −∞.

• The far-end talker’s signal is null (the microphone signal contains only echoes).
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Fig. 5.3 Magnitude response of the 10th order Chebyshev type II bandstop
filter, with the stopband ripple 90 dB down. For this particular example, the
stopband was chosen between 0.35 and 0.45 (normalized frequency).

First phase

The receiver moves to (1, 1, 1 + ∆x), where ∆x ranges between 0.05 m and 0.12 m. After

an initial convergence period, the tracking coefficients are used to estimate the delay in the
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impulse response. The frozen coefficients are then spectrally updated as shown in Fig. 5.4.

The resulting tap vector is “closer” to the actual room impulse response DCT. On the

other hand, if the coefficients had remained frozen to their initial value, the Euclidean

Distance between the filter weights and the actual room impulse response DCT would have

been bigger. Fig. 5.5 illustrates this difference for a particular reference signal. The mean

difference (in dB) between the two distances will provide our first performance improvement

measure, identified as EDMD (Euclidean Distance Mean Difference)

EDMD =E[20 log{d2(H,wsu)} − 20 log{d2(H,w)}]

=E[20 log{d2(H,wsu)

d2(H,w)
}]

(5.4)

Second phase

The reference signal autocorrelation matrix gains full rank, i.e, its transform no longer

contains any gap (the reference signal is not filtered anymore). Since the DCT is computed

every sample, it will take 256 samples before the gap vanishes entirely from the spectrum.

The previously frozen coefficients begin adapting from their value at the end of phase

one, and a large jump in the MSE is expected. However, if the weight vector was spectrally

updated in anticipation of the increase in the rank of R, the resulting MSE is smaller, as

shown by Fig. 5.6 for a particular reference signal. The mean separation between the two

MSE curves (in Fig. 5.6) reflects the improvement gained by SDU; we will refer to it as

MSEMS (MSE Mean Separation).

Finally, the overall ERL is computed for the two cases (with and without SDU), the

difference between the two ERL values or ERLD, will characterize the combined (two

phases) performance improvement.

5.3 Results

5.3.1 Performance vs. gap size

Using the experimental set-up outlined in the previous section, with ∆x = 0.05 m, the gap

start is fixed to position 95 but the gap end is varied to yield various gap sizes (7 to 34
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Fig. 5.4 Effect of Spectrum Delay Update on the filter coefficients. There
is a gap in the DCT spectrum of the reference signal in positions 90 through
115. Equivalently, the coefficients 90 through 115 of the filter weight vector,
displayed in (a), will “freeze”. The spectrally updated filter weights, shown in
(b), are closer to the actual room impulse response DCT, shown in (c).
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Fig. 5.5 Euclidean Distance between the filter weights and the room impulse
response DCT. Every 10 samples a snapshot of the filter weights is taken. (the
reference signal DCT has a gap in positions 90 through 115)
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Fig. 5.6 Evolution of the MSE with time. At n = 0, the autocorrelation
matrix, R, of the reference signal gains full rank (but its effect is felt gradually
since the DCT is taken at every sample). The dashed curve represents the
MSE that results from the coefficients in the gap (positions 90 through 115)
being frozen to their value at the end of phase one. The solid curve gives the
MSE that results from having spectrally updated the coefficients in the gap in
anticipation of the increase in rank(R).
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samples). The three performance measures, EDMD, MSEMS and ERLD are obtained for

the four acoustic environments described in section 4.4.2. The results are shown in Fig. 5.7,

Fig. 5.8, and Fig. 5.9. At first glance, the improvement gained by Spectrum Delay Update

is evident.
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Fig. 5.7 Variations of EDMD with respect to the gap size in four different
acoustic environments. The gap start is fixed to position 95 and ∆x = 0.05 m.

It is obvious from Fig. 5.7 that SDU makes the filter weights closer to the room impulse

response DCT. The acoustic environment, through its effects on the accuracy of the delay

based model (representing the change in the room impulse response) and the exactness of

the delay estimate, plays an important role in determining the Euclidean Distance gain.

It is clear from Fig. 5.7 that the better the acoustic environment, the bigger the gain. In

the perfect room, where the impulse response consists of only one lobe, the delay model

reflects precisely the change in the room impulse response and the estimated delay is

very accurate. Thereby, the perfect room spectrally updated weight vector is the closest

(between all acoustic environments) to the actual room impulse response DCT: EDMD
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Fig. 5.8 Variations of MSEMS with respect to the gap size in four different
acoustic environments. The gap start is fixed to position 95 and ∆x = 0.05 m.

ranges between 3 dB for small gaps (7 samples) to more than 9 dB for large gaps (32

samples). On the other hand, the l2 gain is less dramatic (nevertheless remarkable) for

medium and bad rooms; the presence of multiple lobes in the impulse response reduces

noticeably the EDMD. For all environments, EDMD increases with the gap size: as the gap

gets bigger, more filter coefficients freeze, and more weights are spectrally updated. The

medium room, which is the most realistic one, will be taken as a reference to assess the

performance improvement. For this case, EDMD increases almost linearly from 1.25 dB for

a gap of 7 samples to 6.05 dB for a 32 sample gap.

The reduction in the MSE that results from spectrally updating the filter coefficients in

anticipation of the increase in the rank of R, is shown in Fig. 5.8. It is clear that MSEMS

increases with the quality of the acoustic environment (for the same reasons outlined in the

previous paragraph) and the size of the gap. If more coefficients were frozen in phase one

of the experiment (i.e. if the gap was bigger), the effects of SDU on the MSE become more
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Fig. 5.9 Variations of ERL gain with respect to the gap size in four different
acoustic environments. The gap start is fixed to position 95 and ∆x = 0.05 m.

evident. In the medium room, the reduction in the MSE goes from a fraction of a dB in

very small gaps (less than 10 samples) to more than 5 dB for gaps bigger than 30 samples.

The improvements in ERL, which measures the amount of echo removed by the echo

canceller, are remarkable as shown in Fig. 5.9. Spectrum Delay Update boosts the ERL

for all acoustic environments (to a different extents). The gain in ERL for a 20 samples

gap for example, ranges between 2.1 dB and 5.5 dB. It is clear from Fig. 5.9 that the ERL

improvement is proportional to the gap size. In the medium room, SDU increases ERL by

0.1 to 5.6 dB depending on the gap size.

5.3.2 Performance vs. receiver movement

It is interesting to determine the performance improvement for various receiver movements.

For this purpose, the reference signal spectrum gap is fixed to positions 95 through 118
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in the first phase of the experimental protocol outlined in section 5.2. ∆x is increased

gradually from 0.05 m to 0.12 m. The resulting performance measures, EDMD,MSEMS and

ERLD are then obtained for the good, medium, and bad acoustic environments described

in section 4.4.2.

It is obvious from Fig. 5.10 that for all displacements, Spectrum Delay Update makes

the filter weights closer to the room impulse response DCT (EDMD is positive). But the

gain in terms of the Euclidean Distance decreases slightly when the receiver displacement

increases, especially for the bad acoustic environment.
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Fig. 5.10 Variations of EDMD with respect to the receiver movement in
three different acoustic environments. The gap start is fixed to positions 95
to 118.

When the receiver movement is large, the difference between the impulse response indi-

vidual sidelobe delays becomes large (some images will arrive to the receiver before others

as explained in section 3.5.2) and consequently, the accuracy of modeling the change in the

impulse response by a single delay is reduced. The severeness of this phenomenon depends
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on the quality of the acoustic environment. For the bad room, where the sidelobes are

strong, EDMD varies from 2.9 dB for ∆x=0.05 m to 1.6 dB for ∆x=0.12 m. On the other

hand, in the good room, EDMD decreases only by 0.9 dB when ∆x spans the whole range.

The more prepared the filter weights are to begin adapting once the gap vanishes, i.e.

the closer they are to the actual room impulse response DCT, the smaller the MSE jump

is. This is demonstrated in Fig. 5.11 where MSEMS has the same pattern as EDMD. The

biggest reduction in the MSE (due to SDU) is achieved when ∆x is small. In the medium

room, MSEMS decreases from 4.6 dB for ∆x=0.05 m to 2.9 dB for ∆x=0.12 m.

It should be also noticed that the accuracy of the delay estimate plays an important

role in determining the performance gain. This is clearly illustrated by the large decrease

in MSEMS when ∆x goes from 0.1 m to 0.12 m in the bad room. The inaccurate delay

estimate (as given by Table 4.4) is contributing largely to the reduction of MSEMS.
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Fig. 5.11 Variations of MSEMS with respect to the receiver movement in
three different acoustic environments. The gap start is fixed to positions 95
to 118.
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Finally, the variations of the ERLD with respect to the receiver movement, as given

by Fig. 5.12, confirm the observations already made in this section. In order to maximize

the ERL gain, the filer weights should be updated as frequently as possible, keeping the

receiver displacement small. This arises from the fact that faster update times result in

shorter receiver displacement. In the medium room, ERLD decreases by 1 dB when ∆x

increases from 0.05 m to 0.12 m.
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Fig. 5.12 Variations of ERLD with respect to the receiver movement in
three different acoustic environments. The gap start is fixed to positions 95
to 118.

5.3.3 Observations

As intuitively expected, Spectrum Delay Update improves the performance of the echo

canceller. The experimental results, obtained in this section, prove that the objectives of

SDU were achieved. The spectrally updated weight vector is closer to the actual room
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impulse response DCT, and the resulting MSE is reduced. Most importantly, the Echo

Return Loss is augmented.

The best improvements in performance are generally achieved when the acoustic envi-

ronment is favorable, i.e. when the room impulse response does not have strong sidelobes.

In this case, the delay based model, representing the change in the room impulse response,

is accurate and the estimated delay is precise.

The gap (in the reference signal DCT) size plays an important role in determining

the performance improvement. All performance measures introduced here indicate that

the performance gain is proportional to the gap size: the bigger the gap the bigger the

gain. On the other hand, the evaluation of these measures, with various receiver displace-

ments, indicates that the faster the filter weights are updated the bigger the performance

improvement is.

In all cases, Spectrum Delay Update increases the amount of echoes removed by the

echo canceller, which suggests that SDU can be successfully applied to practical situations.
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Chapter 6

Conclusion

More and more people are getting used to the comfort and flexibility of teleconferencing.

With the rising use of satellite communications, this will become the rule rather than the

exception. Good speech intelligibility is vital. However, the teleconference room is now

part of the audio circuit, which creates an acoustic coupling between the loudspeaker and

the microphone. An acoustic echo canceller is a key technology to overcome this problem.

It identifies the impulse response between the loudspeaker and the microphone and produce

an echo replica which is then subtracted from the real echo.

In this work, we chose to focus on the so-called DCT-LMS algorithm whose main adap-

tive component is the simple LMS filter, but whose convergence properties are closer to

those of the RLS algorithm. The DCT is used to preprocess the input data in order

to decorrelate them and consequently reduce the input autocorrelation matrix eigenvalue

spread. The resulting structure is thus a two-layer linear adaptive filter with improved

convergence properties.

The intuitive justification of the DCT-LMS algorithm brought up some issues we would

like to briefly summarize here. Rank deficiency of the reference signal autocorrelation ma-

trix, which is usually accompanied with the presence of spectrum gaps, causes the “freezing”

of some filter taps (corresponding to the frequencies of the gap). The remaining coefficients,

on the other hand, continue to adapt and respond to the changing room dynamics. In terms

of the MSE, this means that the MSE is independent of the coordinates corresponding to

the frozen coefficients and consequently, its minimum is of dimensionality bigger than one.

The full rank solution, however, is unique and may be “far” (in terms of some distance
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measure) from the solution obtained with frozen taps. Noting that the speed of convergence

is inversely proportional to the distance, additional convergence time is required for the

frozen coefficients to converge when the reference signal autocorrelation matrix gains full

rank. One can decrease this convergence time (or correspondingly the MSE jump) by better

preparing the frozen coefficients to begin adapting once the gap vanishes. This is done by

choosing a point on the multi-dimensional error surface which is closer to the unique full

rank solution. The selection of this point, which occurs during the low rank period, is

based on the values of the tracking filter coefficients. More precisely, the variations of the

room impulse response are first estimated by monitoring the tracking weights fluctuations;

the frozen coefficients are then updated to follow these variations.

As explained in Chapter 3, the change in the room impulse due to a variation of the

spacing between the microphone and the loudspeaker can be modeled by a single delay (the

term delay can mean either a time advance or a time lag). This model allowed us to develop

the Spectrum Delay Update method which will replace the “obsolete” frozen coefficients

by a delayed version of the most recent “full rank” tap vector. The first part of SDU

consists of estimating the corresponding delay. The simplest estimation procedure consists

of finding the maximum of the cross-correlation between the original and the delayed room

impulse responses. However, this method for estimating the delay is impractical because it

is done in the time domain: knowing that the adaptive filter tracks the DCT of the room

impulse response, the filter weights have to be transformed from the DCT domain to the

time domain prior to every delay estimation.

In Chapter 4, a DCT-based delay estimation algorithm was developed. For every fre-

quency, the generalized DCT shift property—derived in this chapter—gives a multitude of

possible delays. The second step in the delay estimation process consists of obtaining the

best “combined” delay estimate based on the knowledge of all candidate solutions in the

available frequency range (some frequencies are frozen and others are not reliable). This

is done by finding the “solutions’ path” with minimum variance. To illustrate the effec-

tiveness of the new delay estimation algorithm in various room environments, a specific

receiver movement example was provided. The average difference between the actual and

the estimated delay ranged from 0.01 sample to 0.14 sample depending on the quality of

the acoustic environment.

Once the delay value is obtained, SDU uses this delay to update the frozen weights.

The resulting filter weight vector is closer, in terms of Euclidean Distance, to the actual
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room impulse response DCT. This was demonstrated in Chapter 5, where an experimental

protocol was designed to evaluate the performance of the DCT-LMS echo canceller with

Spectrum Delay Update. As intuitively expected, SDU reduced the MSE jump and in-

creased the overall Echo Return Loss. The improvement in performance was evaluated for

various (reference signal spectrum) gap sizes, receiver displacements, and acoustic environ-

ments. All the performance improvement measures introduced in Chapter 5, demonstrate

that, for any acoustic environment, the gain in performance is proportional to the gap

size but inversely proportional to the receiver displacement. Furthermore, the performance

improvement due to SDU is more evident when the acoustic environment is favorable.

Keeping in mind that the faster we update the filter weights the shorter the receiver

displacement is, one way to increase the performance gain is to update the filter weights

more frequently.

The new acoustic echo canceller has overcome several limitations of previous works by

taking an entirely new approach. In [12], the frozen coefficients had to be contiguous and it

was necessary to have a sufficient number of consecutive coefficients available on both sides

of the gap. However, with Spectrum Delay Update the freezing coefficients can be sparse.

In addition, the size of the gap is not constrained to a fixed number. The only concern is

that large gaps will reduce the accuracy of the estimated delay (less tracking coefficients

will be available in the estimation process).

Needless to say that Spectrum Delay Update method has many limitations. It was

shown in Chapter 3 that a movement of the receiver delays various lobes of the impulse

response differently. Hence, representing the change in the impulse response by a single

delay limits the accuracy of the model. In addition, the assumption that the delay is

frequency independent makes the algorithm less general. Future work could therefore focus

on relaxing these constraints. More precisely, the frequency dependence of the delays can

be taken into account by not restricting the survivor path to a straight line. Finally, the

real time implementation of the DCT-LMS echo canceller with SDU will require the design

of an automatic gap detector.

The simplified cases studied here have served to promote Spectrum Delay Update as an

effective method to counter the negative effects of having a reference signal with variable

rank autocorrelation matrix. Other growing applications of this type of echo cancellation

are the cellular and mobile phones. This new method will provide means for “comfortable”

hands-free telephone conversation for speaker phones.
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Appendix A

DCT shift property

In this appendix the shift property for the DCT-II, presented in [32] and stating that

X+
DCT (m) = cos

(mπ
N

)
XDCT (m) + sin

(mπ
N

)
XDST (m)

+

√
2

N
km cos

(mπ
2N

){(−1)mx(N)− x(0)}

m = 0, 1, . . . , N − 1

(A.1)

is proved.

Replacing n by n+ 1− 1 in the DCT of a sequence x(n), we obtain

XDCT (m) =

√
2

N
km

N−1∑
n=0

x(n) cos

[
(n+ 1)mπ

N
+
mπ

2N
− mπ

N

]
(A.2)

Hence, the delayed DCT spectrum will be given by

X+
DCT (m) =

√
2

N
km

N−1∑
n=0

x(n+ 1) cos

[
(n+ 1)mπ

N
+
mπ

2N
− mπ

N

]
(A.3)

Letting a = mπ
2N

and i = n+ 1, X+
DCT (m) becomes

X+
DCT (m) =

√
2

N
km

N∑
i=1

x(i)
{
cos

[
2a(i+

1

2
)
]
cos(2a) + sin

[
2a(i+

1

2
)
]
sin(2a)

}
(A.4)
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Changing the limits of the sum to 0 and N − 1, we obtain

X+
DCT (m) = cos(2a)XDCT (m) + sin(a)XDST (m)

−
√

2

N
kmx(0) cos(a) cos(2a) +

√
2

N
kmx(N) cos(mπ + a) cos(2a)

−
√

2

N
kmx(0) sin(a) sin(2a) +

√
2

N
kmx(N) sin(mπ + a) sin(2a)

(A.5)

Using the trigonometric identities

cos(a) cos(2a) =
1

2
[cos(a) + cos(3a)]

sin(a) sin(2a) =
1

2
[cos(a)− cos(3a)]

cos(mπ + a) = (−1)m cos(a) = sin(mπ + a)

(A.6)

The delayed DCT spectrum X+
DCT (m) will be finally given by

X+
DCT (m) = cos

(mπ
N

)
XDCT (m) + sin

(mπ
N

)
XDST (m)

+

√
2

N
km cos

(mπ
2N

){(−1)mx(N)− x(0)}
(A.7)

for all m ∈ [0, N − 1]. And the proof is complete.
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Appendix B

The generalized DCT delay formula

In this appendix we prove the simplified general DCT shift property given in (4.7) and

revisited here

Xk+
DCT (m) = cos

(mπk
N

)
XDCT (m) + sin

(mπk
N

)
XDST (m)

m = 0, 1, . . . , N − 1

(B.1)

Note that this property is only valid if x(0) = x(1) = . . . = x(k) = 0 and

x(N) = x(N + 1) = . . . = x(N + k − 1) = 0. The proof proceeds by induction.

Initialization: for k=1, it was shown that for x(0) = x(N) = 0

X+
DCT (m) = cos

(mπ
N

)
XDCT (m) + sin

(mπ
N

)
XDST (m)

m = 0, 1, . . . , N − 1
(B.2)

The next step is to show that the formula is valid for k + 1, given it is satisfied for k.

For all m ∈ [0, N − 1], we have

X
(k+1)+
DCT (m) = cos

(mπ
N

)
Xk+

DCT(m) + sin
(mπ
N

)
Xk+

DST (m)

= cos
(mπ
N

)[
cos

(mπk
N

)
XDCT (m) + sin

(mπk
N

)
XDST (m)

]
+ sin

(mπ
N

)[
cos

(mπk
N

)
XDST (m) + sin

(mπk
N

)
XDCT (m)

]
(B.3)
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Using the “product to sum” trigonometric identities X
(k+1)+
DCT (m) will become

X
(k+1)+
DCT (m) =

1

2
XDCT (m)

[
cos

((m+ 1)πk

N

)
+ cos

((m− 1)πk

N

)]
+
1

2
XDCT (m)

[
cos

((m+ 1)πk

N

) − cos
((m− 1)πk

N

)]
+
1

2
XDST (m)

[
sin

((m+ 1)πk

N

) − sin
((m− 1)πk

N

)]
+
1

2
XDST (m)

[
sin

((m+ 1)πk

N

)
+ sin

((m− 1)πk

N

)]
(B.4)

Rearranging the terms we obtain

X
(k+1)+
DCT (m) = cos

((m+ 1)πk

N

)
XDCT (m) + sin

((m+ 1)πk

N

)
XDST (m) (B.5)

Which means that the formula is valid for k + 1. And the proof is complete.
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