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Abstract

In recent years, audio coding has proved to be of great importance for applications such

as mobile communication and multimedia systems. Our research has focused on adapting

a low bit rate/fixed bit rate audio coder to handle signals at a wide range of bit rates

and sampling rates. Bit rates as low as 4 kbps and sampling rates between 4 kHz and

16 kHz were incorporated. Further, the coder can change bit rates during transmission in

order to adapt to the available channel bandwidth. The coder was implemented in the C

programming language and its performance evaluated. It was found that the quality of the

reproduced audio for this coder requires some improvement, but the scalability performs

smoothly, with transitions causing no artifacts, and reasonable loss of quality at the lowest

bit rates.



ii

Sommaire

Récemment, le codage sonore est devenu très important pour les applications telles que la

communication mobile et le multimédia. Nous avons adapté un codeur sonore avec un taux

de bit bas et fixe pour le rendre capable d’accepter des signaux avec une grande variété

de taux d’échantillonage et capable d’envoyer des signaux à plusieurs taux de bit. Des

taux d’échantillonnage entre 4 kHz et 16 kHz et des taux de bit aussi bas que 4 kbps

ont été incorporés. De plus, le codeur est capable de changer les taux de bit pendant la

transmission afin de s’adapter à la largeur de bande passante disponible. Le codeur a été

mis en application en utilisant la programmation C et ses performances ont été évaluées.

On a constaté que la qualité de l’acoustique reproduite par ce codeur exige une certaine

amélioration, mais la scalabilité s’exécute sans à-coup, avec des transitions ne causant

aucune erreur perceptible, et une perte acceptable de qualité aux plus bas taux.
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Chapter 1

Introduction

1.1 Audio Coding

In the modern world we find ourselves relying more and more on less and less bandwidth

for our communications. Wireless and Internet communications in particular have forced

us to innovate towards reduction of bandwidth usage while maintaining a reasonable level

of speech or audio reproduction. Digital Signal Processing (DSP) techniques can be used

to decrease the redundancy and irrelevancy contained in an audio signal.

A great deal of DSP research has focused on digitally encoded speech for quality im-

provements and bandwidth reduction. More and more however, research is turning to the

more general problem of audio compression, or coding.

Audio coding is an important step towards delivering a high quality communications

experience. Traditional speech coders generally perform poorly when applied to any sort

of music or music combined with speech. This can cause audible artifacts for the listener

when, for example, he or she is on hold with music playing over a phone, or during a

multimedia Internet broadcast.

Generally speaking, high compression speech coders these days use a production based

model to minimize the information transmitted. For example, most voiced speech (e.g.,

vowels) contains important information such as the fundamental frequency of the speaker

and its corresponding formants [1]. Exploiting knowledge of the characteristics of speech

has allowed researchers to drastically reduce the information required to adequately repre-

sent it in digital form. Audio information, however, is too complex to encode based on its

source, since there is such a wide variation in the sources for audio signals. Therefore, with
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audio coders, we instead try to model the human hearing system to eliminate inaudible

portions of the signal. It is also possible for some speech coders to take advantage of the

human hearing system, but either due to relatively little gain in quality for the amount of

processing which must be done, or because the structure of the speech coder does not allow

direct application of a hearing model, few popular speech coders do so.

The most famous audio codecs today are arguably those standardized by the Moving

Picture Experts Group (MPEG). They have so far produced two standards which include

audio codecs, MPEG-1 and MPEG-2. MPEG-4, as of this writing, is in development but

nearing completion. MPEG-1 has drawn significant public attention for its high quality

wide bandwidth compression. MPEG-2, especially with its Advanced Audio Coding (AAC)

profile, has improved on this performance [2, p. 789]. MPEG-4 will include a wide array

of low bit rate audio codecs as well as a revised version of AAC.

1.2 Bit Rate and Sampling Rate Scalability

When designing a digital coder, we must at some point decide how much bandwidth we are

willing or able to occupy with our encoded signal. This translates directly to the number of

bits per unit of time we are allowed to send. In fixed rate coders, the number of bits to be

used is rigid. The same amount of bandwidth is used for every time frame. This contrasts

with coders which can change the number of bits per unit of time they use.

There are several ways in which coders can implement possible bit rate changes. First,

coders can use a different bit rate each time it is used, without changing mid-transmission.

We will call these coders bit rate switchable. Second, a coder could be able to dynamically

alter its bit rate so that the minimum number of bits is used to deliver a specified level of

quality. This we will call adaptive bit rate mode. Third, a coder which can change its top

bit rate during transmission in order to adapt to the available channel bandwidth we will

call bit rate adjustable. Finally, when a coder can do all three of these operations, we will

call it bit rate scalable.

An audio coder which is bit rate switchable allows us to move one step closer to a

universal coder. This would be of great advantage in terms of using a single codec for

connections of differing speeds. Users with greater bandwidth could enjoy the higher fidelity

of high bit rates, while the low bandwidth users would be able to communicate with decent

quality.
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Adaptive bit rate mode coders can use the available bandwidth more efficiently than

fixed rate coders. They are sometimes avoided due to hardware limitations. For example,

in a channel with a fixed bandwidth, if the portion of a signal requiring significantly more

bits than average was being coded, the channel could be overloaded. This requires that

buffers be constructed for the additional bits [3, p. 632].

A bit rate adjustable coder could be very useful in many applications. For example,

during an Internet broadcast there are many reasons why the bandwidth available to a user

would decrease, and it would likely be preferable to simply lower the quality of the audio

for that user than to stop the broadcast entirely.

A very general audio coder must also be able to handle multiple sampling rates. The

decision of what sampling rate to use for a transmission affects the quality of the reproduced

signal, as well as how many bits are required to represent that higher bandwidth signal.

Most coders work either at a single fixed sampling rate, or have specified sampling rates at

which they can operate. The coder discussed herein is able to operate at any sampling rate

between 4 kHz and 16 kHz, and could be altered to function well for almost any reasonable

sampling rate. This allows us to use a single codec for many sampling rates and therefore

a wider range of applications.

1.3 Scope of Our Research

The overriding goal of our research is to create an audio coder which can be used in as

many situations as possible. At high bit rates (e.g., 64 kbps per channel), codecs which

can represent music and speech without artifacts have already been developed, therefore

we concentrate our efforts on a coder which can adequately represent speech and audio at

low bit rates (less than 16 kbps). In the course of our research we look at existing coders

as well as their approach to bit rate scalability.

A previously invented coder designed to operate at a fixed 8 kbps bit rate and 8 kHz

sampling rate, which codes audio and speech data well [4], is adapted to operate at many

bit rates and sampling rates. We also enable it to switch between bit rates midstream.

The resulting coder, along with the original coder, is simulated in software using the C

programming language, and tested.

This thesis will first present fundamental information on audio coding practices. Second,

existing audio codecs will be discussed along with their bit rate scalability. Next, we present
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the details of the audio coder we developed. Finally, we discuss the performance of our

coder as well as where it could likely be improved.
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Chapter 2

Audio Coding Basics

2.1 Time to Frequency Transformations

The most basic form of digital representation of a signal is called Pulse Code Modulation

(PCM). This representation is formed by taking a sample of an analog (continuous in time)

signal at regular time intervals. The rate at which these samples are taken is called the

sampling rate. The input to our coder is assumed to be in PCM form, so we refer to our

input data as samples. We should note that on the receiving end of a coder, the signal will

be output to PCM in order to be converted back to a continuous signal for the listener to

hear.

Almost all high compression audio coders are frequency domain coders so that they can

take advantage of frequency characteristics of the ear. Frequency domain coders analyze

the frequency properties of the signal in order to determine what parts are redundant.

Frequency domain audio codecs operate on frames of data, the length of which depends on

the intent of the coder and the type of signal. Long frames tend to allow better frequency

resolution, and short frames give better time resolution while smearing frequency informa-

tion. So for example if we wanted to analyze a sharp transition in a sound, we would want

to use a short window. This would allow us to analyze this data without polluting the

analysis with information unrelated to the transient. It would also unfortunately give poor

frequency resolution. For a long tone however, a longer frame (e.g., 30 ms) would naturally

be better so the frequencies present could be determined more accurately, and also because

we would not need a great deal of time resolution.

In order to determine the frequency characteristics, we must apply a time to frequency
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mapping function. For digital signals, the most common mapping is the Discrete Fourier

Transform (DFT),

XDFT(k) =
N−1∑
n=0

x(n)e
−j2πkn

N , (2.1)

where n is the sample index and N is the number of samples in the transform. Early audio

coders often used the DFT for its well understood properties as well as for the many fast

implementations which have been developed for it (Fast Fourier Transform, or FFT). DFT

coefficients are rarely directly encoded in audio coders today though, mainly because use of

the DFT produces what are called block edge effects. Block edge effects are caused because

the DFT operates on individual frames of signal data. When that data is transformed,

quantized, then transformed back to the time domain, the beginning and ending samples

of that block of data are often not coordinated with the preceding and subsequent blocks.

This causes an audible periodic noise.

In order to deal with block effects, another transform, the Modified Discrete Cosine

Transform (MDCT) has had widespread adoption in audio coders,

X(k) = 2

N−1∑
n=0

x(n) cos (
2π

N
(n+

N
2
+ 1

2
)(k +

1

2
)), k = 0, . . . ,

N

2
− 1. (2.2)

The MDCT is a transform whose frames overlap by 50%. This deals with the problem

of block edge effects [5, p. 23], and the MDCT retains the feature of critical sampling

(producing one coefficient per input sample), since it only has half as many frequency

coefficients as it has samples in its frame. The primary disadvantage of the MDCT is the

less obvious analysis of its coefficients. As a result of this, audio coders often still use the

DFT to more accurately apply their hearing model.

The coefficients X(k) and XDFT(k) are often referred to as spectral coefficients.

The diagram in Figure 2.1 represents the basic form of a transform coder. The darker

lines indicate frequency information being passed in parallel between sections.

2.2 Windowing

When analyzing frames of data we must decide not only how long a frame of data we want,

but also how that frame needs to be modified for clearer analysis. When we modify the
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Fig. 2.1 Basic structure of a transform audio coder

shape of an input frame it is called applying a window to that frame. If we were to take a

frame of PCM sound data and perform frequency analysis directly on that frame without

modifying it, we say we are applying a rectangular window. The main problem with using

a rectangular window is that there is usually some loss of accuracy in the analysis. This

is because at the edge of each frame the periodic parts of the signal are cut off which can

lead to distortion of the frequency analysis. To correct this, most windows emphasize the

mid-frame samples while degrading the edge samples.

We also want to take advantage of the fact that using the MDCT we can perform

perfect reconstruction. This happens when we are able to obtain the identical signal after

applying an MDCT and then an inverse MDCT (IMDCT) to it. For perfect reconstruction

to be possible however, our window must have the property that the sum of the product

of overlapped windows is a constant [6].

One popular window is the half-sine window:

w(n) = sin (
πn

N − 1
), n = 0, . . . , N − 1, (2.3)

where N is the length of the window. This window satisfies the above criterion and performs

well for signals with dense harmonics. Other windows with greater rejection of widely

spaced frequency components have also been used in audio coding.
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2.3 Psychoacoustics

In order to find the redundancies and irrelevances in sound, a great deal of research has

been put into building a mathematical model of human hearing. Considerable success has

been achieved and we are able to effectively eliminate parts of a digital signal with no or

very little effect on the perceived sound [7]. This achievement is in spite of great difficulties.

Since we cannot observe hearing anatomy while it is active, we must rely on psychological

hearing tests, which are subjective.

The human inner ear receives audio frequencies as physical vibrations at different lo-

cations on the basilar membrane [1]. When a sound reaches its corresponding location, it

causes hair cells on the basilar membrane to vibrate, which in turn causes neurons to fire.

Table 2.1 Critical band frequencies (approximate)

Band Frequency Range Band Frequency Range
0 0 – 50 14 1735 – 1970
1 50 – 95 15 1970 – 2340
2 95 – 140 16 2340 – 2720
3 140 – 235 17 2720 – 3280
4 235 – 330 18 3280 – 3840
5 330 – 420 19 3840 – 4690
6 420 – 560 20 4690 – 5440
7 560 – 680 21 5440 – 6375
8 680 – 800 22 6375 – 7690
9 800 – 940 23 7690 – 9375
10 940 – 1125 24 9375 – 11625
11 1125 – 1265 25 11625 – 15375
12 1265 – 1500 26 15375 – 20250
13 1500 – 1735

The ear performs an effect similar to a set of bandpass filters on the sound. We call the

bandwidth of those “filters” critical bands. The effect of the critical bands is that a constant

volume sound will seem louder if it spans the boundary between two critical bands than it

would were it entirely contained within one critical band [1]. When we discuss perceptual

characteristics of the ear, we usually use the Bark unit, where one Bark corresponds to the

width of one critical band.
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Knowledge of critical bands has led to the discovery that if two sounds both have com-

ponents in one critical band and if one is a certain amount louder than the other, the quieter

one will be imperceptible. Physically, this corresponds to the hair cells in the particular

location being overstimulated and therefore unable to respond to lower magnitude vibra-

tions. This phenomenon is called simultaneous masking and is the primary effect in the

hearing system taken advantage of by audio coders. This is done by calculating a masking

threshold based on the characteristics of the incoming signal, and making sure any error in

representation is below this level, thereby rendering the error noise inaudible.

The calculation of the masking threshold is influenced by the character of the sound.

For instance, a sound which has tonelike characteristics in a critical band is more able to

mask noiselike distortion than vice versa.

Another characteristic of our hearing system which can be taken advantage of is the

absolute threshold of hearing. This is the minimum loudness a sound must have at each

frequency for it to be audible. An approximation to it is given by the following equation,

[8]

Tq(f) = 3.64(
f

1000
)−0.8 − 6.5e−0.6( f

1000
−3.3)2 + 10−3(

f

1000
)4. (2.4)

This can be taken advantage of in a similar way to the masking threshold: any sound

components below this level can be discarded. There is a fundamental difficulty with

using an absolute threshold of hearing however, since we do not necessarily know what

amplification level the output signal will be played back at. Given enough amplification,

the absolute threshold can be overcome at any frequency. In order to take advantage of

this property of human hearing, we must therefore assume that the sound will be played

back at a level which is equal to or less than the level of the original sound.

Another form of auditory masking is temporal masking. When a loud sound is imme-

diately (between 50 ms and 200 ms) followed by a quieter sound, the second sound can be

masked by the previous sound. To some degree also, a quiet sound followed very closely (5

ms) by a loud sound can be masked. The former effect is called forward masking, the other

backward masking. In audio coding, because of its limited effect, backward masking is often

disregarded. Overall, temporal masking creates less effective masking than simultaneous

masking, and so in lower complexity coders is sometimes disregarded entirely.

Pre-echo is a phenomenon which occurs when a section of relative silence is followed by

a section of audible sound within one frame. When the masking threshold of this frame is
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Fig. 2.2 Absolute threshold of hearing model

calculated, the later sound will cause the threshold to be raised above the level of the earlier

silence. When calculations are subsequently made about what noise can be tolerated, it

will be done such that the noise will likely be audible during the period of silence. Several

methods have been proposed to deal with this problem, the most common one being a

reduction in window length around transients, attempting to reduce the amount of data

over which the masking threshold is incorrectly calculated. When a transient is followed

by a period of silence, the error in masking threshold is less important due to the effects of

forward temporal masking.

2.4 Quantization

The quantization stage of an audio coder is where bits are assigned to represent the data.

Two basic methods of this are scalar quantization and vector quantization.

In scalar quantization, a quantizer has a set of scalar values, each one assigned a bit

representation. The nearest scalar value to the actual value we want to represent is the

quantized value. These scalar levels can be arranged in either a uniform fashion, i.e.,

uniformly distributed from the highest expected value to the lowest expected value, or non-
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uniformly distributed. Uniform quantizers allow the designer to designate a maximum value

for the error of any quantized value, while non-uniform quantizers can give a significant

increase in accuracy, especially when the statistics of the incoming signal are known.

Vector quantizers use a bit representation for several variables at once. The values are

arranged in vectors of pre-specified lengths. A collection of representative vectors are stored

in a codebook, and for each vector of variables, the codebook vector which best matches

this input vector is chosen from the codebook. The representation of that code in terms of

bits is then transmitted. This method can significantly increase coding gain at the expense

of greater processing time in order to find the best vector, and memory for holding the

possible vectors [3, p. 332].

Quantization can be done predictively or non-predictively. In scalar quantization, one

predictive scheme would be to take the last value found and subtract it from the current

value, and encode that value. When encoding slowly changing or static values (like the

frequency representation of a tone) this method can achieve significant coding gains. When

the difference between subsequent values is larger than the value itself however, a non-

predictive scheme will give better performance. Non-predictive scalar quantization schemes

simply encode the current value. Predictive vector quantization usually subtracts every

value in the vector from the previous frame from their corresponding element in the vector

for the current frame. More complex predictive encoders may use more than one previous

frame which can improve the prediction.

2.5 Chapter Summary

In this chapter we discussed the theory required for understanding the building blocks of

audio coders, as well as some basic digital signal processing theory.

We discussed time to frequency mappings which are used in most audio coders in order

to take advantage of models of audio perception, where the two most important mappings,

or transforms, are the Discrete Fourier Transform (DFT), and the Modified Discrete Cosine

Transform (MDCT).

We then discussed some windows which are applied to each frame of input samples in

order to improve frequency analysis. Also we noted the constrants on windows so that they

can be used in conjunction with an MDCT and the MDCT will retain its characteristic of

perfect reconstruction.
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Psychoacoustic modeling is a very important element of most audio coders, because it

can be used to greatly decrease the amount of audio information required to be transmitted.

The two basic elements most often used are simultaneous masking and temporal masking,

where simultaneous masking has the greater impact.

How we quantize of the set of information we want to send to the receiver greatly

impacts the quality of the reconstructed signal. Two basic types of quantization used are

scalar quantization and vector quantization.
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Chapter 3

Existing Audio Coders With

Alterable Bit Rates

3.1 MPEG-1

The MPEG-1 audio standard was the product of four years’ work by audio experts in the

Moving Picture Experts Group. It supports two channels, sampling rates 32 kHz, 44.1 kHz,

and 48 kHz, and bit rates from 32–192 kbps for a monophonic signal. MPEG-1 audio is

a bit rate switchable coder. The coder implements three levels or layers of compression.

Each layer increases the quality at a given bit rate while adding to complexity and delay.

The overall structure of all three layers is as follows. First, a filter bank is applied to

the input. In parallel with this, a psychoacoustic model is applied to the data. This model

is used in a bit allocation block. These bits in turn are used to quantize the information

from the filter bank.

3.1.1 Layer 1

For the first layer, the filter bank consists of 32 high order filters. The output of these

filters is downsampled by a factor of 32. This splits up the input signal into 32 equal width

subbands. This approach was taken despite several disadvantages:

1. There can be some aliasing between adjacent subbands.

2. The application of the filter bank is not a lossless transformation.
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3. Equal width subbands do not represent the critical bands of the ear.

The first two disadvantages are a fairly minor source of error [9, p. 62], and the third

is dealt with when using layer 3. Each filter produces a single sample for every 32 input

samples. Once 12 samples are produced from each filter, a frame can be formed.

The psychoacoustic model for the encoder is not entirely specified by the MPEG-1 stan-

dard and is implementation specific. The standard does supply two example approaches for

applying a model, both of which follow the same basic steps. First, the data is transformed

to the frequency domain. In both examples an FFT is used. The spectral coefficients ob-

tained are then arranged into critical bands, and the energy in each critical band calculated.

Next, a decision as to whether each band is tonal or noiselike in nature is made. From the

energies and the nature of the signal, a masking threshold is be calculated for each band

and compared with the absolute threshold of hearing. Finally the Signal-to-Mask Ratio

(SMR) for each band is calculated.

For each subband for which the SMR is positive, a normalizing scale factor is introduced.

These scale factors are encoded as side information and allocated 6 bits each. These allow

more efficient quantization of the values in each subband.

The bit allocation procedure first calculates the Mask-to-Noise Ratio (MNR) for each

subband:

MNR = SNR− SMR. (3.1)

Then, the subband which has the lowest MNR has bits allocated to it. The MNR is

calculated again for each subband with the new bit allocations and the process repeats

until all available bits are allocated.

Each subband has 16 pre-calculated uniform quantizers from which the best quantizer

can be chosen such that the lowest distortion is obtained when the values in that subband

are quantized. The choice of quantizer is sent as 4 bits of side information for each subband.

The maximum resolution of each quantizer in layer 1 is 15 bits.

3.1.2 Layer 2

Encoding using layer 2 of the MPEG-1 codec is very similar to the layer 1 encoding proce-

dure. The end results of the changes are a small increase in complexity for a reduction in

bit rate and improvement in quality.
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The largest difference between the two layers is that in layer 2, instead of encoding

12 filtered samples per subband in each frame, 36 are encoded. These are 3 groups of 12

samples. This is advantageous because if the scale factors for these groups are similar then

only one need be encoded. The scheme reserves the ability to encode up to all three of the

scale coefficients in cases of great difference. Another advantage is that a longer window can

be used for applying the psychoacoustic model, giving greater accuracy for slowly changing

signals. Other than using a longer analysis window, the psychoacoustic model generally

remains the same.

Bit allocation is also performed in a similar method to layer 1, except that it applies to

subbands of 36 samples rather than 12. The resolution of the quantizers changes from 15

to 16 bits. In order to counteract this increase in bits, the number of quantizers to choose

between decreases at higher subbands.

3.1.3 Layer 3

Layer 3 offers substantial improvements in quality for an equivalent bit rate from layers 1

and 2, again at a cost of complexity. This audio codec has found widespread use lately,

particularly for the purpose of distributing high quality audio data over the Internet, where

it is known as “mpeg 3” or “mp3”.

The filter bank behaves similarly to layer 2 except that each filter is followed by an

MDCT transformation. The purpose of this is to give better frequency resolution for the

subsequent masking calculations and bit allocation. Furthermore, in order to control pre-

echo, two different window lengths can be used: a long window of 36 points or a short

window of 12 points. Note that these are MDCT windows which are overlapped by 50%;

so, respectively, 18 and 6 new points are added each frame. Transition windows are used

between short and long windows. A mixed mode is also available, where long windows are

used for the lowest two frequency subbands and short windows are used for the rest, due

to the higher tendency of lower frequencies to be tonelike.

Secondly, instead of assigning scale factors to the respective filter subbands, MDCT

coefficients are grouped roughly in terms of the critical bands of the ear and scale factors

are calculated from these, called scale factor bands.

Other techniques used to improve coding efficiency in layer 3 include reduction in alias-

ing from the filter banks, entropy coding of data values, and use of non-uniform quantiza-
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tion.

Two changes in layer 3 impact the bit rate scalability of the codec. First, a different

scheme for bit allocation is used. A nested loop is formed where the inner loop adjusts

the shape of the quantizer to be used such that it fits the available number of bits. The

outer loop then evaluates the distortion from that bit configuration, and if the distortion is

too high, the scale factor band is amplified. Secondly, layer 3 makes use of a bit reservoir

which allows it to allocate more bits to frames which need them and take bits from frames

which do not.

3.2 MPEG-2 Advanced Audio Coding (AAC)

The goal of MPEG-2 audio coding was to create a coder which could produce transparent

quality audio for five channels at low bit rates. Five channels were desired for playing

audio in theatrical settings: so that sound can be played from several directions. When it

was finalized in April 1997, independent testing determined that transparent quality was

achieved at 320 kbps for five channels [2, p. 789].

MPEG-2 audio supports up to 48 channels, sampling rates between 8 kHz and 96 kHz,

and bit rates up to 576 kbps per channel. Like MPEG-1 audio, MPEG-2 AAC has three

profiles, but their purposes differ. The Main profile is the highest quality profile and

consequently it requires the most computation. The Low Complexity (LC) profile and the

Scalable Sampling Rate (SSR) profile require less computation, and the SSR profile splits up

the signal so that different bit rates and sampling rates can be used by different decoders.

So, we can say that the Main profile is bit rate switchable, while SSR is bit rate adjustable.

All three profiles follow the same scheme, with a few modifications for each. First, an

MDCT is performed on the frame of input data. The length of the MDCT can either be

“long” at 2048 samples or “short” at 256 samples. Short windows are used for transients

to avoid the pre-echo problem. The window used is also switchable. For signals with

dense frequency components, a half-sine window is used, but for signals with more distant

components, a window called the Kaiser-Bessel Derived (KBD) window is used. The

advantage of the KBD window is its greater rejection of outlying frequency components.

In all cases of window switching, transition windows are used for smooth transition and to

retain perfect reconstruction for the MDCT. After transformation, the MDCT coefficients

are filtered by the Temporal Noise Shaping (TNS) tool. The goal of this tool is to further
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reduce pre-echo effects and better encode signals with stable pitch [2, p. 804–806]. For the

LC and SSR tools, the TNS is order limited. The MDCT coefficients are finally grouped

into 49 scale factor bands, roughly equivalent to the critical bands of the ear.

In parallel with the MDCT transform, a psychoacoustic model very similar to the one

used in MPEG-1 is applied to find masking thresholds.

For long windows, and for only the Main profile, a prediction tool is then applied to

the MDCT data. For each spectral coefficient up to 16 kHz, a predictor is implemented,

based on the last two frames of data. The predictor is subtracted from the current value of

the spectral coefficient and the error is quantized. First however, for each scale factor band

the coder determines whether prediction creates greater distortion than without it. If it

does, prediction is not applied for that scale factor band. Omission of prediction for certain

bands requires side information to be sent to the decoder, so the coder further determines

if the need for side information increases distortion more than prediction helps it. In this

case, prediction is not performed at all.

Quantization in MPEG-2 AAC is performed with a desire to keep any distortion below

the masking threshold calculated by the psychoacoustic model, while keeping the number

of bits used below the average number permitted per frame. Like MPEG-1 Layer 3, a bit

reservoir is implemented so that for frames which require fewer bits than the average, some

bits can be deposited into the reservoir and for frames which require more bits, they may

be available.

The MPEG-2 AAC standard does not specify how quantization should be performed,

it only dictates the format of the bitstream which is output from the encoder. It does

however give an example of how it can be done.

The main features of the example quantization scheme are the use of scale factors which

can be used to amplify their respective bands, non-uniform quantization, and entropy cod-

ing for both scale factors and spectral coefficients. The example quantizer is implemented

as a nested loop.

The inner loop alters the step size of the non-uniform quantizers such that all the coef-

ficients in a scale factor can be encoded, then applies entropy coding to the quantized data.

If this data fits within the bit limit for that frame, the inner loop is finished. Otherwise,

the step size must be increased again so that fewer bits will be used.

The outer loop takes the configuration determined by the inner loop and calculates for

each scale factor band whether the distortion is below the masking threshold. If any one
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band has distortion above the threshold, that band will be amplified. This amplification

increases the Signal-to-Noise Ratio (SNR) of the band after quantization, at the expense

of more bits. Side information detailing the level of amplification needs to be sent to the

decoder so that it can be reversed at the output. If the outer loop finds that none of the

scale factor bands requires amplification, or that they all do, the quantization procedure

ends.

The SSR profile of MPEG-2 AAC requires several tools to be added to the coder. The

primary difference is the addition of a Polyphase Quadrature Filter (PQF) bank. This filter

bank splits the signal into four frequency bands of equal width. An MDCT is applied to

the outputs of these filters, and the encoding proceeds as normal. This allows the decoder

to ignore one or more of the filter banks so that the bit rate and sampling rate are limited

to a level the decoder can handle. At the decoder, an inverse filter bank must be applied

to recombine the signal.

3.3 MPEG-4

The aim of the MPEG-4 audio standard is to take different coding tools and integrate them

into a coherent package. When completed, it will include two perceptual audio coders and

a speech coder, as well as text-to-speech and MIDI capabilities. Because the standard is

not yet complete, we will only discuss briefly the aspects of the coder relevant to our work.

The primary general audio coder in MPEG-4 Version 1 is the MPEG-2 AAC standard.

As discussed in the previous section, this allows for high quality audio compression across

a broad range of bit rates and sampling rates.

Some changes to the MPEG-2 AAC standard are being incorporated into the MPEG-4

standard.

One of the changes in the current draft is Perceptual Noise Substitution. Using this

tool, medium-to-high frequency (above 4 kHz) scale factor bands are classified as being

either noiselike or not, using the psychoacoustic model. If a scale factor band is classified

as noiselike, the energy of that band is calculated and transmitted in place of the scale

factor, and the coefficients in that band are set to zero. This energy is then used in the

decoder to create noise in that scale factor band.

A second change of interest is the introduction of Bit-Sliced Arithmetic Coding (BSAC).

This tool introduces more bit rate scalability by allowing a decoder to decode a 64 kbps
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stream using a minimum of 16 kbps and a step size of 1 kbps [10]. This flexibility comes

at a price of increased side information.

The other general audio coder included is TwinVQ from NTT Human Interface Lab-

oratories. This coder is focused on lower bit rates than MPEG-2 AAC, and is designed

to allow portions of its bitstream to be disregarded by the decoder in order to implement

both adjustable bit rate and sampling rate.

The TwinVQ coder uses four “layers” of encoding. The input to each layer is a signal

with a 24 kHz sampling rate. The first of the four layers is used to encode the 0–8 kHz

frequencies at a rate of 8 kbps. The other three 8 kHz wide layers can be placed at any

frequency location such that the frequencies they cover are between 0 kHz and 12 kHz.

Where two or more layers overlap, greater coding quality will be obtained due to the

addition of more bits for those frequencies. Decoders will be able to ignore one or more of

the layers, thereby decreasing the sampling rate and bit rate. Details of the TwinVQ coder

can be found in [11].

MPEG-4 audio will also allow what is called Tools for Large Step Scalability, which is

designed to allow several tools to combine such that high bandwidth decoders could use all

the tools and lower bandwidth receivers would use only the “core” tools. For example, a

speech coder could be used in combination with an MPEG-2 AAC stream [12].

3.4 Chapter Summary

In this chapter we discussed several of the more popular audio coders available or in devel-

opment as of this writing: those produced by the Moving Picture Experts Group (MPEG).

The MPEG-1 audio standard in particular is well known for its widspread use in dis-

tributing audio files over the Internet. It consists of three different layers, with the first

layer being the least complex and having the least quality at a given bit rate, while the

third layer is the most complex with the highest quality at a given bit rate. MPEG-1 has

a switchable bit rate, and has some adjustable bit rate features.

MPEG-2 Advanced Audio Coding (AAC) is less well known than MPEG-1, but has

been evaluated as being higher quality at an equivalent bit rate. The two coders differ

significantly in structure. For example, MPEG-1 uses a filter bank to divide the audio into

32 subbands, while AAC applies a time to frequency mapping directly on frames of data.

AAC is also bit rate switchable and has some adjustable bit rate features. It also has the
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ability to send audio data at one bit rate and sampling rate and have it received by different

receivers at several different bit rates and sampling rates.

MPEG-4 audio is still under development as of this writing, but shows promise of being

quite scalable, incorporating an updated version of MPEG-2 AAC as well as various other

tools for audio and speech coding.
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Chapter 4

Audio Coder Description

4.1 Overview

Our audio coder is based on the work done by Najafzadeh-Azghandi and Kabal in Nar-

rowband Perceptual Audio Coding [4] and in [13]. Their coder will be called the original

coder in this text. The most significant alterations to the original coder have been made

to incorporate bit rate and sampling rate scalability. The changes will be described where

applicable, and summarized in the final chapter.

Our coder is a transform coder in the sense that it uses a time to frequency mapping

and then encodes the frequency components obtained. These transform coefficients are

used to obtain the masking threshold for each critical band for that frame. The gain of

each critical band is obtained and encoded along with the perceptually important parts of

the spectrum as a scale factor. Using the masking threshold and the bit rate of the current

frame, bits are dynamically allocated to the different critical bands, which determines the

accuracy of quantization for the coefficients in that critical band. Bits are also dynamically

allocated for the scale factors. This is in contrast to the original coder which had a fixed

number of bits assigned to scale factors.

The encoder will accept sampling rates up to and including 16 kHz. The original coder

accepted only an 8 kHz sampling rate. The bit rates can be set in various ways. First, a

constant bit rate from 4 kbps to approximately 16 kbps can be used. Secondly, bit rates

can be changed midstream, to any bit rate accepted by the coder. Thirdly, the minimum

bit rate required for good quality can be calculated and used on a frame by frame basis by

the encoder. In this case only a maximum bit rate would be specified, though this too can



4 Audio Coder Description 22

M
ax

 B
it 

R
at

e

Sa
m

pl
in

g
R

at
e

In
pu

t S
ig

na
l

In
pu

ts
 to

 C
od

er

U
ps

am
pl

er
/

Fi
lte

rs

B
it 

di
st

rib
ut

io
n

M
ax

 c
rit

 b
an

ds
/

A
llo

ca
te

 sc
al

e
fa

ct
or

 b
its

En
co

de
 sc

al
e

fa
ct

or
s

M
as

ki
ng

Th
re

sh
ol

d
W

in
do

w
Se

le
ct

io
n

FF
T

M
D

C
T

En
co

de
 sp

ec
tra

l
co

ef
fic

ie
nt

s

C
oe

ff
ic

ie
nt

bi
t a

llo
ca

tio
n

G
ai

n 
ad

ju
st

m
en

t

W
S

W
S

W
S

W
S

FF
T

W
S

M
D

C
T

W
S

W
S

W
S

C
H

A
N

N
EL

W
S

Fig. 4.1 Block diagram of the encoder
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be adjusted midstream. This coder is therefore fully bit rate scalable. The original coder

was not designed for a changing bit rate, and operated at a fixed 8 kbps.

4.2 Sampling Rate Change

The first step in the coder is that the input data is read in and upsampled to 16 kHz, which

is the sampling frequency the rest of the coder operates at. The amount of data read in

for each frame depends on the sampling rate of the input. It is calculated by multiplying

the sampling rate of the input signal by desired length in time of the analysis window, in

our case 31.5 ms.

Raising the sampling rate of a signal usually begins with inserting zeros between indi-

vidual samples. For example, if upsampling by a factor of two, one would insert a single

sample with a value of zero after each existing sample. The effect of this operation on

the signal is that “images” of the base spectrum of the signal are duplicated in the higher

frequencies which are now available due to the higher sampling rate. In order to remove

these images, the signal is passed through a low-pass filter. The higher quality the filter,

the more effectively the images are removed.

This form of upsampling is limited however, since we can only upsample by an integer

factor. To solve this problem, the usual approach is to upsample the signal to a sampling

rate which is divisible by an integer which will allow downsampling to the desired rate.

For example, upsample a signal sampled at 8 kHz by 7 to 56 kHz, then downsample by

4 to 14 kHz. Downsampling is the removal of a number of samples corresponding to the

factor we want to downsample by, so if we were downsampling by a factor of two, we would

remove every second sample. Downsampling introduces distortion in the form of aliasing.

Again, to avoid this distortion, a low-pass filter is usually employed. When doing the entire

upsampling and downsampling operation, a single filter can be used for both. For more

details on the basics of upsampling and downsampling see [14].

This upsampling and downsampling routine can however become impractical for many

resampling operations. For example to upsample an 8001 Hz signal to 16 kHz would require

a very large upsampling factor, which may exceed the amount of memory available for the

operation. For this reason, for our coder we perform upsampling using resampling routines

from [15].

In the case that 16 kHz divided by the input sampling rate can be expressed as a ratio
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of small integers, the routines perform the resampling operation as it is discussed above.

In the more general case, such as upsampling 8001 Hz to 16 kHz, a different procedure is

followed.

The approach used is, conceptually, to create a continuous time signal from our discrete

time signal, and resample it. To create this signal, the input is first upsampled. The factor

of upsampling is a parameter passed to the routine. The higher the upsampling factor,

the more accurate our filtering is. Increasing the upsampling factor does not greatly affect

processing time, but it does consume more memory. Next, an FIR filter is constructed by

applying a Kaiser window [14] to an ideal lowpass filter response. This filter is implemented

in polyphase form to avoid unnecessary computation [14, p. 794]. The upsampled signal is

convolved with this filter to suppress the repeating spectrum created. The output of this

is then convolved with a linear interpolation function

H(ω) = (
sin(ω)

ω
)2. (4.1)

One effect of this filtering is to reduce the spectral images at multiples of the upsampled

sampling rate of the original signal, which are left intact by the first filter. Second, the

resulting signal is represented as a continuous time signal. This is accomplished by calcu-

lating the value between samples based on its “distance” from adjacent samples. We are

therefore evaluating the value of the signal at non-integer sampling points. In this way we

can resample this signal at any sampling rate to return it to a digital signal. All input

signals are passed through this routine to bring them to our desired 16 kHz sampling rate.

Note that although our coder can operate on input signals with sampling rates as low

as 4 kHz, such a low input sampling rate severely restricts the available audio frequencies

and would most likely be judged unacceptable by listeners for both music and speech. The

main purpose for this capability is for when the coder is operating in bit rate adjustable

mode: during a time of extremely low bandwidth, perhaps due to other traffic, some (low

quality) audio would still be transmitted to the receiver, which would likely be deemed

preferable to receiving no audio at all.

Along with interpolation factor (number of zeros to insert between samples, plus one),

we also tell the routines how complex we want our polyphase filter to be. For our coder we

decided to use an interpolation factor which would raise the sampling rate to more than

double our target 16 kHz. So for example a signal with sampling rate of 12 kHz would be
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upsampled by a factor of 3 and an 8001 Hz sampling rate signal would be upsampled by

a factor of 4. As explained earlier, this setting only affects memory use, so at the expense

of more memory we could have a more accurate filter with very similar processing time.

We settled on 40 dB of attenuation for the stopband of the filter because most masking

threshold offsets are less than this amount. To reduce computation and delay, we also

limited the number of coefficients for each polyphase filter to 10. Note that the full number

of coefficients is over 10 multiplied by the interpolation factor, but only 10 are used for

calculating each output value. We found this level of accuracy to give adequate quality.

The original coder only operated at a fixed 8 kHz and no sampling rate changes were

performed.

The last procedure applied to the time domain input data before the time-to-frequency

transform is a low-pass filtering according to the number of critical bands we are using for

this particular frame. This is a set of pre-calculated 10th order Butterworth filters, one

for each possible number of critical bands, made up of second order sections to reduce the

effect of filter coefficient quantization errors. Since our coder only uses a limited number

of critical bands for each frame of data, it is advisable to remove the portions of the signal

which will be unused. The description of how the number of critical bands is chosen for

each frame is described in a later section. The original coder used a fixed number of critical

bands, and used a fixed low-pass filter.
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4.3 Time To Frequency Transform

The time to frequency mapping is accomplished using an MDCT on each frame of data,

where the frames are overlapped by 50%. In the section on masking, we will also perform,

in parallel, an FFT on the same data in order to more accurately use our masking threshold

model.

Our input signal, upsampled to 16 kHz is analyzed using a frame length of 510 data

values for a long frame, or three frames of length 170 for short frames. The original coder

used windows of length 240 and 80 respectively. We are using FFT techniques for our

psychoacoustic analysis, so a frame length which is close to a power of 2 is advantageous.

The window we use is the half-sine window. This window has the property of perfect

reconstruction with the MDCT which allows us to accurately determine the amount of

noise we introduce in our coder since it will be entirely due to the internal quantization. It

also has good frequency selectivity for dense frequency components.

In order to avoid difficulties with pre-echo and to increase our temporal resolution for

transitional signals, the coder switches to shorter windows when a transition is detected.

A transition is detected in the following manner. Because forward temporal masking is a

longer lasting effect and would probably mask any noise caused by a descending transition,

we want to concentrate on switching to short windows for rising transitions. To determine

if a transition is occurring, energies are determined for 170 groups of 3 points in the input

signal. Then we find

r = max(
ej+1 − ej

ej

), (4.2)

where ej is the energy of the jth interval. If r is found to be above a threshold, it is

determined that a transition is occurring. When this happens, a transition window is

used. This transition window will be followed by frames of three short windows until it is

determined that the signal is no longer in transition, at which point a second transition

window will be applied before starting with long windows again. These transition windows

are necessary to maintain perfect reconstruction in the MDCT transforms.

At this point in the coder, the number of critical bands we can take advantage of are

calculated. This coder only encodes the audio frequencies which it can adequately represent

given a bit rate, and given the sampling rate of the input signal. So, first we must determine

the highest audible frequency which is possible to encode. This is taken from the sampling
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rate of the input signal. From the Sampling Theorem, we can theoretically recover audible

frequencies from a digitally encoded signal up to half of the sampling rate of the signal

[14]. So, for an 8 kHz signal, we can only possibly recover audible frequencies up to 4 kHz.

In this way we can eliminate the audible frequencies which are irrelevant to the signal and

which we do not need to encode. We describe this upper limit by assigning a maximum

critical band above which we will not encode.

Next we need to use the available bits to determine how much of the available audio

frequency range we are able to encode at a reasonable level of accuracy. We describe the

number of audio frequencies which we need to encode by calculating the number of critical

bands we are including in our encoding. This use of critical bands as an upper limit is a

somewhat coarse method but significantly reduces the information we need to send to the

receiver.

The number of critical bands to be used is initially set to the minimum number, 15,

which approximately corresponds to 2 kHz of audio frequencies. The number of bits avail-

able for a window of data is determined by dividing the maximum current bit rate (in bits

per second) by the number of frames per second.

This overall bit rate must be divided between the two quantization sections of the

coder, the scale factors and the spectral coefficients. Bits are allocated between these two

sections, and within these sections bit allocation occurs to further improve the efficiency of

our bit use. These two further bit allocation procedures will be described in their respective

sections. Note that the original coder only performed dynamic bit allocation for spectral

coefficients, and its overall bit rate was fixed.

Of the available bits, a portion is allocated to scale factor encoding such that a minimum

level of quality would be upheld. The rest of the bits are allocated to coefficient encoding

(minus the small number of header bits). Bits are then iteratively added to the scale factor

allocation and subtracted from the coefficients, until either the minimum level of acceptable

coefficient bits are allocated, or a sufficient number of bits is allocated to both the scale

factors and the spectral coefficients such that the addition of a critical band would allow

a reasonable level of encoding quality to be retained. In this case, the number of critical

bands would be increased by one, and the process would repeat.

If the coder is in adaptive bit rate mode, the number of bits used for scale factor

encoding is fixed at a level approximated to produce a minimum level of quality. This

number of bits does not change unless the maximum bit rate changes.
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At this point we know how many critical bands we are going to use initially for encoding.

The number of critical bands can change depending on the bit rate, so for example if the

bit rate were to decrease by a certain amount, the critical band calculation would repeat

and decrease the number of critical bands used when bits would be spread too thinly over

the bandwidth allocated.

4.4 Masking

The coder employs both simultaneous and temporal masking to eliminate irrelevancies in

the signal.

4.4.1 Simultaneous Masking

The simultaneous model we used is obtained from Johnston [16], Zwicker [17], and Schroeder

et al [18].

First we perform an FFT on the frame of data. The resulting spectrum is used to

calculate the energy in each of the critical bands,

G(i) =
∑
kεB

X2
DFT(k), (4.3)

where B is the set of coefficients in critical band i. These energies are called the Bark

spectrum. The Bark spectrum is then convolved with a spreading function. The purpose

of the spreading function is to represent the effects of masking across critical bands [19].

The equation we use is taken from [18],

10 logB(i) = 15.81 + 7.5(i+ 0.474)− 17.5(1 + (i+ 0.474)2)
1
2 , (4.4)

where i is the critical band index and B(i) is the spreading function. After the convolution,

the resulting spread energies are converted to the log domain.

We now have the log-spread Bark spectrum for the signal. Next we calculate the tonality

factor in each critical band. We know that when the portion of a signal in a particular

critical band is noiselike in character, it is less effective for simultaneous masking in that

band than a signal portion which is tonelike in character. Because of this, we calculate the

tonality in each band in the following way, following [20].
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The equation

X̃(i) = 2X(i)′ −X(i)′′ (4.5)

gives us X̃(i) which is a prediction of the critical band subvector for the current frame.

We denote the subvectors of the frame previous to the current one with ′, and two frames

previous with ′′. The relative error in our prediction is given as

δ =
‖X(i)− X̃(i)‖
‖X(i)‖+ ‖X̃(i)‖ . (4.6)

From this, we assign a tonality coefficient

a = min (1,max (−0.3− 0.43 log(δ), 0)). (4.7)

The tonality coefficient gives us the final value of the simultaneous masking coefficients

(for a DFT spectrum),

msDFT
= max (a(14.5 + i) + 5.5(1− a), Tq), (4.8)

where Tq is the absolute threshold of hearing given in Equation 2.4, and i is the critical

band index.

4.4.2 Temporal Masking

The coder also takes advantage of forward temporal masking to increase coding efficiency.

The model used in this coder is the one proposed in [21],

mtDFT
= α + β exp(

−f
γ
), (4.9)

gives the temporal masking in dB, where f is frequency in Hz. The other three variables

are defined as

α = 0.001L2 + 0.2267L+ 17.7142,

β = −0.0047L2 + 1.2256L− 24.32548,

γ = −0.0002L4 + 0.0546L3 − 5.4685L2 + 234.7411L− 3325.035,

(4.10)
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where L is the sound level (dB) of the previous frame.

4.4.3 Total Masking Threshold

Finally the two masking thresholds are combined. Again following [21] we determine the

combined threshold as

mDFT = max((m0.3
sDFT

+m0.3
tDFT

)
1

0.3 , Tq). (4.11)

Note that before the above equation we have converted both masking thresholds from

logarithmic to linear.

To compare our masking threshold with the input MDCT coefficients we will use, we

convert the masking coefficients to MDCT masking coefficients [13]. The relationship be-

tween DFT coefficients XDFT(k) and MDCT coefficients X(k) is

X(k) =

√
2

M
|XDFT(k)| cos (2πn0(k + 0.5)

N
− � XDFT(k)), (4.12)

where n0 =
(M+1)

2
and M = N

2
. N is the number of time samples per input frame. The

simultaneous masking threshold is finally calculated such that

m(k) =
2

M
mDFT(k) cos

2 (
2πn0(k + 0.5)

N
− � XDFT(k)), (4.13)

and then converted to logarithmic form.

4.5 Scale Factor Encoding

In order to decrease the range of values the spectral coefficients occupy, we want to normal-

ize them by scale factors. These encoded scale factors will need to be sent to the receiver

so that the signal can be recovered. We find a scale factor for each critical band used in

the coder.

We obtain the vector of unquantized scale factors by calculating the energy in dB for

each critical band (Bark spectrum for MDCT coefficients),

O(i) = 10 log10(
∑
kεB

X(k)2). (4.14)
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Due to the 50% overlap of MDCT windows and the similarity of successive frames for

tonelike signals, we are able to use prediction to achieve some coding gain. Each frame

of data sent includes a flag stating whether a predictive or non-predictive scheme is being

used for the scale factors.

The decision whether or not to use a predictive scheme rests on a spectral distortion

measure. First we find the average gain for the scale factors

G =
1

C

C∑
i=1

O(i). (4.15)

where C is the number of critical bands being used. This is then subtracted from each of

the scale factors to give On(i). The spectral distortion is given by

D =
C∑

i=1

(On(i)−On(i)
′)2, (4.16)

where On(i)
′ denotes the normalized scale factor for the previous frame. If the spectral

distortion D is found to be less than 6 dB the predictive scheme is used, otherwise the

non-predictive scheme is used.

The criterion used for finding the distortion for vector quantization calculations in the

following discussion is the basic squared error,

d = (X(i) − X̃(i))2, (4.17)

summed over the length of the vector.

At this point bits must be allocated to the scale factor encoding sections. We will

describe the bit allocation at the end of this section so that the encoding procedure can be

discussed.

For both scale factor quantization schemes we perform several steps of quantization on

the vector of scale factors. This is because a one step vector quantizer would have to be

very large in order to accommodate as many bits as we are allocating to it. Such a large

vector quantizer would not be feasible to implement because a search would take too long.

Therefore, we perform several quantizations on the same vector in an attempt to achieve

approximately the same accuracy as a single step vector quantizer with greatly reduced
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computation.

4.5.1 Predictive Scheme

The predictive scheme for the scale factors begins by encoding the gain G referred to above.

It does this by subtracting it from the gain of the previous frame, and that difference in gain

is quantized using a statistically based scalar quantizer, giving us Ĝ. All of the individual

critical band gains O(i) are then normalized by this quantized gain giving On̂(i).

Next, a collection of predictor matrices are applied to the On̂(i) of the previous frame.

The one that gives the best estimate of the current vector is chosen. Predictor matrices are

designed to optimize prediction while keeping computation reasonable. A full discussion

can be found in [4], but essentially they are matrices of C by C size, where only the

main diagonal and the adjacent diagonals are nonzero. It was found that most of the other

diagonals are close to zero after optimization and can be disregarded to reduce computation.

The index of the matrix which gives the best prediction is encoded and sent to the receiver.

The vector which results from this prediction is then subtracted from the original On̂(i)

to give P (i), which is then vector quantized. This is then subtracted from P (i), giving us

another remainder, Q(i), which is also vector quantized.

To summarize, the predictive scheme sends the following information to the receiver.

1. Quantized differential gain index

2. Index of the best predictor matrix

3. Index of first difference vector quantization

4. Index of second difference vector quantization

4.5.2 Non-Predictive Scheme

The non-predictive scheme works in a similar manner. First, the gain G is encoded non-

differentially, which usually requires more bits for the same level of accuracy than predictive

encoding does. Next, this quantized gain is subtracted from O(i) to give On̂(i), and this

vector is vector quantized. Now, predictor matrices are applied to the output of the vector

quantizer to find which one best approximates On̂(i). Finally, the predicted vector is

subtracted from On̂(i) and the result vector quantized.
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So, the data sent in the non-predictive scheme is

1. Quantized gain index

2. Index of vector quantized On̂(i)

3. Index of predictor matrix which best estimates On̂(i)

4. Index of quantized difference vector

The previous discussions have been for the case of long windows (the most common

situation). When the current window is short, the encoding performs identically except

that the second stage of vector quantization is dropped in both the predictive and non-

predictive case.

4.5.3 Scale Factor Bit Allocation

Bit allocation for the scale factor quantization is done by allocating a fraction of the avail-

able bits to each of the four parts of the encoding process. This ratio was found by eval-

uating quantization distortion in the scale factors for various configurations until a good

compromise was found. In the predictive scheme, the gain, being differential, requires fewer

bits than in the non-predictive scheme. We can also expect the predictor matrices to give

us more useful results in the predictive method than in the non-predictive case. Therefore,

more bits are allocated to the matrices in the predictive scheme and more bits are allocated

to gain encoding in the non-predictive scheme. Approximately equal numbers of bits are

assigned to each of the vector quantizations in both cases. Any remaining bits are added

iteratively to each of the four sections.

4.6 Coefficient Encoding

Once we have the scale factors, we are able to encode the normalized MDCT coefficients.

To increase our coding gain, vector quantization is used for encoding the coefficients.

Our MDCT transforms use 510 points, so we will be encoding up to 255 MDCT coefficients,

depending on the bandwidth of our encoded signal. For vector quantization, anything above

10–12 elements is quite intensive in terms of memory and computation [3, p. 410]. This is

because for each element we add to our vector, we must increase the size of our codebook
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in order to achieve the same accuracy. Therefore we need to reduce the dimensionality

of the vectors to make the encoding computationally feasible. We split up the spectral

coefficients into critical bands, because this will result in fewer coefficients in the vectors

at lower frequencies, leading to more accurate encoding of those coefficients, given enough

bits. This is done because our ears are more sensitive to low frequency information than

high, so the higher coefficients can withstand the more noiselike representation which will

result from slightly less accurate encoding. In some of the highest critical bands however,

the number of coefficients can exceed 40, and so these vectors are further split into more

workable vector lengths. The original coder, since it only used 17 critical bands, where the

vector lengths are reasonable, did not need to split its critical bands.

In the case of short windows, many of the critical bands contain only a single coefficient.

In order to increase the efficiency of the quantization therefore, the coefficients for short

windows are split up into equally sized vectors.

Table 4.1 Division of spectral coefficients into critical bands

Band Long Window Short Window Band Long Window Short Window
0 1 12 41 – 48 21 – 24
1 2 – 3 1 13 49 – 55 25 – 27
2 4 2 14 56 – 63 28 – 31
3 5 – 7 3 15 64 – 74 32 – 37
4 8 – 10 4 – 5 16 75 – 87 38 – 43
5 11 – 13 6 – 7 17 88 – 104 44 – 52
6 14 – 17 8 18 105 – 122 53 – 61
7 18 – 21 9 – 10 19 123 – 150 62 – 75
8 22 – 25 11 – 12 20 151 – 174 76 – 87
9 26 – 30 13 – 15 21 175 – 204 88 – 102
10 31 – 36 16 – 18 22 205 – 246 103 – 123
11 37 – 40 19 – 20 23 247 – 256 124 – 128

Now we must allocate the bits designated to coefficient encoding to each of the critical

bands. Here, we can take advantage of the masking threshold we have calculated in order

to give bits to the most perceptually important critical bands. In this way we can do our

best to keep the noise introduced by quantization below the masking threshold and thus

reduce the audibility of the noise.

The bit allocation begins by calculating the SMR for each critical band. The higher
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above the masking threshold the signal is in that critical band, the more bits it will require

to eliminate audible quantization noise. The SMR is calculated by subtracting the masking

threshold from the quantized Bark spectrum,

SMR(i) = Ô(i)−m(i), (4.18)

where i corresponds to the critical band and both masking and Bark spectrum are in the

log-domain. Now, bits are assigned according to the following formula [4]:

b(i) = max(
SMR(i)bT

λ(i)
∑
j∈Ω

(
SMR(j)

λ(j)
)

, 0), (4.19)

where Ω is the set of critical bands with a positive SMR, and bT is the total number of

bits available for coefficient quantization. The value λ(i) is an evaluation of how much

the distortion of the overall encoding would be decreased by adding a bit to critical band

i. This is calculated by forming a linear approximation to the slope of the rate-distortion

curve. Points on the rate-distortion curve are found by encoding many vectors at each bit

rate for a particular critical band and calculating their average distortion.

The b(i) found from this procedure will have a fractional component. For each critical

band the fraction is dropped. If the coder is operating in adaptive bit rate mode, this

b(i) will give the number of bits to be used for coefficient encoding for the current frame.

Otherwise, the remainder of the bits will be assigned iteratively based on the Noise-to-

Masking Ratio (NMR),

NMRi = Ô(i)−m(i)− λibi. (4.20)

The NMR tells us which critical band has the highest level of perceptually significant noise.

In each iteration the NMR for each band is calculated and one bit is allocated to the band

with the highest NMR.

To quantize the coefficients, the masking threshold is used to aid in accurately quan-

tizing the perceptually important parts of the spectrum. To accomplish this, a specialized

distortion measure is used for determining the vector to be chosen from the codebook,

d = max(
|X(i)− Ô(i)Xc(i)|2 −m(i)

X(i)2 +m(i)
, 0), (4.21)
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where Xc(i) is the codebook vector of normalized coefficients. This error criterion makes

sure that well masked coefficients are given less weight than others in terms of finding a

good code vector. Coefficients which are completely masked can be completely disregarded.

In this way, codebook indices representing the MDCT coefficients are chosen for trans-

mission.

4.7 Gain Adjustment

When the bit rate of our coder is approximately 8 kbps or less, we have very few bits to

spare for the two major sections of the coder. When the bit rate is higher however, the

level of accuracy we can obtain with our current scheme reaches a limit. Due to complex-

ity considerations, we do not want to use codebooks which are very large for improving

quantization accuracy. A better solution is to add features to the coder at higher bit rates.

One feature that we can perform is gain adjustment [4]. Gain adjustment will reduce

errors in quantization by adding a final layer of improvement to the gain of each critical

band. The scale factor adjustment for each critical band is calculated by optimizing the

following equation [4]:

ρmin =
K∑

k=1

max((X(k)− ρX̂(k))2 −m(k), 0), (4.22)

where ρ is called the gain adjustment factor, K is the number of coefficients in the current

critical band, and X̂(k) is the subvector of quantized coefficients.

These gain adjustment factors can then be vector quantized and sent to the receiver

and have been found to increase the quality of the output signal [4].

4.8 Codebook Creation

Our codebooks are created by taking a very large collection of test data and encoding

it until test vectors are found. These test vectors are stored and used to create a code-

book. Since we are using many differential operations in our coder, for example subtracting

quantized values from unquantized values in the scale factor encoding, we must construct

our codebooks in sequence. So when we have created our first codebook, we use that to

generate test vectors for the next codebook, and so on.
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The codebooks themselves are formed by applying Lloyd’s algorithm [3, p. 367] to the

test vectors. Lloyd’s algorithm is an iterative optimization procedure which is generally

used to improve an existing codebook. Ideally, we would want to create the codebook

initially with a faster procedure like pruning [3, p. 359] and then apply Lloyd’s algorithm

to improve it.

Because our coder requires a codebook for each bit configuration, we need to reduce

our use of memory. Therefore, we use embedded codebooks. Embedding codebooks is a

technique which allows us to use a single codebook for various bit configurations. We do

this by running a set of test data through the coder and seeing which code vectors are used

most frequently. The code vectors are then ordered in descending order of most frequently

accessed. This way, for bit rates lower than the maximum in a codebook, the coder will

have a choice of the most popular vectors in that critical band. Clearly this is somewhat

less optimal in terms of coding quality, but in our subjective testing with the original coder

we found very little difference, while our memory requirements were reduced by 50%.

Table 4.2 Summary of data sent to the receiver

Encoder Section Data Sent Data Type
Preliminary Bit rate change Optional data
Transform Window type Flag
Masking Predictive/Non-predictive Flag
Gain Encoding Mean scale factor gain Scalar quantization
Gain Encoding Scale factor prediction matrix Prediction Matrix
Gain Encoding First scale factor index Vector quantization
Gain Encoding Second scale factor index Vector quantization
Coefficient Encoding Coefficient vectors Vector quantization

4.9 Decoder

The decoder for our audio coder consists of looking up vector quantizer indices in codebooks

to reconstruct the MDCT coefficients and then applying an IMDCT on the coefficients.

The scale factors are reconstructed first, using a method depending on whether predic-

tive or non-predictive quantization was used.
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For predictive quantization, the decoder has preserved the mean gain and normalized

quantized scale factors from the previous frame. It looks up the differential gain from the

quantizer index and adds it to the previous mean gain. Then it uses the prediction matrix

chosen by the encoder on the previous vector of scale factors to get the set of predicted

scale factors. Next the two vector quantizations are looked up in their respective codebooks

and added to the predicted scale factors. Finally, the mean gain is added to each of the

scale factors.

In the non-predictive case, the mean gain is looked up directly from the quantizer index.

The first vector quantization is then retrieved from its codebook, and the predictor matrix

applied to this vector. Next, the second vector quantization is added to the result, and

finally the mean gain is added.

The spectral coefficients are found by retrieving the index supplied by the encoder to

look up the result in each codebook corresponding to the correct critical band. Each value

in the vector looked up is multiplied by the scale factor for that critical band.

Lastly, these spectral coefficients are sent to an inverse MDCT to be converted back to

PCM, ready for conversion to analog in order for the audio to be listened to.

4.10 Chapter Summary

In this chapter we have described the audio coder which we created by adapting a low bit

rate, 8 kHz sampling rate audio coder for a wide range of bit rates and sampling rates.

First we discussed the method we chose for upsampling input signals. In order to make

our coder very scalable, we desired a universal sampling rate converter. For this reason we

chose the routines discussed in the chapter.

Next we gave the details of the time to frequency transformations we employed, as well

as the window type and length applied to each frame of data.

We discussed how the available bits are divided between the two major quantization

stages: scale factors and scalar coefficients. The bits allocated to each of these sections are

further allocated within these sections.

In order to apply our psychoacoustic model, we generate a masking threshold for each

critical band, based on both simultaneous and temporal masking. This set of masking

thresholds is used in both the spectral coefficient and scale factor quantization sections.

Scale factor encoding is performed in several stages in order to decrease complexity



4 Audio Coder Description 39

while keeping quantization accuracy high. Bit allocation is performed between these stages

in order to efficiently use the bits available for the scale factors. Based on the differences

between frames, the quantization can take either a predictive or non-predictive form.

Spectral coefficient quantization is performed by vector quantizing each set of coeffi-

cients in its corresponding critical band. Bit allocation is performed in this section, dividing

the bits between the critical bands, giving more bits to the more perceptually significant

bands.

Finally, the procedure for creating codebooks for vector quantization, as well as the

details of decoding the audio on the receiver side, are discussed.
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Chapter 5

Evaluation of Our Approach

5.1 Coder Sections

5.1.1 Sampling Rate Scalability

The choice of the audio routines in [15] for our resampling operations was made due to their

generality. The sampling frequency of any input signal can be changed to 16 kHz. We found

with our chosen constraints on the interpolating filter there was no noticeable difference in

the sound quality of the upsampled signal, while saving considerably on computation from

the default (conservative) settings.

Table 5.1 Interpolating filter constraints

Our coder Defaults
Oversampling To above 32 kHz Factor of 24
FIR Filter Coefficients 10 68
Stopband Attenuation (dB) 40 80

Our second filtering operation, based on the number of critical bands we are using,

removes unwanted frequencies from the signal, while adding fairly little complexity (an

approximate 2% increase in overall encoding time). We did not detect any artifacts due to

changing filters during transmission while testing.

We tested the sampling rate scalability by passing a segment of audio, which began

with frequency components up to 8 kHz, through the coder in four different configurations:
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1. Audio bandwidth 4 kHz, bit rate 8 kbps

2. Audio bandwidth 4 kHz, bit rate 16 kbps

3. Audio bandwidth 8 kHz, bit rate 8 kbps

4. Audio bandwidth 8 kHz, bit rate 16 kbps

We chose these cases in order to be able to clearly detect the effect of bit rate scalability on

the range of audible frequencies. Also, we want to ensure that as the input sampling rate

is increased, given high enough bit rate, the audio quality increases due to the presence of

higher audio frequencies. When we compared the audio quality of the first two cases, we

found the quality to be very similar. This is most likely because we have a limited number

of critical bands in which the coder can allocate bits due to the lower audio bandwidth.

Therefore, as more bits are allocated to those critical bands, the top level of quality possible

given our codebooks is reached, and the quality can not improve any further. The third case

also had very similar audio quality to the first case. This is because with a limited number

of bits available, only a limited number of critical bands are allowed for bit allocation. At

8 kbps, the number of critical bands used is the same as the number used for the first

case, which is very close to 4 kHz audio bandwidth. In the final case, higher frequency

components could be detected from the output of the decoder, due to higher critical bands

being included in the encoding, which improved the quality of the sound.

5.1.2 Transform and Window

The choice of using MDCT as a transform was a natural one, for the reasons discussed in

Section 2.1: its critical sampling, reduction of block edge effects, and the availability of

fast algorithms for it. The main disadvantage of using the MDCT over the FFT is that it

is less clear how frequencies map onto MDCT coefficients. It is for this reason that we use

an FFT for calculating our psychoacoustic model.

The choice of using a half-sine window was also an obvious one, as it is a very common

window used in audio coding where an MDCT is employed. Some audio coders, such

as MPEG-2 AAC, switch between the half-sine window and another window, with better

rejection of outlying frequencies. We performed some informal testing using a Kaiser-Bessel

Derived window in our coder and noticed little difference for our audio quality target.
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Therefore, the added complexity of a window shape switching algorithm is probably not

worthwhile for our coder.

5.1.3 Masking

Our masking threshold model was subjected to testing by transforming a signal using an

MDCT, the masking threshold calculated, and any MDCT coefficients below the masking

threshold were set to zero, and an IMDCT applied to the result. We were unable to detect

any difference between the input and the output of this process.

One problem with our masking threshold is our use of the absolute threshold of hearing.

Refer to Figure 2.3 for the model we used. In conditions where the level of playback can

not be controlled, our calculations could be counterproductive. What is more, our model

is designed to follow the threshold of hearing of a young listener, but the threshold may

be substantially different for an older listener, so that playback level would be difficult to

compensate for. At many frequencies however, this threshold gives us a considerably higher

masking threshold than the simultaneous and temporal masking calculations do.

5.1.4 Quantization

For quantization, since we did not implement other quantization schemes, we evaluate the

performance by determining how well the schemes are suited to bit rate scalability. The

two sections of quantization, scale factors and spectral coefficients, use different methods

for their quantization.

The scale factor quantization attempts to encode the entire vector of critical band scale

factors together, applying different schemes to that vector. This method is taken from the

original coder, and performs well there, but for bit rate scalability it has some limitations.

When we perform bit allocation, we must choose which of the layers of quantization

is most important for the best quality encoding. It is not an easy task to determine on

a frame by frame basis which of: average gain (differential or not), predictor matrix, first

vector quantization, and second quantization, deserves more bits, as our psychoacoustic

model does not help us.

For our spectral coefficient quantization, the system we use is quite well suited to bit

rate scalability due to our ability to allocate bits based on a psychoacoustic model. Also,

the distortion measure we use allows us to shape the audible quantization noise to follow
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the distribution of energy inside a critical band [4].

Our bit allocation scheme for spectral coefficients, using SMR, was chosen over other

allocation schemes, such as Energy-based Bit Allocation (EBA) [4], following the analysis

in the same article.

Our codebook creation has been performed using Lloyd’s algorithm based on test vec-

tors created from test audio data selected from speech, music, and combined speech and

music. More sets of test audio data would have been advantageous to experiment with,

but processing time for the creation of codebooks is significant and limited the amount of

experimentation it was feasible to do. We do not create a “starting” codebook before using

Lloyd’s algorithm to optimize it, as discussed in Section 4.8.

5.2 Overall

The primary goal of our research has been accomplished, that the coder described in [4]

has been adapted for use with a wide range of sampling rates and has been made bit rate

scalable.

The final audio quality of the coded and decoded audio is not yet usable, with artifacts

audible at all bit rates. In [4], the quality of the original coder was compared to G.729,

a speech coder. The authors found that their original coder had much higher quality for

music signals, and slightly lower quality for speech signals. They also compared the original

coder to the 8 kbps Real Audio coder, a commercial audio coder, and again found their

coder had higher quality. Our coder, as tested, has lower audio quality than the original

coder we implemented, at the same bit rate. All evaluation of our coder was performed

informally, by the author.

There are several possible reasons why our coder has significant audio artifacts. We

believe that our codebooks are the primary culprit for the following reasons. The training

data used to create the codebooks for use with the coder may not be optimal, since a

simple selection of audio, speech, and audio with speech was employed. Also, the reordering

done to create embedded codebooks placed frequently used vectors at the beginning of the

codebook, but these vectors were chosen based on the use of the entire vector of scale

factors, which is not usually the case. So the first few elements in the scale factor vector

could be quite suboptimal. This may make the use of embedded codebooks for the current

scale factor scheme unwise, despite their great savings in terms of memory required for
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the codebooks. Finally, it could also be, as discussed in [4] for the original coder, that

harmonics are not being tracked accurately enough, and some kind of pitch measure would

decrease distortion.

On the other hand, the difference in quality between the highest bit rate and lowest bit

rate is reasonable. The largest difference in audio quality is the loss of higher frequencies due

to the cutoff of higher critical bands when fewer bits are available. Also, when the coder is

directed to change bit rates during transmission, the transition is smooth with no artifacts.

The transition is, however, noticeable. If possible therefore, a gradual change would likely

be less unsettling to a listener. This may not always be possible due to constraints on the

amount of time available for a transition.

Since the coder is implemented in the C programming language, we are able to find

a rough approximation of the time required for encoding. To test, we ran a 500 second

audio file through the encoder on a 450 MHz Pentium II equipped computer, with no

processor specific optimizations. Note that except for the use of an FFT algorithm for the

psychoacoustic model, very few implementation decisions were made to reduce processing

time, e.g., codebook structure.

Table 5.2 Encoder processing time

Maximum Bit Rate Seconds of Processing
(bps) Per Second of Audio
4000 0.6288
8000 0.8891
16000 2.6355

Original coder:
8000 0.5679

5.3 Chapter Summary

In this chapter we discussed the degree of success we obtained in adapting the 8 kbps

original coder for sampling rate and bit rate scalability. We analyzed the changes we made

in order to determine what changes were most effective and which areas of the coder could

be improved.
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We were satisfied by the performance of our sampling rate scalability, in terms of the

resampling routines as well as in our bit allocation schemes.

For our bit allocation schemes we found some performed well while others could profit

from further attention. Specifically the scale factor quantization scheme was deemed not

satisfactory from the bit allocation point of view.

The final audio quality was deemed not yet adequate for artifact free communication.

However, any change in bit rate during transmission was accompanied by a corresponding

increase or decrease in the quality of the audio, and introduced no additional artifacts.
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Chapter 6

Summary and Future Work

6.1 Summary of Our Work

The purpose of our research was to look at bit rate scalability in audio coders, implement

an existing coder, and adapt it for bit rate scalability.

The low bit rate audio coder detailed in [4] was well suited for the incorporation of bit

rate scalability. We adapted this coder for bit rate scalability and sampling rate scalability,

and implemented it in C in order to judge whether the design was feasible in terms of

complexity.

The first change which needed to be made was the ability to handle input signals of

differing sampling rates. To this end, audio resampling routines from [15] were incorporated,

with limitations on the quality of the interpolating filter used, for purposes of complexity.

These routines are able to upsample any signal from its original sampling rate to the

standard 16 kHz which the coder uses. This upsampling does not increase the rate at

which we need to send data to the receiver because a subset of quantized information is

used for signals with sampling rates less than 16 kHz, based on the number of critical bands

required to represent the audio bandwidth present in the signal.

As well as allowing different sampling rates for our input signal, we incorporated various

methods of specifying bit rates. The first, bit rate switchability, allows for different maxi-

mum bit rates to be used for an input signal. Second, an adaptive bit rate allows a signal

to use the minimum number of bits for adequate quality, changing bit rate on a frame by

frame basis. A maximum bit rate must still be specified in order to establish a target level

of quality. Third, bit rate adjustability allows the maximum bit rate to be altered during
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transfer, which can be applied to both switchable and adaptive bit rate modes.

Incorporation of bit rate scalability required several changes to the coder, primarily

consisting of dividing bits between the two quantization sections: scale factors and spectral

coefficients, and by incorporating a bit allocation scheme for the scale factor quantization

section. The spectral coefficient quantization section already contained a good bit allocation

scheme.

The number of critical bands we can encode at an adequate level of quality is refined

using the number of bits available for each frame of data. A minimum number of bits

is determined for quantization of both scale factors and scalar coefficients based on how

many critical bands we are using. Then, an upper level is determined so that when there

are sufficient bits for both quantizations, more critical bands are incorporated, up to a

maximum number which are useful given the sampling rate of the input signal. This

procedure determines the division of bits between scale factors and scalar coefficients as

well as the number of critical bands to use.

Since we will be unable to use a portion of the available audio frequencies if we have

insufficient bits to do so, we incorporated a low-pass filter so that high frequency compo-

nents in the highest critical bands do not cause audible artifacts when they are decoded.

Filters were generated for each of the possible maximum critical bands from number 15,

corresponding to a 4 kHz sampling rate, to number 23, corresponding approximately to a

16 kHz sampling rate.

The scale factor quantization section of the coder was altered so that bits are allocated to

the different layers of quantization on a frame by frame basis. This was done by determining

which types of quantization were most effective in reducing distortion and weighting the

allocation of bits towards those quantization types. Both the non-predictive and predictive

schemes use a scalar quantization for average gain, a predictor matrix, and two vector

quantizers (one in the case of short windows). Equal numbers of bits are assigned to each

of the vector quantizers. In the predictive case, more bits are assigned to predictor matrices,

and in the non-predictive case more bits are assigned to the gain quantization.

Other than these modifications, many sections of the coder had to be altered to take into

account a changing number of critical bands. For example, after a change in the number

of critical bands, the spreading function needs to be recalculated, the low-pass input filter

must be changed to the new filter, and we need to make use of the non-predictive scheme

for scale factors.
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6.2 Future Work

• In the upsampling section, we could limit input sampling rates to integer divisions

of 16 kHz. In this case we could use simpler upsampling techniques to upsample

to 16 kHz, instead of upsampling to above 32 kHz then downsampling to 16 kHz,

saving on some computation. Also, two changes to the filter based on critical bands

could be made. First, it could be removed entirely without too great a decrease in

quality, though as discussed previously, the savings in computation would not be

large. Second, it could be used to replace the interpolating filter during upsampling,

if we were limiting the input sampling rates as above.

• The length of the short windows we use was chosen to have a length of approximately

10 ms. It may be, however, that shorter windows, i.e., more short windows per long

window, would give better coding of transients, or that fewer short windows per long

window would give better coding gain at relatively little loss in transient coding. This

is an area in which more research could be done.

• We have tried constructing the psychoacoustic model using MDCT coefficients in-

stead of FFT coefficients and found very little difference in audio quality, with a

significant decrease in complexity (approximately 7%). If other areas of the coder

were optimized, that decrease in complexity could become even more significant, if

further testing showed a negligible difference in quality.

• Due to the problems with the use of an absolute threshold of hearing model where

playback level cannot be controlled, in these conditions a replacement model or com-

plete removal of the model may be necessary.

• The first step of quantization for our coder is the division of bits between the scale

factors and the spectral coefficients. The ratios we use are optimized to give the same

division used by the original coder at 8 kbps operation, so more work needs to be

done to make sure bits are allocated efficiently at higher and lower bit rates. If too

many bits are allocated to one section or the other, bits can be wasted. Alternatively,

an entirely new scheme could be developed for the division of bits, where the number

of bits allocated to the two quantization stages is based on the psychoacoustic model.
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• One way we could more accurately allocate bits to the scale factors would be to

divide the scale factor vector into smaller vectors and allocate bits based on masking

threshold. This would cost some efficiency, since smaller vectors give us a less optimal

vector quantization, but it would be helpful to break up the vector for performance

considerations as well, since up to 23 elements can be in the vector. For higher bit

rates, it may even be worthwhile to move to scalar quantization of the scale factors, to

increase accuracy at the expense of more bits. If we wanted to increase the scalability

of our coder even more, extra scale factors could be introduced so that only relevant

portions of critical bands are being sent to the receiver. If these approaches do not

prove to be feasible, some improvements to the ratios used for dividing bits between

quantization layers would aid in bit allocation performance.

• Concerning the spectral coefficients, if we wished to increase the scalability of our

coder, following our discussion for the scale factors, we could divide up the coefficients

into smaller groups, corresponding to the number of scale factors we have. This would

allow greater flexibility in terms of adding audio bandwidth at an increase in bit rate.

• The codebooks we use for both quantizations are embedded codebooks. This reduces

memory needed, but we could also decrease the searching time of our codebooks

by structuring them for this purpose. Several methods of structuring a codebook

for increased speed of searching can be found in [3], some of which are nearly as

optimal as the complete search we do. Also, an improved method of generation for

our codebooks would likely help, as we do not create a “starting” codebook before

using Lloyd’s algorithm to optimize it.

• The coder which we based our coder on, referred to as the original coder, was taken

while it was still in progress, and it has continued to be improved over the time our

coder was developed. Those improvements, if they are compatible with our bit rate

and sampling rate scalability, could be added to our coder as well.

• One scalability feature which we have not implemented, and is becoming common in

recent MPEG audio standards, is the ability to send information at a single rate and

have several different decoders be able to receive lower sampling rate and lower bit

rate versions of that signal. This feature would be especially useful in the case that a

single source is multicasting to several destinations of differing bandwidth. The SSR
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profile of MPEG-2 AAC accomplishes this by preceding its MDCT with a filter bank

of four filters. Each decoder can choose to decode up to the maximum number of

outputs from those filters, depending on its bandwidth. Such a scheme could also be

applied to this coder, at the expense of greater complexity.
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