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Abstract

Audio coding paradigms depend on time-frequency transformations to remove statistical

redundancy in audio signals and reduce data bit rate, while maintaining high fidelity of

the reconstructed signal. Sophisticated perceptual audio coding further exploits perceptual

redundancy in audio signals by incorporating perceptual masking phenomena. This thesis

focuses on the investigation of different coding transformations that can be used to compute

perceptual distortion measures effectively; among them the lapped transform, which is

most widely used in nowadays audio coders. Moreover, an innovative lapped transform is

developed that can vary overlap percentage at arbitrary degrees. The new lapped transform

is applicable on the transient audio by capturing the time-varying characteristics of the

signal.
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Sommaire

Les paradigmes de codage audio dépendent des transformations de temps-fréquence pour

enlever la redondance statistique dans les signaux audio et pour réduire le taux de trans-

mission de données, tout en maintenant la fidélité élevée du signal reconstruit. Le codage

sophistiqué perceptuel de l’audio exploite davantage la redondance perceptuelle dans les

signaux audio en incorporant des phénomènes de masquage perceptuels. Cette thèse se

concentre sur la recherche sur les différentes transformations de codage qui peuvent être

employées pour calculer des mesures de déformation perceptuelles efficacement, parmi elles,

la transformation enroulé, qui est la plus largement répandue dans les codeurs audio de nos

jours. D’ailleurs, on développe une transformation enroulée innovatrice qui peut changer

le pourcentage de chevauchement à des degrés arbitraires. La nouvelle transformation en-

roulée est applicable avec l’acoustique passagère en capturant les caractéristiques variantes

avec le temps du signal.
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Chapter 1

Introduction

1.1 Audio Coding Techniques

Audio coding algorithms are concerned with the digital representation of sound using in-

formation bits. A number of paradigms have been proposed for the digital compression of

audio signals. Roughly, audio coders can be grouped as either parametric coders or wave-

form coders. The concept of perceptual audio coding is relevant in the latter case, where

auditory perception characteristics are applicable [1].

1.1.1 Parametric Coders

Parametric coders represent the source of the signal with a few parameters. Such coders

are suitable for speech signals since a good source model of speech production is available.

More specifically, the vocal tract is modelled as a time-varying filter that is excited by a

train of periodic impulses (voiced speech) or a noise source (unvoiced speech) [2]. The

parameters that characterize the filter are estimated, encoded and transmitted. In the

decoder, the signal is synthesized from the decoded model parameters. More advanced

parametric coders, such as the Code-Excited Linear Predictive (CELP) coders, may include

the error signal resulting from the parametric reconstruction to represent the excitation to

the vocal tract filter.
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1.1.2 Waveform Coders

Waveform coders try to accurately replicate the waveform of the original signal. Such

coders have been the best choice for audio encoding, since no appropriate source models

are available to general audio signals. Efficient waveform coders remove redundancy within

the coded signal by exploiting the correlation between signal components, either in time or

frequency domain. Perceptual coders additionally remove information that is irrelevant to

the perception of the signal.

Time domain waveform coders

Time domain coders perform the coding process on the time representations of the audio

data. The well-known coding methods in the time domain are [2] Pulse Code Modulation

(PCM), Differential Pulse Code Modulation (DPCM) and Adaptive Differential Pulse Code

Modulation (ADPCM). For audio, the PCM scheme typically spends 16 bits to quantize

each time sample. Although PCM provides high quality audio, the required bit rate is

quite high. In DPCM, instead of the time samples, the difference between the original and

predicted signal is quantized, which has a lower variance than the original signal and thus

requires fewer bits to quantize. ADPCM, an enhanced version of DPCM, adapts the pre-

dictor and quantizer to local characteristics of the input signal and lowers the computation

complexity.

Frequency domain waveform coders

Frequency domain coders carry out the compression on a frequency representation of the

input signal. Main advantages of frequency domain coders include the ability to indepen-

dently encode different parts of the frequency spectrum, adaptive bit allocation to shape

the quantization noise, and the reconstruction of better sound quality [1]. Frequency do-

main coders are commonly categorized into two groups: subband coders and transform

coders. Subband coders employ a small number of bandpass filters to split the input signal

into subband signals which are coded independently. At the receiver the subband signals

are decoded and summed up to reconstruct the output signal. Transform coders use a

transformation to convert blocks of the input signal to frequency coefficients. Several ad-

vantages result from encoding the input signal in the transform domain [3]. Firstly, effective

transforms compact the information of the signal into fewer coefficients which allows many
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transform coefficients to be set to zero without affecting the quality. Secondly, transform

coefficients are less correlated than temporal samples of the input signal, ensuring in a

more efficient usage of quantizers. Furthermore, good frequency resolution is achievable

by judiciously selecting the transformation. As such, frequency transform coders are the

method of choice for the application of auditory masking characteristics.

Perceptual waveform coders

Perceptual audio coders work in frequency domain by employing a transform to decompose

the input signal into spectral coefficients [1]. The auditory masking threshold is calculated

from the signal spectrum. The transform coefficients are quantized and coded using the

masking threshold. For example, if the coefficients have an energy less than the masking

threshold, they are not quantized and not transmitted. Thus, the perceptual redundancy

(these uncoded coefficients) is removed from the signal.

1.2 Time-to-Frequency Transformations

Time-frequency transformation maps the time-domain input to a set of coefficients which

cover the entire spectrum and represent the frequency-localized signal energy. By confin-

ing significant values to subset of coefficients, the transformation plays an essential role

in the reduction of statistical redundancies. Additionally, by providing explicit informa-

tion about the distribution of signal and hence masking power over the time-frequency

plane, the transformation also assists in the identification of perceptual redundancies when

used in conjunction with a perceptual model. As a result, both statistical and perceptual

redundancies in the signal are removed.

Coders typically segment input signals into quasi-stationary frames ranging from 2 to

50 ms in duration. Then the time-frequency mapping estimates the spectral components

on each frame, attempting to match the analysis properties of the human auditory system.

The time-frequency mapping section might contain [1]:

• Unitary transform;

• Time-invariant bank of critically sampled, uniform, or nonuniform bandpass filters;
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• Time-varying (signal-adaptive) bank of critically sampled, uniform, or nonuniform

bandpass filters.

The choice of time-frequency analysis methodology always depends on the overall system

objectives and design philosophy.

1.3 Thesis Contributions

Extensive research has been performed by audio coding specialists to incorporate transfor-

mations within medium to high rate coders. At low coding rates (for instance, 1 bit per

sample), some distortion is inevitable, which entails the need for a more effective repre-

sentation of spectral components. Recent research work is primarily concerned with 50%

overlapped and critically sampled transformations and their application to low-rate audio

coding, with the aim of reducing audible artefacts and improving the audio quality.

In the thesis, two state-of-the-art time-frequency transformations are first presented

and an assembly of transformation experiment results is analyzed (Chapter 4). They are

both based on 50% overlapped frames. It is concluded that a pure transformation achieves

better coding performance than a hybrid one (filter bank followed by a transformation). It

is also suggested that the power spectrum generated from the transform coefficients should

be used in the psychoacoustic analysis.

Moreover, a novel partially overlapped (less than 50%) transformation is proposed

(Chapter 5). It is developed to reduce the noise-to-mask ratio mismatch associated with

the 50% overlap transformations. At a smaller overlap, the novel transformation mitigates

the pre-echo artefact (one generated from the noise-to-mask ratio mismatch) when coding

transient audio events and delivers an overall better sound quality.

1.4 Thesis Synopsis

The thesis is organized into 6 chapters. Chapter 2 is concerned with the perceptual audio

coding. Starting with a brief overview of the human auditory masking, Chapter 2 discusses

the compression of audio in the perceptual domain with an emphasis on the psychoacoustic

modelling of the input audio, followed by the description of the structure of a generic

perceptual coder.
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In Chapter 3, we discuss lapped transforms and their importance to audio coding. A

thorough analysis of lapped transforms is given and the conditions for perfect reconstruction

of the output signal are obtained in a matrix form. The role of the prototype window is

investigated and the Modulated Lapped Transform (MLT) which is a special case of lapped

transforms is analyzed. Finally window (length) switching is described as a traditional

method to capture transient characteristics of audio.

Chapter 4 is dedicated to the evaluation of two widely used time-frequency transfor-

mations in the MPEG audio coding standards: hybrid filter bank (used in MP3) and pure

MDCT (Modified Discrete Cosine Transform) filter bank (used in AAC). Their performance

is compared based on informal subjective listening experiments. The comparison incorpo-

rated transforms for the masking threshold calculation in the psychoacoustic analysis.

In Chapter 5, we introduce the proposed partially overlapped lapped-transform, the Pre-

DST (Pre-filtered Discrete Sine Transform). The matrix representation of the transform is

obtained and the properties of perfect reconstruction and critical sampling are given. The

functionality of each module is described. A comparison is made between the performance

of Pre-DST and pure MDCT, based on the pre-echo mitigation.

Finally, a complete summary of our work is provided in Chapter 6, along with directions

for future related research.
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Chapter 2

Perceptual Audio Coding:

Psychoacoustic Audio Compression

Perceptual audio coding has become an important key technology for many types of multi-

media services these days. This chapter provides a brief tutorial introduction on a number

of issues in today’s low rate audio coders. After the discussion of psychoacoustic principles

in the first part of this chapter, the second part will focus on the perceptual model along

with the structure of generic perceptual audio coders using psychoacoustic approaches.

2.1 Human Auditory Masking

Audio coding algorithms must rely upon hearing models to optimize coding efficiency.

In the case of audio, the receiver is ultimately the human ear and sound perception is

affected by its psychoacoustic properties. For example, a speaker will be inaudible when

the background noise is loud. This is one of various masking instances.

Most current audio coders incorporate several psychoacoustic principles, including ab-

solute hearing thresholds, critical band analysis, and masking phenomena, to identify the

“irrelevant” signal information during signal analysis. Further, combination of these psy-

choacoustic notions with properties of signal quantization leads to compressed audio with

high fidelity.
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2.1.1 Hearing System

The hearing system converts sound waves into mechanical movement and finally into elec-

trical impulses perceived by the brain. This neuro-mechanical interaction in the ear is

processed by three main parts: the outer ear, the middle ear and the inner ear.

The outer ear is composed of the pinna (auricle), the ear canal (external auditory

meatus) and the eardrum (tympanic membrane) [4]. The pinna collects sounds (air pressure

waves) in the air and directs them towards the ear canal. The canal acts as a quarter-

wavelength resonator, amplifying sound pressures within the range of 3–5 kHz by as much

as 15 dB. The sound pressure makes the eardrum to vibrate and this way it is converted

into the mechanical energy.

The middle ear acts as an acoustical impedance-matching device that reduces the

amount of reflected wave and improves sound transmission. Additionally, when the sound

level exceeds a certain level, some of the tiny muscles in the middle ear contract to attenu-

ate the vibrations passing through the middle ear, and others contract to keep the stirrup

away from the oval window in order to weaken the vibrations passed to the inner ear [5].

The inner ear plays the most important role in perception within the auditory system. It

includes the cochlea [4], from which mechanical vibrations emanating from the oval window

are transformed into electrical impulses. The region of cochlea close to the oval window is

recognized as the base, whereas the inner tip is known as the apex. The basilar membrane

extends along the cochlea from the base to the apex. Each point along the basilar membrane

is associated with a Characteristic Frequency for which the amplitude of its vibrations is

maximal. The basilar membrane performs a frequency-to-place transformation and behaves

like a spectrum analyzer. The motion of the basilar membrane causes the bending of sensory

hair cells, leading to neural firings in the auditory nerve. Neural information propagates

to the brain where it undergoes cognitive processing.

2.1.2 Perception of Loudness

The absolute threshold of hearing indicates the minimum Sound Pressure Level (SPL) that

a sound must have for detection in the absence of other sounds. A mean threshold value

is obtained by averaging the individual thresholds of numerous listeners. The audibility

threshold exhibits a strong dependency on frequencies and is approximated by the function
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proposed in [6],

Tq(f) = 3.64(f/1000)−0.8 − 6.5e−0.6(f/1000−3.3)2 + 10−3(f/1000)4, (2.1)

where f is expressed in Hz and threshold in dB SPL. The threshold Tq(f) is illustrated in

Fig. 2.1.

Perceived loudness is a function of both frequency and level. Since coding algorithm

designers have no a priori knowledge regarding the actual playback levels (SPL), it is

typically assumed that the volume control (playback level) on a decoder will be set such

that the smallest possible output signal will be presented close to 0 dB SPL. Hence, a

scaling of loudness (SPL normalization) is needed and this procedure will be discussed in

details in Section 2.2.1.
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Fig. 2.1 Absolute threshold of hearing for normal listeners [6].

2.1.3 Critical Bands

As previously mentioned, a frequency-to-place conversion occurs within the cochlea that

affects the frequency selectivity of the hearing system. As a result, the cochlea can be viewed

from a signal-processing perspective as a bank of highly overlapping bandpass filters. The

critical band refers to the frequency distance that quantifies the cochlea filter passbands.

The importance of the critical bands comes from two facts. First, the hearing system

discriminates between energy in and out of a critical band. Within a critical band changes
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in stimuli greatly affect perception and beyond a critical band subjective responses decrease

abruptly. Additionally, the simultaneous masking property of the hearing system is related

to the critical bands. When two sounds have energy in the same critical band, the sound

having the higher level dominates the perception [2].

Experiments by Scharf have shown that the bandwidth of critical bands is a function

of their center frequencies [7]. While attempting to represent the inner ear as a discrete set

of non-overlapping auditory filters, Scharf determined that 25 critical bands were sufficient

to represent the audible frequency range of the ear. The bandwidth of the resulting critical

bands is listed in Table 2.1, with center frequencies spanning from 50 to 19.5 kHz.

Table 2.1 Critical bands measured by Scharf [7].

Band Center Freq. Bandwidth Band Center Freq. Bandwidth

No. (Hz) (Hz) No. (Hz) (Hz)

1 50 0–100 14 2150 2000-2320

2 150 100–200 15 2500 2320–2700

3 250 200–300 16 2900 2700–3150

4 350 300–400 17 3400 3150–3700

5 450 400–510 18 4000 3700–4400

6 570 510–630 19 4800 4400–5300

7 700 630–770 20 5800 5300–6400

8 840 770–920 21 7000 6400–7700

9 1000 920–1080 22 8500 7700–9500

10 1175 1080–1270 23 10500 9500–12000

11 1370 1270–1480 24 13500 12000–15500

12 1600 1480–1720 25 19500 15500–

13 1850 1720–2000

It is evident that the critical bandwidths are wider at lower frequencies than those at

higher frequencies. This nonlinear scale, on which the signal is processed in the inner ear,

is called the Bark scale (where an increment of one Bark corresponds to one critical band).

Zwicker suggested an analytical expression that converts from frequency in Hertz to the

Bark scale [4],

Z(f) = 13 arctan(0.00076f) + 3.5 arctan[(
f

7500
)2] Bark. (2.2)

The bandwidth of each critical band as a function of its center frequency can be ap-
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proximated by [4]

BW (f) = 25 + 75[1 + 1.4(
f

1000
)2]0.69 Hz. (2.3)

An alternative measure, employing the concept of the Equivalent Rectangular Bandwidth

(ERB) [8], was proposed by Moore and Glasberg. The discussion throughout the whole

thesis is based on Bark scale measure.

2.1.4 Masking Phenomena

Auditory masking refers to the process where one sound is rendered inaudible by the pres-

ence of another sound. Varieties of masking occur in daily life. For example, a speaker must

raise his/her voice in a very noisy environment in order to be understood. For applica-

tions on audio compression of discarding irrelevant spectral components, the simultaneous

masking is most useful.

Simultaneous masking occurs when the masker and the maskee (masked signal) are

presented to the hearing system at the same time. The nature of the masker as being

noise-like or tone-like has impacts on the masking effects. For the purpose of coding noise

shaping it is convenient to distinguish between only three types of simultaneous masking [1]:

noise-masking-tone (NMT), tone-masking-noise (TMN), and noise-masking-noise (NMN).

Different masking produces different masking power. For example, the masking threshold

associated with NMT is significantly greater than with TMN.

The effect of simultaneous masking is not only felt in the current critical band, but also

in the adjacent bands. This effect, also known as the Spread of Masking, is often modelled in

coding applications by an approximately triangular spreading function [9]. When interband

masking occurs, a masker centered within one critical band has some predictable effect on

detection thresholds in the other critical bands.

The masking threshold is an estimate of the maximum quantization noise that can be

injected into the signal and remains inaudible to human ear. The standard practice in

perceptual coding involves first classifying masking signals as either noise or tone, next

computing appropriate thresholds, then using this information to shape the quantization

noise spectrum beneath the thresholds. The following section describes Johnston’s model

on perceptual entropy.

Masking can also take place even when the masking tone begins after and ceases before

the masked sound. This is referred to as forward and backward masking respectively: they
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fall under the category of Temporal Masking.

2.2 Example Perceptual Model: Johnston’s Model

At the heart of any audio coder lies the auditory model. The goal of the digital model is

to quantify the “irrelevant” information so that perceptual redundancies can be extracted.

Various masking models have been proposed with different levels of accuracy and complex-

ity: Johnston’s Model [10], MPEG-1 Psychoacoustic Model 1 [11], AAC Audio Masking

Model [12], and PEAQ Model [13]. All of these models are based on the masking patterns

introduced in Section 2.1.4.

For our research, we use the auditory masking model proposed in [10] by Johnston.

Johnston’s model determines the energy threshold of the maximum allowable quantization

noise in each critical band such that quantization noise remains inaudible. We introduce

the functional mechanisms of the model and later the notion of perceptual entropy.

2.2.1 Loudness Normalization

As previously mentioned, some of the perceptual quality factors depend on the actual sound

pressure level (SPL) of the test signal. A normalization step is needed to fix the mapping

from input signal levels to loudness. The loudness normalization procedure in PEAQ Model

works as follows [13].

First, spectral coefficients (e.g., DFT coefficients) are obtained by taking a sine wave of

1019.5 Hz and 0 dB full-scale as the input signal. Then the maximum absolute value of the

spectral coefficients is compared to a 90 dB SPL reference level. The normalization factor

is calculated such that the full-scale sinusoid will be associated with an SPL near 90 dB.

A more appropriate normalization would involve the total energy preserved in the fre-

quency domain since sound pressure level is an energy phenomenon. Such a normalization

factor is independent of the frequency of the test sinusoid [14].

2.2.2 Masking Threshold Calculation

The first step in Johnston’s Model to calculate threshold corresponds to the critical band

analysis. The complex Fourier spectrum of the input signal is converted to the power
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spectrum as follows,

P (k) = Re2(X(k)) + Im2(X(k)), (2.4)

where X(k) represent the Discrete Fourier Transform (DFT) coefficients. The energy in

each critical band is calculated by partitioning the power spectrum into critical bands (see

Table 2.1) and then summed,

Bi =

bhi
∑

k=bli

P (k), (2.5)

where bli and bhi are the lower and upper boundaries of critical band i and Bi is the signal

energy in critical band i (here, one critical band corresponds to one Bark).

The Bark power spectrum (critical band spectrum) is spread to estimate the effects of

masking across critical bands. The spreading function S is described analytically by,

Sij = 15.81 + 7.5((j − i) + 0.474) − 17.5(1 + ((j − i) + 0.474)2)1/2 dB, (2.6)

where i and j represent the Bark indices of the masked and masking signal respectively. The

spread Bark spectrum is obtained by convolving the Bark spectrum Bi with the spreading

function. The convolution is implemented as a matrix multiplication,

Ci = Sij ∗ Bi, (2.7)

where Ci denotes the spread critical band spectrum. A conversion of Sij from its decibel

representation is required before carrying out the multiplication in the power spectrum

domain.

As tonal maskers and noise maskers generate different masking patterns, Johnston uses

the Spectral Flatness Measure (SFM) to determine the noise-like or tone-like nature of the

signal. The SFM is defined as the ratio of the Geometric Mean (GM) to the Arithmetic

Mean (AM) of the power spectrum

SFMdB = 10 log10

GM

AM
, (2.8)

and is further converted to a coefficient of tonality α, according to

α = min(
SFMdB

SFMdBmax

, 1), (2.9)
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where SFMdBmax = −60 dB. A signal that is completely tonal would result in α = 1,

whereas a purely noise-like signal would yield α = 0.

The two threshold offsets is geometrically weighted by the tonality coefficient α, 14.5

+i dB for tone-masking-noise and 5.5 dB for noise-masking-tone. The resulting offset Oi

is set as,

Oi = α(14.5 + i) + 5.5(1 − α) dB. (2.10)

The spread threshold estimate Ti is then obtained by subtracting Oi from the spread Bark

spectrum Ci

Ti = 10log
10

(Ci)−(Oi/10). (2.11)

The next step involves renormalization of the noise energy threshold. Johnston argued

that the spreading function increases the energy estimates in each band because of its

shape. The renormalization multiplies each Ti by the inverse of the energy gain, assuming

each band has unit energy. This renormalized Ti is designated as T̃i.

Finally, the threshold T̃i is compared to the absolute threshold of hearing Tqi and re-

placed by max[T̃i, Tqi], ensuring that masking thresholds do not demand a level of noise

below the absolute limits of hearing. In a manner identical to the SPL normalization

procedure, the final thresholds must be converted out of dB SPL by dividing back the

normalization factor.

2.2.3 Perceptual Entropy

For transparent coding (perceptually lossless), the quantization noise injected at each fre-

quency component must be set corresponding to the masking threshold. Then the total

number of bits required to quantize all components represents an estimate of the minimum

number of bits necessary to transmit that frame of the signal. The total bit rate divided

by the number of samples coded, represents the per-sample rate, namely the ”Perceptual

Entropy”.

By applying uniform quantization principles to the signal and associated set of mask-

ing thresholds, Johnston shows a lower bound on the number of bits required to achieve
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transparent coding [15],

PE =
1

N

25
∑

i=1

bhi
∑

k=bli

log2{2[round(
Re(X(k))

√

6Ti/(bhi − bli)
)] + 1}

+ log2{2[round(
Im(X(k))

√

6Ti/(bhi − bli)
)] + 1} (2.12)

where N is the number of spectral coefficients, Ti is masking threshold in critical band i

and round(.) denotes the nearest integer operation.

The measurement is applied on a frame-by-frame basis and the PE estimate is obtained

by choosing a worst case value. Using a 2048-point FFT with a 1/16 overlapped Hann

window, Johnston reported the PE of 2.1 bits/sample for transparent audio compression.

2.3 Perceptual Audio Coder Structure

Perceptual audio coders take into account mathematical models of human perception for

purposes of quantization and noise shaping and the coding algorithm is essentially a psy-

choacoustic algorithm. Fig. 2.2 shows the structure of a generic perceptual audio encoder,

including five primary parts: the filter bank, the psychoacoustic model, bit allocation,

quantization, and bitstream formatting.

Psychoacoustic

Model

Bit Allocation

Bitstream Formatting

Audio

Input

SMR

Bit

Stream

Filter Bank Quantization

Fig. 2.2 Generic perceptual audio encoder [1].
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2.3.1 Time-to-Frequency Transformation

All audio coders rely upon some type of time-frequency analysis to extract from the time

domain input a set of frequency coefficients that is amenable to encoding in conjunction

with a perceptual model. Encoding in frequency domain can take advantage of frequency

characteristics of the input signal. For example, a spike (one coefficient) in the frequency

domain can represent a sine wave, whereas a whole period of samples has to be encoded in

the time domain.

The tool most commonly employed for the decomposition is the filter bank. The decom-

posing filter bank analyzes the frequency properties of the input signal and identifies the

perceptual redundancies. For digital signals, the traditional decomposition is the Discrete

Fourier Transform (DFT),

Xk =
N−1
∑

n=0

x(n)e
−j2π

N
kn (2.13)

where n is the sample index and N is the number of samples in the transform. The filter

bank widely used as a dominant tool in nowadays audio coders is the Modified Discrete

Cosine Transform (MDCT) [1],

Xk =
2M−1
∑

n=0

x(n)w(n) cos
[(n + M+1

2
)(k + 1

2
)π

M

]

(2.14)

where M is the number of transformed coefficients and w(n) denotes the window function.

In addition to an energy compaction capability similar to Discrete Cosine Transform (DCT),

MDCT simultaneously achieves reduction of the blocking edge effects, critical sampling

property and perfect signal reconstruction (Chapter 3).

Windowing

Windowing is multiplication of the audio signal directly by a window w(n). The main

consideration with designing a window is the shape of the window. For example, it is well

known in digital signal processing theory that the rectangular window suffers from energy

leakage. Most practical windows have a shape that emphasizes the mid-frame samples

while de-emphasizes the edge samples such as Hann window and Hamming window.

• Example Window:
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An example window is the “sine” window associated with MDCT, defined as

w(n) = sin
[

(n +
1

2
)

π

2M

]

(2.15)

for 0 ≤ n ≤ M − 1. It offers good stopband attenuation (24 dB) [1], provides

good attenuation of the blocking edge effects, and allows perfect reconstruction. This

particular window is perhaps the most popular window in audio coding and is depicted

in Fig. 2.3.
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Fig. 2.3 Sine MDCT-window (576 points).

• Window Switch:

If a sharp attack occurs at the end of a long frame, the psychoacoustic model would

be misled to derive a higher masking threshold for that entire frame. As a result,

the quantization noise would be spread over the entire frame and higher than the

signal level at the beginning, manifesting itself as a perceptible pre-echo just before

the attack of the signal. This situation can arise when coding recordings of percussive

instruments such as the triangle, for example.

To suppress the pre-echo, filter banks work by changing the analysis window length

from “long” duration (e.g., 25 ms) during stationary segments to “short” duration

(e.g., 4 ms) when transients are detected. For relatively stationary segments, long

windows provide better compression with finer frequency resolution. On the other
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hand, the characteristics of transients are better captured with short time windows.

The switching decision is generally based on a measure of information content in the

signal, like perceptual entropy.

2.3.2 Psychoacoustic Analysis

Psychoacoustic analysis, based on psychoacoustic models (Section 2.2), represents the core

part of one perceptual audio coder. The purpose of psychoacoustic analysis is to estimate a

just noticeable noise-level (masking threshold) in each band, represented as Signal-to-Noise

Ratio (SMR), where S is the signal energy in the frequency band. This SMR is used in the

bit allocation procedure to calculate Noise-to-Masking Ratio (NMR) [16],

NMR = SMR − SNR (dB) (2.16)

which determines the actual quantizer levels.

Psychoacoustic models are in frequency domain. It is possible to use output from the

filter bank as input for the psychoacoustic model, or to perform a separate transform for the

purpose of psychoacoustic analysis. For example, MDCT has been used as the decomposing

filter bank in MPEG-1 Layer III (MP3) and MPEG-2 AAC (Advanced Audio Coding), but

both coders still use the DFT for psychoacoustic analysis to more accurately apply their

perceptual model.

2.3.3 Adaptive Bit Allocation

Information bits are allocated to frequency bands such that a distortion criterion is opti-

mized. A adaptive bit assignment is used so that the spectrum of quantization noise is

shaped to be less audible than a noise spectrum evenly distributed without shaping. The

process is known as Spectral Noise Shaping, under the constraint that the total number

of bits is fixed (though the number of bits assigned to each band can vary from frame to

frame).

Two categories of distortion measures, perceptual and non-perceptual, are used to shape

the audible noise [17]. In the perceptual approach, the quantization noise spectrum is

shaped in parallel with the masking threshold curve. Noise-to-Masking Ratio, among oth-

ers, is an example distortion measure. The non-perceptual approach employs criteria such
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as the noise power above the masking threshold, for example.

(a) Noise-to-Mask Ratio (NMR)-based bit allocation

In this approach bit allocation is performed based on the Noise-to-Mask Ratio (NMR). As a

result, the noise spectrum will be parallel to the masking threshold curve and be inaudible

if it is below the masking threshold. This method attempts to distribute the noise power

equally in all frequency bands.

(b) Noise energy-based bit allocation

In the energy-based approach, bit assignment is performed based on the audible part of

the quantization noise, i.e., the noise above the masking threshold. Since it is not evenly

distributed over the frequency range, the noise is audible to various degrees at different

frequencies.

2.3.4 Quantization

In the earlier stage, a given number of bits are assigned to represent the spectral components

of the audio signal. Now the spectral coefficients are quantized to integer levels according

to the bits assignment. This quantization process is a lossy compression, meaning that the

quantized signal is not mathematically equal to the original signal. However, this lossy

coding scheme can be perceptually lossless (transparent) in the sense that the human ear

cannot distinguish between the original and compressed signals. We introduce two major

quantization schemes used in audio coding: Scalar Quantization and Vector Quantization

(VQ).

(a) Scalar Quantization

A scalar quantizer operates on individual values. It divides the range of input values into

L intervals (cells). Each cell is represented by a single decision level. It takes a single input

value and selects the best match (the nearest scalar level, normally) to that value from a

predetermined set of scalar levels. These scalar levels can be arranged in either a uniform

or a non-uniform pattern.

• Uniform Quantization:
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In this method, all the levels are equally spaced. Step size δ, the distance between

two successive decision levels, is defined as

δ =
xmax − xmin

L
, (2.17)

where xmax and xmin are the maximum and minimum values of the input and L is

the number of quantization levels. Based on the assumption that quantization noise

is white and uniformly distributed in the interval (−δ/2, δ/2), the variance of such

uniform distribution noise is δ2/12 [18].

The uniform scalar quantizer can be implemented in a closed form. Let x be a scalar

component which is quantized by a uniform scalar quantizer with a step size of δ.

Then, the quantized value, x̂ is given as (mid-riser case) [19]

x̂ = δ × round(x/δ). (2.18)

• Non-uniform Quantization:

With non-uniformly spaced decision levels, the quantizer can be tailored to the spe-

cific input statistics such that considerably SNR is attained for a given input pdf

(probability density function). In general, for arbitrary input signal, the decision

levels are determined by minimizing the average distortion given by [18],

D =
L

∑

i=1

∫

Ri

(x − yi)
2px(x)dx (2.19)

where yi is the ith quantization level, Ri denotes the ith partition (cell) and px is

the probability density function of the input. Iterative algorithms such as the Lloyd

algorithm [20] can be used to design the quantizer.

(b) Vector Quantization

A vector quantizer is a mapping from a vector to a finite set of points, called codewords.

By exploiting the correlation among the vector components, vector quantization achieves a

bit-rate performance advantage over scalar quantization, at the expense of complexity and

computation power when searching for the matched codeword in a large codebook. For
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this reason, the uniform scalar quantizer was considered most appropriate and has been

selected for the remainder of this thesis.

2.3.5 Bitstream Formatting

A bitstream formatter is used after quantization to achieve better data compression, which

takes the quantized filter bank outputs, the bit allocation and other required side infor-

mation, and assembles them in an efficient fashion. This process is known as Entropy

Coding. In the case of MP3, variable-length Huffman codes are used to encode the quan-

tized spectral coefficients. These Huffman codes are mathematically lossless and allow for

more efficient bitstream representation of the quantized samples at the cost of additional

complexity.
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Chapter 3

Signal Decomposition with Lapped

Transforms

In this chapter, we introduce an important family of time-frequency transformations, i.e.,

Lapped Transforms. They work to decompose the time-domain signal to transform-domain

coefficients. Several properties are in consideration with designing a transform.

(a) Perfect Reconstruction

Perfect reconstruction of a transform refers to the signal decomposition from which the

original signal can exactly be recovered from the reconstructed signal1, in the absence of

quantization [21]. In other words, the original and reconstructed signals are mathemati-

cally the same. This brings the advantage that reconstruction errors are due only to the

quantization noise and thus it can be controlled and masked by the signal.

(b) Critical Sampling

The analysis/synthesis system should be critically sampled [21], i.e., the overall number

of transformed domain samples is equal to the number of time-domain samples. Critical

sampling ensures that all stages of the audio coder operate at the same sampling rate (input

sampling rate) and the encoder does not carry an increase in the total number of samples

to be processed.

1Here, x̂(n) = x(n − D), where x̂(n) and x(n) are the reconstructed and original signal respectively,
and D is a time delay.



3 Signal Decomposition with Lapped Transforms 22

(c) Frequency and Temporal Resolution

The bandwidths of the filter bank should emulate the analysis properties of the human

auditory system. Spacings of the filter bank should match the large width-variation of the

critical bands in frequency. At the same time, the analysis time window of the filter bank

should be short enough to accurately estimate the masking thresholds for highly transient

signals. Ideally, the analysis filter bank would have time-varying resolutions in both the

time and frequency domains and this motivates many designs with switched and hybrid

filter bank structures.

3.1 Block Transforms

Given a signal x(n), we must group its samples into blocks before computing the transform.

A signal block is defined as, x = [x(mM), x(mM − 1), ...x(mM − M + 1)]T , where m is

the block index and M is the block length2. For a orthonormal matrix A, A−1 = AT , the

forward and backward transform for the mth block x are defined as

X = ATx (3.1)

and

x = AX. (3.2)

An orthogonal A brings advantages such as convenience to implement inverse transform

by simply transposing the flowgraph of forward transform. Different choices of A lead to

different transforms. DFT and DCT are some familiar cases.

We have used AT in the forward transform and A in the backward so that the ba-

sis vectors (also called the basis functions) of the transform are the columns of A. The

coefficients of basis vectors represent the linear weights on block x.

3.2 Lapped Transforms

The lapped transform [21] was originally developed in order to eliminate the blocking edge

effects. The idea is to extend the basis functions beyond the block boundaries, creating an

2For simplicity of notation, we suppress the dependence of x(m) on m.
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overlap between signal blocks. In a lapped transform (LT), L-sample input block is mapped

into M transform coefficients, with L > M . Although L − M samples are overlapped

between blocks, the number of transform coefficients is the same as if there was no overlap.

This critical sampling property is kept by computing M new transform coefficients for

every new M input samples (i.e., frame update rate is M samples). Thus, there will be an

overlap of L−M samples in consecutive LT blocks. The LT of a signal block x is obtained

by,

X = HM×Lx (3.3)

where x is an extended signal block x = [x(mM), x(mM − 1), ...x(mM − 2M +1)]T and H

is the forward transform matrix. A diagram of signal processing with lapped transforms is

shown in Fig. 3.1, where the block generation operates as set of serial to parallel converters

for the input block and parallel to serial converters for the output block [21].
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Fig. 3.1 General signal processing system using the lapped transform [21].

3.2.1 LT Orthogonal Constraints

Applying an inverse LT to X,

y = GL×MX, (3.4)



3 Signal Decomposition with Lapped Transforms 24

the resulting L-sample y are not equal to the L-sample x used to compute the forward LT.

The original signal x must be recovered in an overlap-add fashion. The whole procedure

is illustrated in Fig. 3.2. As we can see, the total system is causal. For example, the x(0)

is the most recent input sample and so the first output sample occurs at x̂(0), with the

algorithmic delay of 2M − 1 samples.

H H

G G

-2M+1 -M+1 0 M

+

0 M 2M-1 3M-1

DIRECT

TRANSFORM

INVERSE

TRANSFORM

INPUT

( )x n

ˆ( )x n

OUTPUT

Fig. 3.2 Signal processing with a lapped transform with L = 2M [21].

Assuming the overlap is 50% (L = 2M), we divide H into two M × M matrices and

the first data block x(1) into two M × 1 vectors, we can rewrite Eq. (3.3) as follows,

X(1) =
[

Ha Hb

]

[

x
(1)
a

x
(1)
b

]

= Hax
(1)
a + Hbx

(1)
b (3.5)

where Ha and Hb are matrices containing the first M and last M columns of the analysis

matrix H; x
(1)
a and x

(1)
b contain the first and second M elements of x(1). Similarly, the next

transform block X(2) can be denoted as

X(2) = Hax
(2)
a + Hbx

(2)
b . (3.6)

Also on the synthesis side, splitting the output vector y into two sub-vectors, the 2M×1
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reconstructed signal y can be represented as

y =

[

ya

yb

]

=

[

Ga

Gb

]

X, (3.7)

where ya and yb are the first and second half of y; Ga and Gb are two M × M square

matrices containing the first and second M rows of the synthesis matrix G. This results in

y(1) =

[

y
(1)
a

y
(1)
b

]

=

[

GaX
(1)

GbX
(1)

]

(3.8)

y(2) =

[

y
(2)
a

y
(2)
b

]

=

[

GaX
(2)

GbX
(2)

]

. (3.9)

Therefore, combining Eq. (3.8) and Eq. (3.9), the reconstructed signal in the overlapping

parts of y(1) and y(2) can be expressed as

yoverlap = y
(1)
b + y(2)

a

= GbHax
(1)
a + GbHbx

(1)
b + GaHax

(2)
a + GaHbx

(2)
b . (3.10)

This equation shows that an LT operates as 4 block transforms and then sums the over-

lapping parts.

For perfect reconstruction (PR), we have

yoverlap = x
(1)
b = x(2)

a . (3.11)

This results in the following constraints

GbHa = GaHb = 0M (3.12)

and

GaHa = GbHb = IM (3.13)

where 0M is an M ×M zero matrix and IM is an M ×M identity matrix. In a special case



3 Signal Decomposition with Lapped Transforms 26

when G = Ht, the orthogonal constraints (PR conditions) become

Ht
bHa = Ht

aHb = 0M, (3.14)

Ht
aHa + Ht

bHb = IM. (3.15)

This special case is referred to as a Lapped Orthogonal Transform (LOT) [22], meaning

that Ha and Hb are orthogonal and the overlapping parts of the basis functions are also

orthogonal.

3.3 Filter Banks: Subband Signal Processing

In many applications it is desirable to separate the incoming signal into several subband

components, by means of bandpass filters, and then process each subband separately. The

fundamental parts of subband signal processing systems are the analysis and synthesis filter

banks. The analysis filter bank should do a good job of separating the incoming signal into

its constituent subband signals, and the synthesis filter bank should be able to recover a

good approximation to the input signal from the subband signals. The basic block diagram

of a filter bank system is shown in Fig. 3.3, where H(z) and G(z) are the analysis and
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Fig. 3.3 Typical subband processing system, using the filter bank [21].

synthesis filters [21], respectively. The decimator after the analysis filter bank is to keep
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the total sampling rate in the output of all M subbands identical to the input signal rate

(critically sampled).

3.3.1 Perfect Reconstruction Conditions

In order to obtain the condition for signal reconstruction, we analyze the kth channel of

the filter bank, since we have a similar structure for all channels. The output of the kth

channel (after filtering and subsampling) is,

Xk(m) =
∞

∑

n=−∞

x(n)hk(mM − n) (3.16)

where hk(n) is the impulse response of the kth analysis filter. If the subband signal Xk(m)

is not modified (e.g., no quantization) and thus Xk(m) = X̂k(m), we have the reconstructed

signal as,

y(n) =
M−1
∑

k=0

∞
∑

m=−∞

Xk(m)gk(n − mM) (3.17)

where gk(n) is the impulse response of the kth synthesis filter. By substituting Eq. (3.16)

into Eq. (3.17), we have the result,

y(n) =
∞

∑

l=−∞

x(l)hT (n, l)

=
∞

∑

l=−∞

x(l)
[

M−1
∑

k=0

∞
∑

m=−∞

gk(n − mM)hk(mM − l)
]

(3.18)

where hT (n, l) denotes the time-varying impulse response of the total system. Perfect

reconstruction is obtained if and only if hT (n, l) = δ(n − l − N), that is,

M−1
∑

k=0

∞
∑

m=−∞

gk(n − mM)hk(mM − l) = δ(n − l − D) (3.19)

where D is a time delay and leads to y(n) = x(n − N).
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3.3.2 Filter Bank Representation of the LT

Comparing Fig. 3.1 and Fig. 3.3, it is clear that the LT is a special case of the multirate

filter bank. The impulse responses of the analysis filters are the time-reversed rows of the

analysis matrix H, and the impulse responses of the synthesis filters are the columns of

the synthesis matrix G. For a block transform, it is possible to perfectly reconstruct x(n)

if PR conditions are satisfied. For lapped transforms, the above PR conditions cannot be

satisfied because of the overlap-add of the inverse blocks.

3.4 Modulated Lapped Transforms

If we design each analysis filter hi(n) and synthesis filter gi(n) in Fig. 3.3 independently, then

the computational complexity will be proportional to the number of bands. A more efficient

implementation of the filter bank is to pass each subband through a cosine modulator to

shift its center frequency to the origin. Then a lowpass filter h(n) is used followed by the

decimator. Modulated Lapped Transform (MLT) is a family of lapped transforms generated

by modulating a lowpass prototype filter. The MLT basis functions are defined by [23],

hi(n) =

√

2

M
h(n) cos

[

(n +
M + 1

2
)(k +

1

2
)

π

M

]

(3.20)

where k = 0, 1, ...,M − 1, n = 0, 1, ..., 2M − 1 and h(n) is the lowpass prototype filter3.

The magnitude frequency response of MLT with a sine window (Section 2.3.1) is shown in

Fig. 3.4.

3.4.1 Perfect Reconstruction Conditions

We start by analyzing the MLT with two different windows for analysis and synthesis

stages. The output of the analysis filter bank is given by,

X(k) =

√

2

M

2M−1
∑

n=0

x(n)h(n) cos
[

(n +
M + 1

2
)(k +

1

2
)

π

M

]

(3.21)

3h(n) is the window function in time domain or the lowpass prototype filter in frequency domain.
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Fig. 3.4 Magnitude frequency response of a MLT (M = 10).

where h(n) is the analysis window, M is the number of subbands and k = 0, 1, ...,M − 1.

The output of the synthesis filter bank is given by,

y(n) =

√

2

M

M−1
∑

k=0

X(k)g(n) cos
[

(n +
M + 1

2
)(k +

1

2
)

π

M

]

(3.22)

where g(n) is the synthesis window. Substituting Eq. (3.21) into Eq. (3.22) and simplifying,

we obtain

y(n) =
1

M
g(n)

2M−1
∑

m=0

x(m)h(m)
M−1
∑

k=0

cos
[

(m + n + M + 1)(k +
1

2
)

π

M

]

+
1

M
g(n)

2M−1
∑

m=0

x(m)h(m)
M−1
∑

k=0

cos
[

(m − n)(k +
1

2
)

π

M

]

. (3.23)

Observing that the first half of y(n) is zero except for m = n and m = M − 1 − n and the

second half of y(n) is zero except for m = n and m = 3M − 1 − n, we get

y(n) = g(n)h(n)x(n) − g(n)h(M − 1 − n)x(M − 1 − n), n = 0, ...,M − 1, (3.24)
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and

y(n) = g(n)h(n)x(n) − g(n)h(3M − 1 − n)x(3M − 1 − n), n = M, ..., 2M − 1. (3.25)

Now, the desirable segment in the overlapping parts is given by

yoverlap = y
(1)
b + y(2)

a . (3.26)

Since y(1) and y(2) have different time references, we take the beginning of y(2) as the time

reference. Hence,

yoverlap = y(1)(n + M) + y(2)(n), n = 0, ...,M − 1

= g(n + M)h(n + M)x(1)(n + M) + g(n + M)h(2M − 1 − n)x(1)(2M − 1 − n)

+ g(n)h(n)x(2)(n) − g(n)h(M − 1 − n)x(2)(M − 1 − n). (3.27)

Using a common time reference for the input blocks, we have,

xoverlap = x
(1)
b = x(2)

a = x(1)(n + M) = x(2)(n), n = 0, ...,M − 1, (3.28)

and also,

x(1)(2M − 1 − n) = x(2)(M − 1 − n), n = 0, ...,M − 1. (3.29)

Therefore, we need following conditions to achieve perfect reconstruction,

h(n)g(n) + h(n + M)g(n + M) = 1,

g(n)h(M − 1 − n) − g(n + M)h(2M − 1 − n) = 0. (3.30)

When the same window h(n) is used for both analysis and synthesis, the perfect recon-

struction conditions reduce to,

h(n) = h(2M − 1 − n),

h2(n) + h2(n + M) = 1. (3.31)

This special transform case is called Modulated Lapped (Orthogonal) Transform.
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Comment: LOT vs. MLT

We have to distinguish two concepts here, namely, Lapped Orthogonal Transform (LOT)

and Modulated Lapped Transform (MLT). They are both lapped transforms because they

are realizations of the general filter bank in Fig. 3.3 with identical analysis and synthesis

filters and satisfy the orthogonal conditions in Eq. (3.14) and Eq. (3.15).

The LOT, defined in Section 3.2, was developed to reduce the blocking effect in image

coding. Eq. (3.15) forces orthogonality of the basis functions within the same block, whereas

Eq. (3.14) forces orthogonality of the overlapping portions of the basis functions of adjacent

blocks.

Fast LOTs can be constructed from components with well-known fast-computable algo-

rithms such as the DCT and the DST, by matrix factorization of transform matrices. There

are many fast solutions and one of the most elegant factorization is the type-II fast LOT

proposed by Malvar [21]. The orthogonality conditions are satisfied by the construction of

the inverse transform matrix G (Ht) as

G =
1

2

(

De − Do De − Do

J(De − Do) −J(De − Do)

) (

I 0

0 CII
M/2S

IV
M/2

)

R, (3.32)

where De and Do are the M × M/2 matrices containing the even and odd DCT basis

functions as

De = c(k)

√

2

M
cos

[

2k(n +
1

2
)

π

M

]

(3.33)

Do =

√

2

M
cos

[

(2k + 1)(n +
1

2
)

π

M

]

, (3.34)

and CII
M/2 and SIV

M/2 are the DCT-II and DST-IV matrices, defined as

CII
K = c(k)

√

2

K
cos

[

k(r +
1

2
)
π

K

]

(3.35)

SIV
K =

√

2

K
sin

[

(k +
1

2
)(r +

1

2
)
π

K

]

, (3.36)

where
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c(k) =











1/
√

2, k = 0

1, otherwise.

The factor J is a antidiagonal matrix and the factor R is a permutation matrix. The LOT

corresponds to a perfect reconstruction filter bank. It has been shown in Section 3.3 that

any uniform PR FIR filter bank is a lapped orthogonal transform and the PR conditions

in Eq. (3.19) are identical to the orthogonality conditions in Eq. (3.14) and Eq. (3.15).

The MLT, defined in Section 3.4, is developed independently in terms of filter bank

theory. Calling gk(n) the impulse response of the kth synthesis filter, the modulated filter

bank is constructed as [24]

gk(n) = h(n)

√

2

M
cos

[

(k +
1

2
)(n − L − 1

2
)

π

M
+

π

4

]

(3.37)

for k even, and

gk(n) = h(n)

√

2

M
sin

[

(k +
1

2
)(n − L − 1

2
)

π

M
+

π

4

]

(3.38)

for k odd, where L is the length of the lowpass prototype filter h(n). The above construc-

tion is called Quadrature Mirror Filter (QMF) and it cancels frequency-domain aliasing

terms between neighboring subbands. However, QMF does not cancel time-domain alias-

ing and thus perfect reconstruction is not necessarily achieved. The possibility of PR

was first demonstrated by Princen and Bradley [23, 25] using the arguments of the Time-

Domain Aliasing Cancellation (TDAC) filter bank. They have shown that if the lowpass

prototype h(n) satisfies the constraints in Eq. (3.31), both aliasing in time-domain and

frequency-domain will be cancelled. Later, Malvar developed the concept of Modulated

Lapped Transform (MLT) by restricting to a particular prototype filter and formulating

the filter bank as a lapped orthogonal transform. Until recently, the consensus name in

the audio coding for the lapped transform interpretation of this special-case filter bank has

evolved into the Modified Discrete Cosine Transform (MDCT). In short, the reader should

be aware that the different acronyms TDAC, MLT4, and MDCT all refer essentially to the

same PR cosine modulated filter bank. Only Malvar’s MLT implies a particular choice for

4It is important to note that the MLT is not a particular case of the fast LOT in Eq. (3.32), since no
matrix factorization can be generated from the MLT basis functions.
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h(n) as described in Eq. (2.15).

3.5 Adaptive Filter Banks

As previously mentioned in Chapter 2, some audio coders switch between a set of avail-

able windows to match the time-varying characteristics of the input signal [26, 27]. For

stationary parts of the signal, a high coding gain can be achieved with a high frequency

resolution (using long windows). On the other hand, for energy transient parts of the input

signal, it is preferable to have a high temporal resolution (using short windows) to localize

a burst of quantization noise and prevent it from spreading over different frames. The

switching criterion is based on a measure of the signal energy [28] or perceptual entropy

[15]. As an alternative to the window switch, Herre and Johnston [29] proposed Temporal

Noise Shaping (TNS) to continuously adapt to the time-varying characteristics of the input

signal.

To preserve the perfect reconstruction property of the overall system, the transition

between windows has to be carefully chosen. Therefore, a start window is used in between

to switch from a long window to a short window and a stop window is used to switch back.

A start window is defined as

hstart(n) =







































hlong(n), 0 ≤ n ≤ M − 1

1, M ≤ n ≤ M + M
3
− 1

hshort(n − M), M + M
3
≤ n ≤ M + 2M

3
− 1

0, M + 2M
3

≤ n ≤ 2M − 1.

3.5.1 Window Switching with Perfect Reconstruction

Perfect reconstruction is maintained during the transition. Assuming that hstart(n) is used

for both the analysis and synthesis filter banks, the output of the synthesis filter bank is
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given by

y(n) =
1

M
hstart(n)

N−1
∑

m=0

x(m)hstart(m)
M−1
∑

k=0

cos
[

((m + n + M + 1)(k +
1

2
)

π

M

]

+
1

M
hstart(n)

N−1
∑

m=0

x(m)hstart(m)
M−1
∑

k=0

cos
[

((m − n)(k +
1

2
)

π

M

]

. (3.39)

Here, we analyze different segments of y(n).

For 0 ≤ n ≤ M − 1, hstart(n) = hlong(n), the output becomes,

y(n) = h2
long(n)x(n) − hlong(n)hlong(M − 1 − n)x(M − 1 − n). (3.40)

In a lapped transform, the first half of the current output of the synthesis filter bank will

contain the same terms as the second half of the previous output block, differing in that the

time reversed terms have opposite signs. Therefore by overlap-add operation those terms

cancel each other resulting in perfect reconstruction of the original signal. In overlapping

and adding, the second term in Eq. (3.40) will be cancelled by the time-reversed term from

previous block.

For M ≤ n ≤ M + M
3
− 1, hstart(n) = 1 and y(n) equals to zero except when n = m.

Therefore the output is

y(n) = x(n). (3.41)

For M + M
3

≤ n ≤ M + 2M
3

− 1, hstart(n) = hshort(n − M) (second half of the short

window), we obtain

y(n) = h2
start(n)x(n) − hstart(n)hstart(3M − 1 − n)x(3M − 1 − n)

= h2
short(n)x(n) − hshort(n)hshort(2M − 1 − n)x(3M − 1 − n). (3.42)

Similarly, the second term will be cancelled by the time-reversed term in the next short

block and perfect reconstruction is achieved.

For M+ 2M
3

≤ n ≤ 2M − 1, hstart(n) = 0 and so is the output of the synthesis filter bank.

The output signal is perfectly reconstructed by overlapping outputs from two successive

short frames. Perfection reconstruction conditions can also be shown for transition from a

short window back to a long window.
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Chapter 4

MP3 and AAC Filter Banks

In this chapter, we first look at the time-to-frequency transformations used in standards of

MP3 (MPEG-1 Layer III) and MPEG-2 AAC (Advanced Audio Coding). The performance

of both filter banks is reported later on, along with different transforms for psychoacoustic

analysis.

4.1 Time-to-Frequency Transformations of MP3 and AAC

4.1.1 MP3 Transformation: Hybrid Filter Bank

The transformation used in MPEG-1 Layer-III belongs to the class of hybrid filter bank. It

is build by cascading two different kinds of filter banks: first the polyphase filter bank (as

used in Layer-I and Layer-II) and then an additional Modified Discrete Cosine Transform

(MDCT) filter bank. The polyphase filter bank has the purpose of making Layer-III more

similar to Layer-I and Layer-II. The MDCT filter bank subdivides each polyphase frequency

band into 18 finer subbands to increase the potential for redundancy removal. A complete

MP3 decomposition structure is shown in Fig. 4.1. First we examine the prototype filter

to understand the polyphase filter bank.

Polyphase filter bank

The polyphase filter bank [16] is common to all three layers of the MPEG/audio algorithm.

This filter bank uses a set of bandpass filters to divide the input audio block into 32
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subbands, each of a nominal bandwidth π/32. The MPEG standard defines a 512-coefficient

analysis window C(n) to derive the lowpass prototype filter h(n) of the filter bank, as

h(n) =











−C(n), floor(n/64) is odd

C(n), otherwise.

A comparison of h(n) and C(n) is plotted in Fig. 4.2 and the magnitude frequency response

of h(n) is plotted in Fig. 4.3. The bandpass filter Hi[n] of the ith subband of the filter bank
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Fig. 4.2 Layer III prototype filter (b) and the original window (a).

is a modulation of the prototype filter with a cosine term to shift the lowpass response to

the appropriate frequency band. Hence, they are called the polyphase filter bank and given

by

Hi[n] = h[n] cos

[

(2i + 1)(n − 16)π

64

]

. (4.1)

As Fig. 4.4 shows, these filters have approximate “brick wall” magnitude responses with

center frequencies at odd multiples of π/64T . The outputs of the filter bank are given by

the filter convolution equation,

st[i] =
511
∑

n=0

x[t − n]Hi[n]. (4.2)
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Fig. 4.3 Magnitude response of the lowpass filter.
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Fig. 4.4 Magnitude response of the polyphase filter bank (M = 32).
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For a time instant t, which is an integral multiple of 32 audio sample intervals, the filter

bank output for the subband i is given by,

st[i] =
63

∑

k=0

7
∑

j=0

M [i][k] × (C[k + 64j] × x[k + 64j]) (4.3)

where i is the subband index and ranges from 0 to 31, x[n] is a 512-sample buffer of input

audio, and M [i][k] is a 32 × 64 analysis coefficient matrix for cosine modulation, defined

as,

M [i][k] = cos

[

(2i + 1)(k − 16)

64

]

. (4.4)

We should note that the polyphase filter bank is critically sampled in that it produces

32 output samples for every 32 input samples. In effect, each of the 32 subband filters is

followed by a decimator of factor 32, and thus only one sample out of 32 new samples is

kept.

Computational requirement of the polyphase filter bank, as in Eq. 4.3, is moderate.

32 filter outputs need 512 + 32 × 64 = 2560 multiplies and 64 × 7 + 32 × 63 = 2464

additions. Considerable further reductions in multiplies and adds are possible with, for

example, FFT-like implementations. The flow diagram for computing the polyphase filter

outputs is described in “Audio Content”, part 3 of the MPEG/audio standard [11].

Although the response of the prototype is favorable, the polyphase filter bank has three

notable drawbacks.

First, the lack of a sharp cut-off at the nominal bandwidth (see Fig. 4.3) results in an

overlap in the frequency coverage of adjacent polyphase filters and this can cause signal

energy near nominal subband edges to simultaneously appear in two adjacent subbands. To

complicate matters further, the subsampler introduces a considerable amount of aliasing.

To mitigate the problem, the analysis filter bank includes a stage of butterfly aliasing

reduction, as discussed later.

Second, the division of the frequency content into subbands of equal width do not

accurately reflect the response of the basilar membrane, of which the width of critical

bands is a good indicator. As a result, at low frequencies, a single filter bank subband

extends over several critical bands. In this circumstance the noise masking thresholds

cannot be specifically computed for individual critical bands and thus they are inaccurate.
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Third, the polyphase filter bank and its inverse are not lossless transformations. The

filter bank and its inverse in tandem, without a quantization in between, cannot perfectly

reconstruct the signal. However, by design the error introduced is imperceptible (less than

0.07 dB ripple [11]).

Frequency inversion

Prior to cascading the subband outputs with the MDCT filter bank, each of the odd

subbands must undergo a frequency inversion correction so that the spectral lines will

appear in proper monotonic ascending order [30]. The frequency inversion consists of

multiplying each odd sample in each odd subband by -1, as illustrated in Fig. 4.1.

MDCT filter bank

To compensate for some polyphase filter deficiencies, the frequency inversed samples are

processed using the Modified Discrete Cosine Transform (MDCT), of which the block di-

agram is shown in Fig. 4.1. Unlike the polyphase filter bank, the MDCT filter bank is a

lossless transform. It further subdivides the subband outputs to provide finer frequency

resolution. Layer III specifies two different block sizes for the MDCT: a short block of 6

samples and a long block of 18 samples. Since there is 50% overlap between adjacent time

windows, the MDCT transforms 12 time samples to 6 spectral coefficients in the short block

mode, and 36 time samples to 18 spectral coefficients in the long block mode. Although

the short block length is one third that of the long block, the number of MDCT coefficients

for a frame remains constant irrespective of the block size. This is achieved by replacing

one long block by three short blocks in the short block mode.

When the conditions of pre-echo are detected, MDCT is triggered to switch to short

windows. For the purpose of perfect reconstruction, the switching between short and long

windows has to be smooth. A start and stop time window is employed in the transition

between short and long block modes (Section 3.5). Fig. 4.5 displays the process of the long-

start-short window switching. As we can see, the short sequence is composed of three short

blocks, which overlap 50% with each other and with start (and stop) window at window

boundaries. Thus, time is synchronized for different subband channels.

The polyphase filter bank and the MDCT filter bank are together called as the Hybrid

Filter Bank for their adaptation to signal characteristics.
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Fig. 4.5 Switching from a long sine window to a short one via a start
window.

Aliasing reduction butterfly

Now the subband components are subdivided in frequency, some aliasing introduced by the

polyphase filter bank can be partially cancelled. Layer III specifies a method of processing

the MDCT coefficients to remove some aliasing caused by the overlapping bands of the

polyphase filter bank.

This anti-alias operation is a number of butterflies applied to the 576 frequency lines (X0

to X575)
1. The butterfly is calculated between adjacent subbands by reading two values,

multiplying and adding the values according to the butterfly in Fig. 4.6, and then put the

new values back. The butterfly rotation coefficients are defined in “Audio Content”, part

3 of the MPEG/audio standard [11].

=
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Fig. 4.6 Layer III aliasing-butterfly, encoder/decoder [11].

Fig. 4.7 shows the alias reduction operation. As we can see, the group of 576 coefficients

are rearranged for the anti-alias purpose: 18 coefficients of each subband are grouped

1576 = 32 × 18, as 32 subbands contain 18 subsamples each.
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Fig. 4.7 Layer III aliasing reduction encoder/decoder diagram.



4 MP3 and AAC Filter Banks 43

together. So, the butterfly is calculated on one of the eight designated pairs of spectral

lines in every alternate subband.

4.1.2 AAC Transformation: Pure MDCT Filter Bank

Unlike the MP3 coder, AAC eliminates the polyphase filter bank and relies on the MDCT

exclusively. Each block of input samples is overlapped by 50% with the immediately pre-

ceding block and following block.

The AAC filter bank resolution is adaptive to the characteristics of the input signal.

This is done by switching between MDCT transforms whose block lengths are either 2048

or 256. Stationary signals are analyzed with a 2048-point window, while transients are

analyzed with a 256-point window [31]. Therefore, the maximum frequency resolution is

23 Hz for a 48 kHz sample rate, and the maximum time resolution is 2.6 ms2. Block

switching potentially generates a problem of time synchronization. If one channel uses a

2048-point transform and another channel uses a 256-point transform, the time interval

will not be aligned. To maintain block synchronization for different block size channels,

AAC combines eight 256-point short windows to a block and uses a start and stop window

to bridge between long and short windows. The start window is defined as,

hstart(n) =







































hlong(n), 0 ≤ n ≤ M − 1

1, M ≤ n ≤ M + 7M
16

− 1

hshort(n − 4M
16

), M + 7M
16

≤ n ≤ M + 9M
16

− 1

0, M + 9M
16

≤ n ≤ 2M − 1.

It preserves the time-domain aliasing cancellation property of MDCT and maintains block

synchronization. The whole switching procedure is similar to the MDCT in MP3 hybrid

filter bank, though it has different window sizes and thus different number of short windows

to align with.

224 kHz/1024 MDCT coefficients = 23 Hz; 128 new samples/48000 samples per second = 2.6 ms.
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4.2 Performance Evaluation

4.2.1 Full Coder Description

Full audio coders are implemented to explore the effectiveness of two decomposition struc-

tures, the hybrid filter bank (MP3 decomposition) and the pure MDCT filter bank (AAC

decomposition). Our coders work in a wide-band regime with the sample frequency of 44.1

kHz, consisting of the decomposition filter banks, the psychoacoustic models, the scalar

quantizers, and the decoders. The block diagram of the encoder is shown in Fig. 4.8.

Our main goal is not to design a complete coder but merely a prototype of one suffi-

ciently sophisticated and general to produce NMR-coded files, thereby permitting experi-

mental comparisons between the two decomposition structures. Consequently, we are not

concerned with the design of an entropy coder mapping the quantized values to binary

sequences, nor the coding of the side information.

Decomposition Filter bank

In our two encoder-decoder structures, the first time-frequency decomposition is the hybrid

filter bank as used in the MP3, shown in Fig. 4.1, and the second a pure MDCT filter bank,

as used in the AAC. The block sizes we are testing are 1152-sample blocks (26 ms time

frames), using 50% overlap. In both decomposing structures, the window switching controls

are not implemented. In effect, we are comparing a polyphase filter bank followed by 36-

point MDCT with aliasing reduction butterfly to a pure 1152-point MDCT filter bank.

We notice that both the hybrid and the pure MDCT systems are critically sampled,

because of the 50% overlap. The pure MDCT structure is quite straightforward, as the

MDCT is itself critically sampled. For the hybrid structure (Fig. 4.1), a 1152-sample block

is first subband-filtered and decimated by 32, thus producing 36 outputs in each channel,

which are then transformed to 18 spectral lines by the 36-point MDCT. The butterfly

stage does not affect the sampling rate. Therefore, there are totally 18 × 32 subbands

= 576 spectral lines. As the 1152-sample blocks are 50% overlapped with each other and

thus contain only 576 new samples, the whole system functions to convert 576 new input

samples to 576 spectral lines and maintains the critical sampling property.
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Psychoacoustic model

There is one psychoacoustic evaluation per frame. The audio data is first mapped to fre-

quency domain. Both our coders use a Fourier transform for this mapping. The frequency

values are then processed based on the steps in Johnston’s psychoacoustic model (Sec-

tion 2.2). Johnston’s model is not identical to the psychoacoustic models used in Layer II

and Layer III, but it is a reasonable choice here, since our purpose is to test the influence

of different time-frequency decompositions as long as the distortion function is fixed. The

output of the psychoacoustic model is a group of 25 masking thresholds, corresponding to

25 critical bands in the perceptual domain.

The audio data sent to the psychoacoustic model must correspond with the audio data

to be coded, meaning that the psychoacoustic analysis should be applied to the exact 1152

samples to be transformed. It is desirable to have the number of mapped values equal to

the number of coefficients decomposed from the filter bank. For this purpose, we choose to

eliminate the DC term (first value) of the DFT because human hearing only goes down to

20 Hz, so it is irrelevant what the frequency content is at 0 Hz.

A standard Hann weighting, conditioning the data to reduce the edge effects, is applied

to the audio data before Fourier transformation. We use a 1152-point Hann window to

provide complete coverage for the samples to be coded, while Layer III uses a smaller

window size of 1024 to reduce the computational load3.

Quantization and bit allocation

Spectral components decomposed by the filter bank are firstly grouped into subbands (gen-

erally critical bands). A group of spectral coefficients is normalized by a common factor

and is then quantized using the same quantizer resolution (same step size δ). Accordingly,

the common normalization factor is called scalefactor and different groups of spectral co-

efficients are called scalefactor bands [32, 33].

In our coders, we use the spectral peak value (maximum absolute value) of coefficients

within critical band i as the scalefactor Ri to give a good indication about the signal

amplitude in that band. Scalar uniform quantization (Section 2.3.4) is then done for each

normalized Xk (Xk = Xk/Ri) in each of the ith critical band. For each critical band i, the

3This is a compromise though, in that samples falling outside the analysis window generally have no
major impact on the psychoacoustic evaluation [16].
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scalar quantizer (mid-riser) is tested and operates as follows:

• If Ri = 0, then Bi = 0, Li = 1 and X̂k = 0,

• If Ri 6= 0, then Li = 2Bi and X̂k = (2/Li)×round(Xk × Li/2),

where Ri is the quantizer range (scalarfactor), Bi is the allocated bits, Li is the number

of quantizer levels, round(.) denotes the nearest integer operation and X̂k represents the

quantized levels (between [−1, 1]) of each normalized spectral coefficient Xk. This operation

assigns a bit rate of zero bits to any signal with an amplitude that does not need to be

quantized, and assigns a bit rate of Bi to those that must be quantized. For example, if the

bit assignment is 1, two levels (−1, +1) are generated to quantize the particular component.

As the signs of the various spectral coefficients are random, the sign information must be

included. When no levels are necessary, a 0 is assigned and transmitted to the decoder.

The resolution of the quantizer (step size δ) is controlled carefully in the bit allocation

loop according to the time-frequency dependent masking thresholds which are supplied

by the perceptual model. If the quantization noise in a given band is found to exceed

the masking threshold estimated by the perceptual model, the step size for this band

is adjusted to reduce the quantization noise. Since achieving a smaller quantization noise

requires a smaller value of quantization step size and thus a higher bit rate, the noise control

loop (bit allocation loop) has to be repeated until the actual noise power (computed from

the difference between the original spectral values and the quantized spectral values) is

below the masking threshold for every scalefactor band and the total number of allocated

bits satisfies the bit requirement4. The allocation of bits is performed with the Greedy

Algorithm [18], which assigns one bit at each iteration to the band with the largest update

NMR. A step-by-step implementation of the NMR-based greedy algorithm is described in

Appendix A.

Bit rate

The data stream sent to the decoder consists of the quantized spectral values and the

side information. In our particular coders, the side information includes a vector of 25

scalefactor values and a vector of 25 bit assignments. The information allows the receiver

4This means that bit allocation procedure continues even when transparent quality is achieved, provided
that extra bits are available.
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to recover the quantization scheme in the same way as the encoder, thus making explicit

information on masking threshold unnecessary. Since the quantization and bit allocation

scheme is fixed, the amount of side information is identical in both of our coders and thus

is not quantized and used in the bit rate calculation.

We use the per sample bit rate to represent the decomposing capacities of different

transformations. The reason is that all the decompositions used in our experiments are

critically sampled, meaning that the number of spectral coefficients is a constant, though

they are decomposed by different filter banks. Assuming a per sample bit rate of b, the bit

rate of the audio signal is calculated as (b × M) × (fs/M) = b × fs bits/sample, where M

is the number of quantized samples (also the number of spectral coefficients and the frame

update rate), and fs is the sample frequency of the input audio. For example, the MP3

codec operates on 48 kHz sampling rate and the bit rate is 64 kb/s for one channel, which

leads to the per sample bit rate of 1.3 bits/sample.

The bits per sample value is computed based on the information content (entropy) of

the quantized spectral coefficients from frame to frame. A step-by-step entropy calculation

procedure is described in Appendix A. After the entropy of each coefficient is obtained, it

is averaged across all quantized coefficients and the result value is the empirical entropy

(bits/sample) of the encoded audio, which is exactly the lower bound of bits information

if a entropy coder is used.

Decoder

The decoding operation is straight forward. The inversely quantized values are directly

generated from the received scalefactors and bit assignment information. These values

are further decoded by the synthesis filter bank. There are two synthesis filter banks

corresponding to the two decomposition structures separately. The first one is precisely

the transpose of the hybrid filter bank in Fig. 4.1, i.e., first butterfly decoded, and then the

inverse 36-point MDCT and polyphase filter bank with frequency inversion in between. The

decoding flow chart is described in “Audio Content”, part 3 of the MPEG/audio standard

[11]. The second one is simply an inverse 1152-point MDCT. Synthesized outputs shall be

the reconstructed PCM audio samples.
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4.2.2 Audio Quality Measurements

To compare different audio coders, we can refer to a number of factors, such as signal

bandwidth, bit rate, quality of reconstructed audio and computational complexity. Among

them, bit rate and quality of the reconstructed audio signal are two fundamental attributes

of an audio coder, and they are intimately related: the lower the bit rate, the lower the

quality.

There are basically three quality measurement methods: objective measurement, sub-

jective listening tests, and perceptual measurement techniques.

The objective measurement is the traditional signal-to-noise ratio (SNR),

SNR =
σ2

x

σ2
e

=
E{x2[n]}
E{e2[n]} (4.5)

defined from the concept of mean square error e(n) between the original signal and the

decoded signal. However, relying on SNR of the decoded signal does not show much under-

standing of the paradigm of perceptual coders, which is: separate the inaudible artefacts

from audible distortions and improve the subjective quality by shaping the quantization

noise over frequency. Thus, objective measures do not satisfy the evaluation requirements

of the perceptual audio coders. The reliable method to assess audio quality of perceptually

coded signals has been subjective listening tests.

In the subjective listening test, the listeners can switch between the original signal

(reference), R, and two other signals, A and B. Both these two signals are reconstructed

signals, though they are processed by different audio codecs. The test has to be double

blind, meaning that neither the listeners nor the supervisor knows which of the signals A

and B is decomposed by its corresponding coding structure. The listeners have to judge

the overall quality of the signals and decide that, which signal sounds better or whether

two signals sound no difference.

Because listening tests are very time consuming and expensive, there has been new

measurement methods which are capable of yielding a reliable estimate of the perceived

sound quality. For years’ work, ITU-R Task Group standardized the perceptual measure-

ment techniques and recommended a system called PEAQ (Perceptual Evaluation of Audio

Quality). Similarly, in the field of speech coding, perceptual measurement methods have

been introduced known as PESQ (Perceptual Evaluation of Speech Quality) [34]. PESQ
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simulates the ear model and predicts the subjective Mean Opinion Score (MOS) [35]. Al-

though MOS operates on a scale from 1.0 (unacceptable quality) to 5.0 (excellent quality),

as shown in Table 4.1, the PESQ values lie between 1.0 (bad) and 4.5 (no distortion).

Table 4.1 MOS is a number mapping to the above subjective quality.

Excellent Good Fair Poor Bad

5.0 4.0 3.0 2.0 1.0

4.2.3 Experiment Results

Experiment set-ups

We conduct subjective listening tests on the coded audio files. While our listening tests are

carried out on a small scale, we apply the PESQ tests to coded speech files as a supplement

to the subjective results.

A wide range of source files must be tested to ascertain which decomposition has a better

frequency interpretation and is more robust to quantization. In our case, we choose rep-

resentation set of material including single instrumental music, single speaker speech, and

music with mixed types. Six test audio files are from EBU-SQAM (European Broadcast-

ing Union — Sound Quality Assessment Material) and the other two are difficult-to-code

material.

In the subjective tests, all sound files were first randomly ordered to eliminate the order-

preference to the testing sequence. Then the quality of the coded signals were evaluated

through informal listening tests. Eight coded files including speech and music were pre-

sented over loud speakers to five untrained listeners in a quiet room. The test is double

blind, in our case, none of the listeners know which of the signals is decomposed by the

hybrid filter bank or by the pure MDCT filter bank. The listeners had to judge the overall

sound quality and give their preference.

Results: subjective and PESQ tests

The results of subjective listening tests are shown in Table 4.2. The per sample bit rates of

the coded files, decomposed by the hybrid and pure MDCT filter banks, have been adjusted

as close to each other as possible. Comparing between them, the listeners preferred the
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quality of 5 files using the pure MDCT decomposition of all 8 coded files. For the other 3

cases, the quality of sound files decomposed by the pure MDCT filter bank is not worse than

that decomposed by the hybrid filter bank, with the only exception for the glockenspiel.

On average, the pure MDCT filter bank outperforms the hybrid filter bank.

Table 4.2 Subjective listening tests: Hybrid filter bank (Hybrid) vs. Pure
MDCT filter bank (Pure)

Sound Hybrid Pure Hybrid - No Preference - Pure

Files (bits/sample) (bits/sample)

Violin 0.572 0.569 1 - 1 - 3

Flute 0.614 0.594 1 - 0 - 4

Glockenspiel 0.405 0.404 3 - 2 - 0

Piano 0.371 0.372 0 - 2 - 3

Vega 0.981 0.979 2 - 0 - 3

Seal 1.292 1.289 2 - 1 - 2

Female Speech 0.853 0.856 2 - 1 - 2

Male Speech 0.980 0.975 0 - 1 - 4

PESQ tests are applied on the two speech files from EBU-SQAM. Since the PESQ

software runs on a narrowband basis, both the reference speech files and the coded ones

are first subsampled to 8 kHz and then PESQ tested. The results are shown in Table 4.3.

The pure MDCT filter bank slightly outperforms the hybrid filter bank in both files. The

PESQ experiment results are in accordance with the subjective judgements. Therefore, we

conclude that a pure filter bank provides better performance than a hybrid one.

Table 4.3 PESQ MOS values: Hybrid filter bank (Hybrid) vs. Pure MDCT
filter bank (Pure)

Speech Hybrid Pure Hybrid - Pure

Files (bits/sample) (bits/sample) MOS Values

Female Speech 0.853 0.856 3.206 - 3.211

Male Speech 0.980 0.974 3.546 - 3.549

The per sample bit rate is low because none of the test passages was coded at a trans-

parent quality. All files were purposely coded at a close-to-transparent level and thus slight

distortions were introduced for the goal of subjective comparison. For transparent coding,
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we used the notoriously hard-to-code material “vega” to test our coders since the coder will

be transparent for all audio inputs if it is transparent in the crucial test involving difficult-

to-code material. Our subjective tests report a bit rate of 2.305 bits/sample for transparent

coding of “vega”. In addition, our PESQ tests report a bit rate around 2.074 bits/sample

for transparent coding of the two speech files from EBU-SQAM. The reconstructed files

can give a PESQ value of 4.

4.3 Psychoacoustic Transforms of DFT and MDCT

4.3.1 Inherent Mismatch Problem

The purpose of psychoacoustic model is to estimate the maximum allowable distortion, rep-

resented as masking thresholds. Since the psychoacoustic model runs in frequency domain,

it is possible to use the output from time-frequency mapping filter bank as the input for

psychoacoustic model, or to perform a separate transform for the purpose of psychoacoustic

analysis. For example, the AAC codec uses the MDCT filter bank to decompose the audio

while using a separate DFT filter bank for psychoacoustic processing.

This could be a problem. Simply put it, the DFT filter bank used in the model cannot

always simulate energy values from the codec MDCT filter bank. Because of this, energy

estimation might be incorrect and therefore psychoacoustic output would be inaccurate. In

the quantization stage, the audio coder decouples the psychoacoustic part from the quanti-

zation part: a DFT computes masking thresholds but one quantizes in MDCT domain. But

for the analysis-synthesis loop involving excitation distortion minimization, the two cannot

be decoupled since there would be an inherent mismatch. For instance if the quantizer is

removed, the distortion should be zero, but it would not be since each excitation pattern

would be generated by a different time-frequency processing. This mismatch is illustrated

in Fig. 4.9, represented by the frequency responses of the MDCT basis functions.

In the figure, the MDCT seems to perform a projection of the time samples onto one

set of basis functions hk[n] for the forward transform (MDCT), and then use this set and

the set hk[n + M ] for signal reconstruction (IMDCT). The document looks at the DFT

of functions hk[n]. For the set of basis of functions, except for the DC term at k = 0,

none of the frequency responses for hk[n] achieve their maximum at the “expected” value

of k × π/M . The main lobe for each of the responses has very large bandwidth, the center
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Fig. 4.9 Frequency response of the MDCT basis function hk(n), M = 4.
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of which is moving to higher frequencies as k increases.

It is important to note that, with the MDCT, while past samples can be used to get

rid of the time aliasing in the first 50% of the frame, the time aliasing in the latter 50% of

a frame would still be very severe, and so the computation of the DFT given the MDCT

coefficients of such a frame would be misleading. This raises the question of developing a

transform which has less time aliasing, that is, less amount of overlap. We will elaborate

this motivation in Section 5.1.

4.3.2 Experiment Results

In this part, we investigate the use of MDCT spectrum as input to the perceptual model.

Performances of coded files, using the DFT spectrum or the MDCT spectrum for psychoa-

coustic analysis, are tested under the condition of a pure MDCT filter bank decomposition.

We experimented both the subjective listening tests and PESQ measurements.

In the subjective tests, compared to the MDCT spectrum, the listeners unanimously

believed that the DFT spectrum delivered better quality for most music passages and never

performed worse. The PESQ values are shown in the Tables 4.4. As we can see, comparing

to the MDCT spectrum, the DFT spectrum generated better speech quality.

Experiment results are different from what we had expected. One possible reason is

that DFT spectrum is a complex spectrum and the imaginary values are instrumental

to tonality estimation. In our tests, the DFT spectrum produced better psychoacoustic

analysis because the advantage of complex spectrum outweighted the disadvantage of energy

mismatch.

Table 4.4 PESQ MOS values: DFT spectrum (DFT ) vs. MDCT spectrum
(MDCT )

Speech DFT MDCT DFT - MDCT

Files (bits/sample) (bits/sample) MOS Values

Female Speech 0.856 0.867 3.211 - 3.197

Male Speech 0.975 0.961 3.549 - 3.460
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Chapter 5

Partially Overlapped Lapped

Transforms

In this chapter, we present a new partially overlapped yet critically sampled transform,

the Pre-DST lapped transform. The transform can vary the amount of overlap between

neighboring blocks (let M < L ≤ 2M) and, hence, have fine control over the coding

performance.

5.1 Motivation of Partially Overlapped LT: NMR Distortion

We explored the current decomposition structures in MPEG standards: the hybrid filter

bank in MP3 and the pure MDCT filter bank in AAC (Chapter 4). They are all based on

50% overlapped frames and use overlap-add for signal reconstruction. There is a problem

with these coders: quantized NMR is not the same as reconstructed NMR. Der showed

in [36] that, by overlapping frames, there exists two versions of the “reconstructed” NMR

patterns. Version 1 is derived directly from the quantized spectral coefficients. Version 2

is derived from spectral analysis of the final time-domain coded signal, after overlap-add.

These two versions of NMR patterns will not be the same if there is overlap in frames. It is

obvious that the “correct” reconstructed NMR pattern is the one obtained only after time-

domain addition, because this is the signal upon which the listeners perform the perceptual

processing. Thus, NMR distortion, generated from the difference between the intermediary

signal (version 1) and reconstruction signal (version 2), will apply at any transforms with

overlap greater than zero.
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There exist two solutions to the posed dilemma. The first is to forego overlapped rep-

resentations. There are a few problems with this approach. First, it prohibits any lapped-

transform decomposition; among them the Modified Discrete Cosine Transform (MDCT),

which is perhaps the most popular and widely-used transform in audio coding. Second,

the quantized coefficients must come from a non-overlapped analysis; by the Nyquist con-

straints for perfect reconstruction, the only time-window that may be used is a rectangular

one, which has relatively poor sidelobe suppression properties. Finally, it is well-known

that non-overlapped reconstruction in transform coders result in discontinuities at frame

boundaries due to quantization: the result is a highly audible low-frequency clicking, known

as blocking edge effects.

The other possibility, and the one which we pursue in this chapter, is to develop a

transform which has less time aliasing in the overlap-add procedure, that is, less overlap.

The transform we explore would be a partially overlapped yet critically sampled transform.

5.2 Construction of Partially Overlapped LT

5.2.1 MLT as DST via Pre- and Post-Filtering

The 50% overlapped modulated lapped transform (MLT) can be implemented efficiently

by means of a fast transform of length M , as explained in [37] by Malvar. Assuming we

have the MLT in a common form as

Xk(m) =

√

2

M

2M−1
∑

n=0

xm(n)h(n) cos
[(n + M+1

2
)(k + 1

2
)π

M

]

, (5.1)

where m is the block index and h(n) is the lowpass prototype filter.

Defining a new sequence ym(n) as

ym(n) =







































xm(n + M/2)h(n + M/2) − xm(M/2 − n − 1)h(M/2 − n − 1),

n = 0, . . . ,M/2 − 1,

xm(n + M/2)h(n + M/2) + xm(5M/2 − n − 1)h(5M/2 − n − 1),

n = M/2, . . . ,M − 1,

(5.2)
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we can rewrite the Eq. (5.1) as,

Xk(m) =

√

2

M

M−1
∑

n=0

ym(n) sin
[(n + 1

2
)(k + 1

2
)π

M

]

. (5.3)

The above equation shows that the MLT outputs can be obtained by applying on the

sequence ym(n) the Type-IV Discrete Sine Transform (DST-IV), as defined in Eq. (3.36).

Therefore, a MLT filter bank can be implemented in two steps: first, we compute the

butterflies in Eq. (5.2); and second, we calculate the DST-IV of the sequence ym(n) as in

Eq. (5.3).

As we have shown in Chapter 3, MDCT is a special case of MLT with a particular

choice of the prototype filter (a sine window), so that it can be implemented in the same

fashion of the two steps. The flowgraph of the forward MDCT is illustrated in Fig. 5.1,

where the butterfly coefficients are Ci = cos
[

(2i − 1)π/4M
]

and Si = sin
[

(2i − 1)π/4M
]

.

The flowgraph of the inverse MDCT is just the transpose of that of Fig. 5.1. Now the

transform consists of a butterfly pre-processor and a DST-IV decomposition stage.
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Fig. 5.1 Flowgraph of the Modified Discrete Cosine Transform [37].

In Fig. 5.1, we note that the input signal passes through a M -decimator after the DST-

IV, that M/2 channels with a advance of M samples now appear before the DST-IV, and
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that the outputs are only computed for every M samples that are shifted in. We put

the M -decimator before the butterfly so that the zM advance becomes z1 advance. The

rearranged system is illustrated in Fig. 5.2, where the matrix B is the butterfly-coefficient
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Fig. 5.2 Flowgraph of MDCT as block DST via butterfly pre-filtering.

matrix, as given in Eq. (5.4).
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(5.4)

Now the MDCT can be viewed as a combination of the common block-based DST with

simple time-domain pre-filtering. Since the inputs to the M/2 branches with z1 advances

are from next data frame, the input block to DST-IV is essentially the second half of the

current butterfly outputs plus the first half of the next butterfly outputs. Thus, the whole
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system can be viewed globally as in Fig. 5.3.
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Fig. 5.3 Global viewpoint of MDCT as pre-filtering at DST block bound-
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It is important to note that the current frame contains the M samples in the dotted-

line block, instead of the M samples of MDCT frame in the solid-line block. The 50%

overlapping is achieved by borrowing M/2 samples in the dotted-line blocks from neigh-

boring frames. In the decomposition stage, B acts as the pre-filter working across the block

boundaries, taking away interblock correlation; the pre-filtered time samples are then fed

to the DST to be encoded as usual.

In Fig. 5.3, the forward transform matrix H can be expressed in the matrix form as

H = DMSIV
M HpreP2M , (5.5)

where

P =

[

BM 0M×M

0M×M BM

]

2M×2M

(5.6)

Hpre =

[

0M
2
×

M
2

IM
2
×

M
2

0M
2
×

M
2

0M
2
×

M
2

0M
2
×

M
2

0M
2
×

M
2

IM
2
×

M
2

0M
2
×

M
2

]

M×2M

(5.7)
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DM =



















−1

1

−1
. . .

1



















M×M

. (5.8)

The pre-filter matrix P is composed of the butterfly matrix B and applied to 2M time

samples, Hpre is the 2M → M mapping operator, SIV
M is the DST-IV transform of length

M , and D is the diagonal matrix inverting the polarity of the transform coefficients. We

label this kind of Pre-filtered Discrete Sine Transform as the Pre-DST lapped transform.

5.2.2 Smaller Overlap Solution

Similar to the smaller overlap approach on the type-II fast Lapped Orthogonal Transform

(LOT) in [38], our partially overlapped MLT is derived from an observation of the structure

in Fig. 5.3. The amount of overlap can be lowered by reducing the size of the pre-processing

matrix B. An M × L LT, where L ≤ 2M and M ≥ 2, can be easily constructed with a

(L − M) × (L − M) pre-filter B, which has the same form as Eq. (5.4), except that the

matrix B is now of the size L − M . In an extreme situation where L = M (0% overlap),

the pre-filtering is turned off and the system turns into a disjoint DST-IV transform. The

diagram of the partially overlapped LT at arbitrary overlaps is shown in Fig. 5.4.

The matrix representation of the Pre-DST LT in Fig. 5.4 is

H = DMSIV
M HpreP, (5.9)

where P is the pre-filtering matrix applied to L time samples and Hpre is a L → M mapping

operator. The full system functions to convert L time samples to M transform coefficients.

P =







BL−M 0(L−M)×(2M−L) 0(L−M)×(L−M)

0(2M−L)×(L−M) I(2M−L)×(2M−L) 0(2M−L)×(L−M)

0(L−M)×(L−M) 0(L−M)×(2M−L) BL−M







L×L

(5.10)
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The flowgraph of the inverse transform is described in Fig. 5.5. The received signal

is first inverse-DST transformed, then post-filtered along with the (L − M)/2 coefficients

from the previous and next frame. Finally the reconstructed signal is obtained as the

combination of the post-filtered samples with the outputs directly from the inverse DST.

The Pre-DST system has several advantages. First, it is a perfect reconstruction system,

which is structurally guaranteed by the orthogonality of the butterfly-coefficient matrix

B, matrix SIV and polarity conversion matrix D. In addition, the whole system is fast

computable because the DST-IV module can be implemented by one of the many fast

algorithms.

Second, though the block length of the transform is L, the partially-overlap Pre-DST is

critically sampled in that one data block contains only M new time samples. The various

overlap percentage is achieved by borrowing different amount of samples from neighboring
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Fig. 5.5 Post-DST lapped transforms at arbitrary overlaps (L < 2M).

frames.

Third, the Pre-DST system has the property of cascade linear phase. It is true that

the impulse responses of the Pre-DST do not have even/odd symmetry, therefore their

frequency responses do not have linear phase. Nevertheless, linear phase alone is not

generally a required property, since in coding applications if a signal is processed by the

kth analysis filter, it will also be processed by the kth synthesis filter. If the analysis

filters are equal to the time-reversed synthesis filters, the overall impulse response of any

channel has even symmetry and so the cascade connection has linear phase. Through some

elementary matrix manipulations, it is easy to verify that the Pre-DST has the property of

the cascade linear phase.

5.3 Performance Evaluation

5.3.1 Pre-echo Mitigation

As mentioned, the motivation behind developing a partially overlapped LT is to reduce

the NMR distortion in the overlap-add procedure. In this section, we show that the par-

tially overlapped Pre-DST can effectively mitigate the frame-to-frame pre-echo artefact,

one NMR distortion.
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The pre-echo artefact arises in perceptual coding systems. It occurs when a signal with

a sharp attack begins near the end of a transform block immediately following a region

of low energy. The quantization error will then be spread out over some time before the

music attack. For a block-based algorithm, when quantization and encoding are performed

in order to satisfy the masking thresholds associated with the average spectral estimate

within the analysis window, the quantization error in the coder is added to the spectral

components as a signal of the window length. Thus, the inverse transform will spread

the quantization error evenly in time over the full window length. This results in audible

distortions throughout the low energy region preceding in time the signal attack. Pre-

echoes can arise when coding recordings of percussive instruments such as the castanets.

There are a number of techniques to avoid audible pre-echoes, including window switching

and temporal noise shaping, as mentioned in Section 2.3.1.

Our Pre-DST framework can be designed adaptive to transient signals and thus com-

pensate for pre-echoes. Based on the energy of the transform coefficients generated, we

can vary the number of borrowing samples dynamically while the frame size is fixed to M .

For example, the pre-filtering operator can be chosen amongst: no filtering (0% overlap),

borrowing M/4 samples (20% overlap), borrowing 2M/3 samples (40% overlap), or bor-

rowing M samples (50% overlap). Thus, we are switching from a M × M to a 5M/4 × M

to a 5M/3 × M and to a 2M × M Pre-DST. The price to be paid is a small increase of

the side information used to specify the overlap. For instance, if the number of borrowing

samples can be chosen from the set {0,M/4, 2M/3,M}, the side information increase for

each frame is then 2 bits.

We use the standard test file “castanets” which has sharp transients to examine our

Pre-DST decomposition in a full audio coder. Other parts of the audio coder, such as the

psychoacoustic model and quantization, are identical to the audio coder in Section 4.2.1.

The experiment set-ups are the same as those in Section 4.2.3. So, we are testing the

Pre-DST decomposition at different overlaps and note that, at 50% overlap, the Pre-DST

structure becomes the MDCT and our coder is precisely the pure MDCT audio coder in

Section 4.2.1. The difference of experiment results are not only audible but also visible.

Coded waveforms are shown in Fig. 5.6. Comparing to the MDCT (Pre-DST at 50%

overlap), the 20% overlapped Pre-DST significantly reduces the pre-echoes of the waveform.

Bit rate performance is measured by computing the empirical entropy, which is a real-

istic measure in our critically sampled Pre-DST system. Results are shown in Table 5.1:
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(c) Pre-DST coded files, 576 new samples per block at 20% overlap.

Fig. 5.6 Partially overlapped Pre-DST example showing pre-echo mitigation
for sound files of castanets.
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as overlap reduces, bits per sample (empirical entropy) monotonically decreases. This is

understandable because fewer coefficients are coded and thus less information content is

involved. Again, all coding is performed at a non-transparent level and the per sample bit

rate has been adjusted as close as possible.

5.3.2 Optimal Overlapping Point for Transient Audio

Obviously, fewer overlapping samples at each block boundary to be borrowed, more can

we capture the time-varying characteristics of the transient audio and keep the pre-echoes

under control. However, when reducing the overlap percentage, we increase another artefact

of the blocking edge effects. Thus, from 0% overlap to 50% overlap, the pre-echoes increase

while the blocking edge effects decrease. The question is how much overlapping balances

both artefacts and sounds the reconstructed audio best as a whole. We refer to this overlap

percentage as the Optimal Overlapping Point. Preliminary experiments are carried out on

castanets to find the solution and the results are shown in Table 5.1.

Table 5.1 Subjective listening tests of Pre-DST coded test files of castanets.

Overlap Percentage Sound Quality Bits/Sample

10% most distorted 0.950

20% least distorted 0.969

30% distorted 0.982

40% more distorted 1.008

50% more distorted 1.008

Our experiments show that the optimal overlapping point for sound files of castanets

would be around 20%. This implies that an overlap of 20% is sufficient for the blocking

effect reduction and simultaneously conceals the pre-echoes under the backward temporal

masking thresholds of the sharp attack (Section 2.1.4). To reach a conclusive optimal

overlapping point, more transient audio files have to be tested.
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Chapter 6

Conclusion

The purpose of our research has been to explore the decomposition structures which could

be used to compute perceptual distortion measures effectively, and to develop a transform

operating at smaller overlaps. To accomplish our goal, two widely-used decomposition filter

banks are implemented and their performance compared. In addition, we have proposed

a partially overlapped lapped transform, the Pre-DST. This structure can be designed

adaptive to the time-varying characteristics of input audio.

6.1 Thesis Summary

In Chapter 1 the major classes of coding paradigms, i.e., parametric coding and waveform

coding were presented. Frequency-domain waveform coders employing the perceptual prin-

ciple have been rendered as the best alternative for the coding of general audio signals.

Additionally, the basic concept of time-frequency transformation was introduced and its

application to audio coding was described.

Chapter 2 started with a description of the physiology of the human auditory system.

The basic theory of loudness perception was introduced since it maps the input signal energy

to sound pressure levels. The important concept of critical bands, which approximate

the bandwidth of the auditory bandpass filters, was presented to explain the frequency

resolution of the ear. Subsequently, auditory masking effects were discussed, highlighting

on the simultaneous masking phenomenon.

Section 2.2 presented the well-known auditory models that predict the amount of mask-

ing produced by a complex audio signal. The model under study was the Johnston’s model.
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Following the discussion, the basic structure of a perceptual audio coder was presented in

Section 2.3. Among other components, the decomposition filter bank, the psychoacoustic

model, bit allocation and quantization were examined.

Chapter 3 provided a detailed analysis of lapped transforms. Lapped transforms are

a proper choice for transform coders because they perform on overlapping blocks of data

which reduces blocking edge effects. Modulated Lapped Transforms (MLT), which is pro-

duced through modulating cosine functions by a prototype lowpass time window, was ana-

lyzed; among them, the Modified Discrete Cosine Transform (MDCT) was noted for its wide

popularity in audio coding. Modulated Lapped Transforms were compared to a equivalent

filter bank representation. The effect of the prototype window on the frequency response

of the resulting filter bank was discussed. Perfect reconstruction conditions in which an

identical window is used in the analysis and synthesis stages were compared to the Lapped

Orthogonal Transforms (LOT) in which two symmetric matrices are used. Finally, the

issue of adaptive filter banks was addressed and a window switching method was analyzed

as a form of adaptive filter bank to reduce pre-echo artefacts in audio coding.

In Chapter 4, we thoroughly discussed two main classes of decomposition schemes in

audio coding of MP3 (MPEG-1 Layer III) and AAC (MPEG-2 Advanced Audio Coding).

MP3 decomposition is a hybrid filter bank, which consists of a subband filter bank and

a transform filter bank. Some information is lost during its signal decomposition. AAC

decomposition is a pure MDCT filter bank which can perfectly reconstruct the original

signal in the absence of quantization. However, in terms of perceptually transparent coding,

no difference between the original and reconstructed signal can be perceived by the human

ear in both methods.

In the following sections we described different blocks of our audio coders along with

the related algorithms. An hybrid or pure MDCT filter bank was used to decompose the

input signal into its spectral components. The spectral coefficients were grouped into 25

subbands to emulate the frequency analysis in the ear. To quantize the transform coeffi-

cients, a scalar quantization approach was taken. The bit allocation algorithm based on the

Noise-to-Masking (NMR) ratio was introduced. In the process of quantization, the simulta-

neous masking thresholds were used to determine the acceptable noise level. Subsequently,

following a description of performance evaluation measures, the performance assessment

of MP3 and AAC decomposition was presented. It was argued that pure transform filter

bank performs better than hybrid structure with subband and transform filter banks.
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In Section 4.3, DFT-based and MDCT-based psychoacoustic analysis approaches were

compared and the DFT-based approach performed better than the MDCT-based one.

Chapter 5 introduced a novel coding structure called Pre-filtering DST (Pre-DST).

The novel structure first included the analysis of the Modified Discrete Cosine Transform

(MDCT) that was presented in Chapter 3. Based on the analysis, the framework is pro-

posed which can vary the overlap percentage at arbitrary degrees between blocks. The

performance evaluation of the proposed coding structure was presented in Section 5.3.

Performance improvements of Pre-DST were observed when coding transient audio signals,

compared to the MDCT decomposition. In addition, the optimal overlap percentage to

model transient signals was investigated and we reported an amount around 20%.

6.2 Future Research Directions

In this section, we make some suggestions for future research on more general aspects of

lapped transforms in audio coding.

• Use a complex MDCT representation and compare to the DFT spectrum. The experi-

ment results in Section 4.3 showed that DFT spectrum produced better reconstructed

sound quality than MDCT spectrum. One possible reason is DFT generates a complex

excitation power spectrum, and the incorporated imaginary parts can be instrumen-

tal. A complex MDCT spectrum could be constructed of MDCT and MDST.

• Further designs on the Pre-DST structure.

– Instead of using a unitary matrix, experiment other diagonal matrices between

the butterfly matrices to represent the pre-filter.

– Use time windows other than the sine window to construct the butterfly matrix

and test the performance.

• We have argued that applying the NMR criterion on the signal before overlap-add

is inappropriate. This can be avoided by adopting a partially-overlap transform.

However, several problems arise if a partially-overlap representation is used. As the

overlap is reduced, the time window will have poor sidelobe suppression properties

(consider the extreme condition, a rectangular window comes from 0%), resulting in

poor frequency separation. As the overlap is reduced, the blocking edge effects at



6 Conclusion 69

frame boundaries due to quantization become more audible. Therefore, the task will

be to find an overlap percentage which could balance all the beneficial and deleterious

effects
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Appendix A

Greedy Algorithm and Entropy

Computation

A.1 Greedy Algorithm

The greedy algorithm is a simple and intuitive method for achieving integer-constrained

bit allocation [18]. The algorithm is performed iteratively, ensuring an integer assignment

of bits to each quantizer. At each iteration, one bit is allocated to the quantizer for which

the decrease in a distortion measure is largest. The algorithm is greedy since bit allocations

are optimized per iteration rather than considering the final distortion. The algorithm is

summarized below.

Assume that B bits are available for N quantizers. Let Wi(b) represent the distortion

function associated with the ith quantizer having b bits. Additionally, let bi(m) represent

the number of bits allocated to the ith quantizer after m iterations.

0 - Initialize the number of bits assigned to each quantizer to zero such that bi(0) = 0

for i = 1 . . . N .

1 - Find the index j such that: j = argmaxi{Wi(bi(m − 1)) − Wi(bi(m)}.

2 - Set bj(m + 1) = bj(m) + 1 and bi(m + 1) = bi(m) for all i 6= j.

3 - Set m = m + 1. If m ≤ B, return to step 1.
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A.2 Entropy Computation

The entropy of a discrete random variable X is a function of its PMF (probability mass

function) and is defined by [39]

H(X) = −
K

∑

i=1

pi log(
1

pi

), (A.1)

where pi is the probability of random event X = ai, for all i = 1, 2, . . . , K.

Assume we have the encoded signal Ŝ, composed of N frames with M quantized coef-

ficients each frame, in a matrix as

Ŝ =













Cf1
(1) Cf2

(1) . . . CfN
(1)

Cf1
(2) Cf2

(2) . . . CfN
(2)

...
...

...
...

Cf1
(M) Cf2

(M) . . . CfN
(M)













, (A.2)

where the ith column corresponds to the ith frame. All coefficients Cf (i) (row-wise) con-

stitute a sample space of real numbers and represent a random variable, denoted as Xi.

It consists of values generated from the jth subband scalar quantizer of L levels. The set

L = {l1, l2, . . . , lL} denotes the set in which the random variable Xi takes its values. Similar

to Eq. (A.1), the entropy of the discrete random variable Xi is given by

H(Xi) = −
L

∑

i=1

pi log(
1

pi

), (A.3)

where pi is the probability of random event X = li, for all i = 1, 2, . . . , L.

Now that we have the entropy of the ith component Xi, the entropy of the whole

encoded signal is simply the average entropy of M components, as

Es =
M

∑

i=1

H(Xi). (A.4)

This is the per sample bit rate of the encoded audio signal, also known as the empirical

entropy of the quantized coefficients.
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