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Abstract

New generation of speech coders have to achieve two goals: efficient use of bandwidth and

high speech quality. The objective of this thesis is to improve the modelling of speech signal

within the constraints of a low bit rate coder.

Many speech coding algorithms use Linear Prediction (LP) coefficients to describe the

power spectrum of the speech. These parameters are obtained for blocks of input samples

using standard linear prediction analysis technique. Changes in the speech power spectrum

results in the evolution of the LP parameters. However, conventional linear prediction anal-

ysis has shortcomings that contribute to the frame-to-frame variation of the LP parameters.

These undesired variations affect the performance of the parameters coding and the percep-

tual quality of the synthesized signal. For voiced speech, efficient coding of the excitation

pitch pulses relies on the similarity of successive pitch waveforms. The performance of this

coding stage is also jeopardized by LP parameters variations.

The goal of this thesis is to modify the traditional linear prediction analysis in such

way that the fluctuations of the LP coefficients are reduced, while the pitch pulse shape

evolves slowly. These modifications can lead to an increase in the coding efficiency and/or

an improvement in the speech quality. Two different methods have been developed for

this purpose. In the first approach we derive the LP parameters such that the glottal

excitation model matches as closely as possible a target waveform. The latter contains

slowly evolving pulses representing voiced speech excitation. The simulation results indicate

that the target matching method results in an increase in the pitch prediction gain which

is a measure of similarity of successive pitch pulses. The frame-to-frame variation of the

LP coefficients is also lowered with respect to the conventional linear prediction analysis.

In the second method, we enforce the smoothness on the evolution of LP parameters by

directly including their variation in the LP error function. A novel scheme to dynamically

control the contribution of this additional term is also proposed. Experiments indicate that

this method can considerably reduce the fluctuation of LP parameters while the overall

prediction gain of the LP filter is maintained.
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Sommaire

La nouvelle génération des codeurs de parole devront atteindre two objectifs: l’usage efficace

de la largeur de bande ainsi que la qualité perceptive supérieure du signal transmis. Le but

de cette thèse est d’améliorer la modelisation du signal parole pour les codeurs à bas débit.

Plusieurs algorithmes de codage de la parole utilisent les coefficients de prédiction

linéaire (LP) pour représenter le spectre de la puissance du signal. Les changements dans

le spectre de la parole sont modalisées par l’évolution de ces parameters. Toutefois, la

méthode de la prédiction linéaire possède des defauts qui contribue à la variation des co-

efficients LP. Ces fluctuations affectent la performance de la quantificateur des parameters

LP ainsi que la qualité du signal reconstruit. De plus, afin de coder efficacement l’excitation

LP, la ressemblance entre les impulsions de pitch consécutives doit être exploitée. La per-

formance de cet étape de codage est aussi affectée par les changements arificiels dans les

coefficients LP.

L’objectif de cette thèse est de modifier la méthode conventionelle de la prédiction

linéaire de sorte à réduire les fluctuations des parameters LP, tout en assurant que la forme

des impulsions pitch evolue lentement. Ces modifications peuvent augmenter l’efficacité du

codage et/ou la qualité du signal reconstruit. Deux approches différentes sont proposées.

Dans la première, nous calculons les parameters LP telle que la différence entre le signal

excitation LP et un signal objectif soit minimisée. Durant les régions voisées de la parole,

le signal objectif contient des impulsions de pitch qui evoluent lentement. Les simulations

indiquent que cette approche augmente la ressemblance entre la forme des impulsions de

pitch consécutives. De plus, les variations entre les coefficients LP d’un trame à l’autre sont

réduites. Dans la deuxième méthode, nous ajoutons un term à la fonction d’erreur utilisée

pour calculer les coefficients LP. Ce nouveau term tient compte des changements de ces

parameters entre les trames voisins. La contribution de ce term à la fonction d’erreur est

reajoustée pour chaque trame. Les résultats des simulations montrent que cette approche

permet de diminuer considérablement les fluctuations des parameters LP sans affecter le

gain associé à la prédiction du signal parole.
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Chapter 1

Introduction

The field of telecommunications has been growing rapidly in the recent years. New gener-

ations of wireless communication networks will have to provide fast and reliable transfer of

voice, audio, video, and data signals. The success of the new digital services depends on the

provision of high speech quality and on the efficient use of the available bandwidth. These

dual requirements have spurred an increasing interest in speech coding technology. This

field is concerned with obtaining a compact digital representation of speech signal for the

purpose of efficient transmission and/or storage. The goal is to reduce the bit rate required

to transmit the signal while maintaining the perceived quality after reconstruction. To do

so, speech coding algorithms must take advantage of the characteristics of speech to model

this signal.

1.1 Properties of Speech

A speech signal can roughly be divided in two classes, voiced and unvoiced. Voiced sounds

are produced when the flow of air, coming out of lungs, is interrupted by the periodic

opening and closing of the vocal cords. The sound pressure wave after the vocal cords

is referred to as the glottal excitation. For voiced speech, the glottal excitation is quasi-

periodic where each period is called a pitch pulse. For unvoiced speech, the vocal cords do

not vibrate and the glottal signal is noise-like. Unvoiced sounds are produced when the

turbulent flow of air is passed through a constriction somewhere along the vocal tract.

The vocal tract starts above the larynx and ends at lips, including the oral and nasal

cavities. The action of the vocal tract is to introduce resonances in the speech spectrum.
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The shape of the vocal tract changes relatively slowly, leading to slow rate of change in

the speech envelope spectrum. Figure 1.1 shows a segment of speech recorded with a

microphone. It exhibits both voiced and unvoiced regions.

Unvoiced Voiced

Fig. 1.1 A speech segment with voiced and unvoiced regions.

1.2 Classes of Speech Coders

Different speech coding algorithms exploit the speech properties to different degrees. Ac-

cordingly, they can be divided in the three categories: waveform coders generally need the

highest bit rate while making very little or no use of signal modelling. On the other hand,

vocoders require the lowest bit rate, they model the vocal tract and the excitation signal.

Hybrid coders, as suggested by the name, fall between the two previous classes.

1.2.1 Waveform coders

Waveform coders are concerned with a faithful representation of the time waveform. They

attempt to minimize the difference between the original and the reconstructed signal. The

waveform coders do not generally exploit the detailed characteristics of the input signal.

However, they are robust, i.e. they can be used for inputs of different kinds. The output

signal converges toward the original waveform with increasing bit rate. On the other

hand, the perceptual quality deteriorates drastically as the bit rate is lowered below some

threshold near 2 bits/sample. Waveform coders may operate in the time or the frequency

domain. To increase the coding efficiency, some waveform coders attempt to remove the
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near sample redundancies present in the speech. Instead of coding each sample directly,

they first predict the current value based on a weighted sum of the previous samples. The

error between the sample and its estimate is better suited than the input speech for efficient

coding at lower rates.

1.2.2 Vocoders

Vocoders (voice coders) belong to the class of source or parametric coders. The signal

of interest is modeled as the output of a linear system. The knowledge of the synthesis

system transfer function and its excitation suffices to reproduce the output signal. Both

the synthesis system and the excitation signal are described by a set of parameters. These

parameters are then coded for transmission. For a locally stationary signal like speech,

the model and the excitation parameters can be represented compactly. This is the main

attraction of the source coding approach. Vocoders often perform poorly when applied to

signals other than speech.

1.2.3 Hybrid coders

Hybrid coders resemble to vocoders in the sense that they also estimate the parameters of

a synthesis model for the signal, while to encode the excitation signal they make use of the

waveform matching techniques. Some of the more recent coders in this family offer high

quality speech at rates as low as 8 kb/s. Hybrid coders are generally more complex than the

vocoders and waveform coders. However, due to advances in DSP chip technology in the

recent years, the computational complexity has not been an obstacle in the deployment of

hybrid coders. Considering the demand to reduce the bit rate and to improve the perceptual

quality of the synthesized speech, future generations of coders are likely to belong to this

category. Figure 1.2 illustrates the block diagram for a general hybrid coder and decoder.

Assuming an error free transmission medium, the perceptual quality of the synthesized

speech depends upon the following factors:

• Accuracy of the synthesis model and its estimated parameters.

• Accuracy of the excitation estimate.

• Approximations introduced by the encoding process (quantization errors).
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model
parameters
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excitation

model

Model parameters

Excitation signal
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Input
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Medium

Identify Code

Code

Decode

Estimate

Synthesis

Fig. 1.2 A hybrid coder/decoder block diagram.

1.3 Problem Statement

The most common synthesis model used for speech is based on Linear Prediction (LP)

theory. This model relies on the physiology of the speech production system. An all-pole

filter models the vocal tract. The coefficients of this filter are obtained for blocks of speech

samples. Each block (also referred to as a frame) is about 20 ms. To compute the LP

parameters, the input frame excites the inverse (all-zero) filter. The filter coefficients are

derived such that the energy of the output (prediction error) is minimized. This procedure

is known as linear prediction analysis. Speech is then passed through the inverse filter to

produce an approximation of the glottal excitation, called the residual.

Changes of the speech production system should ideally be reflected by changes in the

synthesis model parameters. However, this is not the case in practice. Standard linear
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prediction analysis suffers from shortcomings due to the simplistic nature of the model, the

asynchrony between the analysis frame and the speech waveform, and the strategy deployed

to obtain the model parameters. The effect of these shortcomings is partly reflected by

artificial frame-to-frame fluctuations of linear prediction coefficients. During voiced regions,

sudden variation of these coefficients leads to changes in the residual pitch pulses shape

from one frame to another. This may affect the performance of the excitation coding

stage. Moreover, the LP parameters have to be quantized prior to the transmission. Their

fluctuations are likely to be accentuated in this process, leading to audible distortions in

the synthesized speech.

1.4 Previous Related Work

The asynchrony between the analysis frames and the speech signal is an important factor

leading to the frame-to-frame variation of LP coefficients. One approach to reduce the

effect of this time asynchrony is to multiply the prediction error with a tapered window

prior to minimizing its energy [1]. It is also possible to perform pitch synchronous analysis

of the speech [2]. Another solution is to modify the length and the position of the analysis

frame according to the characteristics of the input [3].

As previously mentioned the LP filter coefficients are obtained by minimizing the en-

ergy of the prediction error. This signal models the glottal excitation which consists of

periodic pulses (voiced speech) and/or noise-like signal (unvoiced speech). The resulting

LP parameters are affected by the presence of high amplitude pitch pulses (Section 3.2.3).

To overcome this shortcoming of standard LP analysis, it has been suggested to scale down

the high amplitude samples in the LP residual waveform prior to minimizing its energy [4].

Another suggested solution involves minimizing the mean absolute value of residual signal

(rather than the mean-square) over the analysis interval [5].

Bandwidth expansion techniques (Section 2.3.3) are used to improve the numerical ro-

bustness of the LP analysis algorithm [6]. These techniques slightly decrease the frame-to-

frame variation of LP parameters. Other approaches to smooth the evolution of the LP pa-

rameters include modifying their quantized values according to some non-linear smoothing

techniques. Previous work in this field [7] suggests that by using a perceptually motivated

rule-based algorithm, the subjective quality of the speech is improved.

Although all of above techniques somewhat reduce the frame-to-frame fluctuations of
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the linear prediction coefficients, many of them involve an excessive computational load.

Moreover, none of these methods directly addresses the relation between the changes in

the pitch pulses shape and the linear prediction model. Therefore, they do not fully solve

the problems related to the LP model and its interaction with modelling of the glottal

excitation.

1.5 Thesis Contribution

The primary goal of our research is to find methods or correction measures which will reduce

the effect of the shortcomings of the standard linear prediction analysis. These methods

will ensure that in the stationary voiced regions, the source model and the excitation signal

evolve slowly with time. We therefore aim for a joint smoothing in the LP parameters and

the pitch component of the residual waveform. Any change in these parameters will then

be much more likely due to the variation in the shape of the vocal tract and the changes in

the excitation waveform. Smoothing the temporal evolution of the LP parameters results

in a more slowly changing pitch pulse shape [22]. Similarly, for steady state voiced speech,

by ensuring that the shape of the pitch pulses evolves slowly, the temporal evolution of the

LP coefficients is also smoothed. This increased smoothness can result in an increase in

the coding efficiency (when differential coding is used) and/or in the improvement of the

speech quality.

We do not directly address the issue of the quantization errors. Although, it is intuitive

to believe that smoothing the evolution of LP parameters and the pitch pulses reduces the

associated quantization errors when differential coding schemes are used.

Two different approaches are proposed. In the first method, we attempt to the increase

the periodicity of the voiced speech residual. This is accomplished by deriving the model

parameters such that the excitation matches a target signal. The latter represents an ideal

excitation signal, i.e. a signal in which the pitch pulses evolve slowly while the adjacent

samples are uncorrelated. This method will be referred to as the Target Matching (TM)

technique. In the second approach, we enforce the smoothness on the evolution of the

model parameters by augmenting the conventional error criterion used to derive them.

A combination of these techniques will also be investigated. Portions of this thesis are

reported in [8][9].
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1.6 Thesis Organization

In Chapter 2, we will overview the basic theory of linear prediction analysis. Conventional

methods to obtain the LP coefficients are summarized. Common approaches to encode the

excitation signal are also explained. In Chapter 3, we will introduce the target matching

approach and propose a strategy to construct the target signal. A novel scheme to directly

reduce the frame-to-frame variation of LP coefficients is presented in Chapter 4. The

simulation results and the comparison with the conventional linear prediction analysis for

each of the proposed methods will be presented at the end of the respective chapters. This

work is summarized in Chapter 5 where we also provide suggestions for future investigations.
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Chapter 2

Linear Prediction in Speech Coding

In almost all the coders in the class vocoders, linear prediction analysis constitutes the

first processing block to encode the discrete input signal. In this chapter, we present the

linear prediction analysis from two different point of views: first as a particular case of the

optimal filtering problem, and then as a tool to model the vocal tract transfer function.

The former view clarifies the redundancy removal role of the linear prediction analysis,

while the latter illustrates how the speech envelope spectrum is characterized by the linear

prediction coefficients.

The prediction error (LP residual) estimates the vocal tract excitation. For voiced

speech, this signal consists of a train of pitch pulses. Linear predictive coders often exploit

the quasi-periodic nature of the LP residual to increase the coding efficiency. The use of

a pitch filter or an adaptive codebook, during voiced speech, is a popular technique to

account for the pitch pulses. This method is reviewed in the second part of this chapter.

2.1 Linear Prediction Analysis: An Optimal Filtering Problem

In classical optimal filtering, one attempts to estimate a desired sequence d(n) from an

observation sequence x(n) using a linear time-invariant filter. The term optimal implies that

the filter parameters are obtained by minimizing the energy of the estimation error. The

signals x and d are generally random processes with known or estimated second moment

statistics.

Optimal filtering is also used as a system identification tool. Consider x and d as the

input and the output of a linear system, respectively. A filter that estimates d from x
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d e

x

−
P∑

k=1

akz−k d̂

+

Fig. 2.1 Optimal filtering.

models the original system transfer function [10]. If an FIR filter of length P is used, then

each sample of the desired signal d is estimated using the past P values of the observation

x.

d̂(n) =
P∑

k=1

ak x(n− k) (2.1)

e(n) = d(n) − d̂(n) (2.2)

where ak are the coefficients of the optimal filter, and e(n) is the estimation error. In linear

prediction analysis, each sample of the speech is estimated as the weighted sum of the P

previous samples, i.e.

ŝ(n) =
P∑

k=1

ak s(n − k) (2.3)

e(n) = s(n) − ŝ(n) (2.4)

The coefficients ak are obtained by minimizing the estimation error energy E:

E =
nf∑

n=ni

e2(n) (2.5)

where ni and nf indicate the boundary of the frame over which the minimization takes

place. The above equations can be expressed in matrix notation.

ŝ = Sa (2.6)



2 Linear Prediction in Speech Coding 10

where the data matrix S and the estimated speech frame ŝ are defined as:

S =




s(ni − 1) s(ni − 2) · · · s(ni − P )

s(ni) s(ni − 1) · · · s(ni − P + 1)
...

...
. . .

...

s(nf − 1) s(nf − 2) · · · s(nf − P )




ŝ =




ŝ(ni)

ŝ(ni + 1)
...

ŝ(nf )




The vector a denotes the filter coefficients.

a =




a1

a2

...

aP




The estimation error is given by

e = s− ŝ

= s− Sa
(2.7)

where

s =




s(ni)

s(ni + 1)
...

s(nf)




The mean square error is expressed as

E = ‖e‖2 = eTe (2.8)

Solving for the optimal filter parameters by minimizing E amounts to solving a least-square

problem:

Sa
ls
= s (2.9)
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The abbreviation ls (Least Squares) above the equality sign indicates that the number of

equations in the above system is greater than the number of unknowns (filter coefficients).

This is due to the fact that the number of samples in a frame is generally much greater

than the filter order P . Therefore, the Minimum Mean Square Error (MMSE) solution is

sought. This solution can be expressed as:

a = S+s (2.10)

where S+ is the Moore pseudo-inverse of S. It can easily be shown [10] that the error signal

e is orthogonal to the data matrix, i.e.

ST e = 0 (2.11)

This property is known as the orthogonality principle.

Considering linear prediction analysis as a particular case of the optimal filtering prob-

lem leads to an interesting geometric interpretation. Let si be the i-th column of S.

The estimated speech segment can be expressed as a linear combination of the vectors

si, 0 ≤ i ≤ P − 1.

ŝ = a1 s1 + a2 s2 + · · · + aP sP

Since the estimation error e is orthogonal to the columns of S, the vector ŝ can be viewed

as the orthogonal projection of s into the space spanned by the si. This can also be seen

by substituting a from Eq. (2.10) into Eq. (2.9)

ŝ = Sa

= SS+s

= Pss

(2.12)

where Ps = SS+ is an orthogonal projection operator. This matrix projects any vector

into the space formed by the columns of S which are in fact the delayed versions of s.

Therefore, LP filtering removes redundant information in each speech sample. The FIR

filter a is known as the short term predictor. The output error or the residual signal e

has a low level of redundancy and is better suited for efficient encoding than the original

speech signal [11].
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2.2 Linear Prediction Analysis: Modelling the Vocal Tract

The properties of voiced and unvoiced speech sounds (or phonemes) were stated in Chap-

ter 1. Each sound can be classified based on two distinct features. The type of its glottal

excitation, i.e. voiced or unvoiced, and the shape of the vocal tract which may vary for the

duration of the phoneme.

Phonemes that have a voiced excitation, like vowels, are also called voiced. Their

spectrum contains equally spaced harmonics due to the periodic nature of the glottal signal.

The envelope of the spectrum presents peaks or resonances called formants. The bandwidth

and the center frequency of the formants is a function of the vocal tract shape.

The nasal consonants like /m/, /n/, and /G/ also have a voiced excitation. Their time

waveform resembles that of voiced speech. However, a characteristic of the nasal spectrum

is the presence of the spectral nulls. The frequency of these anti-resonances is inversely

proportional to the length of the closed oral cavity. When nasals proceed or succeed a vowel,

there is a certain amount of coupling between the oral and nasal cavities. The spectrum of

these nasalized vowels is affected by these phenomena. The formants are less peaked and

have broader bandwidths than without the nasal coupling. Other spectral changes include

the presence of spectral valleys.

Unvoiced sounds are produced when the noise-like excitation is forced through a con-

striction somewhere along the vocal tract. Due to lack of periodicity, the unvoiced sounds

spectrum does not have a harmonic structure.

The voiced and unvoiced classification of the phonemes, although simplistic, provides

enough information to model the speech production system. Each of these classes can

be refined into many categories of sounds. Details of the speech sounds as well as their

temporal and spectral characteristics can be found in [12][13].
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2.2.1 Vocal tract model

A stationary speech segment is modeled as the output of a pole-zero or autoregressive

moving average (ARMA) system H(z):

H(z) = G

1 +
Q∑

l=1

blz
−l

1 −
P∑

k=1

akz
−k

(2.13)

For voiced speech, the excitation signal u(n) takes on the form of a periodic train of

impulses. For unvoiced sounds, a zero mean unit variance uncorrelated noise can model

the glottal excitation. The zeros of H(z) model the nulls present in the spectrum of

the phonemes like nasals. The resonances or formants in the spectrum of the vowels are

represented by the poles of H(z). The difference equation associated with Eq. (2.13) is:

s(n) =
P∑

k=1

aks(n − k) + G
Q∑

l=0

blu(n − l) where b0 = 1 (2.14)

Computing the parameters of the pole-zero model involves solving a non-linear set of equa-

tions. If the coefficients bl are set to zero, H(z) will be an all-pole corresponding to an

autoregressive (AR) system:

H(z) =
1

A(z)
(2.15)

The coefficients ak can then be obtained by solving a linear set of equations, as we see in

the next section. From the signal modelling point of view, the use of an autoregressive

synthesis model can be justified as follows:

• Any causal rational system of the form Eq. (2.13) can be decomposed [12] as:

H(z) = Hg Hmin(z)Hap(z) (2.16)

where
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Hg : Gain factor.
Hmin : Minimum phase function.
Hap : All-pass function.

• The minimum phase component of H(z) can be expressed as an all-pole function:

Hmin(z) =
1

1 −
I∑

k=1

akz
−k

(2.17)

In general the decomposition of H(z) into a minimum phase component and an all-

pass filter requires that the filter order I be infinite. Nonetheless, if I is finite, we can

find an approximate decomposition of H(z) into a minimum phase all-pole filter, an

all-pass filter and a gain factor as in Eq. (2.16).

• The all-pass part Hap(z) contributes only to the phase spectrum of H(z).

• From the perceptual point of view, the amplitude spectrum of the speech signal is far

more important than its phase characteristics.

The FIR filter A(z) is known as the LP inverse or the LP analysis filter. The effect

of A(z) on the spectrum of the input speech is to remove of the formants introduced by

the vocal tract. The order P is generally selected in such way that there is a pair of poles

per formant present in the signal spectrum. For the speech signal sampled at 8 kHz, P is

between 8 and 16. Additional poles allow the approximation of spectra which have zeros.

The performance of A(z) is assessed by measuring the ratio of the energy of the input

speech to the energy of the output residual. This measure is called the prediction gain Gf ,

and is often expressed in dB units:

Gf = 10 log10

∑
n

s2(n)

∑
n

e2(n)
(2.18)

For an all-pole model H(z), the time and the frequency representation of the error signal

are

e(n) = s(n) −
P∑

k=1

ak s(n − k) (2.19)
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E(z) =
S(z)

A(z)
(2.20)

Let P (ω) and PLP (ω) denote the energy magnitude spectrum of the input speech signal

and the all-pole filter H(z), respectively.

P (ω) = |S(ejω)|2 (2.21)

PLP (ω) =
1

|A(ejω)|2 (2.22)

The error energy magnitude spectrum is given by

|E(ejω)|2 =
P (ω)

PLP (ω)
(2.23)

The filter coefficients ak are obtained by minimizing the error energy, Eq. (2.5). From the

Parseval theorem [6]:

E =
∞∑

n=−∞
e2(n) =

1

2π

∫ ∞

−∞
P (ω)

PLP (ω)
dω (2.24)

Minimizing the energy of the error is equivalent to minimizing the ratio of the energy

spectrum of the original speech signal to the energy spectrum of the all-pole filter. Thus,

the energy magnitude spectrum of the all-pole filter is an approximation of the output

signal energy magnitude spectrum1.

2.3 Estimating the LP Coefficients

Figure 2.2 shows the block diagram for the linear prediction analysis stage. The signals

wd and we are the data and the error windows respectively. The length of these windows

should be long enough to provide an accurate estimate of the speech power spectrum. On

the other hand, to represent the signal power spectrum with a constant set of coefficients,

the length of the windows should not be too long. Typical values for the window length are

between 10 and 30 ms. The specific choice of these windows differs between the two most

commonly used methods to solve for the filter coefficients ak: the autocorrelation and the

covariance methods.

1In Eq. (2.5) the error energy is minimized over the range ni . . . nf . Therefore, the LP coefficients
estimate the signal energy magnitude spectrum for the corresponding time interval.
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we(n)

−

+

wd(n)

s(n) ew(n)

P∑
k=1

akz
−k

Fig. 2.2 Linear prediction analysis block diagram

2.3.1 Autocorrelation method

The data window wd has finite duration. The Hamming or the hybrid Hamming-Cosine

[14] are among popular data windows used. If the error window we is set to 1 for all n,

then Eq. (2.9) has the following form:




0 0 0 · · · 0

sw(0) 0 0 · · · 0

sw(1) sw(0) 0 · · · 0

sw(2) sw(1) sw(0) · · · 0
...

...
...

...
...

sw(N − 2) sw(N − 3) sw(N − 4) · · · sw(N − P − 1)

sw(N − 1) sw(N − 2) sw(N − 3) · · · sw(N − P )

0 sw(N − 1) sw(N − 2) · · · sw(N − P + 1)

0 0 sw(N − 1) · · · sw(N − P + 2)
...

...
...

. . .
...

0 0 0 · · · sw(N − 1)







a1

a2

a3

...

aP




ls
=




sw(0)

sw(1)

sw(2)

sw(3)
...

sw(N − 1)

0

0

0
...

0




(2.25)

where

sw(n) = s(n)wd(n)
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To solve for the filter coefficients, both sides of the above equation are multiplied by ST .

ST Sa = ST s

Ra = r
(2.26)




R(0) R(1) · · · R(P − 1)

R(1) R(0) · · · R(P − 2)
...

...
. . .

...

R(P − 1) R(P − 2) · · · R(0)







a1

a2

...

aP




=




R(1)

R(2)
...

R(P )




where R(i) denotes the autocorrelation function of the windowed input sequence.

R(i) =
N−1∑
n=i

sw(n) sw(n + i) 0 ≤ i ≤ P (2.27)

The matrix R and the vector r are referred to as the autocorrelation matrix and vector

respectively. The main attraction of the autocorrelation method is the Toeplitz nature of

the matrix R. The Levinson-Durbin recursion [15] can then be used to solve for coefficients

ak. Moreover, this approach guarantees a stable LP synthesis filter [16].

It can be shown [17] that when autocorrelation method is used to solve for the filter a,

the first P autocorrelation coefficients of the LP synthesis filter match those of the input

sequence. This is known as the autocorrelation matching property.

2.3.2 Covariance method

In the covariance method the input signal is not windowed, i.e. wd(n) = 1 for all n. The

error window has finite length and is generally chosen to be rectangular, then Eq. (2.9) is

written as:




s(P − 1) s(P − 2) s(P − 3) · · · s(0)

s(P ) s(P − 1) s(P − 2) · · · s(1)

s(P + 1) s(P ) s(P − 1) · · · s(2)
...

...
...

. . .
...

s(N − 2) s(N − 3) s(N − 4) · · · s(N − P − 1)







a1

a2

a3

...

aP




ls
=




s(P )

s(P + 1)

s(P + 2)
...

s(N − 1)




(2.28)
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Multiplying both sides of the above equation with ST , we obtain

ST Sa = ST s

Φa = φ
(2.29)




φ(1, 1) φ(1, 2) · · · φ(1, P )

φ(2, 1) φ(2, 2) · · · φ(2, P )
...

...
. . .

...

φ(P, 1) φ(P, 2) · · · φ(P, P )







a1

a2

...

aP




=




φ(1, 0)

φ(2, 0)
...

φ(P, 0)




where

φ(i, j) =
N−1−P∑

n=0

s(n − i + P )s(n − j + P ) (2.30)

The matrix Φ is symmetric positive definite and Cholesky decomposition [18] [15] can

be used to solve for a. The prediction gain resulting from the covariance method is generally

higher than the one offered by the autocorrelation method. The covariance method does not

guarantee that the filter A(z) is minimum phase. However, there exists a slightly different

version of this method, known as the modified covariance method [19] which ensures the

minimum phase property of the LP analysis filter at the cost of the lower prediction gain.

In the remaining of this thesis we will use the term correlation matrix as a generic name

for STS. The terms autocorrelation and covariance matrices will be used for R and Φ

respectively, when we want to distinguish whether a data window has been used or not.

2.3.3 Bandwidth expansion

The linear prediction coefficients ak parameterize the speech power spectrum. For high

pitched voiced signals, since the harmonics are widely spaced, there are not enough samples

of the envelope spectrum to provide a reliable estimate. At these regions, the formant

bandwidths are often underestimated by a large amount. To overcome this problem it is

possible to move the poles of the LP filter H(z) inward by a factor γ [20]. This is equivalent

to replacing the coefficient ak by a γkak. The typical values for γ are between 0.988 and

0.996 which correspond to 10 to 30 Hz bandwidth expansion. Another approach to expand

the estimated formant bandwidth is to multiply the autocorrelation coefficients by a lag

window prior to the computation of LP parameters [20]. The lag window is often chosen
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to have a Gaussian shape. The power spectrum of speech is therefore convolved with a

Gaussian shape window, resulting in the widening of the formant peaks. This approach

has also the benefit of reducing the model power spectrum dynamic range, and therefore,

improving the numerical conditioning of the correlation matrix.

2.3.4 Improving the numerical robustness

To avoid aliasing in the frequency domain, the speech signal is low pass filtered prior to the

analog-to-digital conversion. This operation reduces the amplitude of the high frequency

components of the speech spectrum. As a result, the correlation matrix can become ill-

conditioned or singular. This affects the numerical precision of the LP coefficients. There-

fore, it is common practice to add a low level high frequency noise to the spectrum of the

original signal. Equivalently, it is possible to add a small term to the diagonal elements of

the correlation matrix. This operation which is known as the high frequency compensation

[21] reduces the numerical problems in solving Eqs. (2.26) and (2.29).

2.3.5 Representation of LP coefficients

Linear prediction coefficients have to be quantized prior to transmission. To have smooth

variations during the coefficient update, it is common to interpolate them at rates higher

than the adaptation rate. Still, quantization errors can degrade the quality of the syn-

thesized speech. The stability of the synthesis filter H(z) may also be jeopardized by the

quantization process, if done in an inappropriate domain.

It is desirable to express the LP parameters in a domain with good quantization prop-

erties. Moreover, the representation of these parameters should be such that the stability

of H(z) can easily be ensured. The partial correlation (PARCOR) coefficients and the line

spectral frequencies (LSF) are among the most popular representations of LP parameters.

Detailed description of different LP domains and their quantization properties are found

in [12] [20].

2.4 Modelling the Glottal Excitation Signal

For the voiced speech, the glottal excitation signal consists of a series of slowly evolving

pitch pulses. This periodicity which is due to the oscillatory opening and closing of the
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vocal folds is present to a large extent in the residual signal. If the pitch period is available,

then it is possible to remove this long term redundancy. A pitch filter is often used to model

the periodicity of pitch pulses. Code Excited Linear Predictive coders (CELP) generally

utilize an adaptive codebook implementation of a pitch filter. In the next subsection, we

will describe a pitch filter and the main components of a CELP encoder.

2.4.1 Pitch filters

The simplest form of a pitch filter is given by

P (z) = 1 − βz−M (2.31)

where M is the estimated pitch lag which varies between 20 to 150 samples at 8 kHz

sampling rate. The parameter β indicates the level of the periodicity in the signal. The

effect of P (z) on the spectrum of the residual, e, is to filter out the fine harmonic structure

of the signal. In practice, the true pitch period may not be an integer multiple of the

P (z)e ε

Fig. 2.3 Pitch filter block diagram

sampling interval. A possible solution is to use a three term pitch filter:

P (z) = 1 − β−1z
−M−1 − β0z

−M − β1z
−M+1 (2.32)

The periodic component of e is better estimated by means of this averaging. The pitch

filter parameters are computed so as to minimize the prediction error energy ‖ε‖2. Details

on the efficient computation of the pitch filter parameters are given in [22]. An alternative

solution is to use a fractional delay M [23] pitch predictor. This filter has only one tap but

provides better temporal resolution by allowing the lag to have an integer and a fractional

component.

The pitch parameters are generally updated once every 5 ms. The received signal at the

decoder side will have to go through 1/P (z) to construct the LP residual signal. Similar to

the LP analysis filter, the performance of a pitch filter is evaluated in terms of its prediction
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gain in dB units:

Gp = 10 log10

∑
n

e2(n)

∑
n

ε2(n)
(2.33)

2.4.2 Adaptive codebook

The action of the pitch filter can be mimicked by an adaptive codebook [24] as illustrated

in Fig. 2.4. The codebook is basically a table containing overlapping past segments of

Adaptive Codebook

ga

e

ε

+
−

Fig. 2.4 Adaptive codebook block diagram

excitation signal. The pitch lag M corresponds to the index of this table. Similarly,

the gain factor ga plays the role of the parameter β in Eq. (2.31). The word adaptive

emphasizes the fact that the codebook is updated by the new excitation. The use of an

adaptive codebook has become the standard approach to model the periodic component of

the residual in CELP coders (Fig. 2.5). Some of the important features to notice in this

architecture are:

• The overall excitation signal is constructed from the contribution of two codebooks.

The adaptive codebook models the periodic component in the residual signal while

the fixed codebook models the stochastic or the noisy component. The fixed codebook

is also known as the stochastic codebook.

• The content of the adaptive codebook is updated by a delayed version of the con-

structed excitation signal. The fixed codebook contains noise-like waveforms. During

the unvoiced segments of the speech the contribution of the fixed codebook dominates

the constructed excitation signal while the adaptive codebook contributes the most

during the voiced sounds.
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Fig. 2.5 Analysis by synthesis CELP coder block diagram
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• The speech signal is synthesized at the encoder. The error signal is the difference

between the original and the constructed speech. The name analysis-by-synthesis

emphasizes the fact that the excitation signal parameters are obtained by minimizing

the error between the input and synthesized speech.

• It is common practice to perceptually weight the error signal prior to the minimization

process. The weighting filter attempts to shape the error spectrum so as to take

advantage of the masking property of the human auditory system [25]. Since more

noise can be tolerated in the formant regions of the spectrum, the weighting filter

emphasizes the error in the spectral valleys [19]. The transfer function of the spectral

weighting filter is given by:

Hp(z) =

1 −
P∑

k=1

γ1
kakz

−k

1 −
P∑

k=1

γ2
kakz

−k

(2.34)

where 0 < γ2 ≤ γ1 < 1. The value of these parameters depend on the amount of the

quantization noise introduced by the coder. They may be fixed or determined on a

frame-to-frame basis [26].

• The excitation parameters are the two codebook indices and their gains. The best

possible solution is given by jointly optimizing all these parameters. However, this

approach involves an excessive computation load. Therefore, a suboptimal solution

is sought. The codebook entries and the respective scaling factors are determined

in a sequential way. At the first step, the adaptive codebook element and ga are

found by minimizing the energy of the weighted error εw while the fixed codebook

contribution is ignored. The speech frame is synthesized using only the adaptive

codebook contribution. Minimizing the weighted error energy between the original

and the previously synthesized speech leads to determination of the fixed codebook

entry and its gain.

More detailed descriptions of CELP coders and analysis-by-synthesis coding are found in

[20][27][28].
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2.4.3 Other methods for excitation modelling

At low bit rates (below 4 kb/s), CELP coders fail to reproduce the speech with an acceptable

quality. This is due to the lack of sufficient number of bits to appropriately represent the

excitation signal. Waveform Interpolation (WI) [29] and the Pitch Pulse Evolution model

(PPE) [30] are among some of the recently proposed low bit rate coders. In the WI

algorithm, the residual signal is modeled as a sequence of characteristic waveforms which

can be interpolated in time and/or in frequency for reconstruction. Therefore, the need to

transmit the parameters of every pitch pulse is eliminated. The PPE model considers the

residual signal as a series of underlying pitch pulses which are superimposed by an stochastic

signal. These two components are first separated. The encoder predicts the underlying

pulse twice, first based on the previous coded LP excitation and then from the current

underlying pulse. The difference between these two estimates is coded for transmission.

Due to the slowly evolving nature of the underlying pitch pulses, the difference between

two estimates has a very small variance and is well suited for efficient coding at low bit

rates.
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Chapter 3

Target Matching

3.1 Introduction

Linear prediction analysis generates a representation of the speech signal which consists of a

set of coefficients representing the vocal tract shape and an error signal which approximates

the glottal excitation signal. This view of the LP analysis emphasizes its potential benefits

in coding applications. During voiced speech, the articulators in the vocal tract move slowly,

leading to the smooth evolution of the speech power spectrum. Moreover, for these sounds

the excitation consists of a series of pitch pulses that also change shape slowly with time. If

a good estimate of the vocal tract shape and the glottal excitation waveform are available,

then it is possible to take advantage of these properties of voiced speech to increase coding

efficiency. For instance, a differential coding scheme would allow the reduction of bit rate

while maintaining high output speech quality.

In LP based coders, linear prediction parameters are extracted frame-by-frame from

the speech signal. Each frame is about 20 ms long. However, there are factors besides

the change in the vocal tract shape that contribute to the frame-to-frame variation of

LP parameters. These variations may be accentuated under quantization. The resulting

discontinuities at the update instants lead to audible distortion in the output speech. In

addition, the input speech is filtered by these parameters to form the residual signal. The

variations of the LP coefficients also contribute to the changes in the pitch pulses shape for

the pulses located in adjacent frames. Since efficient coding of the pitch pulses relies on the

similarity of successive pitch waveforms, the performance of this coding stage is jeopardized

by the LP variations.
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The most common approach for reducing the fluctuations in the LP coefficients is to

interpolate them at intervals of 5 to 10 ms between update instants. However, since this is

accomplished independently of the evolving residual waveform, the pitch pulse shapes are

not fully corrected.

In order to make sure that the changes in the residual pulses reflect the true evolution

of the glottal excitation, we propose to derive the coefficients of the LP synthesis filter so

as to minimize the deviation of the output from a target signal. The latter contains slowly

evolving pulses that are constructed dynamically from the LP residual and the past target

pulses.

The organization of this chapter is as follows: we begin by studying the shortcomings

of the standard linear prediction analysis in modelling the vocal tract transfer function

and the glottal excitation signal. We then present the target matching approach and argue

how it can reduce the effect of these shortcomings. The simulation results will illustrate

that the target matching scheme smooths the evolution of the LP parameters and the pitch

pulses shape simultaneously. The chapter is concluded by a discussion on the tradeoffs in

replacing the standard LP analysis with the target matching algorithm.

3.2 Shortcomings of LP Analysis

3.2.1 Asynchrony between the analysis frame and the speech pulses

The computation of the linear prediction coefficients is carried out frame-by-frame. These

parameters are then coded and transmitted once per frame. Therefore, the length of the

analysis frame should be long enough to keep the transmission rate small. On the other

hand, the frame length must be short enough to capture the local variation in the signal

power spectrum. Since neither the frame length nor its location is adjusted relative to the

speech pulses, LP coefficients may vary significantly from frame-to-frame. For instance, in

a stationary voiced region, the edge of a frame may fall on the high amplitude samples of a

pitch pulse. Another example is when the number of pitch pulses in adjacent frames is not

the same. In these situations, the LP coefficients are subject to significant fluctuations.

The effect of the frame size on the short term and long term (pitch) predictors have

been studied by Ramachandran and Kabal [22]. They have illustrated that increasing the

analysis frame length, and therefore reducing the number of variations in LP coefficients,
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tends to increase the pitch prediction gain which is a measure of the similarity of successive

pitch pulses.

3.2.2 Phase distortion in the residual signal

Linear prediction coefficients represent the minimum phase component of the vocal tract

transfer function (Section 2.2). This implies that filtering the speech signal with the inverse

LP filter results in a phase altered version of the true excitation to the vocal tract. This

phase distortion forces the pulses in the residual to differ from those in the glottal waveform.

The result of this deviation is the loss in the pulse prediction gain and therefore the overall

coding efficiency.

3.2.3 Mean square error criterion

Finding the LP filter coefficients by minimizing the energy of the residual penalizes the

high amplitude samples in this waveform, particularly the peak regions in the pitch pulses.

Since the glottal excitation and the vocal tract shape are relatively independent of each

other, the pulse modelling operation can take place after removing the effect of the vocal

tract from the speech. The MSE criterion forces the short term predictor to participate in

the task of pulse modelling. Therefore, these parameters are not entirely dedicated to the

modelling of the intended system, i.e. the vocal tract.

To eliminate this effect introduced by MSE criterion, Kabal and Ramachandran [31]

suggested jointly optimizing the parameters of the short and long term predictors. However,

the overall system of equations to solve for these parameters is linear only when the pitch lag

is at least as long as the frame length. This is a major drawback since the jointly optimized

LP and pitch parameters can only be computed for short frame lengths. For longer frame

lengths, they proposed an approximation to the exact solution using an iterative approach.

3.2.4 Aliasing in the autocorrelation domain

For a periodic signal that is the output of an all-pole filter, the linear prediction analysis fails

to identify the parameters of that filter [17][32]. Let R(i) and R̂LP (i) be the autocorrelation

functions corresponding to the input and the LP all-pole model impulse response. Since

periodic signals have discrete spectra, the input power spectrum is non-zero only for a set

of frequencies ωm equally spaced around the unit circle, i.e. ωm = 2π(m − 1)/N where
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m = 0, . . . , N − 1, and N is the number of discrete frequencies. If the power spectrum of

the input and the LP model are denoted by P (ωm) and PLP (ω), respectively, then

R(i) =
1

N

N∑
m=1

P (ωm)ejωmi (3.1)

RLP (i) =
1

2π

∫ π

−π
PLP (ω)ejωidω (3.2)

Let also Rorg(i) be the autocorrelation sequence of the original all-pole filter with power

spectrum P (ω),

Rorg(i) =
1

2π

∫ π

−π
P (ω)ejωidω (3.3)

P (ω) =
∞∑

l=−∞
Rorg(l)e

jωl (3.4)

It follows that

R(i) =
1

N

N∑
m=1

P (ωm)ejωmi

=
1

N

N∑
m=1

∞∑
l=−∞

Rorg(l)e
jωmlejωmi

=
∞∑

l=−∞
Rorg(l)

[
1

N

N∑
m=1

ej2π(m−1)/N(l−i)

]
(3.5)

The inner summation in the above equation assumes zero value except for l = i − lN , i.e.

R(i) =
∞∑

l=−∞
Rorg(i − lN) (3.6)

Due to the periodic nature of the input signal, its autocorrelation coefficients R(i) cor-

respond to a time-aliased version of the all-pole filter autocorrelation coefficients, Rorg.

From Eq. (3.6) and the autocorrelation matching property of linear prediction analysis

(Section 2.3.1) it follows that RLP (i) differ from Rorg(i). Therefore, the LP analysis does

not correctly model the vocal tract for voiced speech which has quasi-periodic nature.

We close this section by emphasizing that the aforementioned shortcomings result in LP

parameters which deviate from their true values. Whether this actually affects the speech

quality depends on the application. In a coding context, one hopes to take advantage

of the slow evolution of the pitch pulses and the slow change of the vocal tract shape,
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for the voiced speech, by using a differential coding scheme. Therefore the above factors

certainly influence the coding efficiency by increasing the quantization errors, and in turn

deteriorating the synthesized speech quality.

In the remaining part of this chapter, we present an alternative method for the compu-

tation of the LP filter coefficients. The target matching approach reduces the effect of the

above shortcomings by increasing the similarity in the successive pitch pulses shape while

resulting an smooth evolution for the LP parameters.

3.3 The Concept of Target Matching

The basic idea in the target matching approach is to re-derive the coefficients of the short

term predictor so as to minimize the difference (MSE sense) between the residual signal

and a target waveform (Fig. 3.1).

t

g

εe

Sa

s

P∑
k=1

akz
−k

Fig. 3.1 Target matching block diagram

The new analysis filter is therefore a Wiener filter. For voiced speech the target contains

slowly evolving pulses. Using this approach, the analysis filter no longer attempts to

directly minimize the energy of the residual. Providing a target to the short term predictor,

relieves this filter from the task of modelling pitch pulses. It is then entirely dedicated to

the identification of the vocal tract model parameters. The new LP filter coefficients are

derived as follows: Let s, S and t be the speech frame, the data matrix and the target
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signal, respectively. The error energy is given by

E = εTε

= (s − Sa − t)T (s− Sa− t)
(3.7)

Setting ∇aE = 0, leads to

2 (ST Sa + ST t − ST s) = 0 (3.8)

(ST S) a = STs− ST t (3.9)

Details on how to construct the target signal will be provided in the next section. The effect

of the target gain and shape must be separated. To do so, we define the weight factor g for

appropriately scaling the output of the target construction routine, τ . The final signal to

match is given by t = gτ . The optimum value for the gain factor g is found by minimizing

E:
∇gE = 2(τ TSa + gτ Tτ − sTτ )

= 0
(3.10)

Isolating a from Eq. (3.9) and substituting it in Eq. (3.10), leads to the final expression for

the gain:

g =
sT τ − τ T Pss

τT τ − τ T Psτ
where Ps = S

(
STS

)−1
ST (3.11)

The matrix Ps is the orthogonal projection operator onto the columns of S. If ST S is full

rank then Ps = UTU where U is the matrix of left singular vectors of S [10]. By setting the

target to zero, the Eq. (3.9) reduces to the standard LP equations Eq. (2.9). This strategy

will be adopted for unvoiced speech. For voiced speech however, the target signal will be

constructed using the previous, the present and possibly the future pulses. It should be

noted that due to the second term in the right hand side of the Eq. (3.9), the new filter

is not guaranteed to be minimum-phase even in the case where STS is Toeplitz. The new

residual signal is given by:

e = s − Sa

= s − S(ST S)−1ST (s− t)

= s −Ps(s− t)

(3.12)

If the standard LP residual is denoted by elpc, then the optimality of the Wiener filter

guarantees that ‖t − e‖ ≤ ‖t − elpc‖. This inequality implies that pulses in the new
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residual are closer than those in the original LP residual to the target pulses. Therefore,

they inherit the slowly evolving nature of the target pitch pulses.

3.4 Target Construction

Ideally, the target signal should be as close as possible to the excitation to the vocal tract.

Since this signal is unknown, the original LP residual can be used to design the target.

The construction algorithm attempts to remove artifacts introduced by the standard LP

method from the residual waveform. This is accomplished by assuring a slow evolution

in the shape of the pitch pulses during the voiced speech segments. We first begin by

explaining how a single target pulse is designed, and then proceed with the algorithm to

construct a target frame.

3.4.1 Constructing an individual target pulse

The approach to construct the target pulses is inspired by the PPE model [30]. We assume

that each pulse y is composed of two orthogonal components. The underlying pulse v which

is nearly constant for the adjacent pulses, and the innovation component u that models

variations due to changes in the underlying pulse and due to the imprecise LP filter.

y = βv + αu (3.13)

Consider L consecutive pitch pulses in the LP residual waveform. After normalization

to unit energy and appropriate alignment (Section 3.4.2) we obtain the set of pulses

y0 y1 . . . yL−1. Each of these pulses are decomposed according to Eq. (3.13):

y0 = β0 v + α0 u0

y1 = β1 v + α1 u1

...

yL−1 = βL−1 v + αL−1 uL−1

(3.14)

where

αi = yT
i ui, βi = yT

i v, uT
i v = 0

‖yi‖ = ‖v‖ = ‖ui‖ = 1 (3.15)
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The operator ‖.‖ denotes the 2-norm, i.e. ‖yi‖2 = yi
T yi. The desired pulse v is obtained

by minimizing the energy of the overall error:

v = arg min
‖v‖=1

∑
i

‖αiui‖2

= arg min
‖v‖=1

∑
i

αi
2

(3.16)

Since αi
2 + βi

2 = 1, we have

v = arg max
‖v‖=1

∑
i

βi
2

= arg max
‖v‖=1

‖YT v‖2
(3.17)

The vector v is the first right singular vector of the matrix Y:

Y = [ y0 y1 . . . yL−1 ] (3.18)

Figure 3.2 illustrates three consecutive pitch pulses that are decomposed according to the

Eq. (3.13). The underlying pulse v is constant while the innovation components ui are

nearly uncorrelated with each other and orthogonal to v.

3.4.2 Constructing the target frame

The target frame is formed pulse by pulse. Each pitch pulse is constructed using the pro-

cedure described in the previous section, considering the past target pulses, the current

pulse, and possibly some pulses in the future. The current and the future pulses can be

extracted from the original LP residual. However, in order to bias the filter coefficients

toward those of the previous frame, and consequently reduce their frame-to-frame fluctua-

tions, we interpolate the LP filter parameters for consecutive frames of voiced speech prior

to the target design. This operation takes place in the PARCOR or the LSF domain.

k̂i = γ ki−1 + (1 − γ)ki

ω̂i = γ ωi−1 + (1 − γ)ωi

(3.19)

where 0 < γ < 1, ki and ki−1 are the PARCOR coefficients of the current and the

previous frames, respectively. Similarly, ωi and ωi−1 correspond to the LSF parameters of
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+y0 β0 v= α0 u0

+y1 β1 v= α1 u1

+y2 β2 v= α2 u2

Fig. 3.2 Three consecutive pitch pulses decomposed to the underlying con-
stant pulse and the innovation component.
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the current and the previous frames, respectively. The choice of the PARCOR or the LSF

domain for the inter-frame interpolation is motivated by the fact that the stability of the

LP synthesis filter is not jeopardized in this process [12].

The interpolated parameters are then transformed back to the predictor coefficient

domain to obtain the smoothed predictor coefficients âi. The speech signal is filtered by âi

to form the current residual frame. The latter serves as the input to the target construction

algorithm.

Pulse
Extraction and

Construction

Target

Normalization
s 1 −

P∑
k=1

âkz
−k ê

Fig. 3.3 The use of the interpolated LP parameters to construct the target.

The individual pulses are extracted and normalized to have unit energy. They are then

zero padded to have the same length and circularly aligned such that the cross-correlation

between each pulse and the previous one is maximized. Each target pulse is constructed

using the n1 target pulses from the past. The current and n2 future pulses are extracted

from ê, as shown in Fig. 3.3. As an example, consider the residual waveform shown in

Fig 3.4. If n1 = n2 = 2, then to construct v0, the first three pulses should be considered.

To construct the second target pulse, v0 replaces y0 in the pulse matrix. In general, for

any pulse yl the target is given by

Y = [ v−n1+l . . . vl−1 yl . . . yn2+l ] (3.20)

vl = arg max
‖vl‖=1

‖YT vl‖ (3.21)

The resulting pulses are then scaled and realigned with the original ones before replacing

them in the residual waveform. Figure 3.8 illustrates the input signal and the constructed

target. Compared to the original residual, the smooth evolution in the target pulses shape

is clearly noticeable.
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Fig. 3.4 The input residual to the target construction routine.

y1y0 y2

Y0 = [ y0 y1 y2 ]

v0 = arg max
‖v‖=1

‖Y0
T v‖

Fig. 3.5 First target pulse for a voiced segment.
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y1 y2 y3v0

Y1 = [ v0 y1 y2 y3 ]

v1 = arg max
‖v‖=1

‖Y1
T v‖

Fig. 3.6 Second target pulse for a voiced segment.

v0 v1 y2 y3 y4

Y2 = [ v0 v1 y2 y3 y4 ]

v2 = arg max
‖v‖=1

‖Y2
T v‖

Fig. 3.7 Third target pulse for a voiced segment.
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Fig. 3.8 The residual waveform (a) and the corresponding target signal (b).
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3.5 Spectral Smoothness and Stability

Target matching algorithm attempts to eliminate or reduce the effect of the conventional LP

analysis shortcomings by decoupling the short term and the long term prediction blocks.

This separation, along with the fact that the residual signal is obtained by filtering the

speech with an interpolated version of the original LP coefficients, favours the new filter

parameters to be closer to those of the previous frame.

D(ai, ai−1) ≤ D(alpc , ai−1) (3.22)

where D is a distance measure, ai−1, ai, and alpc are the LP coefficients of the previous

frame, the target matched, and the original LP filter, respectively. However, the target

matching does not guarantee that the above inequality holds for all speech frames. In

situations where Eq. (3.22) is violated, correction measures can be taken. For instance,

one can redesign the target to be closer to the original residual waveform. The filter that

matches this new target will be closer to alpc. Let t and elpc be the target and the residual

frames, respectively.

t = elpc + ξ (3.23)

The signal ξ is the result of the target construction algorithm. It is because of the contri-

bution of this term that the pitch pulses shape in the target waveform evolve more slowly

than in the original LP residual. Let ∆a denote the difference between the original and

the new filter. For the current frame, we have

∆a = a− alpc

= (STS)−1ST (s− t) − (ST S)−1STs

= (STS)−1ST (s− elpc − ξ) − (ST S)−1ST s

= −(STS)−1ST ξ

(3.24)

where ST elpc = 0, by the orthogonality principle. Replacing ξ with µξ where 0 ≤ µ < 1

decreases ‖∆a‖. The weight µ can be reduced gradually until Eq. (3.22) is satisfied.

Reducing n1 and n2 in Eq. (3.20) also makes the target more similar to the residual.

Consider the extreme case where Yl contains only the current pulse, yl. The target and

the residual pulse are then identical. These approaches may also be applied in situations
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where the new LP filter is not minimum phase.

3.6 Iterative Target Matching

To further improve on the similarity of the successive pitch pulses and reduce the frame-

to-frame variation of the LP coefficients, the described target construction and matching

algorithm can be applied in an iterative fashion, as indicated in Fig. 3.9. At the k-th

step, first the minimum phase property and the smoothness conditions are verified (if so

desired). The new LP filter a
(k)
i is then fed back into the target construction routine

for being interpolated with ai−1 according to Eq. (3.19). The new residual signal is then

formed by filtering the input speech with the interpolated coefficients. The new target is

constructed based on the pulses extracted from this residual. The filter a
(k+1)
i , matched to

the new target, is accepted if the matched residual pulses, v, are more similar than in the

previous step and/or if the smoothness in LP parameters is improved:

‖a(k+1)
i − ai−1‖1 < ‖a(k)

i − ai−1‖1 (3.25)

L−1∑
l=1

(v
(k+1)
l )T (v

(k+1)
l−1 ) >

L−1∑
l=1

(v
(k)
l )T (v

(k)
l−1) (3.26)

where we have used the 1-norm of the LP difference vector as the distance measure D

Eq. (3.22).

3.7 Experiments

High pitch female speech was sampled at 8 kHz. Standard linear prediction coefficients were

calculated every 20 ms, using a 30 ms analysis window. For the autocorrelation method,

a Hamming data window was used. The predictor order P was set to 10. The resulting

parameters were interpolated with those of the previous frame according to Eq. (3.19). To

filter the input speech, these parameters were held constant for 40 samples and linearly

interpolated (in either LSF or PARCOR domain) between adjacent frames. Pitch pulse

extraction took place on the output residual using an independent pulse detection algorithm

[30].

If the matrix STS in Eq. (3.9) is desired to be Toeplitz, then the target signal should
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Read new frame

Standard LP analysis

Smooth LP coeff.
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Fig. 3.9 The iterative target matching block diagram.



3 Target Matching 41

contain the edge effects introduced by windowing the input speech. However, these edge

values depend on the filter a for which the system (3.7) is being solved. To sidestep this

problem, the edge effect was estimated iteratively. The first and last P samples of the

target were replaced by those of the LP residual. The system of equations (3.9) is then

solved for a. For the second step, the edge values of target are updated with the output of

the filter a. We then iterate for a. Experiments indicate that after few iterations the filter

coefficients no longer change significantly.

For the autocorrelation method we make sure that the minimum phase property of the

analysis filter is not lost. Whenever the resulting filter is not minimum phase, we replace

ξ with µ ξ in Eq. (3.23), as explained in section (3.5). The same approach was used to

monitor the smoothness in the evolution of the LP spectral parameters. The distance

between consecutive vectors is measured by the 1-norm of the difference vector between

consecutive set of coefficients. To evaluate the performance of the target matching approach

we compute the following parameters:

• Short term prediction gain: the ratio of the energy at the input of the filter to the

energy of the output residual, Eq. (2.18).

• Similarity of pitch pulses: measured by the prediction gain of a three tap pitch

predictor Eq. (2.33). The coefficients of this filter were updated every 5 ms.

• Smoothness in the evolution of LP parameters: measured by the average of the 1-

norm of LP coefficients difference vector in the LSF (ω) or the predictor coefficient

(a) domain:

‖∆ω‖1 =
N−1∑
i=0

‖ωi+1 −ωi‖1/(N − 1) (3.27)

‖∆a‖1 =
N−1∑
i=0

‖ai+1 − ai‖1/(N − 1) (3.28)

where N is the total number of frames.

Table 3.1 and 3.2 show the result of the target matching approach for a female speech

file. The terms LP, TM, and ITM stand for the the conventional linear prediction analysis,

the target matching and the iterative target matching approach, respectively. The value

of the weight factor γ in Eq. (3.19) was set to 0.35. Each target pulse is constructed



3 Target Matching 42

considering two pulses in the past, the current pulse, and an additional pulse in the future,

i.e. n1 = 2 and n2 = 1 in Eq. (3.20).

Table 3.1 Target matching performance results for the autocorrelation
method.

Matching Prediction Gain (dB)

Method Formant Pitch Overall ‖∆ω‖1

LP 12.73 6.01 18.74 0.75
TM 12.43 6.36 18.79 0.64
ITM 12.01 6.69 18.70 0.61

Table 3.2 Target matching performance results for the covariance method.

Matching Prediction Gain (dB)

Method Formant Pitch Overall ‖∆a‖1

LP 12.62 5.91 18.53 2.65
TM 12.17 6.45 18.62 2.10
ITM 11.89 6.60 18.49 1.98

Optimizing the LP filter according to the target signal results in only a small loss in the

short term prediction gain. The benefit of the proposed analysis method is an increase in

the smoothness of the filter dynamics. Consequently, the successive pulses in voiced regions

are more similar, and the pitch prediction gain has also increased. The price for the higher

performance of the iterative approach is the reduction in the formant predictor gain and

the extra computation.

To evaluate the effect of different parameters on the performance of the system, The

values of γ, n1, and n2 were varied. For a given γ, increasing the number of the pulses that

participate in the target construction algorithm results in an increase in the pitch prediction

gain. However, this deteriorates the smoothness in the evolution of LP coefficients. On the

other hand, for given n1 and n2, the best overall performance in terms of the prediction gain

and the smoothness in the evolution of LP parameters was obtained for 0.4 ≤ γ ≤ 0.5.

Figure 3.10 displays the original LP residual, the target, and the new residual waveform.

From this plot, we see the smooth evolution of the target pulses. We also notice that the

new residual is very close to the target waveform. Figure 3.11 compares the difference
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Fig. 3.10 Comparing the residual waveforms.
(a) Original LP residual. (b) Target signal. (c) Target matched residual.



3 Target Matching 44

0 500 1000
−4000

0

4000

0 500 1000
−4000

0

4000

(a)

(b)

Fig. 3.11 Comparing the difference between the target and the residual
waveforms.

(a) Difference between the target and the original LP residual, (b) Difference between the
target and the new residual.
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between the target and the original signal with the difference between the target and the

new residual. High amplitude samples at the location of pitch pulses indicate a large

deviation from the target at those regions. The decrease in the amplitude of the difference

signal at the pulse locations confirms that, compared to the original LP residual, the new

residual pulses are closer to the target pulses. Figures 3.12 and Fig. 3.13 show similar

results for another segment of speech.

3.8 Remarks

The target construction method that we have proposed relies on the knowledge of the pitch

pulse locations in the residual waveform. Although this information is in part available in

some of the new generation coders [33] [29], it may be an obstacle in the use of the target

matching approach in the more standard coders. This routine is also the main source

of the computational complexity in the TM approach. However, it is possible to reduce

the computational load of this algorithm without compromising significantly the overall

performance. For instance, since the target pulses in each frame are scaled appropriately,

the gain factor g in Eq. (3.11) is near unity. Replacing g with 1 eliminates the need to

compute the projection matrix Ps. The simulation results indicate that by making this

simplification the smoothness in LP coefficients is only slightly compromised while the

prediction gain is not affected.

Another point to notice is that the set of equations to solve for the new filter, Eq. (3.9),

does not really contribute to the system complexity. If the input speech is not windowed,

the correlation matrix STS will be symmetric positive definite. Cholesky decomposition

algorithm can be used to solve the system. When the input speech is windowed prior to

the analysis, this matrix will be Toeplitz. The Durbin recursion (n2 flops) does not apply

because of the second term in the right hand side of the Eq. (3.9). However, one can still use

the Levinson algorithm (2n2 flops) to solve the system. When no data window is applied,

the matching process reduces the number frames with unstable LP parameters. With the

use of a data window, although the minimum phase property of a is not guaranteed, all

the resulting LP synthesis filters were stable for the tested speech segments.
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Fig. 3.12 Comparing the residual waveforms.
(a) Original LP residual. (b) Target signal. (c) Target matched residual.
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Fig. 3.13 Comparing the difference between the target and the residual
waveforms.

(a) Difference between the target and the original LP residual. (b) Difference between the
target and the new residual.
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3.9 Summary

In this chapter, we have presented an alternative method to perform the linear prediction

analysis of the speech signal. The inverse formant filter is replaced by a Wiener filter where

the target signal contains slowly evolving pulses. Experiments show that the frame-to-

frame variation of LP coefficients is reduced and the matched residual pitch pulses evolve

slowly with time. The price for these gains in coding efficiency is paid in terms of the

amount of the computation required to construct the target and to obtain the filter with

the best overall performance.
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Chapter 4

Augmented LP Error Criterion

4.1 Introduction

High pitched speech during nasals and nasalized sounds often takes on a sinusoidal form.

In addition to large frame-to-frame fluctuations of the LP parameters, these segments are

characterized by having a very low energy residual in which the pitch pulses are nearly

absent. This signal is no longer a good representation of the true excitation to the vocal

tract.

In this chapter, we begin by illustrating that these artifacts are related to the numerical

conditioning of the correlation matrix for the nasal sounds. We then propose adding a

second term to the conventional LP error criterion to account for the smoothness in the

evolution of LP parameters. The contribution of this second term to the overall error

function is controlled by the numerical conditioning of the correlation matrix. Along with

the mathematical arguments, the simulation results illustrate that this modification results

not only in a smoother evolution of the LP spectral parameters but also prevents the

disappearance of pitch pulses from the residual waveform.

4.2 Pitch Pulse Disappearance

Nasal sounds are characterized by a low first formant (near 250 Hz) which dominates

the power spectrum. The anti-resonance due to the closed oral cavity results in a weak

second formant. For these nasals or nasalized vowels, when the harmonics are widely

spaced (i.e. high pitched speech), the concentration of energy in low frequencies and the
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presence of spectral zeros may leave only one or two dominant harmonics in the signal

power spectrum. This explains the sinusoid-like form of the speech signal during these

segments. Figure (4.1) illustrates the words “time in” spoken by a female speaker. The

sinusoidal shape of the speech waveform for the nasals /m/ and /n/ is clear. Notice also

the large formant prediction gain and the weak pitch pulses in the corresponding residual.

/m/ /n/

Fig. 4.1 The speech waveform and the standard LP residual corresponding
to the sentence “time in” spoken by a female speaker.

In order to understand this behavior of the linear prediction analysis for nasal sounds,

we begin by examining the case of a pure sinusoid. Let e, s, and S be the residual signal,

the input, and the data matrix, respectively. Linear prediction analysis results in solving

the following least squares problem:

Sa
ls
= s (4.1)

The solution to this system is given by:

a = S+s (4.2)
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where S+ is the Moore pseudo-inverse of S. The residual signal e is computed as the error

signal:

e = s− Sa

= s− SS+s

= s− Pss

(4.3)

The matrix Ps is the orthogonal projection operator in the space spanned by columns of S

(Section 2.1). For a pure sinusoidal signal, column of S correspond to shifted versions of

s. They can be expressed (Appendix 1) as a linear combination of any two other columns.

Therefore, the rank of S and (STS) is two. Then the system (4.1) is over-determined and

admits many possible solutions. This explains the large frame-to-frame fluctuations of the

LP parameters for the sinusoid-like regions of speech. Another conclusion from this remark

is that when the predictor order is larger than or equal 2, the vector s belongs to the span

of the columns of S, i.e. s = Pss and e = 0, as shown in Table 4.1:

Table 4.1 The residual energy versus the prediction order for the covariance
method.

Prediction order Residual energy
1 0.074
2 ε

where ε is near the machine precision. Figure 4.2 shows a pure sinusoidal waveform.

The residual signals obtained by a first and second order predictors are also shown on the

same plot. As expected, with a second order filter, the input is perfectly predicted.

When the input signal is windowed prior to the LP analysis, as is the case for the

autocorrelation method, the columns of the data matrix S do not correspond to the shifted

versions of s. Therefore the autocorrelation matrix R is generally full-rank. However, this

matrix will be ill-conditioned (Table 4.2). As the ratio of the analysis window length N to

the sinusoid period Np increases, the numerical rank1 of (ST S) rapidly approaches two, i.e.

λ3 λ4 . . . λP → 0

where λ1 ≥ λ2 ≥ λ3 . . . ≥ λP ≥ 0 are the eigenvalues of (ST S).

1The numerical rank of a (n × n) matrix is k if λ1 ≥ λ2 ≥ . . . ≥ λk � λk+1 ≥ . . . ≥ λn
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Fig. 4.2 Pure sinusoid, first and second order residual (flat line).

Table 4.2 Distribution of eigenvalues of normalized autocorrelation matrix
for a pure sinusoid waveform.

N/Np

λi 1 2 5 10
λ10 0.0002 0.0001 0.0000 0.0000
λ9 0.0002 0.0001 0.0000 0.0000
λ8 0.0003 0.0001 0.0001 0.0000
λ7 0.0004 0.0002 0.0001 0.0000
λ6 0.0008 0.0004 0.0002 0.0001
λ5 0.0019 0.0010 0.0004 0.0002
λ4 0.0067 0.0035 0.0014 0.0007
λ3 0.0530 0.0269 0.0109 0.0055
λ2 1.5859 1.6947 1.7601 1.7820
λ1 8.3506 8.2730 8.2268 8.2115

Table 4.3 The residual energy versus the prediction order for autocorrela-
tion method.

Prediction order Residual energy
1 0.0997
2 0.0502
3 0.0349
4 0.0274
5 0.0233
10 0.0200
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The speech signal is never truly a pure sinusoid. Monitoring the distribution of the

eigenvalues of the correlation matrix indicates that its numerical rank for the sinusoid-like

frames of speech is between 3 and 5. Figures 4.3 and 4.4 illustrate large increase in the

ratio of the first to the subsequent eigenvalues for such segments of speech. We notice that

the pitch pulses for those regions are very weak.

Improving the spread of eigenvalues of the correlation matrix results in a better condi-

tioned system to solve for the LP filter parameters. When the numerical rank of (STS) is

equal to the predictor order P , not only the solution to the Eq. (4.1) is unique, but also

the system is less sensitive to small perturbations. As a result, the large frame-to-frame

fluctuations of the LP coefficients is reduced. It should be noted that the bandwidth ex-

pansion and the high frequency compensation techniques, presented in Chapter 2, cannot

provide a sufficient amount of correction for the sinusoid-like regions of speech.

The first step to improve the conventional linear prediction analysis for the nasal or

nasalized sounds is to estimate the distribution of eigenvalues of (STS). The computational

complexity associated with eigen-decomposition algorithm is significant. Although efficient

algorithms have been proposed [34] [35] [36] to estimate the eigenvalues of Toeplitz and/or

symmetric positive definite matrices, the computational cost involved is still too high for

all practical purposes. In order to determine the conditioning of the correlation matrix in

a computationally efficient manner approximations to the eigen-decomposition should be

employed. Two of these approximations are studied in the next section.

4.3 Eigenvalues Estimation

Many transforms have been proposed to approximate diagonalization of the correlation

matrix. Discrete Fourier Transform (DFT) and Discrete Cosine Transform (DCT) are

among the most popular ones.

4.3.1 Discrete Fourier Transform

For the wide-sense-stationary signals, DFT asymptotically approaches the eigen-decomposi-

tion [37]. The existence of the Fast Fourier Transform (FFT) algorithm for the computation

of the DFT, and data independent nature of this transform are among its attractive features.
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Fig. 4.3 Example of sinusoid-like speech region.

(a) Speech waveform, (b) LP residual, (c) λ1/λ3, (d) λ1/λ4, (c) λ1/λ5.
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Fig. 4.4 Example of sinusoid-like speech region.

(a) Speech waveform, (b) LP residual, (c) λ1/λ3, (d) λ1/λ4, (c) λ1/λ5.
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The N -point DFT of a signal y(n) is given by:

YDFT (k) =
N−1∑
i=0

y(i)e−j 2πik
N , k = 0 . . . N − 1 (4.4)

The unitary DFT matrix which serves to diagonalize a symmetric positive correlation ma-

trix is defined as

F =




1 1 1 · · · 1

1 e−j 2π
N e−j 4π

N · · · e−j
2π(N−1)

N

1 e−j 4π
N e−j 8π

N · · · e−j
4π(N−1)

N

1 e−j 8π
N e−j 16π

N · · · e−j
8π(N−1)

N

...
...

... · · · ...

1 e−j
2π(N−1)

N e−j
4π(N−1)

N · · · e−j
2π(N−1)2

N




(4.5)

4.3.2 Discrete Cosine Transform

There exist several definitions for the Discrete Cosine Transform (DCT). The one used in

this document is based on [38]:

YDCT (k) =
√

2
N

c(k)
N−1∑
i=0

y(i) cos(
π(2i + 1)k

2N
), k = 0 . . . N − 1 (4.6)

c(k) =




1√
2

k = 0

1 k 6= 0

The unitary DCT matrix is defined as

D =

√
2

N




1√
2

1√
2

1√
2

· · · 1√
2

cos( π
2N

) cos( 3π
2N

) cos( 5π
2N

) · · · cos( (2N−1)π
2N

)

cos( 2π
2N

) cos( 6π
2N

) cos(10π
2N

) · · · cos( (2N−1)(2π)
2N

)

cos( 3π
2N

) cos( 9π
2N

) cos(15π
2N

) · · · cos( (2N−1)(3π)
2N

)
...

...
... · · · ...

cos( (N−1)π
2N

) cos(3π(N−1)
2N

) cos(5π(N−1)
2N

) · · · cos( (2N−1)(N−1)π
2N

)




(4.7)

It is shown [39] that the DCT offers a better approximation (for finite N) to the eigen-
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decomposition than the DFT. Another interesting property of the DCT is that it is real-

valued, therefore the matrix D is orthogonal, i.e. DTD = I. The FFT algorithm can also

be applied for the efficient computation of the DCT [38].

Table 4.4 Notation for the eigen-decomposition, the discrete cosine trans-
form, and the discrete Fourier transform.

ST S = VΛVT Eigen-decomposition of ST S
V Eigenvectors matrix.

λ1 ≥ . . . ≥ λP Eigenvalues of ST S
ξi λ1/λi

ST S = DΛdD
T DCT Decomposition of ST S

D DCT orthogonal matrix.
d1 ≥ . . . ≥ dP Sorted diagonal elements of Λd

ξd
i d1/di

ST S = FΛfF
T DFT Decomposition of STS

F DFT unitary matrix.
f1 ≥ . . . ≥ fP Sorted diagonal elements of Λf

ξf
i f1/fi

To measure how close the DCT and the DFT approximate the eigen-decomposition

of the correlation matrix, we monitor the ratio λi/di and λi/fi, i = 1, . . . , 5 for 6.3 s of

female speech. The average value of these ratio are displayed in Table 4.5. The operator E[.]

indicates the time average. For all i the average ratio obtained via a DCT approximation

is closer to one than the average ratio offered by a DFT. This observation is confirmed by

Fig. 4.5 and Fig. 4.6 where the pattern of λi/di and λi/fi are displayed for the same speech

file on a frame-to-frame basis.

The condition number of the correlation matrix can be evaluated by computing the

ratio of the first to the subsequent eigenvalues. This measure is noted by ξk = λ1/λk. The

variables ξd
k and ξf

k are estimates of ξk when the eigenvalues are replaced with their DCT

or DFT approximations, respectively. Table 4.6 compares the average ratio between ξk and



4 Augmented LP Error Criterion 58

0 1 2 3 4 5 6
0

1

3

0 1 2 3 4 5 6
0

1

3

0 1 2 3 4 5 6
0

1

3

(b)

0 1 2 3 4 5 6
0

1

3

(a)

(c)

(d)

Fig. 4.5 Comparing the DCT and the DFT approximations of the eigenval-
ues for the covariance matrix.

(a) λ1/d1 solid line λ1/f1 dotted line
(b) λ2/d2 solid line λ2/f2 dotted line
(c) λ3/d3 solid line λ3/f3 dotted line
(d) λ4/d4 solid line λ4/f4 dotted line
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Fig. 4.6 Comparing the DCT and the DFT approximations of the eigenval-
ues for the autocorrelation matrix.

(a) λ1/d1 solid line λ1/f1 dotted line
(b) λ2/d2 solid line λ2/f2 dotted line
(c) λ3/d3 solid line λ3/f3 dotted line
(d) λ4/d4 solid line λ4/f4 dotted line
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its estimates for k = 3, . . . , 5. For all k, the discrete cosine transform offers a ratio closer

to unity.

Table 4.5 Mean of the ratio between the first four eigenvalues and their
DCT and DFT approximations.

R Φ

i E[λi/di] E[λi/fi] E[λi/di] E[λi/fi]

1 1.0468 1.1649 1.0431 1.1546
2 1.1009 1.7749 1.1049 1.7756
3 0.6562 0.4343 0.6625 0.4437
4 0.8834 0.5818 0.8907 0.6015

Table 4.6 Mean of the ratio between ξk and its DCT and DFT approxima-
tions.

R Φ

k E[ξk/ξ
d
k ] E[ξk/ξ

f
k ] E[ξk/ξ

d
k ] E[ξi/ξ

f
k ]

2 1.9681 4.9888 1.9102 4.7708
3 1.2813 5.3528 1.2803 5.4182
4 1.7209 16.1537 1.7841 16.9848

4.4 A Composite Error Criterion

In our method, we derive the formant prediction filter parameters by minimizing an error

function containing two terms. The first is the conventional LP error criterion, i.e. the

energy of the output of the short term predictor, while the second term reflects the variation

of LP coefficients with respect to those of the previous frame:

E = Elpc + µEa (4.8)
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where
Elpc = eTe

= (s− Sa)T (s− Sa)

= sTs − 2sT Sa + aT STSa

= R(0) − 2rTa + aTRa

(4.9)

and

Ea = µ(a− ap)
T W(a− ap) (4.10)

By normalizing Eq. (4.8) with respect to R(0) the weight factor µ becomes independent of

the signal energy:

E = (1 − 2r′T a + aT R′a) + µ(a− ap)
T W(a− ap) (4.11)

where a and ap are the filter parameters for the current and the previous frame, W is a

weighting matrix, R′ and r′ are the normalized correlation matrix and vector, respectively.

The filter a is found by solving the following system:

∇aE = −2r′ + 2R′a + 2µW(a− ap) = 0

(R′ + µW)a = (r′ + µWap)
(4.12)

One choice of W is the normalized correlation matrix associated with the previous frame,

R′
p. The solution a will minimize the prediction error for averaged correlation values.

Another choice for W is the identity matrix. In this case, the error becomes a function

of the energy in the difference between the impulse response of the consecutive LP filters.

Experiments show that by adjusting the weight µ, nearly identical results are obtained for

W set to I or R
′
p.

Appropriate selection of the weight µ assures a well conditioned system of equations.

However if µ is too large, the loss in short term prediction gain becomes excessive. This

suggests that the weight µ should be determined on a frame-to-frame basis, where its value

increases with the spread of the eigenvalues of R′. We choose µ according to the following

smooth switching function:

µ(ξ) =
ρ

2
(1 + tanh(

ξ − α

β
)) (4.13)
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Figure 4.7 shows a plot of µ(ξ). The parameter ρ is a scaling factor and ξ depends on the

conditioning of R′. The parameters α and β determine the shape of the curve. The weight

µ(ξ) is a scaled tanh() function which has been translated to α on the horizontal axis. The

parameter ρ sets an upper bound for µ(ξ). It can be used to ensure that the second term

in Eq. (4.8) never dominates.

 0  α 2α
0  

ρ/2

ρ  

Fig. 4.7 The smooth switching function.
(µ versus ξ)

By increasing α the contribution of the second term in the error function is decreased.

An appropriate value for α depends on the choice of k. Since the average value of ξk/ξ
d
k is

generally closest to unity for k = 4 (Table 4.6), ξd
4 is a good candidate for measuring the

numerical conditioning of the correlation matrix. Experiments show that for ξd
4 the value

of α can vary between 200 and 400. The parameter β controls the slope of the curve at

the point (α, ρ/2). Increasing the value of β increases µ(ξ) for ξ < α and reduces it when

ξ > α. Simulations indicate that a good value for β is near 90.

4.5 Experiments

High pitch female speech was sampled at 8 kHz. The test speech files contained several

nasalized phonemes. Linear prediction coefficients were calculated according to Eq. (4.12)

for 20 ms frames, using a 30 ms analysis window. For the autocorrelation method, a
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Hamming data window was used. To filter the input speech, these parameters were linearly

interpolated four times per frame. For the covariance method the scaling factor ρ was set

to 5 while ρ = 1 was used for the autocorrelation method. To measure the conditioning of

system of Eqs. (4.12) we used ξ4, and ξd
4 , corresponding to the eigen-decomposition and the

DCT decomposition, respectively. The diagonal elements of the matrix Λd (Table 4.4) are

not ordered. The four largest diagonal elements were sorted to compute ξd
4 . To avoid large

frame-to-frame variation of µ, the value of this weighting factor was smoothed between

successive frames:

µ̂i = γµi + (1 − γ)µ̂i−1 (4.14)

where µi is given by the Eq. (4.13), µ̂i and µ̂i−1 are the estimated weights for the current

and previous frames, respectively. Experiments show that the range of values 0.25 to 0.35

is generally good for the parameter γ.

Figures 4.8 and 4.9 show two different segments of female speech containing sinusoid-

like regions (nasalized phonemes). The conventional LP residual and the pattern of the

parameter µ are also shown. We notice that with the appropriate selection of the constants

α, β, the second term in the error equation Eq. (4.8) will become significant only when

the speech waveform is sinusoid-like, i.e. when the residual pitch pulses are very weak.

This makes it possible for our method to maintain a high short term prediction gain while

smoothing the evolution of LP coefficients and producing a residual waveform with clear

track of pitch pulses.

To evaluate the objective performance of the new error criterion we monitor the short

term prediction gain, the pitch prediction gain, and the average of the 1-norm of the LP

difference vector (Section 3.7). The results of the simulations are shown in the Tables 4.7

to 4.10. When the weight matrix W is set to 0, the contribution of the second term in

the LP error function is zero. Therefore, the augmented error approach is reduced to the

conventional LP method.

The results show that replacing ξ4 by its DCT approximation ξd
4 does not significantly

affect the overall performance. Adding the second term to the LP error function decreases

the short term prediction gain, since the latter measures only the contribution of the first

term to the overall error. There is also a slight increase in the long term prediction gain.

The overall prediction gain may or may not be reduced. The major benefit in the use of

the augmented error criterion is reflected by the smoothness in the evolution of the LP
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Fig. 4.8 Female speech, segment A.
(a) Speech waveform. (b) LP residual. (c) The weight µ.
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Fig. 4.9 Female speech, segment B.
(a) Speech waveform. (b) LP residual. (c) The weight µ.
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parameters.

Table 4.10 (autocorrelation method) shows that at the cost of 0.4 dB overall prediction

gain, the frame-to-frame fluctuations of the LSF [40] coefficients can be reduced by 37%.

Similarly, the loss of 0.2 dB in the prediction gain is compensated by 50% decrease in

the frame-wise variations of the predictor coefficients, as shown in Table 4.8 (covariance

method).

Consider using the LSFs to represent the LP parameters. Figures 4.10 and 4.11 show the

evolution of the LSFs for a segment of speech containing sinusoid-like regions. The dashed

line correspond to the LSFs obtained by using the augmented error criterion. Compared

to the standard LP method, the smooth evolution of the new LSFs is clearly noticeable.

Figure 4.12 displays the residual signal for the same segment of speech. For this partic-

ular segment (which is about three frames in length) the augmented error criterion results

in 3 dB loss in the short term prediction gain while the pitch prediction gain is increased by

2 dB. The new residual has clear track of pitch pulses in the regions where the conventional

LP residual fails to model the glottal pulses. This is due to the fact that the new set of

equations to solve for the LP parameters can no longer become rank-deficient (Section 4.2).

This improvement in pulse modelling is particularly beneficial in coders that rely on the

continuity of pitch pulses.

The PPE coder needs to identify every pitch pulse in the residual domain prior to

modelling them. A detailed description of the pulse detection algorithm used in this coder

can be found in [30]. We applied this program to the standard LP residual and the new

residual obtained by our method. The results affirm that in the second case the pulse

detector identified every pulse while for the conventional LP residual one or several pulses

could be missed when the speech waveform became sinusoid-like.
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Table 4.7 Preformance results for the covariance method when eigen-
decomposition is used to measure the conditioning of Φ. (β = 90, ρ = 5,
ξ = ξ4)

Prediction gain (dB)

Formant Pitch Overall ‖∆a‖1 α W
12.58 5.89 18.47 2.63 - 0
12.52 5.92 18.44 1.72 400 I
12.28 5.98 18.26 1.29 300 I
11.32 6.40 17.73 0.85 200 I

12.58 5.92 18.50 2.23 400 Φ
′
p

12.57 5.94 18.51 2.13 300 Φ
′
p

12.52 6.00 18.52 1.91 200 Φ
′
p

12.19 6.03 18.22 1.51 100 Φ
′
p

Table 4.8 Preformance results for the covariance method when DCT ap-
proximation is used to measure the conditioning of Φ. (β = 90, ρ = 5, ξ = ξd

4)

Prediction gain (dB)

Formant Pitch Overall ‖∆a‖1 α W
12.53 5.92 18.46 1.76 400 I
12.34 5.97 18.31 1.33 300 I
11.48 6.34 17.82 0.87 200 I

12.58 5.91 18.49 2.26 400 Φ
′
p

12.58 5.92 18.50 2.15 300 Φ
′
p

12.53 5.97 18.50 1.94 200 Φ
′
p

12.25 6.01 18.26 1.54 100 Φ
′
p



4 Augmented LP Error Criterion 68

Table 4.9 Preformance results for the autocorrelation method when eigen-
decomposition is used to measure the conditioning of R. (β = 90, ρ = 1,
ξ = ξ4)

Prediction gain (dB)

Formant Pitch Overall ‖∆ω‖1 α W
12.73 6.04 18.77 0.76 - 0
12.69 6.05 18.74 0.64 400 I
12.59 6.06 18.65 0.58 300 I
12.25 6.10 18.35 0.48 200 I

12.72 6.05 18.77 0.71 400 R
′
p

12.71 6.06 18.77 0.68 300 R
′
p

12.69 6.07 18.76 0.64 200 R
′
p

12.62 6.07 18.69 0.58 100 R
′
p

Table 4.10 Preformance results for the autocorrelation method when DCT
is used to measure the conditioning of R. (β = 90, ρ = 1, ξ = ξd

4)

Prediction gain (dB)

Formant Pitch Overall ‖∆ω‖1 α W
12.70 6.04 18.74 0.65 400 I
12.62 6.05 18.67 0.58 300 I
12.33 6.07 18.40 0.49 200 I

12.72 6.04 18.76 0.71 400 R
′
p

12.72 6.05 18.77 0.69 300 R
′
p

12.70 6.06 18.76 0.65 200 R
′
p

12.61 6.06 18.67 0.58 100 R
′
p
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Fig. 4.10 The LSF pattern for the standard LP method (solid line) and the
of composite error criterion (dashed line).
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Fig. 4.11 The LSF pattern for the standard LP method (solid line) and the
of composite error criterion (dashed line).
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Fig. 4.12 Comparison between the standard LP residual and the residual
obtained using the composite error criterion.

(a) Speech Waveform. (b) Standard LP residual. (c) Modified residual.
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4.6 Combined Target Matching and Augmented LP Error

It is possible to increase the prediction gain of the augmented LP error approach by by com-

bining it with the target matching technique. Two different scenarios were implemented:

• Case 1: In the original target matching algorithm, the standard linear prediction

analysis has to be performed to obtain a first estimate of the LP filter. The successive

predictor coefficients vectors are then interpolated according to Eq. (3.19) prior to

filtering the input speech. The output of the filter with the interpolated parameters

serves to construct the target waveform. In this experiment, we placed the target

matching block in cascade with the LP analysis using the composite error criterion,

as shown in Fig. 4.13. In this combined method, since the augmented error function

accounts for the frame-to-frame fluctuations of the LP parameters, the inter-frame

interpolation block is no longer needed. This operation reduces the computational

load of the target construction routine.

LP analysis using

composite error 

LP filtering

Speech

LP coefficients

Target

construction

Target

matching
Target matched

residual

criterion

Fig. 4.13 Target matching and the composite error criterion in cascade.
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• Case 2: LP filter coefficients are computed by minimizing the following error function:

E = (s − Sa − t)T (s− Sa− t) + µ(a − ap)
TW(a− ap) (4.15)

The resulting filter minimizes the difference between the target and the LP residual

pulses, as well as the frame-to-frame variation of the LP parameters. Setting ∇aE = 0

leads to [
(ST S) + µW

]
a = ST (s− t) + µWap (4.16)

We replaced Eq. (3.9) by Eq. (4.16) while keeping all the other elements of the target

construction and matching routines unchanged. The results are shown in Table 4.11:

Table 4.11 Performance of combined TM and composite error method.
(β = 90, ρ = 5, ξ = ξd

4 , α = 300, and W = I)

Prediction gain (dB)

LP method Formant Pitch Overall ‖∆a‖1

Standard LP method 12.58 5.89 18.47 2.63
Composite error method 12.34 5.97 18.31 1.33
TM (original) 12.19 6.54 18.73 2.18
TM (case 1) 12.23 6.46 18.69 1.62
TM (case 2) 12.16 6.27 18.43 1.37

We notice that using the TM algorithm in combination with the composite error cri-

terion is very effective in maintaining the overall prediction gain high while reducing sub-

stantially the frame-to-frame variation of the LP parameters.

The pitch prediction gain is higher in Case 1 since the error criterion is entirely ded-

icated to matching the target. Case 2 results in better smoothing of the evolution of LP

coefficients. This is due to the presence of the additional term in the error function. In both

cases, the overall prediction gain has been recovered while the frame-to-frame variation of

the predictor parameters is still considerably less than the standard LP method and the

original target matching approach.
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4.7 Summary

In this chapter we have presented a composite error measure to obtain the LP filter coef-

ficients. This new criterion accounts for the prediction error and the evolution of the LP

parameters. Using this approach, without a significant increase in the computational cost,

we increase the smoothness in the linear prediction parameters and prevent the disappear-

ance of the pitch pulses for the sinusoid-like speech waveforms. This method can easily be

combined with the target matching approach to increase the similarity of the successive

pitch pulses in the residual signal.
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Chapter 5

Summary and Concluding Remarks

The objective of this thesis has been to investigate methods for jointly smoothing the

evolution of linear prediction coefficients and the residual pitch pulses shape, in LP based

coders . During the stationary voiced regions of speech, the vocal tract shape and the

residual pitch pulses evolve slowly. For these regions, any sudden variation in the LP

coefficients or in the shape of the residual pulses is very likely to be the result of the

shortcomings of linear prediction analysis. To reduce the effect of these shortcomings two

different methods have been proposed: Target Matching (TM) and a composite LP error

criterion.

5.1 Target Matching

5.1.1 The concept

Minimizing the energy of the residual signal forces the LP coefficients to participate in the

task of pitch pulse modelling. Therefore, they perform poorly in estimating the vocal tract

model. In the target matching algorithm, the LP coefficients are derived by matching the

output of the short term predictor to a target waveform. The latter contains slowly evolving

pulses during the voiced speech while it assumes zero value for unvoiced regions. A method

based on the concept of pitch pulse evolution (PPE) is proposed to construct the target

pulses. During voiced speech, we first interpolate the consecutive set of LP parameters and

then use the output residual to construct the target. This operation is intended to bias the

resulting filter coefficients toward those of the previous frame, and therefore reduce their
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frame-to-frame variation.

Each target pulse is constructed using an error minimization approach in which pre-

viously constructed target pulses as well as the residual pulses are considered. Limiting

the number of the pulses that participate in this process allows the resulting target sig-

nal to have a natural shape. Therefore, target pulses follow the evolution of the residual

pitch pulses while any sudden change in their shape is eliminated. At the boundaries of

the voiced segments, only a few pulses contribute to the shape of the target pulse. Also,

during the transient regions the target and the residual pulse are more similar than during

the stationary voiced regions. This characteristic of the proposed algorithm gives the LP

residual pulses the freedom to reach the steady state region before being affected by the

target.

The TM approach does not guarantee the stability of the synthesis filter. However,

experiments show that using this method to obtain the LP coefficients reduces the number

of unstable LP filters. Nevertheless, protections measures were presented to avoid having

an unstable filter when the original LP filter is stable.

5.1.2 Results and future direction

In order to measure the potential of the TM technique without the influence of the various

components of a coder, this algorithm was tested outside a standard speech coder environ-

ment. Simulation results show on average an increase of 0.4 dB in the prediction gain of

the pitch predictor. Therefore, the TM approach is successful in increasing the similarity of

successive pitch pulses. However, since the target matched filter is suboptimal in the MSE

sense, the overall prediction gain (sum of the short term and long term prediction gain) is

only slightly increased. The main benefit of this technique is the resulting smoothness in

the evolution of the LP parameters. Experiments indicate an average reduction of 13 % in

the frame-to-frame variation of the LP coefficients.

Some methods to reduce the computational load of the target matching approach are

suggested in Chapter 3. However, the main source of complexity in TM algorithm is in

the proposed target construction routine. This routine requires the knowledge of the pitch

pulses location. It also involves solving a least squares problem to obtain each target pulse.

Since the target construction and matching blocks are independent of each other, it is

possible to replace our target construction algorithm with other periodicity enhancement
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techniques. The only requirement for these alternative methods is to guarantee the smooth

evolution of the pitch pulses during the voiced segments. Comb filtering [41], adaptive comb

filtering [42], and pitch sharpening using non-linear techniques [43] are potential candidates

for this purpose. If the coder of interest uses an adaptive codebook to model pitch pulses,

an interesting experiment would be to use the contribution of this codebook as the target

signal. This approach results in an increase in the adaptive codebook gain, and therefore

enhances the periodicity of the reconstructed speech.

5.2 A Composite LP Error Criterion

5.2.1 The concept

In the second part of this thesis it is proposed to smooth the evolution of the LP coefficients

by directly including their variation in the LP error function. This approach was motivated

by the poor behavior of the standard LP analysis during the nasal and nasalized phonemes.

For these sounds, the residual pitch pulses are weak and sometimes absent. Moreover,

the pattern of the LP parameters often has random fluctuations at these regions. These

phenomena are explained by studying the distribution of the eigenvalues of the correlation

matrix during nasalized sounds.

To improve the performance of the LP analysis for these phonemes, we add a second

term to the conventional MSE error criterion used to derive the LP coefficients. The new

term is a function of the difference between the current frame and the previous frame set

of LP coefficients. In order to maintain the overall prediction high, the contribution of

the additional term to the error function has to be controlled dynamically. This is accom-

plished by weighting the new term based on the numerical conditioning of the correlation

matrix. To estimate the condition number of the correlation matrix, we used the DCT

approximation of the eigenvalues. This transformation is data independent and can be

efficiently implemented with the FFT algorithm.

The standard LP analysis using Durbin recursion requires O(n2) flops where n is the

order of the short term predictor. The DCT operation is performed on the n correlation

coefficients of the speech frame. Without using fast algorithms, the cost associated with

the above operation is O(n2) flops. Moreover, to solve the new set of the LP equations,

Levinson recursion is used (O(n2) flops). Therefore, the computational complexity of the



5 Summary and Concluding Remarks 78

augmented LP error criterion approach is approximately three times the complexity of the

conventional LP method.

5.2.2 Results and future direction

Experiments confirm that this method is very effective in reducing the frame-to-frame fluc-

tuations of the LP parameters. Also, the residual waveform has a clear track of pitch pulses

during the nasalized regions of speech where the standard LP method fails to model the

glottal pitch pulses. Consequently, this method increases the accuracy of pitch estimation

and the pulse detection in the residual domain while it smooths the evolution of the spectral

parameters.

To increase the similarity of successive pitch pulses, we combined this method with the

TM algorithm. The results show a noticeable improvement in the pitch prediction gain

while the frame-to-frame variation of the LP coefficients is also considerably less than the

one in the original TM technique.

The reduction in the frame-to-frame variation of the LP coefficients reduces the as-

sociated quantization errors. The logical continuation of this work involves the design a

LP quantizer based on differential coding that takes advantage of the above to reduce the

number of bits needed to adequately represent the signal power spectrum.

There has been recent work [44] to show that a post quantization smoothing of the LP

parameters has a beneficial effect on speech quality. The work of this thesis indicates that

we can achieve pre-quantization smoothing of the LP parameters. This may obviate the

need for post-quantization smoothing.
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Appendix A

Predictability of the Sinusoidal

Waveform

Claim:

In a sinusoidal waveform at any time instant can be expressed as a linear combination of

the two previous signal values:

cos(ωn) = a1 cos(ω(n − k1)) + a2 cos(ω(n − k2)) (A.1)

where a1 and a2 are independent of n.

Proof:

By expanding the right hand side of the Eq. (A.1), we obtain

cos(ωn) = cos(ωn) [a1 cos(ωk1) + a2 cos(ωk2)] + sin(ωn) [a1 sin(ωk1) + a2 sin(ωk2)] (A.2)

The coefficients a1 and a2 should be chosen such that:


 a1 cos(ωk1) + a2 cos(ωk2) = 1

a1 sin(ωk1) + a2 sin(ωk2) = 0
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The desired values of a1 and a2 are easily found to be:

a1 =
− sin(ωk2)

sin(ωk1) cos(ωk2) − cos(ωk1) sin(ωk2)
(A.3)

a2 =
sin(ωk1)

sin(ωk1) cos(ωk2) − cos(ωk1) sin(ωk2)
(A.4)

Therefore, for any choice of the time n, the value of the cos(ωn) can be expressed as a

linear combination of the two previous samples cos(ω(n − k1)) and cos(ω(n − k2)) where

the weights a1 and a2 only depend on the chosen delays k1 and k2.
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