
Interpolation of Linear Prediction
Coefficients for Speech Coding

Tamanna Islam

Department of Electrical Engineering
McGill University
Montreal, Canada

April 2000

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment
of the requirements for the degree of Master of Engineering.

c© 2000 Tamanna Islam



i

Abstract

Speech coding algorithms have different dimensions of performance. Among them, speech

quality and average bit rate are the most important performance aspects. The purpose of

the research is to improve the speech quality within the constraint of a low bit rate.

Most of the low bit rate speech coders employ linear predictive coding (LPC) that

models the short-term spectral information as an all-pole filter. The filter coefficients are

called linear predictive (LP) coefficients. The LP coefficients are obtained from standard

linear prediction analysis, based on blocks of input samples.

In transition segments, a large variation in energy and spectral characteristics can occur

in a short time interval. Therefore, there will be a large change in the LP coefficients in

consecutive blocks. Abrupt changes in the LP parameters in adjacent blocks can introduce

clicks in the reconstructed speech. Interpolation of the filter coefficients results in a smooth

variation of the interpolated coefficients as a function of time. Thus, the interpolation of

the LP coefficients in the adjacent blocks provides improved quality of the synthetic speech

without using additional information for transmission.

The research focuses on developing algorithms for interpolating the linear predictive

coefficients with different representations (LSF, RC, LAR, AC). The LP analysis has been

simulated; and its performance has been compared by changing the parameters (LP order,

frame length, window offset, window length). Experiments have been performed on the

subframe length and the choice of representation of LP coefficients for interpolation. Simu-

lation results indicate that speech quality can be improved by energy weighted interpolation

technique.
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Sommaire

La performance des algorithmes de codage de la parole peut être caractérisée sous plusieurs

aspects. De ceux-ci, la qualité de la parole ansi que le débit binaire moyen sont ées plus

importants. Le but de cette thèse sera alors d’améliorer la qualité de la parole tout en

considérant la contrainte d’un bas débit binaire.

La majorité des codeursbas débit binaire utilisent un codage à prévision linéaire, qui

représente l’information spectrale court terme sous forme d’un filtre tout-pôle. Les coef-

ficients de ce filtre sont obtenus par blocs déchantillons d’entrée en utilisant une analyse

linéaire de prévision traditionnelle. Cependant, il peut y avoir de grands changements

entre les coefficients de blocs consécutifs due à une grande variation de l’néergie et des car-

actéristiques spectrales qui peut se produire sur de courts intervalles de temps. Donc, ces

variations entre blocs peuvent engendrer une mauvaise reconstruction du signal original.

L’interpolation des coefficients de blocs adjacents peut améliorer la qualité de la parole

synthtéique sans exiger d’information additionelle en transmission.

Cette recherche se concentre sur differents moyens d’interpolation des coefficients du

systém à pridirtion linéaire. L’analyse et la synthése de la parole en utilisant l’interpolation

sont simulées avec l’aide du logiciel Matlab. Les résultats de cette simulation indiquent

que la qualité de la parole peut être grandement améliorée en utilisant une technique

d’interpolation modifiée.
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Chapter 1

Introduction

Speech coding is an important aspect of modern telecommunications. Speech coding is

the process of digitally representing a speech signal. The primary objective of speech cod-

ing is to represent the speech signal with the fewest number of bits, while maintaining a

sufficient level of quality of the retrieved or synthesized speech with reasonable compu-

tational complexity. To achieve high quality speech at a low bit rate, coding algorithms

apply sophisticated methods to reduce the redundancies, that is, to remove the irrelevant

information from the speech signal.

In addition, a lower bit rate implies that a smaller bandwidth is required for trans-

mission. Although in wired communications very large bandwidths are now available as a

result of the introduction of optical fiber, in wireless and satellite communications band-

width is limited. At the same time, multimedia communications and some other speech

related applications need to store the digitized voice. Reducing the bit rate implies that

less memory is needed for storage. These two applications of speech compression make

speech coding an attractive field of research.

1.1 Speech Coding

A speech coder consists of two components: the encoder and the decoder. Speech is a time

varying waveform. The analog speech signal s(t) is first sampled at the rate fs ≥ 2fmax,

where fmax is the maximum frequency content of s(t). The sampled discrete time signal is

denoted by s(n). This signal is then encoded using one of several coding schemes such as

PCM (pulse code modulation) or predictive coding.
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In PCM (pulse code modulation) coding, the discrete time signal s(n) is quantized to

one of the 2R levels, where each sample s(n) is represented by R bits. The quantizer can be

uniform or non-uniform, scalar or vector. A typical uniform quantizer uses 8 to 16 bits per

sample. The non-uniform quantizer uses fewer bits per sample. For example, quantizers

with µ-law or A-law companding use 8 bits per sample.

In predictive coding the encoder considers a group of samples at a time, extracts coeffi-

cients that can model those samples concisely, converts those coefficients to binary bits and

transmits them. In this way the encoder encodes the speech signal in a compact form using

fewer bits. The decoder reconstructs the speech signal from those transmitted parameters.

The whole process is illustrated in Fig. 1.1.

discrete speech
encoder

1001......

8 k bits/s

transmission

1001......

8 k bits/s

speech
decoder

10110011.....D/A
converter

retrieved

^ 64 k bits/ss(n)^

sample s(n)

 s(t)speech ,

10110011......,64 k bits/s

A/D
converterspeech s(t)

analogue 

Fig. 1.1 Speech coding

1.2 Human Speech Production

Speech coding algorithms can be made more efficient by removing the irrelevant information

from speech signals. In order to design a speech coding algorithm, it is thus necessary to

know about the production of human speech, its properties and human perception of the

speech signals, so that the redundancies and the irrelevant parts of these signals can be

identified.

A speech signal is produced in three stages: first of all, air flows outward from the lungs;

then the air flow is modified at the larynx; and, finally, further constriction of the airflow
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occurs by varying the shape of the vocal tract [1]. Each sound has its own positioning of

the vocal tract articulators (vocal cords, tongue, lips, teeth, velum and jaw). In the case of

vowels, the airflow is unrestricted through the vocal tract while in the case of consonants the

airflow is restricted at some points. Sounds can be classified further as voiced or unvoiced.

The vocal tract is modelled as a time varying filter. It amplifies certain sound frequencies

and attenuates other frequencies. The sound is produced when a sound source excites the

vocal tract filter. If the source is periodic, it produces voiced speech; and if the source is

aperiodic or noisy, it produces unvoiced speech. The sound source occurs in the larynx

and the base of the vocal tract, where the air flow can be interrupted by the vocal folds.

The periodic opening and closing of the vocal cord results in a periodic sound source or

excitation. In the case of unvoiced speech the air is forced through a narrow constriction

at some points in the vocal tract, and creates a turbulence. The excitation is noise-like and

typically has low energy.

The spectral domain representation of voiced speech consists of harmonics of the fun-

damental frequencies (F0) of the vocal cord vibration. The envelope of the spectrum of a

voiced sound is characterized by a set of peaks which are called formants. However, the

envelope of the spectrum for unvoiced speech is less important perceptually.

Each language has its own set of abstract linguistic units to describe its sounds. They

are called phonemes. Phonemes are divided into different classes according to the place and

manner of articulation. Vowels and diphthongs are produced when the air flows directly

through the pharyngeal and oral cavity. Fricatives such as /s/ and /z/ create a narrow

constriction in the vocal tract. Stops such as /b/, /d/ and /p/ include complete closure

and subsequent release of a vocal tract obstruction. Nasals, such as /m/ and /n/ attenuate

sound in the nasal cavity.

1.3 Speech Perception and Redundancies

One of the major performance measures of speech coding is determined by how well the code

speech is perceived. If the redundancies of the speech signal can be found adequately, and

if the perceptual properties of the ears are exploited properly, good audible performance

can be achieved at low bit rates.

The human hearing system acts like a filter bank and is most sensitive to the 200–5600

Hz frequency range in terms of perception [2]. Important perception features, for instance
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voicing, are determined from a harmonic structure which is present at low frequencies (the

harmonic structure does not go beyond 3 kHz). Voiced speech has a periodic or quasi-

periodic character. Poorly reproduced periodicity in the reconstructed voiced segment

causes a major audible distortion [3]. Perceptual aspects, such as the amplitude envelope,

the amplitude and location of the first three formants and the spacing between the harmon-

ics are found in the frequency domain. The first three formants are usually located below

3 kHz. The manner and place of articulation are other important perceptual features. The

manner of articulation affects low frequencies. The place of articulation affects the second

formant region, above 1 kHz. An unvoiced speech segment can be replaced by a noise-like

signal with a similar spectral envelope, without significant auditory distortion.

Fig. 1.2 shows the time domain representation of a voiced signal (high energy) and an

unvoiced signal (low energy). Fig. 1.3 is the spectral representation of the voiced signal

and the unvoiced signal. The formants are very prominent in the spectral representation

of the voiced signal whereas the spectrum of the unvoiced signal is more flat.

0 0.25 0.5
−0.15

0

0.15

A
m

pl
itu

de
 

Time (Sec)

Fig. 1.2 Time domain representation of voiced to unvoiced speech transition

A speech signal is highly redundant in terms of perception. For example, human hearing

is more sensitive to the spectral peaks than the valleys. It is relatively less sensitive to

phase. Hearing has a masking phenomenon; that is, the perception of one sound can be

obscured by the presence of another sound [4]. Suppose a speech signal is reduced to a

binary waveform. Clearly, it is distorted since it does not have any amplitude information,
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(a) Power spectrum of a voiced speech
signal
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(b) Power spectrum of an unvoiced
speech signal

Fig. 1.3 Difference between power spectra of voiced and unvoiced signal

but still listeners can understand it due to the redundancies. If all frequencies above 1.8

kHz are removed, 67% of all syllables can still be correctly recognized [5]. The perception

of phonemes depends not only on decoding the current auditory information but also on

the context, the listener’s expectation, the familiarity of the listeners with the speaker, the

subject of conversion and the presence of noise. The redundant cues of a speech signal help

perception in noisy conditions. They also help when a familiar speaker speaks rapidly in

informal conversation. Predictive coding can exploit the redundancies in a speech signal to

reduce the bit rate.

1.4 Performance Criteria of Speech Coding

There are different dimensions of performance of speech coders. To judge a particular speech

coder certain performance criteria should be considered. Some of the major performance

aspects of speech coders are discussed below:

• One of the major criteria is speech quality. Speech coders intend to produce the least

audible distortion at a given bit rate. Naturalness and intelligibility of the produced

sounds are important and desired criteria. The speech quality can be determined

by listening tests which compute the mean opinion of the listeners. The quality of

speech can also be determined in some cases in terms of the objective measures such
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as prediction gain, log spectral distortion, and so on. Speech coders strive to make

the decoded or synthesized speech signal as close as possible to the original signal.

• Another important issue is bit rate. The bit rate of the encoder is the number of bits

per second the encoder needs to transmit. The objective of the coding algorithm is

to reduce the bit rate but maintain the high quality of speech.

• In reality speech coding algorithms are executed on DSP chips. These chips have

limited memory (RAM) and speed (MIPS-million instructions per second). Conse-

quently, speech coding algorithms should not be so complex that their requirements

exceed the capacity of modern DSP chips.

• Often, speech coding algorithms process a group of samples together. If the number

of samples is too large, it introduces an additional delay between the original and

the coded speech. This is undesirable in the case of real time transmission, but it is

tolerable to a larger extent in the case of voice storage and playback.

• Bandwidth of the speech signal that needs to be encoded is also an issue. Typical

telephony requires 200–3400 Hz bandwidth. Wideband speech coding techniques

(useful for audio transmission, tele-conferencing and tele-teaching) require 7–20 kHz

bandwidth.

• The speech coding algorithms must be robust against channel errors. Channel errors

are caused by channel noise, inter-symbol interference, signal fading, and so on.

• While speech signals are transmitted in real applications, they are distorted by dif-

ferent types of background acoustic noises such as street noise, car noise, and office

noise. Speech coding algorithms should be capable of maintaining a good quality

even in the presence of such background noises.

1.5 Objectives of the Research

Linear Predictive coding (LPC) is one of the common speech coding techniques. LPC

exploits the redundancies of a speech signal by modelling the speech signal as a linear

filter, excited by a signal called the excitation signal. The excitation signal is also called

the residual signal. Speech coders process a particular group of samples, called a frame
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or a segment. The speech encoder finds the filter coefficients and the excitation signal for

each frame. The filter coefficients are derived in such a way that the energy at the output

of the filter for that frame is minimized. This filter is called an LP analysis filter. The

speech signal is first filtered through the LP analysis filter. The resulting signal is called

the residual signal for that particular frame. Actually for the decoder, the inverse of the LP

analysis filter acts as the LP synthesis filter, while the residual signal acts as the excitation

signal for the LP synthesis filter. The whole process is shown in Fig. 1.4.

LP Analysis
Input  speech Residual  signal

LP Synthesis
Output  speech

LP  coefficients

Fig. 1.4 LP analysis and synthesis

In order to reduce the total bit rate, speech coders such as CELP (code excited linear

prediction) do not transmit the whole residual signal, because a vector codebook is used

to code the excitation signal. This technique is called vector quantization (VQ) wherein

the coder selects one of the excitation signals from a predetermined codebook, and the

index of the selected excitation signal is transmitted. This codebook is a finite set of

excitation signals, known to both the encoder and the decoder. The excitation signal is

selected in such a way that the weighted distortion between the original speech frame and

the reconstructed frame is minimized. The coder transmits only the index of the excitation

signal in the codebook as well as the filter coefficients.

Actually, in this speech coding technique, the short term correlation or spectral envelope

of a speech signal is modelled by the synthesis filter. Typically, the sampling rate of the

A/D converter is 8 kHz, and the frame length is 20 ms. This implies that there are 160

samples in each frame. It is found that a 10th order filter is enough for modelling the

spectral envelope when the sampling rate is 8 kHz. That means the coder ends up with

twelve parameters (10 coefficients, filter gain and the index for the excitation signal) instead

of 160 speech samples in a single frame.
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In transition segments, there may be a large change in parameters (LP filter coefficients)

between the adjacent 20 ms frames. We may therefore hear a click in the synthesized speech

signal. One way of smoothing the spectra is updating the filter coefficients more frequently.

We can do so by making the frame shorter, but in that case we need to transmit the

parameters more frequently, which increases the bit rate. Our objective is to keep the same

bit rate but to increase the speech quality by updating the LP parameters more frequently.

In order to achieve this, in this research we interpolate between the sets of parameters (LP

filter coefficients) for adjacent frames. The goal of this research is to investigate the spectral

smoothing property in the transition segments by different interpolation techniques, and

thus to improve the speech quality without any change in the bit rate.

1.6 Organization of the Thesis

The objective of this thesis is to examine different methods for interpolating linear predic-

tive (LP) coefficients in terms of the following representations: line spectral frequencies,

reflection coefficients, log area ratios, and autocorrelation coefficients. The thesis has been

organized as follows: Chapter 2 reviews the method of linear predictive coding that is used

in most speech coders to model the short term spectral parameters. We further discuss

other alternative parametric representations of linear predictive coefficients. For evaluat-

ing the performance with and without interpolation, different objective distortion measures

are introduced. This chapter also provides an overview of interpolation of linear predictive

coefficients and their various representations. Chapter 3 describes the implementation of

linear prediction analysis, the effect of change of different parameters in linear prediction

analysis (such as prediction order, frame length, window length, etc.) and interpolation of

linear prediction coefficients. This chapter also includes simulation results and performance

evaluation. Chapter 4 summarizes the thesis work and provides suggestions for future work.
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Chapter 2

Linear Prediction of Speech

2.1 Linear Prediction in speech coding

The human speech production process reveals that the generation of each phoneme is

characterized basically by two factors: the source excitation and the vocal tract shaping.

In order to model speech production we have to model these two factors. To understand

the source characteristics, it is assumed that the source and the vocal tract model are

independent [6]. The vocal tract model H(z) is excited by a discrete time glottal excitation

signal u(n) to produce the speech signal s(n). During unvoiced speech, u(n) is a flat

spectrum noise source modelled by a random noise generator. On the other hand, during

voiced speech, the excitation uses an estimate of the local pitch period to set an impulse

train generator that drives a glottal pulse shaping filter. The speech production process is

shown in Fig. 2.1.

Vocal  tract model
Glottal  excitation Speech

u(n) s(n)

H(z)

Fig. 2.1 Modelling speech production

The most powerful and general linear parametric model used to model the vocal tract

is the autoregressive moving average (ARMA) model. In this model, a speech signal s(n)

is considered to be the output of a system whose input is the excitation signal u(n). The
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speech sample s(n) is modelled as a linear combination of the past outputs and the present

and past inputs [7]. This relation can be expressed in the following difference equation:

s(n) =

p∑
k=1

aks(n− k) +G

q∑
l=0

blu(n− l), b0 = 1, (2.1)

where G (gain factor) and {ak}, {bl} (filter coefficients) are the system parameters. The

number p implies that the past p output samples are being considered, which is also the

order of the linear prediction. The transfer function H(z) of the system is obtained by

applying z-transform on Eq. (2.1):

H(z) =
S(z)

U(z)

= G

1 +

q∑
l=1

blz
−l

1−
p∑

k=1

akz
−k

.

(2.2)

Clearly H(z) is a pole-zero model. The zeros represent the nasals, while the formants

in a vowel spectrum are represented by the poles of H(z). There are two special cases of

this model:

• When bl = 0, for 1 ≤ l ≤ q, H(z) reduces to an all-pole model, which is also known

as an autoregressive model.

• When ak = 0, for 1 ≤ k ≤ p, H(z) becomes an all-zero or moving average model.

The all-pole or autoregressive model is widely used for its simplicity and computational

efficiency. It can model sounds such as vowels well enough. The zeros arise only in nasals

and in unvoiced sounds like fricatives. These zeros are approximately modelled by the

poles. Moreover, it is easy to solve an all-pole model. To solve a pole-zero model, it is

necessary to solve a set of nonlinear equations, but in the case of an all-pole model, only a

set of linear equations need to be solved.
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The transfer function of the all-pole model is

H(z) =
G

1−
p∑

k=1

akz
−k

. (2.3)

Actually an all-pole model is a good estimate of the pole-zero model. According to [6], any

causal rational system H(z) can be decomposed as

H(z) = G′Hmin(z)Hap(z), (2.4)

where, G′ is the gain factor, Hmin(z) is the transfer function of a minimum phase filter and

Hap(z) is the transfer function of an all-pass filter.

Now, the minimum phase component can be expressed as an all-pole system:

Hmin(z) =
1

1−
I∑

i=1

aiz
−i

, (2.5)

where I is theoretically infinite but practically can take a value of a relatively small integer.

The all-pass component contributes only to the phase. Therefore, the pole-zero model can

be estimated by an all-pole model.

The inverse z-transform of Eq. (2.3) is given by:

s(n) =

p∑
k=1

aks(n− k) +Gu(n). (2.6)

If the gain factor G = 1, then from Eq. (2.3), the transfer function becomes

H(z) =
1

1−
p∑

k=1

akz
−k

=
1

A(z)
,

(2.7)

where the polynomial (1−∑p
k=1 akz

−k) is denoted by A(z). The filter coefficients {ak} are



2 Linear Prediction of Speech 12

called the LP (linear prediction) coefficients.

The error signal e(n) is the difference between the input speech and the estimated

speech. Thus, the following relation holds:

e(n) = s(n)−
p∑

k=1

aks(n− k). (2.8)

In the z-domain it is equivalent to

E(z) = S(z)A(z). (2.9)

Now, the whole model can be decomposed into the following two parts, the analysis part

and the synthesis part (see Fig. 2.2).

Analysis filter

speech signal error signal

Synthesis filter

error signal

s(n) e(n)

e(n) s(n)

A(z)

1/A(z)

speech signal

Fig. 2.2 LP analysis and synthesis model

The analysis part analyzes the speech signal and produces the error signal. The synthesis

part takes the error signal as an input. The input is filtered by the synthesis filter 1/A(z),

and the output is the speech signal. The error signal (e(n)) is sometimes called the residual

signal or the excitation signal. If the error signal from the analysis part is not used in

synthesis, or if the synthesis filter is not exactly the inverse of the analysis filter, the

synthesized speech signal will not be the same as the original signal. To differentiate

between the two signals, we use the notation ŝ(n) for the synthesized speech signal.
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2.2 Forward and Backward Adaptive Coder

The encoder does the speech analysis before transmission. After the LP analysis, the coded

error signal is transmitted to the decoder. Whether the LP coefficients are transmitted

depends on the type of the coder. In some coders, the LP coefficients are not transmitted;

the decoder computes these coefficients. In both cases, the decoder does the synthesis using

the coded error signal and the LP coefficients.

There are two types of coders based on linear prediction:

• Forward adaptive coder : The linear prediction is based on the past input speech

samples. The LP analysis is performed at the encoder, and then the LP coefficients

are transmitted.

• Backward adaptive coder : The LP coefficients are computed from the past recon-

structed speech samples. The LP analysis is re-done at the decoder. Thus, there is

no need to transmit the LP coefficients from the encoder.

In this research the forward adaptive coder is used.

2.3 Estimation of Linear Prediction Coefficients

There are two widely used methods for estimating the LP coefficients:

• Autocorrelation.

• Covariance.

Both methods choose the short term filter coefficients (LP coefficients) {ak} in such a

way that the residual energy (the energy in the error signal) is minimized. The classical

least square technique is used for that purpose.

2.3.1 Windowing

Speech is a time varying signal, and some variations are random. Usually during slow

speech, the vocal tract shape and excitation type do not change in 200 ms. But phonemes

have an average duration of 80 ms. Most changes occur more frequently than the 200 ms

time interval [2]. Signal analysis assumes that the properties of a signal usually change
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relatively slowly with time. This allows for short term analysis of a signal. The signal is

divided into successive segments, analysis is done on these segments, and some dynamic

parameters are extracted. The signal s(n) is multiplied by a fixed length analysis window

w(n) to extract a particular segment at a time. This is called windowing. Choosing the

right shape of window is very important, because it allows different samples to be weighted

differently. The simplest analysis window is a rectangular window of length Nw:

w(n) =


1, 0 ≤ n ≤ Nw − 1,

0, otherwise.
(2.10)

A rectangular window has an abrupt discontinuity at the edge in the time domain. As a

result there are large side lobes and undesirable ringing effects [8] in the frequency domain

representation of the rectangular window. To discard the large oscillations, we should use

a window without abrupt discontinuities in the time domain. This corresponds to low side

lobes of the windows in the frequency domain. The Hamming window of Eq. (2.11), used

in this research, is a tapered window. It is actually a raised cosine function:

w(n) =


0.54− 0.46 cos( 2πn

Nw−1
), 0 ≤ n ≤ Nw − 1,

0, otherwise.
(2.11)

There are other types of tapered windows, such as the Hanning, Blackman, Kaiser and the

Bartlett window. A window can also be hybrid. For example, in GSM 06.90, the analysis

window consists of two halves of the Hamming windows with different sizes [9].

2.3.2 Autocorrelation Method

At first the speech signal s(n) is multiplied by a window w(n) to get a windowed speech

segment sw(n), where,

sw(n) = w(n)s(n). (2.12)
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The next step is to minimize the energy in the residual signal. The residual energy E is

defined as follows:

E =
∞∑

n=−∞
e2(n)

=

∞∑
n=−∞

(
sw(n)−

p∑
k=1

aksw(n− k)

)2

.

(2.13)

The values of {ak} that minimize E are found by assigning the partial derivatives of E

with respect to {ak} to zeros. If we set ∂E
∂ak

= 0, for k = 1, . . . , p, we get p equations with

p unknown variables {ak} as shown below:

p∑
k=1

ak

∞∑
n=−∞

sw(n− i)sw(n− k) =

∞∑
n=−∞

sw(n− i)sw(n), 1 ≤ i ≤ p. (2.14)

In Eq. (2.14), the windowed speech signal sw(n) = 0 outside the window w(n). The linear

equations can be expressed in terms of the autocorrelation function. This is because the

autocorrelation function of the windowed segment sw(n) is defined as

R(i) =
Nw−1∑
n=i

sw(n)sw(n− i), 0 ≤ i ≤ p, (2.15)

where Nw is the length of the window. The autocorrelation function is an even function,

where R(i) = R(−i). By substituting the values from Eq. (2.15) in Eq. (2.14), we get

p∑
k=1

R(|i− k|)ak = R(i), 1 ≤ i ≤ p. (2.16)

The set of linear equations can be represented in the following matrix form:




R(0) R(1) · · · R(p− 1)

R(1) R(0) · · · R(p− 2)
...

...
. . .

...

R(p− 1) R(p− 2) · · · R(0)






a1

a2

...

ap


 =



R(1)

R(2)
...

R(p)


 . (2.17)
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Eq. (2.17) can be expressed as

Ra = r. (2.18)

The resulting matrix is a Toeplitz matrix where all elements along a given diagonal are

equal. This allows the linear equations to be solved by the Levinson-Durbin algorithm

[10] (to be discussed in Section 2.3.4) or the Schur algorithm [11]. Because of the Toeplitz

structure of R, A(z) is minimum phase [12]. At the synthesis filter H(z) = 1/A(z), the

zeros of A(z) become the poles of H(z). Thus, the minimum phase of A(z) guarantees the

stability of H(z).

2.3.3 Covariance Method

The covariance method is very similar to the autocorrelation method. The basic difference

is the placement of the analysis window. The covariance method windows the error signal

instead of the original speech signal. The energy E of the windowed error signal is

E =
∞∑

n=−∞
e2

w(n)

=
∞∑

n=−∞
e2(n)w(n).

(2.19)

If we assign the partial derivatives ∂E
∂ak

to zero, for 1 ≤ k ≤ p, we have the following p linear

equations:

p∑
k=1

φ(i, k)ak = φ(i, 0), 1 ≤ i ≤ p, (2.20)

where φ(i, k) is the covariance function of s(n) which is defined as:

φ(i, k) =

∞∑
n=−∞

w(n)s(n− i)s(n− k). (2.21)
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The equation above can be expressed in the following matrix form:



φ(1, 1) φ(1, 2) · · · φ(1, p)

φ(2, 1) φ(2, 2) · · · φ(2, p)
...

...
. . .

...

φ(p, 1) φ(p, 2) · · · φ(p, p)






a1

a2

...

ap


 =



ϕ(1)

ϕ(2)
...

ϕ(p)


 (2.22)

where ϕ(i) = φ(i, 0) for i = 1, 2, ...p. Eq. (2.22) can be written as

φa = ϕ. (2.23)

φ is not a Toeplitz matrix, but it is symmetric and positive definite. The Levinson-Durbin

algorithm cannot be used to solve these equations. These equations can be solved by

using decomposition method, which will be discussed in the next section. The covariance

method does not guarantee the stability of the synthesis filter, because φ does not possess

the Toeplitz structure.

2.3.4 Numerical Solution of LP Linear Equations

The following two sections have discussed how to solve the set of LP linear equations

(Eq. (2.17) and Eq. (2.22)) to get the LP coefficients.

Levinson-Durbin Procedure: The Correlation Method

The Levinson algorithm solves Ax = b, in which A is a Toeplitz matrix, symmetric and

positive definite; and b is an arbitrary vector. The autocorrelation equations are of the

above form. Durbin published a slightly more efficient algorithm and his algorithm is

known as the Levinson-Durbin recursive algorithm. The Levinson-Durbin algorithm needs

a special form of b, where b consists of some elements of A. The autocorrelation equations

also satisfy this condition.

Let ak(m) be the kth coefficient for a particular frame in the mth iteration. The

Levinson-Durbin algorithm solves the following set of ordered equations recursively for
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m = 1, 2, . . . , p:

k(m) = R(m)−∑m−1
k=1 ak(m− 1)R(m− k), (2.24)

am(m) = k(m), (2.25)

ak(m) = ak(m− 1)− k(m)am−k(m− 1), 1 ≤ k < m, (2.26)

E(m) = (1− k(m)2)E(m− 1), (2.27)

where initially E(0) = R(0) and a(0) = 0. At each iteration, the mth coefficient ak(m)

for k = 1, 2, . . . , m describes the optimal mth order linear predictor; and the minimum

error E(m) is reduced by a factor of (1 − k(m)2). Since E(m) (squared error) is never

negative, |k(m)| ≤ 1. This condition on the reflection coefficient k(m) also guarantees

that the roots of A(z) will be inside the unit circle [2]. Thus the LP synthesis filter H(z)

(where H(z) = 1/A(z)) will be stable. And therefore, the correlation method guarantees

the stability of the filter.

Decomposition Method: The Covariance Method

The decomposition method is generally used for solving the covariance equations [6]. The

covariance matrix φ is decomposed into a lower and an upper triangular matrix L and U

so that φ becomes

φ = LU . (2.28)

If we substitute Eq. (2.28) in Eq. (2.23), we obtain

LUa = ϕ. (2.29)

If we call

Ua = y, (2.30)

Eq. (2.29) becomes

Ly = ϕ. (2.31)
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The second step is to solve for y from Eq. (2.31). That value of y is then used to solve

for a from Eq. (2.30). To solve the equations above, a simple algorithm such as the one

described by Golub and Van Loan [10] can be used.

Now the problem is how to decompose φ in LU . Due to the symmetric and positive

definite nature of φ, it can be decomposed as

φ = CCT , (2.32)

where C is a lower triangular matrix, the diagonal elements of which are all positive. This

type of decomposition is called Cholesky Decomposition. Eq. (2.32) can now be written as

φ(i, j) =

j∑
k=1

C(i, k)C(j, k), (2.33)

where C(i, j) are the elements of C. If we rearrange Eq. (2.33) we obtain

C(i, j) = φ(i, j)−
j−1∑
k=1

C(i, k)C(j, k), i > j, (2.34)

C(j, j) =

√√√√φ(j, j)−
j−1∑
k=1

C2(j, k). (2.35)

Eq. (2.34) and Eq. (2.35) can be used to find the elements of the lower triangular matrix.

Solution for a can then be found by using forward elimination and backward substitution

algorithm [10].

2.3.5 Bandwidth Expansion and Lag Window

LP analysis cannot accurately estimate the spectral envelope for high-pitch voiced sounds.

In the case of a periodic signal, the harmonics contain the spectral information, but the

high-pitch sounds have harmonic spacings which are large. It cannot provide enough sam-

pling of the spectral envelope, which results in under estimation of the formant bandwidth.

To overcome this problem, each LP parameter ak is replaced by γkak. As a result, all the

poles ofH(z) move inward by a factor γ and this causes bandwidth expansion of all the poles

[13]. The problem can be solved in another way. In this procedure the autocorrelations are



2 Linear Prediction of Speech 20

multiplied by a lag window (usually a Gaussian shape). It is equivalent to convolving the

power spectrum with a Gaussian shape, and this widens the peaks of the spectrum.

2.3.6 High Frequency Correction

A lowpass filter is used before analog-to-digital conversion of speech signal. The missing

high frequency components in the sampled speech near the half sampling frequency produce

artificially low eigenvalues of the covariance matrix φ corresponding to eigenvectors related

to such components. These low eigenvalues can result in artificially large values of the LP

coefficients. To avoid these problems, it is necessary to fill out the missing high frequencies

in the digitized speech signal and this process is called the high frequency correction [14].

A highpass filtered white noise is artificially added to the lowpass filtered speech signal.

One choice for the frequency response of this highpass filter is

Hhp(z) = [
1

2
(1− z−1)]2. (2.36)

2.4 Representations of LP Parameters

Linear predictive coefficients (LP coefficients) have other representations: line spectral fre-

quencies (LSF), reflection coefficients (RC), autocorrelations (AC), log area ratios (LAR),

arcsine of reflection coefficients (ASRC), impulse responses of LP synthesis filter (IR), etc.

They effectively have a one-to-one relationship with the LP coefficients, and they pre-

serve all the information from the LP coefficients. Among them, some are computationally

efficient. Some of them have special features which make them attractive for different pur-

poses. That is why a good understanding of those representations and their features is

needed prior to further processing.

2.4.1 Line Spectral Frequency

Line spectral frequencies are an alternative representation to the LP parameters. It was

found that the LP parameters have a large dynamic range of values, so they are not good

for quantization. The line spectral frequencies on the other hand, have a well behaved

dynamic range. If interpolation is done in the LSF domain, it is easier to guarantee the

stability of the resulting synthesis filter. If the LP coefficients are encoded as LSF’s, we
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do not need to spend the same number of bits for each LSF. This is because higher LSF’s

correspond to the high frequency components and high frequency components have less

effect in speech perception. So higher LSF’s can be quantized using fewer bits than lower

LSF’s. This reduces the bit rate while keeping the speech quality almost the same. LSF’s

have a frequency domain interpretation. Usually the LSF’s are more concentrated around

formants. The bandwidth of a given formant is dependent on the closeness of corresponding

LSF’s [15]. We can see this in Fig. 2.3. Moreover, spectral sensitivity of each LSF is

localized. A change in a LSF causes changes in power spectrum near its neighborhood.

Another property of LSF’s is that the LSF’s of order p are interlaced with those of order

p − 1. Proof of this property can be found in [16]. This inter-model interlacing theorem

provides a tight bound on the formant frequency region [17].
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Computing Line Spectral Frequencies

It has been mentioned previously that the prediction error filter or the LP analysis filter

A(z) can be expressed in terms of the LP coefficients (direct form predictor coefficients)

{ak} in the following form:

A(z) = 1−
p∑

k=1

akz
−k. (2.37)

Clearly the order of A(z) is p. The (1+p)th order symmetric and antisymmetric polynomial

P (z) and Q(z) can be obtained from A(z):

P (z) = A(z) + z−(p+1)A(z−1), (2.38)

Q(z) = A(z)− z−(p+1)A(z−1), (2.39)

where,

A(z) =
1

2
[P (z) +Q(z)]. (2.40)

There are three important properties of P (z) and Q(z) [18]:

• All the roots of P (z) and Q(z) polynomials are on the unit circle.

• Roots of P (z) and Q(z) are interlaced.

• The minimum phase property of A(z) can be preserved, if the first two properties are

intact after quantization or interpolation.

From the first property, we see that the roots of P (z) and Q(z) can be expressed in terms

of ωi (as e
jωi). These ωi are called the LSF’s. The polynomials P (z) and Q(z) have two

roots at z = 1, z = −1. Let us define two new polynomials N1(z) and N2(z) which have
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the same roots as P (z) and Q(z), except they do not have roots at z = 1, z = −1.

N1(z) =




P (z)
1 + z−1 for p even,

P (z) for p odd.
(2.41)

N2(z) =




P (z)
1− z−1 for p even,

P (z)
1− z−2 for p odd.

(2.42)

From Eq. (2.41) and Eq. (2.42), it is obvious that both N1(z) and N2(z) have even order,

and they are symmetric. The roots occur as complex conjugate pairs, so only the roots on

the upper semi-circle are to be calculated. Let the order of N1(z) and N2(z) be 2m and

2n, respectively. Then

m =



p
2 for p even,

p+ 1
2 for p odd.

(2.43)

n =



p
2 for p even,

p− 1
2 for p odd.

(2.44)

Which implies,

N1(z) = 1+N1(1)z
−1+N1(2)z

−2+ · · ·+N1(m)z−m+ · · ·+N1(1)z
−(2m−1)+z−2m, (2.45)

N2(z) = 1+N2(1)z
−1+N2(2)z

−2+ · · ·+N2(n)z
−n+ · · ·+N2(1)z

−(2n−1)+z−2n. (2.46)

From Eq. (2.45) and Eq. (2.46)

N1(e
jω) = e−jωmN ′

1(ω), (2.47)

N2(e
jω) = e−jωnN ′

2(ω), (2.48)

where,

N ′
1(ω) = 2 cosmω + 2N1(1) cos(m− 1)ω + · · ·+N1(m), (2.49)

N ′
2(ω) = 2 cosnω + 2N2(1) cos(n− 1)ω + · · ·+N2(n). (2.50)
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Soong and Juang [18, 19] proposed a numerical method with a direct calculation of the

discrete cosine transform to find the roots of N ′
1(ω) and N ′

2(ω). The roots of N ′
1(ω) and

N ′
2(ω) are the LSF’s. Kabal and Ramachandran [20] use an expansion of the mth order

Chebyshev polynomial in x:

Tm(x) = cos(mω), (2.51)

where Tm(x) = 2xTm−1(x) + Tm−2(x). Now, N
′
1(ω) and N ′

2(ω) become

N ′
1(x) = 2Tm(x) + 2N1(1)Tm−1(x) + · · ·+N1(m), (2.52)

N ′
2(x) = 2Tm(x) + 2N2(1)Tn−1(x) + · · ·+N2(n). (2.53)

The roots of the expanded polynomials are determined iteratively by looking at the sign

changes in the range [−1, 1] and then the LSF’s are found by using ω = cos−1(x).

2.4.2 Reflection Coefficients

From the Levinson-Durbin recursion (Eq. (2.24)-Eq. (2.27)) we obtain an intermediate set

of parameters k(m). These parameters can be equated to the reflection coefficients of an

acoustic tube model of the vocal tract. If the order of the linear prediction is equal to the

number of the sections in the vocal tube model, the reflection coefficients can be directly

computed by linear prediction analysis of the speech waveform; and they uniquely define

the area ratios of the acoustic tube model of the vocal tract [21]. Reflection coefficients

also provide the necessary and sufficient condition for stability of the synthesis filter. The

condition |k(m)| < 1 for m = p, p − 1, . . . , 1 guarantees that the synthesis filter will be

stable.

When using the covariance method, the predictor coefficients need to be converted to

the reflection coefficients for checking the stability. We start by assigning αk(p) = ak; then

for m = p, p− 1, . . . , 2 we apply following equations:

αi(m− 1) = αi(m)k(m)αm−i(m), 1 ≤ i ≤ m− 1, (2.54)

k(m− 1) = αm−1(m− 1). (2.55)

If for any m, |k(m)| > 1, the magnitude is reduced artificially below unity. It causes the

change in the speech spectrum, but assures the stability of the synthesis filter. Another
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procedure is to replace the pole zk by 1
zk
, which changes the phase.

2.4.3 Log Area Ratio

The reflection coefficients have a non-uniform sensitivity. They are very sensitive near the

unit magnitude. The reflection coefficient which has the value close to unity is very sensitive

to change. The first few reflection coefficients have a skewed distribution for many voiced

sounds. The higher ordered coefficients have more of a Gaussian-like distribution. The

first reflection coefficient k1 has a value close to −1 and the second reflection coefficient k2

has a value close to 1. If a low sampling frequency (≤ 10 kHz) is used, the other reflection

coefficients have values less than 0.7. Linear quantization of reflection coefficients in [−1, 1]
is wasteful. Due to the non-uniform sensitivity, non-linear quantization is useful. One such

transformation is the log area ratio:

lar(m) = ln
1− k(m)

1 + k(m)
, 1 ≤ m ≤ p. (2.56)

The log area ratio can be converted back to the reflection coefficient by the following

equation:

k(m) =
1− elar(m)

1 + elar(m)
, 1 ≤ m ≤ p. (2.57)

2.4.4 Autocorrelation Function

The autocorrelation function R(n) is alternate representation to the direct form predictor

coefficients. If we use the autocorrelation method for computing the filter coefficients, we

need to calculate the sample correlation function first. We do not need extra calculations

to obtain those parameters. One important property of the autocorrelation function is that

the sample correlation functions of two consecutive frames of a signal are almost equal to

the average of the sample correlation functions of the two frames. The model obtained by

averaging the autocorrelation functions is close to that obtained by considering the two

consecutive frames as one frame [22]. This is an attractive feature for interpolation in the

autocorrelation domain, and it will be discussed later. If the autocorrelation functions are

normalized by the frame energy R(0), they are called the normalized autocorrelation. When

using the effect of the frame energy the autocorrelation is used as usual, where R(0) is the
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frame energy. The autocorrelations which are not normalized are called energy weighted

autocorrelation coefficients (EAC).

2.5 Interpolation of Linear Prediction Parametric Representation

Linear prediction coefficients are widely used in many speech coding techniques to represent

short term spectral information of speech. These coefficients are obtained from the speech

signal by frame-by-frame analysis. They are quantized prior to transmission. The frame

is approximately 20 ms to 30 ms in length, since speech signals are considered to have the

same properties over this interval. The linear prediction based coders describe the envelope

of the speech spectrum by an autoregressive model within this time interval. In consecutive

frames, the LP based models can be very different in transition segments. To follow the

changes in spectra or to smooth the spectral transition, linear predictive coefficients should

be updated more frequently, which amounts to decreasing the frame length. However,

this increases the bit rate. To avoid the augmentation in bit rate, interpolation of linear

predictive coefficients can be used in the consecutive analysis frames. With the proper

interpolation technique, the spectral envelope will be smoother at the transition segments

(see Fig. 2.4). Thus, undesired transients due to a large change in the LP based model at

adjacent frames are avoided in the reconstructed or synthesized speech signal.

Usually, a frame is divided into several equally spaced time intervals called subframes,

and interpolation is done at this subframe level. Theoretically, interpolation can be done

on a sample by sample basis (by making the length of the subframe equal to one sample).

But in that case, additional calculations are needed at the receiver. Moreover, such fine or

smooth interpolation is not needed. In other previous studies, a 20 ms frame is used, and

the frame is divided into four equal subframes of 5 ms [13].

2.6 Optimal Interpolation Method and Distortion Measurement

Criteria

An optimal interpolation method can be logically defined as the interpolated model for a

subframe that is as close as possible to the original model of that subframe; i.e; the model

that would be calculated by LP analysis for the subframe.

When the performance of any interpolation technique is evaluated, it needs to measure
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Fig. 2.4 Interpolation smoothes the LP spectra. The second subframe is
the result of interpolation between the first and third subframe, and the cor-
responding power spectra shows the smoothing effect

the “closeness” of the interpolated model with the true model. But, how can this “closeness”

be measured? There are two typical ways to measure it:

• Subjective distortion measure.

• Objective distortion measure.

These two measures are discussed below in details.

2.6.1 Subjective Distortion Measures

Subjective tests allow for a comparative assessment of alternative coders. In these tests

speech quality is usually measured by intelligibility, typically defined as the percentage

of words or phonemes correctly heard. The perceptually significant aspects of the speech

signal are intelligibility and naturalness. To judge these qualities, we usually depend on

informal listening. There are two types of commonly used subjective distortion measures

[23]:



2 Linear Prediction of Speech 28

• Mean Opinion Score (MOS): This involves a lengthy process. In MOS testing, the

decision is divided into a five-level rating scale. The rating scale and its description

is presented in Table 2.1 [23].

Table 2.1 Description in the Mean Opinion Score (MOS)

Rating Speech quality Level of Distortion

5 Excellent Imperceptible
4 Good Just perceptible but not annoying
3 Fair Perceptible and slightly annoying
2 Poor Annoying but not objectionable
1 Unsatisfactory Very annoying and objectionable

The opinion or perceived level of distortion is mapped into either the descriptive

term “excellent, good, fair, poor, unsatisfactory” or the numerical rating 5–1. The

numerical rating has a mixed effect. As it is a combined result of all different kinds of

distortions, It permits direct comparison with objective measures, but does not help

to understand the cause of distortion.

• Diagnostic Acceptability Measure (DAM): A highly descriptive measure, that is very

much suggestive about the kind of distortion observed. It is both numeric and non-

numeric. For a comparative rating, all the descriptive measures must be reduced to

a single parameter.

Subjective tests need dozens of listeners. They require proper training in listening and in

calibration. They also need a proper environment for performing the test so that no other

sounds interfere. Moreover, in DAM the listeners should be trained to recognize the type

of distortions and give a proper description of them. Overall, this is a costly and time

consuming procedure. There is no simple and reliable way to describe the quality of a

coder. Casual listening is not a reliable measure of comparison.

2.6.2 Objective Distortion Measures

Due to the disadvantages of the subjective distortion measures, we need some objective

distortion measures that give an immediate and reliable estimate of the anticipated per-

ceptual quality during the development phase of a new algorithm. Objective distortion

measures can be computed in two domains: time and frequency.
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Objective Distortion Measures in the Time Domain

The followings are the major types of time domain objective distortion measures:

• Signal to noise ratio (SNR): If s(n) is the original speech sample, ŝ(n) is the coded

speech sample and the speech file has NT samples, then the SNR is defined as:

SNR(dB) = 10 log10

NT−1∑
n=0

s2(n)

NT −1∑
n=0

(s(n)− ŝ(n))2
. (2.58)

SNR makes a decision after listening to the whole file. Thus, there is no scope to

judge when there are discrepancies at different times during the utterance of the

whole signal.

• Segmental SNR (SEGSNR): Segmental SNR takes the power ratio over short segments

and computes their geometric means. As it considers short segment SNR, it has better

correspondence to the auditory experience. If the speech segment has NF number of

frames and the length of each frame is NS, then segmental SNR is defined as

SEGSNR =
1

NF

NF−1∑
i=0

10 log10

NS−1∑
j=0

s2(NSi+ j)

NS−1∑
j=0

(s(NSi+ j)− ŝ(NSi+ j))2
. (2.59)

Segmental SNR is a better measure than SNR. But it is not a good measure when a

whole frame is almost silent. These types of frames cause large negative SNR, which

will bias the overall performance. To overcome this problem, threshold values can be

used to detect the near silent frames and to discard them.

Other commonly used objective measures in the time domain are prediction gain, error

energy and statistical outliers. They will be discussed as they are applied in Chapter 3

(Section 3.1 and Section 3.2.4).
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Objective Distortion Measures in the Frequency Domain

In the frequency domain, the LPC spectrum of the original signal and the LPC spectrum of

the quantized or interpolated signal are compared. The distortion or difference between the

two spectra affects the perception of the sound. In the following situations, the perceptual

discrepancy of sound may cause a phonetical difference:

• If the formants of the original spectral envelope and the formants of the coded (quan-

tized or interpolated or both) spectral envelope have large frequency differences.

• If the bandwidth of the formants of these spectral envelopes are very different.

A brief description of different types of distortion measures in the frequency domain is

presented below.

• Log Spectral Distortion: Spectral distortion for a given frame is defined as the root

mean square difference between the original LPC log power spectrum and the quan-

tized or interpolated LPC log power spectrum. Usually the average of spectral dis-

tortion over a large number of frames is calculated, and that is used as the measure

of performance of quantization or interpolation. A detailed description of spectral

distortion is given in Chapter 3 (Section 3.2.5).

• Weighted Euclidean Distance: This measure is performed in the LSF domain, because

LSF’s have a very good correspondence to the spectral shape, the formants, and the

valleys. So, to emphasize a particular portion of the spectrum, the LSF’s of that part

can be given more weight than the others. If f and f̂ are the two vectors of the

original and the coded LSF’s, respectively, then their Euclidean distance d(f , f̂ ) is

defined as

d(f , f̂) = ||f − f̂ ||2. (2.60)

If pth order LP analysis is used, then Eq. (2.60) becomes

d(f , f̂ ) =

p∑
i=1

(fi − f̂i)
2. (2.61)
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If wi is the weight assigned to the ith LSF, then the weighted Euclidean distance is

d(f , f̂ ) =

p∑
i=1

wi(fi − f̂i)
2. (2.62)

Paliwal and Atal [15] have defined

wi = [S(fi)]
r. (2.63)

Where S(f) is the LPC power spectrum, and r is an empirical constant that controls

the relative weights of the LSF’s. It was found experimentally that 0.15 is a satisfac-

tory value for r. Thus, in this scheme the weight depends on the value of the LPC

power spectrum at that LSF; high amplitude formants are given more weight than

low amplitude formants. Valleys are less weighted.

Moreover, we know that the human ear can resolve differences at low frequencies

more precisely than at high frequencies. To exploit this feature, lower LSF’s should

be weighted more. Paliwal and Atal [15] have introduced a new term ci in Eq. (2.62)

to redefine the weighted Euclidean distance:

d(f , f̂) =

p∑
i=1

ciwi(fi − f̂i)
2, (2.64)

where,

ci =




1.0, 1 ≤ i ≤ 8,

0.8, i = 9,

0.9, i = 10.

(2.65)

One of the attractive features of LSF’s is that they are uncorrelated, and thus the

covariance matrix of LSF’s is exactly diagonal [24]. Because of this statistical prop-

erty, the spectral distortion measure for LSF’s is equivalent to the weighted Euclidean

distance measure, whose weights are the inverse of the diagonal elements of the co-

variance matrix [17].
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Objective measures cannot replace subjective testing, but they can aid in the devel-

opment of a new algorithm. The objective measures that have a high correlation with

subjective measures like MOS are more reliable, because the ultimate goal of any coding

is to be qualified according to the human auditory system. It is reasonable, therefore, to

use an objective measure based on the compact output of the auditory system to deliver

ratings that are highly correlated with subjective testing results. Wang, Sekey and Ger-

sho [23] have studied the performance of some objective measures. They represented their

results in terms of the correlation of a specific objective measure with MOS. The higher

the correlation |ρ|, the better the performance of that objective measure. If ρ = 1 for

any objective measure, it implies that that measure is equivalent to the MOS decision. If

ρ = 0, then this indicates random guessing of the MOS. We have summarized their results

in Table 2.2.

Table 2.2 Comparison of performance of Objective Distortion Measure

Objective Distortion Measure |ρ| (Correlation with MOS)

SNR 0.24
SEGSNR 0.77
Cepstral distance 0.63
Log spectral distortion 0.68

Objective distortion measures are used throughout this thesis to estimate the perceptual

quality of the coding algorithm. The following types of objective distortion measures are

used:

• Log spectral distortion.

• Prediction gain.

2.7 Interpolation of Different Representations of Linear

Predictive Coefficients

If the interpolation is implemented directly in the LP coefficients domain, the interpolated

filter does not guarantee the stability. The linear predictive coefficients are therefore con-

verted into different parametric representations, which have a one-to-one correspondence
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with the linear predictive coefficients for stable filters. The interpolation is performed in

the corresponding domain. The representations are reflection coefficients, log area ratios,

line spectral frequencies, autocorrelation coefficients, impulse responses, arc sine reflection

coefficients and cepstral coefficients. Among these representations, the interpolation of log

area ratios, line spectral frequencies, arc sine of the reflection coefficients and autocorrela-

tion coefficients guarantee the stability of the synthesis filter. Some of them, like impulse

response representation and cepstral coefficient representation, may result in an unstable

LP synthesis filter after interpolation. If these representations of linear prediction coeffi-

cients are used for the purpose of interpolation, there must be a check for stability after

interpolation. If necessary, the LP parameters should be processed so as to make the syn-

thesis filter stable, although this procedure is computationally expensive. Certain speech

coding techniques, described in some literature use the unstable LP coefficient representa-

tions in interpolation [25]. In the following sections we have described the interpolation of

various representations of LP coefficients with regard to their advantages, disadvantages

and other properties.

2.7.1 Interpolation of RC, LAR, ASRC

It has been shown that, asymptotically the autocorrelation method produces an MLE (max-

imum likelihood estimator) of the LP coefficients [26]. The asymptotic PDF (probability

density function) for the estimated LP coefficients (â) is Gaussian. Since, the transfor-

mation from the LP coefficients to the reflection coefficients is one-to-one, the reflection

coefficients estimator is also an MLE. Hence, the asymptotic PDF of reflection coefficient

estimator (k̂) is Gaussian. Let C â denotes the covariance matrix of â ([C â]ij is the covari-

ance between âi and âj) and C k̂ denotes the covariance matrix of k̂ ([C k̂]ij is the covariance

between k̂i and k̂j). Then,

C k̂ = AC âA
T , (2.66)

where, [A]ij =
∂ki

∂aj
[27].

This is because, if θ̂ML is the MLE of θ and θ′ = g(θ), then the asymptotic covariance
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matrix of θ̂
′
ML is defined as

C ˆθ
′
ML

= Lθ̂MLLT , (2.67)

where, [L]ij =
∂gi(θ)

∂θ′j
.

Assuming xt is an autoregressive process of order p, it has been shown that asymptoti-

cally [28],

C â =
σ2

E

N
R−1, (2.68)

where, σ2
E is the variance of the white noise driving process, N is the number of observed

data and R is the autocorrelation matrix. The covariance matrix for the third order LP

coefficients can be calculated from Eq. (2.68), which is

C â =
1

N




1− a2
3 a1 − a2a3 a2 − a1a3

a1 − a2a3 1 + a2
1 − a2

2 − a2
3 a1 − a2a3

a2 − a1a3 a1 − a2a3 1− a2
3


 . (2.69)

A recursive means of computing C k̂ from Eq. (2.66) and Eq. (2.68) based on the

Levinson-Durbin algorithm is described in [27]. For a third order process the theoreti-

cal covariance matrix C k̂ of the estimated reflection coefficients is as follows:

C k̂ =
σ2

N




(1− k2
1)(1− k2)(1 + 2k1k3 + k2

3)
(1− k2

3)(1 + k2)
−2k3(1− k2

1)(1− k2)
(1− k2

3)
0

−2k3(1− k2
1)(1− k2)

(1− k2
3)

(1− k2
2)(1− 2k1k3 + k2

3)
(1− k2

3)
0

0 0 (1− k2
3)


 .

(2.70)

In Eq. (2.70) σ2 is the variance of the innovation process [29]. From Eq. (2.70) it is apparent

that if the third reflection coefficient k3 is very close to plus or minus unity, the variance

and the covariance become very large. In general, if the last reflection coefficient is very

close to plus or minus unity, the variance and the covariance of other reflection coefficients

become very large. It is also apparent from Eq. (2.70) that the third reflection coefficient is

uncorrelated with the first and the second reflection coefficients. In a pth order model, the
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reflection coefficients ki (where i ≥ p) are uncorrelated with other reflection coefficients.

However, if we consider LP coefficients, from Eq. (2.69) it can be seen that the largest

value of the variance and the covariance are limited to 4
N
, whereas in Eq. (2.70) they are

unbounded. As the estimated reflection coefficients have a large covariance and variance,

they differ a lot from their theoretical values.

Interpolation as described above averages the coefficient values. Averaging of the RC

yields inferior results in terms of prediction error [29]. This can be explained by considering

the process with true parameter vector [ 1 0 0 −0.92 ]. From Eq. (2.70), the theoretical

covariance matrix C k̂ of the estimated reflection coefficients for this process is as follows:

Ck̂ =
σ2

N



12.02 11.98 0

11.98 12.02 0

0 0 0.15


 . (2.71)

As can be seen, from the matrix (Eq. (2.71)), the 1st and 2nd estimated reflection co-

efficients have a high variance and a strong positive correlation. This means that these

reflection coefficients can be very large at the same time. For example, if a reflection coef-

ficient vector [ 1 0.31 0.45 −0.89 ] is estimated, prediction error1 equals 1.04σ2 and if

a reflection coefficient vector of [ 1 −0.36 −0.25 −0.92 ] is estimated prediction error

equals 1.01σ2. The average of these vectors is [ 1 −0.025 0.1 −0.905 ]. The average

vector yields prediction error 1.19σ2, which is considerably large. So, it can be concluded

that this type of interpolation of reflection coefficients produces a large prediction error.

We obtain LAR and ASRC by applying transformations to reflection coefficients, so

both of them suffer from the same disadvantage when interpolated. Umezaki and Itakura

[30] have studied the time fluctuating characteristics of LAR’s and LSF’s and compared

their interpolation performance. They have suggested that because LAR’s are non-linearly

transformed parameters and the lower order parameters are more important than the higher

order parameters (their experiment proved that lower order parameters produce more dis-

tortion when the frame rate is decreased), it is not efficient to use a uniform frame rate

for all order parameters. It would be more efficient to increase the frame rate for lower

order parameters and decrease the frame rate for higher order parameters. Their optimum

frame rate allocation method (non-uniform allocation) shows that the frame rate can be

1In [29] prediction error is defined as aT Ra.
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decreased by 10% compared to the uniform allocation for the same quality of synthesis

speech produced by LAR interpolation.

2.7.2 Interpolation of LSF’s

In the same paper Umezaki and Itakura [30] showed that if the frame is not very large

(less than 30 ms), the spectral interpolation distortion is almost the same for all order

LSF’s. As a result, there is a very little difference in time fluctuating characteristics among

different order LSF’s. The uniform and non-uniform frame rate allocation have almost

the same performance in terms of speech quality. Besides, they found in the case of LSF

interpolation that the spectral distortion is 72% of that in interpolation of LAR.

The LSF’s are interlaced with each other for a given LP analysis order. Kim and Lee [17]

called this property the intra-model interlacing theorem. The stability of the interpolated

LSF synthesis filter is satisfied only by preserving the intra-model interlacing theorem of

the interpolated LSF’s.

Atal, Cox and Kroon [31] studied interpolation, and they combined some interpolation

schemes with quantization schemes and then compared their performances. They did sub-

jective testing, but did not conclude which one was best. They found that the LSF-LSF

quantizer-interpolator does not have the best performance in all cases.

2.7.3 Interpolation of Autocorrelation Coefficients

The autocorrelation coefficient is another representation of the LP coefficients that preserves

the stability of the synthesis filter after interpolation. It has been observed that the matrix

produced by linear interpolation between the elements of two positive definite Toeplitz

matrices is also positive definite Toeplitz [31]. From Section 2.3.2 we know that the Toeplitz

structure assures the minimum phase of A(z), and thus the stability of the synthesis filter.

For that purpose, the autocorrelation coefficients should not be quantized. Interpolation of

the autocorrelation coefficients of two adjacent frames misses only a few terms in comparison

to the autocorrelation of the two frames together [29]. Let, the autocorrelation is defined

as

R(k) =

L−k−1∑
n=0

s(n)s(n+ k), (2.72)
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where the frame length is L, the samples of the current frame are denoted by s(0), . . . , s(L−
1), and the samples of the next frame are denoted by s(L), . . . , s(2L− 1). The autocorre-

lation of the next frame is

R′(k) =
2L−k−1∑

n=L

s(n)s(n + k), (2.73)

If these two frames are considered as a single frame, then the autocorrelation of the whole

frame will be

R2L(k) =

2L−k−1∑
n=0

s(n)s(n+ k)

=
L−k−1∑

n=0

s(n)s(n+ k) +
L−1∑

n=L−k

s(n)s(n+ k) +
2L−k−1∑

n=L

s(n)s(n+ k)

= R(k) +

L−1∑
n=L−k

s(n)s(n + k) +R′(k).

(2.74)

From Eq. (2.74), it is apparent that the average of R(k) and R′(k) misses k terms in

comparison to the autocorrelation of the two frames together.

While computing autocorrelation from the LP coefficients, it is assumed that the resid-

ual energy is the same for both frames, but in a voiced-unvoiced or an unvoiced-voiced

transition, this is not true. As a result, the normalized autocorrelation function should be

weighted by the frame energy. Erkelens and Broersen [32] have compared the interpolation

performance of the normalized and the energy weighted autocorrelation coefficients. They

conducted both subjective and objective tests. In 61.4% cases, people preferred the speech

produced by the interpolation of the energy weighted autocorrelation coefficients. But the

results of the objective tests conflict with that of the subjective tests. The interpolation

of the normalized autocorrelation has a lower spectral distortion and a lower percentage of

outlier frames (frames having spectral distortion more than 2 dB). This happens because

while using the energy in interpolation, there is a bias towards the high energy frames.

In transitions, the low energy part of the signal is modelled poorly. This causes a higher

number of outliers in the low energy part, and it also increases the average spectral distor-

tion. Yet these outliers do not negatively effect the decisions of the listeners. It also shows
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that low spectral distortion is a sufficient condition, but not a necessary condition, for high

quality speech.

2.7.4 Interpolation of Impulse Responses of the LP Synthesis Filter

Code excited linear prediction (CELP) is a commonly used speech coding technique. The

coding procedure is computationally very expensive, because it needs lot of computations

to search for the optimum excitation code vector [33]. The basic operation is to find

the LP synthesis filter for each segment of signal. Then a synthesized speech segment

is produced for each excitation code vector. The optimum excitation code vector is the

one that minimizes the perceptually weighted distortion between the input speech and the

synthesized speech. The perceptually weighted square error is defined as

Ei = ||x||2 − < x · yi >
2

||yi||2 , (2.75)

where x is the perceptually weighted input speech vector, and yi is the resulting synthesized

speech vector for the ith excitation code vector. When interpolation is done, the LP filter

is updated for each subframe, which means for each subframe yi should be recalculated:

this requires calculation of < x · yi >
2 and ||yi||2. These calculations are computationally

intensive. Yong [25] has proposed that if interpolation is done in the domain of the impulse

response of LP synthesis filter, a lot of computations are saved. Let H (1)(z) and H(2)(z) be

the frequency responses of LP synthesis filters of the two consecutive frames, and h(1)(n)

and h(2)(n) be the corresponding impulse responses. If hl(n) denotes the impulse response

of LP synthesis filter of the interpolated frame, then

hl(n) = αlh
(1)(n) + βlh

(2)(n), (2.76)

where βl = 1−αl, and 0 ≤ αl ≤ 1, αl is actually the parameter that depends on the position

of the subframe and controls the relative weights of the two frames on the subframe. Yong

[25] showed that interpolation of impulse response leads to

||yi,l||2 = α2
l ||y(1)

i ||2 + β2
l ||y(2)

i ||2 + 2αlβl < y
(1)
i · y(2)

i > . (2.77)
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So, for each subframe, in calculating the energy term, we do not need to find the filtered

code vector (synthesized speech); instead we can use the energy term of the filtered code

vector of two frames (in fact one is calculated previously and can be stored). For each frame

(not subframe) we need only to filter all code vectors to find ||y(2)
i ||2 and < y

(1)
i · y(2)

i >

and then three multiplications are needed per subframe for each code vector. The dot

product < x · yi,l > can be found using the backward filtering approach, which also saves

some computations. This fast search algorithm reduces complexity by 66%. In [25] the

comparative experiments show that interpolation of IR and LSF has a better performance

than that of ASRC and RC in term of spectral distortion, outlier frames, SNR, SEGSNR,

WSNR (weighted SNR) and WSEGSNR (weighted segmental SNR). The disadvantage of

interpolating the impulse response is that the interpolation can produce unstable synthesis

filter. Therefore, stability should be checked each time, and, if an unstable filter occurs,

the uninterpolated filter coefficients (i.e. the coefficients extracted by the LP analysis of

the given frame) should be used.
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Chapter 3

Performance Analysis

In this chapter, we start with a simple linear prediction analysis and synthesis simulation.

Various choices of parameters for LP analysis are discussed. Then we proceed to linear

interpolation with the different representations for the LP coefficients. The performances

for the different representations are compared in terms of prediction gain and spectral

distortion. We further study some objective distortion measures for performance evaluation.

Finally, different methods of interpolation are explored and a new method is introduced.

3.1 Choice of Parameters in LP Analysis

In order to perform the LP analysis, some basic parameters must be chosen. The variation

of these parameters results in varying performance. When the LP analysis is first simulated,

the following set of parameters are used in the original model:

• Sampling frequency: 8 kHz,

• LP order or the order of the filter: 10,

• Length of each frame: 160 samples, i.e., 20 ms,

• Length of analysis window: 240 samples, i.e., 30 ms,

• Type of analysis window: Hamming window,

• Method for estimation of LP coefficients: Autocorrelation method,
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• Bandwidth expansion: none,

• High frequency correction: none.

The center of the analysis window is aligned with the frame, so that the LP coefficients

represent the center of the frame. The analysis is explained in Fig. 3.1.

-40                 160                    40

 240

   frame1                          frame2

Fig. 3.1 Frame by frame LP analysis

The frame length is 20 ms and the LP coefficients are extracted frame by frame, so the

extraction rate is 50 frames/s. To evaluate the performance of the LP analysis, simulation

of the analysis/synthesis model is necessary and is described by a block diagram in Fig. 3.2.

Two measurement criteria are used:

• Prediction gain in dB (PgdB):

PgdB = 10 log10

NT −1∑
n=0

s2(n)

NT−1∑
n=0

r2(n)

, (3.1)
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Filtering

predictor (LP) coefficient

Input
speech (s(n))

residual signal (r(n))

Inverse filtering speech
Output

(s(n))
^

short term
prediction
analysis

(synthesis filter)

Fig. 3.2 Block diagram of LP analysis and synthesis

where the speech file has NT samples. A high prediction gain implies that the LP

filtering is likely to reflect the effect of the vocal tract more accurately so that the

residual will be closer to the true excitation [34].

• Error energy (Eerr):

Eerr =

√√√√√√√√√√

NT −1∑
n=0

e2(n)

NT −1∑
n=0

s2(n)

, (3.2)

where e(n) = s(n)− ŝ(n).

Since the same coefficients are used for filtering and inverse filtering, theoretically, the

input speech and the output speech should be the same and the error signal (e(n)) should

be zero. Experimentally, however, we can expect the error signal to be very small due to

the data representation and precision in the computer simulations. Different prediction

gains and error energies are obtained for three speech files, and the results are summarized

in Table 3.1.

In order to obtain useful results with linear prediction and to apply it successfully, it is

necessary to understand the relationship and the effect of the changes in parameters, such

as analysis window length, filter order, frame length, and window offset. In this experiment,

one parameter is changed at a time. The effect on prediction gain due to the change of
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Table 3.1 Prediction gain of different speech signals from the LP analysis

Input file PgdB

File1, female speaker, 23808 samples 16.12
File2, male speaker, 30976 samples 17.35
File3, male speaker, 28416 samples 16.01

that particular parameter is observed. The higher the prediction gain (PgdB), the better

the performance. The value of a particular parameter which gives the highest prediction

gain (PgdB) is the desired value for that parameter.

3.1.1 Filter Order

It is necessary to find the minimum order of the LP analysis required to model the significant

features of the speech. When the speech spectrum is modelled, the vocal tract resonances

or formants are important. It has been shown previously in [21] that to model the vocal

tract resonances the memory of filter A(z) must be at least twice the time required for the

sound wave to travel from glottis to lips. This time interval is 2L/c, where L is the length

of the vocal tract (usually 17 cm) and c is the speed of the sound wave (340 m/s). So, the

memory should be at least 1 ms. When the sampling frequency is 8 kHz, 1 ms memory

means using 8 previous samples. Thus, the order of the filter should be at least 8. Still,

in this model the glottal and the lip radiation characteristics have not been considered.

The spectral slope characteristics of glottis can vary from −10 to −18 dB/octave. The

lip radiation characteristics have a slope of approximately +6 dB/octave. Moreover, zeros

arise in nasalized and unvoiced sounds. As a result, the speech spectrum does not exactly

correspond to an all-pole system. To account for all these factors we need to add more poles.

It was found from experimental results that if the sampling frequency (fs) is expressed in

kHz then the number of poles should be fs plus 4 or 5 [21]. This agrees with the simulation

results. Since the sampling frequency is 8 kHz, a very high prediction gain is found with a

12th order or a 13th order LP analysis.

Usually the LP order is kept constant, but a smaller number of poles are needed to

accurately model unvoiced speech. For example, four coefficients are sufficient to model

the fricatives having at most one broad spectral peak. The goal of this experiment is to

find the prediction order that gives a high prediction gain with reasonable computation.
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Fig. 3.3 Prediction order vs. prediction gain (male speech, 3.872 s)

The input is speech of 3.872 s duration(male speaker), and the LP analysis and synthesis

are performed on that input speech by varying the order of the LP analysis (all other

parameters are kept constant). The resulting prediction gains are plotted in Fig. 3.3. The

same experiment is done on different speech inputs, such as a file of length 21.43 s (three

male and three female speakers) and a file of length 2.976 s (a female speaker). When the

results are plotted, all curves show the same tendency of increased prediction gain with

higher LP order. But the increment in prediction gain is high at the lower orders, and it

stabilizes at a fairly high prediction gain around the 10th order. From Fig. 3.3 it is apparent

that we are getting a reasonably high prediction gain (around 16 dB) for a 10th order filter.

As the choice of the order is a compromise among the spectral accuracy or quality of sound,

computation time, memory of filter and transmission bandwidth, we suggest using a 10th

order filter for an 8 kHz sampling frequency.

3.1.2 Frame Length

The choice of the frame length basically depends on whether the analysis is done on a

transient speech segment or a quasi-periodic speech segment. The analysis should be done

in an interval where the vocal tract movement is negligible. Usually, for most vowels, a

15–20 ms analysis frame is sufficient, but some glides may have significant movement in

that time period. For an unvoiced speech the length of the interval should be smaller than

15–20 ms. For example, a burst associated with the release of an unvoiced stop consonant
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in the initial position exists only for few ms. In order to accommodate that change, a

smaller interval like 10 ms is needed. The frame length may be expressed in terms of the

number of samples by multiplying the sampling frequency fs by the time interval.
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Fig. 3.4 Frame length vs. prediction gain

An experiment similar to the one in Section 3.1.1 was carried out. The input speech

files are same, but this time the LP order is kept constant (10th order). A 240 sample

window is used. The LP analysis and synthesis are done by varying the frame length. For

each input file the resulting curve is almost flat. Here one typical example (Fig. 3.4) is

presented. From Fig. 3.4, it is apparent that the prediction gain does not depend much

on the frame length. We want to make the frame length as large as possible to make the

frame rate lower. Usually the speech signal is stationary in a short interval, such as 20 ms.

Consequently, we have taken a frame length of 20 ms, which is 160 samples.

3.1.3 Window Length

Windowing means multiplying the speech signal s(n) by a window w(n), which allows us

to weigh the speech samples in different ways. In practice, windows have finite length. By

shifting that finite length window, different regions of the speech signal can be examined.

According to [2] the choice of window size depends on a trade off among the following

factors:

• The length of window should be short enough so that the speech properties of interest

change minimally within the window.
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• The window length should be long enough to allow the calculations of the desired

parameters. If additive noise is present, a long window can average some of that

random noise and, in this way may reduce the effects of the noise.

• When the analysis is periodically repeated, successive windows should not be so

short that the sections of s(n) are omitted. It implies that the window length must

be greater than or equal to the frame length, otherwise some parts of the signal will

not be analyzed. This problem is illustrated in Fig. 3.5.

window windowwindow

frame

This section of s(n) is not analyzed and thus omitted

Fig. 3.5 Effect of non-overlapped short window

Usually the frame length is about half the window length, so that the successive win-

dows overlap by 50%, which is logical, especially when w(n) has a shape that de-emphasizes

speech samples near its edges. Typically w(n) is smooth, because its values are the weight-

ing factor of s(n), and a priori all samples are equally relevant. Many applications trade

off between window duration and shape. They use larger windows than allowed for by

stationary constraints, and to compensate they emphasize the middle of the window. The

size of the lookahead depends on the size of the analysis window. A smaller window needs

less lookahead. We, have trade off between spectral accuracy and computation. Because

of the windowing distortion, the LP window should include at least two pitch periods for

accurate spectral estimates. Typically a 20–30 ms window includes two periods even at low
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F0
1 (fundamental frequency). The major difficulty with short windows arises from the un-

predictability of the speech excitation signal u(n). Vocal tract resonances are represented

by the poles of the LP model, but the poles also take care of the excitation disturbances.

If the LP analysis is done pitch-asynchronously, the analysis with small window length

estimates the spectrum poorly. In that case some analysis frames are dominated by the

poorly modelled excitation effect. The spectral accuracy improves if the window length is

large enough to include a few pitch periods.
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Fig. 3.6 Length of the window vs. prediction gain

The experiment (see Fig. 3.6) shows that the prediction gain increases after the window

length is increased above the frame length (160 sample), and it reaches a fairly high value

when the window length is around 240 samples (30 ms). Note that this is an average value

which may be dominated by the steady-state regions at the expense of transients.

3.1.4 Window Offset

We use a Hamming window, which is a tapered, symmetric window. It emphasizes the

speech samples in the middle of the window. In this analysis, the windows are overlapped

by 33%.

The window offset is the parameter which defines the position of the first sample of

the window relative to the position of first sample of the speech frame. This parameter is

used to align the window with respect to the frame. Fig. 3.7 shows that for a 160 sample

frame and a 240 sample window, if the window offset takes the value −40 (window starts

1Typical speech uses average F0 132 Hz for male and 223 Hz for female respectively [35].
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40 samples before the first sample of the speech frame) then the center of the window is

aligned with the center of the frame. From Fig. 3.8 it is apparent that when the window

offset is −40 samples, the prediction gain is the highest; and this implies that the center of

the window should be aligned with the center of the frame.

-40                                      160                                      40

Fig. 3.7 Effect of the window offset

3.2 Interpolation

In transition segments, large changes in energy and spectral characteristics can occur in

a short time interval. To cope with this problem without increasing the bit rate, the

LP model can be updated more frequently by interpolating the LP coefficients of the

consecutive frames.

3.2.1 Implementation of Linear Interpolation

This section studies the change in prediction gain by varying the number of subframes

per frame. Our goal is to find the optimal number of subframes per frame, that is, how

frequently the LP model should be updated by interpolating them to obtain the highest

prediction gain. We start with 2 subframes per frame. Let a(i) be the original LP coefficient

vector for the ith frame, where i runs from 0, . . . ,N−1 (N is the total number of frames in

the speech signal). Let â(j) be the interpolated LP coefficient vector for the jth subframe,

where j runs from 0, . . . ,2N − 1. A common index can be used for both a and â to



3 Performance Analysis 49

−800 −400 0 400 800
0

4

8

12

16

20

Pr
ed

ic
to

r 
G

ai
n 

(d
B

)

Window Offset (samples)

Fig. 3.8 Window offset vs. prediction gain

relate them through an equation. If we consider the number of subframes to be 2, linear

interpolation is very simple, and it can be performed using the following formula:

â(i) =




a( i+1
2 )+a( i−1

2 )

2
for i odd,

a( i
2
) for i even.

(3.3)

This is shown in Fig 3.9.

(0) (3)(2)(1)
a a a a

(̂0)a ^ (1)a ^ (2)a ^ (3)a â (4) â (5) â (6) â (7)

Fig. 3.9 Interpolation between consecutive frames

In Fig. 3.9, an ’X’ represents original LP coefficients, and a ’0’ represents interpolated
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coefficients. Among the â(i), the even numbered subframes are represented by the original

LP parameters of that frame; the odd numbered subframes are the result of the linear

interpolation between LP representation of that frame and the LP representation of the

following frame.

In order to be more general, consider the number of subframes per frame to be M .

Then the linear interpolation can be implemented using the formula,

â(i) =

{
a( i

M
) for i modM = 0,

αa(� i
M

�) + (1− α)a(� i
M

�+1) otherwise,
(3.4)

where

α =
M − i modM

M
. (3.5)

If the center of the window is aligned with the center of the frame, then the LP coeffi-

cients, for a frame, model the center of that frame. Consider that the number of subframes

per frame to be odd, say 3. That means the middle subframe is already modelled by the

original LP coefficients of that frame. We have to calculate the LP coefficients for the

1st and the 3rd subframes. We do the interpolation with the current frame and previous

frame to get the LP coefficients for the 1st subframe, and we do the interpolation with the

current frame and the next frame to get the LP coefficients for the 3rd subframe. Should

the number of the subframes per frame be even, say 4, then the original LP coefficients do

not represent any subframe, because in that case the center of the frame aligns with the

border of the two middle subframes. Thus, we have to calculate the LP coefficients for all

subframes by interpolation. To treat both cases similarly, we can use a different approach.

The center of the analysis window is aligned with the center of the first subframe of a

frame. As a result, the original LP coefficients actually represent the first subframe. The

LP coefficients of other subframes of any frame can be obtained by interpolating between

the LP coefficients of the current frame and the next frame. Eq. (3.4) and Eq. (3.5) are

used for interpolation.

When M is even (let M = 4), the interpolation looks like Fig. 3.10. When M is odd

(let M = 3), the interpolation looks like Fig. 3.11.

To compare the prediction gain of the uninterpolated signal with the interpolated signal,

while generating the LP coefficients of the uninterpolated signal, the center of the window
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(̂0)a ^ (1)a ^ (2)a ^ (3)a â (4) â (5) â (6) â (7)

Fig. 3.10 Interpolation when the number of subframes per frame is 4
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Fig. 3.11 Interpolation when the number of subframes per frame is 3

is aligned in such a way that it actually represents the center of the first subframe. To get

the proper residual, the data offset has to be adjusted with respect to the center of the

window.

Another issue, is stability, which was discussed in the previous chapter. To guarantee

the stability, the interpolation is not done in the LP coefficient domain but in one of its

other representations. We use the following steps:

• Generate a set of LP coefficient vectors a(i) for all frames i, i = 0, 2, . . . , N − 1 (with

the necessary adjustment of the window)

• Linear predictive coefficients are converted to another representation, such as,

1. Line Spectral frequency (LSF)

2. Reflection Coefficient (RC)

3. Log Area Ratio (LAR)

4. Autocorrelation (normalized AC)

5. Energy weighted autocorrelation (EAC)
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Call any of these r(i).

• Consider the number of subframes to be M per frame. Compute M − 1 interpolated

set of coefficients among consecutive frames using Eq. (3.4) and Eq. (3.5). In these

equations use r(i) instead of a(i) for the sake of stability.

• Convert the LP coefficient representation r̂(i) to â(i).

• Compute prediction gains for a(i) and â(i), so that the performance before interpola-

tion and after interpolation can be compared.

3.2.2 Optimal Number of Subframes

We study the effect on the prediction gain due to the change of number of subframes per

frame. Increasing the number of subframes in interpolation means increasing the rate of

updating the LP parameters by interpolation. The bit rate does not increase because of

interpolation. The input is a single speech file. Different prediction gains are obtained by

changing the representations for LP coefficients (LSF, RC, LAR, AC and EAC) and the

number of the subframes per frame. In this simulation, the input file is a large composite

speech file (we concatenate three speech files used as input in the experiments in Section 3.1.

The resulting file is 10.4 s long with both male and female voices). The same simulations

are done with the smaller individual files and similar results are obtained. Fig. 3.12 shows

the curves obtained from the simulation that uses the large composite speech file.

From Fig. 3.12, it is apparent that for any representation the prediction gain usually

increases with the number of subframes, but it reaches the highest value when the number

of subframes per frame is about 5. It implies that the length of each subframe is 4 ms

(32 samples). In Fig. 3.12, one subframe per frame denotes that no interpolation is done.

Prediction gain increases with interpolation, because when the frame length is 20 ms (and

no interpolation is done), in transition segments there are large changes in LPC spectra. By

increasing the number of subframes per frame, the frame length is decreased. In this way

the LPC spectra is smoother. That is why, the prediction gain is increasing with the number

of subframes per frame. However, when the number of subframes per frame is greater than

5, the subframes are too short, the properties of the speech do not change much. As we are

considering the average of the prediction gain, it remains almost stable even the number

of subframes per frame is increased above 5. In this experiment, the number of subframes
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case of LSF interpolation
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case of LAR interpolation
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case of AC interpolation
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Fig. 3.12 Optimal number of subframes for different representations for LP
coefficient interpolation
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is limited to 20 per frame (8 samples per subframe), because substantially increasing the

number of subframes will increase the computational complexity.

3.2.3 Comparison Among Different Representations

The results above also provide the best choice of representation of the LP coefficient for

interpolation for a fixed number of subframes per frame. Table 3.2 summarizes the results

when the input speech file is the large composite file, and Table 3.3 summarizes the result

when the input is a small speech file (male voice, 3.872 s). From Table 3.2 and Table 3.3,

it can be concluded that LSF is better than any other representation for any number of

subframes in terms of prediction gain.

Table 3.2 Prediction gain for different representations for LP coefficients
for different number of subframes/frame, when the input file is a large file
consisting of male and female voices.

M LSF RC LAR AC EAC

1 16.45 16.45 16.45 16.45 16.45
2 16.47 16.44 16.45 16.44 16.45
4 16.50 16.46 16.47 16.46 16.46
5 16.53 16.49 16.50 16.48 16.48
8 16.52 16.48 16.50 16.48 16.47
10 16.52 16.48 16.49 16.47 16.47
16 16.52 16.48 16.49 16.47 16.47
20 16.52 16.48 16.50 16.48 16.47

A high average prediction gain means that the LP filtering more accurately reflects the

effect of the vocal tract so that the residual may be closer to a true excitation [34].

3.2.4 Statistical Outliers

Statistical outliers indicate the consistency of the analysis filter performance. This is mea-

sured from the short term prediction gain, which is actually calculated on a frame-by-frame
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Table 3.3 Prediction gain for different representations for LP coefficients
for different number of subframes/frame, when the input file is a short file
consisting of a male voice only.

M LSF RC LAR AC EAC

1 17.35 17.35 17.35 17.35 17.35
2 17.37 17.33 17.31 17.38 17.36
4 17.44 17.40 17.39 17.41 17.39
5 17.46 17.42 17.40 17.42 17.39
8 17.44 17.41 17.40 17.40 17.37
10 17.45 17.41 17.41 17.41 17.38
16 17.47 17.44 17.43 17.43 17.39
20 17.47 17.44 17.43 17.42 17.39

basis. The short term prediction gain (PgdB(s)) is defined as [34],

PgdB(s) =
1

NF

NF−1∑
m=0

10 log10

NS−1∑
n=0

s2(n)

NS−1∑
n=0

r2(n)

, (3.6)

where Ns is the number of speech samples in a speech frame and NF is the total number

of speech frames in the speech file. A threshold value (PgdB(th)) is defined as

PgdB(th) = PgdB(s) − 3(dB) (3.7)

Any speech frame having a prediction gain lower than PgdB(th) is classified as an outlier.

Different representations of LP coefficients are used for interpolation and the percentage

of outliers in terms of the prediction gain are calculated. Table 3.4 summarizes the results

for a female voice (length of the speech file is 2.976 s).

From Table 3.4, it is clear that the percentage of outliers is a poor measure for evaluating

interpolation techniques.
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Table 3.4 Short term prediction gain and % outliers for different represen-
tations for LP coefficients for different numbers of subframes per frame

PgdB(s) % Outliers

M LSF RC LAR AC EAC LSF RC LAR AC EAC

1 16.3 16.3 16.3 16.3 16.3 32.1 32.1 32.1 32.1 32.1
2 16.3 16.2 16.2 16.2 16.2 33.3 33.3 33.3 33.1 33.3
4 16.1 16.0 16.1 16.0 15.9 34.0 34.7 34.2 34.3 34.8
5 16.0 16.9 16.0 15.9 15.8 34.7 35.1 34.7 34.7 35.0
8 15.9 15.7 15.8 15.7 15.7 35.8 35.8 35.5 35.5 35.9
10 15.8 15.7 15.8 15.7 15.6 36.4 36.8 36.3 36.2 36.2
16 15.7 15.5 15.6 15.5 15.4 37.7 38.0 37.7 37.7 38.0
20 15.6 15.5 15.6 15.5 15.4 38.2 38.5 38.2 38.1 38.5

3.2.5 Spectral Distortion

Spectral distortion is another objective criterion for performance evaluation. Spectral dis-

tortion is defined as the root mean square difference between the original LPC log power

spectrum and the interpolated LPC log power spectrum. The mathematical definition of

common spectral distortion for frame i is as follows:

SDi =

√√√√ 1

Fs

∫ Fs

0

[
10 log10

Si(f)

Ŝi(f)

]2

df (dB), (3.8)

where, Fs is the sampling frequency, Si(f) and Ŝi(f) are the LPC power spectra of the ith

frame given by,

Si(f) =
1

Ai(ej2πf/Fs)
, (3.9)

Ŝi(f) =
1

Âi(ej2πf/Fs)
, (3.10)

where Ai(z), Âi(z) are the original and the interpolated LPC polynomials (defined in

Section 2.1, Eq. (2.7)), respectively, for the ith frame. We study the spectral distortion

in the range 0 Hz to 3 kHz. Instead of integration, we can use summation of the DFT



3 Performance Analysis 57

(Discrete Fourier Transform) coefficients to calculate SDi. If a signal is sampled at 8 kHz,

and then filtered by a 3 kHz lowpass filter; the SDi is calculated as a summation over

uniformly spaced points from 0 Hz to 3 kHz. This can be expressed as [36]

SDi =

√√√√ 1

n1 − n0

n1−1∑
n=n0

[
10 log10

S(ej2πn)

Ŝ(ej2πn)

]2

(dB) (3.11)

If we use a 256 point DFT then n0 and n1 correspond to 0 and 95 respectively. The

frequency resolution between two points is 31.25 Hz (8 kHz/256).

Spectral distortion is often used in the performance evaluation of quantization. In [13]

Kleijn and Paliwal have introduced the measurement of “transparency”. By “transparent”

quantization they mean that the two versions of the coded speech, one obtained by using

the un-quantized LP parameters and the other by using the quantized LP parameters, are

indistinguishable through listening. Previous literature suggests that an average spectral

distortion of 1 dB or less is good enough for transparent quality (The spectral distortion

is calculated for each frame and then their average represents the spectral distortion of

that scheme). Also, it has been observed that too many outlier frames (frames with large

spectral distortion) even though the average SD is less than 1 dB affects the quality. There

are two types of outlier frames:

• The frames having SD in 2–4 dB range (outlier type 1).

• The frames having SD greater than 4 dB (outlier type 2).

To achieve the transparent quality, the quantized signal must satisfy the following con-

ditions:

• The average SD is less than or equal to 1 dB

• There are no outlier frames having spectral distortion greater than 4 dB.

• The percentage of outlier frames having spectral distortion in the range 2–4 dB should

not be greater than 2%.

It has been suggested that the criteria used to measure the transparency of a quantized

coder can be used to evaluate the performance for interpolation [37]. The interpolation
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performance of many parametric representations of LP coefficients is investigated by calcu-

lating their average SD and the percentage of the two types of outlier frames. The power

spectra of the interpolated LP parameters for a frame (actually subframe) is compared

with the the power spectra of original LP coefficients of that frame while calculating the

spectral distortion. Both are un-quantized. The interpolation performance for subframe

interval 5 ms and 4 ms are studied and the results are listed in Table 3.5 and Table 3.6. In

both cases the input speech file is a 2.976 s long female voice.

Table 3.5 Interpolation performance for different LP coefficient representa-
tions. The subframe length is 5 ms.

Parametric Representation Average SD 2-4 dB >4 dB

Line Spectral Frequency 1.57 17.1% 4.0%
Autocorrelation 1.73 17.9% 5.9%
Reflection Coefficient 1.83 14.7% 8.2%
Log area ratio 1.78 16.1% 6.8%

Table 3.6 Interpolation performance for different LP coefficient representa-
tions. The subframe length is 4 ms.

Parametric Representation Average SD 2-4 dB >4 dB

Line Spectral Frequency 1.29 18.5% 3.9%
Autocorrelation 1.39 18.8% 5.7%
Reflection Coefficient 1.50 17.8% 7.6%
Log area ratio 1.46 17.8% 6.3%

Table 3.5 and Table 3.6 show that the LSF’s have the lowest average SD and the lowest

percentage of frames having SD greater than 4 dB (outlier type 2). Still, it is surprising

that the RC’s have the lowest percentage of frames having SD in the range 2–4 dB.

3.2.6 Introducing Frame energy

A problem occurs when there is a low energy part followed by a segment with rapidly

changing energy (such as an onset) in a frame. To deal with this problem it is suggested

in [38] that it is better to adapt the location of the analysis frame boundaries to the signal
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characteristics. But in this research we use fixed boundaries (fixed length analysis frame).

So, we have to deal with this problem differently. We want to see where (especially in which

segments) the interpolation fails to model the intermediate frames. We want to determine

the special feature of those frames in terms of frame energy. For this purpose we plot

the frame energy for each frame. We also plot the spectral distortion for each frame after

interpolation.
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Fig. 3.13 Effect of change in frame energy on spectral distortion

Fig. 3.13 shows that the spectral distortion is zero for those frames where the original

LP parameters are used. If we now concentrate on the high spectral distortion points, we

can easily see that the spectral distortions are comparatively high in the frames where the

energy is low and there are sudden changes in the energy (onset). This indicates that there

is a relation between interpolation error and change in frame energy, a relation that can be

used to minimize the spectral distortion of the interpolated frames.

The autoregressive model describes the autocorrelation function of a signal in the time

domain and the spectral envelope in the frequency domain. The autoregressive method
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uses the sample autocorrelation of the speech to compute the LP parameters. Thus, a good

interpolation is the one that gives the best approximation of the sample autocorrelation of

the intermediate frames. That is why a previous paper [32] suggested using autocorrelation

for interpolation. If the autocorrelation is not normalized, the 0th sample (R(0)) contains

the energy of the frame. The energy weighted autocorrelation (EAC) can be obtained

by multiplying the normalized autocorrelation by the frame energy. Interpolation can be

done with this energy weighted autocorrelation to obtain the sample autocorrelation of the

intermediate frame. In this way the frame energy can be incorporated in the interpolation.

From the previous sections, we found that the LSF’s have the best performance in

interpolation in terms of both prediction gain and spectral distortion. Moreover, based

on the above discussion we want to incorporate the frame energy in interpolation, at least

in the transition frames. So, we try to find a scheme which considers the combination

of two representations of the LP parameters for interpolation. In some frames (those

without transition), we can use LSF’s; and in frames having onsets we can use energy

weighted AC. To evaluate the alternatives we compare the SD frame-by-frame. This shows

the performance of each interpolation scheme in each frame and also shows the changes

in energy. We compare the interpolation performance of LSF’s with the interpolation

performance of normalized AC (see Fig. 3.14), energy weighted AC (see Fig. 3.15) and AC

weighted by
√
E (see Fig. 3.16), where E is the energy of the frame. In each of these figures

the top subfigure shows the change in frame energy, the middle one shows SD per frame

when LSF interpolation is used, and the subfigure in bottom shows SD per frame when the

autocorrelations are weighted differently by frame energy and then used in interpolation.

Fig. 3.14, Fig. 3.15, Fig. 3.16 show that there are almost same number of outliers in all

interpolation schemes. In the case of LSF interpolation, the spectral distortion is less than

6.5 dB in all frames. For autocorrelation interpolation, the spectral distortion sometimes

reaches as high as 8 dB. In energy weighted autocorrelation interpolation (Fig. 3.15) the

spectral distortion exceeds 8 dB in some frames. These outlier frames with high spectral

distortion also increase the average spectral distortion. In most cases the rms energy

weighted autocorrelation interpolation (Fig. 3.16) gives lower spectral distortion of the

outlier frames than the normalized autocorrelation interpolation (Fig. 3.14).
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Fig. 3.14 (a) Energy of a speech sentence. (b) SD for LSF interpolation.
(c) SD for normalized autocorrelation interpolation

.
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Fig. 3.15 (a) Energy of a speech sentence. (b) SD for LSF interpolation.
(c) SD for energy weighted autocorrelation interpolation
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Fig. 3.16 (a) Energy of a speech sentence. (b) SD for LSF Interpolation.
(c) SD for rms energy weighted autocorrelation interpolation

.
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3.2.7 New Interpolation Method

From previous studies [32] we know that the frame energy can be used as a weighting factor

of parametric representations of the LP coefficients in interpolation. But, from the previous

section, it is not clear, what the exact weighting factor for the LP parameters should be:

the frame energy or some weighting of the frame energy? To find the solution, we set up

an experiment. We want to vary the weighting factor in different exponents of the frame

energy Eγ , where γ varies from 0 to 1. Then the interpolation is done and the performance

of this interpolation is measured in terms of prediction gain and spectral distortion. To

introduce this weighting factor we use a new method as follows: let R
(1)
k and R

(2)
k be the

kth autocorrelation (normalized) samples for two consecutive frames and EiR
(i)
k be the kth

weighted autocorrelation of the interpolated frame between them; α is the factor which

depends on the position of the subframe, that is, how close the subframe is to the first or

the second frame. The value of α is calculated from Eq. (3.5). E1 and E2 are the frame

energy of the first and the second frame. Hereby,

EiR
(i)
k = Eγ

1R
(1)
k α + Eγ

2R
(2)
k (1− α). (3.12)

If k = 0 in Eq. (3.12), we get

EiR
(i)
0 = Eγ

1R
(1)
0 α + Eγ

2R
(2)
0 (1− α). (3.13)

since R
(i)
0 , R

(1)
0 , R

(2)
0 are each 1 respectively, from Eq. (3.13)

Ei = Eγ
1α + Eγ

2 (1− α). (3.14)

If this value for Ei is used in Eq. (3.12), it becomes

R
(i)
k =

Eγ
1α

Eγ
1α + Eγ

2 (1− α)
R

(1)
k +

Eγ
2 (1− α)

Eγ
1α + Eγ

2 (1− α)
R

(2)
k

= βR
(1)
k + (1− β)R

(2)
k

(3.15)
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where

β =
Eγ

1α

Eγ
1α + Eγ

2 (1− α)
. (3.16)

From equation Eq. (3.16), if γ = 0, then β = α which is the interpolation without consid-

ering the energy. Again, if γ = 1, then from Eq. (3.16) we get

β =
E1α

E1α + E2(1− α)
, (3.17)

which is an energy weighted interpolation. For any LP coefficient parametric representation

(r), we can generalize the formula,

r
(i)
k = βr

(1)
k + (1− β)r

(2)
k (3.18)

Prediction Gain

We want to see the effect on the prediction gain due to the change in weighting factor β

by varying γ from Eq. (3.15) and Eq. (3.16). Two types of LP coefficient representations

are considered:

• Autocorrelation.

• LSF.

Two input speech files are used; one is the big composite file of male and female voices used

in Section 3.2.2 and Section 3.2.3, and another is a short male speech (3.872 s). Both curves

have a very similar shape. Fig. 3.17 and Fig. 3.18 show the output when the composite

file is used. In Fig. 3.17(a), when γ is varied from 0 to 1 by step of 0.1; prediction gain

changes slightly. However, prediction gain is the highest when γ = 0.4 or 0.5. Thus, the

normalized autocorrelation functions need to be weighted by E0.4 or E0.5 where E is the

frame energy. When the same experiment is done in the LSF domain, the highest prediction

gain is obtained when γ = 0.1 (see Fig. 3.17(b)). Although, the prediction gain is almost

same for γ = 0.1 and γ = 0. Thus, if we use LSF and want to maximize the prediction

gain, it should be weighted by E0.1.



3 Performance Analysis 66

Spectral distortion

The following experiments are similar to those of the previous section, but this time spectral

distortion is calculated instead of prediction gain. From Fig. 3.18(a), it is obvious that,

in the case of autocorrelation, spectral distortion is minimized when γ = 0.2. Fig. 3.18(b)

shows that in case of energy weighted LSF interpolation, spectral distortion is minimized

when γ = 0.

Table 3.7 and Table 3.8 summarize the performance of partially energy weighted au-

tocorrelations and LSF’s in terms of spectral distortion and percentage of outliers. The

tables show that average spectral distortion is very low (near the transparent quality) in

all cases.

Table 3.7 Interpolation performance for different speech files. Autocorrela-
tions are weighted by E0.2, and then are used for interpolation

Input file Average SD 2-4 dB >4 dB

Male speaker, 30976 samples 0.97 8.7% 3.4%
Female speaker, 23808 samples 1.16 13.2% 4.7%
Male speaker, 28416 samples 1.17 10.7% 4.7%

Table 3.8 Interpolation performance for different speech files. LSF’s are
weighted by E0, and then are used for interpolation

Input file Average SD 2-4 dB >4 dB

Male speaker, 30976 samples 0.89 8.7% 1.7%
Female speaker, 23808 samples 1.07 13.7% 3.2%
Male speaker, 28416 samples 1.03 11.0% 2.3%
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Fig. 3.17 Exponent (γ) of the frame energy (E) vs. prediction gain (dB)
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Fig. 3.18 Exponent (γ) of the frame energy (E) vs. spectral distortion (dB)
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Chapter 4

Summary and Future Work

Linear prediction analysis and synthesis have been simulated using Matlab programs, and

different interpolation techniques have been incorporated. The resulting speech quality has

been assessed objectively. In this chapter, Section 4.1 summarizes our work and Section

4.2 makes some suggestions for future research.

4.1 Summary of Our Work

In Chapter 1, we presented some background information about speech coding, which

included the properties of speech signals and the basic aspects of speech coders. The

objective and the motivation of our research were outlined.

Chapter 2 presented a review of linear prediction analysis of speech and an estima-

tion of linear predictive coefficients, as well as the concepts of bandwidth expansion and

high frequency correction. Other alternative representations of LP coefficients such as line

spectral frequencies, reflection coefficients, log area ratios, autocorrelation functions were

discussed. The second part of Chapter 2 introduced the idea of interpolation for various

representations of LP coefficients. This part also described a number of variations of objec-

tive distortion measures and subjective distortion measures. The chapter reviewed earlier

literature on interpolation of parametric representations of LP coefficients.

Chapter 3 began with the basic implementation of LP analysis. We discussed the effect

on the performance of LP analysis due to the change of different parameters (LP order,

window length, frame length, window offset). The performance was measured in prediction

gain, which denoted the quality of speech. The results of our experiments on the parameters
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of LP analysis can be summarized as follows:

• When 8 kHz sampling frequency was used, a 10th order filter gives a sufficiently high

prediction gain.

• The prediction gain does not depend much on the frame length. A 20 ms frame length

produces a slightly higher prediction gain than other frame lengths.

• The prediction gain does not depend much on the window length. For a 20 ms frame

length, a 30 ms window length gives a good prediction gain.

• The window offset is a parameter specifying the position of the window with respect

to the frame. It affects the prediction gain. When the window offset aligned the

window center with the frame center, the highest prediction gain is obtained.

Incorporating the interpolation extends the basic model for LP analysis and synthesis.

Algorithms and mathematical derivations for implementing the interpolation were formu-

lated. The following conclusions can be drawn from the results of our experiments with

interpolation:

• The prediction gain of LP analysis using the interpolation of the parametric repre-

sentations of LP coefficients is higher than the prediction gain of LP analysis without

any interpolation.

• In our experiments we used 20 ms frames. The experiments showed that for any

representation, we get the highest prediction gain when the number of subframes per

frame was 5, which implied that the length of each subframe was 4 ms.

• We experimented with interpolation of line spectral frequencies, reflection coefficients,

log area ratios, normalized autocorrelation functions and energy weighted autocor-

relation functions. Among them, interpolation of line spectral frequencies produced

the highest prediction gain.

• Prediction gain outliers are a poor measure for interpolation performance.

• We also measured the performance using spectral distortion. LSF’s show the best

performance (interpolation of LSF’s gives the lowest spectral distortion and the low-

est percentage of outlier type 2 frames). However, the interpolation of reflection

coefficients produces the lowest percentage of outlier type 1 frames.
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• Our next experiment focused on the modification of the interpolation method by using

frame energy. We found that spectral distortion was high in the frames, which had

sudden changes of energy from low to high. This result indicates that frame energy

should be taken into account in interpolation to minimize the spectral distortion.

• We did some experiments with a new method of interpolation, where we used the

power of frame energy as a weighting factor of the parametric representation of lin-

ear predictive coefficients. Thus, we could vary the effect of the frame energy on

interpolation. The results of these experiments indicates that when the normalized

autocorrelation functions are used for interpolation, prediction gain is maximized by

using the weighting factor E0.4 (where E was the frame energy), and spectral distor-

tion is minimized by using the weighting factor E0.2. When line spectral frequencies

are used instead of the normalized autocorrelation functions, prediction gain is max-

imized by using the weighting factor E0.1 and spectral distortion is minimized by

using the weighting factor E0.

4.2 Future Work

From our experiments we found that spectral distortion was high in the transition seg-

ments. In order to minimize the spectral distortion in the transition segments, one should

use frame energy (actually some power of frame energy) as the weighting factor of the para-

metric representations of LP coefficients while doing interpolation. The proposed method

improved the performance. Still, we need more improvement. Using the energy in the

interpolation improves the performance of a coder at rapid onset. It gives a less accurate

approximation for the models for the low energy parts of the transitions, because using

energy biases the interpolation towards the frame with the highest energy. To overcome

this problem, we have to detect the transitions accurately. Phonetic classification proce-

dure can classify each subframe either as voiced, unvoiced, onset or offset. For low energy

segments of the transitions (onset or offset), a different weighting factor can be used. This

indicates that two types of interpolation techniques can be used together.

Subjective tests are an unavoidable necessity for these experiments. In our research we

did not verify our results by formal subjective tests. Our previous discussion implies that

the energy weighted interpolation causes large spectral distortion in the low energy parts



4 Summary and Future Work 71

of the transitions. It increases average spectral distortion and the percentage of outliers.

These low energy outliers do not affect subjective quality much. This indicates that we

cannot totally rely on the objective distortion measure like spectral distortion; all results

must be verified by subjective tests. Our experiments can be extended and modified by

simultaneously doing subjective tests and objective measurement.
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