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Abstract

Reducing the transmission bandwidth and achieving higher speech quality are primary

concerns in developing new speech coding algorithms. The goal of this thesis is to improve

the perceptual speech quality of algorithms that employ linear predictive coding (LPC).

Most LPC-based speech coders extract parameters representing an all-pole filter. This

LPC analysis is performed on each block or frame of speech. To smooth out the evolution

of the LPC tracks, each block is divided into subframes for which the LPC parameters

are interpolated. This improves the perceptual quality without additional transmission bit

rate. A method of modifying the interpolation endpoints to improve the spectral match

over all the subframes is introduced. The spectral distortion and weighted Euclidean LSF

(Line Spectral Frequencies) distance are used as objective measures of the performance of

this warping method. The algorithm has been integrated in a floating point C-version of

the Adaptive Multi Rate (AMR) speech coder and these results are presented.
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Sommaire

La réduction du débit de transmission ainsi que la réalisation d’une haute qualité de parole

sont des soucis fondamentaux en développant de nouveaux algorithmes de codage de la

parole. Le but de cette thèse est d’améliorer la qualité de perception de la parole pour

les codeurs à prédiction linéaire LPC (Linear Predictive Coding). La plupart des codeurs

LPC déterminent les paramètres d’un filtre tout pôle. Cette analyse LPC est exécutée sur

chaque trame de parole. Pour lisser l’évolution des paramètres LPC, chaque trame est di-

visée en sous-trames pour lesquelles les paramètres sont interpolés. Ceci améliore la qualité

de perception sans augmenter le débit. Une méthode qui consiste à modifier les points

finaux d’interpolation pour améliorer le cheminement spectral est présentée. La distorsion

spectrale et la distance LSF (Line Spectrum Frequencies ou paires de raies spectrales) Eu-

clidienne pondérée sont utilisées en tant que mesures objectives d’exécution. L’algorithme

a été intégré avec le codeur de parole AMR (Adaptive Multi Rate) et les résultats de

simulations en arithmétique flottante, en utilisant le language de programmation C, sont

présentés.
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Chapter 1

Introduction

However, if speech is to travel the information highways of the future, efficient transmission

and storage will be an important consideration. With the advent of the digital age, the

analog speech signals can be represented digitally. There is an inherent flexibility associated

with digital representations of speech. However, there are drawbacks — a high data rate

when no compression is used. Thus, speech coders are necessary to reduce the required

transmission bandwidth while maintaining high quality. There is ongoing research in speech

coding technology aimed at improving the performance of various aspects of speech coders.

From the primitive speech coders developed early in the twentieth century, the study

of speech compression has expanded rapidly to meet current demands. Recent advances in

coding algorithms have found applications in cellular communications, computer systems,

automation, military communications, biomedical systems, etc. Although high capacity

optical fibers have emerged as an inexpensive solution for wire-line communications, con-

servation of bandwidth is still an issue in wireless cellular and satellite communications.

However, the bandwidth must be minimized while meeting other requirements discussed in

the next section.

1.1 Attributes of Speech Coders

Given the extensive research done in the area of speech coding, there are a variety of existing

speech coding algorithms. In selecting a speech coding system, the following attributes are

typically considered:
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• Complexity : This includes the memory requirements and computational complexity

of the algorithm. In virtually all applications, real-time coding and decoding of

speech is required. To reduce costs and minimize power consumption, speech coding

algorithms are usually implemented on DSP chips. However, implementations in

software and embedded systems are not uncommon. Thus, the performance of the

hardware used can ultimately select among potential speech coding algorithms based

on their complexity.

• Delay : The total one-way delay of a speech coding system is the time between a

sound is emitted by the talker and when it is first heard by the listener. This delay

comprises of the algorithmic delay, the computational delay, the multiplexing delay

and the transmission delay. The algorithmic delay is the total amount of buffering

or look-ahead used in the speech coding algorithm. The computational delay is

associated with the time required for processing the speech. The delay incurred by

the system for channel coding purposes is termed the multiplexing delay. Finally,

the transmission delay is a result of the finite speed of electro-magnetic waves in any

given medium.

In most modern systems, echo-cancellers are present. Under these circumstances, a

one-way delay of 150 ms is perceivable during highly interactive conversations, but

up to 500 ms of delay can be tolerated in typical dialogues [2]. When echo-cancellers

are not present in the system, even smaller delays result in annoying echoes [1]. Thus,

the speech coder must be chosen accordingly, with low-delay coders being employed

in environments where echoes may be present.

• Transmission bit rate: The bandwidth available in a system determines the upper

limit for the bit rate of the speech coder. However, a system designer can select from

fixed-rate or variable-rate coders. In mobile telephony systems (particularly CDMA-

based ones), the bit rate of individual users can be varied; thus, these systems are well

suited to variable bit-rate coders. In applications where users are alloted dedicated

channels, a fixed-rate coder operating at the highest feasible bit rate is more suitable.

• Quality : The quality of a speech coder can be evaluated using extensive testing with

human subjects. This is a very tedious process and thus objective distortion mea-

sures are frequently used to estimate the subjective quality (see Section 2.7). The
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following categories are commonly used to compare the quality of speech coders:

(1) commentary or broadcast quality describes wide-bandwidth speech with no per-

ceptible degradations; (2) toll or wireline quality speech refers to the type of speech

obtained over the public switched telephone network; (2) communications quality

speech is completely intelligible but with noticeable distortion; and, (4) synthetic

quality speech is characterized by its ‘machine-like’ nature, lacking speaker identifi-

ability and being slightly unintelligible. In general, there is a trade-off between high

quality and low bit rate.

• Robustness : In certain applications, robustness to background noise and/or channel

errors is essential. Typically, the speech being coded is distorted by various kinds

of acoustic noise — in urban environments, this noise can be quite excessive for

cellular communications. The speech coder should still maintain its performance

under these circumstances. Random or burst errors are frequently encountered in

wireless systems with limited bandwidth. Different strategies must be employed in

the coding algorithm to withstand such channel impairments without unduly affecting

the quality of the reconstructed speech.

• Signal bandwidth: Speech signals in the public switched telephone network are band-

limited to 300 Hz – 3400 Hz. Most speech coders use a sampling rate of 8 kHz,

providing a maximum signal bandwidth of 4 kHz1. However, to achieve higher quality

for video conferencing applications, larger signal bandwidths must be used.

Other attributes may be important in some applications. These include the ability to

transmit non-speech signals and to support speech recognition.

1.2 Classes of Speech Coders

Speech coding algorithms can be divided into two distinct classes: waveform coders and

parametric coders. Waveform coders are not highly influenced by speech production models;

as a result, they are simpler to implement. The objective with this class of coders is to

yield a reconstructed signal that matches the original signal as accurately as possible—

the reconstructed signal converges towards the original signal with increasing bit rate.

1Only narrowband (8 kHz sampling rate) speech files and speech coders are dealt with in this thesis.
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However, parametric coders rely on speech production models. They extract the model

parameters from the speech signal and code them. The quality of these speech coders

is limited due to the synthetic reconstructed signal. However, as seen in Fig. 1.1, they

provide superior performance for lower bit rates. Many waveform-approximating coders

employ speech production models to improve the coding efficiency. These coders overlap

into both categories and are thus termed hybrid coders.

1 2 4 8 16 32 64
Poor

Fair

Good

Excellent

Bit Rate (kbps)

Q
ua

lit
y

Waveform coder

Parametric coder

Fig. 1.1 Subjective performance of waveform and parametric coders. Re-
drawn from [1].

1.2.1 Waveform Coders

Since the ultimate goal of waveform coders is to match the original signal sample for

sample, this class of coders is more robust to different types of input. Pulse code modulation

(PCM) is the simplest type of coder, using a fixed quantizer for each sample of the speech

signal. Given the non-uniform distribution of speech sample amplitudes and the logarithmic

sensitivity of the human auditory system, a non-uniform quantizer yields better quality than

a uniform quantizer with the same bit rate. Thus, the CCIT standardized G.711 in 1972,
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a 64 kb/s logarithmic PCM toll quality speech coder for telephone bandwidth speech.

In exchange for higher complexity, toll quality speech can be obtained at much lower

bit rates. With adaptive differential pulse code modulation (ADPCM), the current speech

sample is predicted from previous speech samples; the error in the prediction is then quan-

tized. Both the predictor and the quantizer can be adapted to improve performance. G.727,

standardized in 1990, is an example of a toll quality ADPCM system which operates at 32

kb/s. Another possibility is to convert the speech signal into another domain by a discrete

cosine transform (DCT) or another suitable transform. The transformation compacts the

energy into a few coefficients which can be quantized efficiently. In adaptive transform

coding (ATC), the quantizer is adapted according to the characteristics of the signal [3].

1.2.2 Parametric Coders

The performance of parametric coders, also known as source coders or vocoders, is highly

dependent on accurate speech production models. These coders are typically designed for

low bit rate applications (such as military or satellite communications) and are primarily

intended to maintain the intelligibility of the speech. Most efficient parametric coders are

based on linear predictive coding (LPC), which is the focus of this thesis. With LPC, each

frame of speech is modelled as the output of a linear system representing the vocal tract,

to an excitation signal. Parameters for this system and its excitation are then coded and

transmitted. Pitch and intensity parameters are typically used to code the excitation and

various filter representations (see Section 2.5) are used for the linear system. Communica-

tions quality speech can currently be achieved at rates below 2 kpbs with vocoders based

on LPC [4].

1.2.3 Hybrid Coders

The speech quality of waveform coders drops rapidly for bit rates below 16 kpbs, whereas

there is a negligible improvement in the quality of vocoders at rates above 4 kpbs. Hybrid

coders are thus used to bridge this gap, providing good quality speech at medium bit

rates. However, these coders tend to be more computationally demanding. Virtually all

hybrid coders rely on LPC analysis to obtain synthesis model parameters. Waveform coding

techniques are then used to code the excitation signal and pitch production models may

be incorporated to improve the performance.
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Code-excited linear prediction (CELP) coders have received a lot of attention recently

and are the basis for most speech coding algorithms currently used in wireless telephony.

In CELP coders, standard LPC analysis is used to obtain the excitation signal. Pitch

modelling is used to efficiently code the excitation signal. Standardized in 1996, G.729 is a

CELP based speech coder which produces toll quality speech at a rate of 8 kb/ss [5].

Waveform interpolation (WI) coders model the excitation as a sum of slowly evolving

pitch cycle waveforms. For bit rates below 4 kb/s, WI coders perform well relative to other

coders operating at the same bit rates [1]. However, WI coders are currently burdened by

their high complexity and large delay (typically exceeding 40 ms).

1.3 Thesis Contribution

This thesis focuses on improving the performance of speech coders based on LPC. These

coders perform an LPC analysis on each frame of speech to obtain analysis filter coeffi-

cients. These LPC coefficients along with parameters representing the excitation signal,

are quantized and transmitted to the decoder. Due to the slow evolution of the shape of

the vocal tract, most speech sounds are essentially stationary for durations of 15–25 ms.

Thus, the length of each frame is usually about 20 ms. However, a more frequent update

of the LPC analysis filter improves the overall performance of the speech coder — both the

LPC filter and the excitation coding blocks shown in Fig. 1.2 reap performance benefits.

Interpolation of the LPC parameters yields some of the performance gains obtainable with

a frequent analysis, but with no increase in transmission bit rate [6].

In this thesis, we introduce a novel approach to yield the performance benefits associated

with a frequent LPC analysis, without the expected increase in bit rate. Our method is

based on performing a frequent LPC analysis in order to update the LPC analysis filter

often; interpolated LPC parameters are then used for the synthesis stage. In effect, the

speech waveform is modified into a form which can be coded more efficiently with regular

LPC speech coders.

We first examine the conditions under which this modified speech waveform is perceptu-

ally equivalent to the original waveform. To enhance the degree of perceptual transparency

of these modifications, we ‘warp’ the LPC parameter contours. This ‘warping’ consists of

minor time shifts in the LPC parameter tracks that improve the spectral match between

the interpolated parameters and the LPC parameters obtained from the frequent analy-
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Fig. 1.2 Block diagram of basic LPC coder

sis. With this improved spectral match, we can transmit the LPC parameters at a slower

rate without affecting the performance of the speech coder — a reduction in bit rate while

maintaining the quality of the reconstructed speech. Finally, we implement our scheme

within standard speech coding algorithms and investigate the performance.

1.4 Previous Related Work

Minde et al. [7] have suggested an interpolation constrained LPC scheme — the LPC

parameters that maximize the prediction gain when this set of parameters is interpolated

over all the subframes, is selected. Thus, the interpolation of the LPC parameters is

integrated into the LPC analysis to improve the spectral tracking capability of the LPC

filter. However, their formulation is based on the direct form filter coefficients, which have

poor properties in terms of quantization, interpolation and particularly stability.

A smooth evolution of the LPC parameter tracks is essential when interpolated param-

eters are used for synthesis. Reduction of the frame-to-frame variations of LPC parameter

tracks has been investigated and many solutions proposed. Bandwidth expansion tech-

niques, described in Sections 2.6.4 and 2.6.3, slightly decrease these frame-to-frame fluctu-

ations. Various methods to jointly smooth and optimize the LPC and the excitation pa-

rameters have been proposed in [8, 9, 10]. Other methods to reduce these variations include

compensating for the asynchrony between the analysis windows and speech frames [11], and
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modifying the speech signal prior to the LPC analysis [12].

Very recently, a Spectral Distortion with interframe Memory measure was proposed

for quantizing the LPC parameters [13]. Their results show a smoother evolution of the

quantized LPC parameters. In addition, the shape of the quantized LPC parameter tracks is

more similar to the shape of the unquantized ones. However, the computational complexity

is too high for practical use in current speech coders.

There is an extensive range of modifications that can be applied to a speech signal

without affecting the perceptual quality. Many of these modifications can improve the

efficiency of the speech coder. Kleijn et al. [14] have studied the modifications that can

improve the performance of the excitation coder block shown in Fig. 1.2. Amplitude modi-

fications and time-scale warps are applied to the signal so that the pitch predictor gain and

delay can be linearly interpolated [15, 16] without any degradation in performance. Forms

of this relaxed code-excited linear prediction (RCELP) algorithm have shown notable gains

in coding efficiency [17, 18].

The linear interpolation of the LPC parameters can be done using different LPC filter

representations. The interpolation properties of these various representations has been

investigated in [19, 20]. To reduce the spectral mismatch obtained with the interpolated

parameters, non-linear interpolation methods have also been investigated. Interpolation

schemes based on the frame energy have been proposed in [21, 22].

1.5 Thesis Organization

The fundamentals of LPC speech coders are reviewed in Chapter 2. Conventional methods

to obtain LPC coefficients and transformations thereof are presented in addition to ways

of improving the robustness of these methods. Some basic excitation coding schemes are

explained and distortion measures used to evaluate the performance of different aspects

of speech coders are overviewed. Chapter 3 introduces the idea of using a frequent LPC

analysis with interpolated LPC parameters for synthesis. The conditions under which

perceptual transparency is maintained in the modified signal is examined. A novel scheme

to ‘warp’ the LPC parameter contours to improve the coding efficiency is presented and

the performance is analyzed. The algorithm is then implemented in a current speech coder

and the resulting coding efficiency is examined in Chapter 4. The thesis is concluded with

a summary of our work in Chapter 5, along with suggestions for future work.
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Chapter 2

Linear Predictive Speech Coding

Most current speech coders are based on LPC analysis due to its simplicity and high

performance. This chapter provides an overview of LPC analysis and related topics. Simple

acoustic theory of speech production is presented to motivate the use of LPC. Methods

of performing the LPC analysis and coding the resulting residual signal are introduced.

Different parametric representations of the LPC filter are described along with ways of

improving robustness and numerical stability. Finally, distortion measures used to measure

the performance of speech coding algorithms are examined.

2.1 Speech Production Model

Due to the inherent limitations of the human vocal tract, speech signals are highly re-

dundant. These redundancies allow speech coding algorithms to compress the signal by

removing the irrelevant information contained in the waveform. Knowledge of the vocal

system and the properties of the resulting speech waveform is essential in designing efficient

coders. The properties of the human auditory system, although not as important, can also

be exploited to improve the perceptual quality of the coded speech.

Speech consists of pressure waves created by the flow of air through the vocal tract.

These sound pressure waves originate in the lungs as the speaker exhales. The vocal folds

in the larynx can open and close quasi-periodically to interrupt this airflow. This results

in voiced speech (e.g., vowels) which is characterized by its periodic and energetic nature.

Consonants are an example of unvoiced speech — aperiodic and weaker; these sounds have

a noisy nature due to turbulence created by the flow of air through a narrow constriction in
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the vocal tract. The positioning of the vocal tract articulators acts as a filter, amplifying

certain sound frequencies while attenuating others. A time-domain segment of voiced and

unvoiced speech is shown in Fig. 2.1(a).

A general linear discrete-time system to model this speech production process, known

as the terminal-analog model [4], is shown in Fig. 2.2. In this system, a vocal tract filter

V (z) and radiation model R(z) (to account for the radiation effects of the lips) are excited

by the discrete-time excitation signal uG[n]. The lips behave as a 1st order high-pass filter

and thus R(z) grows at 6 dB/octave. Local resonances and anti-resonances are present in

the vocal tract filter, but V (z) has an overall flat spectral trend. The glottal excitation

signal uG[n] is given by the output of a glottal pulse filter G(z) to an impulse train for

voiced segments; G(z) is usually represented by a 2nd order low-pass filter, falling off at

12 dB/octave. For unvoiced speech, a random number generator with a flat spectrum is

typically used. The z-transform of the speech signal produced is then given by:

S(z) = θ0UG(z)V (z)R(z), (2.1)

where θ0 is the gain factor for the excitation signal and UG(z) is the z-transform of the

glottal excitation signal uG[n]. In speech coding and analysis, the filters R(z), V (z), and

in the case of voiced speech G(z), are combined into a single filter H(z). The speech signal

is then the output of the excitation signal E(z) to the filter H(z):

S(z) = U(z)H(z), (2.2)

where U(z) = Θ0E(z) is the gain adjusted excitation signal. Fig. 2.1(b) shows the esti-

mated excitation signals for voiced and unvoiced speech segments using a 10th order all-pole

filter for H(z); the autocorrelation method was used with a 25 ms Hamming window (see

Section 2.3). Note that the excitation signal for the unvoiced speech segment seems like

white noise and that for the voiced speech closely resembles an impulse train.

The power spectra for voiced and unvoiced speech are shown in Fig. 2.1(c) with the

corresponding frequency responses of the vocal tract filter H(z). The periodicity of voiced

speech gives rise to a spectrum containing harmonics of the fundamental frequency of the

vocal fold vibration (also known as F0 ). A truly periodic sequence, observed over an infinite

interval, will have a discrete-line spectrum but voiced sounds are only locally quasi-periodic.
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Fig. 2.1 An unvoiced to voiced speech transition, the underlying excitation
signal and short-time spectra.
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Fig. 2.2 The terminal-analog model for speech production.

The resonances evident in the spectral envelope of voiced speech, known as formants in

speech processing, are a product of the shape of the vocal tract. The -12 dB/octave for E(z)

gives rise to the general -6 dB/octave spectral trend when the radiation losses from R(z)

are considered. The spectrum for unvoiced speech ranges from flat spectra to those lacking

low frequency components. The variability is due to place of constriction in the vocal tract

for different unvoiced sounds — the excitation energy is concentrated in different spectral

regions.

Due to the continuous evolution of the shape of the vocal tract, speech signals are non-

stationary. However, the gradual movement of vocal tract articulators results in speech

that is quasi-stationary over short segments of 5–20 ms. This slow change in the speech

waveform and spectrum is evident in the unvoiced-voiced transition shown in Fig. 2.1.

However, a class of sounds called stops or plosives (e.g., /p/, /b/, etc.) result in highly

transient waveforms and spectra. An obstruction in the vocal tract allows for the buildup

of air pressure; the release of this vocal tract occlusion then creates a brief explosion of

noise before a transition to the ensuing phoneme. The resulting transient waveform, such

as the one shown in Fig. 2.3, generally poses difficulty to speech coders which operate under

the assumption of stationarity over frames of typically 10–20 ms. Another class of sounds

that typically impedes the performance of speech coders is voiced fricatives. The excitation

for these sounds consists of a mixture of voiced and unvoiced elements, and thus the vocal

tract model of Fig. 2.2 does not provide an accurate fit to the actual speech production

process.
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Fig. 2.3 The time-domain waveform of the word ‘top’ showing the transient
nature of the plosives /t/ and /p/.

2.2 Speech Perception

Human perception of speech is highly complex — quantizing a speech signal to a binary

waveform introduces significant amplitude distortion yet listeners can still understand the

distorted speech. As another example, 67% of all syllables are correctly identified even when

all frequencies above or below 1.8 kHz are discarded [4]. Perceptual experiments have shown

that the 200–3700 Hz frequency range is the most important to speech intelligibility; this

matches the range of frequencies over which the human auditory system is most sensitive

and justifies the 8 kHz sampling rate for narrowband speech coders.

The auditory system performs both temporal and spectral analyses of speech signals—

the inherent limitations of these analyses allows for increased efficiency for both audio

and speech compression algorithms. The primary aspects of the human auditory system

exploited in contemporary speech coders are:

• Phase insensitivity : The phase components of a speech signal play a negligible role in

speech perception, with weak constraints on the degree and type of allowable phase
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variations [23]. The human ear is fundamentally phase ‘deaf’ and perceives speech pri-

marily based on the magnitude spectrum. This justifies the use of a minimum-phase

system (obtained using the autocorrelation method as described in Section 2.3.1) to

represent a possibly non minimum-phase system H(z).

• Perception of spectral shape: It is well known that spectral peaks (corresponding to

poles in the system function) are more important to perception than spectral valleys

(corresponding to zeros) [24]. The autocorrelation method for spectral estimation

described in Section 2.3.1 has the advantage that it models the perceptually important

spectral peaks better than the spectral valleys, due to the minmization criterion.

• Frequency masking : Every short-time power spectrum has a masking threshold asso-

ciated with it. The shape of this masking threshold is similar to the spectral envelope

of the signal, and any noise inserted below this threshold is ‘masked’ by the desired

signal and thus inaudible. Efficient compression schemes shape the coder-induced

noise according to this threshold (or some approximation to it) and therefore mini-

mize the perceptually audible distortion.

• Temporal masking : Sounds can mask noise up to 20 ms in the past (backward mask-

ing) and up to 200 ms in the future (forward masking) given that certain conditions

are met regarding the spectral distribution of signal energy [4]. In some sense, the

RCELP speech coding algorithm described in Section 1.4 uses this masking phe-

nomenon in warping the temporal structure of pitch pulses. Our research into tem-

poral warping of speech signals to improve coder efficiency is also motivated by this

perceptual limitation.

2.3 Linear Predictive Analysis

In the most general case, LPC consists of a pole-zero model (also known as an autoregressive

moving average, or ARMA, model) for H(z) given by:

H(z) =
S(z)

E(z)
=

1 +

q∑
l=1

blz
−l

1−
p∑

k=1

akz
−k

, (2.3)
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where the coefficients a0 and b0 are normalized to 1 because the gain factor Θ0 is included

in the excitation signal E(z). Thus, the speech sample s[n] is a linear combination of

the p previous output samples s[n − 1], . . . , s[n− p] and the q + 1 previous input samples

e[n], . . . , e[n− q]. This is expressed mathematically in the following difference equation:

s[n] =

p∑
k=1

aks[n− k] +

q∑
l=0

ble[n− k]. (2.4)

Nasals and fricatives, which contain spectral nulls, can be modeled accurately with the

zeros in this ARMA model whereas the poles are crucial in representing the spectral reso-

nances which are characteristic of sonorants such as vowels. However, due to its analytical

simplicity, all-pole models (also known as autoregressive, or AR, models) are extensively

used in real-time systems with constraints on computational complexity. Using an AR

model for H(z), Eq. (2.4) can be rearranged and reduced to following difference equation:

e[n] = s[n]−
p∑

k=1

aks[n− k]. (2.5)

The signal e[n] is the difference between s[n] and its prediction based on the p previous

speech samples. Consequently, e[n] is termed the residual signal. Defining

A(z) = 1−
p∑

k=1

akz
−k, (2.6)

e[n] can be viewed as the output of the prediction filter A(z) (the inverse of the AR model

H(z)) to the input speech signal s[n] which can be expressed in the z-domain as:

E(z) = S(z)A(z). (2.7)

A useful measure of the efficiency of the prediction filter is the prediction gain given by:

Gp = 10 log10

Nf−1∑
i=0

s2[n]

Nf−1∑
i=0

e2[n]

, (2.8)
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where Nf is the frame length.

Ideally, the output of the prediction filter A(z) would correspond to the physical exci-

tation of the vocal tract that produced the speech segment. However, limitations of the

model H(z) and the error introduced in estimating the model parameters allow for only a

crude approximation to the actual excitation signal.

Selection of the order p of the LPC model is a trade-off between spectral accuracy,

computational complexity and transmission bandwidth (for speech coding applications).

As a general rule, 2 poles are needed to represent each formant and an additional 2–4

poles are used to approximate spectral nulls (where applicable) and for overall spectral

shaping. Based on simple acoustic tube modeling of the the vocal tract [4], the first

formant occurs at 500 Hz and the remaining formants occur roughly at 1 kHz intervals

(i.e., 1.5 kHz, 2.5 kHz, . . . ). Therefore, 8 poles are needed to model the resonances for

narrowband speech signals resulting in typical values for p from 8–16.

The next few sections describe the autocorrelation and covariance methods, two of the

more common and efficient AR spectral estimation techniques. Both of these methods can

be considered a special case of the more general AR spectral estimation scheme depicted

in Fig. 2.4. Other LPC parameter extraction techniques are also briefly reviewed.

Speech signal
s[n]

[ ]dw n
Data window

[ ]ew n
Error window

+

-

1

p
k

k
k
a z−

=
∑

Prediction error
[ ]we n

Fig. 2.4 General model for an AR spectral estimator.

2.3.1 Autocorrelation Method

The autocorrelation method uses a finite duration data window wd[n] and no error window

(i.e., we[n] = 1 for all n). A wide range of choices exist for wd[n], each with its own char-

acteristics. Selection of the data window (also known as the analysis window) is discussed
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in detail in Section 3.1.1. The windowed speech signal sw[n] is then given by:

sw[n] = wd[n]s[n]. (2.9)

Without loss of generality, the window is aligned so that w[n] = 0 for n < 0 and n ≥
Nw, where Nw is the length of the window. The autocorrelation method selects the LPC

parameters ak that minimize the energy Ep of the prediction error1 given by:

Ep =
∞∑

n=−∞

e2
w[n]

=
∞∑

n=−∞

(
sw[n]−

p∑
k=1

aksw[n− k]

)2

.

(2.10)

The prediction error energy can be minimized by setting the partial derivatives of the

energy Ep with respect to the LPC parameters equal to zero:

∂Ep

∂ak

= 0, 1 ≤ k ≤ p. (2.11)

This results in the following p linear equations for the p unknown parameters a1, . . . , ap:

p∑
k=1

rs(i, k)ak = rs(0, i), 1 ≤ i ≤ p (2.12)

where

rs(i, j) =
∞∑

i=−∞

sw[n− i]sw[n− j]. (2.13)

Due to the finite duration of the windowed speech signal sw[n],

rs(i, j) = rs(|i− j|) (2.14)

1In this thesis, the term prediction error (ew[n]) will be used to represent the output of the analysis
filter A(z) in the course of estimating the LPC parameters. The residual signal (e[n]) will denote the
output of the prediction filter A(z) to the input speech signal.
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where

rs(i) =
Nw−1∑
n=i

sw[n]sw[n− i] (2.15)

is the autocorrelation function of the windowed speech signal sw[n] satisfying rs(i) = rs(−i).

The set of linear equations can be rewritten in matrix form as
rs(0) rs(1) . . . rs(p− 1)

rs(1) rs(0) . . . rs(p− 2)
...

...
. . .

...

rs(p− 1) rs(p− 2) . . . rs(0)




a1

a2

...

ap

 =


rs(1)

rs(2)
...

rs(p)

 , (2.16)

and can be summarized using vector-matrix notation as Rsa = rs, where the p× p matrix

Rs is known as the autocorrelation matrix.

The autocorrelation method for spectral estimation has some confirmed disadvantages:

• Poor modelling of sounds (such as nasals) containing perceptually relevant spectral

nulls. Only pole-zero systems or an all-pole model with a very high order can accu-

rately represent the spectral envelope of these sounds.

• Estimation of the vocal tract filter constitutes deconvolving the signal s[n] into the

excitation e[n] and the filter H(z). In voiced speech, the quasi-periodic excitations

produce discrete-line spectra which complicates the deconvolution process. The effect

is more pronounced for high-pitched female speech which has widely spaced harmon-

ics. In this way, the autocorrelation method can provide a poor spectral match to

the underlying spectral envelope for voiced segments.

• The shape of the estimated spectral envelope is highly sensitive to such factors as

window alignment and pitch period (for voiced segments) [25] — the autocorrelation

method is not very robust and consistent in its spectral estimate.

Nevertheless, there are a few key properties that make the autocorrelation method a prime

choice in speech coding applications:
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Computational Efficiency

Since the LPC parameters are typically updated 50–100 times every second, algorithmic

complexity is a key issue. The set of equations described by Rsa = rs are known as

the Yule-Walker equations and can be solved efficiently using the Levinson-Durbin algo-

rithm [26] which takes advantage of the Toeplitz symmetric structure of Rs. In addition,

the reflection coefficients (see Section 2.5.1) are computed as a by-product of the Levinson-

Durbin algorithm.

Spectral Emphasis

Applying Parseval’s relation to Eq. (2.10)

Ep =
1

2π

∫ π

−π

∣∣S (ejω
)∣∣2∣∣H (ejω
)∣∣2 dω, (2.17)

yields an interesting interpretation — minimization of Ep is equivalent to selecting the

H (ejω) that minimizes the average ratio of the speech spectrum to it. Frequency regions

containing high energy are more heavily weighted in the minimization. Thus, spectral

peaks are modelled better with this approach, consistent with the perceptual properties

described in Section 2.2.

Minimum-Phase Solution

The solution of the Yule-Walker equations guarantees that the prediction filter A(z) is

minimum-phase (zeros inside the unit circle). This implies that both the LPC analysis

filter A(z) and the LPC synthesis filter H(z) are stable. In coding applications, stability

of the synthesis filter is essential to mitigate the build-up of quantization noise.

Any causal rational system function, such as the H(z) in Eq. (2.3), can be decomposed

as [27]:

H(z) = Hmin(z)Hap(z), (2.18)

where Hap(z) is an all-pass filter and Hmin(z) is a minimum phase filter. Additionally,

Hmin(z) can be expressed as all-pole filter. To accurately model both poles and zeros in

H(z), the order of an all-pole Hmin(z) would have to be infinite. However, an approximate

decomposition of H(z) can still be obtained with a finite order. Thus, the minimum-phase
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all-pole filter obtained via the autocorrelation method can provide a good approximation

to the spectral envelope of the actual vocal tract filter, even when it contains spectral

zeros and is not minimum-phase. This corresponds well with perception — the magnitude

spectrum is more important than the phase characteristics.

Correlation Matching

Consider the impulse response h[n] of the LPC synthesis filter H(z). The impulse response

autocorrelation is then given by:

rh(i) =
∞∑

n=i

h[n]h[n− i]. (2.19)

It can be shown that rh(i) = rs(i) for i = 1, . . . , p [28], known as the autocorrelation

matching property.

2.3.2 Covariance Method

When there is no data window (wd = 1 for all n) and the prediction error window is

rectangular (we = 1 for 0 ≤ n ≤ Nf − 1, and 0 otherwise), the covariance method is

obtained. In this case, the energy of the prediction error is given by:

Ep =
∞∑

n=−∞

e2
w[n]

=

Nf−1∑
n=0

(
sw[n]−

p∑
k=1

aksw[n− k]

)2

.

(2.20)

Setting the partial derivatives

∂Ep

∂ak

= 0, 1 ≤ k ≤ p, (2.21)

results in the set of p linear equations

p∑
k=1

φ(i, k)ak = φ(i, 0), 1 ≤ i ≤ p, (2.22)
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where

φ(i, k) =

Nf−1∑
n=0

s[n− i]s[n− k]. (2.23)

Using matrix notation, Φa = φ or
φ(1, 1) φ(1, 2) . . . φ(1, p)

φ(2, 1) φ(2, 2) . . . φ(2, p)
...

...
. . .

...

φ(p, 1) φ(p, 2) . . . φ(p, p)




a1

a2

...

ap

 =


φ(1, 0)

φ(2, 0)
...

φ(p, 0)

 . (2.24)

The covariance method does not guarantee the stability of the LPC synthesis filter nor

is it computationally efficient for large p. The matrix Φ is not Toeplitz; it is a symmetric

positive definite matrix which allows for a solution through the Cholesky decomposition

method [29]. However, since the energy of the prediction error is minimized and the input

speech signal is not windowed, the covariance method yields a residual signal with the

highest achievable prediction gain.

2.3.3 Other Spectral Estimation Techniques

Due to the interaction between the excitation signal e[n] and the vocal tract filter H(z),

deconvolving the speech signal s[n] is complex and can only be approximated. New tech-

niques claiming to improve the accuracy of the estimated vocal tract filter are constantly

being developed. Some of the more notable methods are:

• Modified covariance method : This method involves essentially the same steps as the

covariance method. However, the final solution is derived from the so-called partial

correlations [30]. The result is a minimum phase LPC filter.

• Burg method : This method is based around the lattice filter [31]. The LPC coefficient

vector that minimizes the weighted sum of forward and backward prediction errors is

selected. The Burg method guarantees the stability of the LPC synthesis filter but is

also computationally intensive for large predictor orders p.

• Extended correlation matching : The autocorrelation only matches the first p corre-

lations of the weighted speech signal with the impulse response h[n] of the synthesis
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filter. This technique is a weighted mean-square error match to Nc ≥ p correla-

tions [32]. A recursive procedure is necessary, and the minimum phase property does

not hold in general.

• Discrete all-pole modelling : This is another iterative procedure that improves the

spectral fit for segments corresponding to voiced speech. Introduced by El-Jaroudi

and Makhoul [33], this method fits an LPC spectrum to a finite set of spectral points

by minimizing a form of the Itakura-Saito distance measure [34]. This is especially ef-

fective for the discrete line spectra exhibited in voiced speech. The improved spectral

fit comes at the expense of possibly unstable synthesis filters.

• Pole-zero methods : Although pole-zero models can more accurately match the spectra

of speech containing anti-resonances [35], the computational complexity associated

with these algorithms has been a compelling argument against their use in any real-

time system. Solving for a pole-zero system typically results in highly non-linear

equations that are solved iteratively. The Steiglitz-McBride algorithm [32] is an

example of such a method for finding a pole-zero fit. Within the CELP framework,

efficient methods for estimating a pole-zero model have been proposed [36] [37].

There is also instantaneous LPC estimation — the system function is updated sample by

sample [4]. This reduces the delays inherent in the block estimation approaches previously

described and are used in backward adaptive coders (such as ADPCM). However, backward

adaptive systems perform poorly for data rates below 16 kb/s.

2.4 Excitation Coding

The LPC analysis filter A(z) removes the near sample redundancies in the speech signal.

For voiced speech, far sample redundancies are also evident in the residual waveform. Since

voiced segments are more important to the overall perception of speech, most excitation

coding schemes concentrate on optimizing the coding efficiency for quasi-periodic signals.

The Multiband Excitation (MBE) coder divides the spectrum of the residual signal into

sub-bands, declaring each sub-band as voiced or unvoiced. Harmonic excitations are then

used for the voiced sub-bands and noisy spectrums are used for the unvoiced bands [38].

The MBE coder is based on the fact that the spectra for speech frequently consists of voiced
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and unvoiced regions. In both Multipulse Excited Linear Prediction (MPLP) and Regular

Pulse Excitation (RPE), the excitation sequence is formed from a limited set of pulses

whose amplitudes and locations are coded [39]. The difference between MPLP and RPE

coders is that the pulses are uniformly spaced in RPE. Residual Excited Linear Prediction

(RELP) applies waveform coding techniques to the residual signal.

The long term redundancies can also be removed by using the simple 1-tap pitch filter2

P (z) = βz−M , (2.25)

where the integral delay M corresponds to the pitch period. Using Np to denote the frame

length for pitch prediction and defining

φ(i, k) =

Np−1∑
n=0

e[n− i] e[n− k], (2.26)

the parameters β and M that maximize the prediction gain between the input signal e[n]

and the output of the prediction filter 1− P (z) are computed as follows [40]:

• The pitch lag M is chosen to maximize φ2(0, M)/φ(M, M).

• The optimal filter coefficient is then β = φ(0, M)/φ(M, M).

This is the covariance method for determining the pitch filter. Stability is achieved when

|β| < 1. Fig. 2.5 is an example of the far sample redundancies removed by this simple

prediction filter.

Since there is no relation between the sampling frequency and the fundamental fre-

quency, the pitch period is not necessarily an integer. Thus, 2-tap and 3-tap pitch filters

are used to provide an interpolation between the samples [41]. This increases the complex-

ity of the optimization and stability tests. Another way of improving the efficiency is to

use a fractional delay pitch predictor which provides better temporal resolution [42]. In the

adaptive codebook paradigm, the long term redundancies are removed by using a scaled and

delayed version of the excitation from the previous frame to partly represent the excitation

for the current frame.

2The term ‘pitch filter’ is misleading since it is used to remove the far sample redundancies, whether or
not they are due to pitch effects.
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Fig. 2.5 The output of a 1-tap pitch prediction filter with a 200 Hz update
rate (Np = 40) on the LPC residual shown in Fig. 2.1(b).

The output of the pitch prediction filter is essentially a white noise signal, since both

near and far sample redundancies have been removed. This signal must be quantized and

transmitted to the decoder. In CELP, a codebook of excitation vectors approximating

white noise signals is used — the vector that results in the minimum distortion is selected.

2.5 Representations of the LPC Filter

The LPC filter coefficients {ak}p
k=1 are not suitable for transmission in speech coders —

they have poor quantization properties and stability checks are complicated. The same is

true for the impulse response of the synthesis filter H(z). Thus, other superior parametric

representations have been formulated.

2.5.1 Reflection Coefficients

Reflection coefficients (denoted ki for i = 1, . . . , p) are a by-product of the Levinson-Durbin

algorithm but can be recursively computed from the filter coefficients {ak}p
k=1 [27]. The

recursion is initialized with a
(p)
k = ak, 1 ≤ k ≤ p. The reflection coefficients are then

computed from:

ki = a
(i)
i

a
(i−1)
j =

a
(i)
j − a

(i)
i a

(i)
i−j

1− k2
i

, 1 ≤ j ≤ i− 1,
(2.27)
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where the index i starts from p and decrements at each iteration until i = 1. The coefficients

ki correspond to the gain factors in the lattice structure implementation of the LPC analysis

filter A(z) (see Fig. 2.6). The lattice and transversal structures yield the same output,

except in the time-varying case — the memory/initial conditions of the filters being the

cause of this difference. The LPC analysis filter is guaranteed to be minimum phase when

|ki| < 1 for i = 1, . . . , p. Another advantage is that changing the order of the filter does

not affect the coefficients computed; i.e., k
(p)
i = k

(q)
i for i = 1, . . . , p where k

(p)
i and k

(q)
i are

the reflections coefficients for a pth and qth order predictor, respectively, and p ≤ q.

Speech
signal

1−z
1k

1k

0[ ]f n

0[ ]b n

1[ ]f n
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+

pk

pk
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Fig. 2.6 Lattice structure of the LPC analysis filter. The signals fi[n] and
bi[n] are known as the ith order forward and backward prediction errors re-
spectively.

Reflection coefficients have poor linear quantization properties. Consider the spectral

sensitivity of the reflection coefficient ki given by [43]:

∂S

∂ki

= lim
∆ki→0

∣∣∣∣∆S

∆ki

∣∣∣∣ , (2.28)

where ∆S is the spectral deviation due to the change ∆ki in the ith reflection coefficient.

Using the mean absolute log spectral measure (see Section 2.7.3) to determine the spectral

deviation yields the spectral sensitivity curves shown in Fig. 2.7. The reference set of

reflection coefficients were obtained by performing a 10th order LPC analysis on a frame of

speech. Each curve was then obtained by computing the spectral sensitivity (using a 1024

point FFT) as one of the 10 reflection coefficients was varied over the range (−1, 1) while the

remaining 9 reflection coefficients were kept at their original values. Across various types

of speech frames, these sensitivity curves have the same general ∪-shape. This is consistent

with the fact that reflections coefficients perform poorly when linearly quantized, especially

as the magnitude of the reflection coefficients approach unity.
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Fig. 2.7 Typical spectral sensitivity curves for the reflection coefficients of
a 10th order LPC analysis.

2.5.2 Log-Area Ratios and Inverse Sine Coefficients

Since the quantized coefficient sets that have the largest spectral deviation contribute the

most to perception, a quantization scheme that minimizes that maximum spectral deviation

is desirable. The log-area ratios(LARs)

gi = log
1 + ki

1− ki

, for i = 1, . . . , p (2.29)

are a non-linear transformation whose spectral sensitivity curves are approximately flat.

The inverse transformation is:

ki =
egi − 1

egi + 1
, for i = 1, . . . , p. (2.30)

The inverse sine transformation given by:

gi = sin−1 ki, for i = 1, . . . , p (2.31)

also has good linear quantization properties.
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2.5.3 Line Spectral Frequencies

One of the most popular parametric representations of the LPC filter uses the line spectral

frequencies (LSF’s), also known as line spectrum pairs (LSP’s), introduced by Itakura [44].

Consider the polynomials P (z) and Q(z) given by:

P (z) = A(z) + z−(p+1)A(z−1)

Q(z) = A(z)− z−(p+1)A(z−1).
(2.32)

It follows that:

A(z) =
1

2
[P (z) + Q(z)] . (2.33)

A(z) is minimum phase if and only if all the zeros of the LSF polynomials P (z) and Q(z)

are interlaced on the unit circle [45]. The LSF’s consist of the angular positions of these

zeros. Only p/2 zeros are needed to specify each LSF polynomial since the zeros come in

complex conjugate pairs and there are two additional zeros at ω = 0 and ω = π.

The LSF’s have a number of interesting properties that have made them common spec-

tral parameters:

• A stable synthesis filter is guaranteed when the zeros are interlaced on the unit circle.

This is simple to verify when the LSF’s are quantized.

• The LSF coefficients allow interpretation in terms of formant frequencies. If two

neighbouring LSF’s are close in frequency, it is likely that they correspond to a

narrow bandwidth spectral resonance in that frequency region; otherwise, they usually

contribute to the overall tilt of the spectrum (see Fig. 2.8).

• Shifting the LSF frequencies has a localized spectral effect — quantization errors in

an LSF will primarily affect the region of the spectrum around that frequency.

Straightforward computation of the LSF’s is not efficient due to the extraction of the

complex zeros of a high order polynomial. However, Soong and Juang [45] have intro-

duced a way of determining the LSF’s using a discrete cosine transform (DCT). Kabal and

Ramachandran [46] proposed a more efficient method using Chebyshev polynomials.
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Fig. 2.8 Spectrum of LPC synthesis filter H(z) with the corresponding LSF’s
in Hertz (vertical dashed lines)

2.6 Modifications to Standard Linear Prediction

Ongoing research has provided a plethora of variations to the LPC analysis methods de-

scribed in Section 2.3 to improve robustness, accuracy and numerical precision. The more

prominent methods to improve the efficiency of standard LPC analysis are described below.

2.6.1 Pre-emphasis

The eigenvalues of the correlation matrix Rs are bounded by the minimum and maximum

values of the power spectrum S (ejω) [26], where

S
(
ejω
)

=
G2∣∣A (ejω
)∣∣2 (2.34)

and G is a gain factor for the speech signal. A large eigenvalue spread can result in

an ill conditioned matrix. Solving such a system of equations with limited numerical

precision can result in problems. Since the spectrum of voiced speech typically falls off at

6 dB/octave, the dynamic range can be compressed by pre-emphasizing the speech with

the filter 1−αz−1 [47] where α is typically about 0.94. Ideally, the pre-emphasis should be

applied to voiced speech only, since unvoiced speech typically has a flat spectrum. However,

pre-emphasizing unvoiced speech only slightly degrades the performance [4].

There must similarly be a de-emphasis stage at the decoder when synthesizing the
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speech signal. This stage would consists of passing the decoded signal through the de-

emphasis filter 1/(1 − βz−1). Usually β is chosen to equal α; however, it has been shown

that with β < α, a slight improvement in quality can be achieved [4].

2.6.2 White Noise Correction

In converting the analog speech signal to a digital one, a Nyquist filter must be used to

minimize aliasing when the signal is sampled at 8 kHz [27]. The gradual roll-off of the

low-pass filter will attenuate the high frequency components in the digitized speech signal

and thus increase the spectral dynamic range. White noise correction (WNC) consists

of increasing rs(0) by a small amount. In G.729, rs(0) is multiplied by 1.0001, which

is equivalent to adding white noise that is -40 dB below the average value of the power

spectrum S (ejω). This directly reduces the dynamic range of the power spectrum and

lessens the ill-conditioning of the LPC analysis [1]. However, WNC elevates the spectral

valleys.

A more direct approach to compensate for the missing high frequency components was

proposed by Atal and Schroeder [48]. This high frequency compensation method consists of

modifying the first few autocorrelation or covariance coefficients. The modifications have

the same effect as adding high-pass filtered white noise to the original signal before the

analysis [49].

2.6.3 Bandwidth Expansion using Radial Scaling

For high-pitched speech segments, LPC analysis tends to generate synthesis filters with

sharp spectral resonances. Bandwidth expansion techniques can be used to reduce the

sharpness of these peaks. They also alleviate the numerical precision problems associated

with having poles close to the unit circle [1]. Radial scaling consists of multiplying the

predictor coefficients according to:

a′k = akγ
k, 1 ≤ k ≤ p. (2.35)

This is equivalent to using the analysis filter A′(z) = A(γz). When γ < 1, the poles of A(z)

are shifted away from the unit circle towards the origin. This shortens the effective length

of the impulse response of the LPC synthesis filter and improves the robustness against
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channel errors. The amount of bandwidth expansion ∆B in Hz is given by:

∆B = − 1

πFs

ln(γ), (2.36)

where Fs is the sampling frequency. For G.728, γ = 253/256 which corresponds to a

bandwidth expansion of about 30 Hz. Bandwidth expansion can also be performed on the

LSF coefficients by spreading them apart [50].

2.6.4 Lag Windowing

Lag windowing performs the bandwidth expansion on the sequence of autocorrelation co-

efficients prior to solving for the LPC coefficients. This has the additional advantage of

reducing the spectral dynamic range and improving numerical robustness. The coefficients

{rs(i)}p
i=0 are multiplied by a smooth window [51], usually the Gaussian window given by:

w[k] = exp

[
−1

2

(
2πf0k

Fs

)2
]

, k = 0, . . . , p, (2.37)

where f0 is the 1-σ bandwidth (measured between the 1 standard deviation points of the

window’s spectrum) in Hz [52]. This corresponds to convolving the power spectrum with

a Gaussian shaped window which widens the spectral peaks. The G.729 speech coder uses

a 1-σ bandwidth of f0 = 60 Hz.

2.7 Distortion Measures

A useful distortion measure corresponds well with the subjective quality of the speech:

low and high subjective quality speech yields small and large distortions, respectively.

Distortion measures are used extensively in speech processing for a variety of purposes [53].

In speech coding, they are typically used to compare the performance of different systems

or configurations. The numerous distortion measures can all be divided into two main

categories: subjective distortion measures and objective distortion measures.
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Subjective Distortion Measures

This class of distortion measures is based on the opinion of a listener or a group of listeners

as to the quality or intelligibility of the speech. These measures are time-consuming and

costly to obtain, requiring a set of discriminating listeners. In addition, a consistent lis-

tening environment is required since the perceived distortion can vary with such factors as

the playback volume and type of listening instrument used (e.g., headphones versus tele-

phone handsets) [54]. However, subjective distortion measures provide the most accurate

assessment of the performance of speech coders since the degree of perceptual quality and

intelligibility is ultimately determined by the human auditory system.

Subjective distortion measures are used to measure the quality or intelligibility of

speech. Quality tests strive to determine the naturalness of the speech. The mean opinion

score (MOS) and diagnostic acceptability measure (DAM) are the most commonly used

subjective quality tests. On the other hand, the prime concern of intelligibility tests is the

percentage of words, phonemes or other speech units that is correctly heard. The standard

intelligibility test is the diagnostic rhyme test (DRT) [55].

Objective Distortion Measures

This category of measures can be evaluated automatically from the speech signal, its spec-

trum or some parameters obtained thereof. Since they do not require listening tests, these

measures can give an immediate estimate of the perceptual quality of a speech coding al-

gorithm. In addition, they can serve as a mathematically tractable criterion to minimize

during the quantization stages of a speech coder. The two main factors in selecting an

objective distortion measure are its performance and complexity. The performance of an

objective distortion measure can be established by its correlation with a subjective dis-

tortion measure of the same features (quality or intelligibility). An extensive performance

analysis of a multitude of objective distortion measures is given in [55]. Objective distortion

measures can be broadly classified into three categories: time-domain, frequency-domain

and perceptual-domain measures.

Time-domain distortion measures are most useful for waveform coders which attempt to

reproduce the original speech waveform. The most frequently encountered measures of this

type are the signal-to-noise ratio (SNR) and the segmental signal-to-noise ratio (SNRseg).

Most medium to low bit-rate coders are hybrid or parametric coders. Since the auditory



2 Linear Predictive Speech Coding 32

system is relatively phase insensitive, these coders tend to focus on the magnitude spectrum.

As a result, the time-domain measures cannot adequately gauge the perceptual quality of

these systems. Frequency-domain measures are thus used to determine the performance of

these types of speech coders since they are less sensitive to time misalignments and phase

shifts between the original and coded signals. They are also useful for the quantization of

spectral coefficients—the codebook vector which is most perceptually similar, as determined

by the distortion measure, to the original spectral envelope would be selected.

Perceptual-domain measures are based on human auditory models. They transform

the signal into a perceptually relevant domain and take advantage of psychoacoustic mask-

ing effects. Some of the more promising perceptual-domain distortion measures include

the Bark Spectral Distortion (BSD), the Modified BSD (MBSD) [56], and the Perceptual

Speech Quality Measure (PSQM). The latter has recently been recommended by the ITU

(International Telecommunication Union) to measure the performance of telephone-band

speech coders. Thorpe and Yang [57] have investigated the performance of these and a

variety of other perceptual-domain measures.

For this research, objective distortion measures were primarily used to measure perfor-

mance. The SNR and SNRseg are the time-domain measures used in this thesis and are

defined in the following two subsections. The two main frequency-domain measures used

— the Log Spectral Distortion and the Weighted Euclidean LSF Distance — are described

in Section 2.7.3 and Section 2.7.4, respectively.

2.7.1 Signal-to-Noise Ratio

The SNR is the ratio of signal energy to noise energy expressed in decibels dB and is given

by:

SNR=10 log10

∞∑
n=−∞

s [n]2

∞∑
n=−∞

(
s [n]− ŝ [n]

)2 dB, (2.38)

where s [n] is the original signal and ŝ [n] is the ‘noisy’ signal. The SNR is characterized by

its mathematical simplicity. The drawback is that it is a poor estimator of the subjective

quality of speech. The SNR of a speech signal is dominated by the high energy sections

consisting of voiced speech. However, noise has a greater perceptual effect in the weaker
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energy segments [23]. A high SNR value can thus be misleading as to the perceptual quality

of the speech.

2.7.2 Segmental Signal-to-Noise Ratio

The SNRseg in dB is the average SNR (also in dB) computed over short frames of the speech

signal. The SNRseg over M frames of length N is formulated as:

SNRseg =
1

M

M−1∑
i=0

10 log10


iN+N−1∑

n=iN

s2 [n]

iN+N−1∑
n=iN

(s [n]− ŝ [n])2

 dB, (2.39)

where the SNRseg is determined for ŝ [n] over the interval n = 0, . . . , NM−1. This distortion

measure weights soft and loud segments of speech equally and thus models perception better

than the SNR. The length of frames is typically 15–25 ms corresponding to values of N

between 120 and 200 samples, assuming a sampling rate of 8 kHz.

Silent portions of the speech can bias the results by yielding a large negative SNR for the

corresponding frames. This problem can be alleviated by removing frames corresponding to

silence from the calculations. Another method is to establish a lower threshold (typically 0

dB) and replace all frames with an SNR below it to the threshold. Similarly, a deceptively

high SNRseg can result when frames have a very high SNR, even though perception can

barely distinguish among frames with an SNR greater than 35 dB [23]. Therefore, an upper

threshold around 35 dB can be used to prevent a bias in the positive direction.

2.7.3 Log Spectral Distortion

Consider the power spectra S(ejω) and Ŝ(ejω) corresponding to the reference LP synthesis

filter and the processed or modified synthesis filter, respectively (see Section 2.3). The Lp

norm-based spectral distance measure d
(p)
SD is then defined as [42]:

d
(p)
SD = p

√√√√ 1

2π

∫ π

−π

∣∣∣∣∣10 log10

[
S(ejω)

Ŝ(ejω)

]∣∣∣∣∣
p

dω dB. (2.40)
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The L2 norm is the most frequently used and the resulting spectral distance measure is

termed the log spectral distortion, or simply the spectral distortion. The term rms log

spectral measure is used when the 10 log10 is replaced by the natural logarithm. The mean

absolute log spectral measure is obtained by setting p = 1. For the limiting case as p

approaches infinity, the term peak log spectral difference is used.

Laurent [58] has determined an exact expression for spectral distortion in terms of

LSF’s and also proposed a simplified approximation. In practice, the integral in Eq. (2.40)

is approximated by the summation [47]

d
(p)
SD ≈

p

√√√√ 1

N

N−1∑
k=0

∣∣∣∣∣10 log 10

[
S(ej2πk/N)

Ŝ(ej2πk/N)

]∣∣∣∣∣
p

dB. (2.41)

This allows for an efficient FFT implementation to compute the spectra S(ej2πk/N) and

Ŝ(ej2πk/N). In this thesis, the spectral distortion was computed as in [59] in order to be

consistent with the literature. The spectral distortion is accordingly given by:

dSD =

√√√√ 1

n1 − n0

n1−1∑
k=n0

(
10 log 10

[
S(ej2πk/N)

Ŝ(ej2πk/N)

])2

dB. (2.42)

Assuming a sampling rate of 8 kHz, an N = 256 point FFT is used with n0 = 4 and

n1 = 100. The spectral distortion is thus computed discretely with a resolution of 31.25 Hz

per sample over 96 linearly spaced points from 125 Hz to 3.125 kHz. The resolution is

justified by the fact that formant bandwidths are typically larger than 30 Hz [23].

An average spectral distortion (SD) of 1 dB is usually accepted as the difference limen

for spectral transparency (no audible distortion). However, Atal, Cox and Kroon [19]

suggested that the number of frames with large SD be minimized. Accordingly, Paliwal

and Atal [60] experimentally established the following conditions that result in no audible

distortion due to spectral mismatches:

• The average SD is below 1 dB.

• The number of outlier frames having SD in the range 2–4 dB is less than 2%.

• There are no outlier frames have SD greater than 4 dB.
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The spectral distortion measure is often used to measure the performance of LP param-

eter quantizers [1]. However, it has been shown that the audible distortion in low bit-rate

coders is more a function of the dynamics of the spectral envelope rather than the spectral

distortion itself [61].

2.7.4 Weighted Euclidean LSF Distance Measure

In their research on optimizing vector quantization of LP parameters, Paliwal and Atal [60]

proposed the following weighted LSF distance measure:

dLSF =

p∑
i=1

[ciwi (ωi − ω̂i)]
2 , (2.43)

where ci and wi are the weights for the ith LSF coefficient ωi, and p is the order of the LP

filter. For a 10th order LP filter, the fixed weights ci are given by:

ci =


1.0, for 1 ≤ i ≤ 8,

0.8, for i = 9,

0.4, for i = 10.

(2.44)

The ear cannot resolve differences at high frequencies as accurately as at low frequencies.

Thus, these weights are used in order to emphasize the lower frequencies more than the

higher frequencies. The adaptive weights wi are used to emphasize the energetic regions

(i.e., formants) of the LP spectral envelope S (ejω). These weights are given by:

wi =
[
S(ejωi)

]r
, (2.45)

where r is an empirical constant which controls the extent of the weighting. Paliwal and

Atal [60] have experimentally determined that r = 0.15 is satisfactory.

Leblanc et al. [59] have introduced another weighting scheme which they claim performs

slightly better than the above mentioned one. A simple and computationally efficient

weighting scheme proposed by Laroia et al. [62] and is given by:

wi =
1

ωi − ωi−1

+
1

ωi+1 − ωi

(2.46)
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where ω0 = 0 and ωp+1 = π. Tzeng presented a weighting scheme based on the group delay

of the LPC filter in [63].

Coetzee and Barnwell [64] proposed the LSP based measure which yielded a correla-

tion coefficient of 0.78 with subjective distortion measures. However, it is significantly

more complex. The spectral peaks in the original and distorted LP spectral envelope are

determined from the LSF parameters. These peaks are compared to yield nine different

parameters. The resulting parameters are transformed and weighted to obtain an overall

distortion measure.

2.8 Summary

This chapter overviewed the fundamentals of LPC speech coders and presented various

LPC analysis methods, excitation coding schemes, LPC filter representations and distortion

measures. In this thesis, the LPC analysis will be done primarily with the autocorrelation

method. The prediction gain of a 1-tap pitch prediction filter will serve as a measure of the

excitation coding efficiency. With respect to the LPC filter representations, the LSF’s will

be employed for interpolation but the reflection coefficients will be examined for energy

normalization in Section 3.2.3. The weighted Euclidean LSF distance and spectral distor-

tion measures are the chief objective distortion measures that will be used as performance

metrics.
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Chapter 3

Warping the LPC Parameter Tracks

This chapter investigates a method to modify the LPC parameter contours in order to

improve the efficiency of the speech coder without adversely affecting the perceptual quality

of the modified speech. The method is based on frequently updating the LPC analysis filter

but using interpolated LPC parameters for the synthesis filter. A smooth evolution of the

LPC spectrum is thus essential to reduce the distortion introduced. Selection of some basic

LPC analysis parameters that help smooth the contours is investigated in Section 3.1. The

effect of performing a rapid LPC analysis and synthesizing the speech using interpolated

parameters is analyzed in Section 3.2. Section 3.3 introduces the contour warping method to

improve the spectral match between the interpolated and frequently updated parameters.

The speech files used to obtain the data presented in this section were approximately 2

minutes in length and consisted of different speakers saying sentences from a phonetically

balanced list.

3.1 Analysis Parameter Selection

Selection of LPC analysis parameters can have a major impact on the performance of

a speech coder. In this section, some of these parameters are investigated in order to

minimize the audible distortion that will be introduced when the speech is reconstructed

with interpolated parameters, and to improve the overall performance.
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3.1.1 Window Selection

Choosing an appropriate window consists of selecting the type, length and placement of

the window. Window lengths are typically in the 20–30 ms range. Longer windows yield

smoother parameter tracks but reduce the spectral estimation accuracy due to too much

averaging. On the other hand, shorter windows produce more dynamic LPC parameters

and tend to suffer from edge effects since fewer samples are available to estimate the auto-

correlations.

Symmetric windows (such as the common Hamming and Hanning windows [26]) are

usually centered about the frame. When there are strict delay constraints, asymmetric

windows (such as the hybrid Hamming-Cosine window used in G.729 [5]) can be used.

Fig. 3.1 shows the window placement when a 30 ms window is used with a 10 ms frame.

Two types of window are shown along with the associated delays.

10 ms frame
(buffering delay)

10 ms look-ahead

total algorithmic delay of 20 ms

30 ms Hamming window
with a 10 ms frame

30 ms hybrid Hamming-Cosine window
with a 10 ms frame

10 ms frame
(buffering delay)

5 ms look-ahead

total algorithmic delay of 15 ms

Fig. 3.1 Window placement and the associated buffering and look-ahead
delays in a typical LPC speech coder.

Multiplying a signal by a window has the effect of convolving the signal spectrum with

the window spectrum. Ideally, the window spectrum would have a narrow main lobe and

small sidelobes. However, there is a tradeoff between the main lobe width and side lobe

attenuation. A wider main lobe results in more averaging across neighbouring frequencies
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while larger sidelobes introduce more aliasing from other frequency regions. Windows which

are smoother in the time-domain have wider main lobes but more sidelobe attenuation.

Fig. 3.2 shows how the window type can affect the dynamics of the analysis filter. The

Hamming window, being on a pedestal, is not as smooth as the Hanning window and yields

more variations in the LSF tracks, especially for the voiced segments which contain pitch

pulses. However, the Hanning window has a smaller effective length, which can be defined

as the distance between the points where the window decays to 10% of its peak value [1].

With this definition, the 30 ms Hamming and Hanning windows have an effective length

of 6.5 ms and 6.25 ms respectively.

Using a 10th order filter, the short-term and long-term prediction gains1 associated with

the Hamming and Hanning windows are shown in Table 3.1. Note that the Hanning window

tends to give slightly higher short-term prediction gains but smaller pitch prediction gains.

The net effect is smaller overall prediction gains relative to the Hamming window. This

difference is more pronounced for slower update rates (when the frame length is 20 ms)

and insignificant for 5 ms frames. This can be explained by the shorter effective length

of the Hanning window which has more of an impact for longer frames. Also, the shorter

windows yielded higher overall prediction gains for shorter frames and the longer windows

were better suited to the longer frames. In practice, the window length is longer than the

frame length, especially for faster decaying windows; the case showing a 20 ms window

using a 20 ms frame was shown in the table for completeness.

Table 3.1 The short-term/long-term/overall prediction gains in dB when
using Hamming and Hanning analysis windows.

Window Frame Window Length
Type Length 20 ms 25 ms 30 ms

5 11.48/5.31/16.78 11.45/5.30/16.75 11.42/5.29/16.71
Hamming 10 11.39/5.15/16.54 11.39/5.18/16.57 11.39/5.18/16.57

20 11.17/4.64/15.81 11.22/4.72/15.94 11.24/4.77/16.01

5 11.49/5.39/16.78 11.46/5.29/16.75 11.43/5.28/16.71
Hanning 10 11.40/5.12/16.52 11.41/5.15/16.56 11.40/5.16/16.57

20 11.18/4.58/15.73 11.21/4.68/15.89 11.24/4.73/15.98

1For this thesis, all pitch prediction gains are computed using a 1-tap filter updated every 5 ms and
optimized with the covariance method.
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Fig. 3.2 The LSF’s that result when updating the LPC filter every sample
using the autocorrelation method with a 20 ms window. A rectangular window,
Hamming window and Hanning window were used to obtain the top, middle
and bottom plots, respectively. The analysis was performed on the speech
signal shown in Fig. 2.1(a).
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3.1.2 Analysis Type

Table 3.2 shows how the prediction gains vary when using different methods to determine

the analysis filter coefficients. The simplest form of the covariance, modified covariance and

Burg methods were employed with rectangular analysis and error windows. A Hamming

analysis window was used for the autocorrelation method; the length of the window was

selected based on the results shown in Table 3.1 to yield the highest prediction gains. For

all analysis types, a 10th order predictor was used.

Table 3.2 The short-term/long-term/overall prediction gains in dB using
different spectral estimation methods. Note that the values for the frame
length are in ms.

Analysis Frame Length
Type 5 10 20

Autocorrelation 11.48/5.31/16.78 11.39/5.18/16.57 11.24/4.77/16.01
Covariance 11.93/4.00/15.93 11.48/4.59/16.07 11.29/4.43/15.73
Modified Covariance 11.65/4.20/15.85 11.44/4.63/16.07 11.28/4.44/15.72
Burg 11.53/4.20/15.73 11.40/4.58/15.98 11.27/4.44/15.71

The covariance method provides the highest short-term prediction gain — consistent

with the fact that the filter coefficients are selected to maximize the prediction gain over

the frame. However, using the covariance method results in a smaller pitch prediction gain.

In fact, the autocorrelation method has the smallest short-term prediction gain relative

to the other methods yet it achieves a higher pitch prediction gain which results in the

autocorrelation method always obtaining the highest overall prediction gain. Since this

method is also computationally efficient and guarantees synthesis filter stability, it is a

prime choice in speech processing and will also be used in this thesis to determine the LPC

filter.

3.1.3 Predictor Order

Fig. 3.3 shows how the prediction gain varies with a change in the order of the analysis filter

for voiced and unvoiced speech2. For narrowband speech files, the increase in prediction

2In this thesis, the voiced/unvoiced classification of speech was done based on the pitch prediction gain.
A 1-tap pitch filter, updated every 5 ms using the covariance method, was applied to the original speech
signal. Frames having a prediction gain larger/smaller than 5 dB were considered voiced/unvoiced.
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gain is minimal when the order of the analysis filter is greater than about 12. Voiced speech

typically has higher prediction gains since the all-pole filter represents a good model for

voiced speech production. Also, unvoiced speech is random and less predictable, since its

excitation is primarily noise. In obtaining these results, the pitch prediction gain was also

computed using a 1-tap filter optimized with the covariance method and a 5 ms update

period. The prediction gains averaged 6 dB and 3 dB for the voiced and unvoiced segments

respectively. These prediction gains did not fluctuate significantly as the predictor order

varied.
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Fig. 3.3 The prediction gain for voiced speech (solid) and unvoiced speech
(dashed) as a function of the order of the prediction filter.

3.1.4 Modifications to Conventional LPC

Table 3.3 shows the effect of lag windowing (LW) and white noise correction (WNC) on

the prediction gain. The LPC analysis was performed with a 10th order predictor, obtained

using the autocorrelation method on 5 ms frames with a 25 ms Hanning window. The LW

was performed using a Gaussian window with 30 Hz, 60 Hz and 120 Hz 1-σ bandwidths (see

Section 2.6.4); various WNC factors were also tried. More bandwidth expansion and white

noise correction tends to reduce the frame to frame fluctuations in the LPC parameters

but also reduces the prediction gain. However, the white noise correction yields a slight

improvement in the pitch prediction gain, although there is still a decrease in the overall
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prediction gain.

Table 3.3 The short-term/long-term/overall prediction gains in dB using
lag windowing and white noise correction. The values shown when using LW
and WNC are the change in prediction gain relative to the conventional LPC
gains. The pitch filter was updated every 5 ms.

Voiced Unvoiced

Conventional LPC 11.96/ 6.172/ 18.13 8.675/ 2.974/ 11.65

30 -0.009/-0.014/-0.023 -0.009/-0.002/-0.011
LW 60 -0.063/-0.051/-0.114 -0.060/-0.019/-0.079

120 -0.437/-0.175/-0.611 -0.391/-0.103/-0.494

1.0001 -0.022/ 0.050/ 0.029 -0.004/ 0.004/ 0.000
WNC 1.001 -0.161/ 0.192/ 0.031 -0.042/ 0.022/-0.020

1.01 -0.777/ 0.552/-0.224 -0.327/ 0.054/-0.274

Lag windowing and white noise correction are vital to improving the numerical robust-

ness of the Levinson-Durbin recursion and maximizing the spectral match between the

LPC spectrum and the spectrum of the vocal tract filter. They also reduce the propa-

gation of quantization errors, as shown in Fig. 3.4. This plot was obtained by using the

autocorrelation method with a 25 ms Hanning on the frame of speech shown in Fig. 3.9.

3.2 Rapid Analysis with Interpolated Synthesis

The foundation of the LPC contour warping method, presented in Section 3.3, is a rapid

analysis to update the LPC prediction filter while using interpolated parameters for the

synthesis filter. In this section, using interpolated parameters for synthesis without any

warping or adjustment of the endpoints is investigated.

3.2.1 Interpolation of LPC Parameters

Speech coders typically perform an LPC analysis every 10–30 ms. A more frequent analysis

increases the computational complexity and the transmission bandwidth. A slower analysis

rate provides a poor spectral match due to the dynamics of the vocal tract. Most speech

coders update the analysis filter more frequently (e.g., every 4 ms) by interpolating the

parameters — no increase in transmission bandwidth and minimal computational overhead.
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Conventional LPC

with WNC of 1.01

with WNC of 1.01 and LW of 60 Hz

Fig. 3.4 The impulse response of a 10th order LPC synthesis filter with
WNC and LW.
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Consider a system in which a 20 ms frame is used with a 30 ms Hamming analysis

window (see Fig. 3.5). Without interpolation, the window would be centered about the

frame. This would incur a 20 ms buffering delay and a 5 ms lookahead delay. Linearly

interpolating by a factor of 5 would consist of performing an analysis for the last 4 ms

subframe of the current frame and interpolating the resulting parameters between the last

subframe of the previous frame. Since the window is now centered around the last subframe,

the lookahead is 13 ms. With this formulation of linear interpolation, the lookahead is

greater relative to a system not employing interpolation.

The extra lookahead delay can be reduced by using asymmetric windows [5]. Using a

sub-optimal window alignment relative to the frame along with fixed-weighted linear in-

terpolation reduces the lookahead delay yet still reaps performance benefits [1]. Weighted

linear interpolation schemes based on properties of the speech signal have also been pro-

posed to improve performance [6].

The interpolation can be performed on any parametric representation of the LPC filter.

However, the performance of the different representations vary. Researchers have exam-

ined the interpolation properties of various parametric representations [1] and LSF’s were

usually the best. These studies are mostly based on the average spectral distortion and the

corresponding outliers.

The main purpose of interpolation is to reduce the presence of undesired transients

which manifest themselves as clicks in the synthesized speech signal which are due to the

large changes in LPC parameters between frames. The effect of interpolation on prediction

gain can be seen in Table 3.4. Note that the prediction gain of the LPC filter shows no

significant change as the interpolation factor increased. However, the long-term prediction

gain increased as the number of subframes grew.

3.2.2 Benefits of a Rapid Analysis

Rapid analysis consists of updating the analysis filter by performing an LPC analysis for

every subframe. The computational complexity is higher relative to interpolation schemes.

However, increasing the rate of the LPC analysis consistently raises the prediction gain

of both the short-term and long-term predictors. As seen from Table 3.4, the prediction

gains achieved by rapid analysis are greater than those associated with linear interpolation,

for a given subframe length. The results shown in Table 3.4 were obtained using a 25 ms
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20 ms frame

30 ms analysis window

(a) Sample evolution of one LPC parameter when no interpolation is used.

20 ms frame

30 ms analysis window

4 ms subframe

(b) Sample evolution of one LPC parameter using interpolation.

Fig. 3.5 The effect of linear interpolation on LPC parameters. The solid
circles ‘•’ represent parameters obtained from an LPC analysis, whereas an
‘×’ denotes interpolated LPC parameters. The solid line corresponds to the
parameter used in the LPC filter at any given time.
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Hamming window and a 10th order predictor on 20 ms frames. Optimizing the window

length according to the subframe length would yield even larger prediction gains for the

rapid analysis.

Note that there is no difference between the rapid analysis and interpolation prediction

gains for the column corresponding to a 20 ms subframe length. This column is shown as a

reference, since a 20 ms subframe with 20 ms frames means that there is no interpolation.

Table 3.4 The prediction gains in dB obtained using a rapid analysis and
interpolation to update the LPC analysis filter. A 5 ms update interval was
used for the pitch filter.

Subframe Length (ms)

20 10 5 4 2 1

Short-term 11.22 11.28 11.31 11.31 11.32 11.32
Interpolation Long-term 4.72 5.02 5.11 5.12 5.14 5.14

Overall 15.94 16.30 16.42 16.44 16.46 16.46

Short-term 11.22 11.39 11.45 11.45 11.46 11.46
Rapid Analysis Long-term 4.72 5.18 5.30 5.32 5.34 5.34

Overall 15.94 16.57 16.75 16.77 16.79 16.80

3.2.3 Interpolated Synthesis

Straightforward implementation of a rapid analysis in a speech coding system is inefficient

due to the increased bit rate associated with the transmission of the LPC parameters for

each subframe. However, consider updating the LPC prediction filter with a frequent anal-

ysis at the encoder but employing interpolated parameters to synthesize the speech at the

decoder. This would maintain the same bit rate but, based on the results of Section 3.2.2,

the residual signal can be more efficiently coded. In this system, the reconstructed speech

signal will be different than the original signal even when no quantization is performed.

However, if this synthesized signal is perceptually equivalent to the original signal, the effi-

ciency of the speech coder can be improved at no cost in speech quality. This section deals

with ways to reduce the perceptual discrepancies between the original and reconstructed

speech signals in such a system.
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Analysis Parameters

For the rest of this chapter, the following basic analysis parameters were used:

• The LPC parameters were obtained using the autocorrelation method.

• A 25 ms Hanning window was used for the LPC analysis.

• The LPC analysis was performed every 20 ms.

• LPC parameters were interpolated 5 times per 20 ms frame, resulting in a suframe

length of 4 ms.

• Interpolation was performed with the line spectral frequencies.

• The autocorrelation coefficients were multipled by a 60 Hz Gaussian lag window.

• A white noise correction factor of 1.001 was applied .

The lag windowing and white noise correction were only used where specified.

Energy Normalization

Since the LPC parameters used for synthesis differ from the analysis parameters (except at

the interpolation endpoints), a mismatch in energy occurs between the original and recon-

structed speech. Fig. 3.6 is an example where a mismatch was observed to produce audible

distortions in the reconstructed speech signal. In this plot (and subsequent plots in this

chapter), subframe 0 corresponds to the last subframe of the previous frame; i.e., subframe

0 and subframe 5 are the interpolation endpoints. To minimize the energy difference, the

residual signal can be normalized before or after it is passed through the LPC synthesis

filter. Normalizing the energy in the reconstructed signal (after the LPC synthesis filter)

would require that some gain information be transmitted to the decoder. However, adjust-

ing the energy of the residual signal (before the LPC synthesis filter) would compensate for

the difference without increasing the bit rate — the excitation coding scheme accounting for

the gain factor. Another advantage to using the residual signal is that the LPC synthesis

filter smoothes out the gain changes.

It has been shown that gain information is important in speech and is typically coded

at the subframe level [1]. We consequently compensated for gain every subframe. The
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(a) The original (solid line) and reconstructed (dotted line) speech signals. No gain normal-
ization was used to obtain the reconstructed speech signal on the left. Subframe scaling with
the actual gain factor was used for the plot on the right.
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(b) The corresponding LSF’s obtained from a rapid analysis (solid line with
×’s) compared with the interpolated LSF’s (dotted line with •’s).

Fig. 3.6 An example of a frame of speech where the mismatch in energy
between the original and reconstructed signals yields audible distortion.
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method to adjust the energy of the residual signal is crucial in order to maintain the

improved efficiency of the excitation coder. The first step is to determine the degree of

energy modification required. A simple method would consist of synthesizing the speech

signal at the encoder and computing the energy of the both the original and reconstructed

speech signals for each subframe. This is given by:

G2 =

Nsf−1∑
n=0

s2[n]

Nsf−1∑
n=0

ŝ2[n]

, (3.1)

where Nsf is the subframe length; s[n] and ŝ[n] are the original and reconstructed speech

signals, respectively, for the current subframe; and G is the gain normalization factor. The

gain normalization factor can be estimated using the reflection coefficients without requiring

the local synthesis of the reconstructed speech signal according to (see Appendix A):

G̃2 =

p∏
j=1

(
1− |k̂j|2

)
p∏

j=1

(
1− |kj|2

) , (3.2)

where kj and k̂j, for j = 1, . . . , p, are the reflection coefficients corresponding to the rapid

analysis and interpolated synthesis parameters, respectively. The estimation accuracy us-

ing the reflection coefficients can be seen in Fig. 3.7; the sources of the estimation error

are described in Appendix A. A correlation coefficient of 0.38 was obtained over 28,000

subframes. Note how most of the points in this plot are in the first quadrant — the energy

of the synthesized speech signal is less energetic than the original signal by an average of

0.5 dB due to the interpolated synthesis.

Once the gain normalization factor is determined, the residual signal must be compen-

sated. The simplest way is to scale every sample in the subframe by G. Another method,

used in G.729 for gain normalization after post-filtering [5], smoothes out the energy com-

pensation over the subframe. With this method, the energy of the normalized residual
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Fig. 3.7 A scatter plot of the estimated normalization factor G̃ versus the
actual normalization factor G. The solid line corresponds to an ideal correla-
tion coefficient of 1.

signal e′[n] is given by:

e′[n] = Γ(n)e[n], n = 0, . . . , Nsf − 1, (3.3)

where e[n] is the original residual signal for the current subframe, and Γ(n) is updated on

a sample-by-sample basis according to:

Γ(n) = γΓ(n−1) + (1− γ)G, n = 0, . . . , Nsf − 1, (3.4)

where γ = 0.85. The system is initialized with Γ(−1) = 1.0 and for each subsequent

subframe, Γ(−1) is set equal to Γ(Nsf−1) of the previous subframe.

Modifying the residual signal necessarily affects the efficiency of the pitch prediction

filter, although it improves the match between the original and reconstructed signals. This

trade-off is shown in Table 3.5. The poorer performance obtained using the estimated gain

normalization factor G̃ is evident. Both the simple and smoothed normalization methods

reduce the long-term prediction (LTP) gain. The smoothed scaling yields a better SNRseg
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at the expense of a larger reduction in the LTP gain — modifying each sample by a different

factor would naturally reduce the level of periodicity present in the original residual. For the

speech segment in Fig. 3.6, using G̃ did not fully compensate for the energy mismatch but

the distortion was nevertheless perceptually inaudible with all methods of normalization.

Table 3.5 The effect on performance of using energy normalization based
on the actual normalization factor G and the estimated one G̃. The gain
difference for the third subframe of the speech segment shown in Fig. 3.6(a)
is given in the last column.

Energy Difference G
LTP Gain SNRseg Average |G| |G| > 3 dB 3rd Subframe

No Normalization 5.32 dB 14.01 dB 0.89 dB 5.48% -15.24 dB

G 5.14 dB 14.36 dB 0.27 dB 0.80% -0.31 dBSubframe Scaling
G̃ 5.06 dB 12.63 dB 1.16 dB 8.00% -7.34 dB

G 4.84 dB 15.18 dB 0.40 dB 1.06% -0.85 dBSmoothed Scaling
G̃ 4.74 dB 12.66 dB 1.17 dB 7.94% -7.17 dB

Fig. 3.8 shows the amplitude distribution function of G after applying the different

energy normalization methods. Using the actual gain normalization factor significantly

reduces the occurrence of large energy mismatches between the original and reconstructed

signals. With the estimated G̃, the average energy difference is reduced; however, the

subframes having a larger (and usually more perceivable) energy mismatch are not com-

pensated for to the same extent as they are using the actual G. This can also be seen from

the percentage of outlier subframes (whose absolute energy difference is larger than 3 dB)

in Table 3.5.

Introduced Artifacts

Even with the energy normalization, there was still noticeable distortion in the recon-

structed speech file. Frames with noticeable distortion were transition segments, typically

transitions from a low energy segment to a higher energy segment. Distortions in high to

low energy transitions were inaudible, presumably due to the asymmetric nature of tem-

poral masking (see Section 2.2). Another characteristic of these transition frames with

audible distortion was a high prediction gain and sharp spectral resonances.
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(b) The smoothed gain approach.

Fig. 3.8 The distribution of G with no normalization (solid line) and af-
ter normalization based on the actual (dotted) and estimated (dashed) gain
normalization factor.
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One method to resolve this problem is to simply analyze the speech with interpolated

LPC parameters for frames with these features. Thus, there would be no distortion intro-

duced into the synthesized speech signal for the selected frames (except those due to initial

conditions). However, a small amount of lag windowing (LW) and white noise correction

(WNC) reduced the distortions below audible levels. The effect of using a 60 Hz Gaus-

sian lag window and applying a -30 dB white noise correction factor is shown in Fig. 3.9,

where energy normalization was done using subframe scaling with the actual gain factor.

Without the lag windowing and white noise correction, there was audible distortion in the

reconstructed speech for that frame. Note the degree to which the LW and WNC smoothed

out the evolution of the LSF tracks in Fig. 3.9(b).

When no lag windowing or white noise correction was used, the first 2 LSF’s were very

close together. This proximity manifests itself in the sharp spectral resonances seen in

Fig. 3.10(a). The reconstructed speech signal without LW and WNC gradually becomes

out of phase with the original speech signal. This can be explained by the fact that the first

2 interpolated LSF’s are very close together, but at a higher frequency than the original

LSF’s. This slightly higher frequency component is dominant in the spectrum, especially

for the 2nd subframe, and is the primary source of the phase distortion (see Fig. 3.11). The

LW and WNC helps to flatten the sharp resonances and reduce the dynamic range of the

spectrum, allowing for a smoother evolution of the LPC spectrum (see Fig. 3.10(b)).

For the same frame of speech, consider a rapid analysis with no lag windowing or white

noise correction and replacing the first 2 LSF’s by the interpolated ones. The results are

shown in the third row of Table 3.6. The reconstructed frame of speech had no audible

distortion and a high SNR (see Fig. 3.12), even though the average spectral distortion

over the 5 subframes dropped only slightly to 4.26 dB. This is an example of the limited

capability of the spectral distortion measure to predict the perceptual quality of the re-

constructed speech. The spectral distortion measure has no spectrum-dependent weighting

function, even though it is known that spectral peaks and formants are more important

perceptually. In particular, the largest spectral peak is the most important, a fact which

is obvious from this frame of speech. Another example is the spectral distortion of 9 dB

(8.5 dB with LW and WNC) for subframe 2 of the speech segment shown in Fig. 3.6(a) —

energy normalization does not change the spectral distortion yet it eliminated all audible

distortion for this particular frame of speech.

Using LW and WNC improves the performance for the other frames of speech as well.
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(a) The original (solid line) and reconstructed (dotted line) speech signals.
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(b) The corresponding LSF’s obtained from a rapid analysis (solid line with ×’s) compared
with the interpolated LSF’s (dotted line with •’s).

Fig. 3.9 An example of a frame of speech that yields audible distortion
without lag windowing or white noise correction. No LW or WNC was used
for the plots on the left. There was no perceivable distortion for the signal
shown on the right, obtained using 60 Hz LW and 1.001 WNC.
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(a) LPC spectra obtained without lag windowing or white noise correction.

0 2000 4000 0 1 2 3 4 5
0

50

100

Subframe
Frequency in Hz

M
ag

ni
tu

de
 in

 d
B

(b) LPC spectra obtained using a 60 Hz Gaussian lag window and a white
noise correction factor of 1.001.

Fig. 3.10 The evolution of the LPC spectra for the problematic speech frame
shown in Fig. 3.9.
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(a) Spectra with no lag windowing or white noise correction.
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(b) Spectra with a 60 Hz Gaussian lag window and 1.001 white noise correction
factor.

Fig. 3.11 The spectra corresponding to the original speech (solid), a rapid
analysis (dotted) and interpolated parameters (dashed) for subframe 2 of the
speech segment shown in Fig. 3.9.
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Fig. 3.12 The effect of replacing the first 2 LSF’s by interpolated ones for
analysis on the problematic speech frame shown in Fig. 3.9. The solid and
dashed lines correspond to the original and reconstructed signals respectively.

Table 3.6 The effect of lag windowing and white noise correction on the
problematic speech frame shown in Fig. 3.9.

Average SD SNR Prediction Gain

No WNC or LW 4.67 dB 3.06 dB 22.5 dB
With 1.001 WNC and 60 Hz LW 2.34 dB 10.63 dB 19.0 dB
Replacing first 2 LSF’s 4.26 dB 12.95 dB 23.1 dB
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Table 3.7 shows how LW and WNC individually improve the efficiency of the speech pro-

cessing system. The LW and WNC showed improvements in all the performance measures

used and there were minimal negative side-effects (the primary one being the loss in pre-

diction gain as shown in Section 3.1.4).

Table 3.7 The effect of lag windowing and white noise correction on a rapid
analysis with interpolated synthesis.

Spectral Distortion Energy Difference G
SNRseg Average 2–4 dB > 4 dB Average |G| |G| > 3 dB

No WNC or LW 14.01 dB 1.12 dB 15.9% 1.38% 0.89 dB 5.48%
WNC of 1.001 14.35 dB 1.07 dB 14.7% 1.16% 0.84 dB 5.03%
LW of 60 Hz 14.95 dB 1.07 dB 14.1% 1.28% 0.81 dB 4.68%
LW and WNC 15.32 dB 1.02 dB 13.1% 1.05% 0.76 dB 4.09%

Using a 60 Hz Gaussian lag window and a white noise correction factor of 1.001, the

average SD was 1.02 dB, with 13.1% and 1.05% of subframes being 2–4 dB and > 4 dB

outliers, respectively. Re-analyzing the synthesized speech yields an average SD of 0.57 dB,

with 2.1% and 0.09% of subframes being 2–4 dB and > 4 dB outliers, respectively. Thus,

this process of analyzing with a frequent analysis and reconstructing using interpolated

parameters can be thought of as ‘piecewise-linearization’ of the LPC parameter tracks.

3.3 LSF Contour Warping

Having performed and optimized the basic ‘piecewise-linearization’ of the LPC parameter

tracks, there is still room for reducing the spectral distortion and the percentage of outlier

frames. With the analysis parameters used, the LPC parameter tracks are still susceptible

to fluctuations in adjacent subframes. In particular, the scheme presented thus far is highly

dependent on robust parameter estimation for the interpolation endpoints — a poor spectral

match at the interpolation endpoints could potentially yield high spectral distortions for

the intermediate subframes. In this section, the interpolation endpoints differ from the

analysis parameters for the corresponding subframe, and are selected in such a way as to

reduce these subframes with large distortions. In this way, the robustness of the speech

processing system is improved.

The methods presented in this section select the interpolation endpoints by minimizing



3 Warping the LPC Parameter Tracks 60

a distortion measure. Since the spectral distortion measure is a non-linear function of the

LSF’s, a more appropriate distortion measure must be selected so that the minimization

can have a closed form solution. To this end, the weighted LSF Euclidean distance measure

was selected since it can easily be minimized and is based on the LSF’s, which are also the

parameters that are used for the interpolation. This distortion measure is given by:

dLSF(ω, ω̂) =

p∑
i=1

[ciwi(ωi − ω̂i)]
2 , (3.5)

where ω and ω̂ are the reference and processed LSF vectors, respectively. The fixed weights

ci in Eq. (2.44) along with the adaptive weights wi in Eq. (2.46) were used. This distortion

measure is also highly correlated with spectral distortion (see Fig. 3.13) and had a correla-

tion coefficient of 0.85 over 28,000 subframes3. Subframes having distortions close to zero

were removed to avoid biasing the correlation coefficient.
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Fig. 3.13 A scatter plot showing the correlation between spectral distortion
and the weighted LSF Euclidean distance measure.

3Since a one-to-one correspondence does not imply a correlation coefficient of 1 (except when the two
variables are linearly related), the exponential shape of the curve suggests a stronger correspondence. In
fact, the correlation of the spectral distortion with the logarithm of the weighted Euclidean LSF distance
was 0.96 (where a constant of 0.4 was added to avoid the logarithm of 0).
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In this section, the same basic analysis parameters were used with a 60 Hz Gaussian

lag window and a white noise correction factor of 1.001. Where indicated, the energy

normalization was performed using subframe scaling with the actual gain normalization

factor.

3.3.1 No Lookahead

Given only the LSF’s from the present frame and the interpolation endpoint LSF’s from the

previous frame, the goal is to select the endpoint LSF’s for the current frame to minimize

the distortion across all the subframes. Thus, a weighted sum of the distortion across all

the subframes in the current frame was used:

dTOT =
I∑

j=1

fjdLSF(ω(j), ω̂(j)), (3.6)

where I is the interpolation factor or number of subframes per frame; ω(j) is the rapid

analysis LSF vector for the jth subframe; fj is the weighting factor for the jth subframe;

and, ω̂(j) is the interpolated LSF vector for subframe j and is given by:

ω̂(j) = (1− αj)ω̃
(−1) + αjω̃

(0), (3.7)

where ω̃(−1) and ω̃(0) are the LSF interpolation endpoint vectors for the previous and

current frame, respectively, and αj = j/I.

Minimization of dTOT with respect to the current interpolation endpoint is greatly

simplified since each LSF can be independently selected to minimize dTOT. Moreover,

dTOT is a quadratic function of the current LSF endpoint vector ω̃(0). The optimal solution

is given by:

ω̃
(0)
i = − bi

2ai

, i = 1, . . . , p (3.8)
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where,

ai =
I∑

j=1

fj

[
w

(j)
i αj

]2
(3.9)

bi =
I∑

j=1

2αjfj

[
w

(j)
i

]2 [
(1− αj)ω̃

(−1)
i − ω

(j)
i

]
. (3.10)

Since this solution does not guarantee the ordering of the LSF’s that are necessary to ensure

a minimum phase filter, the solution must be adjusted such that:

0 < ω̃
(0)
1 < ω̃

(0)
1 < . . . < ω̃(0)

p < π. (3.11)

Using fj = 1 for j = 1, . . . , I is equivalent to selecting the endpoint for the current

frame that minimizes the average dLSF over all the I subframes. However, equally weighting

each subframe can yield high distortions for the next frame. This is apparent from the LSF

tracks shown in Fig. 3.14. Thus, the weights fj were optimized (using MATLAB’s nonlinear

optimization function fminsearch) to minimize the SD and dLSF. These weights are shown

in Table 3.8. An example of the improved match between the original and reconstructed

signals using the dLSF optimized weights is shown in Fig. 3.15, where the difference is most

evident for subframe 5 of the first frame.

Table 3.8 Optimal subframe weights to minimize the average SD and dLSF

when no lookahead subframes are available. The weights for the first subframe
were normalized to 1.

f1 f2 f3 f4 f5

dLSF Optimized 1.00 3.53 2.64 0.10 6.48
SD Optimized 1.00 1.82 2.38 0.02 16.91

Table 3.9 shows the effect of using different weighting schemes on the SD and dLSF. The

dLSF optimized weights slightly increase the average SD but yield the lowest percentage of

outlier frames. They also substantially lower the dLSF. Equal subframe weights increase the

spectral distortion and yield only a fraction of the potential gains when using the optimized

weights.

With a large f5, the SD optimized weights place a strong emphasis on minimizing the

distortion in the endpoint subframes. This can be explained by the distribution of SD,
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Fig. 3.14 The warped LSF’s using equal subframe weights fj and dLSF opti-
mized ones. Only the first 3 LSF’s are shown since the rest evolved smoothly,
and thus there was only a slight difference between the weighting schemes.

Table 3.9 Distortion results when warping the LSF contours with no looka-
head subframes compared with distortions obtained in regular interpolation.

Spectral Distortion
dLSF Average 2–4 dB > 4 dB

Basic Piecewise-linearization 0.595 1.02 dB 13.06% 1.05%

Equal 0.557 1.13 dB 12.51% 0.92%
Subframe

dLSF Optimized 0.477 1.03 dB 9.62% 0.57%
Weighting

SD Optimized 0.526 1.01 dB 11.23% 0.85%
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(a) Warping using equal subframe weights fj .
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(b) Warping using dLSF optimized subframe weights fj .

Fig. 3.15 The original (solid) and reconstructed (dashed) signals using the
warped LSF’s shown in Fig. 3.14.
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shown in Fig. 3.16(a). Spectral distortion is more or less Rayleigh distributed, with its

probability density function having its peak around 0.8 dB. Without warping, the interpo-

lation endpoint subframes have no spectral distortion. However, with a small concentration

of subframes with an SD near 0 dB, the Rayleigh distribution suggests that even small per-

turbations from the original LSF positions can result in relatively large spectral distortions,

since each LSF can affect the entire spectrum. For the intermediate subframes, the inter-

polated LSF’s are typically different than the LSF’s obtained with a rapid analysis; slight

perturbations for these subframes does not usually have a great effect on the SD. In this

way, heavily weighting the last subframe is consistent with reducing the average spectral

distortion over all the subframes.

The dLSF optimized f5 is not as large due to the exponential distribution of dLSF (see

Fig. 3.16(b)). It is still the largest subframe weight since the last subframe is an interpo-

lation endpoint for the next frame. As expected, for both dLSF and SD optimized weights,

f2 and f3 were weighted significantly — the middle subframes would naturally have the

highest distortion without warping. Note that f4 was negligibly small. This can be ex-

plained by the higher weighting of its neighbouring subframes. Also, too much weight on

the fourth subframe leads to a higher spectral mismatch for the LSF’s in the last subframe,

which is the interpolation endpoint.

Based on the scatter plot in Fig. 3.13, the SD is approximately logarithmically related

to dLSF. A general form of this logarithmic relation is given by:

SD = A ln(dLSF + B) + C, (3.12)

where A, B and C are constants to be determined. A value of B = 0.4 yielded the highest

correlation coefficient of 0.96 (compared to the correlation coefficient of 0.85 without using

the logarithmic relationship). Values of A = 1.36 and C = 1.51 were obtained using a

least-squares fit between experimental values of SD and dLSF.

The Rayleigh distribution given by:

fSD(x) =
x

α2 exp

[
− x2

2α2

]
, (3.13)

with α = 0.95 gave a reasonable fit to the SD distribution. Applying the transformation
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(b) The distribution of dLSF.

Fig. 3.16 The solid lines represent the actual distributions of dLSF and SD.
The dashed line shows a Rayleigh fit to the SD distribution. The exponential
fit to dLSF is given by the dotted line.
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in Eq. (3.12) yields the following distribution fit for dLSF:

fdLSF
(y) =

A

y + B

A ln(y + B) + C

α2 exp

[
−(A ln(y + B) + C)2

2α2

]
. (3.14)

For the exponential fit fdLSF
(x) = λ exp(−λx) to dLSF, the parameter λ = 2 gave the best

match. In the same way as above, the inverse transformation of Eq. (3.12) can be applied

to the exponential distribution to yield:

fSD(y) =
λ

A
exp

[
y − C

A

]
exp

[
−λ exp

(
y − C

A

)
− λB

]
. (3.15)

The original distributions of SD and dLSF, the corresponding Rayleigh and exponential fits,

and the transformations using Eq. (3.12) are shown in Fig. 3.16.

It is interesting to note that simply because SD and dLSF have an essentially one to

one and monotonic relationship, it does not imply that minimization of one distortion

is equivalent to minimizing the other. If the distortion was minimized over just one set

of parameters (as in quantizers), then it would be equivalent. However, in this case the

average distortion over all subframes was minimized, and, as shown above, the distribution

of the distortion measure has an impact on the minimization.

3.3.2 Finite Lookahead

Consider generalizing the framework presented in Section 3.3.1 to the case where LSF

vectors for future subframes are available. This additional information can help in reducing

the overall distortion. In this case, the total distortion to be minimized is:

dTOT =
I∑

j=1

fjdLSF(ω(j), ω̂(j)) +
L∑

j=1

ljdLSF(ω
(j)
N , ω̂

(j)
N ), (3.16)

where L is the number of lookahead subframes; ω
(j)
N is the rapid analysis LSF vector for the

jth subframe of the lookahead frame; lj is the weighting factor for the jth subframe of the

lookahead frame; and, ω̂
(j)
N is the interpolated LSF vector for subframe j of the lookahead

frame and is given by:

ω̂
(j)
N = (1− βj)ω̃

(0) + βjω̃
(1), (3.17)
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where ω̃(1) is the estimated LSF interpolation endpoint vector for the lookahead frame and

βj are the interpolation weights. The optimal LSF endpoint vector that minimizes dTOT is

given by:

ω̃
(0)
i = − di

2ci

, i = 1, . . . , p (3.18)

where,

ci = ai +
L∑

j=1

lj

[
w

(j)
N,i(1− βj)

]2
(3.19)

di = bi +
L∑

j=1

2(1− βj)lj

[
w

(j)
N,i

]2 [
βjω̃

(1)
i − ω

(j)
N,i

]
, (3.20)

where ai and bi are given in Eq. (3.9) and w
(j)
N,i are the weighting factors for the LSF

Euclidean distance measure.

A few methods of selecting ω̃(1) and βj were tried. The most effective method found

was using βj = j/I and ω̃(1) = ω
(L)
N . This is equivalent to using the LSF’s obtained from

the last lookahead subframe as the interpolation endpoint for the lookahead frame, and

minimizing dLSF between the interpolated and rapid analysis LSF’s (over all the subframes

in the current frame and the L subframes in the lookahead frame).

In the same way as before, the weights lj were optimized for L = 1, . . . , I to minimize

the overall dLSF as well as the average SD. The optimal weighting factors are shown in

Table 3.10. When at least one lookahead subframe is used, the weight for the interpolation

endpoint subframe, f5, is reduced significantly. The reason the weight for the endpoint

subframe was high initially was to minimize the side-effect on the next frame of having

a large distortion in the interpolation endpoint LSF’s. When LSF’s from some of the

subframes of the next frame are available, the weighting factors of the lookahead subframes

minimize this side-effect. Note that as the number of lookahead subframes increases, there

is minimal change in the weighting factors of the current frame.

The distortions that result from using the optimal weighting factors are shown in Ta-

ble 3.11. Whereas the dLSF can be reduced significantly, there is only a small reduction in

the average spectral distortion. With the weights optimized to minimize the average spec-

tral distortion, there is not as much of a decrease in the number of SD outliers compared

with using the dLSF optimized weights.
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Table 3.10 Optimal subframe weights to minimize the average SD and dLSF

with 1–5 lookahead subframes.

Current Frame Lookahead Frame
f1 f2 f3 f4 f5 l1 l2 l3 l4 l5

1.00 2.01 2.40 1.98 1.45 4.18
1.00 2.35 1.55 1.79 1.41 2.41 1.53

dLSF 1.00 2.23 1.65 1.95 1.41 1.93 1.72 0.99
Optimized

1.00 2.29 1.58 2.00 1.44 1.89 1.71 1.01 0.99
1.00 2.21 1.55 2.11 1.63 1.98 1.37 1.00 1.00 0.99

1.00 1.80 1.64 2.47 7.31 3.83
1.00 1.90 1.70 2.57 7.18 3.29 1.01

SD
1.00 1.92 1.69 2.64 7.02 2.87 1.13 1.00

Optimized
1.00 1.73 1.72 2.40 5.86 2.04 1.77 1.58 0.83
1.00 1.75 1.73 2.42 5.93 2.06 1.69 1.60 0.84 1.01

Table 3.11 Distortion results when warping the LSF contours with 1–5
lookahead subframes and optimal subframe weights.

Lookahead Spectral Distortion

Subframes
dLSF Average 2–4 dB > 4 dB

1 0.427 1.017 dB 8.07% 0.34%
2 0.423 1.018 dB 7.97% 0.32%

dLSF 3 0.414 1.013 dB 7.74% 0.29%
Optimized

4 0.396 0.998 dB 7.28% 0.26%
5 0.383 0.985 dB 6.74% 0.23%

1 0.465 0.992 dB 9.46% 0.58%
2 0.460 0.992 dB 9.50% 0.55%

SD
3 0.451 0.989 dB 9.19% 0.54%

Optimized
4 0.423 0.976 dB 8.29% 0.43%
5 0.407 0.967 dB 7.72% 0.38%
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3.3.3 Infinite Lookahead

In order to measure the effectiveness of the warping methods presented at reducing the

overall distortion, the minimum obtainable distortion when all the LSF vectors are known

must be determined. This is equivalent to minimizing the overall distortion when there is

an infinite amount of lookahead in the system.

The method suggested to minimize the distortion when no lookahead constraints are im-

posed consists of an iterative approach. Let ω̃(i) for i = 1, . . . ,M be the LSF interpolation

endpoint vectors corresponding to the M frames of speech. In the first iteration, the LSF

vectors of the even frames are optimized (i.e., ω̃(2), ω̃(4), . . . ). In this way, each LSF vector

can be optimized independently of the others, since the optimization only depends on the

previous and next interpolation endpoints. Also, the new overall distortion is guaranteed

to be at least as small as the original one. In the following iteration, the optimization is

performed for the odd frames. The optimization continues in this way, alternating between

the even and odd frames. This optimization method is guaranteed to converge to a local

(and possibly the absolute) minimum.

Since spectral distortion is a non-linear function of the LSF’s, the non-linear optimiza-

tion C program CFSQP by Lawrence et al. was used [65]. However, the same framework

presented in Section 3.3.2 can be used to minimize dLSF. In particular, Eq. (3.18) can be

used with L = I − 1, βj = j/I and using the actual interpolation endpoints of the previ-

ous and next frame for ω̃(−1) and ω̃(1), respectively. The iterative optimization converges

quickly, as shown in Table 3.12. The overall average dLSF can in fact be minimized in closed

form as a function of ω̃(i) for i = 1, . . . ,M . This method is shown is Appendix B. The

SD, dLSF and the SD outliers using the optimized LSF interpolation endpoint vectors are

shown in Table 3.13.

3.3.4 Summary of Results

The distortions that result using LSF contour warping are compared with the basic piecewise-

linearization scheme in Table 3.13. There is much more room for improving the dLSF over

the basic piecewise-linearization scheme, than there is for the SD. This can be explained

by the distribution of SD, described in Section 3.3.1. Fig. 3.17 shows the performance of

the warping algorithm as the number of lookahead subframes increases, relative to basic

piecewise-linearization and the performance limit with infinite lookahead. The warping
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Table 3.12 Convergence of the iterative approach to minimizing SD and
dLSF when no lookahead constraints are imposed.

Iteration Average SD dLSF

Initial 1.0179 0.5951
1 0.9733 0.4688
2 0.9366 0.3855
3 0.9330 0.3777
4 0.9324 0.3764
5 0.9322 0.3761
6 0.9322 0.3761
7 0.9322 0.3760
8 0.9322 0.3760
9 0.9322 0.3760

10 0.9322 0.3760

method without any lookahead substantially bridges the gap between the initial distortion

(using basic piecewise-linearization) and the lower bound (with infinite lookahead). Sizable

performance enhancements are also achieved with 1 and 5 lookahead subframes.

The warping algorithm also reduces the need for energy normalization and yields a

higher SNRseg. This is shown in Table 3.14. Thus, the LSF warping can be used to smooth

out the fluctuations in LPC parameters, which allows for improved performance of pre-

dictive/differential quantizers. Table 3.15 shows the prediction gains when the warping is

used to determine the interpolation endpoints and the interpolated parameters are used for

the LPC analysis. The prediction gains are not as high as those obtained using the rapid

analysis. However, the use of interpolated parameters for both analysis and synthesis elim-

inates the distortion that otherwise arises when using the frequently obtained parameters

for LPC analysis.
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Table 3.13 Distortion results using optimized LSF warping with and with-
out lookahead.

Spectral Distortion
dLSF Average 2–4 dB > 4 dB

Basic Piecewise-linearization 0.595 1.02 dB 13.06% 1.05%

No Lookahead 0.477 1.03 dB 9.62% 0.57%
dLSF One Subframe Lookahead 0.427 1.02 dB 8.07% 0.34%

Optimized One Frame Lookahead 0.383 0.99 dB 6.74% 0.23%
Infinite Lookahead 0.376 0.98 dB 6.50% 0.20%

No Lookahead 0.526 1.01 dB 11.23% 0.85%
SD One Subframe Lookahead 0.465 0.99 dB 9.46% 0.58%

Optimized One Frame Lookahead 0.407 0.97 dB 7.72% 0.38%
Infinite Lookahead 0.527 0.93 dB 7.01% 0.55%

Table 3.14 The effect of warping on the SNRseg and the gain difference G
when no energy normalization is performed.

SNRseg Average |G| |G| > 3 dB

Basic Piecewise-linearization 15.32 dB 0.76 dB 4.09%

No Lookahead 15.63 dB 0.72 dB 3.05%
dLSF One Subframe Lookahead 15.56 dB 0.70 dB 2.55%

Optimized One Frame Lookahead 15.90 dB 0.66 dB 2.16%
Infinite Lookahead 16.03 dB 0.65 dB 2.00%

No Lookahead 15.62 dB 0.73 dB 3.62%
SD One Subframe Lookahead 15.82 dB 0.70 dB 3.00%

Optimized One Frame Lookahead 16.21 dB 0.65 dB 2.38%
Infinite Lookahead 15.46 dB 0.94 dB 6.01%



3 Warping the LPC Parameter Tracks 73

0 1 2 3 4 5
0.3

0.4

0.5

0.6

Number of lookahead subframes

W
ei

gh
te

d 
E

uc
lid

ea
n 

L
SF

 D
is

ta
nc

e

Infinite Lookahead (Lower bound)

Basic Piecewise−linearization (Upper bound)

(a) The performance of LPC contour warping in terms of overall average
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(b) The performance of LPC contour warping in terms of overall average
spectral distortion.

Fig. 3.17 The distortion performance of the LPC contour warping relative
to the basic piecewise-linearization scheme and what is ultimately achievable
with no lookahead constraints.
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Table 3.15 The prediction gains obtained using warped LPC parameters
for the analysis filter, compared with simple interpolation and rapid analysis
prediction gains. No energy normalization was used.

LP Gain LTP Gain Overall Gain

Regular Interpolation 11.12 dB 5.19 dB 16.31 dB

Rapid Analysis 11.26 dB 5.40 dB 16.66 dB

No Lookahead 11.14 dB 5.18 dB 16.32 dB
dLSF One Subframe Lookahead 11.14 dB 5.18 dB 16.33 dB

Optimized One Frame Lookahead 11.16 dB 5.21 dB 16.37 dB
Infinite Lookahead 11.15 dB 5.20 dB 16.34 dB

No Lookahead 11.13 dB 5.20 dB 16.33 dB
SD One Subframe Lookahead 11.14 dB 5.20 dB 16.34 dB

Optimized One Frame Lookahead 11.16 dB 5.21 dB 16.37 dB
Infinite Lookahead 11.14 dB 5.20 dB 16.34 dB
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Chapter 4

Speech Codec Implementation

The integration of the warping method into a speech coder and the experimental results are

presented in this chapter. The recently standardized Adaptive Multi-Rate (AMR) speech

codec was chosen as a platform for the simulations. In contrast with speech coders that

have a more stringent delay constraint and thus shorter frame lengths, the AMR speech

coder operates on 20 ms frames and 5 ms subframes. As shown in Chapter 3, this larger

frame size and an interpolation factor of 4 allows for potential improvement using the

warping method.

In the first section, the AMR speech coding algorithm is briefly explained along with

the fundamentals of code-excited linear prediction (CELP) coders. The objective tests

used to measure the speech coding efficiency with the warping algorithm are presented in

the following section. The experimental setup used to evaluate the performance of the

warping method is described in the third section; some variations of the method are used

to optimize the modified AMR speech coder. In the final section, results from the modified

AMR speech coder are presented.

4.1 Overview of Adaptive Multi-Rate Speech Codec

The AMR speech codec [66] is a CELP-based coder that uses the adaptive codebook ap-

proach to model periodicity. The coder runs at 8 rates between 4.75 kbps and 12.2 kbps.

For poor channel conditions, the lower coding rates are used and more bits are allocated

for error protection. The operation of the coder is similar for all modes (except 12.2 kbps),

but different bit allocations and quantization levels are used. The 12.2 kbps mode is equiv-
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alent to the Global System for Mobile Communications (GSM) Enhanced Full Rate (EFR)

speech codec. The following description of the AMR coder refers to all other modes, since

the 12.2 kbps mode uses 10 ms frames and has other significant differences.

4.1.1 Linear Prediction Analysis

The LPC analysis is performed once every 20 ms frame using a hybrid Hamming-Cosine

window. The window has its weight concentrated at the fourth subframe and uses a 40

sample (5 ms) lookahead. The analysis window is given by:

wd[n] =


0.54− 0.46 cos

(
2πn

2L1 − 1

)
, n = 0, . . . , L1 − 1,

cos

(
2π(n− L1)

4L2 − 1

)
, n = L1, . . . , L1 + L2 − 1,

(4.1)

where L1 = 200 and L2 = 40. The window placement is shown in Fig. 4.1. A 60 Hz Gaussian

lag window and a 1.0001 white noise correction factor are applied to the autocorrelations of

the windowed speech. The 10th order all-pole LPC synthesis filter coefficients are obtained

using the autocorrelation method and are converted to LSF’s for quantization. For every

5 ms subframe, the LSF’s are linearly interpolated and transformed to obtain direct form

filter coefficients.

30 ms hybrid Hamming-Cosine window

20 ms frame

5 ms look-ahead

1 2 3 4Subframe:

Fig. 4.1 LPC analysis window placement for the AMR coder.
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4.1.2 Selection of Excitation Parameters

Fig. 4.2 shows the basic setup used in the AMR speech codec to obtain the excitation

parameters. The excitation parameters, consisting of the gains and indices of the fixed and

adaptive codebooks, are determined for every 5 ms subframe. The adaptive codebook con-

tains vectors of 40 samples, with each vector representing a segment of the past excitation

at a specific delay. In this way, the adaptive codebook can yield periodicity in the syn-

thesized speech signal for voiced segments. The fixed codebook is a collection of noise-like

waveforms and can be viewed as a vector quantizer dictionary for the residual signal after

formant prediction (by the LPC analysis filter) and pitch prediction (by the adaptive code-

book). The fixed codebook is used to model unvoiced excitation and contributes mainly

during fricatives, plosives and transitions [67].

G2

G1

LPC
synthesis
filter H(z)

Perceptual
weighting
filter W(z)

Adaptive
codebook

Fixed
codebook

Error
minimization

+

-

LPC
analysis

Original speech
[ ]s n

Synthesized speech
[̂ ]s n

weighted error ew[n]
Perceptually

Fig. 4.2 Generic model of a CELP encoder with an adaptive codebook.

CELP coders are a subset of the more general class of linear prediction analysis by

synthesis (LPAS) coders. In LPAS coders, the quantized excitation signal is passed through

the LPC synthesis filter. For each subframe, the difference between the synthesized speech

signal ŝ[n] and the original speech signal s[n] is computed. The excitation parameters that
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minimize the energy of this quantization error are selected for transmission to the decoder.

To exploit auditory spectral masking, a perceptual weighting filter W (z) can be used, as

shown in Fig. 4.2. The form of the weighting filter is given by:

W (z) =
A(z/γ1)

A(z/γ2)
, (4.2)

where 0 < γ2 < γ1 ≤ 1. The weighting filter is updated every subframe using the interpo-

lated LSF’s. For the AMR speech codec, γ1 = 0.9 for the 12.2 kbps and 10.2 kbps modes

or γ1 = 0.94 for all other modes, and γ2 = 0.6 for all modes. By selecting the excitation

parameters according to this perceptually weighted distortion measure, the quantization

error is emphasized in frequency regions corresponding to spectral peaks or formants and

de-emphasized at the spectral valleys.

4.2 Objective Performance Measures

The goal of the warping method is to improve the spectral match in the intermediate

subframes so that the residual signal can be more efficiently coded. In addition, a smoother

evolution of the LSF’s should reduce the quantization error when predictive quantizers are

used. The following measures were used to evaluate the effect on performance of warping

the LSF tracks in the AMR speech coder:

1. PWEtot: The normalized perceptually weighted error energy (PWEtot) is given by:

PWEtot =

Nsf−1∑
n=0

e2
w[n]

Nsf−1∑
n=0

s2
w[n]

, (4.3)

where the weighted speech signal sw[n] is the output of the filter W (z) to s[n]. The

PWEtot is computed for each 5 ms subframe. Since the adaptive and fixed codebooks

are searched by minimizing the perceptually weighted error ew[n] between the synthe-

sized and original speech signals, a lower PWEtot implies a higher coding efficiency.

2. PWEadapt: This is used to measure the extent of the adaptive codebook contribution
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to the excitation signal. For voiced speech, the adaptive codebook is the primary

source for the excitation. Noise in the synthesized signal for voiced segments is

largely due to the fixed codebook [68]. The PWEadapt is the normalized perceptually

weighted error energy using only the adaptive codebook as the excitation signal. It

can be obtained from Eq. (4.3), where ew[n] is obtained with no fixed codebook

contribution which is equivalent to setting G2 = 0 (see Fig. 4.2).

3. ∆w: The absolute difference between the interpolation endpoint LSF vectors of suc-

cessive frames is denoted by ∆w. The difference is averaged over each of the 10 LSF’s

and over all the frames in units of Hz. A smaller ∆w means that less quantization

error would result when using predictive quantizers.

SD and dLSF are also used since the warping algorithm was derived by minimizing these

distortion measures. Being a commonly used measure of speech quality, SNRseg figures are

given.

4.3 Setup of Warping Method

The LSF contour warping was implemented in the AMR speech coder using the same

framework presented in Section 3.3, with modifications to make it compatible. Compared

to the 5 subframes per frame used throughout Section 3.3, the AMR speech coder uses

an interpolation factor of 4. In addition, the LPC analysis is performed with a hybrid

Hamming-Cosine window in the speech coder, as opposed to the symmetric Hamming win-

dow. The 5 ms lookahead constraint also limits the possibilities for using LPC parameters

from future subframes to optimize the interpolation endpoint LSF’s for the current frame.

The LPC analysis setups used to obtain the LPC parameters for every subframe are

shown in Fig. 4.3. Two window types and placements were experimented with to obtain

the LSF’s for the first three subframes. The first method consisted of using the same hybrid

Hamming-Cosine window that is used in the AMR standard for the fourth subframe. A

symmetric 200 sample Hamming window was used for the second method. For the fourth

subframe, the LPC parameters computed by the AMR coder were used. The asymmetric

Hamming-Cosine window given by Eq. (4.1) with L1 = 232 and L2 = 8 was used to estimate

LPC parameters for the lookahead subframe. By using the window placement in Fig. 4.3,

the LSF’s for first subframe of the future frame can be obtained without incurring any
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additional lookahead delay. To be consistent with the AMR speech coder, a 60 Hz Gaussian

lag window and a 1.0001 white noise correction factor were applied to the autocorrelations.

The subframe weighting factors were tuned in the same manner as before, but with these

LPC analysis setups. The weights were optimized to minimize the average SD, dLSF, and

PWEtot with and without the LSF’s of the lookahead subframe; the optimized weights are

given in Table 4.1 for the first LPC analysis method. The LSF vectors that minimized the

average SD and dLSF when no lookahead constraints were imposed were also determined.

Since the optimization problem is highly non-linear, it was observed that the MAT-

LAB optimization routines did not achieve the global minimum. The objective distortion

measures were evaluated over a range of possible weighting schemes and the best one was

selected. Since this exhaustive search procedure is computationally expensive for a substan-

tial number of speech frames, the range of weighting vectors over which the optimization

was performed was by no means extensive. Thus, better results could be obtained by more

finely tuning the subframe weights.

Table 4.1 Optimal subframe weights to minimize the average SD, dLSF and
PWEtot for the AMR speech coder.

Current Frame Lookahead Frame
f1 f2 f3 f4 l1

dLSF 0.6 0.3 0.5 1.0
Optimized 1.2 0.8 1.0 1.0 2.0

SD 0.0 0.0 0.0 1.0
Optimized 0.2 0.0 0.2 1.0 0.4

PWEtot 0.0 0.0 0.1 1.0
Optimized 0.0 0.0 0.6 1.0 2.0

The warping algorithm was implemented in the AMR speech coder with and without

the quantization of the LPC parameters; thus, the extent to which the quantization of the

LSF’s affected the warping was investigated.

Two methods were experimented with to obtain the residual signal. The first consisted

of using the interpolated parameters which is the standard method in the AMR speech

coder. For the second method, the rapid analysis parameters were used and gain normal-

ization was performed on the residual signal using subframe scaling with the actual gain

normalization factor G.
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20 ms frame 5 ms subframe

subframe 1

subframe 2 subframe 3 subframe 4 lookahead
subframe

(a) Method 1: using hybrid Hamming-Cosine windows for all four subframes.

20 ms frame 5 ms subframe

subframe 1

subframe 2 subframe 3 subframe 4 lookahead
subframe

(b) Method 2: using 25 ms Hamming windows for the first three subframes.

Fig. 4.3 The frequent LPC analysis setups used to implement the warping
method in the AMR speech coder.
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The following basic settings were used for the simulations:

• AMR speech codec was in the 4.75 kbps mode.

• PWEtot optimized weights with lookahead subframe were used for warping.

• LSF’s were quantized.

• LPC analysis was performed with the hybrid Hamming-Cosine window for the first

four subframes.

• Residual signal was obtained using the interpolated LSF’s.

For the results presented in the next section, it is stated when any of the simulation

parameters differ from these.

4.4 Results and Discussion

The results using the basic settings with different weighting schemes are shown in Table 4.2.

Using the PWEtot optimized weights improved the performance in terms of the SNRseg and

both the PWEtot and PWEadapt. In addition, the lower ∆w associated with these weights

suggests that a higher coding efficiency could be obtained using predictive vector quantizers

that are optimized accordingly. The largest change in these distortion measures was using

the future subframe (even though there is no additional lookahead in the system in terms

of buffering).

The results using the second LPC analysis method (using a Hamming window for the

first three subframes) were slightly inferior. For example, PWEtot’s of 0.4737 and 0.4754

were obtained using the first and second LPC analysis methods respectively. Even though

the Hamming window yielded a smoother evolution of the parameters, a consistent LPC

analysis for all subframes seems to be more important for overall performance.

Using the rapid analysis parameters to obtain the residual signal (the second method

to obtain the residual) and interpolated parameters for synthesis did not yield much of an

improvement either. With this method, similar distortion results were obtained compared

to the first method of obtaining the residual signal. With no quantization or coding, it was

shown in Chapter 3 that with a proper LPC setup, the reconstructed speech is perceptu-

ally equivalent to the original speech. However, with the addition of coding/quantization
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Table 4.2 Distortion results using different subframe weighting schemes in
the AMR speech coder.

dLSF SD SNRseg PWEtot PWEadapt ∆w

Original AMR Coder 0.70 1.06 dB 6.97 dB 0.476 0.659 73.8 Hz

dLSF Optimized 0.60 1.11 dB 6.98 dB 0.477 0.659 74.7 Hz
No

SD Optimized 0.70 1.06 dB 6.97 dB 0.476 0.659 73.8 Hz
Lookahead

PWEtot Optimized 0.68 1.07 dB 7.00 dB 0.475 0.657 73.5 Hz

dLSF Optimized 0.57 1.10 dB 6.99 dB 0.476 0.658 72.9 Hz
With

SD Optimized 0.64 1.06 dB 7.00 dB 0.475 0.657 72.6 Hz
Lookahead

PWEtot Optimized 0.64 1.09 dB 7.01 dB 0.474 0.656 72.4 Hz

Infinite dLSF Optimized 0.43 1.06 dB 7.03 dB 0.477 0.660 83.6 Hz
Lookahead SD Optimized 0.55 1.00 dB 7.00 dB 0.476 0.660 80.4 Hz

noise from the modified AMR codec, the synthesized speech had additional slight artifacts

compared with the original AMR coded speech. Thus, the rapid analysis and interpolated

synthesis was not effective with this setup in the AMR speech codec.

Table 4.3 compares the effect of using warping on PWEtot and PWEadapt for voiced

and unvoiced speech. The warping algorithm had a larger effect on voiced speech and the

reduction in PWEtot can be attributed to the improved efficiency of the adaptive codebook.

For voiced frames, the residual signal using the warping algorithm has a stronger periodic

nature and is easier to code using the adaptive codebook paradigm. From this table, it

is evident that even at the lowest bit rate (4.75 kbps), the LSF quantization error does

not play a major role in reducing the coding efficiency, as measured by the PWEtot and

PWEadapt. Thus, the quantization of LSF’s was not a factor in reducing the performance

of the warping algorithm.

The distributions of PWEadapt and PWEtot using the basic warping configuration are

given in Fig. 4.4. Similar distributions were obtained using the original AMR coder setup

and the differences were not noticeable on the scale shown. The two prominent peaks in

the distributions of PWEadapt and PWEtot arise from the difference in coding efficiency

for voiced and unvoiced speech. The adaptive codebook is effective for voiced speech (the

peak with a PWEadapt of approximately 0.1) and makes only a small contribution to the

overall excitation for unvoiced speech (the peak at 0.9). The fixed codebook dominates the

excitation for unvoiced segments, but the overall coding efficiency for unvoiced speech is less
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Table 4.3 Perceptually weighted error for voiced and unvoiced speech seg-
ments using the PWEtot optimized weights.

No Warping With Warping

PWEadapt PWEtot PWEadapt PWEtot

Voiced 0.377 0.255 0.373 0.251
With LSF Quantization Unvoiced 0.886 0.655 0.885 0.654

All Speech 0.659 0.476 0.656 0.474

Voiced 0.371 0.251 0.368 0.247
Without LSF Quantization Unvoiced 0.886 0.652 0.884 0.651

All Speech 0.656 0.473 0.653 0.471

than for voiced speech (corresponding to the PWEtot peaks at 0.4 and 0.1, respectively).

0 0.5 1 1.5
0

1

2

PWE
adapt

Fr
eq

ue
nc

y 
of

 O
cc

ur
en

ce

0 0.5 1 1.5
0

2.5

5

PWE
tot

Fr
eq

ue
nc

y 
of

 O
cc

ur
en

ce

Fig. 4.4 The distribution of PWEadapt (left) and PWEtot (right) using the
PWE optimized weights with lookahead.

The PWEtot and PWEadapt that result when using the six AMR modes with bit rates

between 4.75 kbps and 10.2 kbps are shown in Fig. 4.5. The reduction in PWEtot as more

bits were allocated was primarily due to the fixed codebook contribution — the PWEadapt

did not see much of a performance improvement with increasing bit rate. The degree of

performance enhancement using the warping scheme was similar for all the AMR modes,

since the adaptive codebook was the primary source of improved coding efficiency.
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Fig. 4.5 The effect of the AMR speech codec bit rate on the PWEadapt

(dashed) and PWEtot (solid).

The PWEtot per subframe for the voiced to unvoiced speech segment of Fig. 2.1(a) is

shown in Fig. 4.6. Although the average PWEtot is only slightly smaller using the warping

scheme, there are large differences in the PWEtot between the original and modified AMR

coder for individual subframes. Compared to the original AMR coder, the warping algo-

rithm yields a higher PWEtot for some subframes and a lower PWEtot for other subframes.

Thus, a more robust approach would modify the interpolation endpoints to consistently

reduce the PWEtot for all subframes relative to the original AMR coder.

The increase in computational complexity is primarily due to the the computation of the

LPC parameters five times per frame (as opposed to once per frame in the original AMR

coder). The optimization of the weighted dLSF reduces to solving p = 10 (the order of the

prediction filter) scalar quadratic equations which is not computationally intensive. The

total increase in the number of operations was 12%, measured according to the execution

time of the floating point C implementation of the AMR speech codec. A large reduction

in complexity can be obtained by eliminating the LPC analysis for the first two or three

subframes, since these contribute the least to performance of the algorithm. The increased

memory requirements associated with the warping algorithm are relatively insignificant.

Extensive subjective testing was not performed, but informal listening tests were incon-

clusive as to any improvement in perceptual quality using the modified AMR coder.
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Fig. 4.6 Subframe to subframe fluctuations in the PWEtot with and without
warping the LSF’s in the AMR coder. The processed speech segment is the
unvoiced to voiced transition shown in Fig. 2.1(a).
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Chapter 5

Conclusion

This thesis introduced a warping method with the objective of improving the spectral

tracking of the prediction filter in LPC-based speech coders. By modifying the linear

predictive coding (LPC) parameters at the interpolation endpoints, an improved spectral

match between the original speech and the interpolated LPC filter can be obtained for the

intermediate subframes. The performance of this warping algorithm has been investigated

using the Adaptive Multi Rate (AMR) speech codec as a testbed. In Section 5.1, the

research will be summarized and the key results presented. Suggestions for future related

research are given in Section 5.2.

5.1 Summary of Our Work

After presenting the basic properties and types of speech coders, Chapter 1 outlines the

objectives of this work along with previous related research. The second chapter motivates

the use of LPC, based on speech production and perception, and gives an overview of dif-

ferent aspects of LPC-based speech coders. Emphasis is placed on methods of obtaining

and improving the performance of the LPC prediction filter. These include the various

algorithms to obtain a set of predictor coefficients, different parametric representations of

the LPC filter and modifications to standard linear prediction methods (such as band-

width expansion and white noise correction). Distortion measures to evaluate speech coder

performance are described at the end of Chapter 2.

Chapter 3 builds a framework for the warping algorithm. The potential for improving

the spectral tracking capabilities is first investigated. To this end, the prediction gains
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of both the LPC filter and the pitch prediction filter were used as performance measures.

Section 3.1 discusses the selection of various LPC analysis parameters for optimal perfor-

mance.

Using an LPC analysis for every subframe to update the prediction filter resulted in

higher prediction gains for both the LPC filter and the pitch filter, as compared with linear

interpolation of LSF’s to update the filter at every subframe. Using a rapid analysis to

obtain the residual signal and interpolated parameters for synthesis would obtain these

benefits, without requiring the transmission of the filter parameters for each subframe.

In Section 3.2, methods to reduce the perceptual discrepancies between the original and

synthesized speech are examined. These include gain normalization, lag windowing and

white noise correction.

Section 3.3 develops the warping scheme, which is based on minimizing a distortion mea-

sure between the rapid analysis parameters and the interpolated parameters. The spectral

distortion (SD) is a commonly used measure for this purpose. However, the weighted Eu-

clidean LSF distance (dLSF) was shown to have a high correlation with the SD and greatly

reduces the complexity of the optimization problem. With the warping method, the line

spectral frequencies (LSF’s) for the interpolation endpoint subframe are selected by mini-

mizing the weighted dLSF over all the subframes in the current frame, which simplifies to

solving a set of simple quadratic equations. The framework was generalized to the case

when there is lookahead in the system and the LPC parameters from future subframes can

be computed. Lower bounds for dLSF and SD were established by determining the optimal

interpolation endpoints with infinite lookahead. As seen from Table 3.13, the warping algo-

rithm was effective at minimizing the dLSF and SD, and particularly reduced the percentage

of SD outliers.

Chapter 4 describes how the algorithm was tuned for the AMR coder and the resulting

performance. Even though the warping scheme significantly reduced spectral distortion

measures such as the dLSF and SD, the enhanced efficiency (as measured by PWEtot and

PWEadapt) of the AMR coder was not as substantial when using the warping method. Ob-

jective distortion measures such as SNRseg and the normalized perceptually weighted error

(PWEtot) had slight improvements. The warping scheme contributed mostly to improving

the effectiveness of the adaptive codebook for voiced speech. There was no perceivable

difference in the quality of the coded speech for the speech files tested, but the LSF’s

evolved more smoothly and a suitably optimized predictive quantizer would reduce the
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coding distortion and/or reduce the bits needed to code the LPC parameters.

Finally, the increase in computational complexity is minor: a 12% increase in MIPS

(millions of instructions per second) and a negligible increase in memory requirements.

However, the complexity can be largely reduced by not performing an LPC analysis for the

first few subframes — these contribute the least to the performance of the algorithm.

5.2 Future Research Directions

The performance of the warping scheme presented varies widely from subframe to subframe

relative to the basic AMR coder (see Fig. 4.6). With a more robust algorithm, modifying

the interpolation endpoint parameters has a great potential to minimize coding distortion

and improve the coder efficiency. One possibility is to formulate the warping algorithm

using a different framework — for example, optimizing another distortion measure more

closely related with the speech coder performance.

Using an adaptive subframe weighting scheme based on some speech parameters (en-

ergy, degree of voicing, etc.) would enhance performance. In this way, the weights would

emphasize the more perceptually relevant higher energy or voiced segments. Since the

warping algorithm is transparent to the decoder, information from previous frames could

possibly be used to optimize the scheme, without any synchronization or error propagation

issues at the decoder due to the memory in the system.

Since the parameters of all the different units in a speech coder are tuned collectively,

modifying any one section of the coder can disturb this harmony. With less fluctuation

in the LSF’s for the modified AMR coder, a predictive quantizer for the LPC parameters,

that is tuned with the warping scheme, is likely to improve the performance. Further

research is required to investigate whether the fixed and adaptive codebooks can be altered

in conjunction with the warping method to further reduce coding distortion.

Jointly warping and quantizing may improve the spectral tracking, especially for coarse

quantization — the quantized LPC parameter set that minimizes the distortion over all

the subframes would be selected. Also, the perceptual weighting filters can use the rapid

analysis parameters instead of the interpolated parameters for each subframe.

In our research, we did not examine the effect of using longer analysis frames. Modifying

the interpolation endpoints has the largest potential for performance enhancement when

the LPC filter is updated less often.
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Appendix A

Estimating the Gain Normalization

Factor

1−z
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Fig. A.1 Lattice analysis filter of order p.

Consider the lattice analysis filter in Fig. A.1, where the input s[n] is a real wide-sense

stationary stochastic process of zero mean. Let rs(l) be the autocorrelation function of the

input signal s[n]. Assume that the coefficients kj for j = 1, ..., p are computed by applying

the Levinson-Durbin recursion to the first p+1 values of the autocorrelation function rs(l).

This method minimizes E {e[n]2}, the power of the residual signal, whose minimum is given

by [26]:

E
{
e[n]2

}
= E

{
s[n]2

} p∏
j=1

(1− |kj|2). (A.1)

There is a one-to-one correspondence between the reflection coefficients kj, j = 1, . . . , p,

obtained from the Levinson-Durbin recursion and rs(l), l = 0, . . . , p.

Now consider the inverse lattice filter in Fig. A.2 where the input e[n] is white noise.

Again, there is a one-to-one correspondence between the reflection coefficients k̂j and the
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Fig. A.2 Lattice synthesis filter of order p

first p + 1 autocorrelation coefficients rŝ(l) of the output signal ŝ[n] [27]. In fact, k̂j and

rŝ(l) are related through the Levinson-Durbin recursion. It thus follows that:

E
{
ŝ[n]2

}
= E

{
e[n]2

} p∏
j=1

1

(1− |k̂j|2)
. (A.2)

Eq. (A.1) and Eq. (A.2) constitute the basis for estimating the gain normalization factor

using reflection coefficients. For a speech signal s[n], the autocorrelations are estimated

from the windowed speech signal sw[n]. The Levinson-Durbin recursion is then used to

compute the reflection coefficients kj. Applying the resulting LPC analysis filter to sw[n]

would yield the prediction error ew[n]. The energy ratio between these two signals is given

by [28]:

Gw =

∑
n

s2
w[n]∑

n

e2
w[n]

=

p∏
j=1

1

(1− |kj|2)
, (A.3)

where the summation is taken over the length of the window. The energy ratio Gabetween

the speech signal s[n] and the output e[n] of the LPC analysis filter to s[n] is required

to determine the gain normalization factor. Eq. (A.3) can be used to approximate Ga

according to:

Ga =

∑
n

s2[n]∑
n

e2[n]
≈

p∏
j=1

1

(1− |kj|2)
, (A.4)

where the summation is performed over the samples in the subframe.

The LPC analysis filter is a whitening filter [26] — the spectral envelope at the output

is flatter than that at the input. Thus, the output e[n] of the LPC analysis filter has an
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approximately flat spectral envelope. Since e[n] approximates white noise, the ratio of the

energy at the output of the LPC synthesis filter of Eq. (A.2) to the residual signal e[n] can

be approximated using Eq. (A.2):

Gs =

∑
n

ŝ2[n]∑
n

e2[n]
≈

p∏
j=1

1

(1− |k̂j|2)
. (A.5)

The gain normalization factor G between the original speech s[n] and the synthesized

speech ŝ[n] is given by:

G2 =

∑
n

s2[n]∑
n

ŝ2[n]
, (A.6)

where the summation is performed over a signal subframe. Combining Eq. (A.4) and

Eq. (A.5), the gain normalization factor can be approximated by:

G2 ≈

p∏
j=1

(
1− |k̂j|2

)
p∏

j=1

(
1− |kj|2

) . (A.7)
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Appendix B

Infinite Lookahead dLSF Optimization

Consider the LSF distortion over all subframes:

dTOT =
M∑
i=1

I∑
j=1

dLSF(ω(i,j), ω̂(i,j)) (B.1)

where M is the number of frames in the speech segment; I is the interpolation factor, or

equivalently the number of subframes per frame; ω(i,j) is the rapid analysis LSF vector for

the jth subframe of the ith frame; and, ω̂(i,j) is the interpolated LSF vector for the jth

subframe of the ith frame. The interpolated LSF vector ω̂(i,j) can be expressed in terms of

the interpolation endpoint vectors as follows:

ω̂(i,j) = (1− βj)ω̃
(i−1) + βjω̃

(i), (B.2)

where ω̃(i) is the interpolation endpoint vector for the ith frame and βj = j/I is the

interpolation weighting factor. The LSF vectors are of length p, where p is the order of the

LPC analysis. Note that the interpolation endpoint vector corresponds to the last subframe

of the frame. Thus, ω̃(−1) is initialized to a set of equally spaced LSF’s.

The objective is to select the interpolation endpoint vectors ω̃(i), i = 1, . . . ,M , to

minimize dTOT. The solution can be obtained by taking the partial derivatives of dTOT with

respect to each of the p elements of ω̃(i). Since each of the p LSF’s contribute independently

of each other to the overall distortion, the derivation will be shown for a single LSF and

the results can be applied to each of the p LSF’s. Thus, the scalar variables ω(i,j), ω̂(i,j) and
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ω̃(i) will be used to represent one of the p LSF’s corresponding to the LSF vectors ω(i,j),

ω̂(i,j) and ω̃(i).

Setting the partial derivatives equal to zero:

∂dTOT

∂ω̃(i)
= 0, 1 ≤ i ≤ M, (B.3)

yields the following system of M equations with M unknowns:

a1 b1 0 . . . 0

b1 a2 b2
. . .

...

0 b2 a3
. . . 0

...
. . . . . . . . . bM−1

0 . . . 0 bM−1 aM





ω̃(1)

ω̃(2)

...

ω̃(M−1)

ω̃(M)


=



c1

c2

...

cM−1

cM


, (B.4)

where

ai =


2

I∑
j=1

(
g(i,j)βj

)2
+
(
g(i+1,j)(1− βj)

)2
1 ≤ i < M,

2
I∑

j=1

(
g(i,j)βj

)2
i = M,

(B.5)

bi =
I∑

j=1

2
(
g(i+1,j)

)2
βj(1− βj), (B.6)

c1 =
I∑

j=1

2
(
g(i,j)

)2 (
ω(i,j) − (1− βj)ω̃

(i−1)
)
βj + 2

(
g(i+1,j)

)2
ω(i+1,j)(1− βj),

ci =
I∑

j=1

2
(
g(i,j)

)2
ω(i,j)βj + 2

(
g(i+1,j)

)2
ω(i+1,j)(1− βj) 1 < i < M,

cM =
I∑

j=1

2
(
g(i,j)

)2
ω(i,j)βj,

(B.7)

and g(i,j) represents the combined effects of the adaptive and fixed weights in the dLSF

measure (wi and ci, respectively, in Eq. (2.43)). The system of equations can be written



B Infinite Lookahead dLSF Optimization 95

in matrix form as Aω = C. A is a symmetric tri-diagonal matrix, thus the system of

equations can be solved efficiently in O(M) operations.
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