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Abstract

The process of suppressing acoustic noise in audio signals, and speech signals in particu-

lar, can be improved by exploiting the masking properties of the human hearing system.

These masking properties, where strong sounds make weaker sounds inaudible, are cal-

culated using auditory models. This thesis examines both traditional noise suppression

algorithms and ones that incorporate an auditory model to achieve better performance.

The different auditory models used by these algorithms are examined. A novel approach,

based on a method to remove a specific type of noise from audio signals, is presented using

a standardized auditory model. The proposed method is evaluated with respect to other

noise suppression methods in the problem of speech enhancement. It is shown that this

method performs well in suppressing noise in telephone-bandwidth speech, even at low

Signal-to-Noise Ratios.
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Sommaire

La suppression de bruit sonore présent dans les signaux audio, et plus particulièrement dans

les signaux de parole, peut être améliorée en exploitant les propriétés de masque du système

de perception sonore humain. Ces propriétés, où les sons plus intenses masquent les sons

plus faibles, c’est-à-dire qui font que ces derniers deviennent inaudibles, sont calculées en

utilisant un modèle de perception sonore. Ce mémoire étudie les algorithmes traditionels

de suppression de bruit et ceux qui incorporent un modèle de perception afin d’obtenir de

meilleurs résultats. Une approche originale, qui utilise un modèle de perception standardisé,

basée sur une méthode qui enlève du signal sonore un type de bruit particulier, est présentée.

Cette nouvelle méthode est évaluée par rapport à d’autre méthodes de suppression de bruit

pour les signaux de parole. Il est démontré que cette nouvelle approche donne de bons

résultats pour la suppression de bruit dans des signaux de paroles, et ce, même à de bas

niveaux de rapport signal à bruit.
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Chapter 1

Introduction

When a sound is picked up by a microphone, noise — in the sense of sounds other than the

one of interest — will be picked up as well. It should be noted however, that in the context

of acoustic signals, the definition of noise is a subjective matter. For example, the sounds

made by the audience in a concert hall is usually considered to be part of the performance.

It carries information about the audience reaction to the performance.

Usually, acoustic noise that was picked up by a microphone is undesirable, especially if it

reduces the perceived quality or intelligibility of the recording or transmission. The problem

of effective removal or reduction of noise (referred to here as Acoustic Noise Suppression,

or ANS1) is an active area of research, and is the topic of this thesis.

1.1 Applications of Noise Suppression

In the general sense, noise suppression has applications in virtually all fields of communica-

tions (channel equalization, radar signal processing, etc.) and other fields (pattern analysis,

data forecasting, etc.) [1].

• Telecommunications

Perhaps the most common application of ANS is in the removal or reduction of

background acoustic noise in telephone or radio communications. Examples of the

former would be the hands-free operation of a cellular telephone in a moving vehicle,

1A distinction must be made between acoustic noise suppression and audible noise suppression. Audible
noise suppression is discussed in Ch. 4.

2001/07/26
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Noise
(Engine,Fan)

Signal
(Speech, Music)

Signal
only

Microphone Loudspeaker

Noise Suppression

Fig. 1.1 Basic overview of an acoustic noise suppression system.

or a telephone on a factory floor. Examples of the latter would be communication in

civil aviation and most military communications.

In these applications, generally the purpose of ANS is to improve the intelligibility

of the speech signal, or at least to reduce listener fatigue. It is important to note in

this context that — while undesirable — distortion of the original speech is tolerable

if intelligibility is not affected.

Furthermore, in these types of applications, delays in the signal must be kept small.

This places constraints on both algorithmic delays and computing complexity.

• Audio Archive Restoration

The restoration of sounds recorded on audio carriers (vinyl records, magnetic tape,

etc.) has been a field of growing importance with the introduction of digital signal

processing (DSP) methods. Unlike the applications mentioned above, processing

delays are not an issue, but distortion of the original signal must be avoided [2].

While the carrier noise (such as tape hiss or phonograph crackle) is not strictly

environmental acoustic noise, it may be treated as such since it is acoustic noise

picked up with the intended signal by the same mechanism, either the needle of a

record player or the magnetic head of a tape player.

Generally, the Signal-to-Noise Ratio (SNR) is much higher in Audio Archive Restora-

tion than is the case for telecommunication applications.

These two application areas are merely given as examples, and there may in fact be

considerable overlap. For example, a speech recording made under adverse conditions
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may have a low SNR and allow for distortion, but the enhancement process will lack the

complexity constraints. It is therefore desirable to have a method that works well in either

application.

1.2 General Noise Reduction Methods

There are many ways to classify noise suppression algorithms. They may be single- or multi-

sensor. In the latter, the spatial properties of the signal and noise sources can be taken into

account. For example, beam-forming using a microphone array emphasizes sounds from a

particular direction [1]. Another example is adaptive noise cancellation (ANC), which is

a two-channel approach based on the primary channel consisting of signal and noise, and

the secondary channel consisting of only the noise. The noise in the secondary channel

must be correlated with the noise in the primary channel [3]. In the case of adaptive echo

cancellation (AEC), the primary channel is the near-end handset, which contains the near-

end signal and the reflection of the far-end signal. The secondary channel is the line from

the far-end handset.

Some noise suppression methods try to exploit the underlying production method of

the signal or the noise. In speech enhancement, this is usually done by linear prediction of

the speech signal [3]. In audio enhancement, since the signal is too general to be modeled,

the noise is modeled instead [2, 4].

1.2.1 Short-time Spectral Amplitude Methods

The noise suppression method discussed in this thesis is a single channel method based on

converting successive short segments of speech into the frequency domain. In the frequency

domain, the noise is removed by adjusting the discrete frequency “bins” on a frame-by-

frame basis, usually by reducing the amplitude based on an estimate of the noise. The

various methods (differentiated by the suppression rule, noise estimate and other details)

are collectively known as Short-Time Spectral Amplitude (STSA), Spectral Weighting, or

Spectral Subtraction methods.
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1.3 Auditory Models in Acoustic Noise Suppression

In the above sections, only properties of the source of the signal and noise were exploited

in the process of noise suppression. To further improve the performance of acoustic noise

suppression (ANS) algorithms, properties of the human ear can be taken advantage of.

Research into human auditory properties is an ongoing process. However, available

models of the human auditory system have been successfully used to improve the perfor-

mance of speech and audio coding algorithms [5]. In these coding algorithms, the purpose is

to take only as much of the signal as is perceptually relevant. This reduction of information

allows the signal to be stored or transmitted using fewer bits.

Acoustic noise suppression methods incorporating these same perceptual models have

shown significant gains in performance [4]. However, there is still room for improvements,

and research into new methods continues.

1.4 Thesis Contribution

This thesis presents an overview of noise suppression using auditory models. Different

auditory models and suppression rules are presented. The suppression methods are imple-

mented using the most recent and best-defined auditory model, and compared by objective

and subjective means. A new method, based on the generalization of a method originally

designed to remove camera noise from film soundtracks [4], is presented as a viable speech

and audio enhancement method. This new noise suppression method is shown to have a

good combination of low residual noise, low signal distortion, and low complexity when

compared to similar auditory based noise suppression methods.

1.5 Previous Work

Much of the work presented here is based on the work by Soulodre [4], where ANS methods

were evaluated for the specific problem of removing camera noise from film soundtracks.

Soulodre examined the properties of camera noise, (generated mainly by the lens shutter) in

detail, and presented a novel auditory model and an ANS method. Using a combination of

frame synchronization, sub-band processing and a novel auditory model, Soulodre achieved

noise removal at a Signal-to-Noise Ratio of up to 12 dB lower than required by traditional
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noise reduction methods, with little or no distortion of the signal.

Also, auditory-based ANS methods were developed by Tsoukalas et al, who in [6] used

an iterative approach to remove audible noise from speech signals. This method aggressively

removes all but the most audible components of the signal, resulting in almost complete

noise removal at the expense of some signal distortion. In [7], a method for reduction of

noise in audio signals is presented, based on calculating an auditory model of the noise and

removing it from an auditory model of the noisy signal.

In yet another approach, Virag [8] uses an auditory model to adjust the parameters of a

non-auditory noise suppression procedure to improve its performance and reduce artifacts.

Haulick et al [9] used a more direct approach, using the auditory masking threshold

in an attempt to identify and then suppress musical noise (a common artifact of noise

reduction algorithms).

These methods are examined and evaluated in more detail in Ch. 4 and 5.

1.6 Thesis Organization

The fundamentals of human hearing and the mechanics of the ear are explained in Chap-

ter 2. The concepts of masking and the threshold of hearing are introduced. Chapter 3

introduces algorithms to suppress noise using STSA methods that do not incorporate au-

ditory effects. In Chapter 4, some of the mathematical models of the hearing system are

presented, and noise suppression algorithms that incorporate those models. A standard

auditory model is incorporated into adapted versions of the ANS algorithms. The results

of comparing the various methods are presented in Chapter 5. Chapter 6 summarizes and

concludes the thesis.
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Chapter 2

Human Hearing and Auditory

Masking

2.1 The Human Ear

The human auditory system consists of the ear, auditory nerve fibers, and a section of the

brain. It converts sound waves into sensations perceived by the auditory cortex.

The ear is the outer peripheral system which converts acoustic energy (sound waves)

into electrical impulses that are picked up by the auditory nerve. The ear itself is divided

into three parts, the outer, middle, and inner ear, as shown in Fig. 2.1.

Fig. 2.1 Structure of the human ear [10]

2001/07/26
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2.1.1 The Outer Ear

The outer ear consists of the pinna (the visible part of the ear), the meatus (ear canal),

and terminates at the tympanic membrane (eardrum). The pinna collects sounds and aids

in sound localization, that is to be more sensitive to sounds coming from the front of the

listener [11].

The meatus is a tube which directs the sound to the tympanic membrane. A cavity

with one end open and the other closed by the tympanic membrane, the meatus acts as a

quarter-wave resonator with a center frequency around 3000 Hz. This particular structure

likely aids in the perception of obstruents1, which have much of their energy content in this

frequency region.

2.1.2 The Middle Ear

The middle ear is considered to begin at the tympanic membrane and contains the ossicles,

a set of three small bones. These bones are named malleus (hammer), incus (anvil), and

stapes (stirrup). Acting primarily as levers performing an impedance matching transfor-

mation (from the air outside the eardrum to the fluid in the cochlea), they also protect

against very strong sounds. The acoustic reflex activates middle ear muscles, to change

the type of motion of the ossicles when low-frequency sounds with SPL above 85–90 dB

reach the eardrum. Attenuating pressure transmission by up to 20 dB, the acoustic reflex

is also activated during voicing in the speaker’s own vocal tract [11]. Due to their mass,

the ossicles act as a low-pass filter with a cutoff frequency around 1000 Hz.

2.1.3 The Inner Ear

The inner ear is a bony structure comprised of the semicircular canals of the vestibula and

the cochlea. The vestibula is the organ that helps balancing the body and has no apparent

role in the hearing process [12]. The cochlea is a cone-shaped spiral in which the auditory

nerve terminates. It is the most complex part of the ear, wherein the mechanical pressure

waves are converted into electrical pulses.

The cochlea is a tapered tube filled with a gelatinous fluid (endolymph). At its base

this tube has a cross section of about 4 mm2, and two membrane covered openings, the

1Sounds produced by obstructing the air flow in the vocal tract, such as /s/ and /f/.
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Oval Window and the Round Window. The Oval Window is connected to the ossicles. The

Round Window is free to move to equalize the pressure since the endolymph is incompress-

ible.

The cochlea has two membranes running along its length, the Basilar Membrane (BM)

and Reissner’s Membrane. These two membranes divide the cochlea into three channels,

as seen in Fig. 2.2.

Fig. 2.2 Cross-section of the cochlea [11]

These channels are called the Scala Vestibuli, the Scala Media, and the Scala Tympani.

Pressure waves travel from the Oval window through the Scala Vestibuli to the apex of the

cochlea. A small opening (helicotrema) connects the Scala Vestibuli to the Scala Tympani.

The sound pressure waves then travel back to the base through the Scala Tympani, termi-

nating at the Round Window. Since the velocity of sound in the cochlea is about 1600 m/s,

there is no appreciable phase delay.

2.1.4 The Basilar Membrane and the Hair Cells

The mechanics of the Basilar Membrane (BM) can explain many effects of masking (de-

scribed below). Within the BM, mechanical movements are transformed into nerve stimuli

transmitted to the brain. The BM performs a crucial part of sound perception. It is narrow

and stiff at the base of the cochlea, gradually tapering to a wide and pliable end at the apex

of the cochlea. Each point on the cochlea can be viewed as a mass-spring system with a

resonant frequency that decreases from base to apex. A frequency to place transformation

is performed, such that if a pure tone is applied to the Oval Window, a section of the
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BM will vibrate. The amplitude of BM vibration is dependent on distance from the oval

window and the frequency of the stimulus. The BM vertical displacement is small near the

oval window. Growing slowly, the vertical displacement reaches a maximum at a certain

distance from the oval window. The amplitude of the vertical displacement then rapidly

dies out in the direction of the helicotrema. The frequency of a signal that causes maximum

displacement at a given point of the BM is called the Characteristic Frequency (CF).

The vibration of the BM is picked up by the hair cells of the Organ of Corti. There are

two classes of hair cells, the Inner Hair Cells (IHC) and Outer Hair Cells (OHC). About

90% of afferent (ascending) nerve fibers that carry information from the cochlea to the

brain terminate at the IHC. Most of the efferent (descending) nerve fibers terminate at the

OHC, which greatly outnumber the IHC. Empirical observations suggests that the OHC,

with direct connection to the tectorial membrane, can change the vibration pattern of the

BM, improving the frequency selectivity of the auditory system [12, 13].

Measurements from afferent auditory nerves have shown further nonlinearities in the

auditory system. All IHC show a spontaneous rate of firings in the absence of stimuli. As a

stimulus (such as a tone burst at the CF for the IHC) is applied, the neuron responds with

a high rate of firings, which after approximately 20 ms decreases to a steady rate. Once

the stimulus is removed, the rate falls below the spontaneous rate for a short time before

returning to the spontaneous rate [12].

2.2 Masking

Human auditory masking is a highly complex process which is only partially understood,

yet we experience the effects in everyday life. In noisy environments, such as an airport or

a train station, noise seems to have a habit of lowering intelligibility just enough so that

you miss the last call for the flight or train you have to catch.

The American Standards Association (ASA) defines masking as the process or the

amount (customarily measured in decibels) “by which the threshold of audibility is raised

by the presence of another (masking) sound” [13]. Simply put, one sound cannot be heard

because of another (typically louder) sound being present.
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2.2.1 Threshold of Hearing

In order to be audible, sounds require a minimum pressure. Due in part to filtering in

the outer and middle ear, this minimum pressure (considering for now a pure tone) varies

considerably with frequency. This threshold of hearing (audibility) is unique from person

to person and furthermore changes with a person’s age. Figure 2.3 shows the level of sound

pressure above which 10%, 50%, and 90% of subjects 20 to 25 years of age can hear a test

tone in quiet [10]. For signal processing purposes, the threshold is approximated by [14]

Tq(f) = 3.64(f/1000)−0.8 − 6.5e−0.6(f/1000−3.3)2

+ 10−3(f/1000)4 (dB SPL), (2.1)

which is measured in dB SPL, or dB relative to 20 µPa [15]. This approximation is shown

as a solid line in Fig. 2.3.

It is assumed that the threshold of audibility is a result of the internal noise of the

auditory system. Effectively, the internal noise is masking a very weak external signal.

2.2.2 Masking Effects

In the most broad categories, masking effects can be classified as simultaneous or temporal.

In simultaneous masking, the masking sound and the masked sound are present at the same

time. Temporal masking refers to the effect of masking with a small time offset.

Due to the limited time resolution of the algorithm presented in the following chapters,

temporal masking is of limited use, but can be used to hide preechoes2. Forward masking,

where a sound is inaudible for a short time after the masker has been removed, can be

between 5 ms and more than 150 ms. Backward masking, where a weak signal is inaudible

before the onset of the masking signal, is usually below 5 ms [16].

In masking, we need to consider two kinds of sounds that can act as the masker. Noise-

like sounds with a broad spectrum and little or no phase coherence can mask sounds with

levels as little as 2–6 dB below the masker. Tone-like sounds need to be much louder,

needing as much as 18–24 dB higher amplitude to mask other tones or noise, partially due

to phase distortion and the appearance of difference tones [10, 11].

Masking also is somewhat dependent of the absolute level of the masker. Fig. 2.4 shows

the amount of masking provided by a 1 kHz tone at various absolute sound pressure levels

2Artifacts introduced by frame based signal processing algorithms. See the following chapter.
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50% and 90% of subjects could detect a tone, empirical data from [10]. Also
pictured is the approximation from (2.1) (solid line).

LM . It can be seen that the slope of the upwards part of the masking curve varies with

level.

It should be noted that these curves are only averages, and vary from person to person.

To illustrate, the dotted lines in Fig. 2.4 show the masking provided by a 60 dB pure tone

at 1 kHz for two persons at the extremes of the sample set.

2.2.3 Critical Bands and the Bark scale

The frequency selectivity of masking effects is described in terms of Critical Bands (CB). In

general, a CB is the bandwidth around a center frequency which marks a (sudden) change

in subjective response [15]. For example, the perceived loudness of narrowband noise of

fixed power density is independent of bandwidth as long as the noise is confined within
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a CB. If the bandwidth of the noise is further increased, the perceived loudness will also

increase.

While the exact mechanism behind this abrupt change in frequency selectivity is not

known, at least some of it can be explained in Basilar Membrane (BM) and Inner Hair Cell

(IHC) behavior. As discussed above, the BM is not a perfect frequency discriminator but

each point on the BM responds to a range of frequencies. This behavior is modeled as a

bank of overlapping bandpass filters, called auditory filters. The shape of these filters is

not exactly known, and can change with signal level, hence they are not linear. However,

this nonlinearity is usually ignored. A more important property of the auditory filters is

that their bandwidth changes with frequency.

Moore [13] describes CB as a measure of the ‘effective bandwidth’ of the auditory filters,

though it must be noted that the actual width of the CB is narrower than the corresponding

auditory filter.

The actual width of Critical Bands is still in dispute. According to Zwicker [10] the

bandwidth of Critical Bands is relatively constant below 500 Hz, but above that increases
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approximately in proportion with frequency. Moore’s measurements (to distinguish them

from the traditional CB, called Effective Rectangular Band, ERB) indicated narrower band-

widths, and found changes in bandwidth even below 500 Hz. Both claim to correspond to

fixed distances on the BM, 1.3 mm for Zwicker’s CB and 0.9 mm Moore’s ERB.

Aside from masking, the concept of auditory filtering and Critical Bands has many

implications, and is the single most dominant concept in auditory theory [15]. Thus, an

absolute frequency scale based on the original (as used by Zwicker) CB measurements is

in common use. This scale is called the Bark scale, and the common function to convert

from Hz to Bark is (from Zwicker [10, 17])

z(f) = 13 arctan(0.00076f) + 3.5 arctan

[( f

7500

)2
]
, (2.2)

and the bandwidth (in Hz) of a CB at any frequency is given by

BWc(f) = 25 + 75
[
1 + 1.4(f/1000)2

]0.69
. (2.3)

The bandwidth in Bark of a CB at any frequency is (by definition) 1. This “normalization”

of Critical Bands in frequency domain allows for simpler a calculation of auditory effects,

such as the spread of masking, which is the amount of masking provided by signals outside

the immediate critical band.

2.2.4 Excitation Patterns and the Masking Threshold

By modeling the auditory system as a filter bank, the excitation in dB at each point of the

BM can be calculated. This Excitation Pattern is used in some algorithms as a first step to

calculating the Masking Threshold, which indicates the threshold of hearing in the presence

of a signal. However, there are many ways of calculating the excitation pattern. This is

mostly due to differing models of auditory filters, from relatively crude non-overlapping

rectangular filters to more complex shapes such as Roex(p) and Gammatone Filters [15].

Furthermore, there is still much dispute about how adjacent critical bands interact, both

how excitations add up, or the shape of spreading functions which describe the spread of

masking.

Some of the more common methods of modeling the excitation pattern and the masking

threshold for a given signal are described in Chapter 4. Figure 2.5 shows a single frame of
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Fig. 2.5 Power spectrum (solid line), excitation pattern (dashed line) and
masking threshold (dotted line) of a segment of speech, in perceptual domain.

speech, transformed into the perceptual domain, with the resulting excitation pattern and

masking thresholds, using the method described in Sec. 4.1.4. An overview and comparison

of various methods was presented in [18].

2.3 Summary

This chapter describes the process of sound transmission from the outer ear to the cochlea,

where the mechanical movement is converted into stimuli perceived by the brain. Masking

is introduced and some masking effects described. The frequency resolution of the auditory

system is described in terms of auditory filters and critical bands. The Bark scale is

presented to allow modeling the frequency analysis performed by the basilar membrane.
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Chapter 3

Spectral Subtraction

Spectral subtraction is a method to enhance the perceived quality of single channel speech

signals in the presence of additive noise. It is assumed that the noise component is relatively

stationary. Specifically, the spectrum of the noise component is estimated from the pauses

that occur in normal human speech. Fig. 3.1 shows the simplified structure of basic spectral

subtraction systems.

Conversion
Domain

Time
Domain

Conversion

Gain
Calculation

Frequency

Noise
Energy

Estimator

Frequency
Domain

Filter

S(f)x(n)

W(f)

G(f)

X(f) s(n)

Fig. 3.1 Basic structure of spectral subtraction systems

The first detailed treatment of spectral subtraction was performed by Boll [19, 20].

Later papers [21, 22] expanded and generalized Boll’s method to power subtraction, Wiener

filtering and maximum likelihood envelope estimation.

3.1 Basic Spectral Subtraction

Speech which is “contaminated” by noise can be expressed as

x(n) = s(n) + υ(n), (3.1)

2001/07/26
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where x(n) is the speech with noise, s(n) is the “clean” speech signal and υ(n) is the

noise process, all in the discrete time domain. What spectral subtraction attempts to do

is to estimate s(n) from x(n). Since υ(n) is a random process, certain approximations

and assumptions must be made. One approximation is that the noise is (within the time

duration of speech segments) a short-time stationary process. Specifically, it is assumed

that the power spectrum of the noise remains constant within the time duration of several

speech segments (typically words or sentence fragments). Also, noise is assumed to be

uncorrelated to the speech signal. This is an important assumption since, as explained

in sec. 3.1.4 below, the noise is estimated from pauses in the speech signal. Finally, it is

assumed that the human ear is fairly insensitive to phase, such that the effect of noise on

the phase of s+ υ can be ignored.

If the noise process is represented by its power spectrum estimate |Ŵ (f)|2, the power

spectrum of the speech estimate |Ŝ(f)|2 can be written as

|Ŝ(f)|2 = |X(f)|2 − |Ŵ (f)|2, (3.2)

since the power spectrum of two uncorrelated signals is additive. By generalizing the

exponent from 2 to a, Eq. (3.2) becomes

|Ŝ(f)|a = |X(f)|a − |Ŵ (f)|a. (3.3)

This generalization is useful for writing the filter equation (3.6) below [1, 22].

The speech phase φŜ(f) is estimated directly from the noisy signal phase φX(f).

φŜ(f) = φX(f) (3.4)

Thus a general form of the estimated speech in frequency domain can be written as

Ŝ(f) =
(

max
(
|X(f)|a − k|Ŵ (f)|a, 0

)) 1
a · ejφX(f), (3.5)

where k > 1 is used to overestimate the noise to account for the variance in the noise

estimate, as explained below. The inner term |X(f)|a − k|Ŵ (f)|a is limitied to positive

values, since it is possible for the overestimated noise to be greater than the current signal.
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3.1.1 Time to Frequency Domain Conversion

The statistical properties of a speech signal change over time, specifically, from one phoneme

to the next. Within phonemes, which average about 80 ms in duration [11], the statistics

of the signal are relatively constant. For this reason, the processing of speech signals is

typically done in short time sections called frames. The size of frames is typically 5 to

50 ms [1], though rarely larger than 32 ms. In these short-time segments, speech can be

considered stationary [19, 22, 23]. The frames of time domain data are windowed (the

effects of the window employed are discussed in Section 3.1.3 below) and then converted

to frequency domain using the Discrete Fourier Transform (DFT). To indicate discrete

frequency domain, the notation X(m, p)
∆
=X(m fs

M
), where 2M is the order of the DFT and

p is the frame index, is used. The frame index p is also dropped if the operation is local

in time (that is, if the operation is memoryless, and not directly using data from previous

time frames).

Generally, when dealing with speech signals, the signal operated on is assumed to be

sampled at fs = 8000 Hz. However, until auditory effects are considered, the sampling

rate is irrelevant, as long as the length of frames is kept appropriate as mentioned in the

previous paragraph. It should be noted that the effective frequency resolution depends only

on the framesize.

3.1.2 Spectral Subtraction as a Filter

It is convenient to think of the spectral subtraction as a filter, denoted here by G(m, p),

which operates on the received signal. Specifically, the filter is implemented in the frequency

domain by

Ŝ(m) = X(m)G(m)

= X(m)

(
max

(
|X(m)|a − k|Ŵ (m)|a

|X(m)|a
, 0

)) 1
a

= X(m)

(
max

(
1− k |Ŵ (m)|a

|X(m)|a
, 0

)) 1
a

, m = 0, . . . ,M − 1. (3.6)

Equation (3.6) is the conventional spectral subtraction equation. It should be noted that

it is possible for 1 − k |Ŵ (m)|a
|X(m)|a to be less than 0. In this case, G(m) is set to 0 at those
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frequencies, or to some small positive value α, to create a “noise floor.” Using a noise floor,

first proposed by Berouti et al [24], has been found to reduce artifacts such as musical

noise [2]. The generalized formula for the zero-phase filter in the frequency domain is given

by Eq. (3.7),

G(m) = max


(

max

(
1− k |Ŵ (m)|a

|X(m)|a
, 0

)) 1
a

, α

 , m = 0, . . . ,M − 1. (3.7)

Varying the parameters k, a and α is used to achieve tradeoffs between residual noise and

distortion in the speech signal. The factor k controls the amount of subtraction, based on

the overestimation of the noise mentioned above. Typically, a value of 1.5 is used, though

Berouti et al suggested values in the range of 3 to 5 when proposing this method [24].

Typical values of a are 1 for magnitude spectral subtraction (as used by Boll [19]) and 2

for power spectral subtraction (as used by McAulay and Malpass [21]), though other values

may be used.

3.1.3 Influence of windows on spectral subtraction

Any signal processing done via manipulation of the short-time spectra requires transforming

the time-domain signal to the frequency domain [25]. The spectra can then be modified,

and finally transformed back to the time domain. To avoid discontinuities at the frame

boundaries, the frames overlap, so the segment actually being processed is longer than

a frame. Boll [19] used 50% overlap, meaning that if the framesize is 128 samples long

(16 ms), in each iteration 256 samples (32 ms) would be processed.

Since some (or, in the case of 50% overlap, all) samples get processed twice, the frames

are windowed. There is one necessary condition for proper reconstruction, which is that

the windows will add to unity. Oppenheim and Lim used the equation∑
m

w(n+mF ) = 1, for all n, (3.8)

where F is the frame length. Only an analysis window was used by Oppenheim and Lim,

implying a rectangular synthesis window. Other analysis/synthesis window combinations
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can provide improved performance [4]. Eq. (3.8) then becomes∑
m

wa(n+mF )ws(n+mF ) = 1, for all n, (3.9)

where wa and ws represent the analysis and synthesis windows, respectively. It is convenient

to have the same analysis and synthesis window, thus wa(n) = ws(n) =
√
w(n). Two

possible choices for w(n) are the Bartlett (triangular) and Hanning (sin2) window, shown

in Fig. 3.2.

0

0.2

0.4

0.6

0.8

1

n

w
(n

)

Fig. 3.2 Bartlett (solid) and Hanning (dashed) windows

The shape of the window has some effect on the frequency domain representation [26,

27], but Oppenheim and Lim [22] suggest that the shape has little effect on the performance

of short-time spectral amplitude (STSA) based speech enhancement algorithms. However,

when an auditory model is used, the window does become important [4, 5].

3.1.4 Noise estimation techniques

The spectrum of the noise during speech periods is not exactly known. However, it can be

estimated, since (as mentioned above) the noise is assumed to be a short-time stationary

process. The estimate of the noise is taken from the speech pauses which are identified

using a voice activity detector (see below). The estimate of the noise spectrum using a

finite length DFT is referred to as a periodogram [1, 26]. If a non-rectangular window is
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used, the estimator is called a modified periodogram [27]. This modified periodogram can

be obtained from the analysis section of the spectral subtraction algorithm.

To reduce the variance of the noise estimate, the Welch method of averaging modified

periodograms can be used. An alternative to the Welch method is the use of exponential

averaging. Like the Welch method, the exponential average reduces the variance, but has

greatly reduced requirements in terms of memory and computational complexity, and there-

fore are used almost exclusively in actual implementations of noise suppression algorithms.

The noise power spectrum estimate |Ŵ (m, p)|2 is updated from the power spectrum of the

current frame (|X(m, p)|2) if the current frame is considered to be noise only by

|Ŵ (m, p)|2 = λN|Ŵ (m, p− 1)|2 + (1− λN)|X(m, p)|2, m = 0, . . . ,M − 1, (3.10)

where λN is the noise forgetting factor. The value of λN determines a tradeoff between the

variance of |Ŵ (m, p)|2 (or accuracy of the noise spectrum estimate) and responsiveness to

changing noise conditions. A typical value of λN for 20 ms frames is 0.9 [1], resulting in a

time constant of about 10 frames, or 200 ms.

Fig. 3.3 shows the noise estimates for white noise obtained from different methods. The

framesize was chosen to be 64 samples, and the overlap between frames 50%. The solid

line shows the noise estimate by exponential averaging, λN = 0.9. The other lines show

the estimate by the Welch method of averaging modified periodograms. The dashed and

the dotted lines were obtained by averaging 10 and 100 frames respectively. Note that the

Exponential Average method produces an estimate that is better than the Welch method

at 10 frames, yet implementing the former requires less memory and is less computationally

intensive.

3.1.5 The Role of Voice Activity Detectors

In a practical setting, the voice activity detector (VAD) plays a very important role in

the noise estimation. In general, it is preferable to have a VAD which errs on the side

of misclassifying noise as speech. A VAD falsely classifying speech as noise can cause the

system to erroneously remove speech components.

The design of a VAD is nontrivial. In one modern implementation of a speech codec,

specifically the Enhanced Variable Rate Coder (EVRC) [28], the VAD is an integral part

of the noise suppressor, which is described in Sec. 3.2.6 below. To detect speech presence,
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Fig. 3.3 Different noise estimation results. Solid line: Exponential average,
dashed line: Welch Periodogram, 10 frames, dotted line: Welch Periodogram,
100 frames.

a comparison of the current signal energy to the current noise estimate is performed, along

with rules based on temporal speech statistics. It should be noted that the VAD for Adap-

tive Multi-Rate (AMR) GSM coder (06.94 version 7.1.0) uses a very similar scheme [29].

The problem of reliable detection of speech in noise is beyond the scope of this thesis.

However, the influence of the VAD on the performance must be taken into account during

evaluation of noise suppression algorithms.

3.1.6 Artifacts and distortion introduced by Spectral Subtraction

Unfortunately, using spectral subtraction techniques introduces artifacts which can be very

annoying to listeners since the distortions sound very unnatural.

One of the artifacts is phase distortion, caused by the assumption that the ear is insen-

sitive to the phase. The phase is taken from the noisy signal, as shown by Equation (3.4).

Experiments with “ideal” spectral subtraction (where the magnitude of each frame is taken

from the clean signal and the phase from the noisy signal) show that this becomes significant

as the SNR approaches 0 dB, resulting in a “hoarse” sounding voice.
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Another artifact is caused by the processing in the frequency domain, using short-time

spectra. Multiplying two DFTs results in circular convolution in the time domain [26].

If the frames are long, this “temporal smearing” is audible as pre- and postechos, but in

shorter frames merely as noise that is correlated with the signal. Using a maximum overlap

between frames (50%) and a smooth (non-rectangular) synthesis window can greatly reduce

these echos.

The most noticeable (and most disturbing) artifact introduced by standard spectral

subtraction algorithms is known as musical noise, caused by the variance in the magnitude

of short-time spectra of random signals. Musical Noise is a result of the frame-based

approach to noise reduction. It consists of short (the length of a frame) isolated tone bursts,

which are distributed randomly across frequency. Musical Noise sounds very unnatural and

is therefore highly disturbing to the listener.

Figure 3.4 shows musical noise generated by processing a signal consisting of white

noise. The signal was processed by power spectral subtraction with k = 1.5. Figure 3.5

illustrates the origins of musical noise more clearly by examining a single frame. The solid

line shows the current noise estimate |Ŵ (m)|2, multiplied by k. The dotted line shows
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the power spectrum of the current input frame, |X(m)|2. The magnitude spectrum of the

resulting clean signal estimate |Ŝ(m)| = |X(m)G(m)| is shown as a dashed line.
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Fig. 3.5 Origins of Musical Noise

Since the development of STSA subtractive algorithms, much effort has been concen-

trated in reducing or eliminating Musical Noise.

3.2 Related and derived methods

Since the development of the Spectral Subtraction method by Boll [19], the basic problem

has been attacked by changing the basic assumptions, in particular about the spectral

magnitude of the noisy signal. Changing the basic assumption of (3.2) results in a different

gain rule. For reference, some methods are presented here.

3.2.1 The Wiener Filter

Derived in a similar manner as the power spectral subtraction method, the Wiener Filter

attempts to minimize the mean-squared error in frequency domain [21, 22]. WritingR(m, p)

for the signal-to-noise ratio (SNR) of the mth frequency bin, the generally cited form of
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the Wiener filter is Eq. (3.11).

GW(m) =
R(m)

R(m) + 1
(3.11)

To compare (3.7) and (3.11), R(m) is given as

R(m) =

{
|X(m)|2−|Ŵ (m)|2

|Ŵ (m)|2 , |X(m)|2 > |Ŵ (m)|2

0 otherwise,
(3.12)

and substituting in Eq. (3.11), we get

GW(m) =

{
1− |Ŵ (m)|2

|X(m)|2 , |X(m)|2 > |Ŵ (m)|2,
0 otherwise,

(3.13)

where the similarity to Eq. (3.7) is obvious. In fact, GW(m) =
√
G(m) with k = 1, a = 2,

and α = 0.

3.2.2 Maximum Likelihood Envelope Estimator

The Maximum Likelihood Envelope Estimator (MLEE) is based on the assumption that

the speech signal is characterized by a deterministic waveform of unknown amplitude and

phase [21]. The MLEE is characterized by its gain function

GMLEE =

[
1

2
+

1

2

√
1− |Ŵ (m)|2
|X(m)|2

]
. (3.14)

It should be notes that (3.14) was derived by estimating the a priori SNR. This leads

directly to the Ephraim and Malah Noise Suppressor below.

3.2.3 The Ephraim and Malah Noise Suppressor

In [30], Ephraim and Malah presented a modification to the MLEE Filter by adding an

estimator for the a priori SNR (Rprio) which uses exponential smoothing within the time

domain. An examination of the algorithm by Cappé [31] concluded that this smoothing

avoids the appearance of musical noise and signal distortion. However, removal of noise is
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not complete, and due to the smoothing, the signal component is incorrectly attenuated

following signal transients.

Cappé summarized the Ephraim and Malah Suppression Rule (EMSR) by

GEMSR =

√
π

2

√(
1

1 +Rpost

)(
Rprio

1 +Rprio

)
M

[
(1 +Rpost)

(
Rprio

1 +Rprio

)]
, (3.15)

where M stands for the function

M [θ] = exp

(
−θ

2

)[
(1 + θ)I0

(
θ

2

)
+ θI1

(
θ

2

)]
. (3.16)

In the above equation, I0 and I1 represent the modified Bessel functions of zero and first

order. Time and frequency indices have been omitted for clarity. The a priori SNR is

calculated by

Rprio(p) = (1− α)Rpost(p) + α
|G(p− 1)X(p− 1)|2

|Ŵ |2
, (3.17)

while the a posteriori SNR is the same as R(m, p) given by (3.12). The value of α deter-

mines the time smoothing of the a priori SNR estimate, which on the basis of simulations

was set to about 0.98.

The a priori SNR is the dominant parameter, while the a posteriori SNR acts as a

correction parameter when the a priori SNR is low.

In [32], Scalart and Filho examined the use of a priori SNR estimation with standard

(Boll, Wiener and MLEE) methods and also reported reduction in the amount of musical

noise. This suggests that the smoothing operation plays a more significant role in the

reduction of musical noise than the gain rule.

3.2.4 Filter Smoothing

A simpler method which achieves results comparable with the Ephraim and Malah Sup-

pression Rule is filter smoothing. The EMSR uses exponential averaging to smooth the a

priori SNR, the dominant parameter. Since it is assumed that the noise estimate changes

slowly over time, the resulting filter will also change slowly over time. A similar effect may

therefore be achieved by adding exponential averaging to the filter. Using G(m, p) from
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Eq. (3.7), this gives

GS(m, p) = λFGS(m, p− 1) + (1− λF)G(m, p). (3.18)

In this equation, λF is used to achieve a tradeoff between the amount of musical noise

and attenuation of signal transitions. As λF approaches 1, the amount of musical noise

disappears, but signal at the onset of speech segments is lost. To overcome this effect,

McAulay and Malpass described a modified form of the above in [21], where λF is chosen

to be 0 or 0.5 depending on a comparison of the current SNR estimate to the filter gain.

Similarly, the above equation can be modified to

GS(m, p) = max
(
λFGS(m, p− 1) + (1− λF)G(m, p), G(m, p)

)
, (3.19)

resulting in a one-sided smoothing that responds immediately to speech onset, but has

a hangover dependent on λF. The resulting signal will sound as if originating from a

reverberant space. This effect is caused by the slower decay of the filter gain after the

end of the speech segment, and can be perceptually annoying. Other approaches include

adapting the averaging parameter based on the spectral discrepancy measure, as proposed

by Gustafsson et al [33].

The advantage the Filter Smoothing technique has over the EMSR is that Filter Smooth-

ing is easier to understand and implement. Also it can be modified to take advantage of

temporal auditory masking effects, as discussed in the following chapter.

3.2.5 Signal Subspace methods

A new approach to noise reduction has been discussed by Ephraim and Van Trees [34],

whereby the noisy signal is decomposed into a signal-plus-noise subspace and a noise sub-

space. The noise subspace is removed and the signal is generated from the remaining

subspace by means of a linear estimation. Ephraim and Van Trees suggested the Dis-

crete Cosine Transform (DCT) and Discrete Wavelet Transforms as approximations to the

optimal, but computationally intensive Karhunen-Loève Transform (KLT).

Subjective tests showed that some distortion was introduced to the signal, which listen-

ers found disturbing. Partially for this reason, the attention Signal Subspace approaches

have received in literature was mainly in automatic speech recognition problems.
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3.2.6 Implementation of EVRC noise reduction

The Enhanced Variable Rate Coder (EVRC) is the standard coder for use with the IS-95x

Rate 1 air interface (CDMA) [28, 35]. It employs an adaptive noise suppression filter, which

is used as a baseline reference for the algorithm presented in this paper. Since it is a widely

used “real-world” implementation of a noise reduction algorithm, it is worth examining

in some detail. Some simplification for brevity was done to illustrate the algorithm more

clearly, but as much as possible, the symbols used in the standard document are used.

Conceptually, the EVRC’s noise suppression is accomplished by summing the outputs

of a bank of adaptive filters that span the frequency band of the input signal. The widths

of the bands roughly approximate the ear’s critical bands.
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Fig. 3.6 EVRC Noise suppression structure, redrawn from [28]

The EVRC noise suppressor works on 10 ms sections of speech data, using the overlap-

add method [26], to obtain 104 sample vectors. These vectors are then zero-padded to 128

sample points and transformed using a 128-point Fast Fourier Transform (FFT), windowed

by a smoothed trapezoidal window. The result of the transform is denoted here as Ec.

Reconstruction is done using the overlap-add method, with no windowing.

The 128 bins are grouped into 16 channels, approximating non-overlapping critical

bands. The energy present in each channel is estimated by calculating the mean magnitude
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for all frequency bins within the channel, and using a exponential average of the form

Ec(m, ch) =
1

fH − fL + 1

fH∑
k=fL

Gm(k) (3.20)

E(m, ch) = 0.45E(m− 1, ch) + 0.55Ec(m, ch) (3.21)

where m is the index of the time frame, and fL and fH are the lowest and highest bin

respectively of that particular channel. Gm(k) is the kth bin of the FFT of time frame m.

Additionally, the channel energy estimate E(m, ch) is constrained to a minimum of 0.0625

to prevent conditions where a division by zero occurs.

The channel energy estimate is then combined with the channel noise energy estimate

(see below) to calculate the channel SNR estimate in dB units. The channel SNR values

are also used to calculate a voice metric for each frame, which is used to determine if

the current frame is noise only. If the frame is considered noise only, the current channel

energy estimates are used to update the channel noise estimate EN, again using exponential

averaging. The channel noise estimate is constrained to a minimum of 0.0625.

EN(m+ 1, ch) = 0.9EN(m, ch) + 0.1E(m, ch) (3.22)

For the final channel gain calculation, an overall gain is calculated based on the total noise

energy estimate.

γN = −10 log10

(
15∑
ch=0

EN(m, ch)

)
(3.23)

which is constrained to the range γN = −13 . . . 0. A quantized channel SNR is generated

by

σ′′Q(ch) = round

(
10 log10

(
E(m, ch)

EN(m, ch)

)
/0.375

)
(3.24)

the result of which is constrained to be between 6 and 89. Now the individual channel

gains γ(ch) can be computed.

γdB(ch) = 0.39(σ′′Q(ch)− 6) + γN (3.25)

γ(ch) = min(1, 10γdB(ch)/20) (3.26)

These channel gains are then applied to the FFT bins belonging to their respective channels,
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before the inverse FFT is performed.

However, while the EVRC noise suppressor has a concept of critical bands, it does not

make use of any other perceptual properties. There is no calculation of masking thresholds,

all channels are calculated independently from each other.

It should also be noted that the EVRC noise suppressor (and hence the entire coder)

is preceded by a highpass filter whose 3 dB cutoff is at about 120 Hz and has a slope of

about 80 dB/oct. This removes a large amount of noise which is commonly encountered in

mobile applications (like car noise) while not greatly affecting speech quality.

3.3 Comparison of Methods

To compare short-time spectral amplitude (STSA) subtractive methods, the gain curve is

the primary point of comparison. The gain curve shows the attenuation of any frequency

bin for any given a posteriori SNR, that is the value of G(m) given R(m) from Eq. (3.12).

Figures 3.7(a) and 3.7(b) show the gain curves for magnitude and power spectral sub-

traction respectively. From the plots, it can be seen that the parameter k is dominant in

determining the slope of the curve. For small k the attenuation remains small even for very

low SNR values. For k = 1.5 (in general, for k > 1), the spectral subtraction algorithm

(for either value of a) acts more as a noise gate, cutting off completely (assuming α = 0) if

the SNR drops below

Roff = 10 log10(k
a
2 − 1) (dB), k > 1. (3.27)

Figure 3.8 shows the gain curves of some of the other methods described in the previous

section. As expected the curve for the Wiener filter is very similar to the power spectral

subtraction with k = 1. It is an interesting feature of the Wiener filter that as the SNR

decreases, the filter gain becomes equal to the SNR.

The other curves on Fig. 3.8 show the gain curves for the MLEE method and the EVRC

noise suppressor. The MLEE curve provides very little attenuation, with a maximum

attenuation of 3 dB. It is therefore of little use if the intent is to provide significant noise

removal.

For reference, the EVRC noise suppressor was included. Like the Ephraim and Malah

Noise Suppressor, the gain is dependent not only on the (a posteriori) SNR, but on other
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Fig. 3.7 Gain curves of spectral subtraction algorithms
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Fig. 3.8 Gain curves of selected other methods

values as well. In the case of the EVRC noise suppressor, the gain is not only subject to

temporal smoothing, but also on the overall estimate of the noise, as can be seen from

equations (3.23)–(3.26). The two EVRC curves on fig. 3.8 show the gain assuming fixed

signal power, but varying noise power (solid line) and fixed noise but varying signal power

(dotted line). Both curves are based on the noise power being constant across the whole

spectrum.

3.4 Summary

In this chapter, some methods for reducing or removing acoustic noise are introduced. In

particular, methods based on short-time fourier transforms are examined. The problems of

window effects and noise estimation are briefly discussed. The artifacts introduced by STSA

methods are described, and how the spectral subtraction method is modified to counter

these artifacts. The EVRC noise suppression algorithm is discussed in some detail. This

gives insight into a “real-world” implementation of a noise reduction algorithm. Finally,

some of the methods were compared based on the attenuation given an estimate of the

SNR.
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Chapter 4

Using Masking Properties in Spectral

Subtraction Algorithms

Auditory masking is aggressively exploited by algorithms used for the lossy compression of

audio signals. In compression of audio signals, the intent is to hide the noise introduced

by the coding below the masking threshold, thus making the noise inaudible. This will

then render the coding process transparent, enabling better compression without audible

degradation of the signal. A comprehensive review of perceptual audio coding was published

by Painter and Spanias [5].

More recently, masking properties of the ear have also been used to improve the quality

of noise reduction algorithms. Specifically, instead of attempting to remove all noise from

the signal, these algorithms attempt to attenuate the noise below the audible threshold. In

the context of short-time spectral magnitude (STSM) subtractive algorithms, this reduces

the amount of modification to the spectral magnitude, reducing artifacts. This is of great

importance where the resulting signal needs to be of very high quality. The methods

developed by Soulodre [4] to remove camera noise from film soundtracks were used as a

starting point for the method presented in this chapter. In fact, it may be regarded as an

application of Soulodre’s methods to more general noise reduction.

For the design of audio coders, an estimate of the masking threshold must be calculated.

In this chapter, some of the masking models (or perceptual models) will be examined. Also,

it will be shown how these models are used in noise suppression algorithms.

2001/07/26
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4.1 Masking Models

4.1.1 The Johnston Model

A perceptual model was developed by Johnston for coding of audio sampled at 32 kHz

in [36]. This model was used by Tsoukalas et al in [6] for speech enhancement and is de-

scribed below. Johnston’s method calculates the auditory masking threshold to determine

how much noise the coder can add before it becomes audible.

Johnston uses the following steps to calculate the masking threshold;

• Critical band analysis of the signal

• Applying the spreading function to the critical band spectrum

• Calculating the spread masking threshold

• Relating the spread masking threshold to the critical band masking threshold.

• Accounting for absolute thresholds

Johnston’s coder operates on 32 kHz sampled signals, and transforms 2048 samples (64 ms)

in each frame. This results in an internal frequency resolution of 15.625 Hz. A Hanning

window is used to overlap the frames, which are 1920 samples long (6.25% overlap between

frames).

Critical Band Analysis

The first step calculates the energy present in each critical band, assuming discrete nonover-

lapping critical bands. This is similar to the method used by the EVRC Noise Suppressor

as discussed in Section 3.2.6. The summation

B(i) =

bh(i)∑
m=bl(i)

|X(m)|2, i = 1, . . . , imax, (4.1)

where bl(i) and bh(i) are the lower and upper boundaries of the ith critical band, differs

from Eq. (3.21) only by not including a normalization for the number of DFT bins summed.

The value of imax depends on the sampling frequency.
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Johnston notes that a true critical band analysis would calculate the power within one

critical band at every frequency m. This would create a higher resolution critical band

spectrum. In the context of the coder, (4.1) represents an adequate approximation.

Spreading Function

To calculate the excitation pattern, Johnston uses the spreading function as proposed

by Schroeder et al in [37]. The spreading function S(i) has lower and upper skirts of

+25 dB/Bark and −10 dB/Bark respectively. It is a reasonable approximation (at inter-

mediate speech levels) to the experimental data given by Zwicker [10], as shown in Fig. 2.4.

This spreading function is then convolved with the bark spectrum, to give

C(i) = S(i) ∗B(i), (4.2)

where C(i) denotes the spread critical band spectrum.

Calculation of the Noise Masking Threshold

Two masking thresholds are used, one for a tone masking noise and another for noise

masking a tone. Tone-masking-noise is estimated at 14.5+i dB below C(i). Noise-masking-

tone is estimated as being a uniform 5.5 dB below C(i) across the whole critical band

spectrum.

To determine if the signal is tonelike or noiselike, the Spectral Flatness measure (SFM)

is used. The SFM (in decibels) is defined as

SFM dB = 10 log10

Gm

Am

, (4.3)

where Gm and Am represent the geometric and arithmetic mean of the power spectrum

respectively. From this value, a totality coefficient α is generated, by

α = min

(
SFM dB

SFM dBmax

, 1

)
, (4.4)

where SFM dBmax = 60 dB represents the SFM of an entirely tonelike signal, resulting in a

tonality coefficient of α = 1. Conversely, an entirely noiselike signal would have SFM dB = 0

and thus α = 0.
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Using α, the offset in decibels for each band is calculated as

O(i) = α(14.5 + i) + (1− α)5.5. (4.5)

This offset is then subtracted from the spread critical band spectrum in the dB domain by

T (i) = 10log10(C(i))−(O(i)/10). (4.6)

To reduce complexity, Virag [8] uses a simplified method proposed by Sinha and Tewfik

in [38]. The simplified model is based on the idea that the speech signal has a tonelike

nature in lower critical bands and a noiselike nature in higher bands.

Converting the Spread Threshold back to the Bark Domain

This step attempts to undo the convolution of B(i) with the spreading function. Due to the

shape of the spreading function this process is very unstable, and thus a renormalization

is used instead. The spreading function increases the energy estimates in each band. The

renormalization multiplies each T (i) by the inverse of the energy gain, assuming a uniform

energy of 1 in each band. The renormalized T (i) is denoted T ′(i).

Including the Absolute Threshold

The final step is to compare T ′(i) to the absolute threshold of hearing. Since the actual

playback level is not known, it is assumed that the playback level is set such that the

quantization noise is inaudible. Specifically, it is assumed that a signal of 4 kHz with peak

magnitude of ±1 least significant bit of a 16 bit integer value is at the absolute threshold

of hearing (−5 dB SPL at 4 kHz). Thus, the final threshold is computed as

TJ(m) = max
(
T ′
(
z(fs

m

M
)
)
, Tq(fs

m

M
)
)
, (4.7)

where z(f) is a function to convert from linear frequency to Bark, as defined by Eq. (2.2).

Tq(f) is the threshold of hearing as defined by Eq. (2.1), and fs
m
M

is the center frequency

of the mth frequency bin.
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4.1.2 The Perceptual Audio Quality Measure

A more detailed model of the auditory system was developed by Beerends and Stemerdink

in [39] to measure the quality of audio devices. Interestingly this model was also applied

by Tsoukalas et al in [7] for audio signal enhancement. The following describes the imple-

mentation by Tsoukalas et al.

The primary differences between the Perceptual Audio Quality Measure (PAQM) and

Johnston’s method (described above) are the inclusion of temporal masking estimates,

more detailed spreading functions, and a calculation of compressed loudness. There is

no calculation of tonality of the signal. The difference in masking between tonelike and

noiselike sounds is instead accounted for by the compressed loudness function.

The implementation by Tsoukalas et al is actually a greatly simplified version of PAQM

and can be summarized in two steps. The first step is the conversion to Bark domain, as

in the Johnston model by Eq. (4.1). Restating (4.1) with time indices added, we get

B(i, p) =

bh(i)∑
m=bl(i)

|X(m, p)|2, i = 1, . . . , imax. (4.8)

The second step is to calculate the (noncompressed) excitation pattern by

Xf(i, p) =
imax∑
ν=0

{
SS(ν, i)a0(ν)

p∑
k=0

[T p−kf (ν)B(ν, k)]

}
, i = 1, . . . , imax. (4.9)

In the above equation, a0(i) represents an outer-to-inner ear transformation, and Tf(i) is

an exponential function given by

Tf(i) = e−d/τ(i), (4.10)

which accounts for time-domain spreading. In (4.10), d is the time distance between ad-

jacent short-time frames and τ(i) is derived from time-domain masking experiments. The

function SS(ν, i) is defined as

SS(ν, i) =

S2(ν, i− ν) ν < i,

S1(ν − i) ν ≥ i,
(4.11)

where S1 is the lower spreading function and S1 the upper spreading function. Beerends
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and Stemerdink used

S1 = 31 dB/Bark, (4.12)

S2 = 22 + min(230/f, 10)− 0.2L dB/Bark, (4.13)

with f the frequency of the masker in hertz and L the level in dB SPL. Tsoukalas et al

dropped the level dependence.

4.1.3 Soulodre’s Model

For the purpose of removing camera noise from soundtracks, Soulodre [4] developed a model

which operates in the linear frequency domain, thus retaining the high frequency resolution

of the DFT.

The modeling of the outer and middle ear is performed by

AS = −6.5e−0.6(f−3.3)2

+ 0.001f 4 + 3.64f−0.8 − 80.64e−4.712f0.5

(dB), (4.14)

where f is in kHz, and the internal noise of the auditory system is modeled by

Nint = 80.64e−4.712f0.5

(dB). (4.15)

It should be noted that by adding these two equations, the absolute threshold of hearing

as stated in (2.1) is modeled.

The auditory filter model is based on the research of Patterson and Moore, but the

complete model is original to [4]. This model uses the Roex(p) (rounded exponential) filter

shapes for the auditory filter approximations. The response is described by

W (g) = (1 + pg)e−pg, (4.16)

where g is the normalized distance from the center frequency f0 of the filter evaluation

point,

g =
|f − f0|
f0

. (4.17)

The parameter p determines the slopes of the filter and thus its bandwidth. To find the

value of p, the Roex(p) filters are expressed in terms of their effective rectangular bandwidth
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(ERB). The ERB’s for auditory filters are given by the expression [13]

ERB = 24.7(4.37f + 1), (4.18)

where f is in kHz. By equating the area under the curves of the Roex(p) and rectangular

filters, it is possible to derive p as

p =
4f0

24.7(4.37f0 + 1)
. (4.19)

Thus, the excitation pattern across frequency due to a signal at frequency fc is obtained

by

J (fc, f) =
(

1 +
4|fc − f |

24.7(4.37f + 1)

)
e

4|fc−f |
24.7(4.37f+1) . (4.20)

To account for variations in the shape of the auditory filter with level, the parameter p

for the low-frequency skirt of the filter is adjusted by

pl(X) = pl(51) − 0.38
( pl(51)

pl(51,1k)

)
(X − 51), (4.21)

where pl(51) is the value of p at the center frequency for an equivalent noise level of

51 dB/ERB and pl(51,1k) is the value of pl at 1 kHz for a noise level of 51 dB/ERB. The

parameter X denotes the equivalent input noise level in dB/ERB.

To predict nonsimultaneous masking, the model

FM(Lm) = a(b− log ∆t)(Lm − c) dB SL (4.22)

is used, where a, b, and c are made to fit experimental data, ∆t is the length of the delay

between the masker and the signal, and Lm is the level of the masker in terms of sensation

level (SL). As with other model described in this chapter, backward masking is ignored.

To simplify the calculating process, ∆t was fixed and the experimental data was fit to

FM(f, L) = α(L) + β(L)e
−f
γ(L) ,

100 Hz ≤ f ≤ 20 kHz,

10 dB SPL ≤ L ≤ 100 dB SPL.
(4.23)

For frequencies below 100 Hz, the value predicted at 100 Hz should be used, and for masker

levels below 10 dB SPL, a value of 0 should be assigned to FM(f, L).
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The masking components, both simultaneous and non-simultaneous, are added using a

modified power-law. It can be expressed as

M = 10 log

[([ N∑
i=1

(
10Mi/10

)ρ]− (10Tq/10
)ρ)1/ρ

]
, (4.24)

where Mi = 1, 2, . . . , N are the levels of the various masking components, Tq is the absolute

threshold of hearing, and ρ is the compression factor. Setting ρ = 0.3 was found to give a

good fit to the experimental data when predicting masking thresholds.

4.1.4 Perceptual Evaluation of Audio Quality

A new psychoacoustic model was developed by the International Telecommunications Union

(ITU) for use in a standard for objective measurement of perceived audio quality (adopted

as ITU-R BS.1387) [16, 40]. An evaluation of this method performed by Treurniet and

Soulodre [41] found that this measure produced results that correlate well with subjective

ratings obtained in formal listening tests. As with the PAQM above, the full model is not

described here. The following description covers only the parts that are necessary in the

context of noise reduction algorithms. However, since this masking model is implemented

for use by the noise reduction methods described in the following sections, the calculation

of the excitation pattern and the masking threshold will be covered in detail.

The Perceptual Evaluation of Audio Quality (PEAQ) model consists of two versions: one

that is intended for applications requiring high processing speed, called the basic version,

and another for applications requiring highest achievable accuracy, called the advanced

version. The basic version only uses an FFT-based ear model, whereas the advanced

version uses an FFT-based model to determine the masking threshold and a filter bank

based ear model to compare internal representation. Only the basic version (specifically,

the estimation of the masking threshold thereof) is used in the proposed noise suppression

algorithm. The basic version of PEAQ is very similar to PAQM.

The steps involved in computing the excitation pattern in the basic version are as

follows.

• Time to Frequency conversion

• Frequency-dependent weighing



4 Using Masking Properties in Spectral Subtraction Algorithms 40

• Mapping into perceptual (Bark) domain

• Adding internal noise

• Applying the spreading function

• Applying nonlinear superposition

• Temporal Spreading

Time to Frequency Conversion

PEAQ was designed for the comparison of audio devices over the the whole audible spec-

trum, and therefore operates on signals sampled at 48 kHz. The transform size is 2048

samples with 50% overlap, thus working on 0.021 s time increments. This results in a

frequency resolution of ∆f = 23.4375 Hz. Following the transform, the level is scaled to a

level assuming the maximum level to be 92 dB SPL.

Frequency-dependent weighting function

The outer and middle ear are modeled by the frequency dependent weighting function

A(f) = −0.6 · 3.64f−0.8 + 6.5e(f−3.3)2 − 10−3f 3.6 (dB), (4.25)

where f is in kHz. Using X(m) as the transformed input signal, the weighted spectrum is

Xw(m) = |X(m)| · 10
A(f(m))

20 , (4.26)

where f(m) = (m∆f)/1000 is the center frequency (in kHz) of the mth frequency bin.

Mapping into perceptual domain

The weighted power spectrum, |Xw(m, p)|2, is transformed into the perceptual domain.

Specifically, the energy is grouped into 0.25 Bark bands. It should be noted that PEAQ

uses a slightly different frequency warping function than Eq. (2.2), and instead uses [37]

z = 7 · arcsinh

(
f

0.65

)
(Bark), (4.27)
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where f is in kHz. The resulting frequency bands are listed in Appendix A.

Adding internal noise

With the signal in perceptual domain (denoted PE(k)), the internal auditory noise NI(k)

is added. The noise is modeled by

P (k) = PE(k) +NI(k) = PE(k) + 100.4 · 0.364 · (fc(k))−0.8

, (4.28)

where fc(k) represents the center frequency (in kHz) of the kth perceptual band. This noise

floor will also account for the absolute threshold of hearing.

Spreading function

A spreading function is applied to the perceptual spectrum, similar to PAQM. The slopes

are slightly different, with

S1(k, L(k)) = 27 dB/Bark, and (4.29)

S2(k, L(k)) = 24 +
0.23

f(k)
− 0.2L(k) dB/Bark, (4.30)

where L(k) represents the signal power (in dB SPL) in the kth perceptual band.

Nonlinear superposition

The spread perceptual bands are added in a nonlinear normalized summation (described

in [40], section 2.1.7, here denoted by the operation normk)

E2(k) = normk

(∑
i

(
ES(i, k)

)α)1/α

, (4.31)

where ES(i, k) represents the energy spread of the ith band to the kth band. The parameter

α was chosen to be 0.4 following an experimental optimization process [16]. E2 is called

the unsmeared excitation pattern.
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Temporal spreading

The final step in calculating the excitation pattern is taking account of temporal spreading.

As mentioned in Sec. 2.2.2, only forward masking is taken into account. The time constants

depend on the center frequency of each band and are calculated by

τ(k) = τmin +
0.1

f(k)
(τ100 − τmin), (4.32)

where τ100 = 0.030 s and τmin = 0.008 s. As above, f(k) is in kHz. The spreading is applied

to the unsmeared excitation pattern E2 by the exponential averaging

Ef(k, p) = a(k)Ef(k, p− 1) +
(
1− a(k)

)
E2(k, p) and (4.33)

E(k, p) = max
(
Ef(k, p), E2(k, p)

)
, (4.34)

where p is the frame (time) index, and

a(k) = e−
4

187.5τ(k) . (4.35)

E(k, p) is the excitation pattern, which is sufficient for some methods. A masking

threshold can be computed from the excitation pattern by applying the weighing function

m(k) =

3.0 k ≤ 12

0.125k k > 12,
(4.36)

(noting that k = 0.25 Bark) yielding

M(k, p) =
E(k, p)

10m(k)/10
, (4.37)

which is the mask pattern.

4.2 Perceptual based noise reduction

The use of perceptual models in acoustic noise suppression was already proposed by Petersen

and Boll in [42]. Although a simplistic model (by modern standards) for estimating the
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masking threshold was used, Petersen and Boll reported that their method greatly reduced

the artifacts introduced by spectral subtraction. However, the method described in [42] is

not a STSM based method. In [43], Cheng and O’Shaughnessy also propose two algorithms

that exploit auditory properties, but are not STSM based.

Conversion
Domain

Time
Domain

Conversion

Gain
Calculation

Frequency

Noise
Energy

Estimator

Frequency
Domain

Filter

S(f)x(n)

W(f)

G(f)

X(f) s(n)

Perceptual
Model

Fig. 4.1 Incorporating a perceptual model in a spectral subtraction algo-
rithm

The focus of this section is on methods combining STSM subtractive methods with au-

ditory models as described above. The auditory model usually affects the Gain Calculation

only (see Fig. 4.1). A new method is presented in the following section, by combining the

PEAQ masking model with a modified form of the zero-phase spectral subtraction filter

proposed in [4]. Other methods (described below) are also implemented using the PEAQ

auditory model, and are compared to the proposed method.

4.2.1 Tsoukalas’ method for Speech Enhancement

Soulodre derives his method from the work of Tsoukalas et al. The method described

in [6, 44] for speech enhancement is summarized by Soulodre [4] as

|Ŝ(f)|2 = |X(f)|2 −max(|Ŵ (f)|2 − AMT, 0), (4.38)

where AMT is the Auditory Masking Threshold given by an estimate of the clean signal.

It should be noted that rather than direct spectral modification, Tsoukalas et al calculate
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the parameters of the nonlinear gain function

GT(m, p) =
|X(m, p)|2v(m,p)

av(m,p)(m, p) + |X(m, p)|2v(m,p)
, (4.39)

where a(m, p) and v(m, p) are the time-frequency varying parameters. This nonlinear gain

function is based on a function proposed by Eger et al in [45], and was further developed

by Clarkson and Bahgat [46]. In the above method, a(m, p) is a threshold below which all

frequency components are highly suppressed, and v(m, p) controls the rate of suppression.

Tsoukalas et al found the influence of v(m, p) negligible and fixed it at v(m, p) = v = 1.

The parameter a(m, p) is constrained to be constant within a critical band, and Tsoukalas

et al present various ways of calculating aCB(i, p), such as

aCB(i, p) =
(
ŴCB(i) + TJ(i)

)(ŴCB(i)

TJ(i)

)1/v

, (4.40)

where ŴCB(i) represents the noise in the ith critical band and TJ(i) represents the AMT

(using Johnston’s method) in the ith critical band. To obtain a good estimate of the AMT

Tsoukalas et al suggest an iterative approach, at the expense of computational efficiency.

Essentially, the first AMT is obtained using standard power spectral subtraction, and Ŝ

is obtained using (4.39). The AMT is calculated using Ŝ, and (4.39) is applied to Ŝ.

The parameter aCB(i, p) will decrease with each iteration, converging towards zero, thus

indicating no more suppression is needed.

Tsoukalas et al report that to begin the iterative process, even the noisy signal can

be used to find the AMT. However, more iterations must be performed for aCB(i, p) to

converge.

4.2.2 Musical Noise Suppression

A more direct method for suppressing the musical noise that is generated by STSM sub-

tractive methods was presented by Haulick et al in [9]. Conceptually, this algorithm acts

as a postprocessor to conventional spectral subtraction. The masking thresholds for the

noisy signal and the output signal are computed. Components that are audible (above the

masking threshold) in the output but not the input are candidates for suppression. To

avoid suppressing previously inaudible unvoiced speech segments, a short-time stationarity
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and bandwidth criterion is applied. In order to be classified as musical, noise must have a

bandwidth of less than about 300 Hz. If two successive filter coefficients fulfill the condition

min
(
GH(m, p− 1), GH(m, p)

)
≥ 0.55, (4.41)

the corresponding spectral component is assumed be speech and is not suppressed. Audible

spectral components that meet the criteria for musical noise are suppressed by setting the

corresponding filter coefficient to the noise floor β.

4.2.3 Virag’s method

A method developed by Virag [8] can be viewed as a lower complexity version of the speech

enhancement method by Tsoukalas et al, though it is not directly derived from it. Virag

uses the masking threshold estimate (obtained using power spectrum subtraction) to adjust

the spectral subtraction parameters k and α of Eq. (3.7) on a per-band and per-frame basis.

The adaption of the subtraction parameters is performed with

k(m) = Fk[kmin, kmax, T (m)] (4.42)

α(m) = Fα[αmin, αmax, T (m)], (4.43)

where kmin, kmax, αmin, and αmax constrain k and α, and T (m) is the masking threshold

estimate. The functions Fk and Fα lead to maximal residual noise reduction for minimal

masking threshold and vice versa, such that Fk = kmax if T (m) = T (m)min and Fk = kmin

if T (m) = T (m)max. T (m)min and T (m)max are the minimal and maximal values of the

masking threshold respectively, updated from frame to frame. To avoid discontinuities in

the gain function, a smoothing function is applied.

Virag found that kmin = 1, kmax = 6, αmin = 0, and αmax = 0.02 gives a good tradeoff

between residual noise and speech distortion.

Earlier, a similar approach was taken by Lorber and Hoeldrich in [47], for use in audio

restoration. However, a very simplified auditory model (consisting of only an approximation

of the spreading function) was used, to smooth an estimate of the SNR. The SNR estimate

was then used to calculate α in a similar fashion to Virag’s method.
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4.2.4 Tsoukalas’ method for Audio Signal Enhancement

Simultaneously to the method described in Sec. 4.2.1, Tsoukalas et al derived a method for

the more general problem of noise removal from audio signals. An example of an application

is the restoration of phonograph recordings. In [7], a more sophisticated auditory model is

used, based on PAQM (see Sec. 4.1.2).

To obtain a signal with the same psychoacoustic representation as the clean signal,

Tsoukalas et al state that the ideal filter is

GPT =
PE(S)

PE(X)
, (4.44)

where PE(·) represents applying a perceptual model (usually by calculating the excitation

pattern) to a signal. In the absence of the psychoacoustic representation of the clean signal,

the filter is instead calculated as

GPT = 1− PE(Ŵ )

PE(X)
. (4.45)

It should be noted that the noise estimate is relatively fixed for music type audio signal

enhancement. Since the perceptual model in the numerator only needs to be recomputed

when the noise estimate is modified, this reduces the computational complexity.

4.2.5 Soulodre’s method

When evaluating the method presented in the preceding section, Soulodre points out in [4]

that the method in [7] ignores the fact that the width of the auditory filters (and hence

the amount of masking) varies significantly with level. Essentially, Eq. (4.45) subtracts

the psychoacoustic representation of the noise, and this is inconsistent with the nonlinear

addition of masking.

Instead, Soulodre proposes a filter based on (4.44),

GS =
PE(|S|)
PE(|X|)

=
PE(|X| − |Ŵ |)

PE(|X|)
. (4.46)

Essentially, an initial estimate of the spectral magnitude of the clean signal is made using

a traditional spectral subtraction algorithm. The perceptual model described in Sec. 4.1.3
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was developed for use with this method.

Effects of windows

Perhaps the most important observation of Soulodre is the effect of the window on per-

ceptual noise reduction algorithms. As discussed in Sec. 3.1.3, the window is of little

importance in traditional STSA subtractive algorithms. However, the frequency domain

smearing caused by the window of the Discrete Fourier Transform (DFT) [27] can be very

broad. Soulodre points out that the sine window, used by many perceptual codecs, can

cause the masking threshold to be overestimated.

Soulodre instead proposes the Kaiser-Bessel Derived (KBD) windows, developed for the

Dolby AC-3 audio codec and used in the MPEG AAC codec [5]. At the expense of some

passband selectivity, the KBD windows provide better stopband attenuation, the tradeoff

controllable by a parameter.

A further refinement in Soulodre’s method is the adjustment of the auditory filter slopes

in the model to account for the wider main lobe of the KBD window. Since Soulodre’s

model uses Roex(p) filters, the modified filters are described by (see Eq. (4.16))

W (g) = (1 + p̃g)e−p̃g, (4.47)

where p̃ ≥ p is a modified version of p to account for the effects of the chosen window.

4.3 Using the PEAQ model in noise reduction

The perceptual noise reduction methods discussed above were mostly intended for use

in speech enhancement. Exceptions are Soulodre’s method and Tsoukalas’ method for

audio enhancement, to which Soulodre’s method is closely related. As discussed in the

introduction, methods aimed at speech enhancement tend to place a higher emphasis on

noise reduction at the expense of distortion of the signal.

In this section, the implementation of Soulodre’s method coupled with the PEAQ (see

Sec. 4.1.4) auditory model is presented as a novel noise reduction method that attempts to

provide significant noise reduction without perceivable signal distortion. This approach is

hereafter referred to as Perceptual Noise Ratio Filter (PNRF).

While the other methods presented above were originally implemented using different
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masking models, this makes comparison of the methods difficult. Since the focus of this

thesis is more on noise reduction methods rather than the auditory models, the methods

described in the above section were implemented using the same auditory model.

4.3.1 Choice of Masking Model

The PEAQ auditory model from ITU-R BS.1387 was chosen as the masking model since by

virtue of being from a recognized standard, it is unambiguously defined and well tested [41].

Also, its similarity to the Johnston model (which is primarily used in speech oriented

methods) and PAQM allows its integration with noise reduction methods based on these

perceptual models.

While Soulodre’s auditory model offers the advantage of being in the linear frequency

domain, it is not completely specified in [4]. It is also computationally more complex,

requiring calculation of all frequency bins, whereas perceptually based models group many

bins in the higher frequencies.

4.3.2 PNRF Implementation

max(x,0)+
ITU

Perceptual
Model

ITU
Perceptual

Model

Mapping into
Linear Frequency

Domain

max(x,  )α

+
−

X(f)

W(f)

y

x

Filter Smoothing

G(f)

x/y

Fig. 4.2 Implementation of PNRF Gain Function

Figure 4.2 shows how the PNRF method is implemented, as the internals of the “Gain

Calculation” block of Figure 3.1. In this figure, the “ITU Perceptual Model” represents

the calculation of the exitation pattern as described in Section 4.1.4. Since the exitation

pattern is calculated in the perceptual domain, the ratio of the exitation patterns must be
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converted back into the linear domain, as described below1. The resulting filter is smoothed

with λF = 0.01, and constrained to a minimum of α = 0.1 to further reduce musical noise.

4.3.3 Implementation Issues

All methods were implemented using the same time- to frequency-domain conversion, based

on the requirements for the PEAQ model. The size of the DFT is chosen such that the bin

spacing (fs/M , see Sec. 3.1.1) does not exceed the bandwidth of the smallest group in the

auditory model (in the case of PEAQ, 23.445 Hz). Also, the order of the DFT should be

a power of 2, such that the more efficient Fast Fourier Transform (FFT) can be used [26].

Overlap between frames is set at 50%, using a Hanning window, as specified by the PEAQ

model.

When used at a sampling frequency of fs = 8000 Hz, frames are spaced 256 samples

(32 ms) apart. For audio processing, sampling frequency being either fs = 44100 Hz or

fs = 48000 Hz, frames are spaced 1024 samples (23.22 ms and 21.33 ms respectively) apart.

Since for testing the clean signal was available, the problem of accurate speech detection

(by use of a VAD, see Sec. 3.1.5) could be avoided. Instead, the clean signal was used to

determine periods of speech activity, though the noise estimate was obtained from the

noisy signal. For the noise estimate, a forgetting factor of λN = 0.97 (equivalent to a time

constant of about 33 frames, or about 1 s) was used.

4.3.4 Parameters and Modifications

For methods with adjustable parameters, it was attempted to achieve a reasonable tradeoff

between musical noise, residual noise, and signal distortion.

Boll’s noise suppression method, required by the algorithm proposed by Haulick et

al, also serves as a good reference point for evaluation of auditory based methods. The

parameters used are a = 2 for power spectral subtraction, an oversubtraction factor k = 1.5,

and a spectral floor α = 0.1. Of note is especially the high value of α = 0.1, which is based

on preliminary testing, where the musical noise was deemed to be more disturbing than

the original noise.

The parameters for Virag’s method are given in [8], and were kept as given. However,

1Note that the exitation patterns are never zero due to the internal noise, and thus the division is always
defined
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the “smoothing function” of G(m, p) is not specified explicitly and was omitted in this

implementation.

The noise suppression scheme of Tsoukalas et al was implemented with some modifi-

cations. The most significant modification made was to fix the number of iterations to 4.

One reason for using a fixed number of iterations was partially for computing efficiency,

since this allowed all frames to be processed at once. Also, it was found that the value

of aCB does not always converge to zero, or do so extremely slowly, possibly due to the

different auditory model. Additionally, throughout every iteration, the resulting filter was

constrained to the minimum noise floor (as with Boll’s method above, α = 0.1) to avoid

the signal distortion that is otherwise present. Finally, the exponent v was set to 1, as used

by Tsoukalas et al.

Mapping from perceptual into linear domain

Most perceptually motivated methods require a mapping from the perceptual domain (in

the PEAQ model, each group represents 0.25 Bark) back to the linear frequency domain.

Since the denoised signal is created by use of an inverse DFT, the filter G must ultimately

be in linear frequency domain. The PEAQ model was intended for the comparison of two

signals, and thus there is no provision for inverse mapping the masking threshold back to

SPL levels in linear domain.

At issue is if the masking threshold value calculated by the PEAQ model should be

regarded as an absolute level constant within the critical band group, or if the value rep-

resents the total energy that the masked signal has to exceed within that group in order

to be audible. Informal testing suggested that the former interpretation would yield better

results, and thus was used in the implementation of the methods.

4.4 Summary

This chapter has presented various ways of modeling the human hearing system, most of

which were intended for coding of speech or audio signals. It was shown how these auditory

models were incorporated in noise suppression or speech enhancement algorithms. A new

method, based on a noise suppressor originally developed for a specific problem is proposed

as a good general noise suppression method. Finally, it is described how this method, and

others for comparison, is implemented with one of the auditory models.
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Chapter 5

Results

This chapter presents an evaluation of the enhancement techniques described in the pre-

vious chapters. Ideally, an evaluation of all the presented noise reduction methods and

comparison with the proposed PNRF by formal subjective listening tests should be con-

ducted. However, due to the complexity, time and resources required, formal testing is not

feasible within the scope of this thesis. Instead, the informal testing as presented in this

chapter is intended to show the potential of the methods in a real-world application.

5.1 Test data

The test data, used for both objective and subjective testing, was chosen to represent

a typical application of a noise suppression system for speech enhancement. The signal

consisted of four sentences, two spoken by a male and two by a female. The sentences

were originally recorded separately under controlled conditions at a sampling frequency

of 48 kHz, using linear 16-bit encoding. For the testing, the signal was downsampled to

8000 Hz, and the selected sentences were concatenated with a 1 s pause between each

sentence.

The noise was taken from the SPIB (Signal Processing Information Base) at Rice Uni-

versity [48]. It consist of a recording of the interior of a automobile driving at 120 km/h,

in rainy conditions. The original was sampled at 19.98 kHz using 16-bit linear encoding,

and for this experiment was also downsampled to 8000 Hz.

Before adding the two signals, both were filtered by a 120 Hz highpass filter, as used

by the EVRC noise suppressor. The test signals were created with SNRs of 0 dB and

2001/07/26
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6 dB, which represents comparatively high noise levels (in contrast, the objective measures

to assess SNR improvement for the AMR noise suppressor (GSM 06.78, annex E) specify

test signals using car noise in the range of 3 dB to 15 dB SNR [49]). For the purposes of

calculating the level at which noise is added to the speech, the speech level was calculated

according to ITU-T recommendation P.56 [50].

5.2 Objective Comparisons

Objective quality comparisons of speech are intended to predict the preference a human lis-

tener would indicate. The results of an ideal objective measure would be indistinguishable

from those obtained from human observers. This means the objective comparison method

would require knowledge of all levels of human speech processing, such as psychoacoustics,

acoustic-phonetics, syntax, semantics, etc. Since most speech processing systems (either

coders or noise reduction systems) do not produce distortions in the higher levels of percep-

tion (such as syntax or semantics), these aspects can generally be ignored when comparing

signals produced from the same initial unprocessed signal [51].

While there are objective measures incorporating psychoacoustic models (the mask-

ing models described in Sections 4.1.2 and 4.1.4 are from such methods), in this chapter

only basic objective quality measures are used. Basic objective measures, such as the

Signal-to-Noise Ratio (SNR) and the Segmental SNR (SNRSEG) used below, are compactly

computable functions that can be uniformly applied to all forms of speech distortion in

order to estimate subjective quality [51].

SNR measures are generally applicable only in sample-by-sample based processing sys-

tems, and while not good at comparing dissimilar distortions, generally perform well when

ranking similar distortions. SNR measures are not able to provide fine distinctions.

In the following evaluations, three noise measures are used, SNR, SNRSEG, and SNR

Improvement (SNRIMPR). Of these, the first two are commonly used to evaluate waveform

coders, while the last is specific to evaluating noise reduction methods. The SNR is defined

as

SNR = 10 log10

∑
n

|s(n)|2∑
n

|s(n)− ŝ(n+ ∆p)|2
(dB), (5.1)

where s(n) and ŝ(n) represent the clean and estimated clean speech, respectively. The
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offset ∆p accounts for the process delay of the noise reduction algorithm. However, the

SNR measure has specific shortcomings where strong signal sections affect the measure

more than weak signal sections [11]. The SNRSEG, defined as

SNRSEG =
10

P

∑
p

log10

N−1∑
n=0

|s(n+Np)|2

N−1∑
n=0

|s(n+Np)− ŝ(n+Np+ ∆p)|2
(dB), (5.2)

averages the SNR of segments of length N samples long, usually around 16 ms. Since in

the case of quantized signals
∑

n |s(n)|2 or
∑

n |s(n) − ŝ(n + ∆p)|2 can be zero over short

sections, the following alternate form is used in the presented results. Using

SNRSEG = 10 log10

(
10
∑
p
SS(p)
P − 1

)
(dB), (5.3)

where

SS(p) = log10

(
1 +

N−1∑
n=0

|s(n+Np)|2

η +
N−1∑
n=0

|s(n+Np)− ŝ(n+Np+ ∆p)|2

)
, (5.4)

η is a small value to prevent division by zero, and the addition of the unity term prevents

a log(0) condition. Also, due to the addition of the unity term, segments with SNR below

0 dB are discounted. This results in a measure that balances the strong and weak sections

of the signal.

The third basic noise measure used is the SNRIMPR, which is used to evaluate the

performance of noise suppression algorithms [8, 52]. It is given by the difference between

the input and output segmental SNR:

SNRIMPR =
1

P

∑
p

10 log10

N−1∑
n=0

|υ(n+ pN)|2

N−1∑
n=0

|s(n+Np)− ŝ(n+Np+ ∆p)|2
(dB), (5.5)
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where υ(n) is the background noise that was added to the clean speech signal (see Ch. 3).

Signal

Noise Delay

Delay

Noise Suppression

under test

SNR

SNR SEG

SNR IMPROV

Fig. 5.1 Setup for obtaining SNR, SNRSEG, and SNRIMPR.

Figure 5.1 summarized the testing setup for the objective measurements. The noise,

attenuated to achieve the desired initial SNR, is added to the signal, which is processed by

the method being evaluated. The signal and noise are delayed to account for the process

delay before being used to calculate the SNR, SNRSEG, and SNRIMPR.

Table 5.1 shows the results of objective measurements, sorted in descending order of

SNRIMPR, of the speech signal mixed with the vehicle interior noise at an initial SNR of

0 dB.

Table 5.1 Objective measurement results with 0 dB initial SNR

Method SNRIMPR SNR SNRSEG

Tsoukalas (Speech) 14.45 9.27 1.64
PNRF 12.98 6.94 0.161
Tsoukalas (Audio) 10.54 5.78 1.40
EVRC 8.81 6.25 −0.101
Virag 8.24 4.18 1.56
Boll 7.26 3.84 0.672
Haulick 7.25 3.84 0.662

The data presented in Table 5.1 suggests that the proposed method (PNRF) performs

well when evaluated by the SNRIMPR and SNR measurements. Also, the ranking by these

two measures is reasonably similar (in the plain SNR measure, the EVRC algorithm out-

performs the audio enhancement method by Tsoukalas et al).
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Perhaps most surprising is the result from the SNRSEG measurement, which does not

correlate well with the rankings of the other measures. This may be due to the higher

emphasis on the signal sections with low energy. As implemented, most noise reduction

methods leave significant amounts of residual noise to ‘hide’ artifacts (see Sec. 4.3.4).

The next table, Table 5.2 shows the results obtained using an initial SNR of 6 dB

(vehicle interior noise). Again, the table is sorted by the SNRIMPR result.

Table 5.2 Objective measurement results with 6 dB initial SNR

Method SNRIMPR SNR SNRSEG

Tsoukalas (Speech) 12.93 12.52 4.02
PNRF 11.28 10.27 2.44
Tsoukalas (Audio) 9.46 10.88 4.01
Virag 7.85 9.99 4.49
EVRC 7.82 10.62 2.55
Boll 6.85 9.55 3.74
Haulick 6.83 9.54 3.72

As in Table 5.1, the SNRIMPR and SNR measurements correlate well, and suggest that

the PNRF performs well ahead of some of the older methods. Comparing Table 5.1 to

Table 5.2, it is notable that both the SNR and SNRSEG measurements increased signifi-

cantly, and (as can be expected) that the SNRIMPR decreased slightly. These differences

can be explained by the fact that all the algorithms attempt to only reduce the noise to

acceptable levels, rather than removing the noise completely. Thus, with a higher initial

SNR, the amount of processing is reduced, reducing the SNRIMPR while increasing the SNR

and SNRSEG measurements.

5.3 Subjective Comparisons

Since the intent of the noise suppression schemes presented is to improve the perceived

quality of a signal, subjective evaluation by human listeners is not just essential, but key

to evaluating the proposed method. The methods for formal subjective testing are rigidly

specified; most common in the telecommunications field is Mean Opinion Score (MOS)

testing, as specified by the ITU-T recommendations P.80 [53] and P.830 [54].
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In the subjective testing for this thesis, a simpler A-B comparison was used. In this

test, each subject is presented with two results from noise suppression algorithms, and has

to indicate whether the first or the second result is preferred1.

The A-B test was prepared by first creating n results to be compared to each other.

These results were combined by creating testfiles consisting of two results separated by a 1 s

pause. Thus n2 − n testfiles are created consisting of all possible combinations of different

results. However, this results in a large number of testfiles if n is large.

To reduce the number of test pairs, two of the methods were excluded after informal

listening tests. The method proposed by Haulick et al was excluded because it provided

little additional processing when compared to Boll’s method. This is clearly visible from

the objective results above. In addition the difference between the signal processed by

Boll’s and Haulick’s method was found to be in the order of 40 dB SNRSEG. Thus, only

Boll’s method was included in the test suite, to act as a baseline reference.

Also excluded from the test suite was Tsoukalas’ method for audio signal enhancement.

In initial testing it was decided that the amount of musical noise produced by this method

was very strong and disturbing2.

However, one additional comparison file was included to verify that processing provided

an overall improvement. This additional file consisted of the unprocessed speech file with

3 dB (labeled Ref+3 dB) less noise than the original noisy file.

Subjects found even the reduced set (30 testfiles) to be quite tedious to evaluate. No

specific listening instructions were given, though two or three randomly selected test pairs

were played to the subject before the responses were recorded, to avoid a shift in focus

while familiarizing the subject with the testing procedure.

The sound was reproduced on a pair of self-powered loudspeakers typical for a computer

workstation. The subjects were free to adjust the volume to their liking. Playback was

directly from a 16-bit linear encoded sound file to the speakers. The listening test was per-

formed in a small office with some ambient noise, mostly due to the computer workstation.

This setup was chosen to represent a typical speech playback situation.

The following data was obtained by presenting 12 subjects with the processed speech

files as described. However, given the duration of each test, not all the subjects participated

1A “No Preference” response was allowed
2One subject referred to the musical noise as “bathroom noise.” Musical noise created by algorithms

incorporating a perceptual model has a very different character than musical noise created by an algorithm
operating in linear frequency domain.
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in both tests. The subjects were students aged 21 to 28 and mostly from within the

engineering faculty.

In the first test (speech with vehicle noise added at 0 dB) a total of 9 subjects (5

male and 4 female) participated. The results, shown in Table 5.3, give the percentage of

responses in which the “compared” method was preferred over PNRF, the percentage for

which PNRF was preferred over the compared method, and the percentage of responses

indicating no preference.

Table 5.3 Subjective results for speech segments at 0 dB SNR

Test method Test method preferred PNRF preferred no decision

Tsoukalas (Speech) 61% 33% 6%
EVRC 33% 61% 6%
Ref+3 dB 22% 72% 6%
Virag 6% 94% 0%
Boll 6% 94% 0%

The results presented in Table 5.3 show some agreement with the objective results in

Table 5.1. Tsoukalas’ method for speech enhancement outperforms all other methods. How-

ever, given the small sample size (6% representing one response), the differences between

Tsoukalas’ method, PNRF, and EVRC are too close to draw conclusions (Note that the

comparison between Tsoukalas’ method and EVRC also yielded a preference for Tsoukalas’

of 61%, and a preference for EVRC of 33%). Interestingly, at this noise level, subjects

showed a bias towards choosing the second sample (“B”) played. Of the Tsoukalas’ versus

PNRF comparisons, 13 answers were in favour of the second sample, but only 4 in favour

of the first sample.

Also noteworthy is that based on comments by the subjects, the poor performance of

Boll’s and Virag’s methods is mainly due to the musical noise. In the test, Virag’s method

was preferred over Boll’s in 78% of the responses. Full results are tabulated in Appendix B.

The second test was performed using 8 subjects, 4 male and 4 female. The results for

this test are shown in Table 5.4. As in the previous table, only the comparison with PNRF

is shown, and sorted accordingly.

Table 5.4 shows a clearer preference of PNRF over most of the other methods, again

with the exception of Tsoukalas’ method. More so than in the previous test, the preference
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Table 5.4 Subjective results for speech segments at 6 dB SNR

Comparison method Comparison preferred PNRF preferred no decision

Tsoukalas (Speech) 56% 38% 6%
EVRC 13% 81% 6%
Ref+3 dB 0% 100% 0%
Virag 0% 100% 0%
Boll 0% 100% 0%

of Tsoukalas’ method over PNRF is too small to generalize this result. However, the

preference of PNRF over EVRC is much more pronounced. The complete aggregate results

can be found in Appendix B.

Overall, it was found that listeners quickly focused on the musical noise in the processed

signal. When asked about the musical noise after the tests, most subjects cited it as the

main factor in making a decision about which method was preferred. Some noted the

distortion in the speech signal, but before being specifically asked about it, considered

it a secondary factor in the overall quality of the signal. It can be argued that since

during a single test the subject hears the same 4 sentences 60 times, the subject’s focus

quickly shifts from the actual speech to the background noise, which varies considerably

between the individual noise reduction methods. This could explain the slight preference

of Tsoukalas’ speech enhancement method (which has considerable speech distortion, but

almost no musical noise) over Soulodre’s PNRF method which has some musical noise, but

little detectable distortion.

5.4 Summary

This chapter presented the results from both objective and subjective comparisons of the

proposed noise reduction method with other speech enhancement methods. The proposed

method, derived from Soulodre’s method for removing camera noise from film soundtracks,

is shown to perform well in comparison to most of the other methods discussed in the pre-

vious chapter. The only method consistently outperforming Soulodre’s method in objective

and subjective measurements is the speech enhancement method proposed by Tsoukalas et

al., which focuses on suppressing musical noise at the expense of signal distortion.
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Chapter 6

Conclusion

In this thesis, the problem of acoustic noise suppression is explored, using properties of the

human hearing system in an attempt to improve performance. It was shown that using

masking properties of the hearing system allows for improved noise reduction. A novel

method for noise reduction in speech signals has been proposed. This method was shown

to outperform non-auditory based methods, and compared well with other perceptually

motivated noise reduction methods. It was found that the proposed method, Soulodre’s

PNRF combined with the ITU’s PEAQ auditory model, had more musical noise but less

signal distortion that a method proposed by Tsoukalas et al, which obtained marginally

better results in informal subjective testing.

6.1 Summary

The problem of noise reduction in speech signals and audio signals was introduced. Noise

reduction is used in the telecommunication field to improve intelligibility or perceived qual-

ity of the signal. Another area where noise reduction is applied is in the process of audio

archive restoration. These different fields have distinct requirements, that cannot always be

simultaneously satisfied, and thus various methods for noise reduction have been developed.

Widely used in the problem of noise reduction in speech signals are methods based on the

processing of short-time spectral amplitudes. These methods have been further improved

by using an auditory model to reduce the amount of processing applied to the signal while

maintaining the perceived level of noise suppression.

Chapter 2 presents an overview of the human hearing system. The human auditory

2001/07/26
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system converts sound waves into signals that are received by the brain. The acoustic

signal is transformed into a displacement of the basilar membrane, which causes nerve cells

to react. Nonlinearities in this system, such as interaction between nerve cells and the

behavior of the basilar membrane, give rise to masking effects. These masking effects cause

some sounds to be inaudible in the presence of other sounds. Auditory models are used to

predict these masking effects.

In Chapter 3 some non-auditory noise reduction methods are introduced. Spectral

subtraction is a common method, and is based on modifying the short-time spectral shape of

the signal. It is assumed that the spectrum of the noise is relatively stationary, and that the

power spectra of the clean signal and the noise are additive. However, spectral subtraction

and related methods create artifacts in the estimated signal, such as musical noise and

distortion. These artifacts are disturbing to the listener, and should be avoided. Other

methods for noise reduction have been developed that attempt to increase performance to

reduce residual noise, musical noise, and signal distortion.

Models for estimating the masking threshold and their application in noise reduction

methods are described in Chapter 4. Different auditory models were developed for speech

coding methods, audio coding methods, objective perceptual quality measures, and noise

reduction. These models are used in noise reduction methods to iteratively estimate the

clean signal, estimate the clean signal psychoacoustic representation, or identify audible

musical noise. A novel noise reduction method is proposed, based on an auditory model

from a standardized perceptual quality assessment method, and a noise reduction rule

designed to remove a specific type of noise from audio signals. For comparison, other

perceptual noise reduction methods have been implemented using the same auditory model.

An evaluation of the proposed method (PNRF), and a comparison with the other meth-

ods is presented in Chapter 5. Objective and informal subjective results show that the

PNRF compares favorably to other perceptual noise reduction methods. Only one method,

exhibiting less musical noise at the expense of higher signal distortion, is rated as being

slightly better in the objective and subjective results.

6.2 Future Research Directions

Many issues are unresolved in the problem of noise reduction. The noise reduction method

presented in this thesis shows that effective noise reduction with little or no perceivable
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distortion is attainable. This section addresses some issues that may further improve the

performance of the proposed method, and areas other than narrowband speech enhance-

ment where the PNRF could be effectively applied as well.

6.2.1 Iterative clean speech estimation

In the objective and subjective results presented in Chapter 5, Tsoukalas’ method outper-

forms PNRF by fairly small margins. The good performance of Tsoukalas’ method may

in part be attributed to its iterative nature. Using the result of one iteration of the noise

reduction process as estimate of the clean speech signal for the next, the clean speech es-

timate is successively improved. A similar approach can be used with the PNRF, since it

uses an initial clean speech estimate based simply on Boll’s method. Since PNRF achieves

good results with only one iteration, a much smaller number of iterations than used by

Tsoukalas’ method would be necessary to match results with Tsoukalas’ method.

6.2.2 Soft-decision VAD

As mentioned in Chapter 5, test subjects focused on the musical noise that was audible in

the speech pauses of the processed signal. Since for the noise estimation it is necessary to

identify the active speech segments using a Voice Activity Detector, this information may be

used to modify the parameters of the algorithm dynamically. Care should be taken to avoid

sudden changes, which would sound unnatural. One method to work around this problem

would be to use a VAD that provides more information than a simple speech/silence de-

cision. What kind of information a VAD should generate and how this would be used by

the algorithm are issues that need to be addressed.

6.2.3 Application to wide-band signals

While briefly discussing the applications of noise reduction in other areas, the focus of this

thesis has mainly been on the enhancement of speech signal sampled at telephone band-

width. However, since both the suppression rule and the auditory model were originally

developed for use in wideband (48000 Hz sampling rate) systems, the PNRF should be

applicable equally well to wideband speech (typically sampled at 16000 Hz) and audio sig-

nal enhancement. The biggest obstacle in the latter application is reliable signal/silence

detection, to obtain a good noise spectrum estimate.
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6.2.4 Lower complexity masking model

The evaluation of auditory models and noise suppression algorithms in this thesis was

focused primarily on performance. The issue of computational complexity has been men-

tioned only briefly. However, in a practical setting, this issue can be very important if the

processing must be performed on a portable device, or on a fixed device that processes

several hundred channels independently. Thus, reducing the complexity of the algorithm

or the model can reduce the cost to the end-user.

One target for optimization would be the nonlinear normalized summation step of the

PEAQ model. This step was found to be one of the slowest parts of the masking threshold

calculation. It would be worth investigating if this step can be simplified without affecting

the performance of the overall noise suppression algorithm.
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Appendix A

Frequency bands for PEAQ

Group Lower Freq. Centre Freq. Upper Freq. Freq. Width

0 80.000 91.708 103.445 23.445

1 103.445 115.216 127.023 23.577

2 127.023 138.870 150.762 23.739

3 150.762 162.702 174.694 23.932

4 174.694 186.742 198.849 24.155

5 198.849 211.019 223.257 24.408

6 223.257 235.566 247.950 24.693

7 247.950 260.413 272.959 25.009

8 272.959 285.593 298.317 25.358

9 298.317 311.136 324.055 25.738

10 324.055 337.077 350.207 26.151

11 350.207 363.448 376.805 26.598

12 376.805 390.282 403.884 27.079

13 403.884 417.614 431.478 27.594

14 431.478 445.479 459.622 28.145

15 459.622 473.912 488.353 28.731

16 488.353 502.950 517.707 29.354

17 517.707 532.629 547.721 30.014

continued on next page
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Group Lower Freq. Centre Freq. Upper Freq. Freq. Width

18 547.721 562.988 578.434 30.713

19 578.434 594.065 609.885 31.451

20 609.885 625.899 642.114 32.229

21 642.114 658.533 675.161 33.048

22 675.161 692.006 709.071 33.909

23 709.071 726.362 743.884 34.814

24 743.884 761.644 779.647 35.763

25 779.647 797.898 816.404 36.757

26 816.404 835.170 854.203 37.799

27 854.203 873.508 893.091 38.888

28 893.091 912.959 933.119 40.028

29 933.119 953.576 974.336 41.218

30 974.336 995.408 1016.797 42.461

31 1016.797 1038.511 1060.555 43.758

32 1060.555 1082.938 1105.666 45.111

33 1105.666 1128.746 1152.187 46.521

34 1152.187 1175.995 1200.178 47.991

35 1200.178 1224.744 1249.700 49.522

36 1249.700 1275.055 1300.816 51.116

37 1300.816 1326.992 1353.592 52.776

38 1353.592 1380.623 1408.094 54.502

39 1408.094 1436.014 1464.392 56.298

40 1464.392 1493.237 1522.559 58.167

41 1522.559 1552.366 1582.668 60.109

42 1582.668 1613.474 1644.795 62.128

43 1644.795 1676.641 1709.021 64.226

44 1709.021 1741.946 1775.427 66.406

45 1775.427 1809.474 1844.098 68.671

46 1844.098 1879.310 1915.121 71.023

continued on next page
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Group Lower Freq. Centre Freq. Upper Freq. Freq. Width

47 1915.121 1951.543 1988.587 73.466

48 1988.587 2026.266 2064.590 76.003

49 2064.590 2103.573 2143.227 78.637

50 2143.227 2183.564 2224.597 81.371

51 2224.597 2266.340 2308.806 84.208

52 2308.806 2352.008 2395.959 87.154

53 2395.959 2440.675 2486.169 90.210

54 2486.169 2532.456 2579.551 93.382

55 2579.551 2627.468 2676.223 96.672

56 2676.223 2725.832 2776.309 100.086

57 2776.309 2827.672 2879.937 103.627

58 2879.937 2933.120 2987.238 107.302

59 2987.238 3042.309 3098.350 111.112

60 3098.350 3155.379 3213.415 115.065

61 3213.415 3272.475 3332.579 119.164

62 3332.579 3393.745 3455.993 123.415

63 3455.993 3519.344 3583.817 127.823

64 3583.817 3649.432 3716.212 132.395

65 3716.212 3784.176 3853.348 137.136

66 3853.348 3923.748 3995.399 142.051

67 3995.399 4068.324 4142.547 147.148

68 4142.547 4218.090 4294.979 152.432

69 4294.979 4373.237 4452.890 157.911

70 4452.890 4533.963 4616.482 163.592

71 4616.482 4700.473 4785.962 169.480

72 4785.962 4872.978 4961.548 175.585

73 4961.548 5051.700 5143.463 181.915

74 5143.463 5236.866 5331.939 188.476

75 5331.939 5428.712 5527.217 195.278

continued on next page
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Group Lower Freq. Centre Freq. Upper Freq. Freq. Width

76 5527.217 5627.484 5729.545 202.329

77 5729.545 5833.434 5939.183 209.637

78 5939.183 6046.825 6156.396 217.214

79 6156.396 6267.931 6381.463 225.067

80 6381.463 6497.031 6614.671 233.208

81 6614.671 6734.420 6856.316 241.646

82 6856.316 6980.399 7106.708 250.392

83 7106.708 7235.284 7366.166 259.458

84 7366.166 7499.397 7635.020 268.854

85 7635.020 7773.077 7913.614 278.594

86 7913.614 8056.673 8202.302 288.688

87 8202.302 8350.547 8501.454 299.152

88 8501.454 8655.072 8811.450 309.996

89 8811.450 8970.639 9132.688 321.237

90 9132.688 9297.648 9465.574 332.887

91 9465.574 9636.520 9810.536 344.962

92 9810.536 9987.683 10168.013 357.477

93 10168.013 10351.586 10538.460 370.447

94 10538.460 10728.695 10922.351 383.891

95 10922.351 11119.490 11320.175 397.824

96 11320.175 11524.470 11732.438 412.264

97 11732.438 11944.149 12159.670 427.231

98 12159.670 12379.066 12602.412 442.742

99 12602.412 12829.775 13061.229 458.817

100 13061.229 13296.850 13536.710 475.480

101 13536.710 13780.887 14029.458 492.748

102 14029.458 14282.503 14540.103 510.645

103 14540.103 14802.338 15069.295 529.192

104 15069.295 15341.057 15617.710 548.415

continued on next page
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Group Lower Freq. Centre Freq. Upper Freq. Freq. Width

105 15617.710 15899.345 16186.049 568.339

106 16186.049 16477.914 16775.035 588.986

107 16775.035 17077.504 17385.420 610.385

108 17385.420 17690.045 18000.000 614.580
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Appendix B

Subjective testing results

Table B.1 Number of answers indicating preference of “A” at 0 dB initial
SNR

B
A Tsoukalas PNRF EVRC Ref+3dB Virag Boll

Tsoukalas 3 5 8 8 8
PNRF 1 4 6 9 8
EVRC 3 2 5 8 7
Ref+3dB 1 2 2 6 8
Virag 0 1 2 2 7
Boll 0 0 1 1 2

Table B.2 Number of answers indicating preference of “B” at 0 dB initial
SNR

B
A Tsoukalas PNRF EVRC Ref+3dB Virag Boll

Tsoukalas 5 3 1 1 1
PNRF 8 4 2 0 1
EVRC 6 7 4 1 2
Ref+3dB 8 7 7 2 0
Virag 9 8 7 6 2
Boll 9 9 8 7 7
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Table B.3 Number of answers indicating preference of “A” at 6 dB initial
SNR

B
A Tsoukalas PNRF EVRC Ref+3dB Virag Boll

Tsoukalas 5 8 7 8 8
PNRF 2 7 8 8 8
EVRC 3 2 7 8 8
Ref+3dB 1 0 3 6 8
Virag 0 0 1 3 4
Boll 0 0 0 1 1

Table B.4 Number of answers indicating preference of “B” at 6 dB initial
SNR

B
A Tsoukalas PNRF EVRC Ref+3dB Virag Boll

Tsoukalas 2 0 1 0 0
PNRF 5 0 0 0 0
EVRC 5 6 1 0 0
Ref+3dB 7 8 5 1 0
Virag 8 8 6 4 3
Boll 8 8 8 6 7
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[5] T. Painter and A. Spanias, “Perceptual coding of digital audio,” Proc. IEEE, vol. 88,
pp. 451–513, Apr. 2000.

[6] D. E. Tsoukalas, J. N. Mourjopoulos, and G. Kokkinakis, “Speech enhancement based
on audible noise suppression,” IEEE Trans. Speech and Audio Processing, vol. 5,
pp. 497–514, Nov. 1997.

[7] D. E. Tsoukalas, J. N. Mourjopoulos, and G. Kokkinakis, “Perceptual filters for audio
signal enhancement,” J. Audio Eng. Soc., vol. 45, pp. 22–35, Jan/Feb 1997.

[8] N. Virag, “Single channel speech enhancement based on masking properties of the
human auditory system,” IEEE Trans. Speech and Audio Processing, vol. 7, pp. 126–
137, Mar. 1999.
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