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Abstract

Linear predictive coding (LPC) is employed in many low bit rate speech coders.

LPC models the short-term spectral information for a block of speech using an all-

pole response. Line spectral frequencies (LSF) have been found to be an effective

parametric representation for the all-pole response.

Vector quantization (VQ) is often used to code the coefficients of the response. VQ

performs poorly whenever it is coding coefficient vectors which are not well matched

to the distribution of its codebooks. A shift in the distribution can be caused by

filtering (microphones, filters in communication equipment, etc.), speaker or environ-

mental variability (male, female, background noise, etc.). In this thesis, we explore a

method for matching the distribution of the vectors representing the incoming speech

signal to the distribution of the codebooks. A novel mapping model based on the

transformation of codebooks using the mean and the standard deviation of the dis-

tributions is used to increase the robustness of vector quantization. The mapping

model is optimized in two ways — choosing the most suitable spectral parameter

representation and seeking the best way to obtain the form of the mapping model.

The effectiveness and limitations of this method are investigated through simulation

of a split vector quantizer (SVQ) of the LPC coefficients.
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Sommaire

Le codage à prédiction linéaire (LPC) est employé dans plusieurs algorithmes de compression

de paroles au très bas débit binaire. LPC représente le spectre court-terme pour un block

de parole avec une réponse tous pôles. Les fréquences de raies spectrales (LSF) ont été

jugées une représentation paramétrique efficace pour la réponse tous pôles.

La quantification vectorielle (VQ) est utilisée fréquement pour coder les coefficients de la

réponse. La performance du VQ est pauvre quand des vecteurs qui ne sont pas representés

dans ses livres de code sont codés. Un déplacement dans la distribution peut être causê

par un filtrage (microphones, filtres dans des équipements de communication, etc.), par

une variabilité d’orateur ou d’environnement (homme, femme, bruit embiant, etc.). Dans

cette thèse, on explore une méthode pour faire correspondre la distribution des vecteurs

représentant le signal de parole reçue à la distribution des livres de code. Un nouveau modèle

de correspondance, basé sur la transformation des livres de code en utilisant la moyenne et

l’écart-type des distributions, est utilisé pour améliorer la robustesse de la quantification

vectorielle. Le modèle de correspondance est optimisé en deux façons — choisir la meilleur

représentation paramétrique spectrale et trouver la bonne façon pour obtenir la forme du

model de correspondance. L’efficacité et les limitations de cette méthode sont étudiées par

le biais de simulation d’une quantification vectorielle divisée (SVQ) des coefficients LPC.
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Chapter 1

Introduction

Wireless communication has become an important technology in the modern era. The

transmission of voice, audio, video and data must be efficient in use of bandwidth

and reliable in the face of varying channel conditions. Speech processing plays a key

role in enabling wireless transmission of voice and audio. In particular, digital speech

coding is important to increase system capacity while maintaining high voice quality.

Specifically, speech coding is the process of representing a speech signal digitally.

Such a digital signal can then be transmitted or stored efficiently. Once digitized, the

digital representation of a speech signal incurs little or no further distortion due to

transmission and storage. This is in contrast to analog representations which suffer

from distortion due to transmission (channel noise) or storage (tape hiss).

The primary goal of a speech coding system is to achieve acceptable reconstruc-

tion of the speech signal with certain constraints, such as bit rate, complexity and

especially robustness. More recently, different kinds of robustness have been studied:

robustness to channel noise [1], robustness to speaker variability [2], and robustness

to filtering conditions [3]. The latter is the subject of this thesis.

The speech is often coded in the form of parameters that represent the signal

economically while still allowing speech reconstruction with minimal quality loss. A

source filter model that is based on the physiology of human speech production is

often used to parameterize certain features of the speech frequency magnitude spec-

trum associated with each frame of speech signal. The model is based on the output

speech being a linear combination of past speech in addition to an input excitation.
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This all-pole filter models the resonant frequencies, or formants, of the speech spec-

trum. The filter coefficients (called LP for linear predictive) can be converted through

mathematical transformations into other parametric representations such as reflection

coefficients or line spectral frequencies. These spectral parameters need to be quan-

tized with sufficient accuracy to maintain speech intelligibility and quality. Scalar

quantization, vector quantization and matrix quantization are some of the numerous

quantization methods.

1.1 Speech Properties

Before elaborating on speech coding, some speech properties have to be discussed.

Speech is highly redundant. For example, multiple peak clipping of the speech signal

(i.e. reducing it to binary waveform) eliminates virtually all amplitude information,

yet listeners easily understand speech distorted in such a way. Speech signals are

non-stationary and at best can be considered as quasi-stationary over short segments,

typically 5–20 ms. The statistical and spectral properties of speech are thus defined

over short segments. Speech can generally be classified as voiced (e.g., /a/, /i/,

etc), unvoiced (e.g., /sh/), or mixed. Time- and frequency-domain plots for voiced

and unvoiced segments are shown in Fig. 1.1. Voiced speech is quasi-periodic in the

time domain and harmonically structured in the frequency domain while unvoiced

speech is noise-like and broadband. In addition, the energy of voiced segments is

generally higher than the energy of unvoiced segments. An important feature in the

spectrum are the resonances (peaks) known as formants (see the spectrum of the

voiced speech in Fig. 1.1). These formants are known to be perceptually important

in the recognition of speech sounds, particularly for vowels. In this thesis, we will

examine coding schemes which attempt to reproduce the spectral features accurately.

Two major types of correlations are present in a speech signal. These are known

as near-sample redundancies and distant-sample redundancies. Near-sample redun-

dancies are those which are present among speech samples that are close together.

Distant-sample redundancies are due to the inherent periodicity of voice speech.

These distinctive properties of speech are the foundation of speech coding or speech

compression.
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Fig. 1.1 Voiced and unvoiced segments and their short-time spectra.
The power spectra were calculated over segments 32 ms long smoothed
with a Hamming window. The dotted line represent the spectral envelope
or the formant structure for the voiced segment.

1.2 Overview of Speech Coding

Speech coding is the field concerned with obtaining compact digital representations of

voice signals for the purpose of efficient transmission or storage. It involves sampling

and amplitude quantization. An analog speech waveform sa(t) is sampled at a rate

fs ≥ 2B, where B is the frequency bandwidth of sa(t), yielding the discrete-time

speech signal s[n]. At this stage, the quantization or binary representation of s[n]

can be direct or parametric. Direct quantization implies binary representation of the

speech sample themselves while parametric quantization involves binary representa-

tion of a speech model and/or spectral parameters.

In the simplest type of coder, pulse code modulation (PCM), the amplitude of the

speech signal s[n] is quantized to one of 2R magnitude levels, where R is the num-
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ber of bits used to encode each sample. Different types of quantization are used to

encode the speech signal. We can classify them as uniform, nonuniform and adap-

tive quantization. This method does not have any mechanism for redundancy re-

moval. Nonuniform quantizers are more useful since they encode the speech signal

with fewer bits than that used in linear (or uniform) quantization because human

hearing sensitivity tends to be logarithmic, and because speech signals have an am-

plitude distribution biased toward lower amplitudes [4]. By quantizing a prediction

error signal rather than the original signal sample, differential pulse code modulation

takes advantage of the existing correlation among neighboring samples to reduce the

bit rate. This prediction error signal is the difference between the current sample

and its predicted value. Similar methods such as delta modulation (DM), adaptive

delta modulation (ADM) and adaptive differential pulse code modulation (ADPCM)

use the redundancy of speech to reduce the bit rate or alternately improve the quality

of speech [5, 6].

Compressing speech to further reduce bit rates involves using an analysis-synthesis

process. Figure 1.2 shows the basic components of such a system. In the analysis

stage, speech is represented by a compact set of parameters which are then encoded

efficiently. In the synthesis stage, these parameters are decoded and used in conjunc-

tion with a reconstructive mechanism to form speech.

TRANSMITTER

RECEIVER

DECODER SYNTHESIZER

ANALYZER QUANTIZER
INPUT

SIGNAL ENCODER

NOISELESS TO

CHANNEL

RECONSTRUCTED

SIGNALCHANNEL

FROM 

s(n)

y’(n)c’(n)

c(n)y(n)x(n)

r(n)

Fig. 1.2 Basic components of an analysis-by-synthesis compression sys-
tem.

The quantization block is one of the main stages of a speech coder. Vector quan-

tization is the process of jointly quantizing the set of parameters as a single vector

to another real-valued, discrete-amplitude vector. While scalar quantization can take

advantage of the correlation of consecutive speech samples and their probability den-
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sity function, vector quantization can take advantage of four interrelated properties of

vector parameters: linear dependency, nonlinear dependency, shape of the probability

density function (pdf), and vector dimensionality [7].

1.3 Motivation for Our Research

A principal use of Vector Quantization† in speech coding has been to reduce the trans-

mission rate to 1200-bit/s and below for the spectral parameter while maintaining

acceptable speech intelligibility and quality. More recently, VQ has been studied at

higher data rates [8, 9]. VQ has been also used regularly and effectively in pattern-

recognition type of speech applications, such as in speech and speaker recognition

[10].

VQ is a process where a collection of representative vectors is stored in a codebook

and then an input vector is matched to the “closest” vector in the codebook. An

index will then represent the quantized version of the vector. The drawback of VQ

can be its large cost of memory and computational complexity. In general, it increases

exponentially with the number of dimensions and the number of bits per dimension.

One measure of the efficiency of VQ is its robustness. Robustness can refer to the

ability of a VQ to perform adequately in presence of channel errors. Knagenhjelm [11]

introduced the idea of reordering the indexes of the codebook to mitigate the effect of

channel errors. Robustness can also refer to the resistance to degraded performance

when tested on data whose distribution is different of that of the training data used to

implement the codebook for VQ. Due to the diverse distribution that we can get from

speech signals, such as speaker variability, different filtering (microphones and filters

of communications equipments) or environmental variability (background noise), ro-

bustness becomes very difficult to achieve. Building a codebook for each probability

density function and alternating between them when appropriate is a possible solu-

tion for this problem. It is however tedious and impractical to implement since it

demands large storage capabilities. The storage problem worsens if the dimension of

the vector or the dimension of the codebook increases.

Mapping one probability density function (pdf) to another is the subject of this

thesis. In doing so, we will be using only one set of data and transformations rather

†In this thesis, Vector Quantization is abbreviated as VQ.
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than storing all possible codebooks. This technique saves a lot of memory in return

for a small additional complexity. Our study targets one type of robustness, which

involves filtered speech. When filtering speech signals, the pdfs of the respective

prediction coefficients vary significantly and in turn degrade the performance of VQ.

One solution, proposed by Ramachandran and Sondhi [3], was to switch to a scalar

quantizer when the performance of the VQ is poor. In this case, one bit has to be

added to the transmission block to determine which quantization method is used. The

resulting improvement is modest. In our study, a mapping function is used to convert

one codebook to satisfy the pdfs of different types of filtered speech. Additional

computational complexity is added to determine the type of filtering done on the

speech and to select the proper mapping function. The complexity of the proposed

scheme is small since we are applying a simple mapping once per analysis frame to

the single vector of LP parameters derived from the speech.

1.4 Organization of Thesis

The intent of this thesis is to provide a method to improve the robustness of VQ

for different type of filtered speech signals. Chapter 2 reviews the method of linear

predictive coding that is used in most speech coders to model the short-term spectral

parameter. We will introduce several alternative parametric representations of LP

filter coefficients as well as some objective distortion measures used to evaluate quan-

tizer performance. Chapter 3 provides an overview of VQ and its basic components

and then explores different methods that will increase its robustness. In particular,

individual mapping of the LP coefficients and difference mapping are explored and

theoretical limitation for the stability of the LP filter are presented. Chapter 4 de-

scribes the implementation of the mapped VQ and includes simulation results and

performance evaluations. Chapter 5 concludes the thesis with a summary of our work

and suggestions for future investigation.
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Chapter 2

Linear Predictive Speech Coding

The purpose of this chapter is to give an overview of linear predictive speech coding.

The quality and reliability of coded speech rely on the accurate reconstruction of the

envelope of the short-time power spectrum. Linear predictive coding (LPC) is widely

used to encode the spectral envelope because of its relative computational simplicity.

This method models the speech signal as a linear combination of past speech samples

and an excitation signal source. In speech coding applications, the linear predictor

(LP) parameters are extracted frame-by-frame from the speech signal, typically at

a rate of 50 frames/sec. For telephone speech sampled at 8 kHz, typically a 10’th

order LP analysis is performed. Different representation of the LP parameters and

distortion measures are introduced in this chapter. The speech database and filters

used in this thesis are described as well.

2.1 LPC Model

The most general predictor form in linear prediction is the autoregressive moving

average (ARMA) model where a speech sample s[n] is predicted from p past predicted

speech samples s[n−1], . . . , s[n−p] with the addition of an excitation signal u[n] [12]

according to:

s[n] =

p∑
k=1

aks[n− k] +G

q∑
l=0

blu[n− l], b0 = 1, (2.1)
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where G is a gain factor for the input speech and ak and bl are sets of filter coefficients.

Equivalently, in the frequency domain, the transfer function of the linear prediction

speech model is

H(z) =
B(z)

A(z)
= G

1 +

q∑
l=1

blz
−l

1 −
p∑

k=1

akz
−k

. (2.2)

H(z) is referred to as a pole-zero model in which the polynomial roots of the denom-

inator and the numerator are, respectively, the poles and zeros of the system. When

ak = 0 for 1 ≤ k ≤ p, H(z) becomes an all-zero or moving average (MA) model since

the output is a weighted average of the q prior inputs. Conversely, when bl = 0 for

1 ≤ l ≤ q, H(z) reduces to an all-pole or autoregressive (AR) model in which case

the prediction operation is written as:

s[n] =

p∑
k=1

aks[n− k], (2.3)

and its frequency domain transfer function simply as:

H(z) =
1

1 −
p∑

k=1

akz
−k

=
1

A(z)
. (2.4)

The spectral pattern can be well modeled by 1/A(z). A shortcoming of this model is

the absence of representation of the spectral zeros due to the glottal source and the

vocal tract response in the nasal portion. Usually such zeros contribute nothing to

the spectral magnitude and add only linear phase, since they result from simple time

delay. With a reasonable number of coefficients p, say 10, the spectral match is quite

acceptable. Another shortcoming is the poor prediction of unvoiced sounds.

The output e(n) is called prediction error or residual:

e[n] = s[n] −
p∑

k=1

aks[n− k]. (2.5)
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The LP coefficients can be computed from the input speech signal. In that case

these coefficients need to be transmitted to the decoder, and this technique is referred

to as forward adaptive (see Fig. 2.1a). On the other hand when linear prediction is

performed using previously reconstructed speech samples, this procedure is referred to

as backward adaptive and has the additional advantage that no explicit transmission

of the LP coefficients is needed (see Fig. 2.1b). Since we are concerned with the

coding of the LP coefficients for transmission, the forward adaptive technique is used.

SPEECH
INPUT

OUTPUT
SPEECH

OUTPUT
SPEECH

PREDICTOR
COEFFICIENTS

PREDICTOR
COEFFICIENTS

CODER

CODERDELAY

SHORT-TERM
PREDICTOR
ANALYSIS

SHORT-TERM
PREDICTOR
ANALYSIS

INPUT
SPEECH

b)

a)

Fig. 2.1 Block diagram of (a) a forward-adaptive coder, and (b) a
backward-adaptive coder.

There are two widely used approaches for the estimation of the LP coefficients

which are presented in the next section.

2.2 Estimation of the Linear Prediction Coefficients

A speech signal is not stationary and its statistics are not explicitly known. The pre-

dictor must therefore be adapted to the changing signal characteristics in LP coding

applications. It is of common practice to consider the speech signal as stationary

over short time intervals (about 20 ms). The predictor coefficients can thus be esti-

mated from a sequence of speech samples obtained from an interval over which the
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signal is considered to be stationary. Windowing the sampled signal is therefore the

first step in linear prediction parameter estimation and choosing the right window

is an important issue [6]. Depending on the linear predictor form to be employed,

the estimated parameters differ. The autocorrelation method procedure is employed

if windowing is performed on the speech signal whereas the covariance method results

when windowing is applied on the residual (error) signal.

2.2.1 Autocorrelation Method

In the autocorrelation method, the speech signal s[n] is first multiplied with a data

analysis window w[n] of finite length to obtain another signal sw[n] that is zero outside

the window. Considering the case where the window of length N is positioned at zero,

we have:

sw[n] = w[n]s[n]. (2.6)

Several analysis windows of varying shapes have been proposed, but the Hamming

window, which is a raised cosine function, is often used. A tapered analysis window,

such as the Hamming window, helps reduce the effect of components outside the

window on minimizing the squared prediction error in the first and last few values of

s[n] for the current analysis window. It has the following form:

w[n] =




0.54 − 0.46 cos

(
2πn

N − 1

)
, 0 ≤ n ≤ N − 1,

0, otherwise.

(2.7)

The hybrid Hamming-cosine [13] is another popular window.

The energy of the residual should then be minimized to solve for the LP filter

coefficients. Let E be the error energy:

E =
∞∑

n=−∞
e2[n] =

∞∑
n=−∞

(
sw[n] −

p∑
k=1

aksw[n− k]

)2

. (2.8)
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where e[n] is the residual corresponding to the windowed signal sw[n]. The values of

ak that minimize E are found by setting δE
δak

= 0 for k = 1,2,3, . . . ,p. This yields p

linear equations in p unknowns ak, also know as the Yule-Walker equations:

p∑
k=1

ak

∞∑
n=−∞

sw[n− i]sw[n− k] =
∞∑

n=−∞
sw[n− i]sw[n], 1 ≤ i ≤ p. (2.9)

Since the autocorrelation of the windowed speech segment sw[n] is given by

R(i) =
N−1∑
n=i

sw[n]sw[n− i], 0 ≤ i ≤ p. (2.10)

where the autocorrelation function is an even function, R(i) = R(−i). The linear

equations can be written as:

p∑
k=1

R(|i− k|)ak = R(i), 1 ≤ i ≤ p. (2.11)

In matrix form, the set of linear equations is represented by Ra = v which can be

rewritten as




R(0) R(1) . . . R(p− 1)

R(1) R(0) . . . R(p− 2)

...
...

. . .
...

R(p− 1) R(p− 2) . . . R(0)







a1

a2

...

ap




=




R(1)

R(2)

...

R(p)



. (2.12)

The resulting matrix has a Toeplitz structure. This facilitates the solution of the Yule-

Walker equations for the LP coefficients ak through computationally fast algorithms

such as the Levinson-Durbin [12, 14] and the Schur algorithm [15]. The Toeplitz

structure guarantees that A(z) is minimum phase (zeros inside the unit circle) [16].

The corresponding LP synthesis filter H(z) = 1/A(z) is thus stable. This property is

a major motivating factor for using the autocorrelation method for LP analysis.
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2.2.2 Covariance method

Minimization in the covariance method is performed on the windowed error, which

is:

E =

∞∑
n=−∞

e2
w[n] =

∞∑
n=−∞

e2[n]w[n]. (2.13)

By letting the partial derivatives δE
δak

= 0 for k = 1,2,3, . . . ,p, once again we have

p linear equations:

p∑
k=1

φ(i, k)ak = φ(i, 0), 1 ≤ i ≤ p, (2.14)

where the covariance function φ(i, k) is defined as

φ(i, k) =
∞∑

n=−∞
w[n]s[n− i]s[n− k]. (2.15)

The expanded covariance matrix system Φa = Ψ has the form:




φ(1, 1) φ(1, 2) . . . φ(1, p)

φ(2, 1) φ(2, 2) . . . φ(2, p)

...
...

. . .
...

φ(p, 1) φ(p, 2) . . . φ(p, p)







a1

a2

...

ap




=




ψ(1)

ψ(2)

...

ψ(p)




(2.16)

where ψ(i) = φ(i, 0) for i=1,2, . . . ,p.

The Covariance matrix preserves its symmetric property and is positive definite

but is not necessarily Toeplitz, which makes the method computationally less efficient

than the autocorrelation method. Cholesky decomposition [17] is usually used as a

first step to solve for the ak’s.

Since the covariance method does not guarantee that the synthesis filter A(z) is
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minimum phase, a modified covariance method can be used to insure the stability of

A(z) [18].

2.2.3 High Frequency Compensation and Bandwidth Expansion

When LP analysis is performed on lowpass filtered speech, the missing high-frequency

components near half the sampling frequency can significantly bias the resultant val-

ues of the predictor coefficients. In this case, the covariance matrix Φ will produce

artificially large predictor coefficients. Therefore, high frequency compensation may

be required to correct such problems [19].

Furthermore, LP analysis does not estimate accurately the spectral envelope of

high-pitch voiced speech sounds. It may generate synthesis filters with artificially

sharp spectral peaks. Usually, we use bandwidth expansion [20, 21] to solve these

problems. It has the effect of expanding the bandwidth of the formant peaks in the

frequency response. The resulting all-pole filter, with the bandwidth expansion factor

γ has the following form:

H ′(z) =
1

A′(z)
=

1

A(γz)
(2.17)

where the expanded prediction coefficients are

a′k = akγ
k, 1 ≤ k ≤ p. (2.18)

The expansion of the bandwidth can be computed as follows [22]:

∆B = − 1

πT
log(γ). (2.19)

For instance, γ = 0.996 approximately yields a 10 Hz bandwidth expansion in the

analysis of speech sampled at 8 kHz. Typically, bandwidth expansions of 10 to 25 Hz

are used for speech analysis.
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2.3 Representation of Spectral Parameters

The LP coefficients are calculated on a block-by-block basis, usually at a rate of

50 times per sec. For an efficient transmission, the LP coefficients are subjected to

quantization and interpolation. Interpolation makes it possible to transmit the infor-

mation about the LP coefficients less often (i.e. at a lower frame rate), thus reducing

the bit rate. However, both straightforward quantization and interpolation of the

LP coefficients are problematic because small changes in the coefficients may result

in large changes in the power spectrum, and, possibly, in an unstable LP synthesis

filter. Therefore, a number of alternate representations of the LP coefficients have

been considered in attempts to find representations which minimize these shortcom-

ings. Some of these representations, which are detailed in the following sections, are,

reflection coefficients, log-area ratios and the line-spectral frequencies (LSF’s).

2.3.1 Reflection coefficients and log-area ratios

The reflection coefficients are found from the Levinson-Durbin recursive procedure

[12, 23] which uses the structure in the Toeplitz R matrix. We solve the following set

of ordered equations recursively for m = 1,2, . . . ,p:

km =

R(m) −
m−1∑
k=1

am−1(k)R(m− k)

Em−1
(2.20a)

am(m) = km, (2.20b)

ak(m) = ak(m− 1) − kmam−k(m− 1), 1 ≤ k ≤ m− 1 (2.20c)

Em = (1 − k2
m)Em−1. (2.20d)

where initially E0 = R(0) and a0 = 0. At each cyclem, the coefficients am(k) describe

the optimal m-th order linear predictor. Since Em, a squared error, is never negative,

|km| < 1. This condition on the reflection coefficients also guarantees a stable LP

synthesis filter H(z). The negatives of the reflection coefficients are called partial

correlation, or PARCOR, coefficients.
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One can find the reflection coefficients from the LP coefficients ak = ap(k), by

recursively computing the following two equations for m = p, p− 1, . . . ,3, 2:

am−1(i) =
am(i)kmam(m− i)

1 − k2
m

, 1 ≤ i ≤ m− 1 (2.21a)

km−1 = am−1(m− 1) (2.21b)

With this backward recursion, predictor coefficients can be checked for stability by

converting them to reflection coefficients and then using the reflection coefficient

stability test.

A drawback of the reflection coefficients is the U-shape of their spectral sensitivity

which has large values whenever the magnitude of the coefficients is close to unity.

However this drawback can be overcome by the use of an appropriate nonlinear trans-

formation which expands the region near |km| = 1. Two such transformations are

the log-area ratio transformation [21] and the inverse sine transformation [24]. The

log-area ratios (LARs) are defined as:

gm = log

(
1 + km

1 − km

)
, 1 ≤ m ≤ p. (2.22)

To convert back to reflection coefficients,

km =
egm − 1

egm + 1
, 1 ≤ m ≤ p. (2.23)

and the arcsine reflection coefficients (ASRCs) are defined as:

jm = arcsin(km), 1 ≤ m ≤ p. (2.24)

2.3.2 Line Spectral Frequencies

Another representation of the LP parameters, called line spectral frequencies (LSF’s)

or line spectrum pairs (LSP’s), was introduced by Itakura [25]. The LSF procedure
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involves mapping the p zeros of A(z) onto the unit circle through two z-transforms

P (z) and Q(z) of (p + 1)st order:

P (z) = A(z) + z−(p+1)A(z−1) (2.25)

Q(z) = A(z) − z−(p+1)A(z−1) (2.26)

It directly follows that:

A(z) =
1

2
[P (z) +Q(z)]. (2.27)

Soong and Juang [26] have shown that ifH(z) is stable, or A(z) is minimum phase,

then all the roots of P (z) and Q(z) lie on the unit circle, alternating between the two

polynomials as ω increases. The LSF’s correspond to these angular positions. The

roots occur in complex-conjugate pairs and hence there are p LSF’s lying between 0

and π. The process produces two extraneous zeros at ω = 0 and ω = π which can be

ignored. It has also been shown [26] that if the p line spectral frequencies ωi have an

ascending ordering property and are unique, then the inverse prediction filter A(z) is

guaranteed to have minimum phase (stable corresponding synthesis filter):

0 < ω1 < ω2 < · · · < ωp < π [radians / s]. (2.28)

An additional condition, known to always be true, was added by Gnanasekaran [27].

It states that |ap| has to be less than unity to have a stable filter.

The LSF’s may be found by applying a discrete cosine transformation [26, 28] to

the coefficients of the polynomials

G(z) =




P (z)

1 + z−1
, p even,

P (z), p odd.
(2.29)
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and

H(z) =




Q(z)

1 − z−1
, p even,

Q(z)

1 − z−2
, p odd.

(2.30)

The roots, corresponding to the LSF’s, are found by searching along the ω = [0, π]

range iteratively for the changing sign in the polynomials G(z) and H(z). Another

method by Kabal and Ramachandran [29] makes use of Chebyshev polynomials

Tm(x) = cos(mω) (2.31)

where x = cosω maps the upper semi-circle in the z-plane to the real-valued interval

[−1, 1]. The polynomials G′(ω) and H ′(ω) can then be expanded as

G′(x) = 2

l∑
i=0

giTl−i(x), (2.32)

H ′(x) = 2
m∑

i=0

hiTm−i(x), (2.33)

where l = m = p/2 when p is even, and l = (p + 1)/2 and m = (p − 1)/2 when p is

odd. The roots of these Chebyshev expansions will give the LSF’s after the inverse

transformation ω = arccos(x). The roots are also determined by searching for sign

changes of the Chebyshev expansions along the interval [−1, 1].

Several important properties of the LSF can be seen from an LPC spectrum (see

Fig. 2.2):

• The spacing of the LSF parameters determines the magnitude of the power

spectral density.

• A cluster of two or three LSF’s usually signals a formant frequency or a peak

while widely spaced LSF values correspond to valleys.

• The bandwidth of a formant depends on the closeness of the corresponding

LSF’s.
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Fig. 2.2 LPC spectra of a 20 ms speech frame with the corresponding
LSF’s displayed in Hertz (vertical lines).

• In general, the spectral sensitivity of each LSF is localized, i.e. only the neigh-

borhood near the LSF will alter if the value is slightly modified.

As a result of those properties, the LSF parameters can be coded efficiently to

produce a low overall distortion. In addition, since higher frequency formants con-

tribute negligible perceived speech distortion, the LSF parameters representing them

can be quantized less accurately. On the other hand, the peaks must be coded more

precisely.

2.3.3 Cepstral Coefficients

The cepstrum [30] is the inverse Fourier transform of the logarithm of the magnitude

spectrum of a signal:

cn =
1

2π

∫ π

−π

logH(ejω)ejωndω (2.34)
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As a consequence of the fact that H(z) is a minimum phase filter we know that cn = 0

for n ≤ 0.

Furthermore, an infinite number of cepstral coefficients can be computed from

prediction coefficients [31]:

cn = an +

n−1∑
k=1

k

n
an−kck (2.35)

For a p-th order linear predictor, an = 0 for n > p. It has been found that limiting

the cepstral coefficients to three times the number of predictor coefficients is sufficient

to provide a good representation of the speech spectrum [32].

2.4 Distortion Measures

Distortion measures play an important role in speech coding. One use of the distor-

tion measures is to evaluate the performance of speech coding systems. The ultimate

evaluator of a speech coder’s quality and performance in preserving intelligibility

and naturalness is the human auditory system. However, extensive perceptual per-

formance of speech coders is time consuming and might be inconsistent. Objective

measurements can give an immediate and reliable estimate of the perceptual quality

of a coding algorithm [33]. Objective measurements also play a critical role in LP

coders that use vector quantization to code the coefficients. Since these coefficients

model the spectral envelope of the speech for a short frame of data, one has to select

the best matching spectral envelope from the vector quantization codebook for a given

vector. What constitutes the best match is the perceptual similarity of the codebook

vector to the given vector. Hence quantitative distortion measures are essential to

evaluate the perceptual closeness between two spectral envelopes. Presented below

are several objective distortion measures.

2.4.1 Time-Domain Measures

The signal-to-noise ratio (SNR) and the segmental SNR (SNRseg) are the most com-

mon time-domain measures of the difference between original and coded speech sig-

nals.
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Signal-to-Noise Ratio

The signal-to-noise (SNR) can be defined as the ratio between the input signal power

and the noise power, and is given in decibels (dB) as:

SNR = 10 log10

Es

Eε
= 10 log10

∞∑
n=−∞

s2[n]

∞∑
n=−∞

(s[n] − ŝ[n])2

dB, (2.36)

where ŝ[n] is the coded version of the original speech sample s[n]. The principal

benefit of the SNR quality measure is its mathematical simplicity. The measure

represents an average error over time and frequency for a processed signal. However

SNR is a poor estimator for a broad range of speech distortions [34, 35]. The fact

that SNR is not particularly well related to any subjective attribute of speech quality

and that it weights all time domain errors in the speech waveform equally, makes it

a poor measure.

Segmental Signal-to-Noise Ratio

A much-improved quality measure can be obtained if SNR is measured over short

frames and the results averaged. The frame-based measure is called the segmental

SNR (SNRseg) and is formulated as:

SNRseg =
1

M

M−1∑
j=0

10 log10


 mj∑

n=mj−N+1

s2[n]

(s[n] − ŝ[n])2


 dB. (2.37)

where m0, m1, . . . , mM −1 are the end-times for the m frames, each of which is length

N . The segmentation of the SNR permits the objective measure to assign equal

weights to loud and soft portions of the speech. In some cases, problems can arise

with the SNRseg measure if frames of silence are included, since large negative SNR

values bias the overall measure of SNRseg. A threshold can be used to exclude any

frames that contain unusually high or low SNR values (below 0 dB and over 35 dB

are termed unusual). An extension to the segmental SNR is the frequency weighted
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segmental SNR measure [36] and it can be used to match the listener’s perception of

quality. It has the following form:

SNRfw =
1

M

M−1∑
j=0



∑

i W (j, i)10 log10

[
s2[n]

(s[n]−ŝ[n])2

]
∑

iW (j, i)


 dB. (2.38)

where the j is the segment index, i is the frequency band index and W (j, i) is the

frequency weight.

2.4.2 Spectral Envelope Distortion Measures

A spectral distortion measure is a function of two spectral densities, f and f̂ for

example, which assigns a nonnegative number d(f, f̂) to represent the distortion in

using f̂ to represent f . Another property is that if f = f̂ , then d(f, f̂) = 0. The

most common such measures are difference distortion measures where one uses an Lp

norm on the difference f − f̂ . These are metrics or distances in the sense that they

satisfy a symmetry requirement d(f, f̂) = d(f̂ , f) and a triangular inequality:

d(f, g) ≤ d(f, h) + d(h, g). (2.39)

Usually in spectral envelope distortion measures, f is defined as a vector x and x̂ as

its representation. The overall performance measure is then the long term average of

a distortion measure and can be expressed as follows:

D = lim
n→∞

1

n

n∑
i=1

d(xi, x̂i). (2.40)

In general, the spectral distortion should measure the discrepancies between the

original and coded spectral envelopes that will lead to sounds being distinguished as

phonetically different [37]. The disparities between the original and coded spectral

envelopes include the following:

• Significantly different center frequencies for the resonances or formants of the

original and coded spectral envelopes.
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• Alteration of the formant bandwidths caused by the coded spectral envelopes.

The log spectral distortion measure, the Itakura-Saito measure, the cepstral dis-

tance and the weighted Euclidean distance measure are some of the several spectral

distortion measures proposed and are discussed below.

Log Spectral Distortion Measure

The Lp norm-based log spectral distance measure is

dp
SD =

2

2π

∫ π

−π

∣∣∣10 log10 S(ω) − 10 log10 Ŝ(ω)
∣∣∣p dω (2.41)

where the frequency magnitude spectrum S(ω) is

S(ω) =
G

|A(ejω)|2 (2.42)

=
G

[1 −
p∑

n=1

ane
jnω]2

. (2.43)

G is the LP filter gain factor, and {an} are the LP coefficients.

When p = 2, we have the L2 norm or root mean square (rms) log spectral distortion

measure. The rms log spectral distortion measure is defined in dB as

dSD =

√√√√ 1

ωu − ωl

∫ ωu

ωl

[
10 log10

S(ω)

Ŝ(ω)

]2

dω dB (2.44)

where ωl and ωu define the lower and upper frequency limits of integration. Ideally,

ωl is equal to zero and ωu corresponds to half the sampling frequency.

In practice, the rms log spectral distance is calculated discretely over a limited

bandwidth. For speech signal sampled at 8 kHz with a 3 kHz bandwidth, the rms

log spectral distortion (SD) is usually calculated as a summation, with a resolution

of approximately 31.25 Hz per sample, over 96 uniformly spaced points from 125 Hz
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to 3.125 kHz† [38]. This can be expressed as

SD =

√√√√ 1

n1 − n0

n1−1∑
n=n0

[
10 log10

S(ej2πn/N)

Ŝ(ej2πn/N)

]2

dB (2.45)

where for N = 256, n0 and n1 correspond to 1 and 96 respectively.

Paliwal and Atal [43] have suggested that the average spectral distortion is not

adequate to measure perceived quality alone. They introduced the notion of spectral

outliers which represent the fraction of frames with large spectral distortion. For

transparent quality, the fraction of frames having SD between 2 and 4 dB should be

less that 2 % with no frames having SD greater than 4 dB.

Itakura-Saito Distortion Measure

The Itakura-Saito measure generally corresponds better to the perceptual quality of

speech. Also known as a likelihood ratio distance measure, it measure the energy

ratio between the residual signal that results when using the quantized LP filter and

the one that results when using the unquantized LP filter. It is defined as follows:

dIS =
1

2π

∫ π

−π

[
eV (ω) − V (ω) − 1

]
dω (2.46)

where the log spectral difference V (w) between the two spectra is defined as

V (ω) = logS(ω) − log Ŝ(ω). (2.47)

Evaluating the integrals, this measure can be expressed as the polynomial

dIS =

(
G

Ĝ

)2
âTRâ

aTRa
− 2 log

(
G

Ĝ

)
− 1 (2.48)

†In this thesis, even though some of the test speech files have a larger bandwidth than 3 kHz, we
decided to use this approximation for the rms log spectral distortion to be consistent with figures
given in the literature.
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where â = [1, â1, â2, . . . , âp]
T , a = [1, a1, a2, . . . , ap]

T , and R is the autocorrelation

matrix. When the gains are assumed to be equal, the Itakura-Saito measure is simply

dIS =
âT Râ

aT Ra
− 1. (2.49)

However, the Itakura-Saito measure is not symmetric. For symmetry, a modified

Itakura measure can be used:

dIS =
1

2

[
âT Râ

aT Ra
− aT R̂a

âT R̂â
− 2

]
. (2.50)

A weighting term can be introduced to the Itakura-Saito measure to take advantage

of the perceptual discrimination properties of the human ear and is formulated as

follows:

dWIS =
1

2π

∫ π

−π

W (ejω)
[
eV (ω) − V (ω) − 1

]
dω (2.51)

Some weighting schemes W (ejω) are proposed in [39].

Log-Area Ratio Measure

The log-area ratio measure is based on the set of reflection coefficients and defined

as:

dLAR =

p∑
n=1

[
log

1 − ki

1 + ki
− log

1 − k̂i

1 + k̂i

]2

. (2.52)

with ki being the set of p reflection coefficients and k̂i their quantized counterpart.
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Cepstral Distance

The L2 cepstral distance is defined as:

d2
CD =

∞∑
n=−∞

(cn − ĉn)2 (2.53)

and is directly related to the rms log spectral distance:

d2
CD = 2

∞∑
n=1

(cn − ĉn)
2 (2.54)

=
1

2π

∫ π

−π

∣∣∣logS(ω) − log Ŝ(ω)
∣∣∣2 dω. (2.55)

using Parseval’s equality and the fact that cn = c−n and c0 = 0

The log spectral distortion measure suffers from the drawback that Fourier trans-

form and logarithm computations are required for each point in the summation. The

cepstral distance (dCD) can be computed efficiently by truncating the summation to

a finite number of terms Nc, usually three times the order of the LP analysis filter p:

dCD = 10 log10 e

√√√√2
Nc∑
n=1

(cn − ĉn)2 dB. (2.56)

The introduction of a weighting term in the cepstral distance has been investigated

by several researchers:

dCD = 10 log10 e

√√√√2

Nc∑
n=1

wn(cn − ĉn)2 dB. (2.57)

where the weighting term can be:

• w(n) = n2, called quefrency weighted cepstral distance [40].

• w(n) = 1/v(n), v(n) being the variance of the cepstral coefficients [41].

• w(n) = 1 + 0.75p sin(πn/1.5p) used in speech recognition experiments [42].
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Weighted Euclidean LSF Distance Measure

The Euclidean distance measure between two vectors is simply defined as:

d(x, x̂) = (x− x̂)T (x − x̂) = ‖x− x̂‖2. (2.58)

In general, we minimize this mean squared error between the unquantized and quan-

tized vector to select the best codeword vector. Since line spectral frequencies (LSF’s)

have a direct relationship to the shape of the spectral envelope, we associate them

with this measure.

The Euclidean distance measure allocates equal weights to individual components

of the LSF vector. Spectral sensitivities can be taken into account with a weighted

Euclidean distance. In general, the weighted Euclidean LSF distance measure looks

like:

d(x, x̂) = (x− x̂)TW(x − x̂) (2.59)

where W is a m×m symmetric and positive definite weighting matrix which may be

dependent on x. If W is a diagonal matrix with elements wii > 0, the distance can

also be expressed as

d(x, x̂) =

m∑
i=1

wii(xi − x̂i)
2. (2.60)

In [43], Paliwal and Atal have proposed a weighted Euclidean distance measure in

the LSF domain which tries to assign weights to individual LSF’s according to their

spectral sensitivities. The weighted Euclidean distance measure d(x, x̂) between the

test LSF vector x and the reference LSF vector x̂ is given by:

d(x, x̂) =

p∑
i=1

[
ciwi(xi − x̂i)

2
]
. (2.61)

where xi and x̂i are the i-th LSF’s in the test and reference vector, respectively, and

ci and wi are the weights assigned to the i-th LSF. For a 10’th order LSF vector,
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these weights are given by:

ci =




1.0, for 1 ≤ i ≤ 8,

0.8, for i = 9,

0.4, for i = 10.

(2.62)

and

wi = [S(ωi)]
r (2.63)

where S(ωi) is the LPC power spectrum associated with the test vector as a function

of frequency ωi, and r is an empirical constant which controls the relative weights

given to different LSF’s and is determined experimentally. Paliwal and Atal found

that a value of r equal to 0.15 provides the best performance. It should be noted

that the weights wi vary from frame-to-frame depending on the LPC power spectrum,

while the weights ci do not change from frame-to-frame. These two types of weighting

are called the adaptive weighting and the fixed weighting, respectively.

Our performance results, shown in Table 2.1 shows that the average spectral

distortion with weighted LSF’s is lower than the non-weighted LSF’s. The spectral

distortion (SD) is computed using Equation (2.45) on a testing and a training sets

when applied on a split vector quantizer (refer to Chapter 3 for details). Figure 2.3

demonstrates the fact that LSF values with correspondingly high power and located

in the lower spectrum are quantized more efficiently. Hence, a lower SD is obtained.

Table 2.1 Average spectral distortion showing the difference between
having a Euclidean distance and a weighted Euclidean distance.

Type Test Set Training Set
of Average SD Outliers (%) Average SD Outliers (%)

Weighting SD (dB) 2-4 dB > 4 dB SD (dB) 2-4 dB > 4 dB

Weighting 1.21 6.21 0.02 1.12 3.88 0.01
No Weighting 1.39 13.79 0.12 1.28 10.38 0.09

Other adaptive weighting schemes based on the properties of LSF’s have been
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Fig. 2.3 Effect of using weights to search for LSF values on the LP
spectrum.

proposed [44]. Laroia et al [45] suggested using

wi =
1

ωi − ωi−1
+

1

ωi+1 + ωi
(2.64)

where ω0 = 0 and ωp = π. Adopting the weighting matrix in [46], Leblanc et al

[47] reported slightly better performance than the weights suggested by [43] and

significantly better performance than the weights used in [45].

2.5 Database

In order to compare the performance of all the different VQ’s, a common speech

database has to be used. The performance results of spectral coding are based on

a training set and a separate testing set of LSF vectors [48]. The speech database

contains a list of phonetically balanced sentences taken from [49]. Approximately 54
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minutes of silence-removed speech is recorded by 24 different speakers, half males and

half females. The first 2900 seconds of speech are used for training and 340 seconds of

speech are used for testing. The original speech was initially recorded with a 48 kHz

sampling frequency and then downsampled to 8 kHz with proper lowpass filtering at

4.0 kHz.

A 10’th order LP analysis, based on the autocorrelation method is performed

every 20 ms using a 20-ms non-overlapping Hamming analysis window. Thus, there

are 145388 LSF vectors for training and 16189 LSF vectors for testing. To avoid

sharp spectral peaks in the LPC spectra, a 10 Hz bandwidth expansion is applied

(i.e. γ = 0.996). The LSF’s can be converted into other parametric representation

such as reflection coefficients or predictor coefficients. Furthermore, different filtering

conditions had to be imposed on the database, (i.e. lowpass, bandpass and highpass)

to obtain speech with different bandwidths. The filter power spectra are shown in

Fig. 2.4. Different cutoff frequencies are also used (Fig. 2.4a)). These filters have

cutoff frequencies representative of the anti-aliasing filters used in telephony.

The rms log spectral distortion (SD) measure is used as the primary objective

indicator of perceptual coding efficiency for both the training set and test set spec-

tral parameters. Since an SD measure per frame is computationally intensive, the

weighted Euclidean LSF distance measure using the weights proposed in [43] is em-

ployed during the design and operation of the LSF spectral parameters encoder.

As only the effects of spectral coding are considered in this work, the original

residual signal passes directly from the encoder to the decoder. Any degradation

in the reconstructed speech signal will be solely attributed to the effects of spectral

quantization.
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Fig. 2.4 Frequency response of the (a) lowpass filter (different cutoff
frequencies), (b) bandpass , (c) highpass filter used in our studies.
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Chapter 3

Codebook Transformation Model

in VQ

In this chapter, we introduce the notion of vector quantization which is widely used

in low bit-rate state-of-the-art speech coders. In particular, encoding speech spectral

parameters on a frame-by-frame basis with VQ is known to be an efficient step in

speech compression. An introduction to VQ and its various codebook design method-

ologies will be given. Furthermore, after discussing the drawbacks faced in VQ when

used to quantize LSF vectors, we will explain the codebook transformation method.

Finally, two different mapping techniques and their limitations are described.

3.1 VQ Design

3.1.1 Introduction

Scalar quantization is the simplest interpretation of VQ. This process is known to be

defined when each of a set of parameters (or a sequence of signal values) is quantized

separately. In general, scalar quantization assigns to an input value x the closest

approximating value from a predetermined finite set, or codebook, of N permissible

output values C = {yk | k = 1, . . . , N}. If we need to code an m-dimensional spectral

parameter vector x using scalar quantization, we have to independently quantized
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each vector element xi in x as:

x̂i = yi,k = Qi(xi), i = 1, . . . , m, (3.1)

where each of the quantizers Qi() may be designed separately. The uniform quantizer

is the most common of all scalar quantizers. The input-output response is a uniform

staircase where the step size is constant. Nonuniform spacing of quantization levels

is sometimes used to accommodate a larger dynamic range. Furthermore, it is possi-

ble to design a quantizer tailored to a specific input statistics (usually trained with

the LBG algorithm discussed in Section 3.1.3). In adaptive quantization, the step

breakpoints and output levels are all scaled by a multiplier [50].

VQ is a multi-dimensional extension of scalar quantization in which coding can be

performed over the whole parameter set as a single vector. Conceptually, it consists

in finding from a codebook of pre-determined parameter vectors, the vector that

“matches” best the set of parameters computed for a frame of speech. Once this

codevector is found, its index is transmitted to the decoder which contains the replica

of the quantization codebook (see Fig. 3.1).

Index 
i Channel

x = y  
i

^
VQ

Decoder

Up
Look

Encoder

VQ

Table

Input Output

x

Codebook

Vectors

N1

Codebook

Vectors

y  ,..., y  
N1

y  ,..., y  

Nearest
Rule

Neighbor

Fig. 3.1 Model of a Vector Quantizer.

As seen in Fig. 3.2, the encoder partitions the input vector multidimensional space
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Fig. 3.2 Example of partitioning of a two dimensional space (N = 2).
All input vectors in cell Ci is quantized as the code vector y = [y1, y2].

into L regions as P = {C1, C2, . . . , CL} where

Ci = {x | d(x,yi) ≤ d(x,yj), j 6= i}. (3.2)

All vectors lying in a region Ci will be quantized to the set vector yi. The shapes of

the various regions can be very different (squares, hexagons, irregular shapes, etc.)

depending on the actual codebook used in the encoder.

Vector quantization always attains as good or better performance in terms of lower

distortion than scalar quantization due to its ability to exploit any correlation (linear

or non-linear) among the vector components, and to fit the shape of the vector source

density [7, 51, 52]. Next, we will discuss the optimality issue in VQ and different

designs of VQ.
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3.1.2 Optimality Conditions for VQ

The partition space of the encoder and the reproduction vectors of the decoder are

directly related to the performance of VQ. Optimality is defined as the minimization

of a distortion measure E[d(X, X̂)] for any input vector sequence X. Three necessary

conditions for codebook optimality need to be satisfied during the design: one for the

encoder and two for the decoder. These conditions are the Nearest Neighbor Con-

dition, the Centroid Condition and finally the Zero Probability Boundary Condition

[53].

Nearest Neighbor Condition

For a given set of output levels, C, the optimal partition cells satisfy

Ri ⊂ {x | d(x,yi) ≤ d(x,yj); ∀j}. (3.3)

That is to say the partition regions are defined by the codevectors {yi} in C:

Q(x) = yi only if d(x,yi) ≤ d(x,yj) ∀j. (3.4)

If an input vector x is equally distant from two or more code vectors, an arbitrary

“tie-breaking” rule may be defined.

Centroid Condition

Given an encoder partition P = {Ri | i = 1, . . . , N}, the optimal codevectors yi in C

are the centroids in each partition cell Ri:

yi = cent(Ri) (3.5)

= arg min
y

E[d(x,y)|x ∈ Ri]. (3.6)

When the squared error distortion measure is used for VQ design, the centroids are

the centers of mass of the partition cells.
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Zero Probability Boundary Condition

If we define Bj as the boundary points of Rj, a necessary condition for optimality is

that the boundary points occur with zero probability:

P (

N⋃
j=1

Bj) = 0. (3.7)

3.1.3 Codebook Design

Since no closed-form solutions of the problem of optimal quantization is known, in

general, one would have to work iteratively to improve a given vector quantizer pro-

vided that the necessary conditions for optimality are met. The iteration begins with

a VQ consisting of its codebook and the corresponding optimal Nearest Neighbor

(NN) partition and then finds the new codebook which is optimal for that partition.

This new codebook and its NN partitions are then a new vector quantizer with aver-

age distortion no greater (and usually less) than the original quantizer. This repeated

application of the improvement step yields an iterative algorithm which reduces the

average distortion at each step.

Initial Codebook

Before improving on a codebook, one needs to start with an initial one. Obtaining

a suitable initial codebook is a crucial step for an effective VQ design. There are

a variety of techniques for generating a codebook, and here are several of the most

useful ones.

Random Coding is the simplest approach to filling a codebook of N code words.

The idea is to select randomly the code words according to the source distribution.

If the data is highly correlated, a better codebook is produced if one takes, say, every

Kth training vector. Pruning is another concept for an initial codebook. It refers to

the idea of starting with the training set and selectively eliminating (pruning) training

vectors as candidate code vector until a final set of training vectors remains as the

codebook. A more complicated, but better, method is the pairwise nearest neighbor

(PNN) clustering algorithm proposed by Equitz [54]. The goal of this method is to

merge vectors together into groups or clusters until we have the desired number, say
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N . The codebook will then contain the centroids of these clusters. Product Codes

and Splitting are also methods to find a good startup codebook. A variation of the

Katsavounidis et al [55] technique, named centroid, similar to pruning is used for the

purpose of this thesis and is as follows:

step 1step 1step 1 Calculate the centroid of the training set.

step 2step 2step 2 Calculate the unweighted Euclidean distance from each train-

ing vector to the centroid.

step 3step 3step 3 Choose the training vector with the maximum distance from

the centroid as the reference vector.

step 4step 4step 4 Calculate the unweighted Euclidean distance from each train-

ing vector to the reference vector.

step 5step 5step 5 Let M/N be the ratio of training set vectors to codebook vec-

tors. Find the M/N vectors closest to the reference vector, and

calculate the centroid (initial codebook vector) for this group

of vectors.

step 6step 6step 6 Reduce the training set by removing the group of vectors found

in Step 5.

step 7step 7step 7 Repeat Steps 2 to 7 until no vectors remain in the training set.

Three different initial codebooks are compared in Table 3.1. The initial code-

books contain LSF vector entries obtained from a training set. The average spectral

distortion is calculated on a separate testing set before and after training. The re-

sults shows that the pruning initial codebook has a fewer number of iterations and

a smaller percentage of outliers. However, the centroid initial codebook gives lower

spectral distortion.

Generalized Lloyd Algorithm

After setting up the initial codebook, an iterative algorithm is used to improve the

VQ. The Generalized Lloyd Algorithm (GLA), also known as the LBG algorithm [56],

is perhaps the most commonly used iterative clustering algorithm for optimal VQ

design based on training vectors:
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Table 3.1 Average spectral distortion of different initial codebooks.
The distortion is calculated before training and after training (for a 2-
SVQ).

Initial Before Training After Training Num.
Codebook Average SD Outliers (%) Average SD Outliers (%) of

Type SD (dB) 2-4 dB > 4 dB SD (dB) 2-4 dB > 4 dB Iter

Random 1.56 21.52 0.96 1.23 6.25 0.05 73
Pruning 1.43 9.76 0.04 1.22 5.00 0.01 32
Centroid 1.35 12.61 0.05 1.21 6.21 0.02 59

step 1step 1step 1 Start with an initial codebook C1. Let m = 1.

step 2step 2step 2 Given the codebook Cm, perform the Lloyd iteration to pro-

duce the new codebook Cm+1.

step 3step 3step 3 Compute the average distortion for Cm+1. If it has changed by

a small enough amount since the last iteration, stop. Other-

wise, let m+ 1 −→ m and go to Step 2.

where step 2step 2step 2 is defined as:

step 2a Given a codebook Cm = {yi}, partition the training set into

cluster sets Ri using the Nearest Neighbor Condition, where

Ri = {x ∈ T | d(x,yi) ≤ d(x,yj), all j 6= i}, and a suitable

tie-breaking rule.

step 2b Using the Centroid Condition, compute the centroids for the

cluster sets just found in Step 1 to obtain the new codebook

Cm+1 = {cent (Ri) | i = 1, . . . , N}. If an empty cell was

generated in Step 2a, an alternate code vector assignment is

made (in place of the centroid computation) for that cell.

Each iteration of the GLA monotonically decreases or keeps unchanged the average

distortion of a vector quantizer. A Lloyd Algorithm flow chart is shown in Fig. 3.3.

In VQ design, two critical factors are very important: size of the training set and

the number of GLA iterations. A small set of training vectors will not approximate the

statistical characteristics of the vector sequence and will not give a good VQ. Overly
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trained codebook does not give an advantage since it will perform poorly when used

with other input vector. A reasonable rule of thumb for effective VQ design is that

the ratio of training set vectors M to the number of codebook entries N should be

above 50 and less than 200 [7, 57].

Robustness

Normally, a VQ will perform properly if used on speech signals that were recorded

under similar conditions as those of the training set. However, its performance will

be reduced when used with other forms of speech (refer to Section 3.2.1). In most

cases, a VQ design is evaluated by its robustness which refers to the resistance of a

codebook to degraded performance when tested on data whose distribution is different

from that of the training data.
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3.1.4 Split Vector Quantization

In unconstrained or full-search VQ, a single codebook containing N = 2b codevectors

is used to quantize a vector x of dimension k at a rate of r bits per vector component,

or b = kr bits per vector. However, the search complexity of an unconstrained

VQ codebook increases exponentially with the vector dimension. In addition, the

memory requirements for storing the VQ codebook becomes prohibitively large with

the number of codevectors and with the dimension of the vector sequence. Split

Vector Quantization (SVQ), a form of a Product Code technique [58], is used to

slightly sacrifice distortion in return for substantial savings in codebook storage and

search complexity.

In SVQ, a high dimension vector can be partitioned into two or more subvectors of

lower dimensions which are then independently quantized using a codebook designed

for that part of the vector. In fact, scalar quantization of a k-dimensional vector is

equivalent to k-way split vector quantization in which the vector has been split in k

one-dimensional subvectors.

SVQ is often used to quantize the speech spectral parameters in the encoder. The

representation often used in codebook design is the LSF representation because of its

many desirable properties. Recent developments [43] have showed that splitting the

VQ in two or three vector gives reasonable performances for LSF based vector quan-

tization. Splitting the LSF vector corresponds to splitting the LPC power spectrum.

Usually one would assign more bits to the lower frequency spectrum than the higher

one because of the sensitivity of the ear to lower frequencies. For example, in a 10’th

order LSF representation for a 2-SVQ, half the bits are allocated to the first four

LSF’s and the other half to the last 6 (12.5% per bit for the lower part and 8.33%

for the higher part) and for a 3-SVQ, 8 bits are allocated for the first and second

three LSF and 8 bits for the last four for a 24 bits VQ (11.11% per bit for the first

6 LSF and 8.33% for the last 4). In Table 3.2, our simulation shows that a 2-SVQ

produces a lower distortion measure than a 3-SVQ. However, the search complexity

is decreased considerably compared to the SD performance loss of 0.08 dB.

In SVQ, instability of the all-pole speech reconstruction filters is avoided by en-

suring that the LSF values in every entry of each codebook are in increasing order.

However, the splitting procedure might lead to potential cross-over of the LSF values

at the boundaries belonging to the optimally selected codebook subvectors. Figure
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Table 3.2 Average spectral distortion of 2-SVQ and 3-SVQ for a 24 bit
codebook when quantizing LSF vectors.

Test Set
Bit Average SD Outliers (%)

Alloc SD (dB) 2-4 dB > 4 dB

2-SVQ 12,12 1.21 6.21 0.02
3-SVQ 8,8,8 1.29 7.00 0.05

3.4a shows a plot of the 4-th LSF values versus the 5-th LSF values from a coded

set of LSF vectors. Since each subcodebook is trained separately, some points could

cross to the other side of the unit slope straight line. Figure 3.4b shows the his-

togram of the 4-th LSF and the 5-th LSF of vector entries of a codebook. While

most of the values of the 5-th LSF are larger than the 4-th, some of the entries in the

lower subcodebook have values larger than in the higher subcodebook. Therefore,

there is a small possibility that the resulting coded vector contains unordered LSF’s.

Many LSF cross-over correction methods have been proposed in previous work [59].

The simplest correction technique to avoid synthesis filter instability is just swapping

the values of of the boundary LSF’s if they are not ordered properly. However, in

this thesis, we supply the subcodebook the last coded LSF value from the previous

subcodebook and impose on the search the requirement that the first coded LSF be

higher than the last one from the previous subcodebook.

3.2 Mapping Theory

In general, vector quantization works well with a testing set having the same recording

conditions as the training set, but its performance deteriorates as different conditions

are used. These conditions might include microphone response, acoustic background

environments, filtering of the signal prior to digitization, etc. This section will show

the deterioration in performance of VQ when subjected to different filtering condi-

tions. Furthermore, we will introduce the mapping method and demonstrate how it

can be used to improve the performance of VQ and hence, increase its robustness.
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Fig. 3.4 (a) Scattered plot for LSF 4 vs LSF 5 for coded LSF vectors
in 2-SVQ (b) A smooth histogram of LSF 4 and LSF 5 from a 2-SVQ
codebook.

3.2.1 Performance Degradation of VQ

Different filtering conditions are applied on the speech testing set. After extracting

the LSF vectors from the filtered speech, they are quantized using a codebook trained

with clean LSF vectors. The same procedure is also done for codebooks trained with

filtered vectors. The lowpass filter has a cutoff of 3.2 kHz, the highpass filter has a

cutoff of 300 Hz while the bandpass filter is a combination of both of the latter.

When we quantize the differently filtered LSF’s, we obtain the spectral distortion

results shown in Table 3.3. The left column shows the worst case scenario for each

codebook while the last column shows the results of similar condition quantization.

The performance degrades enormously for some combinations (clean vs. bandpass

and lowpass vs. highpass). In general, an SD measure of 3.00 dB is not an acceptable

performance.

For the last column results, when the bandwidth of the spectral envelope is smaller,

one would think that the spectral distortion should be lower. The reason is that the

range of values of the LSF is more limited and hence should result in a slightly

smaller SD. But in fact, filtering creates an additional peak in the power spectrum
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Table 3.3 Spectral Distortion for a 2-SVQ subjected to different filter-
ing. The first column shows the worst case scenario while the last column
shows the ideal case.

Condition of Condition of Testing Set
Training Set Spectral Distortion Measure in (dB)

Bandpass Lowpass Highpass Similar
Clean 2.95 2.56 1.62 1.21

Highpass Clean Bandpass Similar
Lowpass 3.00 2.57 1.74 1.38

Clean Lowpass Highpass Similar
Bandpass 3.87 3.09 2.57 1.32

Lowpass Clean Bandpass Similar
Highpass 3.87 3.04 2.65 1.16

(see Fig. 3.5) which makes the spectrum more difficult to approximate.

In the case of highpass filtered speech, a lower spectral distortion (1.16 dB) is

obtained compared to the clean filtered speech (1.21 dB) due to the fact that the

lower band of the frequency spectrum is not usually well approximated by the LP

parameters in the first place.

The robustness to filtering of the VQ can be solved by building several codebooks

to target each condition. This will work effectively as seen in the last column of

Table 3.3 (1.27 dB of average SD over all 4 conditions). However, the storage of

all the codebooks becomes a significant problem when many conditions need to be

covered. This problem aggravates as the codebook size and the vector dimension

increase. A more affordable scheme to solve this robustness issue is the codebook

mapping technique which is discussed in the following section.

3.2.2 Block Diagram of the Mapping Model

After analyzing the behavior of LP parameters when different filtering conditions are

applied, we observe that a slight alteration of the probability density functions (pdfs)

of an LP parameter can cause the VQ to perform poorly. The modification to the
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Fig. 3.5 LPC spectra of a 20 ms clean and filtered speech frame. A
peak is observed around the cutoff frequency of the filter.

pdf depends on the type of processing done on the speech prior to quantization. By

knowing what alteration on the pdf are caused by a specific condition, one could

manipulate these pdfs to satisfy this condition. In this way, each filtering condition

can be represented by a pdf transformation. Therefore, the robustness of VQ to any

type of filtering is increased.

The mapping model consist of transforming the existing parameter pdfs in the

codebook to meet any incoming pdf. Mapping functions are used on the original

pdfs to approximate the filtered pdf. Therefore, we avoid having multiple codebooks

by just storing a set of transformation functions. This idea is further illustrated in

Fig. 3.6.

To determine which transformation to use on the input vector, the power spectrum

is analyzed and depending on the type of speech, the mapping function will be tuned

to it. The decoder knowing which mapping conditions to use will reconstruct the

signal after adjusting its codebook.
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Fig. 3.6 Block Diagram of the mapping system.

Mapping the Input Vector

Rather than modifying each entry in the codebook using the mappings and then

searching in the modified codebook, we can inverse map the input vector.

If the transformation matrix is applied to an LP parameter vector from the base

codebook xo

xo =
[
x0

o . . . xp
o

]T
(3.8)

we obtain the corresponding converted codebook vector xm

xm = Axo + b (3.9)

where A is a p× p matrix. The current vector to code xc is quantized to x̂c using the

weighted Euclidean distance (Section 2.4.2):

x̂c = arg min
xm

[W(xc − xm)]2 (3.10)

where W is a matrix representing the weights and xm as defined previously. Since
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we want the transformation to be done on the input vector xc, x̂c becomes:

x̂c = arg min
xo

[W(xc − Axo − b)]2 (3.11a)

= arg min
xo

[WA(A−1(xc − b) − xo)]
2. (3.11b)

When transforming the input vector to meet the specification of the codebook, we

need to modify the weights.

The decoder will use the following demapping function to extract the quantized

version of the original LP parameters:

x̂c = A−1(xm − b) (3.12)

where A−1 denotes the inverse matrix of A. The non-diagonal entries in A correspond

to any correlation between xi and xj.

In the next section, a method to obtain the entries of the mapping functions is

explained.

3.2.3 Transformation Matrix

Finding the best transformation matrices for different filtering conditions is critical

to the VQ performance. A wrong set of mapping functions could revert all the im-

provements resulting from this model. Two types of mapping techniques are studied:

individual mapping and difference mapping.
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Individual Mapping: diagonal A

Individual mapping is defined as mapping each coefficient independently, with no

relation to any other coefficient in the vector set. The matrix A is then diagonal

A =




a1 0 . . . 0

0 a2 . . . 0

...
...

. . .
...

0 0 . . . ap



, b =



b0
...

bp


 (3.13)

The values of ai’s represent either the expanding or the compressing of the pdf. On

the other hand, the values of bi’s represent the shifting of the pdf means.

Difference Mapping: triangular A

Another technique is to map the difference of two consecutive LP parameters. Each

difference is mapped with ai and bi except the first value which is mapped relative to

zero frequency:

x1 = a1x̃1 + b1 (3.14a)

x2 − x1 = a1(x̃2 − x̃1) + b2 (3.14b)

... =
... (3.14c)

xp − xp−1 = ap(x̃p − x̃p−1) + bp (3.14d)
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where xi is an LP parameter and x̃i is the filtered version. In matrix form, this results

in:

A =




a1 0 0 . . . 0

a1 − a2 a2 0 . . . 0

a1 − a2 a2 − a3 a3 . . . 0

...
...

...
. . .

...

a1 − a2 a2 − a3 . . . . . . ap



, b =




b1

b1 + b2

b1 + b2 + b3
...

b1 + b2 + · · · + bp




(3.15)

The matrix is triangular and can be easily inverted to:

A−1 =




1
a1

0 0 . . . 0

a2−a1

a2a1

1
a2

0 . . . 0

a2−a1

a2a1

a3−a2

a3a2

1
a3

. . . 0

...
...

...
. . .

...

a2−a1

a2a1

a3−a2

a3a2
. . . . . . 1

ap




(3.16)

One disadvantage in using the difference method is that the quantization error

introduced in the first few terms gets accumulated on the whole vector and in some

cases can generate poor results.

Estimation of ai’s and bi’s

The parameters in the mapping functions are estimated on the bases of the pdfs of

xi and x̃i, the clean and filtered LP parameters respectively (Fig. 3.7a). The trans-

formation parameters ai and bi are predicted using the mean and standard deviation

of xi and x̃i as follows:
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Fig. 3.7 (a) Probability density function of one non-filtered and filtered
LP parameter, (b) Probability density function of the LP parameter after
transformation.
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ai =
σxi

σx̃i

=

√√√√ M∑
k=1

x2
ik −

[
M∑

k=1

xik

]2

√√√√ M∑
k=1

x̃2
ik −

[
M∑

k=1

x̃ik

]2
, (3.17)

and

bi = µxi − µx̃i

σxi

σx̃i

(3.18a)

=
1

M

M∑
k=1

xik − 1

M

M∑
k=1

x̃ik
σxi

σx̃i

(3.18b)

where µ and σ denotes respectively the expected value and the standard deviation and

M represent the number of values available to approximate the pdfs. For example, by

applying the values obtained in the previous equations, the transformed pdf shown

in Fig. 3.7b is obtained.

After finding the appropriate mapping matrices, the next step is to find a method

to distinguish the different types of filtered speech signals.

3.2.4 Classification of the Filtered Speech

Using a Fast Fourier Transform, analysis on the input speech can be done easily to

estimate the bandwidth of the input signal and correspondingly use the appropriate

mapping function. In Fig. 3.8b, the values of a power band from 3.0 kHz to 3.2 kHz

and from 3.2 kHz to 3.4 kHz for a clean speech signal are plotted with respect to

time. Since the speech is not bandlimited, the values are very close. But in Fig. 3.8c,

a lowpass filtered speech will generate much lower power in the 3.2 kHz to 3.4 kHz

and can be distinguished from the clean signal.

If we need to determine exactly the bandwidth of the speech signal to be coded, the

power spectrum can be divided into enough bands to have a good approximation of

the cutoff frequencies of the filter used. In this case, we can modify our transformation
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Fig. 3.8 (a) Time domain speech signal, (b) the power spectrum is
partitioned into bands and two of the bands are plotted with respect to
time for a clean speech signal, (c) same as in (b) but for a lowpass filtered
speech signal.
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Fig. 3.9 Power spectrum of a speech signal lowpass filtered with 3.2
kHz, 3.5 kHz and 4.0 kHz cutoff frequencies. The power spectrum is
average into bands of 150 Hz of bandwidth.

matrices to handle different cutoff frequencies for a specific type of filter by including

a multiplier µ. Figure 3.9 shows how the power bands vary in speech signals filtered

with different cutoff frequencies.

By estimating the cutoff frequency, we can interpolate between two matrices to

obtain a mapping function for a new cutoff frequency. The new interpolated mapping

functions are calculated as follows:

Aint = Ac + µ(Af − Ac) (3.19a)

bint = µbf (3.19b)

where Aint is the interpolated matrix and Ac is the matrix for the clean codebook, in

this case the identity matrix, and Af is the mapping matrix for the filtered parame-
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ters. The value of µ is computed as follows:

µ =
fd − ff

fc − ff

(3.20)

where fd is the new cutoff frequency, fc is the clean cutoff frequency, in this case 4000

Hz, and ff is the cutoff frequency of the other filter, in the case of a lowpass it is 3200

Hz. By using this interpolation, we can estimate the mapping functions for filters

with any cutoff frequency.

3.2.5 Stability Check

The transformation functions can be applied to any representation of the LP param-

eters (i.e. line spectral frequencies, predictor coefficients, reflection coefficients, etc.).

In all cases, a stability check have to be applied after mapping to prevent any unsta-

ble synthesis filters at the decoder. For the LSF representation, the property which

guarantees the stability of the p-th order LP synthesis filter is that the values in the

vector x must be in ascending order (Equation (2.28)).

In some cases, the mapping function might cause certain reconstructed LSF’s to

cross over. Swapping those elements is a simple solution to reorder the parameters.

On the other hand, some constraints can be imposed on the entries of the transfor-

mation matrices to prevent any cross-over on the expense of a small degradation in

performance. Two different constraints arise for individual mapping and difference

mapping.

Individual Mapping

In the case of individual mapping, if we consider two consecutive LSF’s ωi and ωi+1

as follows:

ω̃i =
ωi − bi
ai

(3.21a)

ω̃i+1 =
ωi+1 − bi+1

ai+1
(3.21b)
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Since we know that ωi < ωi+1 we get:

ω̃i <
ai+1

ai
ω̃i+1 − bi+1 − bi

ai
(3.22)

So to insure that ω̃i < ω̃i+1 we must have the strict constraints:

bi+1 > bi (3.23a)

ai+1 > ai (3.23b)

These constraints will guarantee that the LSF’s remain ordered after transformation.

Difference Mapping

In the case of difference mapping, a simple constraint is obtained. If we consider the

following:

ωi − ωi−1 = ai (ω̃i − ω̃i−1) + bi (3.24a)

ωi+1 − ωi = ai+1 (ω̃i+1 − ω̃i) + bi+1 (3.24b)

Since we know that ωi < ωi+1 we get:

ωi < ai+1 (ω̃i+1 − ω̃i − bi+1) + bi+1 + wi (3.25a)

ω̃i < ω̃i+1 +
bi+1

ai+1
(3.25b)

So to insure that ωi < ωi+1 we must have this constraint:

bi > 0 (3.26)

In practice, those constraints were not used because the percentage of unordered

LSF’s was minimal and can be easily corrected by just swapping the mis-ordered

LSF’s.
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Chapter 4

Performance Analysis

In this chapter, we evaluate the mapping model under different conditions. First,

we study which spectral representation is the most suitable for the model. Then, an

investigation is done on different ways of computing the transformation parameters

as well as choosing which type codebook is used as the base codebook. Furthermore,

performance results are presented and compared to two different codebook designs.

Finally, this method is tested under different bit rates and on speech filtered with

different cutoff frequencies.

4.1 Effect of Filtering on Various LP Representations

Even though quantization of the LP parameters is often done in the LSF domain due

to its many attractive properties, the mapping can be done on any representation of

the spectral envelope. In this section, the effects of filtering the speech is demonstrated

on three representations, namely, the predictor coefficients, the reflection coefficients

and the line spectral coefficients. Note that we use these different representations for

mapping purposes, but quantization itself is carried out on the LSF’s derived from

the mapped parameters.
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4.1.1 Predictor Coefficients

The predictor coefficient (PC) domain is a natural representation of linear prediction

parameters. They are simply the coefficients of the all-pole filter model. In practice,

their values can range from −8 to 8 for speech data and have no simple spectral

interpretation.

A 10’th order LP analysis is done on clean and filtered speech data and the result-

ing probability density functions of the predictor coefficients are shown in Fig. 4.1.

The impact of filtering on the PC’s is very noticeable. The pdfs of the PC’s change

considerably when the speech data is lowpass filtered, but the highpass data generates

predictor coefficients very similar to the non-filtered data. Further, the means of the

filtered pdfs of the even PC’s (2nd, 4th, ...) shift to larger values no matter what type

of filtering is applied. On the other hand, the odd PC’s (1st, 3rd, ...) alternate, i.e.,

the lowpass PC values get larger and the highpass values smaller. Finally, all PC’s

are affected by the filtering process.

For mapping purposes, there are several disadvantages to using the PC domain:

• Quantizing the highpass LSF’s with a clean codebook gives a 1.62 dB spectral

distortion (refer to Table 3.3), a 0.46 dB difference with respect to a codebook

trained only with highpass data. However, the small difference in the PC pdfs

for highpass and clean is too little with respect to that distortion difference. In

other words, if a transformation is applied on the highpass PC’s, the mapped

codebook will give similar results as the clean codebook.

• By trying to map the PC coefficients, we obtained a rather high percentage of

unstable filters resulting from the transformation. There is no easy way to fix

that problem.

• A small error in the mapping of one PC can have a significant change on the

whole power spectrum

4.1.2 Reflection Coefficients

The reflection coefficient (RC) domain is another representation of LP parameters.

The range of values is limited, and falls within −1 and 1 if they result in a minimum

phase filter.



56 Performance Analysis

−4 −2 0 2 4
0

0.5

1.0

1.5
N

um
. o

f O
cc

.

1st PC
−4 −2 0 2 4

0

0.5

1.0

1.5

2.0

N
um

. o
f O

cc
.

2nd PC

−4 −2 0 2 4

0

0.5

1.0

1.5

2.0

N
um

. o
f O

cc
.

3rd PC
−4 −2 0 2 4

0

0.5

1.0

1.5

2.0

N
um

. o
f O

cc
.

4th PC

−4 −2 0 2 4

0

0.5

1.0

1.5

2.0

N
um

. o
f O

cc
.

5th PC
−4 −2 0 2 4

0

0.5

1.0

1.5

2.0
N

um
. o

f O
cc

.

6th PC

−4 −2 0 2 4

0

0.5

1.0

1.5

2.0

N
um

. o
f O

cc
.

7th PC
−4 −2 0 2 4

0

0.5

1.0

1.5

2.0

N
um

. o
f O

cc
.

8th PC

−4 −2 0 2 4
0

1.0

2.0

3.0

N
um

. o
f O

cc
.

9th PC
−4 −2 0 2 4
0

1.0

2.0

3.0

4.0

5.0

N
um

. o
f O

cc
.

10th PC

Fig. 4.1 Probability density functions for all 10 predictor coefficients.
Straight lines represent clean PC, dashed lines represent lowpass PC and
dasheddot represent highpass PC.
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Figure 4.2 shows the pdfs of the 10 reflection coefficients resulting from lowpass

and highpass filtering the speech signals. Similar observations to the PC representa-

tion can be made:

• The pdfs of the even filtered RC’s shift to higher values regardless of the type

of filtering.

• The pdfs of the odd filtered RC’s shift to the left when lowpass filtered and to

the right when highpass filtered.

In most cases, the shapes of the pdfs remain unchanged, and only a mean shift to

lower or higher values is necessary for the mapping function. Another benefit of this

domain over the previous one is that the additional stability check is unnecessary.

On the other hand, in the majority of vectors, the first two coefficients have values

very close to −1 and 1, boundaries that cause an unstable filter. Furthermore, since

there was no clear pattern to the effect of filtering, we did not use this domain for

mapping.

4.1.3 Line Spectral Frequencies

Line Spectral Frequency (LSF) is one of the recently used spectral parameter repre-

sentation. The LSF representation has a number of properties, including a bounded

range, a sequential ordering of the parameters and a simple check for the filter sta-

bility. In addition, since it is a frequency-domain representation, LSF’s approximate

the locations of the formant frequencies, and exhibit distinct localized distributions.

Figure 4.3 shows the variations of the LSF coefficients with respect to time. In the

case of lowpass speech, the first five LSF vectors are not affected by this processing,

however the last 5 are shifted downward due to the absence of high frequency power

(see Fig. 4.3a). For highpass speech, the first 3 values are shifted upward and the rest

are not altered (see Fig. 4.3b).

Figure 4.4 displays the pdfs of all LSF coefficients for clean and bandpass filtered

speech. The results shows that only a few pdfs are altered. The altered pdfs are

shown separately in Fig. 4.5 and 4.6. The variances and the means of the pdfs of

LSF 1, LSF 2, LSF 9 and LSF 10 are clearly changed and must be transformed to

decrease the quantization error. It should also be noted that the lower LSF’s react in
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Fig. 4.2 Probability density functions for all 10 predictor coefficients.
Straight lines represent clean RC, dashed lines represent lowpass RC and
dasheddot represent highpass RC.
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Fig. 4.5 LSF 1 and LSF 2 of a non-filtered data speech and a bandpass
filtered data speech. The pdfs are approximately the same if the speech
is highpass filtered.
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Fig. 4.6 LSF 9 and LSF 10 of a non-filtered data speech and a lowpass
filtered data speech. The pdfs are approximately the same if the speech
is lowpass filtered.



62 Performance Analysis

the same manner if the speech is lowpass or bandpass filtered. A similar observation

for the highpass and bandpass filtered speech is noticed for the higher LSF’s.

Since a subset of the coefficients is affected by filtering the speech signals, this

domain is the most appropriate to use for mapping purposes since transformation

is not needed for the LSF’s that remain the same. Another reason for using this

representation is the ease of stability checking. Furthermore, due to their low spectral

sensitivity, a small variation in the LSF parameters caused by the transformation

generally only affects local frequency regions in the power spectral density. Finally,

since quantizing the difference between consecutive LSF’s in a frame is widely used,

one can transform the difference. In this case the stability check is simple — the

resulting mapped difference should be positive.

4.2 Codebook Transformations

This section explores how the codebook transformation can be optimized to achieve

lower spectral distortion. Furthermore, since we are ignoring the constraints set in

Section 3.2.5, we need a transformation that produces a low percentage of unstable

filters. In addition, since correction algorithms introduce additional error beyond that

due to quantization, a low percentage of unstability is preferred. LSF vector sets with

different sizes are used to compute the entries of the mapping matrices and then an

SD evaluation is performed on those entries. In addition, different base codebooks for

the model are evaluated.

4.2.1 Computation of the Mapping Parameters

Three sets of vectors are used to compute the entries of the A and b matrices: a large

set (145 388 vectors) composed of the training vectors, the small set (16 189 vectors)

composed of the testing set and the codebook (4 096 vectors). An LP analysis is

done on the four types of filtered speech to obtain four sets of training vectors and

testing vectors. Then, Equation (3.17) and Equation (3.18) are applied on those sets

to generate the entries of the transformation matrices. For the case of the codebook,

we take the four codebooks trained with filtered LSF’s (4 096 vectors) and use them

to get the transformation coefficients. Then, we compute the spectral distortion for
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the newly computed A and b matrices on the three kinds of filtered speech (testing

set). In the simulations, the base codebook was generated for unfiltered speech and

was mapped accordingly to satisfy the three filtered testing sets, namely LP, BP and

HP.

Table 4.1 summarizes the spectral distortion performance results. The first col-

umn specifies which vector set is used to compute the matrices and the last column

tabulates the percentage of unstable filters. Since the training set has the most vec-

tors, it is evident that it produces the lowest SD measure and the lowest percentage

of non-minimum phase filters at the synthesis stage.

Another observation from Table 4.1 is that the SD from the training and the

codebook set are very close. Since using approximately 4 000 elements to estimate

the pdf is sufficient, we can develop a method which adaptively compute the mapping

functions if we identify the type of filtering used dynamically. The adaptive method

consists of updating periodically the entries in the matrices depending on a certain

number of previous vectors. On the other hand, updating the entries too often does

not pay off in terms of the complexity and transmission overhead.

Table 4.1 Results showing the SD performance for the mapping entries
calculated using either the training, testing or codebook vectors for a 2-
SVQ (with a clean base codebook). The percentage of unstable filters
resulting from the mapping is also shown.

Map Type Average SD Outliers (%) Unstable

Set Filt SD (dB) 2-4 dB > 4 dB filter (%)

LP 1.62 22.55 0.16 0.05
Train BP 1.65 24.02 0.51 5.27

(145 388) HP 1.32 11.46 0.14 1.27

LP 1.64 22.81 0.23 0.22
Test BP 1.67 24.99 0.57 7.79

(16 189) HP 1.33 11.28 0.12 1.64

LP 1.67 23.89 0.16 0.03
CB BP 1.70 25.44 0.51 6.50

(4 096) HP 1.36 11.50 0.14 2.12
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4.2.2 Selection of the Base Codebook

Analysis is done on different base codebooks so as to search for the best performance

codebook. Four types of codebooks are first trained using vectors from the four types

of filtered speech. Each type of codebook is then used as the base codebook to be

transformed. The SD measure of each type of base codebook is computed on the

four different filtering conditions in Table 4.2. The diagonal numbers in this table

requires no transformation since the base codebook is filtered in the same way as the

testing set. The bandpass base codebook gives an approximately equal performance

for all four filtered testing sets (1.41 dB SD) while the worst mismatch occurs when

a highpass base codebook is used to quantize the lowpass filtered testing set (1.72 dB

SD).

Table 4.2 Spectral distortion measure for different base codebooks.
Each codebook is transformed to meet the condition of the testing set.

Testing Set Condition
Base CB Spectral Distortion Measure in (dB)

Condition Clean Lowpass Bandpass Highpass

Clean 1.22 1.62 1.65 1.32

Lowpass 1.38 1.39 1.47 1.39

Bandpass 1.51 1.58 1.32 1.29

Highpass 1.38 1.73 1.53 1.16

Table 4.3 shows the average SD measure, the average percentage of outliers and

the average percentage of unstable filters for all four conditions on each base codebook.

Although, the lowpass base codebook yields the lowest SD measure and the lowest

percentage of outliers, it gives a higher percentage of unstable filters. We prefer the

clean base codebook since it can be transformed into the other conditions and has the

lowest percentage of unstable filters after transformation.

Hereafter, all the transformations is done on the clean codebook with the matrices

entries calculated using the training set.
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Table 4.3 Overall average of SD performance and its outliers of the four
base codebooks done on the testing and training sets. The percentage of
unstable filters resulting from the mapping procedure is also computed.

Base CB Average SD Outliers (%) Unstable

Condition SD (dB) 2-4 dB > 4 dB Filter (%)

Clean 1.45 21.70 0.21 1.65
Lowpass 1.41 18.57 0.10 2.10
Bandpass 1.43 19.32 0.04 2.56
Highpass 1.45 15.07 0.16 2.83

4.3 Performance of the Mapping Model

In this section, the computed entries of the matrices for the individual and the differ-

ence mapping are presented. In addition, the SD performance of these two mapping

methods are compared to a regular codebook and its modified version. This modified

version, which we will refer to as a mixed codebook hereafter, is trained on a set of

vectors that includes all four filtering speech data. In practice, such a codebook is

difficult to train due to the large number of vectors in the training set which can

easily increase the computational efforts of training by four times. This codebook is

generated just for comparing the various results of the mapping model.

4.3.1 Individual Mapping

For individual mapping, the mapping is done on each coefficient independently. The

values for ai’s and bi’s computed using the training set and Equation (3.17) and (3.18)

for the three types of filtered speech are tabulated in Table 4.4. In the case of the

lowpass filtered mapping function parameters, the first few values of ai’s are close to

one while the values of bi’s are close to zero. This is simply because the first few LSF

parameters are not affected by the lowpass filtering as mentioned in Section 4.1.3).

Similarly the highpass mapping function has the last few values of ai close to one

and bi close to zero. It should be noted that filtering has a small effect on entries

that should not be altered. A value of 0.9420 shows that LSF 1 in clean and lowpass

filtered are not exactly the same.
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Table 4.4 The entries of the individual mapping functions of the trans-
formation model for lowpass, bandpass and highpass filtered speech used
in the simulations.

LSF Lowpass mapping Highpass mapping Bandpass mapping

Number ai bi ai bi ai bi

LSF 1 0.9420 0.0198 0.6220 0.2557 0.6092 0.2555
LSF 2 0.9088 0.0546 0.5376 0.2578 0.5190 0.2537
LSF 3 0.9262 0.0305 0.8950 0.2192 0.8524 0.2221
LSF 4 0.9839 −0.0359 0.8635 0.1922 0.8141 0.1877
LSF 5 0.8990 0.0933 0.9441 0.1286 0.8786 0.1723
LSF 6 0.8483 0.1518 0.9392 0.1212 0.8135 0.2264
LSF 7 0.9101 0.0871 0.9973 0.0409 0.8514 0.2264
LSF 8 0.8121 0.2571 0.9907 0.0327 0.8127 0.2601
LSF 9 0.7216 0.5146 1.0198 −0.0302 0.7162 0.5362
LSF 10 0.6210 0.7196 1.0257 −0.0673 0.5780 0.8235

4.3.2 Difference Mapping

For difference mapping, the differences of consecutive LSF values in a frame are

mapped rather than each LSF individually. Table 4.5 shows the computed entries of

the two matrices for all three filtering conditions. Similar observation to the individual

mapping can be made for the difference mapping. Since the pdfs of the difference is

being mapped, the mean values are smaller. Hence the values of bi are close to zero.

The only exception being the case of b1 (especially for highpass and bandpass) where

LSF 1 is mapped, not the difference.

4.3.3 Comparison of Different Codebook Designs

Four different codebook designs, namely, clean, mixed, individual mapped and differ-

ence mapped codebooks are tested. The spectral distortion and the percentage of

outliers are used as performance evaluation for an 2-SVQ and an 3-SVQ. The bit

allocation for the 2-SVQ is 12 bits for the lower subcodebook and 12 bits for the

upper subcodebook while for the 3-SVQ, 8 bits are allocated for each subcodebook.

The performance results for a lowpass filtered testing speech is shown in Table

4.6. Table 4.7 and 4.8 summarize the simulation results performed on a bandpass and
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Table 4.5 The entries of the difference mapping functions of the trans-
formation model for lowpass, bandpass and highpass filtered speech used
in the simulations.

LSF Lowpass mapping Highpass mapping Bandpass mapping

Number ai bi ai bi ai bi

LSF 1 0.9420 0.0198 0.6220 0.2557 0.6092 0.2555
LSF 2-1 0.9040 0.0094 0.4223 −0.0126 0.4522 −0.0108
LSF 3-2 0.9985 0.0054 1.1392 0.0405 1.1693 0.0459
LSF 4-3 0.9556 −0.0153 0.7503 −0.0358 0.8239 −0.0319
LSF 5-4 0.9793 0.0087 0.9654 0.0209 0.9937 −0.0009
LSF 6-5 0.7903 0.0173 0.6624 0.0121 0.8149 0.0208
LSF 7-6 1.0696 −0.0035 1.0298 0.0020 1.0375 −0.0046
LSF 8-7 0.8381 −0.0237 0.7289 −0.0162 0.9112 0.0016
LSF 9-8 0.8982 −0.0119 0.9051 0.0138 1.0479 −0.0097
LSF 10-9 0.5100 −0.0198 0.4132 0.0010 0.9790 −0.0075

highpass testing speech respectively. Several observations can be noted as follows:

• Generally, 3-SVQ generates higher SD values than 2-SVQ due to the splitting

of the codebook into more subvectors. As the VQ is split further, the distortion

becomes similar to that of scalar quantization. Since breaking the VQ into lower

dimensions decreases the number of codewords in each subcodebook, a 3-SVQ

mixed codebook does not contain enough vectors to represent its wide variety

of training vectors. Thus, a 3-SVQ results in higher SD spectral distortion as

confirmed by our results (1.88 dB SD for 3-SVQ and 1.83 dB SD for 2-SVQ)

• The mapping functions become more and more useful as codebooks have fewer

codevectors. Our results shows that a small mixed codebook can not effectively

quantize a wider variety of LSF vectors. The mixed codebook has 1.88 dB SD

compared to 1.58 dB SD for the individual mapping. Furthermore, since the

mapping codebooks can match any of the three pdfs, splitting does not worsen

the results. This is the reason why we get approximately similar performance for

the 2-SVQ and 3-SVQ even though the latter has significantly fewer codevectors

(Diff Map 2-SVQ: 1.68 dB SD and Diff Map 3-SVQ: 1.66 dB SD).
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Table 4.6 Spectral distortion measure for 2-SVQ and 3-SVQ when the
input testing speech is lowpass filtered. Results for clean, mixed, indi-
vidual mapped and different mapped codebooks are shown.

2-SVQ Results
Type Test Set

of Bit Average SD Outliers (%)
Codebook Alloc SD (dB) 2-4 dB > 4 dB

Clean 12,12 2.56 69.46 3.89
Mixed 12,12 1.83 34.96 0.39

Indep. Mapped 12,12 1.62 22.55 0.16
Diff. Mapped 12,12 1.68 25.70 0.26

3-SVQ Results
Type Test Set

of Bit Average SD Outliers (%)
Codebook Alloc SD (dB) 2-4 dB > 4 dB

Clean 8,8,8 2.60 70.02 2.99
Mixed 8,8,8 1.88 36.56 0.39

Indep. Mapped 8,8,8 1.58 18.51 0.19
Diff. Mapped 8,8,8 1.66 23.82 0.19
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Table 4.7 Spectral distortion measure for 2-SVQ and 3-SVQ when the
input testing speech is bandpass filtered.

2-SVQ Results
Type Test Set

of Bit Average SD Outliers (%)
Codebook Alloc SD (dB) 2-4 dB > 4 dB

Clean 12,12 2.95 77.60 8.92
Mixed 12,12 1.94 41.70 0.43

Indep. Mapped 12,12 1.65 24.02 0.51
Diff. Mapped 12,12 1.67 24.46 0.55

3-SVQ Results
Type Test Set

of Bit Average SD Outliers (%)
Codebook Alloc SD (dB) 2-4 dB > 4 dB

Clean 8,8,8 2.99 79.23 9.48
Mixed 8,8,8 2.00 46.18 0.44

Indep. Mapped 8,8,8 1.65 22.19 0.55
Diff. Mapped 8,8,8 1.71 25.21 0.57
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Table 4.8 Spectral distortion measure for 2-SVQ and 3-SVQ when the
input testing speech is highpass filtered.

2-SVQ Results
Type Test Set

of Bit Average SD Outliers (%)
Codebook Alloc SD (dB) 2-4 dB > 4 dB

Clean 12,12 1.62 21.97 0.10
Mixed 12,12 1.33 8.65 0.01

Indep. Mapped 12,12 1.32 11.46 0.14
Diff. Mapped 12,12 1.30 9.74 0.19

3-SVQ Results
Type Test Set

of Bit Average SD Outliers (%)
Codebook Alloc SD (dB) 2-4 dB > 4 dB

Clean 8,8,8 1.78 29.27 0.36
Mixed 8,8,8 1.43 10.35 0.07

Indep. Mapped 8,8,8 1.42 13.99 0.35
Diff. Mapped 8,8,8 1.45 14.06 0.41
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• The quality of a VQ is greatly dependent on the percentage of outliers between

2 and 4 dB encountered. A value of 70% is unsuitable for quantizing speech

spectral parameters. Using a mixed codebook decreases this percentage only to

a certain extent but not enough for the purpose of speech coding. On the other

hand, the individual and difference mapping give a lower percentage of 22%.

• The percentage of outliers bigger than 4 dB is sometimes better in the case of the

mixed codebook. The transformation can destroy the naturalness of the LSF

order in the VQ and cause it to choose a bad codeword from the subcodebooks

which, in turn, results in a very high spectral distortion. For example, for a

bandpass testing LSF vectors, a 2-SVQ with mixed codebook has 0.43 % of

outliers while the mapped has 0.51%.

• Individual mapping always results in better performance than the difference

mapping. Mapping each element independently gives a higher degree of free-

dom and thus the pdfs can be matched in a much more consistent matter.

Furthermore, in some cases, the pdfs of the difference between LSF’s can not

be mapped accurately due to their change in skewness, “tilted” to the right or

to the left. Figure 4.7 shows a case where the mapping could not exactly match

the pdfs of the filtered data. In the case where the tilt of the pdfs is modified

after the filtering of speech, the mapping is not as effective as when the tilt is

unchanged. On the other hand, difference mapping has an exceptional feature

in which the chances of having unstable filter after mapping is nil.

The mapped codebook has an improvement of approximately 0.95 dB in spectral

distortion compared to a clean codebook when used on a filtered signal. Such an

improvement is greater than usual because the training vectors for the clean code-

book have considerably different filtering conditions than the testing vectors. If one

expects different filtering conditions, a mixed codebook is more appropriate than a

codebook trained only on clean speech. But mapping still offers an average of 0.2 dB

improvement over a mixed codebook.
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Fig. 4.7 Probability density function of the difference between LSF 10
and LSF 9 when it is clean, lowpass filtered and mapped.

4.4 Performance of the Mapping over Various Bit Rates

We tested the mapping model under different bit rates. For each bit rate, the sub-

codebook sizes are chosen in such a way that an equal number of bits is allocated for

each subcodebook. For example, for a 2-SVQ, if 28 bits are assigned to a frame, then

14 bits goes to each codebook.

Figure 4.8 plots the average spectral distortion for all four different codebook

designs for a 2-SVQ. Evidently, the more bits are allocated for the codebooks, the

lower the SD distortion is, for all designs. The mapping model, including the in-

dividual and difference techniques, performs well over the whole range of bit rates

with a slight preference for the individual case. In addition, the performance of the

mixed codebook and the mapped codebook converge with increasing bit rate. Since

a higher bit rate is associated with a larger number of codeword entries, the mixed

codebook would be able to handle a wider variety of input signals, if it is trained

appropriately to match all possible filtering conditions. Furthermore, at an average
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SD level of 2 dB, the mixed codebook has an advantage of 6 bits/frame over the clean

codebook when a lowpass input is applied. The mapped codebook has an additional

3 bits/frame over the mixed codebook.

The same experiment is done for highpass and bandpass testing speech. Similar

observations can be made from Fig. 4.9 and Fig. 4.10. In the highpass case, the mixed

and mapped codebook has an advantage of 3 bits/frame over the clean codebook.

Furthermore, the difference mapping in these two cases produces the same distortion

level as the individual mapping for higher bit rates.

The 3-SVQ is then tested for a bandpass input speech and the results are illus-

trated in Fig. 4.11. Again, the clean codebook has the worst performance out of all

four designs. For low bit rates, the mapped codebook has an advantage of 5 bits/frame

over the mixed codebook. Furthermore, unlike in 2-SVQ, the performance difference

between the mixed and mapped codebooks in 3-SVQ is no longer negligible for high

bit rates. This can be explained by the fact that 3-SVQ has many fewer codewords

than 2-SVQ. For example, at 30 bits, a 2-SVQ has 32 768 codevector entries while a

3-SVQ has only 1 024. Hence, a 2-SVQ has 31 744 more codevectors to represent a

wider range of possible LP parameters.

In summary, mapping codebooks generate consistent performances over all bit

rates. For lower bit rate frames, the importance of using transformation functions

becomes more critical since the numbers of codevectors entries is small and therefore

can not satisfy the pdfs of a diverse input vectors.



74 Performance Analysis

16 18 20 22 24 26 28 30 32
1

1.5

2

2.5

3

3.5

S
pe

ct
ra

l D
is

to
rt

io
n 

(d
B

)

Bits per frame

2−SVQ
Lowpass Input

Clean CB         
Indiv Mapping    
Diff Mapping     
Mix CB           

Fig. 4.8 SD performance of 2-SVQ for clean, mixed, individual and
difference mapping for lowpass filtered speech over different bit rates.
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Fig. 4.9 SD performance of 2-SVQ for clean, mixed, individual and
difference mapping for highpass filtered speech over different bit rates.
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Fig. 4.10 SD performance of 2-SVQ for clean, mixed, individual and
difference mapping for bandpass filtered speech over different bit rates.
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Fig. 4.11 SD performance of 3-SVQ for clean, mixed, individual and
difference mapping for bandpass filtered speech over different bit rates.
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4.5 Interpolation Performance in the Mapping Model

Since filters can have different frequency responses, one needs to develop a method

that could accommodate different cutoff frequencies. bandwidth and cutoff frequen-

cies. As described in Section 3.2.4, the mapping model can use the interpolation

method to compensate for that effect. In this section, we implement filters with

various cutoff frequencies and observe how well this interpolation method performs.

Figure 4.12 and 4.13 shows the performance of interpolated individual mapping

and interpolated difference mapping respectively. The clean and codebook perfor-

mance results are presented as well to confirm the improvement of the mapping model

over all cutoff frequencies. Interpolation can be used to prevent the calculation of the

mapping functions for each filtering condition. In conclusion, interpolation allows

the mapping model to operate with reasonable performance on any kind of filtering

conditions.

4.6 Summary

In conclusion, the mapping model generally gives a significant improvement in which

a lower spectral distortion and a lower percentage of outliers are yielded. It was

also tested on different bit rates and different cutoff frequencies and the results are

satisfactory. Individual mapping performed better in most cases than the difference

mapping but suffers from a higher filter unstability caused by the transformation.
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Fig. 4.12 SD performance of the individual mapping over different cut-
off frequencies for lowpass filtered spectral parameters.
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Chapter 5

Final Remarks and Future Work

There is a continuing need for robust coding of digital speech signals at ever lower

bit rates. Linear predictive coders are most commonly used to model frames of

speech and to extract its significant features. In this thesis we have studied a novel

method to tackle the robustness of vector quantization, used to encode the speech

spectral parameters, when the speech data is subjected to different filtering conditions.

Considering a speech coder in a wireless base station, the input speech can come from

wireline sources or decoded speech from other wireless links. In other words, the input

to the base station may have been subjected to quite different filtering conditions.

Section 5.1 summarizes our work, and Section 5.2 contains suggestions for future

research in robust spectral quantization.

5.1 Summary of Our Work

In Chapter 1, we have presented a brief overview of speech coding and most of the

well known properties of speech. In speech coding, quantization is a critical block

and needs to be used in the most efficient manner. Vector quantization is one way of

coding the spectral parameters but can lack of robustness.

Chapter 2 provided a review of linear predictive analysis of speech. The formant

structure of speech is modeled by an all-pole filter. Alternative parametric representa-

tions of the filter coefficients such as reflection coefficients and line spectral frequencies
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are introduced. Furthermore, several objective distortion methods are defined for the

purpose of quantization and performance estimation. Information on the database is

also presented.

Vector quantization was introduced in Chapter 3 as an extension to scalar quanti-

zation. It is often used to encode the LP filter coefficients as a single entity. VQ can

exploit any correlation that exists among the vector components. The optimality of

VQ is explained and a method for designing a codebook is presented. Unconstrained

VQ of an entire LSF frame vector is costly in terms of codebook storage and search

complexity. Split vector quantization, on the other hand, is a way of reducing both

problems faced in vector quantization.

VQ performance is dependent on the way the training set is constructed. A

problem with robustness arises whenever the testing set has a different distribution

than the training set. Codebook transformation is a method that solves this problem

by mapping the codebook to match the new distribution. The transformation model

and its constraints were introduced in the second part of Chapter 3. In particular,

two techniques of mapping, individual and difference, were discussed.

Different representations were investigated in Chapter 4 to see which one is more

suitable to be transformed. Predictor coefficients suffers from the lack of consistency

and difficulty with stability while reflection coefficients have no apparent interpre-

tation of the transformed pdfs. Line spectral frequencies are the most appropriate

representation due to the localized distinction between processed speech and possess

an easy stability check.

Several optimization methods are applied on the mapping model to increase its

performance, that is to have a lower spectral distortion and a lower resulting un-

stable filters. The spectral distortion of the mapping model is then compared to a

clean codebook and a mixed codebook. The mapped codebook records an improve-

ment of 0.9 dB and 0.2 dB in spectral distortion over the mixed and clean codebook

respectively. The mapping model is then tested for different bit rates which shows

that this model might not be that effective when higher bit rates are applied, but

becomes essential when the number of allocated bits per frame are small. To complete

the transformation model, an interpolation method has been used and analyzed to

support different cutoff frequencies.
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5.2 Future Considerations

In this thesis, we have studied a transformation model to improve the robustness of

vector quantization, more specifically split vector quantization. This method can also

be tested on Matrix quantization (MQ) [60, 61]. MQ groups together a sequence of

successive frame vectors and encodes it as a single matrix. Similar to VQ, MQ can

have split matrix quantization [62, 63].

We have noted that some distributions were not properly mapped. For example in

difference mapping, a change in the tilt can be introduced to the pdfs by the filtering

process. A method needs to be explored to change the skewness of the probability

density function by some appropriate transformation.

Furthermore, the integration of the frequency cutoff estimator and the interpo-

lation method should be evaluated to see how effective the estimation of bandwidth

is.

Finally, more testing can be done to generalize the transformation procedure to

distinguish female and male differences, individual speaker variations and various

background noise as well. Any additional knowledge of these types of difference that

can reflect any behavior in the probability density functions of the LP parameters

can be used to generalize the mapping method.
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