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Abstract

The demand for wireless networks has been growing rapidly over the recent past due to

improved reliability, higher supported data rates, seamless connectivity between users and

the access point, and low deployment costs relative to wireline infrastructure. This increase

in demand started with the popular IEEE 802.11b wireless local area network standard.

Many recent wireless network standards are now employing multicarrier modulation in

their design. Multicarrier modulation reduces the system’s susceptibility to the frequency-

selective fading channel, due to multipath propagation, by transforming it into a collection

of approximately flat subchannels. As a result, this makes it easier to compensate for

the distortion introduced by the channel. However, standardized wireless modems, such

as the ETSI HiperLAN/2 and the IEEE 802.11a standards, employ the same operating

parameters across all subcarriers, and thus do not exploit all the advantages offered by the

multicarrier framework.

This dissertation investigates techniques to further enhance system throughput perfor-

mance by tailoring several operating parameters on a per-subcarrier basis. These param-

eters are subcarrier modulation schemes, power levels, and equalizer lengths. The idea of

tailoring modulation schemes and power levels, known as bit allocation and power allo-

cation, has been studied for many years and for many applications. This work proposes

two novel discrete bit allocation algorithms that strive to reach the optimal solution in a

low computational complexity fashion, while constrained to a specified error performance.

A novel power allocation algorithm is proposed that satisfies regulatory requirements by

obeying a frequency interval power constraint.

Investigation of the third parameter, subcarrier equalizer lengths, has not been con-

ducted before in the literature. Two algorithms are proposed that vary the lengths of the

subcarrier equalizers such that the overall distortion is reduced to some specified amount,

while the number of equalizer taps used by the system are kept small. Finally, the use of

bit allocation is extended to the case when multiple antennas are employed by the wireless

modems. Four algorithms are proposed that perform generalized antenna selection diver-

sity at both the transmitter and receiver, in tandem with discrete bit allocation. Results

show that employing two transmit and two receive antennas with discrete bit allocation

can achieve an average increase in throughput of up to 33% when compared to a system

without bit allocation.
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Sommaire

Au cours des dernières années, la demande de services sur des réseaux sans-fil s’est accrue

rapidement, du fait entre autres de leur fiabilité améliorée, des débits de plus en plus élevés

supportés, de la facilité de connexion entre les utilisateurs et les points d’accès, et de leur

faible coût de déploiement en comparaison avec les technologies filaires. Cette tendance

s’est marquée principalement depuis le succès de la norme de réseau local sans-fil IEEE

802.11b. De nombreuses normes de réseaux sans-fil récentes reposent sur la modulation à

porteuses multiples. La modulation à porteuses multiples réduit la sensibilité du système

aux canaux à évanouissement sélectif en fréquence, en les transformant en une collection

de sous-canaux à évanouissement constant. Ceci simplifie la compensation de la distorsion

due au canal. Cependant, les normes actuelles de modems sans-fil (comme HiperLAN/2

et IEEE 802.11a) utilisent les mêmes paramètres de fonctionnement sur toutes leurs sous-

porteuses, et n’exploitent donc pas tous les avantages offerts par les systèmes.

La présente thèse étudie différentes techniques pour améliorer le débit de ce type

de système en choisissant différents paramètres de fonctionnement individuellement pour

chaque sous-porteuse. Les paramètres considérés sont le type de modulation, la puissance

de transmission et la longueur des égaliseurs. L’idée d’adapter les modulations et les

niveaux de puissance (appelée allocation binaire et de puissance) a déjà été étudiée pour

différentes applications. Le présent travail propose deux algorithmes novateurs allocation

binaire discrète, qui tentent d’atteindre l’allocation optimale avec une faible complexité de

calcul, tout en respectant une contrainte sur le taux d’erreur binaire moyen. Un algorithme

novateur d’allocation de puissance est proposé, qui satisfait les exigences des organismes

de régulation, en obéissant à une contrainte de puissance sur des intervalles de fréquence.

L’étude du troisième paramètre considéré, la longueur des égaliseurs, n’a pas été en-

visagée auparavant dans la littérature. Nous proposons deux algorithmes qui font varier

les longueurs des égaliseurs dans chaque sous-porteuse, de manière à réduire la distorsion

jusqu’à un niveau prédéterminé, tout en minimisant la longueur des égaliseurs. Finalement,

l’utilisation de l’allocation binaire est étendue au cas où plusieurs antennes sont utilisées

dans le modem sans-fil. Nous proposons quatre algorithmes de diversité généralisée par

sélection d’antennes, en conjonction avec une allocation binaire adaptative. Les résultats

obtenus démontrent que l’utilisation de deux antennes au récepteur et à l’émetteur permet-

tent jusqu’à 33% d’accroissement du débit une fois comparé à un système sans l’allocation.
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Chapter 1

Introduction

1.1 Multicarrier Modulation: A “Divide-and-Conquer”

Approach for Data Transmission

Data transmission has become and integral and ubiquitous component of today’s world.

Everyday actions, such as using a bank machine, making a phone call, watching television,

and doing grocery shopping, all involve some sort of data transmission that makes these ac-

tions more convenient, cost effective, or feasible. This data transmission can be performed

over a wireline infrastructure, a wireless network, or a combination of the two infrastruc-

tures. A consequence of this increased integration of data transmission in our day-to-day

life is the demand for more throughput. As the level of integration increases and more

people are connected, the amount of data generated grows. Therefore, the data rates of

the data transmission systems must increase to keep up with the increase in information.

Although the throughput supported by wireline networks are enormous, due to fiber optics

and other technologies, the base station/mobile user interfaces of wireless networks are still

trying to keep up with the demand for more throughput. Moreover, there are several signif-

icant restrictions when wireless modems transmit at high data rates. The first is bandwidth

usage. Since the spectrum that wireless systems use to transmit data is regulated by gov-

ernment agencies, such as the Federal Communications Commission (FCC) in the United

States and Spectrum Management and Telecommunications Canada, each operator of a

wireless data transmission infrastructure must abide by the established guidelines. This is

done in order to avoid interference between different wireless operators. Therefore, the rate
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is constrained by the maximum bandwidth allotted to the operator. The second constraint

is the channel environment that the data transmission system is operating through. At

higher data rates, the amount of distortion introduced to the transmission becomes more

pronounced, making it more difficult to compensate at the receiver.

Since the regulatory requirements of the spectrum cannot be modified or changed, re-

searchers are investigating techniques for enhancing the performance of digital transmission

systems operating in various channel conditions (e.g., additive white Gaussian noise, mul-

tipath fading, impulse noise). Several solutions have been proposed, including multicarrier

modulation (MCM), which is currently employed mostly in digital subscriber lines (DSL)

systems [1] and wireless local area networks (WLAN) [2–4]. MCM operates according to

a “divide-and-conquer” approach: by transmitting the data across the channel at a lower

data rate in several frequency subcarriers, the process of distortion compensation can be

made simpler by treating each subcarrier separately. From a time-domain perspective,

this translates the wideband transmission system in a collection of parallel narrowband

transmission systems each operating at a lower data rate [5]. From the frequency-domain

perspective, MCM transforms the frequency-selective channel, i.e., non-flat spectrum across

the frequency band of interest, into a collection of approximately flat subchannels that the

data gets transmitted over in parallel. Thus, MCM has become the technology of choice to

combat the frequency-selective fading channel.

Despite the advantages of multicarrier modulation, many conventional WLAN systems

do not fully exploit its potential, unlike DSL modems. Rather, conventional WLAN sys-

tems employing MCM use the same operating parameters across all subcarriers, including

modulation scheme, coding rate, and transmit power level. However, the effects of the

channel may vary on a subcarrier basis, and thus the overall error probability of the system

is dominated by the error probabilities of the subcarriers with the worst performance [6].

For instance, systems that try to keep the error rate low usually transmit with the smallest

subcarrier signal constellation possible. Equivalently, systems that require a high through-

put have error probabilities dominated by the largest subcarrier error probability. Thus,

to enhance system performance, the impact of these poorly-performing subcarriers should

be mitigated. This is the rationale behind adaptive loading for MCM systems.

Loading refers to the process of distributing resources in a system employing MCM

such that the performance is enhanced while satisfying some constraints. Resources that

are commonly allocated to the different subcarriers are bits, i.e., through the choice of
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modulation scheme, and power, i.e., transmit power levels. Since the channel that the

data transmission system is operating in is usually frequency-selective, each subcarrier will

have a different signal-to-noise ratio (SNR). Thus, tailoring the operating parameters could

improve performance. The techniques for loading originated from other areas, including

financial analysis [7] and quantizer design [8, 9]. However, a number of loading algorithms

have been developed and implemented for several data transmission systems, including

DSL modems [10–13].

Despite these efforts, a number of issues remain unresolved or require better solutions.

For instance, several bit loading algorithms exist that use closed-form expressions to solve

for the final solution. As a result, rounding errors and the errors introduced via the approx-

imations applied to these expressions may result in solutions that are far from the optimal.

However, many algorithms that do perform discrete bit loading use an incremental ap-

proach that may increase the computational complexity. With respect to power loading,

almost all algorithms impose a total power constraint, which may result in a potential vio-

lation of regulatory requirements imposed on transmit power levels. To compensate for the

distortion at the receiver, many multicarrier modulation systems employ subcarrier equal-

izers. If the channel is frequency-selective, the distortion of each subcarrier is different,

with some subcarriers requiring more compensation than others. However, many systems

employ equalizers of the same length across all the subcarriers, resulting in several equal-

izers using too many taps to combat the distortion while the other equalizers use too few

taps. Finally, the use of multiple antennas and bit loading have not been fully exploited,

especially in wireless local area network systems. Employing both multiple antennas and

bit loading, each with its own performance gains, will result in a performance enhancement

greater than each of the individual performance gains, although it will not be equal to the

sum of individual performance enhancements.

1.2 Research Objectives

The main objective of this research is to develop a number of performance-enhancing tech-

niques that are applicable to multicarrier-based wireless local area network modems. By

exploiting the potential offered by adaptive loading algorithms and multiple antennas,

which wireless local area networks normally do not employ, the throughput performance

of these systems will increase at the cost of small increase in implementation complexity.
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Moreover, the error robustness1 of these systems will be constrained to be above some

specified amount to ensure a minimum quality of service.

Therefore, to reach this main objective, several sub-objectives have been established in

this dissertation, namely:

• The design of a discrete bit loading algorithm that can strive for the optimal solution

in a low computational complexity fashion. Most discrete bit loading algorithms are

iterative in nature. Thus it is important to find a final solution that is close to the

optimal in as few iterations as possible2.

• The design of a power loading algorithm that allocates power to the subcarriers while

satisfying a frequency interval power constraint. This constraint is imposed in order to

avoid violations of regulatory requirements, which usually limits the transmit power

levels according to some level across a specified bandwidth.

• The enhancements of the efficiency of the system to deal with ISI distortion by varying

the subcarrier equalizer lengths according to the distortion present in each subcarrier.

Instead of applying the same number of taps for each equalizer, the number of taps

is varied for each subcarrier until the overall distortion is reduced to an acceptable

level.

• The exploitation of the spatial diversity of a WLAN system by employing multiple

antennas at both the transmitter and the receiver. To avoid excessive power con-

sumption due to redundant antennas, an algorithm must be in place to employ only

the necessary number of antennas to achieve an increase in throughput (the remaining

antennas are “turned off”).

• The combination of the frequency and spatial diversity offered by both multiple an-

tennas and MCM to enhance throughput while satisfying the error constraint. Com-

bining these two techniques would yield a substantial performance improvement, al-

though this improvement would not be equal to the sum of the individual performance

gains of multiple antennas and MCM.

1In this dissertation, the error robustness is measured in terms of the probability of bit error, also known
as the bit error rate.

2The same objective was defined by Krongold, Ramchandran, and Jones for their proposed bit and
power loading algorithms [14]. See Section 2.4.1 for details.
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Before outlining the contributions of this thesis, it is necessary to outline what others

have done in this research area to reach some of these objectives.

1.3 Related Work

With respect to bit loading, one of the most prolific research teams in this area is that

of Professor John Cioffi’s group of Stanford University. Although their research focuses

on applying data transmission techniques to DSL modems [11–13], their algorithms can

also be applied to other MCM systems, such as WLAN systems. With respect to bit

loading, Cioffi’s algorithm and all its variants focus on an approximation of the channel

capacity to define a non-integer number of bits per subcarrier. This expression is then

used as a foundation for a number of different problems that perform bit loading. More

information regarding this form of bit loading is found in Section 2.4.1. However, these bit

loading algorithms suffer from two problems: error due to truncation/rounding, and error

introduced by the expression. In the former, the expression yields a value for the number

of bits that required some sort of rounding to make it an integer. The latter is due to

the expression itself, which uses the Shannon capacity expression to compute the number

of bits required to achieve a specific probability of error. However, this expression uses a

number of approximations to achieve this and thus some errors are introduced. Overall,

the combination of these two sources of error may lead to a solution that is far from the

optimal. On the positive side, this type of algorithm is fast since it can quickly compute

the solution using a closed-form expression.

Fasano, Zucchi, Baccarelli, and Biagi proposed a number of power loading algorithms

that attempt to avoid violations of the power constraints imposed by regulatory agen-

cies [15–19]. In particular, they impose a subcarrier power constraint on each subcarrier

such that when power is allocated, it cannot exceed this constraint. As a result, viola-

tions will not occur. However, the power constraints imposed by the regulatory agencies

are usually specified over a bandwidth. In many cases, including that of the wireless net-

work standards IEEE 802.11a and ETSI HiperLAN/2, this bandwidth may contain several

subcarriers. Therefore, their algorithm may be too strict due to the lack of flexibility of

distributing power across a subband, as permitted by regulations. Thus the advantages of

adaptive power loading are not fully realized.

For the design of equalizers in MCM systems, Van Acker proposed a number of design
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methods for creating channel shortening time-domain equalizers (TEQ) used in tandem

with single-tap frequency-domain equalizers (FEQ), as well as a transformation method

to convert a TEQ into a collection of equal-length multi-tap FEQs [20, 21]. The former

was also proposed by Benvenuto, Tomasin, and Tomba [22]. However, when multi-tap

FEQs are designed, in all previous works they have been of the same lengths across all the

subcarriers.

There has been some activity in the area of employing multiple antennas in hopes of

improving the system’s error robustness, both in single carrier and multicarrier systems.

However, a number of researchers are investigating ways by which to reduce complexity of

the system by performing antenna selection diversity at the transmitter and/or receiver.

Blum [23–25], Gorokhov [26, 27], and Molisch [28–33] are actively pursuing designs of wire-

less data transmission systems that perform antenna subset selection, where only a subset

of all the available antennas are chosen to be active. By choosing a subset of antennas,

the computational complexity of the array processing algorithms is reduced and the power

consumption for the system decreases. However, single carrier systems are mostly investi-

gated, assuming flat fading channel paths and without loading of any sort. Moreover, the

antenna subset selection schemes proposed only look at choosing a fixed antenna subset

size rather than searching all possible antenna configurations.

1.4 Thesis Contributions

This dissertation presents the following novel contributions in the area of digital commu-

nications, data transmission, and signal processing for communication systems:

• A discrete bit loading scheme that performs the bit allocation in an incremental

fashion. Starting with the largest modulation scheme employed on all subcarriers,

the subcarrier signal constellation of the worst-performing is reduced in size at every

iteration until the mean probability of bit error goes below a threshold. Unlike in

the literature, this algorithm decreases rather than increases the size of the signal

constellation, making it more advantageous at higher SNR values by initializing the

allocation closer to the final allocation. Moreover, the subcarrier error probabilities

are used as a metric of subcarrier performance.

• A low-complexity discrete bit loading algorithm that exploits the relationship between
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the peak bit error rate (BER) allowed per subcarrier and the mean probability of

error. By varying the peak BER limit, the mean probability of error will also change.

Modifying the peak BER limit in an intelligent fashion will result in a final allocation

faster than most incremental algorithms with a solution closer to the optimal relative

to algorithms employing closed-form expressions for the bit allocation.

• A realistic power loading algorithm that obeys a frequency interval power constraint.

The algorithm allocates power to the subcarriers according to a number of rules

and then applies a sliding frequency window to check for violations of regulatory

requirements. Whenever a violation occurs, the algorithm quickly modifies the power

levels of the subcarriers located in that frequency window until there are no more

violations. This is different relative to algorithms employing a total power constraint,

which does not guarantee a compliant system, and to subcarrier-constrained systems,

which are too strict in limiting the power.

• An algorithm that efficiently distributes equalizer taps across the subcarriers in a

non-uniform fashion. Since the channel is usually frequency-selective, the distortion

in each subcarrier is different, thus requiring equalizers of different lengths to reduce

the overall distortion to below some prescribed level. By doing this instead of keeping

the number of taps fixed per subcarrier, the overall number of equalizer taps employed

by the system is kept small, putting the available taps to good use where they are

needed most.

• A suboptimal output level placement technique for the quantization of subcarrier

BER values. Since look-up tables can reduce the implementation complexity of a

system when determining the BER values of a subcarrier, and considering that an

infinite number of SNR values are possible, a scheme is proposed to quantize the SNR

values so as to reduce the granular and overload errors present in the quantization

process.

• Several antenna subset selection schemes that can either operate across all subcarriers

simultaneously or on a per-subcarrier basis. By combining both multiple antennas

and MCM, the resulting system performance will increase. Moreover, instead of using

a fixed antenna subset size, the system can employ any number of antennas at the
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transmitter and receiver, unlike conventional antenna selection. Furthermore, the

trade-off between complexity and performance enhancement is studied.

• A combination of the proposed antenna subset selection algorithm with peak BER bit

loading algorithm. By taking advantage of both the frequency and spatial domains,

it is hoped to significantly improve the throughput performance of the system while

satisfying the error constraint. Unlike other implementations, nobody in the literature

has employed both antenna selection and bit loading together in this fashion.

1.5 Thesis Organization

An extensive literature survey and tutorial of several topics covered in this dissertation are

presented in Chapter 2. Specifically, an introduction to MCM and its various implementa-

tions is presented. Also included is an overview of modelling indoor wireless channels for

both single antenna systems and systems employing antenna arrays. Bit and power loading

is covered, with a few illustrative examples. Equalization and MCM is briefly covered, with

emphasis on the optimal single-tap equalizer and the multi-tap FEQ design. Finally, an

overview of different spatial processing techniques is presented.

Chapter 3 introduces the reader to the two proposed bit loading algorithms, the pro-

posed power loading algorithm, and two proposed variable-length equalizer tap algorithms.

In this chapter, all systems are studied in the context of a single antenna applied at the

transmitter and the receiver. Also studied are the effects of imperfect subcarrier SNR infor-

mation and its impact on the loading algorithms. The results of these algorithms, in terms

of throughput performance and error robustness are compared against several algorithms

found in the literature.

Chapter 4 presents the proposed antenna subset selection algorithm. Two versions of

the algorithm are discussed: a signal-based algorithm, and a subcarrier-based algorithm.

Then, the algorithms are extended to the case when bit loading is performed in tandem

with the algorithm. Throughput results are then presented and compared for a number of

channel correlations.

In Chapter 5, the research achievements of this work are outlined and topics for future

work are presented.
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Chapter 2

Multicarrier Data Transmission

The objective of this work is to enhance the error robustness of a conventional wireless

multicarrier transmission system operating in a frequency-selective fading channel by mod-

ifying several of its operating parameters. To this end, the modifications must be designed

in such a way that the performance gains are justified by the penalty due to an increase

in implementation complexity. To fully understand what operating parameters should be

modified, one must understand several important components that make up a multicarrier

system. Hence, this chapter will provide some insight into the multicarrier system, its

building blocks, and its associated problems and solutions. Schematics of a generic mul-

ticarrier transmitter and receiver employing multiple antennas are shown Figs. 2.1(a) and

2.1(b).

This chapter is organized as follows: an introduction to the fundamentals of multi-

carrier modulation (MCM) is presented and two types of MCM are examined: orthogonal

frequency division multiplexing (OFDM) and filter bank multicarrier (FB-MC). The single-

input/single-output and multiple-input/multiple-output channel models are then described.

Next, adaptive bit and power loading algorithms are motivated followed by a summary of

other works found in the literature. Channel estimation techniques for MCM systems are

covered, followed by a description of multicarrier equalization methods. Finally, several

schemes for employing multiple antennas in MCM systems are presented.
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Fig. 2.1 A generic multiple input/multiple output MCM system.
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Fig. 2.2 Schematic of a generic single input/single output MCM system.

2.1 Multicarrier Modulation

2.1.1 Basic Theory

Multicarrier modulation (MCM) is a form of frequency division multiplexing (FDM), where

data is transmitted in several narrowband streams at different carrier frequencies. However,

unlike conventional FDM systems, where the narrowband subcarrier signals are separated

by guard bands in the frequency domain [5], MCM systems allow for overlapping adjacent

subcarriers when a certain set of conditions are satisfied [34–37] (see Section 2.1.3 for more

information about these conditions). As a result, MCM systems are spectrally efficient.

A generic single input/single output MCM transceiver is shown in Fig. 2.2. A high-

speed input data stream, x(n), is parsed into N relatively slower streams and modulated

using a prescribed signal constellation. The modulated streams, d(k)(n), k = 0, . . . , N − 1,

are then upsampled by a factor N , yielding the signals y(k)(n), k = 0, . . . , N − 1. They

are then filtered by a bank of synthesis filters, g(k)(n), k = 0, . . . , N − 1, and the filtered
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signals are summed together to form the composite transmit signal, s(n), namely

s(n) =
N−1∑

k=0

∞∑

l=−∞

g(k)(l)y(k)(n − l). (2.1)

Equivalently, in the frequency domain, the manipulation of the subcarrier signals at

the transmitter are outlined in Fig. 2.3 for an N = 8 subcarrier MCM system1. For

example, given d(1)(n) in Fig. 2.3(a), its spectrum is compressed by a factor of 8 and

repeated in frequency due to upsampling, to yield y(1)(n), as depicted in Fig. 2.3(b). Then

a copy of the compressed spectrum from each subcarrier is bandpass-filtered and placed

at the corresponding center frequencies, as shown in Fig. 2.3(c), forming the composite

transmit signal s(n). Thus the MCM transmitter is converting a parallel set of signals in

the time domain into a parallel set of signals in the frequency domain using a combination

of upsamplers and synthesis filters.

Between the transmitter and receiver lies a channel which introduces both noise (due to

thermal excitation of the RF chain and antennas, atmospheric conditions, and interference

from artificial and natural sources) and distortion (mainly due to multipath propagation)

to the composite transmit signal. Although this topic will be discussed in greater detail

in Section 2.2, it should be mentioned that the channel can be modelled as a finite im-

pulse response (FIR) filter that possesses a frequency-selective fading characteristic (see

Fig. 2.3(d)). As a result, when s(n) passes through the channel, assuming for now that no

noise is present, the channel attenuates the spectrum of s(n) non-uniformly in frequency,

as shown in Fig. 2.3(e).

At the receiver, a bank of analysis filters, f (k)(n), k = 0, . . . , N − 1, are employed

to separate the subcarriers out of the received composite signal, r(n), into N individual

signals, ŷ(k)(n), k = 0, . . . , N − 1. These signals are then downsampled by a factor of N ,

yielding d̂(k)(n), k = 0, . . . , N − 1. To remove the distortion introduced by the channel,

equalizers w(k)(n), k = 0, . . . , N − 1, are employed on a per-subcarrier basis2. Several

equalizer design approaches for MCM systems are discussed is Section 2.5. The outputs

1The diagram of Fig. 2.3, for simplicity, does not show any overlap between the adjacent subcarriers.
However, MCM systems are capable of allowing overlap of the subcarriers. The spectral subcarrier shapes
are intentionally exaggerated to identify the different subcarriers.

2Although linear per-subcarrier equalizers have been employed in Fig. 2.2(b), decision-feedback equal-
izers on each subcarrier [38] or per-subcarrier Tomlinson-Harashima precoding schemes [22, 39, 40] can also
be used.
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of the subcarrier equalizers, d̄(k)(n), k = 0, . . . , N − 1, are then demodulated and the

resulting binary sequences combined using a multiplexer, yielding the reconstructed high-

speed output x̂(n) [5, 10, 41].

Although the modulation and demodulation stages of an MCM system are usually more

complex relative to a single carrier system, MCM systems possess a number of advantages

due to their “divide-and-conquer” nature in the frequency domain. Since the channel

usually does not have a flat frequency response, it is easier to compensate for the channel

distortion on a per-subcarrier basis rather than on the entire received signal, as will be

shown in Section 2.5. Moreover, since the channel distortion may not be equivalent for all

subcarriers, adapting the transmission parameters per subcarrier (i.e., signal constellation

and transmit power levels) would allow for increased throughput while guaranteeing a

prescribed error performance.

A thorough comparison between single carrier and multicarrier systems was performed

by Saltzberg using a number of criteria, as summarized in Table 2.1 [42]3. There is little

difference in performance between single carrier and multicarrier systems since the latter

can be interpreted as a linear reversible transformation of the former. However, there are a

number of practical differences. For instance, multicarrier systems can perform adaptive bit

loading in a straightforward fashion, which can enhance system performance with respect

to maximizing throughput or increasing error robustness. However, multicarrier systems

are more sensitive to the effects of narrowband noise, amplitude clipping, timing jitter,

and delay. With respect to the computational complexity, FFT-based multicarrier systems

employing frequency-domain single-tap subcarrier equalizers usually use fewer multiplica-

tions and additions per unit time relative to single carrier systems, which require lengthy

equalizers to eliminate the distortion introduced by the channel. As a result, multicarrier

systems have fewer computations per unit time. On the other hand, when the multicarrier

system performs adaptive bit loading, the complexity of the algorithm increases relative

to a single carrier system due to the iterative search performed by the system for the

appropriate subcarrier signal constellations.

There exists a number of MCM implementations, as shown in Table 2.2. The implemen-

tations have been divided into two categories, depending on the choice of filters employed

3The single and multicarrier implementations studied are based on ADSL systems, with the single carrier
system employing decision feedback equalizers with Tomlinson filtering, while the multicarrier system used
frequency-domain, single-tap subcarriers equalizers and adaptive bit loading.
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(a) Spectrum of the second subcarrier prior to upsampling.
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(b) Spectrum of the second subcarrier after upsampling by a factor of 8.
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(c) Spectrum of the composite transmit signal.
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(d) Example of a frequency-selective fading channel spectrum.
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(e) Impact of frequency-selective fading channel on the composite transmit sig-
nal spectrum.

Fig. 2.3 The effects of an 8-subcarrier MCM transmitter and frequency-
selective fading channel on the individual subcarrier spectra.
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Table 2.1 Relative advantages of single carrier and multitone modulation
(for type of MCM) for ADSL, where Xdenotes the system with better perfor-
mance or lower cost (from [42])

Issue Single Carrier Multitone Equivalent
Performance in Gaussian noise X

Sensitivity to impulse noise X

(uncoded)
Sensitivity to narrowband noise X

(uncoded)
Sensitivity to clipping X

Sensitivity to timing jitter X

Latency (delay) X

Need for echo cancellation X

Computations per unit time X

Complexity of algorithm X

Cost and power consumption X

in analog sections
Adaptability of bit rate X

by the analysis and synthesis filterbanks. The first category contains implementations that

use the discrete Fourier transform in the filterbank implementation. This type of MCM

implementation is widely employed in a number of wireless and wireline applications due

to its efficient implementation involving the fast Fourier transform (FFT). The other cate-

gory is based on employing bandpass filters at the synthesis and analysis filterbanks. The

technique by which the filterbanks are created define each of the implementations in this

category. For instance, most implementations modulate a single prototype lowpass filter

to different center frequencies in order to keep the cost of designing the filters low.

Each implementation possesses a number of advantages and disadvantages. In the

following sections, details for several of these implementations will be presented.

2.1.2 Orthogonal Frequency Division Multiplexing

The first implementation is an extremely popular one due to its efficient hardware imple-

mentation using the FFT and the inverse FFT (IFFT). Known in wireless applications as

orthogonal frequency division multiplexing (OFDM) [22, 43–78], or in wireline applications

as discrete multitone (DMT) [11–13, 15–17, 20, 21, 37, 79–89], these systems use discrete

Fourier transform (DFT) basis functions to create the synthesis and analysis filterbanks.
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Table 2.2 Several implementations of multicarrier systems

Name Description

Discrete Fourier Transform-based Employs the discrete Fourier transform basis
Multicarrier functions to modulate subcarriers to different

center frequencies. This can be efficiently
implemented using FFTs.

Several examples are:
• Orthogonal Frequency Division Multiplexing

(OFDM) is the name given to this technique
when used in wireless applications.

• In wireline applications, this technique is
called Discrete Multitone (DMT).

Filterbank Multicarrier Employs bandpass filters at both the
transmitter and the receiver to filter the
subcarriers prior to combining them and
separating them, respectively.

Several examples are:
• Complex Exponential-Modulated Filterbanks

modulates a prototype lowpass filter to different
center frequencies using complex exponentials.

• Cosine-Modulated Filterbanks modulates
a prototype lowpass filter to different
center frequencies using cosines.

• Transmultiplexers are filterbanks used
in multirate signal processing. They are
the duals of subband coders.

• Perfect Reconstruction Filterbanks are
designed to eliminate cross-talk under
ideal channel conditions.

• Oversampled Filterbanks employ a
sampling factor higher than the total
number of subcarriers.

• Modified Discrete Fourier Transform Filterbanks
delay either the real or imaginary components
of each subcarrier signal with respect to each
other to minimize cross-talk.
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(a) OFDM Transmitter with cyclic prefix (CP)
adder.
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(b) OFDM Receiver with cyclic prefix remover.

Fig. 2.4 Schematic of an OFDM system employing a cyclic prefix.

The filters in the filterbanks are odd-stacked, which means they are uniformly distributed

throughout the frequency domain, with one filter centered at ω0 = 0 rad/s. Although

OFDM systems could be implemented using a bank of sinusoid generators [90], practical

implementations employ the FFT and IFFT, which results in a significant complexity re-

duction [43]. As a result, OFDM/DMT has become a popular choice in many multicarrier

applications, including digital audio broadcast (DAB), digital subscriber line (DSL), dig-

ital video broadcast (DVB), and wireless local area networks (WLAN) such as the IEEE

802.11a/g, the ETSI HiperLAN/2, and the MMAC HiSWAN.

A schematic of an OFDM transceiver is shown in Fig. 2.4. A high-speed input stream

x(n) is first demultiplexed into N data streams, x(k)(n), k = 0, . . . , N −1, using a serial-to-

parallel converter, where x(k)(n) is the subcarrier data for subcarrier k. These streams are

then individually modulated using M -QAM constellations, to yield y(k)(n), k = 0, . . . , N −
1, where y(k)(n) is the M -QAM-modulated subcarrier data for subcarrier k. The inverse
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DFT (IDFT) is then applied to the subcarriers, defined as [91]

s(l)(n) =
1

N

N−1∑

k=0

y(k)(n)ej2πkl/N (2.2)

where l = 0, . . . , N − 1, resulting in the subcarriers being modulated to one of N evenly

spaced center frequencies in the range [0, 2π).

Before the subcarriers are converted to form the composite signal, s(n), it is necessary

to add some redundancy in order to compensate for one of the main disadvantages of

OFDM: low spectral selectivity. Since OFDM employs the DFT and its inverse, the filters

applied to the subcarriers have a low stopband attenuation since the frequency response of

the filters are of the form sinc(x). Therefore, the performance of the OFDM system would

significantly decrease if it were operating in a time-dispersive environment. To counteract

the time-dispersiveness of the channel, a cyclic extension is employed either before the

symbol (i.e., cyclic prefix) or after it (i.e., cyclic suffix) to capture this effect (the details

of how the cyclic extension works will be discussed in the following subsection). Without

loss of generality, the system will add a cyclic prefix to the OFDM symbol.

At the receiver, the cyclic prefix is removed from the received composite signal, r(n), and

converted from a serial stream into a collection of parallel streams using a serial-to-parallel

converter. The DFT is applied [91]

ŷ(k)(n) =
N−1∑

l=0

r(l)(n)e−j2πkl/N (2.3)

for k = 0, . . . , N − 1, where r(k)(n), k = 0, . . . , N − 1, are the parallel input streams to the

DFT. The subcarriers are then equalized with w(k)(n), k = 0, . . . , N −1, to compensate for

the distortion introduced by the channel. The equalized subcarriers are then demodulated

before being multiplexed together using the parallel-to-serial converter, forming the output

x̂(n).

One of the first papers on the implementation of OFDM systems was by Weinstein and

Ebert [43]. They were the first to use the DFT as a replacement to the banks of sinusoid

generators traditionally employed in multicarrier systems up to that time. Hirosaki [45]

extended the work of Saltzberg [90] by implementing his offset QAM system in an OFDM

framework using DFT blocks. Siohan et al. [92] further enhanced the OFDM-offset QAM
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Table 2.3 Mode-dependent parameters for IEEE 802.11a and HiperLAN/2
(from [94])

Mode Modulation Code Nominal Bit
Rate R Rate [Mb/s]

1 BPSK 1/2 6
2 BPSK 3/4 9
3 QPSK 1/2 12
4 QPSK 3/4 18
5 16QAM 9/16 27
5 16QAM (H/2 only) 1/2 24
6 16QAM (IEEE only) 3/4 36
7 64QAM 3/4 54
8 64QAM 2/3 48

framework of Hirosaki [45] by employing filterbank theory to derive a condition for discrete

orthogonality. Channel coding in OFDM systems was proposed by Zou and Wu [46] while

vector coded OFDM was implemented by Diggavi [93].

Since the target application of this dissertation is WLAN systems, it is necessary to

quickly survey current WLAN implementations. Of these, three WLAN standards that

employ OFDM at the core of their design are the IEEE 802.11a, the IEEE 802.11g, and the

ETSI HiperLAN/2 standards. In particular, the IEEE 802.11a and the ETSI HiperLAN/2

standards were both designed to possess a similar physical (PHY) layer implementation and

set of operating modes, as shown in Table 2.3. As a result, the bit error rate performance

was shown to be relatively similar [94]. However, the packet error rate performance of the

two systems, for which the system’s medium access control (MAC) layer plays a major role,

was shown to be substantially different. In particular, HiperLAN/2 possessed the superior

performance because of its centrally controlled MAC, unlike IEEE 802.11a, which employed

carrier-sense multiple access with collision avoidance (CSMA/CA) [94]. A more detailed

analysis of HiperLAN/2 was presented by Khun-Jush et al. [95]. As for the IEEE 802.11g

standard, it is the multicarrier successor to the commercially successful IEEE 802.11b

standard, which also operates in the 2.4 GHz Industrial, Scientific, Medical (ISM) band [96].

This standard is backwards compatible to the IEEE 802.11b standard and supports data

rates of up to 54 Mb/s. Finally, the idea of implementing multicarrier extensions of current

wireless standards has also been applied to the IEEE 802.16 wireless metropolitan area

network (WMAN) standard, resulting in the IEEE 802.16a standard [97].
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Finally, there exists a research community that is actively designing various hardware

prototype OFDM-based WLAN systems with similar parameters to current standards and

possessing enhanced system performance. For instance, the Interuniversity Micro Electron-

ics Center (IMEC) of Belgium has been working on the design of several WLAN hardware

implementations, including one capable of achieving 80 Mb/s [73, 74]. However, this in-

crease in throughput was achieved by using 128 subcarriers instead of the 64 found in Hiper-

LAN/2 or IEEE 802.11a. Moreover, several hardware prototypes have been implemented

that employ multiple antennas, resulting in significant performance enhancements [98, 99].

OFDM with Cyclic Extension

As mentioned previously, the synthesis and analysis filters of OFDM have relatively poor

spectral selectivity. Thus, a cyclic extension is appended to the OFDM symbol to compen-

sate. Otherwise, the intersymbol interference of adjacent OFDM symbols due to the time

dispersive channel will degrade the error performance of the system. Although a buffer

of zeros would suffice in preventing the intersymbol interference [100, 101], the use of a

cyclic extension has the added benefit of simplifying the design of an optimal subcarrier

frequency-domain equalizer (see Section 2.5.3 for details).

A graphical representation of how a cyclic extension functions is shown in Fig. 2.5. In

this case, the cyclic prefix is created by copying the end of the OFDM symbol and placing

that copy at the beginning of the symbol, for every symbol. This process is shown in

Fig. 2.5(a).

With the channel impulse response (CIR) modelled as an FIR filter h(n), the CIR is

convolved with a sampled version of the transmitted signal with the included CP. As a

result, the CIR spreads the samples of symbol M − 1 onto the samples of symbol M , while

the samples of symbol M will be spread onto the samples of symbol M + 1. However,

observing Fig. 2.5(b), if the CP is of sufficient length to capture all the interference due

to the CIR, the symbols only experience the spreading of samples from within their own

symbol. At the receiver, the CP is removed, as shown in Fig. 2.5(c), and the OFDM

symbols proceed with demodulation and equalization.

Despite the usefulness of the cyclic prefix, there are several disadvantages. First, the

length of the cyclic prefix must be sufficient to capture the effects of the CIR. If not,

the cyclic prefix fails to prevent distortion introduced from other symbols. The second
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Fig. 2.5 The process of adding, capturing the intersymbol interference, and
removal of a cyclic prefix.

disadvantage is the amount of overhead introduced by the cyclic prefix. By adding more

samples to buffer the symbols, we must send more information across the channel to the

receiver. This means to get the same throughput as a system without the cyclic prefix, we

must transmit at a higher data rate.

2.1.3 Filterbank Multicarrier Systems

Although an OFDM system can possess a computationally-efficient implementation, its

also has several drawbacks, of which poor spectral selectivity being the worst. The use

of a cyclic extension to prevent the intersymbol interference, although effective, requires a

significant amount of overhead in terms of the addition of redundant information to the

transmitted signal. One solution to this problem is to employ an MCM system that uses

synthesis and analysis filters with relatively high spectral selectivity. For instance, Rizos,

Proakis, and Nguyen showed that the interference due to overlapping frequency responses
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of the subcarrier filters in a DMT system was worst relative to a cosine-modulated filter-

bank system when no pre-receiver processing (e.g., cyclic extension with a time-domain

equalizer) were employed [102]. Only when the DMT system employs pre-receiver pro-

cessing while operating in a linearly distorted channel (additive white Gaussian noise and

near-end crosstalk (NEXT)) does its performance exceed that of the cosine-modulated fil-

terbank system at the cost of reduced throughput. This is the motivation of the second

implementation called filterbank multicarrier (FB-MC) [34, 39, 103–120].

In FB-MC, a set of synthesis and analysis filters are designed such that they have both

adequate spectral selectivity and bandwidth efficiency. Although each filter could be de-

signed on an individual basis, a more efficient approach is to design a single prototype

lowpass filter and then modulate it to several specified center frequencies in order to gen-

erate the synthesis and analysis filters g(k)(n) and f (k)(n), k = 0, . . . , N − 1. Usually the

filters are uniformly spaced, designed to be highly spectrally selective to minimize cross-

talk with adjacent subcarriers, and can either be odd-stacked or even-stacked, i.e., no center

frequency at ω0 = 0 rad/s. For example, in Fig. 2.6 the subcarrier frequency responses of

the synthesis filters for an OFDM system and an FB-MC system employing square-root

raised cosine filters is shown for N = 8 subcarriers. Notice how in Fig. 2.6(a) the sidelobe

levels are significantly higher to the sidelobe levels found in Fig. 2.6(b). With respect to

cyclic extensions, FB-MC systems usually need to introduce equalization strategies in or-

der to mitigate intersymbol and intercarrier interference, especially when they operate in

a critically sampled mode, since a cyclic extension is not applicable.

Referring to the schematic of a generic single input/single output MCM system in

Fig. 2.2, a high-speed input stream x(n) is first demultiplexed into N data streams and

individually modulated using a specified signal constellation, resulting in the modulated

data streams, d(k)(n), k = 0, . . . , N − 1. The subcarriers are then upsampled by N before

being filtered by the synthesis filters g(k)(n), k = 0, . . . , N − 1, and summed together,

forming s(n). At the receiver, the received composite signal, r(n), is separated into the

N subcarriers using the analysis filterbank, then the subcarriers are downsampled by a

factor N and equalized before being demodulated and multiplexed together, forming the

reconstructed output signal, b̂(n).

Scaglione, Barbarossa, and Giannakis [111] developed a unifying framework for multi-

carrier systems. Similarly, Akansu et al. [114] also proposed a unifying transmultiplexer

framework for various communications systems. Scaglione, Barbarossa, and Giannakis then



2 Multicarrier Data Transmission 23

0 1 2 3 4 5 6 7 8
Subcarrier Index

M
ag

ni
tu

de

(a) OFDM subcarrier spectrum.
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(b) FB-MC subcarrier spectrum (employing a square-root raised cosine prototype
lowpass filter with a rolloff of 0.25).

Fig. 2.6 Subcarrier spectra of N = 8 OFDM and FB-MC systems.

extended their framework to include blind channel estimation, block synchronization, and

equalization while not imposing restrictions on the location of channel zeros [112]. They also

derived the optimal FIR transmit and receive filterbanks for their unifying framework [121].

Observing the subcarrier filter spectra in Fig. 2.6, all of the filters overlap with the

adjacent filters, which may give rise to distortion. However, if these filters satisfy certain

conditions, it is possible to have distortionless transmission between the transmitter and

receiver even if the subcarriers overlap.

Perfect Reconstruction Filterbanks

In an ideal case, when a collection of bandpass filters are employed and spectral efficiency

is a concern, the filters can be designed to have a narrow transition bandwidth and a

high stopband attenuation. When placed side-by-side in a non-overlapping fashion, the

interference between adjacent filters, known as cross-talk, is minimized. However, this type

of filter design is very complicated and difficult to realize in hardware.

An alternative approach is to design a single prototype lowpass filter and modulate
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copies of it to different center frequencies. The prototype lowpass filter design parameters,

such as the passband and transition bandwidth, as well as the center frequencies and relative

phases between adjacent filters are chosen such that it is possible to realize a filterbank

system whose output signal is exactly the same as the input signal. Such filterbanks are

referred to as Perfect Reconstruction (PR) filterbanks.

Suppose that the transfer matrix between the input and output subcarriers of an MCM

system operating in an ideal channel is defined as

S(z) = E(z)Γ(z)R(z) (2.4)

where Γ(z) is the parallel-to-serial-to-parallel conversion matrix between the synthesis and

analysis filterbanks, while E(z) and R(z) are the polyphase matrix representations of the

analysis and synthesis filterbanks f (k)(n) and g(k)(n), k = 0, . . . , N − 1, respectively. In

turn, the matrices E(z) and R(z) are defined as

E(z) =









E00(z) E01(z) · · · E0,N−1(z)

E10(z) E11(z) · · · E1,N−1(z)
...

...
. . .

...

EN−1,0(z) EN−1,1(z) · · · EN−1,N−1(z)









(2.5)

and

R(z) =









R00(z) R01(z) · · · R0,N−1(z)

R10(z) R11(z) · · · R1,N−1(z)
...

...
. . .

...

RN−1,0(z) RN−1,1(z) · · · RN−1,N−1(z)









. (2.6)

where the polyphase components of Eq. (2.5) are specified by

Ekl(z) =
∞∑

n=−∞

f (k)(Nn + l)z−n. (2.7)

As for Eq. (2.6), assuming that E(z) is para-unitary, i.e., Ẽ(z)E(z) = dI for some d >
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0 [35]4, and g(k)(n) = f (k)(−n), the polyphase components of R(z) can be specified as

Rkl(z) = Ek,N−1−l(z). (2.8)

Given that Γ(z) is defined as

Γ(z) =

[

0 1

z−1IN−1 0

]

, (2.9)

the sufficient condition for PR was specified by Vaidyanathan as [35]

S(z) = cz−n0IN (2.10)

or equivalently

R(z)E(z) = cz−n0

[

0 IN−1

z−1 0

]

(2.11)

for an appropriate choice of integer n0. Note that IN is the N × N identity matrix.

Although it is possible to eliminate distortion due to the synthesis and analysis filter-

banks under ideal circumstances, it is difficult to achieve this when all the filters are based on

a single FIR prototype lowpass filter since there are few filters that satisfy Eq. (2.10). Fur-

thermore, the elimination of distortion works well when the channel is ideal. However, when

the channel also introduces distortion, PR will not be achievable with channel-independent

filterbanks.

Complex Exponential-Modulated Filterbanks

One efficient technique of creating the synthesis and analysis filterbanks is to modulate

a prototype lowpass filter p(n) of length P from the center frequency of ω0 = 0 rads to

the center frequencies ωk, k = 1, . . . , N − 1, by multiplying p(n) with a complex expo-

nential [104, 107, 120]. The modulation to ωk occurs since multiplying a sequence by a

complex exponential in the time domain is equivalent to shifting the frequency response of

the sequence in the frequency domain.

4The para-conjugate of E(z) is Ẽ(z) = E∗(z
−1)T , where the subscript (.)∗ denotes conjugation of the

coefficients.
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Therefore, the expressions for modulating the synthesis and analysis filterbanks using

complex exponentials is given by [34, 35]

g(k)(n) = p(n − δk) exp [jωk (n − δk) + αk] , k = 0, . . . , N − 1 (2.12)

and

f (k)(n) = p(n − ηk) exp [jωk (n − ηk) + βk] , k = 0, . . . , N − 1 (2.13)

where αk and βk are the phase angles, δk and ηk are the delays, and ωk is the center

frequency.

According to the study of bandwidth-efficient filterbank transmultiplexers by Ramachan-

dran and Kabal [34, 108, 109], five different implementations of transmultiplexers, where the

system achieves PR under ideal channel conditions, were proposed. Three of those imple-

mentations were multicarrier QAM systems while the other two were vestigial sideband

implementations. Referring to Eqs. (2.12) and (2.13), the parameters that defined each

implementation were the center frequency spacing and the bandwidth of the prototype

lowpass filter. Hence, the transfer function of the system was derived and the values for

the relative phase relationship between adjacent subcarriers and the delays of the synthesis

and analysis filters were set in order to eliminate cross-talk (i.e., cross-talk between the

subcarrier filters).

Louveaux [103] investigated the use of filterbanks as a replacement for OFDM in xDSL

modems and he developed a general multicarrier framework for this application. Wornell

presented a multirate filterbank system employing fast lapped transforms that resulted in

an efficient multitone modulation scheme [110]. Finally, modulated filterbanks were studied

by Cherubini et al. [39, 40], as well as Borna and Davidson [122], for use in xDSL modems.

In particular, they both used filtered multitone to implement the filterbanks, where a

prototype lowpass filter is modulated using the discrete Fourier transform (i.e., a collection

of complex exponential weights). However, unlike critically sampled filterbanks, i.e., the

upsampling factor is equal to the number of subcarriers employed in the system, these

proposed modulated filterbanks focus on oversampled implementations, i.e., the upsampling

factor is greater than the number of subcarriers.
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Oversampled Filterbanks

Under ideal conditions, critically-sampled filterbanks are capable of eliminating cross-talk

when the appropriate analysis and synthesis filters have been chosen. However, when a

dispersive channel is present, the system does not have much leeway to compensate for the

distortion introduced by the channel. Thus, to provide some additional redundancy to the

system in order to combat the distortion introduced by the channel, many systems have

been proposed that employ oversampled filterbanks. For instance, Scaglione, Barbarossa,

and Giannakis introduced a provision for oversampling in their unifying framework for

filterbanks [111]. Thus, the additional degrees of freedom introduced in the design process

of the system could potentially lead to an increase in system performance. One example

where oversampling is employed is in multicarrier code division multiple access systems.

Oversampled filterbanks can be translated into one of several implementations. For

instance, an oversampled system may have its subcarriers spaced out more relative to a

critically-sampled system since there are fewer subcarriers given the same sampling rate.

As a result, there is more of a buffer between subcarriers at the cost of a less bandwidth-

efficient system. Another example of oversampled filterbanks, which will be discussed

further in Section 2.4, deals with “turning off” poorly performing subcarriers. Thus, the

system can improve its error robustness at the cost of some bandwidth.

Lin and Akansu [115] presented a non-maximally decimated multirate filterbank struc-

ture that is employed in conjunction with blind channel identification and optimal MMSE

equalization. The system possesses a precoder structure at the transmitter, which includes

both the analysis and synthesis filters, while a subcarrier MMSE equalizer is employed at

the receiver to reverse the effects of intersymbol interference. Lin and Phoong [123] deter-

mine the minimum amount of redundancy that needs to be added to an FIR transceiver

operating in non-ideal channel conditions in order to achieve total intersymbol interference

mitigation. Finally, Milanovic et al. looked at the design of robust oversampled precod-

ing filterbank structures with zero-forcing equalizers when operating in frequency-selective

fading channels that are not known to the system [124].

Modified Discrete Fourier Transform Filterbanks

According to Fliege [36], complex modulated filterbanks alone do not sufficiently eliminate

cross-talk between adjacent subcarriers. Rather, the complex information on each subcar-
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Fig. 2.7 Implementation of MDFT pre- and post-processing components.

rier must be pre-processed at the transmitter and post-processed at the receiver to achieve

the minimization of cross-talk. The complex information is modified such that the real and

imaginary components of the complex information are offset after the upsampling at the

transmitter by half the sampling period. This type of implementation is called a modified

discrete Fourier transform (MDFT) filterbank [36, 116, 117, 125]. In digital communica-

tion circles, this is equivalently called offset QAM, when QAM modulation is used on the

subcarriers [44, 45].

To convert the generic single input/single output MCM transmitter and receiver of

Fig. 2.2 into an MDFT filterbank system, the upsampling stage of the transmitter in

Fig. 2.2(a) would be replaced by the MDFT pre-processing stage shown in Fig. 2.7(a).

Similarly, the downsampling stage of the receiver in Fig. 2.2(b) would be replaced by the
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MDFT post-processing stage shown in Fig. 2.7(b). Thus, the transmitter would cause the

N/2 delay offset between the real and imaginary components of the subcarrier while the

receiver would recombine the real and imaginary components.

Given an input block of length L, x
(k)
n,n−L+1, defined as

x
(k)
n,n−L+1 =

[

x(k)(n) · · · x(k)(n − L + 1)
]T

,

its real and imaginary components are separated and interleaved into a vector y
(k)
0,2L−1. This

is achieved by MDFT pre-processing:

y
(k)
0,2L−1 =Tu,2,mod(k,2) Re{x(k)

n−L+1,n} + j · Tu,2,mod(k+1,2) Im{x(k)
n−L+1,n}

=
1

2
Tu,2,mod(k,2)

(
x

(k)
n−L+1,n + x

(k) ∗
n−L+1,n

)
+

1

2
Tu,2,mod(k+1,2)

(
x

(k)
n−L+1,n − x

(k) ∗
n−L+1,n

)

=
1

2

(
Tu,2,mod(k,2) + Tu,2,mod(k+1,2)

)
x

(k)
n−L+1,n

+
1

2

(
Tu,2,mod(k,2) − Tu,2,mod(k+1,2)

)
x

(k) ∗
n−L+1,n

(2.14)

where Tu,R,ε is an upsampling matrix, defined as

Tu,R,ε =















0R+ε−1,L

1 0 0 · · · 0

0R−1,L

0 1 0 · · · 0
...

0 0 0 · · · 1















(2.15)

where 0r,c is a zero matrix of r rows and c columns, R is the sampling rate, and ε is the

delay.

The output of the MDFT pre-processing stage is then upsampled by applying the up-

sampling matrix Tu,N/2,D, with the total group delay D equal to

D = 2⌊τ⌋ + ⌊τch⌋, (2.16)
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where τ is the group delay of the synthesis or analysis filters, and τch is the group delay

of the channel [85]. The combined upsampling rate of the MDFT pre-processing stage,

which performs an upsampling by a factor of 2, and the N/2 upsampling matrix is N (i.e.,

critically-sampled filterbanks).

The resulting signal is then filtered by the kth synthesis filter g
(k)
0,P−1, defined as

g
(k)
0,P−1 =

[
g(k)(0)g(k)(1) · · · g(k)(P − 1)

]T
, (2.17)

a channel impulse response h0,S−1, and the kth analysis filter f
(k)
0,P−1, before being down-

sampled by the downsampling matrix Td,N/2,0 = TT
u,N/2,0. In this derivation, filtering

is performed using convolution matrices. Therefore, g
(k)
0,P−1 can be represented as an

(NL + D − P + 1) × (NL + D) convolution matrix

G(k) =












g
(k) T
0,P−1 0

g
(k) T
0,P−1

. . .

0 g
(k) T
0,P−1












. (2.18)

Furthermore, the channel h0,S−1 and the kth analysis filter f
(k)
0,P−1, can be represented as

(NL+D−P −S+2)×(NL+D−P +1) and (NL+D−2P −S+3)×(NL+D−P −S+2)

convolution matrices, H and F(k), respectively.

In order to extract the desired real and imaginary information from the output of the

N/2 downsampler, ŷ
(k)
0,2L−1, and combine them together in order to form the recovered

signal, x̄
(k)
n,n−L+1, MDFT postprocessing is employed:

x̄
(k)
n,n−L+1 =Td,2,mod(k,2) Re{ŷ(k)

0,2L−1} + j · Td,2,mod(k+1,2) Im{ŷ(k)
0,2L−1}

=
1

2

(
Td,2,mod(k,2) + Td,2,mod(k+1,2)

)
ŷ

(k)
0,2L−1

+
1

2

(
Td,2,mod(k,2) − Td,2,mod(k+1,2)

)
ŷ

(k) ∗
0,2L−1.

(2.19)

One of the important design decisions involved in the implementation of an FB-MC

system is the choice of prototype lowpass filter. Although a variety of choices exist, from

prototype filter design routines [34, 108, 109] to wavelets [118, 126], in this thesis square-
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Fig. 2.8 Impulse responses of square-root raised cosine and raised cosine
filters.

root raised cosine filters are used. In the following subsection, details of this filter will be

presented.

Square Root-Raised Cosine Filter

In 1928, Nyquist specified the condition by which the overall response of the transmitter,

channel, and receiver achieves zero intersymbol interference (ISI) [127]. In his honour, this

condition is called the Nyquist Criterion. One filter that satisfies this criterion is the raised

cosine filter. However, the raised cosine filter is the desired overall response of the system.

Therefore, to obtain the responses of the transmitter and receiver that yield a raised cosine

response (the channel is assumed to be ideal), one takes the square root of the Fourier

transform of the raised cosine filter. The result yields a square-root raised cosine filter.

The impulse responses of the raised cosine filter and the square-root raised cosine filter are

shown in Fig. 2.8.

If a square-root raised cosine filter was chosen for the prototype lowpass filter p(n), its
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time domain representation would be [127]

p(n) =
4α

π
√

T

cos((1 + α)πn) + sin((1 − α)πn)/4αn

1 − (4αn)2
(2.20)

where α is the roll-off factor, which represents the normalized excess bandwidth occupied

by the filter beyond its minimum bandwidth, and T is the symbol period. The value of α

is limited to the range 0 ≤ α ≤ 1.

A useful property of square-root raised cosine filters is that the overall magnitude re-

sponse of the transmitter and receiver filters will be a raised cosine filter, which satisfies

the Nyquist Criterion [127]. Moreover, the overall phase response will be linear. Finally,

according to [128], the power delivered to the channel, when square-root raised cosine filters

are employed at the transmitter, will be independent of the roll-off factor.

It should be noted that since the prototype filter was implemented in this work as an

FIR filter of length P , it will be approximately a square-root raised cosine filter due to

truncation of the impulse response. Nevertheless, matched filtering would be performed by

the kth receiver and transmitter filters, thus maximizing the signal-to-noise ratio (SNR) of

the received signal [127].

Although ISI is eliminated through the use of square-root raised cosine filters, the appli-

cation of these filters in the analysis and synthesis filterbanks do not guarantee the perfect

reconstruction of the input signal at the output of the receiver under ideal conditions.

2.2 Indoor Wireless Channel Models

In digital communications, the transmitted signal is subjected to distortion caused by its

interaction with the physical operating environment. The reflections and diffractions caused

by this interaction results in multiple copies of the same signal arriving at the receiver with

different amplitudes, phases, and delays. As a result, this gives rise to constructive or

destructive interference at the receiver known as multipath fading [129]. In the following

two subsections, several multipath fading channel models are presented where either the

system possesses a single antenna at the transmitter and receiver (known as a single-

input single-output (SISO) system) or when multiple antennas are employed (known as

multiple-input multiple-output (MIMO), multiple-input single-output (MISO), and single-

input multiple-output (SIMO) systems).
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2.2.1 SISO Channel Models

The behaviour of energy transmitted from one point in space to another point in space is

modelled by the physics of radio wave propagation, including the effects of constructive and

destructive interference, as well as the reflection of energy. These same physical properties

can be used to model the channel environment of high speed data transmission systems.

In a wireless communication system, the transmitter emanates radiation in all direc-

tions. Thus, the energy would propagate until some of it reaches the receiver antenna,

either via the line-of-sight path from the transmitter antenna to the receiver antenna (if

it exists) or after the energy has been reflected by a number of objects located between

the transmitter and receiver antennas. As for the rest of the energy, it would continue to

propagate and eventually dissipate.

For an indoor environment, such as a typical small office/home office environment de-

picted in Figure 2.9(c), the line-of-sight component (if it exists), p1, would arrive at the

receiver antenna first. As for the energy reflected by the walls and other objects in the

room, several of these reflections, such as p2 and p3, would make their way to the receiver

antenna, although not with the same phase, amplitude, or delay. All of these received

components are functions of several parameters, including their overall distance between

the transmitter and receiver antennas as well as the number of reflections. Therefore, one

can model the channel as a finite impulse response that is being convolved with the trans-

mitted signal. This models how an indoor environment would have a several copies of the

transmitted signal intercepted at the receiver antenna, resulting in an impulse response of

the type shown in Figure 2.9(a). The corresponding frequency response of the example

channel impulse response is shown in Figure 2.9(b).

A simple statistical multipath model of the indoor radio channel was presented by Saleh

and Valenzuela [130] and verified via several measurement campaigns. The indoor channel

was modelled as clusters of rays, where the clusters behave as Poisson arrival processes. Fur-

thermore, individual rays within a cluster were also modelled as a Poisson arrival process.

Finally, the amplitudes of the clusters and the individual rays are exponentially dampened.

The model also depends on the center frequency of operation and the separation distance

between the transmitter and receiver. An example of a channel produced using this method

is presented in Fig. 2.10.

An overview of various fundamental spatial channel models for communication systems
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Fig. 2.9 Example of a channel response due to multipath propagation.

employing antenna arrays was presented by Ertel et al. [131]. The characteristics of each

model are dependent on the physical local environment in which the antennas are situated.

Therefore, the channel model is dependent on the physical geometry of the scattering

objects in the vicinity of the antennas. These spatial channel models can be divided into

three groups, namely: general statistically based models, more site-specific models based

on measurement data, and entirely site-specific models.

Since indoor environments may drastically vary in the way they affect the propagation of

transmitted signals, there are techniques to determine the channel impulse response specific

to that environment. One such technique is ray tracing. Instead of determining a statistical
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Fig. 2.10 An example of an indoor environment response operating in the
5.15–5.25 GHz UNII band with a 50 m transmitter/receiver separation dis-
tance.

model that generalizes the properties of the environment, ray tracing uses computers to

determine the paths, amplitudes, phases, and delays of rays emanating from the transmitter

to the receiver by applying the laws of reflection, diffraction, and other laws of physics in the

calculations. Thus, models created through ray tracing programs are tailored specifically

to the parameters of the environment provided by the user. However, such programs are

very complex and researchers are currently investigating ways of providing accurate results

while maintaining a reasonable complexity. Ji et al. [132] presented the application of

several ray-tracing algorithms, in combination with the Uniform Theory of Diffraction, for

efficient prediction of propagation in the ultra-high frequency (UHF) band for an indoor

environment. Computational efficiency is increased by rearranging objects in an indoor

environment into irregular cells. Furthermore, three-dimensional propagation prediction

models are formed from a collection of two-dimensional ray-tracing results, which have an

observed speed-up of 99 percent over traditional three-dimensional ray-tracing models. This

model also considers reflection and refraction of layered materials and diffraction from wall

corners. A patched-wall model is used to improve the accuracy of prediction in this method
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Table 2.4 Channel models for line-of-sight (LOS) and non-LOS (NLOS)
indoor environments at 5 GHz (from [136])

Name RMS Delay Spread Characteristic Environment
A 50 ns Rayleigh Office NLOS
B 100 ns Rayleigh NLOS
C 150 ns Rayleigh NLOS
D 140 ns Ricean LOS
E 250 ns Rayleigh NLOS

and the simulated results agree very strongly with the measurements. Another ray tracing

technique was presented by McKown and Hamilton [133], where an image-based, dual

grid, scalar, coherent, ray tracing program that generates two-dimensional slices of three-

dimensional standing wave patterns for continuous wave illumination is described. The

program estimated the quality of system coverage as well as investigated design alternatives

for antenna arrays, such as beamwidths, boresight orientations, and spatially-averaged

signal strengths.

Although ray tracing works well when the channel is time-invariant, there are several

environments where the time-varying behaviour of the channel needs to be considered.

Thoen, Van der Perre, and Engels [134] developed an improved stochastic model for time-

varying channels applied to fixed indoor wireless communications. The improved model

was shown to be more accurate than the model proposed by Jakes [135], which assumes

the transmitter and receiver are in motion. The results produced by the improved model

were compared to measurement campaigns found in literature.

Communication standards organizations, such as the IEEE, the ITU, and ETSI, usually

publish channel models that can be used to benchmark communication systems for the

purpose of fair comparison. For wireless systems operating indoors at 5 GHz, the ETSI

broadband radio access network (BRAN) project has published a technical report specifying

five different channel models [136]. A summary of these channels and their associated

parameters are shown in Table 2.4.

2.2.2 MIMO Channel Models

To enhance system performance, several communication systems employ multiple antennas

at the transmitter and/or receiver with an array signal processing algorithm (this is dis-

cussed further in Section 2.6). However, the modelling of the channel environment given
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Fig. 2.11 An example of multipath propagation when two transmit antennas
are employed in a small office/home office environment.

multiple antennas is more complex than the single antenna case. An intuitive solution is

to model the environment between each transmit and receive antenna as a SISO channel

impulse response. Thus for a system possessing NT transmit antennas and NR receive

antennas, the MIMO channel can be represented as a collection of NT NR SISO channel

impulse responses. Referring to Fig. 2.11 where NT = 2 and NR = 1, the paths of the

signal emanating from the transmitter Tx1, namely p1,1, p2,1, and p3,1, give rise to the SISO

channel impulse response h11(n), while the paths p1,2 and p2,2 from the transmitter Tx2

will give rise to h21(n).

Although intuitive, this type of MIMO channel model relies on the assumption that

the SISO channel responses are independent, which might not be the case given specific

physical conditions (e.g., antenna spacing, amount of scattering, delay spread). Since oper-

ating environments can drastically vary from rural settings to an indoor office space, many

researchers opt to develop models for a specific environment and then compare it against

channel measurements. For example, a narrowband MIMO measurement campaign was

conducted in Manhattan at 2.11 GHz with 16 transmitters and 16 receivers in an outdoor

environment [137]. This was done in order to validate a four-parameter correlated MIMO

channel model. It was shown that the proposed model was more accurate in computing the
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system capacity than assuming the channel to be independently and identically distributed

(i.i.d.) Rayleigh since it includes the effects of correlation at the transmitter and receiver.

Similarly, a measurement campaign performed at 5.8 GHz in an office environment with

no line-of-sight showed that for an adjacent antenna spacing of 2λ, where λ is the signal

wavelength in metres, the results closely matched those produced by a simulator using

i.i.d. SISO channels [138]. Finally, a measurement campaign for an indoor wireless system

operating at 5.2 GHz was performed in order to validate the use of smart antennas [139].

The results showed that the corridor behaved like a waveguide under line-of-sight condi-

tions while positions adjacent to the corridor (i.e., non-line-of-sight) depended on leakage

from the corridor, therefore different techniques must be employed when dealing with either

condition.

Although several researchers have attempted to validate their models with measure-

ment campaigns, the cost of the equipment may be quite high. An alternative solution

is to develop mathematical models that approximately reflect the behaviour of the oper-

ating environment. For instance, a model for intercarrier interference in MIMO channels

was developed by Stamoulis, Diggavi, and Al-Dhahir [140]. The channels of two distinct

pairs of transmit/receive antennas were assumed to be uncorrelated and each channel was

i.i.d. Moreover, each channel was modelled as a wide-sense stationary uncorrelated scat-

tering channel. From the analysis, it was observed that the intercarrier interference was

accentuated with the presence of multiple antennas and that the covariance matrix of the

intercarrier interference was spatially white. Moreover, multiple antennas can mitigate the

intercarrier interference using just spatial filtering alone, although that may be very com-

plicated. A geometry-based generic model for a MIMO channel was derived by Molisch

for either macrocell or microcell environments [32]. Using a set of the most important

propagation mechanisms, a number of effects were included in this model, namely, rings

of scatterers around the base station and mobile, “waveguiding”, scattering from distant

objects, and diffraction from roof edges.

Although many models attempt to accurately model the scattering effects of the oper-

ating environment, very few try to account for the mutual coupling associated with closely

spaced arrays. One study in which the effects of mutual coupling, scattering, and imper-

fect power control were simultaneously considered in a capacity analysis of a code division

multiple access (CDMA) system employing “smart antennas” was by the present author in

his previous research [141]. It turns out that when mutual coupling effects are included in
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the analysis, the capacity is less than the ideal case.

Modelling Correlation between Channel Paths

One of the main parameters of interest in a MIMO channel model is the fading correlation

between a pair of receiving antennas. Since the degree of correlation between components

of a MIMO channel model can impact the performance of the system, it is important to

accurately model the correlation in an efficient manner. The fading correlation can be

approximated using physical parameters such as the angular spread [142, 143], the delay

spread [142], the antenna separation distance [135, 142–144].

One of the first approximations for the fading correlation between antennas i and j was

by Clarke, who derived the relationship [144]

ρij ≈ J2
0

(
2πdij

λ

)

(2.21)

where J2
0 () is the Bessel function of the first kind with zero order, and dij is the separation

between antennas i and j in metres. In the formulation of Eq. (2.21), it was assumed that

the arrival distribution in the azimuth was uniform and the antennas in the array were

omnidirectional. This was later extended by Jakes to several other scenarios [135].

In the work by Shiu, Foschini, Gans, and Kahn, the fading correlation was consid-

ered in the capacity derivation of a communication system employing a multiple antenna

array [143]. Using an approach based on Jakes’ model [135], they were able to analyti-

cally determine the capacity of the system, which matched closely to their Monte Carlo

simulations.

Another model for the fading correlation was recently developed by Durgin, who devel-

oped the following model [142]

ρij = e
−23Λ2d2

ij

λ2 (2.22)

where Λ is the angular spread of the incoming signal intercepted by an array of omni-

directional antennas. Durgin also show that there exists a relationship between the angular

spread and delay spread for both indoor and outdoor environments [142].

To transform the channel impulse responses of an uncorrelated MIMO channel model

into a correlated MIMO channel model, the correlation matrix of the model must first

be determined. One can use data obtained from measurement campaigns [145], or this
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(NT ·NR)×(NT ·NR) matrix could be approximately determined by the expression [146, 147]

Σ = ΣTx ⊗ ΣRx

= E{vec{H}vec{H}H}
(2.23)

where ΣTx and ΣRx are the correlation matrices of the transmit and receive antenna arrays,

H is the NT×NR correlated MIMO channel matrix, vec{} is the vector operation of stacking

the columns of a matrix into a single column vector, and ⊗ is the Kronecker product.

To determine ΣTx, it was shown that the fading correlation parameters from either

Eqs. (2.21) or (2.22) could be used in the NT × NT matrix expression [147]

ΣTx =












1 ρij ρ4
ij · · · ρ

(NT−1)2

ij

ρij 1 ρij · · · ρ
(NT−2)2

ij

ρ4
ij ρij 1 · · · ρ

(NT−3)2

ij
...

...
...

. . . ρij

ρ
(NT−1)2

ij ρ
(NT−2)2

ij ρ
(NT−3)2

ij · · · 1












(2.24)

assuming that all adjacent antennas in the array have the same distance, and ρij is the

correlation for antennas i and j with the minimum separation distance. The NR × NR

matrix ΣRx could be expressed in a similar way.

Finally, to transform an uncorrelated MIMO channel model into a correlated model

with correlation matrix Σ, apply ΣTx and ΣRx to the expression [146–149]

H = Σ
1/2
Tx GΣ

1/2
Rx (2.25)

where G is the NT × NR uncorrelated MIMO channel matrix, respectively. Equivalently,

another technique is to apply the Cholesky factorization to Σ and take that result and

apply it to G [146]. In either case, one needs to normalize the correlation matrix prior to

any transform (see Appendix D for more information).
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2.3 Channel Estimation and Synchronization Techniques

2.3.1 Data-Assisted Channel Estimation

Many communication systems rely on some sort of channel knowledge in order to oper-

ate with a decent level of error robustness. The process of attaining this knowledge is

called channel estimation, of which two basic types exist: (1) data-assisted channel estima-

tion, and (2) blind channel estimation. The former uses training symbols to capture the

characteristics of the channel while the latter, as the name implies, extracts the channel

information from the transmission without any training. Although there is no transmis-

sion overhead in blind channel estimation, it does require a more complex implementation

and a substantial amount of time to converge to the final solution. Thus, to reduce im-

plementation complexity, most WLAN standards such as the IEEE 802.11a make use of

data-assisted channel estimation techniques [2, 47].

For data-assisted channel estimation in multicarrier systems, the training sequences are

inserted in each subcarrier, or a subset thereof, prior to transmission. Furthermore, the

extraction of the channel estimate can be performed in either the frequency domain (i.e.,

subcarrier-level at the receiver) or the time domain (i.e., prior to decomposition into subcar-

riers at the receiver). In the frequency domain version for the IEEE 802.11a standard [2, 47],

two sufficiently long and identical training sequences are inserted in the preamble of subcar-

rier k. At the receiver, the frequency response of the received training symbols in subcarrier

k, R1,k and R2,k, are defined as

Rl,k = Hk · Xk + Vl,k (2.26)

where Xk is the transmitted signal from subcarrier k, Hk is the channel frequency response

over subcarrier k, and Vl,k is additive noise over training sequence l. Thus the channel
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estimate over subcarrier k can be calculated as [47]

Ĥk =
1

2
(R1,k + R2,k)X

∗
k

=
1

2
(HkXk + V1,k + HkXk + V2,k)X

∗
k

= Hk|Xk|2 +
1

2
(V1,k + V2,k)X

∗
k

= Hk +
1

2
(V1,k + V2,k)X

∗
k

(2.27)

where the training data amplitudes are chosen to be unity and the noise samples V1,k and

V2,k are statistically identical and independent.

One of the important issues of training sequence aided channel estimation is training se-

quence placement. Park and Kang [57] investigated the impact of various training sequence

insertion and arrangement techniques. The optimal training sequence arrangement, given

a set of channel conditions, was also derived. A pilot-aided channel estimation scheme was

proposed by Vandenameele et al. [150] for OFDM spatial division multiple access (SDMA)

systems. On the other hand, a blind channel estimation scheme for MIMO-OFDM was

proposed by Bai, He, Jiang, and Zhu [151]. In a study of ICI in MIMO OFDM systems

was presented by Stamoulis, Diggavi, and Al-Dhahir, a channel estimation technique and

pilot tone placement method was implemented for time-varying MIMO channel parame-

ters within a transmission block [140]. Li, Winters, and Sollenberger [152] presented an

enhanced channel estimation technique based on decision-directed channel parameter esti-

mation with optimum training sequences for OFDM employing multiple antennas. A robust

pilot-aided channel estimation technique was designed by Chang and Su that was based

on a two-dimensional regression model for Rayleigh fading channels [58]. An expectation-

maximization (EM) algorithm for OFDM receivers was proposed by Al-Naffouri, Bahai, and

Paulraj [72]. Finally, Catreux et al. [153] presented methods of obtaining accurate channel

state information while the environment was rapidly changing. These methods included

mean SNR values, multiple statistics of the SNR, packet and bit error rate information,

and a hybrid error performance/SNR technique.



2 Multicarrier Data Transmission 43

2.3.2 Synchronization

The accuracy of the symbol and frequency synchronization in multicarrier systems dramat-

ically affects the overall system performance with respect to the probability of error [6].

To minimize the computational effort and redundancy in determining the symbol and fre-

quency synchronization, the synchronization process is split into a coarse acquisition phase

and a fine tracking phase. Moreover, their exist several synchronization techniques that

could be employed, ranging from channel group delay estimation to blind methods using the

received signal’s autocorrelation [85]. For example, a symbol time offset estimator for co-

herent OFDM systems was proposed that exploited the redundancy in the cyclic prefix and

the pilot signals used in channel estimation [60]. The former was used to perform a coarse

estimate while the latter allowed for a fine tuning of the estimate. Two blind algorithms,

one for symbol synchronization [59] and the other for carrier frequency recovery [61], were

also proposed that used the received signal’s autocorrelation.

In this dissertation, it is assumed that both the symbol sampling time and the carrier

frequencies have been recovered by one of the above algorithms.

2.4 Adaptive Allocation Algorithms

As mentioned previously, multicarrier systems possess a “divide-and-conquer” quality which

may be exploited under certain conditions in order to improve system performance. For

instance, by subdividing a frequency-selective fading channel frequency response into a

collection of relatively flat subchannels, each subchannel then has a different amount of

distortion and a different instantaneous SNR value. Thus, by adapting the operating

parameters of the subcarriers to each subchannel, such as the choice of modulation scheme

and/or power level, the system can be optimized in one of two ways:

1. The system throughput can be maximized given an error constraint.

2. The aggregate error can be minimized given a throughput limit.

In the next two subsections, two popular types of allocation algorithms will be discussed.
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2.4.1 Bit Allocation

The term bit allocation, also known as bit loading or adaptive modulation, defines a process

for assigning a modulation scheme to each subcarrier, given a set of available modulation

schemes, to achieve a performance objective while satisfying some prescribed constraint(s).

For example, the objective could be throughput maximization while the constraint could

be a prescribed upper bound on the mean BER.

To illustrate how bit loading works, suppose the channel is subdivided into N disjoint

approximately flat subchannels with complex gains Hi, i = 0, . . . , N − 1. Furthermore, let

the transmit power levels for the subcarriers be specified as πi, i = 0, . . . , N −1. Therefore,

if the additive noise is white with variance σ2
ν and the equalizer at the receiver is a single

complex gain per subcarrier, the signal-to-noise ratio (SNR) of subcarrier i can be defined

by

γi =
πi|Hi|2

σ2
ν

(2.28)

where |Hi|2 ≤ 1 is always true due to path loss5.

Given a set of different modulation schemes, suppose the objective is to determine

which scheme possesses the largest throughput for subcarrier i, given the subcarrier SNR

in Eq. (2.28), while operating below the pre-defined error probability threshold PT . An

exhaustive search is performed by evaluating the closed form expressions of the probability

of bit error, Pi, for all available modulation schemes and subcarriers. Furthermore, since

the case of |Hi|2 6= |Hk|2 for i 6= k is very likely, the best choice of modulation scheme for

subcarrier i may not be for subcarrier k and thus this exhaustive search procedure must

be applied for each subcarrier.

An example of bit allocation is shown in Fig. 2.12 for N = 8 subcarriers. For πi =

0.833 mW, i = 0, . . . , N−1, and σ2
ν = 1×10−13 W, the subcarrier SNR values are computed

using Eq. (2.28) and shown in Fig. 2.12(a). Note that there exists a deep spectral depression

in the vicinity of subcarrier 3, resulting in a relatively low subcarrier SNR value. If 64-

QAM modulation is applied to all subcarriers, the resulting mean bit error rate (BER) is

P̄ = 6.442 × 10−4 and the overall throughput is 48 bits per symbol epoch. If the BER

threshold is PT = 10−5, this configuration is unacceptable since P̄ > PT . Since the BER

5For OFDM-type systems with a sufficiently long cyclic prefix, Eq. (2.28) becomes increasingly accurate
as N increases. However, for other multicarrier schemes, this approximation may be less accurate if other
sources of distortion, such as ISI and ICI, are not adequately suppressed.
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(c) 64-QAM modulation for all subcarriers except subcarrier 4, which em-
ploys 16-QAM.

Fig. 2.12 Example of bit allocation performed on an 8 subcarrier system.
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of subcarrier 3 dominates the mean BER (refer to Fig. 2.12(b)), the modulation scheme

of that particular subcarrier is changed to 16-QAM. Observing Fig. 2.12(c), all Pi are

below PT and P̄ = 1.767 × 10−6, which satisfies the BER constraint. However, the overall

throughput is reduced by two bits per symbol epoch.

One of the classic works on bit loading strategies for multicarrier systems was presented

by Kalet [80]. Using a multitone quadrature amplitude modulation (QAM) framework,

the overall bit rate of the system was maximized when operating in an additive white

Gaussian noise (AWGN) channel, first with a two-level transfer function and then extended

to a multiple level transfer function. To assist in the derivation, a number of simplifying

assumptions were made in this work. First, there was only a total power constraint on

the system. Second, there was no limit on the size of QAM constellation that can be

used. Third, the framework was designed for a continuous distribution of bits rather than

a more realistic discrete distribution. Thus, the value for the number of bits per channel

was non-integer for analytical convenience.

Focusing on the third simplifying assumption, several other researchers have also used

closed-form expressions that yielded non-integer allocations [48, 81]. However, this may

introduce rounding errors, resulting in a bit allocation that may further from the opti-

mal solution in terms of throughput. Discrete bit allocation is one possible solution to

this problem. Although discrete bit allocation algorithms for communication systems have

been around since 1987 [154], they have been influenced by discrete allocation algorithms

developed in other areas, such as financial analysis [7] and quantization theory [8]. How-

ever, for multicarrier communication systems, the formulation of the algorithm may be

unique, and could vary depending on what quantity the system is allocating. For instance,

a “unified” framework for an OFDM system, which performs both bit and power alloca-

tion, and can perform either transmission power minimization, error rate minimization, or

throughput maximization is presented in [78]. Many discrete bit allocation algorithms are

simply executed in an incremental fashion [55, 154]. However, incremental algorithms tend

to be computationally expensive. As a result, there exists a need for practical and effi-

cient loading algorithms. One such discrete loading algorithm was proposed by Krongold,

Ramchandran, and Jones, which used lookup tables and a fast Lagrange bisection search

to determine the final bit and power allocation [14].

Several researchers have considered a number of refinements for multicarrier systems

employing bit allocation algorithms. For instance, instead of using a large number of
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modulation schemes for bit allocation, which could increase the computational complexity

of the algorithm, simply “turning off” or nulling subcarriers would be sufficient to improve

the error robustness of the system [49]. Another refinement that has been investigated

is with respect to the choice of a metric representing the quality of transmission across

the subcarriers. Although the majority of algorithms use either the instantaneous BER or

SNR of the subcarrier, there have been studies performed investigating the use of Euclidean

distance metrics [155], which are mapped to the signal-to-interference-plus-noise ratio, and

the peak SNR criterion [156]. When bit allocation for multicarrier systems is studied, the

system is usually assumed to be uncoded in order to ascertain only the benefits of bit

allocation. However, all WLAN standards employ channel coding in their specifications.

As a result, channel coding has been included in several studies where bit allocation is

performed [68, 157].

Due to the increase in implementation complexity when bit allocation algorithms are

employed, there have been several attempts to reduce the complexity while still attaining

some of the benefits offered by bit allocation. For instance, for terrestrial Integrated Service

Digital Broadcasting (ISDB-T), instead of performing bit allocation across each subcarrier,

the subcarriers are grouped together and share the same modulation scheme allocated to

them by the algorithm [51, 52]. When the channel conditions are very poor, the system

may temporarily stop transmission and wait for when the conditions improve. However,

instead of completely terminating the transmission, the idea of buffering the transmitted

data until the channel conditions improve has been studied [158]. Moreover, to keep the

transmission overhead to a minimum, several researchers have looked at ways of reducing

the overhead, such as performing the allocation algorithms offline [159], and study the

impact of the transmission overhead on the actual data throughput [160]. Finally, studies

have been performed where proposed bit allocation algorithms are employed in existing

communication systems [50].

Most allocation algorithms assume that the channel conditions are time-invariant. In

WLAN research, the channel is assumed to be quasi-stationary, where the channel condi-

tions change very slowly over a very long period of time. However, these assumptions are

not realistic, and the impact of outdated allocations can significantly impact the error per-

formance of the system. While several researchers have investigated ways of modelling the

behaviour of time-varying channels and the type of errors they introduce in the allocation

process [161–166], others have sought techniques of predicting the time-varying behaviour
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of channel and using that information in the allocation algorithm [54, 167].

Another simplification employed by most studies is that the system is evaluated in a

single user scenario. However, most communication systems are equipped to operate under

multiuser conditions, including WLAN systems. As a result, the interference introduced to

the system from other users is not being considered6. Since users within the same system

may have different requirements with respect to throughput and error robustness, a number

of bit allocation algorithms have been proposed that satisfy these different requirements

within the same system [53, 168, 169]. One way to assign different throughput values is

to assign a different number of subcarriers to each user [170], while some multiuser bit

allocation algorithms allow different total power constraints per user [71].

Finally, many multicarrier systems that employ bit allocation do not consider the perfor-

mance benefits of using antenna arrays at the transmitter and receiver. While bit allocation

exploits the frequency diversity offered by the system, antenna arrays can further improve

performance by exploiting spatial diversity. For instance, a number of systems have been

implemented that employ both beamforming and bit allocation to increase the user capac-

ity of the system [169, 171–175]. However, all of these schemes use multiple antennas to

support a greater number of users and mitigate the interference due to other users.

Capacity Approximation-Based Bit Loading

The maximum data rate for error-free transmission, or capacity, of a communication system

transmitting in an additive white Gaussian noise channel is given by

C = W log2(1 + γ) (2.29)

where W is the signal bandwidth and γ is the SNR. Practical communication systems can

be characterized by how close they are from achieving capacity. The distance between

the SNR values for the maximum number of bits the system can sustain, given a target

probability of error PT , and the capacity normalized by the signal bandwidth is the SNR

gap, Γ. The maximum number of bits that can be sustained is (with error PT )

b = log2

(

1 +
γ

Γ

)

. (2.30)

6If the interference due to other users was taken into account, this would translate into an increase in
the error floor of the BER results.
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Fig. 2.13 Channel capacity C and the points for M-QAM given a PT of
10−6 corresponding to an SNR Gap Γ of 8.8 dB.

The SNR gap can be expressed using the expression for the union bound on the error

probability, yielding [64]

Γ ≈ 1

3

[

Q−1
(PT

4

)]2

(2.31)

where Q−1(·) is the inverse of the Q-function, defined as

Q(x) =
1√
2π

∫ ∞

x

e−t2/2dt. (2.32)

An example of the SNR gap is shown in Fig. 2.13. The SNR gap between the normalized

channel capacity and an uncoded M-QAM system operating at a PT of 10−6 for M ≥ 2,

represented by the circles connected by the dashed-dotted line, is approximately 8.8 dB.

Also plotted are several normalized capacity curves as computed by Ungerboeck [176] for

M-QAM systems operating in bandlimited additive white Gaussian noise channels, with

discrete-valued inputs and continuous-valued outputs, and assuming equiprobable occur-

rences of signal constellation points.

The allocation algorithm of Chow, Cioffi, and Bingham [11] makes use of the SNR gap
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to compute the number of bits for subcarrier i, namely

bi = log2

(

1 +
γi

Γ

)

, (2.33)

where γi is the SNR of subcarrier i. Assuming equal energy across all used subcarriers, Γ

is adjusted until the target bit rate is exceeded. For a geometric interpretation, we refer to

the dashed line in Fig. 2.13. The dashed line represents the system operating at PT . For

a subcarrier with SNR γi, this curve maps γi to a (non-integer) number of bits, which is

rounded to the nearest integer value (the point on the curve is moved either vertically up

or down). After the bit allocation, the transmission power levels are then adjusted in order

to achieve the same subcarrier bit error rate, Pi, per non-nulled subcarrier.

The allocation algorithm presented by Leke and Cioffi [12, 82] assigns energy to different

subcarriers in order to maximize the data rate for a given SNR margin. The subcarrier SNR

values are sorted and a search is performed in order to find which subcarriers should be left

on while others shut off. The bits are then allocated to each subcarrier are calculated using

the SNR gap approximation. Campello introduced necessary and sufficient conditions for

the optimality of a discrete bit allocation algorithms [84], and then extended these condi-

tions to bit loading algorithms employing the capacity approximation [83]. Lee, Sonalkar,

and Cioffi proposed a multiuser bit and power loading algorithm for DSL modems based

on the capacity approximation [86, 87]. This work was followed up by Yu, Ginis, and Cioffi,

who modelled the power control problem in a frequency selective multiuser network as a

non-cooperative game [89]. Rhee and Cioffi studied the use of subcarrier allocation, based

on Eq. (2.33), in order to increase capacity in multiuser OFDM systems [177]. Hoo, Tel-

lado, and Cioffi proposed a bit and power loading algorithm in which two services that each

have a different quality-of-service (QoS) [13, 178]. In particular, one service is of constant

bit rate while the other has a variable bit rate. Kim, Chen, and Cioffi investigated methods

of speeding up the bit allocation process with an adaptive look-up table for the capacity

approximation values [179]. Lim and Cioffi studied the performance of an adaptive rate

MQAM system which employs a simple on/off power control scheme [180]. Finally, Ding,

Davidson, and Wong proposed two algorithms for improving the BER performance of bit

loading systems, based on Eq. (2.33), that involve DFT-based linear combining and power

reallocation [181].



2 Multicarrier Data Transmission 51

2.4.2 Bit Loading with Imperfect Channel Information

Although many of the bit and power allocation algorithms covered in the previous subsec-

tion may provide significant performance improvements, they are usually evaluated when

the channel conditions are perfectly known to the algorithm and the channel is time-

invariant. However, the performance results may be overly optimistic and thus a more

accurate performance analysis of bit and power loading algorithms is required.

Most researchers have focused on developing a more realistic scenario that these systems

will experience. In particular, the impact of the following three effects that usually occur

in the system are studied:

1. The effects of a time-varying channel and outdated channel state information [65, 182–

187].

2. Channel estimation error and the propagation of that error [65, 66, 182].

3. Imperfect feedback due to distortion and/or quantization [188].

Since the effectiveness of the loading algorithms are heavily dependent on the quality

of the channel state information, any of these effects would have a serious impact on its

performance.

2.4.3 Power Allocation

In the previous section, various bit loading algorithms were presented that provided perfor-

mance enhancements over systems employing a fixed signal constellation across all subcarri-

ers. However, another method for improving system performance is tailoring the subcarrier

power levels, thus changing the subcarrier SNR and BER values. Usually, power allocation

is performed in tandem with bit allocation, as observed in several of the references men-

tioned in the previous subsection. In this subsection, the focus is on how power allocation

is performed and the constraints imposed on the algorithm.

To compute the optimal power allocation, one may approach this problem using the

Shannon capacity expression. Suppose for a single carrier system that the power distribu-

tion across the channel bandwidth W is defined as π(f). Therefore, from an information
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theory perspective [47, 80, 189, 190], the total capacity of the system is defined as

C =

∫

W

log2

(

1 +
π(f)|H(f)|2

V (f)

)

df (2.34)

where H(f) is the channel frequency response and V (f) is the noise power spectral density.

Suppose that the transmit power across the frequency domain is constrained according

to ∫

W

π(f)df ≤ πmax, (2.35)

where πmax is the maximum power allowed. Then, using Lagrange multipliers, the capacity

C in Eq. (2.34) is maximized with respect to π(f), yielding [47, 189]

π(f) =

[

µ − V (f)

|H(f)|2
]+

(2.36)

where f ∈ W , µ is chosen such that π(f) satisfies Eq. (2.35), and [.]+ sets all negative values

to zero. Notice how in Eq. (2.36) that more energy is allocated to regions in the spectrum

where the noise, after being shaped by the channel frequency response, is the lowest. This

approach is known as waterfilling, as illustrated by the shaded areas in Fig. 2.14
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Substituting Eq. (2.36) into (2.34), the optimal capacity is given as [47, 189]

COptimal =

∫

W

[

log2

(

µ
|H(f)|2
V (f)

)]+

df. (2.37)

It should be noted that this procedure could be applied to each subchannel, as is

the case with multicarrier systems [47, 189]. In fact, Kalet derived the discrete version

of waterfilling for multicarrier systems [80]. Yoshiki, Sampei, and Morinaga proposed

a multi-level transmit power control for OFDM adaptive modulation systems to achieve

high bit rate transmission without increasing the overall transmit power level [56]. The

power levels per subcarrier were chosen so as to maximize the transmitted bits per OFDM

symbol while keeping the transmit power level constant using a conventional transmit

power control technique. Furthermore, no power was allocated to subcarriers experiencing

deep fades, i.e., null subcarrier placement [49]. Goldfeld and Lyandres proposed a power

allocation algorithm for multicarrier systems operating in frequency-selective Nakagami

channels [191]. They then compared their results to equal power loading and noticed

that the performance was enhanced, especially at low SNR values. Goldfeld, Lyandres,

and Wulich proposed another power loading algorithm for OFDM systems operating in a

fading environment where the objective is to minimize the overall BER [63]. Scaglione and

Barbarossa proposed a power loading algorithm for underspreaded Rayleigh time-varying

channels [67].

Thus far, most of the power loading algorithms studied in both the previous and current

subsection only have a total power constraint to satisfy. However, this constraint is not

sufficient if the spectrum used by the system has some regulatory requirements, such as the

Unlicensed National Information Infrastructure (UNII) band at 5 GHz [192] (see Section 3.2

for more information)7. Thus power allocation schemes with stricter power constraints are

required in order for them to be feasible in an actual implementation. Choi, Cheong, and

Cioffi proposed a power allocation scheme for single carrier schemes that limits the peak

power in order to avoid violations of regulatory requirements [193]. Fasano, Baccarelli,

Zucchi, and Biagi proposed several power allocation algorithms for multicarrier systems

that limit the peak power per subcarrier such that the requirements are satisfied [15–19].

7For the lower UNII band of 5.15–5.25 GHz, the power constraint is 2.5 mW/MHz, while for the 5.25–
5.35 GHz middle UNII band it is 12.5 mW/MHz, and for the 5.725–5.825 GHz upper UNII band the power
constraint is 50.0 mW/MHz.
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Fig. 2.15 Different types of distortion present in multicarrier sys-
tems (from [79]).

2.5 Multicarrier Equalization Techniques

From the previous sections, it is obvious that there exists a number of performance advan-

tages when employing adaptive allocation. To improve the quality of the received signal,

equalizers are employed to remove most of the distortion introduced by the channel. The

design decisions involved in the implementation of an equalizer depend on a number of fac-

tors, including the type of distortion present in the received signal and the implementation

complexity. In this section, a description of the distortion normally found in multicarrier

transmission systems and techniques to remove the distortion is presented. Moreover, two

frequency domain equalization techniques will be covered.

2.5.1 Interference in Multicarrier Systems

There are several types of distortion which are found in multicarrier signals. Pollet et al.

define the three types of interference prevalent in multicarrier systems based on the origin

of the interference [79]. A graphical relationship of these types of distortion with respect

to multicarrier transmission is shown in Fig. 2.15. Considering the interference on symbol

m in subcarrier k, these three types are:
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ICI1 This form of intercarrier interference (ICI) occurs when the interference contains the

symbols transmitted over the other subcarriers of the mth symbol period.

ICI2 This ICI occurs when the interference contains the symbols transmitted during periods

other than the mth symbol period from subcarriers other than subcarrier k.

ISI This intersymbol interference, or ISI, occurs when the interference contains the sym-

bols d(k)(n), where n 6= m.

As discussed in Section 2.1.2, the cyclic prefix in OFDM systems is used to capture the

effects of ISI and ICI2. As for ICI1, the analysis filterbank of the OFDM system transforms

it into a set of complex gains affecting the subcarriers.

With respect to a performance analysis of an OFDM system when these forms of inter-

ference are present, Li and Cimini derived a bound on the capacity of an OFDM system

when intersymbol interference and time-varying impairments were considered [77].

2.5.2 Distortion Reduction

To mitigate the effects of the distortion introduced by the channel, there exists two tech-

niques which may be employed by the system. One technique is channel coding, where

the data is encoded with some redundancy so as to increase the probability of correctly

recovering the original data from the intercepted transmission at the receiver. There exists

several classes of channel codes that can be employed to correct for impulse errors in the

transmission. Moreover, when an interleaver is employed by the encoder, channel coding

can also compensate for predictable channel behaviour by randomizing the errors to make

them appear as burst errors.

The other technique is channel equalization, where the effects of the channel are inverted

at the receiver. This technique is specifically designed for channels with predictable distor-

tion behaviour. In most cases, FIR filters are used at the receiver to equalize the incoming

signal. One approach is to use multicarrier systems with FIR equalizers employed in each

subcarrier. Due to the “divide-and-conquer” nature of MCM, where the data is transmit-

ted in several subcarrier simultaneously, each subcarrier is only affected by a portion of

the channel in terms of bandwidth, and thus requires fewer taps to compensate for the

distortion. For instance, if the channel is frequency selective and a single carrier system

is employed, the equalizer at the receiver will require a large number of taps to invert the
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Fig. 2.16 The effect of equalization on the noise spectrum.

channel. If a multicarrier system is employed, where N is sufficiently large, the frequency-

selective fading channel is transformed into N approximately flat subchannels. Thus, the

N subcarrier equalizers may consist of nothing more than a complex gain. This complex

gain compensates for the gain and phase of the channel affecting the subcarrier. It is this

procedure that is employed in ADSL modems [10, 41, 79, 103]. The details of this type of

equalizer are discussed in Section 2.5.3. Even when N is not large enough to transform the

channel into flat subchannels, equalizers with lengths greater than 1 could be employed per

subcarrier.

Although equalization may compensate for the channel distortion, caution must be used

when dealing with the noise that is added to the received signal. Suppose that the channel

frequency response at the center of subcarrier i is defined by Hi. If a single-tap equalizer is

used, it is equal to Ci = 1/Hi. However, since there is noise present in the received signal,

it also gets multiplied by the equalizer. If the noise frequency response in subcarrier i is
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given by Vi(ω), the post-equalized noise frequency response would be

V ′
i (ω) =

Vi(ω)

Hi(ω)
, (2.38)

where Hi(ω) is the channel frequency response over subcarrier i. Since |Hi(ω)| < 1 due

to path loss, this means that |V ′
i (ω)| > |Vi(ω)|. An illustrative example of the effect of

equalization on the noise spectrum is shown in Fig. 2.16 for an input signal with an initially-

flat spectrum. One solution is to pre-compensate the information for the distortion before

transmission. This process is known as pre-equalization [55, 194]. However, pre-equalization

only works if accurate channel knowledge is available at the transmitter, thus requiring a

feedback path back from the receiver.

One of the advantages that multicarrier modulation has over single carrier modulation

is that equalization can be performed on each subcarrier, as opposed to a long time-domain

equalizer employed by single carrier systems. However, several researchers have devised a

number of equalization schemes for single carrier systems that possess the same complexity

as a multicarrier system implementing per-subcarrier equalization. Moreover, these single

carrier systems do not suffer from a large peak-to-average ratio8 problem experienced by

multicarrier systems. Falconer et al. [195] conducted a comparison between single carrier

systems employing a frequency-domain equalization technique and a multicarrier system.

The results showed that the two systems have the same error rates but that the multicarrier

system suffered from a large peak-to-average ratio. Two frequency-domain equalization

techniques for MIMO systems were presented by Zhu and Murch [196], where the first

technique was a conventional frequency-domain equalization with a time-domain decision

feedback equalizer (DFE) while the second technique combined the first technique with

parallel interference cancellation. Choi and Murch [197] designed a pre-frequency-domain

equalization technique for use in a multiple input/single output system.

Although single carrier FEQ techniques may be superior to multicarrier systems with

respect to PAR, single carrier systems with FEQ cannot perform adaptive bit allocation.

Moreover, although adaptive power allocation can be performed in a single carrier system

by changing the spectral pulse shape applied to the transmitted data stream, it is more

difficult relative to a multicarrier system. As a result, they cannot fully exploit their

advantages. For instance, Czylwik performed a comparison between an OFDM employing

8Peak-to-average ratio is the ratio between the peak transmitted power of a signal and its average power.
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bit allocation and subcarrier FEQs and a single carrier system with a FEQ [198]. The

results showed that the adaptive OFDM system outperformed the single carrier system.

2.5.3 Optimal Single-Tap Per-Tone Equalization for OFDM Systems

Once the cyclic prefix of appropriate length has been removed, the received signal is decom-

posed into separate subcarriers using the DFT. Then, to equalize the gain of the desired

signal, the subcarriers are multiplied with the inverse of the channel frequency response

across each of the subcarriers.

The importance of the cyclic prefix resides in the fact that it transforms the linear

convolution between the transmitted signal s(n) and the channel impulse response h(n)

into a symbol-by-symbol circular convolution. Suppose the OFDM symbol starts at time

n = 0. Denoting s(0), . . . , s(N − 1) as the N output samples of the transmitter IDFT for

the first OFDM symbol, the addition of the cyclic prefix of length K gives rise to a new

signal, namely

s̃(n) =

{

s(n + N − K) 0 ≤ n ≤ K − 1

s(n − K) K ≤ n ≤ N + K − 1
.

Defining r̃(n) as the result of the convolution of the signal s̃(n) with a channel impulse

response h(n) of length S, assuming S ≤ K + 1, this yields

r̃(n) =
S−1∑

k=0

h(k)s̃(n − k)

=







n−K∑

k=0

h(k)s(n − K − k) +
S−1∑

k=n−K+1

h(k)s(n − k + N − K), K ≤ n ≤ K + S − 1

S−1∑

k=0

h(k)s(n − K − k), K + S ≤ n ≤ N + K − 1

From the above equation, it is observed that after the removal of the cyclic prefix, the

received sequence r(n) = r̃(n + K) is

r(n) =
N−1∑

k=0

h(k)s(((n − k))N) = h(n) ©N s(n). (2.39)

Thus, the received samples, after removal of the cyclic prefix, are just made up of the
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circular convolution of the sent signal (i.e., N samples per symbol) with the channel impulse

response h(n). If now one looks at Eq. (2.39) in the frequency domain, it looks like

R(k) = H(k) · S(k),

where capital letters represent N -point DFTs of the corresponding sequences. With the

multiplication of the corresponding frequency samples, each of the subcarriers experiences

a different complex channel “gain” H(k). Therefore, what must be done is to multiply

each subcarrier with a gain that is an inverse to the channel frequency response acting

on that subcarrier. This is the principle behind per tone equalization. Knowing what the

channel frequency gains are at the different subcarriers, one can use them to reverse the

distortion caused by the channel by dividing the subcarriers with them. For instance, if

the system has 64 subcarriers centered at frequencies ωk = 2πk/64, k = 0, . . . , 63, then one

would take the CIR h(n) and take its 64-point FFT, resulting with the frequency response

H(k), k = 0, . . . , 63. Then, to reverse the effect of the channel on each subcarrier, one

would simply take the inverse of the channel frequency response point corresponding to

that subcarrier,

W (k) =
1

H(k)
(2.40)

and multiply the subcarrier with it.

2.5.4 Frequency-Domain Equalizers for Multicarrier Systems

Although the single-tap per-tone equalizer for OFDM has the advantage of being simple

and is optimal with respect to compensating for channel distortion, it has a few drawbacks,

namely:

• The length of the cyclic prefix must be sufficiently long to capture the effects of ISI

and ICI2. If the channel impulse response is long, the cyclic prefix will constitute a

greater percentage of the OFDM symbol.

• This type of equalization works well only with OFDM.

Therefore, other implementations should be considered when conditions for the single-tap

equalizer are unfavourable. One solution is to employ multi-tap equalizers on each subcar-

rier. Since each subcarriers operates across a smaller portion of the channel in the frequency



2 Multicarrier Data Transmission 60

domain, the equalizer design may be less complex. For instance, Van Acker proposed a

method for transforming a single time-domain equalizer, which is placed before the analy-

sis filterbank for the purpose of channel shortening9, into a collection of multi-tap MMSE

frequency-domain equalizers for each subcarrier [21]. This was done to allow for a larger bit

rate, reduced complexity, and reduced sensitivity to synchronization delays [20]. Similarly,

a multi-tap per-tone equalizer design for MIMO OFDM systems was proposed [200].

As for filterbank-based multicarrier systems, which do not employ a cyclic extension,

the design of the per-subcarrier equalizers is a bit more complex and usually the final

design has multiple taps. For instance, three different multi-tap FEQ designs for an MDFT

filterbank system were proposed [201] where the difference in design was dependent on the

location of the equalizers in the receiver chain. A tandem multi-tap TEQ phase equalizer

with single-tap FEQs was also proposed so that the phase response of the received signal

becomes linear, and thus easier to handle by the FEQs [105]. Finally, a multi-tap subcarrier

equalizer design was proposed for critically-sampled CMFBs that used parallel cosine- and

sine-modulated filterbanks [106].

2.6 Multiple-Antenna Multicarrier Systems

The idea of employing multiple antennas in wireless communication systems has been

around for over a century. By exploiting the spatial dimension made available through

multiple antennas, a communication system has the flexibility of either increasing through-

put or error robustness depending of the choice of signal processing routines employed by

the wireless transceiver. When the system employs signal processing algorithms that in-

crease the overall throughput, this is called spatial multiplexing [202, 203]. On the other

hand, when the algorithms enhance the error robustness of the system, this is known as

space-time coding [202, 203].

Gesbert et al. discussed how to select design features at the physical layer, such as spa-

tial diversity, frequency diversity, and MIMO-spatial multiplexing, and at the link layer,

such as automatic repeat request fragmentation (ARQF) and adaptive modulation, in or-

der to maximize bandwidth efficiency while maintaining a certain degree of link reliability

for multiple transmitter/receiver antenna broadband wireless access systems in non-line-of-

9This involves a time-domain equalizer that partially equalizes the received signal such that the resulting
channel impulse response after the time-domain equalizer is shorter than the cyclc prefix [199].
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Table 2.5 Layer 1 and 2 technologies for advanced non-line-of-sight fixed-
wireless-access (from [204])

Technology Impact (Qualitative)
ARQF Set Point ↓
Adaptive Modulation Data Rate ↑
Diversity (space) Set Point ↓
Diversity (frequency) Set Point ↓
MIMO-spatial multiplexing Data Rate ↑

sight environment [204]. Also discussed were systems that employed MIMO-based spatial

multiplexing and coded OFDM, which benefited from a channel environment with multi-

path delay spread. Finally, an overview of the effects of these techniques on the set point10

of the system was presented and summarized in tabular form, as in Table 2.5.

An active area of research is the design and implementation of WLAN modems em-

ploying multiple antennas and the underlying signal processing routines. Currently, none

of the ratified WLAN standards have included any details on the use of multiple antennas,

although there have been a number of commercially-available MIMO WLAN systems, some

of which are backward-compatible with a SISO WLAN standard [98, 99, 205]. However, a

number of issues remain and thus work is continuing in the design of computationally-

efficient, cost-effective MIMO WLAN systems. In this section, a brief overview of spatial

multiplexing will be presented, followed by a more detailed discussion about space-time

coding.

2.6.1 Spatial Multiplexing

Spatial multiplexing operates by transmitting independent data streams on each antenna,

an example of which is the Bell Labs Layered Space-Time (BLAST) [206, 207]. At the

receiver, each antenna intercepts the transmissions, performs some signal processing on

all the received intercepts, and outputs the recovered data streams. A schematic of a

simplified spatial multiplexing system is shown in Fig. 2.17. In the high-speed input data

stream is demultiplexed and processed into a set of signals, si(n), i = 1, . . . , NT , that are

each transmitted by a dedicated antenna. After passing through the NT × NR MIMO

10The level of SINR required at any one of the receive antennas in order to meet the link reliability target
at a specified level of throughput.
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Fig. 2.17 Schematic of a spatial multiplexing system (adapted from [208]).

channel H(z), defined as [208]

H(z) =









h11(z) h12(z) · · · h1NR
(z)

h21(z) h22(z) · · · h2NR
(z)

...
...

. . .
...

hNT 1(z) hNT 2(z) · · · hNT NR
(z)









, (2.41)

where hij(z) is the channel response between transmit antenna i and receive antenna j, the

signals received at each antenna, ri(n), i = 1, . . . , NR, are processed, yielding the recovered

data streams, zi(n), i = 1, . . . , NT . The processing at the receiver can be performed

using one of several techniques, including an ML approach or a zero-forcing or MMSE

approach [208].

To ascertain the benefits of spatial multiplexing, a number of studies have been per-

formed to evaluate the overall improvement of the system [88]. Several studies have focused

on the signal processing techniques performed at the receiver [209, 210] while others have in-

vestigated the use of OFDM in a multiuser scenario with spatial multiplexing [150, 211, 212].

However, most of these studies do not consider the impact of imperfect feedback, which

could negatively impact the performance of the system. Thus, several studies have been

performed to assessed its impact on system performance [188, 213]. Finally, several re-

searchers have implemented hardware prototypes of spatial multiplexing OFDM systems

for use in WLAN applications [203].
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Spatial Multiplexing with Beamforming

Another signal processing technique that can be employed at either end of the transceiver

is beamforming, also known as smart antennas [214, 215]. Beamforming is an array process-

ing technique that uses a set of phased antennas which are spaced close together, usually

on the order of half a wavelength, in order to produce radiation beampatterns that are

highly receptive at certain angles-of-arrivals while not receptive in others [141, 214–216].

This technique is extremely useful in environments where the presence of strong interferers

exist at specific angle-of-arrivals, in which case beamforming can “null out” these inter-

ferers by directing the nulls at them. Furthermore, the main beam can be focused on the

desired signals. As a result, strong interferers can be mitigated. Furthermore, multiple

beampatterns can be employed to transmit different signals at the same frequencies. This

frequency reuse can significantly increase system capacity, depending on the number of

non-overlapping mainlobe beampatterns that can be supported by the antenna array. In

the spatial multiplexing context, each of these petals would be directed at its own receive

antenna [216].

Currently researchers are investigating techniques of combining adaptive beamforming

with multicarrier systems [217–220]. One of the target applications of this research is

WLAN systems, which do not currently employ adaptive beamforming at either the base

station or the mobile, although in several studies the results show that its introduction could

improve system performance [221]. However, a number of practical considerations need to

be addressed, including an efficient implementation of beamformers in the multicarrier

system [222], the use of partial channel state information [223], and various multiuser

resource allocation algorithms [224].

2.6.2 Space-Time Coding

Space-time coding (STC) is designed to increase the error robustness of the system by pro-

viding information redundancy in the spatial domain. Unlike spatial multiplexing, where

each channel path between the transmitter and receiver carries an independent data stream,

an STC system essentially sends one data stream that is spread across all the channel paths.

There exists two categories of STC systems that are classified on the basis of how this

spreading is achieved. The first is spatial diversity, where the same data stream is transmit-

ted on each antenna. The second is the space-time coder, where each antenna transmits an
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encoded version of the data stream that contains a certain amount of redundancy [225, 226].

Within this category, space-time coders can be classified as either space-time trellis codes

(STTC) [164, 227–229] and space-time block codes (STBC) [227, 230, 231]. In the remaining

part of this section, the details of the spatial diversity techniques will be presented.

Spatial Diversity Techniques

Spatial diversity works by transmitting the same data stream on each antenna and perform-

ing some sort of combining at the receiver. If the antennas at the transmitter and receiver

arrays are sufficiently spaced, then the channel paths between each transmit antenna and

each receive antenna are uncorrelated, as discussed earlier. As a result, each copy of the

transmitted data stream will experience distortion that is uncorrelated with the distortion

of other channel paths. Thus, the probability that all copies of the data stream are severely

affected by the channel is small when compared to a SISO system.

Spatial diversity can be performed at either the transmitter, which is known as transmit

diversity, or at the receiver, which is called receive diversity, or both. Three types of

transmit diversity commonly used in multiple antenna systems are delay diversity [227],

phase diversity [232], and cyclic delay diversity [232], while three receive diversity techniques

are antenna selection [33, 142, 233], equal gain combining [142, 233], and maximum ratio

combining [142, 233].

In delay diversity, the signal at each of the transmit antennas is a delayed version of the

other. As a result, this artificially spreads the signal in the time domain, resulting in the

transformation of a flat fading channel into a frequency selective fading channel. A positive

consequence of this is that it reduces the probability that all copies of the signal would be

in a deep fade [232]. Unfortunately, a negative side effect of delay diversity is increased

ISI. Thus, if the system uses OFDM, the cyclic prefix might have to be lengthened to cope

with the ISI. An alternative is phase diversity, where the signal on each transmit antenna

possesses a different phase with respect to the other signals. Mathematically, applying a

phase delay δl to the signal s(n) on transmit antenna l yields the signal [232, 234]

sl(n) =
1√
K

K−1∑

k=0

ej2πkδl/K · S(k) · ej2πkn/K (2.42)

where S(k) is the DFT of s(n), and a K-point DFT is employed. However, in the case on an
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OFDM system, the phase diversity must be performed prior to modulation by the IDFT.

Thus, if there are NT transmit antennas and N subcarriers, Eq. (2.42) must be performed

N · NT times. An alternative is to use cyclic delay diversity. Cyclic delay diversity works

by transmitting on each antenna a copy of the data stream, each of which with a different

cyclic shift. Mathematically, this is represented as [232, 234]

sl(n) = s(mod((n − δl), K)) (2.43)

where δl is an integer shift of the cyclic extension. Comparing Eqs. (2.42) and (2.43),

the expressions are mathematically equal. However, cyclic delay diversity has a lower

implementation complexity relative to phase diversity since it only needs to be used NT

times.

Antenna selection diversity, also known as switch diversity, involves choosing the best

signal from a set of received signals based on some prescribed metric [142, 233]. Usually

this metric is signal strength, however BER or SNR can also be used as metrics. Although

this scheme chooses a single receive antenna, it is possible to choose a subset of receive an-

tennas and combine them using the other two receive diversity techniques (this is discussed

in Section 2.6.2). Equal gain combining (EGC) takes advantage of all the receive anten-

nas by co-phasing all the received signals and combining them together equally [142, 233].

Maximum ratio combining (MRC) is considered the optimal (SNR-maximizing) diversity

combining technique [142]. Instead of weighting the signals from all the receive antennas

equally, the weights are chosen to maximize the post-combining SNR. Suppose that receive

antenna l intercepts a signal transmitted by a single antenna:

rl(n) = hls(n) + ν(n), (2.44)

where hl is the gain of the channel, s(n) is the original transmitted signal, ν(n) is the

additive white Gaussian noise, and l = 1, . . . , NR. Therefore, using the combining weights
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cl, l = 1, . . . , NR, the combined received signal is defined as

y(n) =

NR∑

l=1

c∗l rl(n)

=

NR∑

l=1

c∗l hls(n) +

NR∑

l=1

c∗l ν(n).

(2.45)

Let the energy of s(n) be equal to ǫ and the power spectral density of ν(n) be N0. Then,

the post-combining SNR is defined as

γ =

ǫ ·
NR∑

l=1

|c∗l hl|2

N0 ·
NR∑

l=1

|cl|2
, (2.46)

where the maximum value can be found by applying the Cauchy-Schwartz inequality [47]

γopt =
ǫ

N0

·
NR∑

l=1

|cl|2

=
ǫ

N0

·
NR∑

l=1

|hl|2
(2.47)

given that the optimal choice for cl is cl = hl. Therefore, if one of the received signals passed

through a deep fade, it would be weighed less relative to a signal that was attenuated less.

There have been a number of diversity schemes proposed by several researchers, ei-

ther for the transmit antenna array [235–238] or the receive antenna array [239, 240]. In

particular, several diversity techniques have been proposed for multicarrier systems that

operate on each subcarrier [76, 241–243]. Several researchers have also investigated the

use of channel coding with OFDM and antenna diversity [244], while others have derived

closed-form expressions for the error probabilities of the OFDM system employing various

receiver combining techniques [245].
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Antenna Subset Selection with Diversity

From the previous subsection, three receive diversity schemes were presented. Moreover, it

was assumed that all the transmit antennas were active in the transmit diversity schemes.

However, using a large number of antennas at the transmitter and receiver can be com-

putationally expensive in terms of the signal processing involved. The cost of employing

more radio frequency (RF) chains in the system also does not justify the improvement in

performance, which follows the law of diminishing returns [33]. Therefore, researchers are

looking at ways of reducing the complexity and cost of MIMO systems while accepting a

small penalty in error performance. One solution is antenna subset selection, also known

as generalized selection combining, where a subset of antennas at either the transmitter,

the receiver, or both are chosen to be active in the transmission. The subset selection is

preceded in the transmitter and succeeded in the receiver by some space-time processing.

A schematic of antenna subset selection is shown in Fig. 2.18. The idea behind antenna

subset selection is that contribution of the weak signals to the calculation of the SNR is

too small. Thus, the system chooses the LT (LR) antennas out of NT (NR) antennas that

yield the best performing signals.

In the area of antenna subset selection, the research activities are either focused on

evaluating its performance gains relative to full diversity systems [23–25, 27, 29–31, 246,

247] or developing algorithms that efficiently search for the best LT (LR) out of NT (NR)

antennas [26, 248–251].
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Space-Time-Frequency Coding

Although much work has gone into the design of STC by numerous researchers [229, 230,

252], most make the assumption that the channel experiences flat fading. In the work by

Molisch, Win, and Winters [28], an STC system was proposed that operated in frequency-

selective fading conditions by including OFDM at each of the antennas. The frequency-

selective fading channels were decompose into a collection of approximately flat fading

subchannels using OFDM. Following this, STC was then applied across groups of tones,

where the tones in each group are separated by an amount equal to or greater than the

coherence bandwidth (see Fig. 2.19). This new framework was dubbed space-time-frequency

(STF) coding. Moreover, it was shown that existing STC schemes, which were originally

designed for flat fading environments, can be employed in this setup.

A novel joint STF coding scheme for multiple antenna OFDM systems operating in

frequency-selective channels was proposed by Liu, Xin, and Giannakis [253]. Space-time-

frequency coding is space-time coding with redundancy added in the frequency domain,

such as linear precoding, in order to exploit the maximum diversity gain possible in fre-

quency selective channels.
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2.7 Chapter Summary

In this chapter, details regarding the basic physical layer components of a wireless commu-

nication system employed in WLAN applications were presented.

Section 2.1 started with a tutorial on MCM. In particular, the fundamentals of MCM

and how it works in both the time and frequency domains were presented. The prin-

ciples behind OFDM, including the importance of the cyclic prefix, were covered. The

details behind filterbank multicarrier modulation, including the PR condition, complex

exponential-modulated filterbanks, and MDFT filterbanks, were presented.

Indoor wireless channel models were then covered for both SISO and MIMO systems

in Section 2.2. The physics behind multipath fading were described, as well as several

SISO and MIMO channel models. The modelling of a correlated MIMO channel was also

derived. Data-assisted channel estimation and synchronization techniques were also covered

in Section 2.3.

Adaptive bit and power allocation algorithms for MCM systems were then presented in

Section 2.4. Besides an example illustrating the benefits of bit loading, several types of bit

loading algorithms were covered, including the capacity approximation-based algorithms.

The impact of imperfect channel state information on the performance of these algorithms

was also covered. Power allocations algorithms, with emphasis on frequency interval power-

constrained algorithms were presented.

Equalization techniques employed in MCM systems were covered in Section 2.5. The

section provided an overview of the types of distortion present in a multicarrier symbol (e.g.,

an OFDM symbol). Equalization techniques were also presented, including the single-tap

optimal per-tone equalizer for OFDM systems with a sufficiently long cyclic prefix and

several multi-tap FEQ designs. The problem of insufficient cyclic extensions was also

addressed.

In Section 2.6, array signal processing techniques were presented, some with an emphasis

on MCM systems. The differences between spatial multiplexing and space-time coding were

outlined. The details of each category were provided, although the latter category was

emphasized. Various transmit and receive diversity schemes were covered and the antenna

subset selection technique was presented. Finally, the importance of STF coding was briefly

covered.
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Chapter 3

BER-Constrained Multicarrier

Loading Algorithms

One of the focuses of this dissertation is to tailor the operating parameters of multicarrier

systems to the channel environment, which will yield an enhancement in system perfor-

mance. In particular, several cost-efficient performance-enhancing techniques applicable

to multicarrier WLAN systems are investigated. Two system parameters that are usu-

ally tailored to the subchannels on a per-subcarrier basis are the modulation scheme and

the transmit power level. Since the subcarrier bit error rate (BER) is a function of the

minimum distance between two symbols of a signal constellation, changing the number of

symbols in the signal constellation (i.e., number of bits per symbol) and/or the transmit

power level (i.e., the spacing between symbols) will directly impact the BER. In this work,

throughput is maximized while the mean BER is constrained to be below some prescribed

value.

Another system parameter that can be tailored to the channel conditions on a per-

subcarrier basis is the length of the subcarrier equalizers. Since adding more equalizer

taps usually reduces the MSE, equalizer taps can be non-uniformly allocated across the

subcarriers, with more taps allocated to poorly-performing subcarriers and fewer taps to

the other subcarriers. As a result, the mean MSE of the system is lowered while the total

number of equalizer taps employed is kept to a minimum, resulting in a reduction of power

consumption by the system.

All allocation algorithms require some feedback from the receiver on the prevailing chan-
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nel conditions. As in other studies [6, 11, 12, 48, 49, 63, 64, 80, 81, 83, 84, 254], the transmitter

and receiver usually have perfect knowledge of the channel conditions (obtained through

data-assisted channel estimation techniques). However, it is possible that the feedback

information can be outdated, contains channel estimation errors, or quantized due to a

bandlimited feedback channel. Thus, the impact of imperfect feedback is an important

issue that will be covered in this chapter.

Finally, this work seeks to improve the performance of conventional WLAN systems

through the use of adaptive allocation algorithms. Thus, unless otherwise stated, the

system parameters, such as the number of subcarriers, operating frequency, bandwidth, and

available modulation schemes, correspond to the IEEE 802.11a standard [2]. However, this

does not mean that these algorithms cannot be extended to other systems, such as wireless

metropolitan area networks (WMAN) [62], digital subscriber line (DSL) modems [39], or

other multicarrier communication systems.

3.1 Discrete Bit Loading Algorithms

Channel coding can be used to enhance system performance, as in the IEEE 802.11a and

the ETSI HiperLAN/2 WLAN standards, which employ convolutional codes (refer to Ta-

ble 2.3). In these standards, a single “outer” convolutional encoder, combined with an

interleaver, is applied to the high-speed input stream prior to multicarrier modulation

and a single “outer” decoder is applied to the reconstructed high-speed data stream1. In

this work, the multicarrier modulation section (i.e., the “inner” portion of the system) is

abstracted in order to study the improvements associated with tailoring the multicarrier

transmission parameters to the channel conditions. For instance, the number of signal

constellation points employed by a subcarrier modulation scheme can be assigned, i.e., bit

allocation. To keep the implementation simple and straightforward, the proposed bit allo-

cation algorithms assign an integer number of bits, i.e., implements discrete bit allocation.

Moreover, for systems that perform decoding based on hard decisions from the channel

information, or are uncoded altogether (e.g., only the multicarrier portion of the system),

the average BER of a multicarrier system is an appropriate metric for the optimization of

the inner portion of the system. This metric is employed in most of the proposed allocation

algorithms in this dissertation.

1According to [2], it is recommended that decoding is performed using the Viterbi algorithm.
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The two discrete bit allocation algorithms presented in this chapter configure the mod-

ulation schemes of each subcarrier so as to maximize the overall system throughput while

achieving an error performance that is less than some prescribed threshold, even at the

cost of some throughput. Mathematically, this is defined as

max
bi

N−1∑

i=0

bi, subject to P̄ =

N∑

i=1

biPi

N∑

i=1

bi

≤ PT (3.1)

where bi is the number of bits for subcarrier i, P̄ is the mean bit error rate (BER), PT

is the specified BER threshold, and Pi is the BER for subcarrier i, which is determined

from the subcarrier SNR value, γi. In [14], the optimization problem is different relative to

Eq. (3.1), where the throughput is maximized given simultaneous constraints on the total

power allocated and the maximum-allowed BER per subcarrier.

In this dissertation, square Mi-QAM modulation schemes are employed on a per sub-

carrier basis, where Mi = 2, 4, 16, 64. The choice of the subcarrier modulation scheme is

dependent on the subcarrier SNR, which varies for each subcarrier due to the frequency

selectivity of the channel. Although the objective functions and constraints of the two

algorithms are the same, the way each performs the bit allocation is different, yielding

different computational complexities and throughput results. One of the main goals of this

research is to develop a set of algorithms that can achieve a balance between computational

complexity and closeness to the optimal throughput.

3.1.1 Proposed Incremental Bit Loading Algorithm2

An incremental allocation algorithm distributes the bits in an iterative fashion across the

subcarriers, one bit per iteration. Most incremental allocation algorithms can be classified

as greedy algorithms, where the algorithm allocates one bit at a time to the subcarrier that

will do the most good for the allocation at that instant. The algorithm is called greedy

since it only maximizes the quantity of interest for the current allocation without regard to

the global effects of its choice [9]. Both Campello [84] and Fox [7] defined conditions which

2The work was presented in parts at the 56th IEEE Vehicular Technology Conference [254], the 15th

International Conference on Wireless Communications [255], and the IEEE Transactions on Wireless

Communications [256].
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yield an optimal allocation3.

The proposed incremental bit allocation algorithm is presented in Fig. 3.1. At the trans-

mitter, the system first employs the modulation scheme with the largest signal constellation

across all the subcarriers. In this case, bi = 6, for i = 0, . . . , N − 1. This is unlike most

of the other incremental allocation algorithms in the literature, which usually initialize the

allocation with the smallest modulation schemes. However, the proposed algorithm has

the advantage of fewer iterations in reaching the final allocation for medium to high SNR

values. The subcarrier BER values, Pi, i = 0, . . . , N − 1, are then computed using a priori

knowledge of the channel and the initial values of transmit power levels.

Averaging the subcarrier BER values using

P̄ =

N∑

i=1

biPi

N∑

i=1

bi

, (3.2)

the mean BER P̄ is compared against a BER threshold PT . If the mean BER is below

the threshold, the system configuration is kept. Otherwise, the signal constellation of the

subcarrier with the worst BER is reduced in size. The rationale behind choosing the worst-

performing subcarrier is that its BER would dominate the overall average, masking the

performance of those subcarriers with smaller BER values. Then, P̄ is recomputed using

Eq. (3.2) and compared against the threshold. This process is repeated until either the

threshold is met or until all the subcarriers are nulled.

To compute the probability of bit error for all subcarriers, closed-form expressions are

employed. For instance, the probability of bit error for BPSK is given by [257]

P2,i(γi) = Q
(√

2γi

)
(3.3)

while the probability of symbol error for QPSK (Mi = 4), square 16-QAM (Mi = 16), and

3Campello showed for a bit rate maximization problem that the optimal bit allocation exists if the
rate-distortion surface across all the subcarriers is efficient and E-tight [84]. As for Fox, he showed that
the optimal allocation can be determined if the objective function is concave and strictly increasing [7].
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1. Initialization: set the modulation scheme of all the subcarriers to 64-QAM.

2. Determine Pi, i = 1, . . . , N , given the subcarrier SNR values, using Eqs. (3.3) or
(3.4).

3. Compare P̄ , with PT . If P̄ is less than PT , the current configuration is kept and the
algorithm ends.

4. Search for the subcarrier with the worst Pi and reduce the constellation size. If
bi = 1, null the subcarrier (i.e., set bi = 0).

5. Recompute Pi of all subcarriers with changed allocations and return to Step 3.

Fig. 3.1 Proposed incremental bit loading algorithm based on a greedy ap-
proach [254–256].

square 64-QAM (Mi = 64) is given by [257]

PMi,i(γi) = 4
(

1 − 1√
Mi

)

Q
( 3γi

Mi − 1

)

·
(

1 −
(

1 − 1√
Mi

)

Q
( 3γi

Mi − 1

)) (3.4)

where log2(Mi) gives the number of bits to represent a signal constellation point4. To obtain

the probability of bit error from the symbol error of Eq. (3.4), use the approximation

Pi ≈ PMi,i/ log2(Mi). Note that the proposed bit loading algorithm does not explicitly

perform power allocation, although it can be easily modified to include it [254, 255].

The objective function of the proposed algorithm is to maximize the overall throughput

of the system. However, it is possible for the proposed algorithm to yield a bit allocation

that is not equal to the optimal allocation, i.e., the largest throughput satisfying the mean

BER constraint. The following scenario illustrates how the algorithm could yield a sub-

optimal bit allocation: For the final iteration of the algorithm, there exists two subcarriers

with the worst BER, i and j. Reducing the number of bits in either subcarrier will result

in P̄ ≤ PT . If subcarrier i is chosen, two bits are removed. On the other hand, if subcarrier

4Although Eqs. (3.3) and (3.4) depend on the interference being Gaussian, this is likely to be true in the
case of OFDM-type systems with a sufficiently long cyclic extension. In the case of filterbank modulation,
the distribution of the interference from ISI and both forms of ICI can either be assumed to be Gaussian
in order to make the expressions more tractable, or the contributions of the ISI and ICI are too small to
be significant due to the spectral selectivity of the synthesis and analysis filters.
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j is chosen, only one bit is removed. This is possible since log2(64)− log2(16) = log2(16)−
log2(4) = 2 bits per symbol epoch, while log2(4) − log2(2) = log2(2) − 0 = 1 bits per

symbol epoch. Therefore, if Pi < Pj, then the algorithm will choose subcarrier j to be

decremented, resulting with an overall allocation that is optimal.

3.1.2 Proposed Peak BER-Constrained Bit Allocation Algorithm5

Although the proposed incremental bit allocation algorithm might attain near-optimal

solutions (see Section 3.4), its computational complexity is still rather high at low SNR

values. What is needed is an algorithm which accurately maps the subcarrier SNR values

to some final bit allocation in an iterative, low computational complexity fashion. This is

the rationale behind the proposed peak BER-constrained bit allocation algorithm.

Instead of iteratively adding a bit to a subcarrier and checking if the mean BER

constraint is not violated, which is computationally expensive, the proposed peak BER-

constrained algorithm allocates bits to each subcarrier so that all subcarrier BERs Pi is

below some peak BER constraint P̂ . The proposed algorithm is shown in Fig. 3.2. First,

the probability of bit error for a constellation of Mi points for subcarrier i, PMi,i, is evalu-

ated for i = 0, . . . , N −1 and bi = {0, 1, 2, 4, 6}. Then the constellation size Mi = 2bi that is

maximum while still having PMi,i ≤ P̂ is chosen, i.e., Pi = PMi,i, for i = 0, . . . , N − 1. The

initial value of the peak BER constraint P̂ is chosen as a proxy to satisfying an average

BER constraint P̄ . A first guess on P̂ is taken, the bits bi are allocated accordingly, and

the resulting P̄ is computed using Eq. (3.2). If P̄ is below (above) PT , P̂ is increased

(decreased) by an amount δ in the logarithmic domain at every iteration. The value of P̂

is adjusted in this way until P̄ exceeds (goes below) PT , in which case δ is reduced.

The terminating criterion in Step 10 is explained as follows: In the case that the previous

and current P̄ values straddle PT , the allocations are compared in order to see of they differ

by one signal constellation. If they do, it is obvious that the additional bit(s) is/are the

cause of the violation of the mean BER constraint. Otherwise, δ is reduced until the case

of one differing signal constellation is achieved. Note that Steps 3 and 4 provide a quick

exit from the algorithm when the subcarrier SNR values are either large enough to have the

system operate at maximum throughput or lower than the minimum SNR required to yield

a non-zero throughput, respectively. Also note that the rationale behind Step 10 is that if

5The work was presented in parts at the IEEE Wireless Communications and Networking Confer-

ence [258] and the IEEE Transactions on Wireless Communications [256].
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1. Given γi, i = 0, . . . , N − 1, calculate Pi for all i and modulation schemes.

2. Compute P̄ , the average BER, using Eq. (3.2) for the largest Mi, i = 0, . . . , N − 1,
where bi = log2(Mi) is the number of bits.

3. If P̄ ≤ PT , choose largest Mi, i = 0, . . . , N −1, and end algorithm, else go to Step 4.

4. If min
i

Pi > PT , then Mi = 0, i = 0, . . . , N − 1, and end algorithm, else go to Step 5.

5. Find Mi for which Pi < P̂ for all i.

6. Compute P̄ .

7. If first iteration of algorithm, reduce P̂ by δ and go to Step 5, else go to Step 8.

8. If both current and previous P̄ values are above or below PT , go to Step 9, else go
to Step 10.

9. If both current and previous P̄ values are above PT , reduce P̂ by δ and go to Step 5,
else increase P̂ by δ and go to Step 5.

10. If previous and current allocations differ by one signal constellation level, make the
allocation with P̄ ≤ PT the final allocation and end the algorithm, else go to Step 11.

11. Reduce δ.

12. If the current allocation gives a P̄ > PT , reduce P̂ by δ and go to Step 5, else
increase P̂ by δ and go to Step 5.

Fig. 3.2 Proposed bit loading algorithm based on a peak BER con-
straint [256, 258].

the previous and current P̄ values straddle PT as well as differ by one signal constellation,

it can be safely assumed that the additional bit(s) is/are the cause of the violation of the

mean BER constraint.

Initial Peak Bit Error Rate Threshold Calculation

The speed at which the proposed peak BER-constrained algorithm reaches its final alloca-

tion depends on the choice of the initial P̂ and the δ it uses. One approach to this problem

is to determine how much any given subcarrier can individually exceed PT while P̄ remains

below it. Given that a subcarrier can support B possible modulation schemes (in this
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1. Given the subcarrier SNR values, γi, calculate Pi for all the different modulation
schemes which could potentially be employed in the system.

2. Find βi, the largest Pi that does not exceed PT .

3. Find αi, the smallest Pi that exceeds PT .

4. Find all values of βi that are within an order of magnitude of max
i

βi and assign

their indices to a set S (βi not within an order of magnitude can be neglected).

5. Given βi, i ∈ S, we need to solve for ∆P , given

∆P =
∑

i∈S

bi

(
PT − βi

)
.

in order to determine by how much several subcarriers can violate the condition
Pi ≤ PT while the system still satisfies P̄ ≤ PT .

6. Sort the values of αi in an increasing order. Find the largest value of I for which

∆P ≥
I∑

i=0

bi

(
αi − PT

)

is true, where 0 ≤ I < N , and set αI as the initial P̂ for the algorithm described in
Section 3.1.2.

Fig. 3.3 Algorithm for determining the initial peak bit error rate [256, 258].

dissertation, B=5 is considered), resulting in B possible values for Pi, the largest Pi value

that is below PT is defined as βi while the smallest value of Pi above PT is defined as αi.

Therefore, knowing that the mean of βi, i = 0, . . . , N − 1, is below PT , we incrementally

replace the smallest βi with the corresponding αi until P̄ > PT . The algorithm for finding

the initial peak BER P̂ estimate is shown in Fig. 3.3.

The initial value of δ is proportional to the average SNR of the system, γ̄. It has been

observed in several simulations that for low γ̄ values, small values for δ resulted in the

algorithm converging quickly to a final solution, while for high γ̄ values, large values of δ

resulted in quickly obtaining the solution. Thus, choosing the values for δ between the two

extremities, δ decreases linearly as a function of γ̄.

Using these values of δ in conjunction with the initial P̂ algorithm, the number of
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iterations required to find the final P̂ can be reduced by as much as half when compared

to a scheme using a random initialization.

3.1.3 Effects of Imperfect Subcarrier SNR Information6

Although many studies on adaptive bit loading algorithms make the assumption that the

subcarrier SNR values are perfectly known, this is not the case in reality. As a result,

the performance of the allocation algorithms can be significantly affected by this imper-

fect channel information. There are a number of sources that can create imperfections

in the channel information: channel estimation, time-varying channels, band-limited feed-

back channel, inadequate training symbol design. Therefore, it is necessary to investigate

the impact of imperfect subcarrier SNR information, which is derived from the channel

information, on the throughput performance of systems using the proposed bit allocation

algorithms. In particular, channel estimation errors and quantization errors will be exam-

ined.

Gaussian Subcarrier SNR Error Model

A derivation of the expression of the channel estimation error for a multicarrier system

employing data-assisted channel estimation is presented in Appendix A. Referring to

Eq. (A.4), it is observed that the channel estimation error consists of the term ∆(i)(m),

which refers to the estimation error on subcarrier i. Therefore, the derivation for the SNR

of subcarrier i based on the channel estimates is presented in Eq. (A.6), with the final

expression given as

γ̂(i) = γ(i) + ǫ(i)
(
γ(i)
)

(3.5)

where the estimation error ǫ(i)
(
γ(i)
)

is a function of the subcarrier SNR.

In this work, the subcarrier channel estimation error ǫ(i)
(
γ(i)
)

is approximated by a

Normal distribution with zero mean and variance σ2 [182]7. However, the negative values

of ǫ(i)
(
γ(i)
)

are constrained such that Eq. (3.5), being the ratio of powers, is never negative.

6The work will be presented at the IEEE Global Telecommunications Conference [259] and has been
partially presented in the IEEE Transactions on Wireless Communications [256].

7The variance σ2 should be a function of the subcarrier SNR, i.e., σ2
(
γ(i)
)
. However, a range of

constant variance values across all SNR values is used instead to allow for a straightforward comparison of
the algorithms.
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SNR Quantization Error Model

Adaptive bit loading algorithms use the channel state information to determine the bit

allocation. However, the information is usually transformed into a metric that indicates

the quality of the transmission across the different subcarriers. In this work, the channel

state information is used to compute the subcarrier SNR values, which are then used to

compute the subcarrier BER values via closed form expressions for a given modulation

scheme, e.g., Eqs. (3.3) and (3.4). To reduce the implementation complexity, a look-up

table can be used instead to translate subcarrier SNR values into subcarrier BER values,

Pi, for each subcarrier i. However, this implies that the subcarrier SNR values must first

be quantized before using the look-up table. Due to the quantization, additional errors

are introduced to the subcarrier SNR values that may cause the bit allocation to deviate

further from the ideal. These errors can be classified as either granular errors, when the

input signal is within the range of the quantizer but does not fall exactly on an output level,

or overload errors, when the input signal falls outside of the range of the quantizer [91].

In this work, a mid-rise uniform quantizer is employed to quantize the subcarrier SNR

values (in decibels). The SNR estimation is performed at the receiver while bit allocation

is normally performed at the transmitter, as shown in Fig. 2.1. A feedback channel is

employed to transmit quantized SNR values. However, in order to ensure that the impact

of the quantization error is minimized when considering all the modulation schemes, the

locations of the quantizer reproduction (i.e., output) levels, dk, must be determined. Since

an adequate resolution of the bit error rate waterfall curves is desired around the target

probability of bit error, PT , the output levels should be concentrated about that point.

A novel sub-optimal dk placement technique that tries to minimize the overall error while

providing adequate resolution will now be presented.

Quantization Reproduction Level Placement Technique

To obtain adequate resolution of the BER waterfall curves for the modulation schemes

employed by the system, where the rate of decrease for each curve may vary drastically,

the following technique is proposed that tries to perform a sub-optimal placement of dk:

1. Given q bits to represent a quantizer reproduction level, the number of levels is defined

as 2q, which corresponds to a 2q-entry look-up table.
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Fig. 3.4 Regions of uniform quantization of the Pi waterfall curves for PT =
10−5 and B = 4.

2. Determine the pair of SNR values to obtain the probability of bit error values, Pi,

that are two orders of magnitude above and below PT for each modulation scheme,

thus forming regions Qk, for k = 1, . . . , B, where B is the number of modulation

schemes.

3. For the B modulation schemes, put 2q/B output levels uniformly in Qk for all k. In

the case of overlapping regions, combine them and their allocation of output levels,

distributing the levels uniformly across the combined region.

An example of this procedure is shown in Fig. 3.4 for PT = 10−5 and B = 4. In this

case, the Pi curves correspond to BPSK, QPSK, 16-QAM, and 64-QAM. If Pi > 10−3,

quantizing that part of the BER curve is not worthwhile since the Pi is so high that the

subcarrier would be nulled. On the other hand, if Pi < 10−7, then Pi is so far below PT that

any quantization would not significantly affect the mean BER of the system, P̄ . Where

Q1 and Q2 overlap, the output levels allocated to the two regions would be combined and

distributed uniformly across the aggregate region.



3 BER-Constrained Multicarrier Loading Algorithms 81

By distributing dk, k = 0, . . . , 2q − 1, in this way, the BER waterfall curves can be

quantized with sufficient resolution.

3.2 Power Loading Algorithm

Power allocation is a powerful technique for enhancing system performance when the mul-

ticarrier system operates in a frequency selective fading channel. From the optimal power

allocation solution presented in Section 2.4.3, it was observed that a frequency selective

channel combined with additive white noise will yield varying SNR values across frequency

(see Fig. 2.14). In this situation, the allocation of a non-uniform amount of power across

the transmission spectrum could yield an increase in performance. In the context of mul-

ticarrier systems, the modification of the transmit power levels can be performed on a

subcarrier basis rather than in a continuous fashion across frequency.

There exist a substantial number of power allocation algorithms for multicarrier systems,

most of which employ a total power constraint, i.e.,

πtotal =
N−1∑

i=0

πi (3.6)

where πtotal is the total power allowed for the system. This implies that for any subcarrier

that is “switched off” or nulled, the power that was allocated to it can be transferred to the

remaining active subcarriers. However, such a strategy can result in a possible violation of

regulatory requirements for the frequency band of operation.

A practical constraint is to limit the total power across a frequency window of a specified

width. For instance, the FCC has imposed requirements based on the amount of transmit

power across a specified bandwidth in the UNII band [192]. These requirements are imposed

since these bands are usually unlicensed and the users are non-cooperative. As a result,

it is necessary to impose a stricter power constraint relative to Eq. (3.6) when performing

power allocation. Other researchers have devised power allocation schemes based on a peak

subcarrier power constraint [15–19] to avoid violations of regulatory requirements. Unlike

this algorithm, our proposed power allocation algorithm in this dissertation is more flexible

since it redistributes the unallocated power to other subcarriers while still satisfying the

regulatory requirements. For example, suppose the power level of a subcarrier is just short
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of achieving the next largest signal constellation for a specified BER threshold due to the

subcarrier power constraint. Under the same circumstances, a power loading algorithm,

with a frequency window power constraint, would decrease the power levels of the adjacent

subcarriers to allow the specified subcarrier to reach the desired power level while still sat-

isfying the constraint. From another point of view, the peak subcarrier power-constrained

algorithm is a subcase of the proposed power allocation algorithm, where the frequency

window is the width of one subcarrier.

3.2.1 Proposed Frequency Interval Power Allocation Algorithm8

Since the FCC and other spectrum regulators have imposed power constraints based on

a total power across a frequency window, the proposed power allocation algorithm, which

is shown in Fig. 3.5, follows the same rationale. The proposed algorithm commences by

searching for groupings of M or more non-nulled subcarriers and allocates them πmax/M ,

where M is the number of subcarriers that can fit the frequency window specified by the

regulatory agency, and πmax is the total power allowed across the M subcarriers. The

remaining non-nulled subcarriers are assigned πmax.

Then sliding the frequency window across the signal spectrum, the power for every

grouping of M subcarriers is computed. If the largest frequency interval power exceeds

πmax, the subcarrier power levels are reduced in that frequency interval using

πi = πmax −
l+M∑

k=l
k 6=i

πk (3.7)

with l chosen to satisfy

l = arg max
(i−M)≤l≤i

{ l+M∑

k=l

πk

}

. (3.8)

From this algorithm with the frequency window power constraint, it is obvious that

power will not be reallocated when the SNR of the system is high, since no subcarriers will

be nulled. However, at low SNR values, where most of the subcarriers are nulled, there is

enough freedom to perform power allocation while satisfying the frequency window power

8The work was presented in parts at the 56th IEEE Vehicular Technology Conference [254] and the 15th

International Conference on Wireless Communications [255].
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1. Let πi = 0, ∀i ∈ Snulled, where Snulled is the set of nulled subcarriers.

2. Search consecutive groups of M or more non-nulled subcarriers, allocate each sub-
carrier in those groups πmax/M .

3. Assign the remaining subcarriers πmax.

4. Starting from one end of the signal bandwidth, compute the total power for every
possible consecutive group of M subcarriers.

5. If the total power of any group exceeds πmax, proceed to Step 6, else finalize the
power allocation and exit algorithm.

6. Select the trio of subcarriers with the largest total power, reduce the power of those
subcarriers initially allocated with πmax until the total power equals πmax, then
proceed to Step 4.

Fig. 3.5 Proposed power allocation algorithm with frequency interval power
constraint [254, 255].

constraint.

An example where the proposed algorithm could be applied is the IEEE Std. 802.11a,

which operates in the UNII band at 5 GHz. In the 5.15–5.25 GHz UNII lower band [192],

πmax is equal to 2.5 mW for a frequency window of 1 MHz. The OFDM symbol occupies

a bandwidth of 16.6 MHz and employs 52 subcarriers. This translates into each frequency

window having about 3 subcarriers.

3.3 Equalizer Tap Loading Algorithms

From Section 2.5, using subcarrier equalizers in the frequency-domain (i.e., after passing

through the analysis filterbank), instead of a single time-domain equalizer at the begin-

ning of the receiver (i.e., before the analysis filterbank), efficiently reverses the effects of

the channel without using too many equalizer taps. In several applications, the subcarrier

equalizer usually consists of a single complex weight to invert the channel gain over a par-

ticular subcarrier. However, this might not work due to gain fluctuations in the frequency

band (i.e., the channel is not totally flat within the subcarrier band), and thus multi-tap

per tone equalizers are required per subcarrier.
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1. Initialization: commence with q(k) := 1 and compute J (k).

2. If J (k) < JT , end the algorithm, otherwise proceed to Step 3.

3. Let q(k) := q(k) + 1 and recompute J (k).

4. If the change between the previous and current J (k) is below some precentage or
J (k) < JT , end the algorithm, otherwise proceed to Step 3.

Fig. 3.6 Proposed subcarrier equalizer tap loading algorithm applied to sub-
carrier k [254, 255].

In this work, the number of taps allocated to each subcarrier equalizer is a function of

the channel conditions affecting that subcarrier. For subcarriers experiencing a flat portion

of the channel frequency response, a single tap can correct for the distortion. On the other

hand, subcarriers located in deep channel nulls or steep portions of the channel response

require several taps to compensate for the distortion. Therefore the number of taps for

each subcarrier will be different if the channel is frequency selective.

The rationale behind allocating equalizer taps is that the system only uses enough

taps to achieve an overall distortion that is below some specified threshold, subject to a

constraint on the maximum number of taps per subcarrier. A side benefit of this algorithm

is power savings due to a reduction in the average number of computation cycles. Suppose

a fixed number of taps are allocated across all subcarriers, it might be too few for some

subcarriers to overcome the distortion while too many for others. Moreover, the power

efficiency of the system is lower since the excess equalizer taps are being employed. By

allocating the taps based on channel conditions, the following proposed algorithms attempt

to reduce the complexity of the system and the power consumption associated with the

multi-tap per-tone equalizers.

3.3.1 Proposed Subcarrier-Level Equalizer Tap Loading Algorithm9

In this proposed algorithm, the length of each equalizer is computed on the basis of reducing

the distortion cost function for each subcarrier below some prescribed threshold. Thus, if

a subcarrier experiences more distortion than the other subcarriers, a longer equalizer is

9The work was presented in parts at the 56th IEEE Vehicular Technology Conference [254] and the 15th

International Conference on Wireless Communications [255].
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employed in order to further reduce the distortion. The algorithm, which operates on a

per-subcarrier basis, is shown in Fig. 3.6. By performing this allocation, the subcarrier

equalizers can reduce the distortion introduced by the channel while keeping the overall

number of equalizer taps to a minimum. Reducing the number of taps translates into a

decrease in power consumption.

In the initialization phase, the equalizer weights and minimum cost function for subcar-

rier k are computed with q(k) := 1 taps10. The equalizer weights w(k)(n) and corresponding

theoretical distortion values J (k) for all the data-bearing subcarriers are computed given

the lengths q(k). If min(J (k)) exceeds a pre-established threshold, JT , the number of taps

is increased as q(k) := q(k) + 1 and the minimum cost function is recomputed. The process

of adding equalizer taps is repeated until the distortion constraint min(J (k)) ≤ JT is sat-

isfied or until the difference between two successive cost functions is less than a specified

percentage. This algorithm is then applied to all subcarriers k = 0, . . . , N − 1.

However, without information from the other subcarriers regarding the length of their

equalizers, the resulting equalizer tap allocation could potentially contain more taps than

necessary in order to attain the target mean distortion. In the next section, an algorithm

is presented which allocates taps in a “greedy” fashion across all the subcarriers, thus

accounting for all subcarrier information in the allocation process.

3.3.2 Proposed Greedy Subcarrier Equalizer Tap Loading Algorithm11

The proposed algorithm for obtaining the lengths of the subcarrier equalizers is shown in

Fig. 3.7. Given a multicarrier system with N subcarriers, there exists a subset of those

subcarriers Sdata that are data-bearing and have subcarrier equalizer lengths below some

prescribed value. The algorithm begins by setting the lengths of the equalizers for the data-

bearing subcarriers, q(k), k ∈ Sdata, to a length of 1. The mean of the J (k), J̄ , is compared

with the prescribed overall distortion threshold for the system, JT . To choose the optimal

equalizer coefficients, we minimize the distortion. Assuming the BER is monotonically

related to the distortion, this would also minimize the BER. As a result, the distortion is

used as a metric of performance in this algorithm for convenience. If J̄ ≤ JT , then none

of the equalizer lengths need to be increased in order to reduce J̄ and the algorithm ends.

10Note that all equalizer weights employed in this dissertation are computed using a closed-form MSE
expression (refer to Appendix B for details).

11The work was presented at the 60th IEEE Vehicular Technology Conference [260].
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1. Initialization: q(k) = 1, ∀k ∈ Sdata, where Sdatais the set of data-bearing subcarriers
with q(k) ≤ qmax (qmax is the maximum-allowable number of equalizer taps per
subcarrier).

2. Compute J (k), ∀k ∈ Sdata.

3. If J̄ ≤ JT , end the algorithm, else proceed to Step 4.

4. Set q(k)′ = q(k) + 1 and compute J (k)′, ∀k ∈ Sdata.

5. Calculate the difference ∆(k) = J (k) − J (k)′, ∀k ∈ Sdata.

6. If Sdata = {}, end the algorithm, else proceed to Step 7.

7. If max ∆(k) ≤ ∆T , k ∈ Sdata, end the algorithm, else go to Step 8.

8. For subcarrier l = arg min
l∈Sdata

∆(l), set q(l) = q(l) + 1, recompute J (l), and go to Step 3.

Fig. 3.7 Proposed subcarrier equalizer tap loading algorithm employing a
“greedy” approach [260].

However, if J̄ > JT , then the algorithm needs to increase some of the lengths q(k) in order

to satisfy J̄ ≤ JT .

This algorithm operates in a “greedy” fashion [9]. It incrementally increases the length

of the subcarrier equalizer that maximizes the decrease in J̄ . Therefore, the algorithm

computes the equalizer weights w(k)′(n) and corresponding theoretical distortion values

J (k)′ when the lengths are q(k)′ = q(k) + 1 for all subcarriers belonging to Sdata. The

differences ∆(k) = J (k) − J (k)′ are computed and the maximum difference is chosen. If

the set Sdata is empty, which means that all data-bearing subcarriers have reached the

maximum allocation of equalizer taps, qmax, the algorithm finalizes the allocation and

exits. Otherwise ∆(k), k ∈ Sdata, is compared with the prescribed difference threshold ∆T .

If max(∆(k)) ≤ ∆T , then the algorithm breaks out and ends since the largest difference

in distortion is considered negligible. If max(∆(k)) > ∆T , then the algorithm chooses

subcarrier l, l ∈ Sdata, which has the largest ∆(k). The algorithm updates q(l) = q(l) + 1

then computes J (l). Finally, J̄ ≤ JT is compared and the process repeats.
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3.4 Simulation Results

3.4.1 Bit Allocation Results

The multicarrier system, employing both the proposed loading algorithms and several

others found in the literature, used the operating parameters specified in the IEEE Std.

802.11a [2], including the number of non-guard subcarriers (52 subcarriers), the frequency

band of operation (5.15–5.25 GHz), and the available modulation schemes (BPSK, QPSK,

square 16-QAM, and square 64-QAM). However, unlike the standard, where the same mod-

ulation scheme is employed across all the subcarriers, the proposed bit loading algorithms

can use a different modulation scheme for each subcarrier. In addition, subcarriers can be

turned off. Results from the adaptive bit loading algorithms were obtained for PT values of

10−3 and 10−5. Furthermore, an exhaustive search algorithm was also employed for a case

with a reduced number of subcarriers over a portion of the band, to keep the complexity

manageable, in order to make it possible to determine the optimal solution to the bit al-

location problem. Finally, instead of an OFDM-type multicarrier transmission scheme, a

complex exponential-modulated filterbank system was employed.

Several WLAN standards, such as IEEE Std. 802.11a [2] or HiperLAN/2 [3], operate

at approximately 5 GHz, such as the lower portion of the unlicensed national information

infrastructure (UNII) band at 5.15–5.25 GHz for IEEE Std. 802.11a [192]. In these simu-

lations, the system is transmitting in the lower portion of the UNII band. Moreover, the

transmitter/receiver separation was varied between 1 m and 60 m. As for the channel, there

was no line-of-sight component and it was time-invariant12. The signal, which is composed

of 52 subcarriers, is transmitted across a 16.6 MHz bandwidth13. Finally, only a single pair

of antennas was employed. For each channel realization, the algorithms were operating at

70 different averaged SNR values ranging from −11 dB to 59 dB. The trials were repeated

for 10000 different channel realizations and the results averaged. Furthermore, the change

in SNR corresponds to the change in transmitter/receiver separation distance.

For comparison purposes, two algorithms from the literature are also simulated and their

12The channel impulse responses were generated using the method presented in [130]. The channel model
used a cluster arrival rate of 1.66 × 10−7 s−1, a ray arrival rate of 1.66 × 10−8 s−1, a cluster power-decay
time constant of 40×10−8 s, a ray power-decay time constant of 8×10−8 s, and five clusters, each of which
contained 100 rays.

13The complex baseband representation of the channel frequency response, obtained from the channel
impulse response, was employed across the available bandwidth.
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results compared to that of the proposed algorithms. These algorithms are the incremental

bit allocation algorithm of Fox [7], and the capacity approximation-based bit allocation

algorithm of Leke and Cioffi [12]. However, for a straightforward comparison, all the

subcarriers have a uniform power allocation. Therefore, several modifications of these

algorithms are required. In the case of the algorithm by Fox, no modifications are necessary

since it performs only adaptive bit loading (the power allocation is set to be uniform across

all subcarriers). Starting with zero bits across all subcarriers as an initial allocation, the

algorithm allocates to subcarrier i for which ∆bi/∆Pi is a maximum. The incremental

allocation continues until P̄ > PT .

As for the algorithm by Leke & Cioffi, the expression for the noise to signal ratio (NSR),

used by this algorithm to determine which subcarriers to turn off, is modified such that

constant uniform power allocation is employed. To achieve this, the NSR expression is

modified to

NSR =
πsc

Γ
+

1

Non

Non∑

n=1

1

γ(n)
(3.9)

where πsc is the subcarrier power (a constant value across all subcarriers), Non is the number

of subcarriers that are “on”, Γ is the aforementioned SNR gap14, and γ(n) is the SNR of

subchannel n (i.e., γ(n) = |Hn|2/σ2
ν , where σ2

ν is the noise variance, Hn is the channel

frequency response across subcarrier n). By defining the NSR this way, the subcarrier

power levels are fixed, instead of keeping the total power allocation fixed, as was done by

Leke & Cioffi. Other than this modification, the algorithm is essentially the same as the

original.

Perfect Subcarrier SNR Information

In Fig. 3.8, the overall throughputs of the five bit allocation algorithms are presented

for the case of 8 subcarriers. This reduced number of degrees of freedom allows for an

exhaustive search of the optimal allocation. The constant power allocation variant of

the algorithm by Leke and Cioffi [12] does not reach the same throughput as the other

systems until high SNR values of 49 dB15. As for the other methods, the difference in

14In this work, Γ = 6.06 dB for PT = 1 × 10−3, Γ = 7.37 dB for PT = 1 × 10−4, and Γ = 8.42 dB for
PT = 1 × 10−5.

15The comparatively poor performance of Leke and Cioffi’s algorithm in this chapter is due to the fact
that the approximations in that algorithm are not very accurate, and is not an artifact of the modifications
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Fig. 3.8 Overall throughput of an N = 8 subcarrier system satisfying a PT

of 10−3. Except for the curve corresponding to Leke & Cioffi, all the curves
are superimposed.

throughput between them is very small since they all perform discrete allocations rather

than non-integer allocations followed by rounding. The largest throughput is produced

by the exhaustive search algorithm, followed by both Fox’s and the proposed incremental

allocation algorithms, and finally by the proposed peak BER algorithm. Since the objective

function is not concave16 and the constraint function is not strictly convex, there is no

guarantee that Fox’s algorithm would reach the optimal allocation [7].

The P̄ values corresponding to the throughputs in Fig. 3.8 are shown in Fig. 3.9. It

can be observed that all the algorithms, except for Leke and Cioffi, have approximately the

same values as the exhaustive search. The error rates are low at low SNR values due to

the nulling of poorly performing subcarriers. This leaves the best-performing subcarriers,

combined with small signal constellations (e.g., BPSK), which results in low error rates. In

the mid-range SNR region, all the subcarriers are on, including the poorly performing ones.

made to the algorithm to utilize uniform power allocation.
16“A function defined only on the integers is called concave if its first differences are decreasing.” [7]
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Fig. 3.9 Mean BER of an N = 8 subcarrier system satisfying a PT of 10−3.

Table 3.1 Number of PT Violations by the bit allocation algorithm of Leke
& Cioffi.

SNR 0 dB 5 dB 10 dB 25 dB 35 dB

N = 8, PT = 10−3 8.23% 3.53% 0.66% 0.00% 0.00%

N = 52, PT = 10−5 54.95% 96.84% 99.94% 19.62% 1.99%

Thus, their BER values will dominate the mean BER of the system. At high SNR values,

all subcarriers are modulated with the largest constellation sizes and all have Pi ≤ PT . As

for the algorithm by Leke & Cioffi, its values for P̄ are significantly lower at the expense of

lower throughput. Since the algorithm of Leke & Cioffi does not check if the bit allocation

exceeds PT , there is a possibility that PT may be violated. For the cases where these

violations occur, these cases were omitted from the graphs. Table 3.1 shows the number of

violations as a percentage of the total number of channel realizations per SNR value.

When 52 subcarriers are employed, as shown in Fig. 3.10, the algorithms, except for Leke

& Cioffi, achieve nearly the same throughput with some small differences. The throughput
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Fig. 3.10 Overall throughput of an N = 52 subcarrier system satisfying
a PT of 10−5 using subcarrier SNR values with Gaussian noise of variance
σ2 added. Note that the algorithm of Leke & Cioffi and the proposed peak
BER-constrained algorithm use the non-ideal subcarrier SNR values.

of the algorithm of Leke & Cioffi is substantially less than that of the other methods, only

reaching the performance of other algorithms at high SNR values. Note how at low SNR

values, the throughput of the algorithm of Leke & Cioffi goes to zero. This is due to either

the algorithm producing an allocation that exceeds PT or the algorithm nulling all the

subcarriers. Table 3.1 shows the number of violations. The corresponding P̄ values are

shown in Fig. 3.11. As in the 8 subcarrier case, except for Leke & Cioffi, all the algorithms

have approximately the same values.

As seen in Fig. 3.8, the throughput of the proposed algorithms is very close to that

of the optimal allocation produced by the exhaustive search algorithm. Furthermore, the

proposed peak BER algorithm executes more quickly than the algorithm by Fox. As for the

two proposed algorithms, both perform similarly in terms of throughput and complexity at

high SNR values. However, at low SNR values, the proposed peak BER algorithm executes

faster than the proposed incremental (both mean and worst cases). This is due to the
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Fig. 3.11 Mean BER of an N = 52 subcarrier system satisfying a PT of 10−5

with and without Gaussian noise of variance σ2 added to γi, i = 0, . . . , N − 1.

fact that the proposed incremental algorithm is a bit removing algorithm, which means

at low SNR values, it takes numerous iterations to reach the final allocation. Although

Leke & Cioffi may execute at the same speed as the proposed peak BER algorithm, the

latter achieves far greater throughput. A summary of mean and worst-case computation

times for a 52 subcarrier system with a PT of 10−5 is shown in Table 3.2 for several SNR

values. Furthermore, the cumulative density functions of the computation times at SNR

values of 10 dB and 40 dB are shown in Fig. 3.12. For a fair comparison, all algorithms

were programmed in C and executed on the same workstation (Intel Pentium IV 2 GHz

processor). It should be noted that although the algorithms may vary in execution time,

all the worst case execution times are of the same order of magnitude. This is due to the

fact that the worst case computational complexity of all the algorithms under study are of

O(N2)17.

17Since the number of candidate modulation schemes employed by most bit allocation algorithms is
relatively small (e.g., in this work B = 5), its impact on the computational complexity of the algorithm is
a multiplicative factor B at most.
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Table 3.2 Mean (worst case) computation times in milliseconds at different
SNR values, 52 subcarriers, PT = 10−5

Algorithm 10 dB 25 dB 40 dB 55 dB

Fox 1.13 (3.23) 1.48 (5.01) 1.41 (5.00) 1.37 (4.40)

Leke & Cioffi 0.94 (2.78) 0.96 (4.98) 0.93 (4.24) 0.90 (4.66)

Proposed (Incr.) 1.09 (2.86) 0.91 (4.10) 0.84 (2.09) 0.80 (2.62)

Proposed (Peak) 0.91 (2.96) 0.91 (2.71) 0.86 (3.98) 0.82 (4.54)

Imperfect Subcarrier SNR Information

The effect on throughput performance of adding Gaussian noise to the subcarrier SNR val-

ues is studied first. Although results for the algorithms of Fox [7], the proposed algorithms,

and Leke & Cioffi [12] were obtained, the first three algorithms all had similar results.

Therefore, only the throughput results for the proposed peak BER algorithm as well as for

the algorithm of Leke & Cioffi [12] are presented in Fig. 3.10, while Figs. 3.11 and 3.13

show the P̄ and outage probability results for the proposed peak BER algorithm. The value

of PT was set to 10−5. The results are obtained when the variance of the Gaussian noise

is either σ2 = 10, 102, 103, or 104 across all SNR values18. Compared to the case where

no Gaussian noise is added to the subcarrier SNR values, the throughput of the system

decreases as the variance increases. In particular, the throughput curves shift to the right

as the noise variance σ2 increases. Moreover, except at low SNR values for σ2 = 104, the

algorithm of Leke & Cioffi [12] performs relatively poorly.

Since most of the adaptive bit loading algorithms are close to the maximum achievable

throughput given the maximum error constraint, the addition of Gaussian noise to the

subcarrier SNR values can either cause the system to violate the constraint (when γ̂i > γi)

or decrease in throughput (when γ̂i ≤ γi). Since P̄ > PT is not acceptable, when the former

occurs, the throughput of the system is set to zero and a record of the number of times this

occurs is kept. The fraction of realization violations is shown in Fig. 3.13. When the latter

occurs, the throughput and P̄ are lower, as in Figs. 3.10 and 3.11. Note that at low SNR

18Although the error variance would be dependent on the nominal SNR, in this work the error variance
was chosen to be constant for all SNR values in order to evaluate the robustness of these algorithms at
different SNR values. Moreover, instead of employing a single error variance value across all SNR values,
a range of error variance values were examined, with the smaller error variances realistically occurring at
low nominal SNR values while the larger values occurring at higher SNR values.
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Fig. 3.12 Cumulative density function of computational time of an N = 52
subcarrier system satisfying a PT of 10−5 at SNR values of 10 dB (without
circles) and 40 dB (with circles).

values, σ2 is large enough that the algorithm experiences violations every time. As the SNR

increases, the frequency of violations decrease. Other than the case of σ2 = 10 violations

occurred 100% of the time due to the SNR values being the same order of magnitude as

the Gaussian noise.

The outage probability, throughput, and P̄ results of the proposed peak BER algorithm

using quantized subcarrier SNR values are presented in Figs. 3.13, 3.14, and 3.15, respec-

tively. From Fig. 3.14 it can be observed that there is some degradation. However, the

algorithm of Leke & Cioffi [12] still has significantly lower throughout. For instance, at

an SNR of 11 dB, the difference in throughput between the ideal case and the case where

the subcarrier SNR values are quantized to 23 output levels is 40 bits/s. However, as the

number of output levels increases, the throughput approaches that of the ideal case. At an

SNR of 19 dB, the difference in throughput between the ideal and a quantized subcarrier

SNR employing 210 output levels is 0.2 bits/s. Equivalently, the P̄ curves in Fig. 3.15

also approach the ideal case when the number of output levels increases. The difference in
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Fig. 3.13 Outage probability (fraction of realizations for which P̄ > PT ) of
a multicarrier system employing the proposed peak BER algorithm at PT =
10−5.

performance is dependent on granular error. More output levels results in a smaller gran-

ular error and correspondingly a result closer to the ideal case. The fraction of realization

violations (when P̄ > PT ) are shown in Fig. 3.13.

3.4.2 Subcarrier Equalizer Tap Allocation Results

Using the ETSI HiperLAN/2 indoor channel models [136], the proposed greedy algorithm

is employed in an MDFT filterbank multicarrier system [201]. The synthesis and analysis

filters are modulated versions of a root raised cosine lowpass filter. In the experimen-

tal results using the algorithm, we used JT = 1 × 10−3 as a performance threshold and
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Fig. 3.14 Overall throughput of a multicarrier system employing adaptive
bit loading algorithms of the proposed peak BER algorithm (no circles) and
Leke & Cioffi [12] (with circles) at PT = 10−5 when the subcarrier SNR values
are quantized with 2b levels. Note the latter uses another set of quantization
reproduction levels.

∆T = 0.1% as a stopping criterion. Many of the operating parameters of the system cor-

respond to the IEEE Std. 802.11a [2], including the modulation schemes (BPSK, QPSK,

square 16-QAM, and square 64-QAM modulation), number of subcarriers (52 data-bearing

subcarriers), bandwidth (16.6 MHz), and operating frequency (5 GHz). Since the system is

operating in an indoor environment, the channel is quasi-stationary. Therefore, the channel

is time-invariant over a sufficiently long period of time and that the equalizer weights and

lengths need to be determined once for a specific channel. Moreover, it is assumed that

the channel is perfectly known at the receiver, although in practice data-aided channel

estimation techniques would be employed. Finally, the simulations for each point on the

BER curves lasted until 100 bit errors were obtained (see Appendix E for details).

Figs. 3.16 and 3.17 show the bit error rate (BER) performance of an 8 subcarrier section

of the MDFT filterbank multicarrier system, operating in an ETSI HiperLAN/2 Channel

A, employing the proposed algorithm. The average length of the equalizers range from
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Fig. 3.15 Mean BER of a multicarrier system employing the proposed peak
BER algorithm at PT = 10−5 when the subcarrier SNR values are quantized
with 2b levels.

q̄ = 1.25 taps per subcarrier (BPSK at 7 dB) to q̄ = 2.875 taps per subcarrier (64-QAM

at 52 dB). However, the majority of taps in this case were used by the equalizer of the 5th

subcarrier since it was located in a spectral null. For instance, in the BPSK case, all the

equalizers used 1 tap, except for the 5th subcarrier, which used 3 taps. To determine the

benefits of variable-length subcarrier equalizers and the proposed algorithm, the impact

on BER performance with systems employing constant-length subcarrier equalizers having

lengths equal to ⌊q̄⌋ and ⌈q̄⌉ is compared. This is to ensure a fair comparison by making

the overall number of taps used by the three systems equivalent.

The results show that compared to the systems employing subcarrier equalizers of con-

stant lengths, the system employing our proposed algorithm outperforms them in BER. For

instance, in Fig. 3.16, the difference at a signal-to-noise ratio (SNR) of 23 dB for BPSK

modulation is two orders of magnitude. The same is true for the other modulation schemes

(QPSK at an SNR of 29 dB, 16-QAM at an SNR of 46 dB, and 64-QAM at an SNR of

58 dB). This is due to the fact that several poorly performing subcarriers do not employ
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Fig. 3.16 BER performance for 8 subcarriers with BPSK (solid) and 16-
QAM (dashed) modulation when adaptive subcarrier equalizer tap allocation
is employed, along with fixed length equalizers with the same overall number
of taps, using the ETSI HiperLAN/2 Channel A.

an equalizer of a sufficient length. As a result, the error due to this subcarrier dominates

the overall error performance of the system. However, with the proposed algorithm, each

subcarrier uses an equalizer which has a sufficient length, as can be seen from Fig. 3.18.

The formulation of the optimal MMSE equalizers derived in Appendix B accounts for

the cross-talk contributions from the rest of the subcarriers. Due to the spectral selectiv-

ity of the synthesis and analysis filters, only the immediately adjacent subcarriers would

contribute any non-negligible amount of interference. Moreover, due to the MDFT filter-

bank framework, the adjacent subcarriers are 90◦ out-of-phase with the desired subcarrier.

Therefore, the overall cross-talk contribution in this system would be relatively small.

3.5 Chapter Summary

In this chapter, two bit allocation algorithms, one power allocation algorithm, and two

subcarrier equalizer tap allocation algorithms have been presented. The proposed bit allo-
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cation algorithms, one of which was based on a greedy approach while the other employed

a subcarrier peak BER constraint, were designed in order to come close to the optimal al-

location in a low computational complexity fashion. According to the results, the proposed

algorithms were the fastest of the algorithms evaluated and their final allocations came

close to the optimal allocation.

The proposed power allocation algorithm is based on the need of current WLAN sys-

tems to obey the regulatory requirements while attempting to enhance system performance.

However, the difference between a multicarrier system employing the proposed power allo-

cation algorithm and a system that does not perform power allocation is small [254, 255].

There is only a difference in throughput at low SNR values.

The two proposed subcarrier equalizer tap allocation algorithms attempt to reduce the

overall number of equalizer taps employed in a system. The first algorithm allocates taps

independent of the allocations performed in other subcarriers. As a result, the mean BER of

the system might be unnecessarily lower than the required amount. The second algorithm

allocates taps, in an incremental fashion, across all subcarriers, limiting to total number

of taps to some prescribed amount. The results show that for the same total number of

equalizer taps, the proposed algorithm yields the best BER performance.

Finally, the effects of imperfect channel information and its impact on the performance

of bit allocation algorithms was presented. In particular, using a model for the uncertainty

associated with channel estimation, the performance of the bit allocation algorithms with

respect to the throughput and the mean BER was studied.

A scheme to distribute the quantizer output levels in order to minimize granular error

and avoid overload error was proposed. By performing the quantization, the values for the

BER can be stored in a look-up table, thus saving time and implementation complexity.
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Chapter 4

Multicarrier Systems with Multiple

Antennas and Bit Loading

In Chapter 3, several algorithms were proposed that tailored the operating parameters of a

multicarrier system to the prevailing channel conditions, yielding a performance gain with

respect to throughput while maintaining the same error robustness. However, the systems

employing these algorithms used only a single antenna at the transmitter and at the receiver.

Therefore, continuing with the main focus of this dissertation, namely, to develop and apply

performance-enhancing techniques that are applicable to multicarrier WLAN systems, the

next step is to exploit the spatial dimension by extending the bit loading algorithms to

systems with multiple antennas performing only diversity transmission and combining.

Four bit loading algorithms are proposed in this chapter that allocate bits in both the

frequency and spatial dimensions. Multiple antennas are employed at both the transmitter

and the receiver to exploit the spatial diversity that exists in a MIMO channel to enhance

the error robustness of the system. Specifically, both the transmit and receive antenna

arrays perform an adapted form of antenna subset selection, as discussed in Section 2.6.2,

while the proposed peak BER-limited bit loading algorithm of Section 3.1.2 is employed in

tandem. Two of the algorithms perform antenna subset selection on a per-subcarrier level,

which would have a greater cost because they would require more RF chains to be active.

As we will see, an increase in the complexity of the algorithm only gives a modest increase

in the overall throughput.

The complexity associated with each of the four proposed algorithms is different. For
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instance, when bit loading is performed in tandem with antenna subset selection, the com-

plexity of the algorithm and its hardware implementation increases substantially. Fur-

thermore, assigning different antenna configurations for each subcarrier requires a more

complex implementation relative to assigning the same antenna configuration across all

subcarriers. However, algorithms with the higher complexity also have better performance

results relative to the low complexity solutions. In this chapters, the results for all four

proposed algorithms are presented in order to compare the tradeoffs between complexity

and performance enhancement. Although some of the proposed algorithms may be difficult

to implement in hardware, it is important to understand the potential these algorithms can

obtain.

The combined process of bit allocation and antenna subset selection will follow a similar

objective function and constraints relative to the SISO case: the algorithms will attempt

to maximize the overall throughput of the system while ensuring that the mean BER does

not exceed the prescribed threshold.

4.1 Antenna Subset Selection Algorithms

Before investigating the tandem implementation of antenna subset selection and bit al-

location, it is necessary to establish a benchmark for the performance gains obtained by

only employing antenna subset selection. In this section, two algorithms are proposed that

perform antenna subset selection at both the transmitter and receiver for OFDM systems

and without bit loading.

Most antenna subset selection schemes proposed in the literature are designed to choose

LT (LR) antennas out of NT (NR) antennas. The value of LT and LR is always defined as

a fixed quantity. However, in this work the antenna subset selection is generalized in an

attempt to provide the system with just the necessary number of antennas to maximize the

overall throughput while ensuring the mean BER does not exceed a specific limit. Instead

of only using a set of antenna configurations that consist of LT (LR) antennas, the proposed

antenna subset selection forms a set of antenna configurations consisting of all possible non-

zero groupings of antennas. For example, for a transmitter with NT = 3 antennas using

conventional antenna subset selection and LT = 2 would result in a set of transmit antenna

configurations

STx = {{1, 2}, {1, 3}, {2, 3}}
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while with the proposed antenna subset selection, the set of configurations would be

S ′
Tx = {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}},

where the numbers represent the transmit antenna index1. Although the number of con-

figurations for S ′
Tx is greater than for STx, thus requiring a longer search for the final

configuration, the larger number of configurations also provides some additional flexibility

when trying to maximize the throughput.

Referring to Eq. (3.1), the objective function is similar with the antenna subset selection

except that the optimization is also performed across different antenna array configurations.

Moreover, there is a second optimization involving the minimization of the sum of the num-

ber of transmit and receive antennas when several configurations have the same maximum

throughput. In the case where bit loading is not performed, all subcarrier modulation

schemes are constrained be identical. In other words, given the set of all possible transmit

and receive antenna configurations, Sconfig, the algorithms first solve

max
si,bi

N−1∑

i=0

bi

subject to P̄ =

N∑

i=1

biPi

N∑

i=1

bi

≤ PT

b0 = b1 = · · · = bN−1

(4.1)

where Pi is the BER for subcarrier i determined from γi and bi. Now let Smax denote the

set of maximizing antenna configurations from Eq. (4.1), where Smax ⊆ Sconfig. Then the

algorithm solves

min
si∈Smax

(µT,i · nT,i(si) + µR,i · nR,i(si)) (4.2)

where nT,i(si) and nR,i(si) are the number of transmit and receive antennas for antenna

configuration si, and µT,i & µR,i are weights such that µT,i + µR,i = 1. In this work, since

minimizing the number of transmit and receive antennas is equally important, these weights

1In the worst case, all transmit antennas would be employed by the system in order to achieve the
specified performance goal at the cost of increased complexity.
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are set to µT,i = µR,i = 0.5.

It should be noted that the SNR value for subcarrier i, γi, is the composite SNR value

due to the recombining of the different signal paths from the transmitter to the receiver.

As a result, γi is also a function of the antenna configuration. The value of γi when the

transceiver is operating in SISO, MISO, SIMO, and MIMO configurations are

γi =
πi · |Hi|2

σ2
ν

, (4.3)

γi =

πi

NT
· |Hi,11(ω) + Hi,21(ω) + · · · + Hi,NT 1(ω)|2

σ2
ν

, (4.4)

γi =
πi · |ai,1 · Hi,11(ω) + ai,2 · Hi,12(ω) + · · · + ai,NR

· Hi,1NR
(ω)|2

(a2
i,1 + a2

i,2 + · · · + a2
i,NR

) · σ2
ν

, (4.5)

and

γi =

πi

NT
· |ai,1 · (Hi,11(ω) + · · · + Hi,NT 1(ω)) + · · · + ai,NR

· (Hi,1NR
(ω) + · · · + Hi,NT NR

(ω))|2

(a2
i,1 + · · · + a2

i,NR
) · σ2

ν

,

(4.6)

where πi is the transmit signal power of xi(n), σ2
ν is the power of the noise ν(n), Hi,nt1(ω),

nt = 1, . . . , NT , are the channel frequency responses across subcarrier i due to multipath

propagation between the receive antenna and transmit antennas 1, . . . , NT , Hi is the fre-

quency response of h(n) across subcarrier i, and {ai,r}, r = 1, . . . , NR are a set of combining

weights2. For information on how to derive the composite SNR for subcarrier i, please refer

to Appendix C.

The proposed antenna subset selection method can be implemented either on a sub-

carrier basis (i.e., each subcarrier may possess a different antenna configuration in order

to satisfy Eqs. (4.1) and (4.2)) or on a signal basis (i.e., all subcarriers must have the

same antenna configuration). The proposed signal-based algorithm will be presented first,

followed by the proposed subcarrier-based algorithm.
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1. Initialization: Compute Pi, i = 0, . . . , N − 1, for all available modulation schemes
and antenna configurations.

2. If the largest Pi for square 64-QAM modulation is less than PT , set all subcarriers
to 64-QAM, 1 transmit antenna, 1 receive antenna, and exit algorithm, else go to
Step 3.

3. If smallest Pi for BPSK is greater than PT , null all subcarriers and exit algorithm,
else proceed to Step 4.

4. Set b0 = b1 = · · · = bN−1 = 6.

5. Choose the same antenna configuration across all subcarriers for which P̄ ≤ PT (in
case of tie, choose antenna configuration with smallest total sum of antennas). If
none of the configurations satisfy P̄ ≤ PT , proceed to Step 6, else exit the algorithm.

6. Reduce b0, . . . , bN−1 to the number of bits used to represent the next available signal
constellation and go to Step 5. In the case of b0 = b1 = · · · = bN−1 = 0, exit the
algorithm.

Fig. 4.1 Proposed antenna subset selection algorithm (antenna configuration
chosen on a signal basis).

4.1.1 Signal-Based Selection

The proposed signal-based antenna subset selection algorithm is presented in Fig. 4.1. The

algorithm, like all the other proposed algorithms in this chapter, commences by computing

the theoretical values for Pi, using Eqs. (3.3) and (3.4), for all possible antenna configu-

rations and modulation schemes. These values are then stored in a look-up table for easy

access by the algorithm in the subsequent steps.

Steps 2 and 3 allow for a quick exit from the algorithm in the event that the channel

conditions are either too good, allowing for all subcarriers to be active with the largest

modulation scheme available, or too poor, with turning off all the subcarriers as the only

option. Otherwise, the algorithm evaluates the mean BER across all the subcarriers, each

using the same antenna configuration, for all possible antenna configurations. Starting

with square 64-QAM (i.e., bi = 6, i = 0, . . . , N − 1), the algorithms checks if any of

the configurations satisfy P̄ ≤ PT . If several configurations satisfy this constraint, the

2After the antenna configuration has been chosen by the algorithm, the system only performs diversity
combining (either EGC or MRC) using the active antennas.



4 Multicarrier Systems with Multiple Antennas and Bit Loading 106

configuration employing the fewest antennas is chosen and the algorithm ends. If none of

the configurations satisfy P̄ ≤ PT , the procedure repeats for incrementally smaller signal

constellation sizes until either the mean BER constraint is satisfied or all the subcarriers

have been nulled.

Although the proposed algorithm exploits the spatial dimension to some extent with

the selection of various antenna configurations followed by diversity combining, it does not

take full advantage of the subchannels created using MCM. The next algorithm will take

advantage of the subchannels.

4.1.2 Subcarrier-Based Selection

Since MCM is employed by the system, the frequency selective fading channels that con-

stitute the MIMO channel will all be transformed into multiple approximately flat sub-

channels. At the receiver, the gains of the subchannels with the same center frequency

will be added together to form a composite subchannel, depending on the transmit and

receive antenna array configuration. However, the composite subchannel for each antenna

configuration and each subcarrier will be different. Therefore, the proposed algorithm, pre-

sented in Fig. 4.2, exploits both the frequency and spatial diversity in order to maximize

throughput while minimizing the average number of antennas employed by the system.

Referring to Fig. 4.2, the algorithm commences by computing the theoretical values for

Pi for all possible antenna configurations and modulation schemes. Steps 2 and 3 allow

for a quick exit from the algorithm if antenna selection is not worthwhile. In Step 4, the

idea of limiting the peak BER of a subcarrier in order to satsify the mean BER constraint

is introduced. Specifically, the peak BER limit P̂ is applied across all the subcarriers

and antenna configurations. The largest constellation size supported by all subcarriers is

then chosen for each subcarrier. If several configurations exist that yield the same signal

constellation for a given subcarrier, the configuration employing the fewest antennas is

chosen. Note that this algorithm is different with respect to the previous algorithm since

all the subcarriers are not constrained to use the same antenna configuration.

Following the calculation of P̄ , P̂ is modified by a stepsize δ and Step 4 is repeated in

Step 7. The resulting configuration is then used to compute the mean BER P̄ ′. Given P̄

and P̄ ′, the algorithm can perform one of several tasks depending if they are below of above

PT . The objective of the algorithm is to get the two mean BER values to straddle PT . If
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1. Initialization: Compute Pi, i = 0, . . . , N − 1, for all available modulation schemes
and antenna configurations.

2. If the largest Pi for 64-QAM modulation is less than PT , set all subcarriers to 64-
QAM, 1 transmit antenna, 1 receive antenna, and exit algorithm, else go to Step 3.

3. If smallest Pi for BPSK is greater than PT , null all subcarriers and exit algorithm,
else proceed to Step 4.

4. For each subcarrier, find the antenna configuration yielding the largest bi for which
Pi ≤ P̂ , i = 0, . . . , N−1, and b0 = b1 = · · · = bN−1 (in case of a tie for the maximum
bi in any given subcarrier, choose the configuration with the smallest total number
of antennas).

5. Compute P̄ .

6. If P̄ < PT , let P̂ = P̂ + δ, else P̂ = P̂ − δ.

7. For each subcarrier, find the antenna configuration yielding the largest bi for which
Pi ≤ P̂ , i = 0, . . . , N−1, and b0 = b1 = · · · = bN−1 (in case of a tie for the maximum
bi in any given subcarrier, choose the configuration with the smallest total number
of antennas).

8. Compute P̄ ′.

9. If both P̄ > PT and P̄ ′ > PT (resp. P̄ ≤ PT and P̄ ′ ≤ PT ), and no previous
straddling of PT , let P̄ = P̄ ′, P̂ = P̂ − δ (resp. P̂ = P̂ + δ), and go to Step 7, else
go to Step 10.

10. If both P̄ ≤ PT and P̄ ′ ≤ PT , and PT was straddled before, let P̄ = P̄ ′, P̂ = P̂ + δ,
and go to Step 7, else go to Step 11.

11. If both P̄ and P̄ ′ are straddling PT and the number of times this occurred is less
than a specified amount, reduce δ, let P̄ = min(P̄ , P̄ ′), set P̂ = P̂ ± δ (the future
P̄ ′ should be on the same side of PT as P̄ ), and go to Step 7. Otherwise, finalize
the allocation and end the algorithm.

Fig. 4.2 Proposed antenna subset selection algorithm (antenna configuration
chosen on a subcarrier basis).
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both P̄ and P̄ ′ are above or below PT , then P̂ is modified such that after several iterations

the two mean BER values straddle PT . Once P̄ and P̄ ′ straddle PT , the objective of the

algorithm is to search for the configurations that maximize the throughput while coming

as close as possible to PT while not exceeding it.

Despite how complicated this algorithm may sound, it is less computationally intensive

relative to an algorithm performing the same task in an incremental fashion. Moreover,

unlike the previous algorithm, the proposed algorithm in this section also exploits the

frequency domain in order to achieve a larger throughput at the cost of some complexity.

Finally, with all the RF chains implemented in the hardware, most of the time only a subset

of the chains are actually employed. Although the proposed algorithm makes use of the

frequency diversity, it does not completely capitalize on its potential. In the next part of

this chapter, two more algorithms are proposed that further exploit the frequency domain

by employing bit loading in tandem with the proposed antenna subset selection algorithm.

4.2 Antenna Subset Selection Algorithm with Bit Loading

In the previous section, the proposed algorithms performed antenna subset selection in

order to maximize the throughput while constrained by a mean BER limit and a fixed bit

rate per subcarrier. In this section, two algorithms are proposed which first solve

max
si,bi

N−1∑

i=0

bi

subject to P̄ =

N∑

i=1

biPi

N∑

i=1

bi

≤ PT

(4.7)

where the constraint of the same modulation scheme across all subcarriers has been dropped,

followed by

min
si∈Smax

(µT,i · nT,i(si) + µR,i · nR,i(si)). (4.8)

This means that bit allocation can be employed to further maximize the throughput of the

system. Therefore, the next two proposed algorithms are designed such that they attempt

to maximize the overall throughput of the system while constrained to operate below a
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mean BER limit using the fewest antennas possible.

As was done with the previously proposed antenna subset selection algorithms, the

two following proposed algorithms differ on how the antenna subset selection is performed.

The first algorithm performs the selection on a signal basis (i.e., each subcarrier in the

final allocation has the same antenna configuration) while the second algorithm has this

constraint relaxed.

4.2.1 Signal-Based Selection

The proposed antenna subset selection algorithm employing bit allocation is presented in

Fig. 4.3. The proposed algorithm initializes by computing the theoretical values for Pi for

all possible antenna configurations and modulation schemes. Steps 2 and 3 are in place to

allow for a quick exit from the algorithm if the bit loading and antenna selection are not

worthwhile. Then the algorithm searches for the largest signal constellation that satisfies

Pi ≤ P̂ per subcarrier per antenna configuration. Since the algorithm is constrained to

choose a single antenna configuration for the final allocation, a search is performed to

find the antenna configuration that yields the largest throughput. If a tie occurs, the

configuration employing the fewest antennas is chosen.

Once a configuration has been chosen, P̄ is computed and the value of P̂ is changed by

an amount δ. Then repeat Steps 4 and 5 with the new P̂ and compute the mean BER P̄ ′.

The values of P̄ and P̄ ′ are then compared against the BER threshold PT . If both P̄ and

P̄ ′ are above or below PT , the algorithm will steadily change the value of P̂ by an amount

δ until the two values straddle PT . Once this occurs, the algorithm will zoom in on PT

until a configuration is found that maximizes throughput while P̄ ≤ P̄ is satisfied.

Although this proposed algorithm performs both antenna subset selection and bit allo-

cation, it is still not taking advantage of the frequency diversity that can be easily achieved

using MCM. By restricting the antenna configuration to be the same across all subcarri-

ers, several configurations that could have yielded greater throughput were ignored while

lowering the complexity. The next proposed algorithm relaxes the constraint on choosing

the same antenna configuration for all subcarriers.
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1. Initialization: Compute Pi, i = 0, . . . , N − 1, for all available modulation schemes
and antenna configurations.

2. If the largest Pi for 64-QAM modulation is less than PT , set all subcarriers to 64-
QAM, 1 transmit antenna, 1 receive antenna, and exit algorithm, else go to Step 3.

3. If smallest Pi for BPSK is greater than PT , null all subcarriers and exit algorithm,
else proceed to Step 4.

4. Find largest signal constellation for all subcarriers and antenna configurations such
that Pi < P̂ .

5. Select the antenna configuration which yields the largest overall throughput (in
case of a tie in the total number of bits, choose configuration with fewest overall
antennas).

6. Compute P̄ .

7. If P̄ < PT , let P̂ = P̂ + δ, else P̂ = P̂ − δ.

8. Find largest signal constellation for all subcarriers and antenna configurations such
that Pi < P̂ .

9. Select the antenna configuration which yields the largest overall throughput (in
case of a tie in the total number of bits, choose configuration with fewest overall
antennas).

10. Compute P̄ ′.

11. If both P̄ > PT and P̄ ′ > PT (resp. P̄ ≤ PT and P̄ ′ ≤ PT ), and no previous
straddling of PT , let P̄ = P̄ ′, P̂ = P̂ − δ (resp. P̂ = P̂ + δ), and go to Step 8, else
go to Step 12.

12. If both P̄ ≤ PT and P̄ ′ ≤ PT , and PT was straddled before, let P̄ = P̄ ′, P̂ = P̂ + δ,
and go to Step 8, else go to Step 13.

13. If both P̄ and P̄ ′ are straddling PT and the number of times this occurred is less
than a specified amount, reduce δ, let P̄ = min(P̄ , P̄ ′), set P̂ = P̂ ± δ (the future
P̄ ′ should be on the same side of PT as P̄ ), and go to Step 8. Otherwise, finalize
the allocation and end the algorithm.

Fig. 4.3 Proposed antenna subset selection algorithm with bit allocation
(antenna configuration chosen on a signal basis).
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1. Initialization: Compute Pi, i = 0, . . . , N − 1, for all available modulation schemes
and antenna configurations.

2. If the largest Pi for 64-QAM modulation is less than PT , set all subcarriers to 64-
QAM, 1 transmit antenna, 1 receive antenna, and exit algorithm, else go to Step 3.

3. If smallest Pi for BPSK is greater than PT , null all subcarriers and exit algorithm,
else proceed to Step 4.

4. Find largest signal constellation for all subcarriers and antenna configurations such
that Pi < P̂ .

5. Select antenna configuration with largest bi, i = 0, . . . , N − 1 (in case of a tie in the
number of bits, choose configuration with fewest overall antennas).

6. Compute P̄ , the average BER, using Eq. (3.2).

7. If P̄ < PT , let P̂ = P̂ + δ, else P̂ = P̂ − δ.

8. Find largest signal constellation for all subcarriers and antenna configurations such
that Pi < P̂ .

9. Select antenna configuration with largest bi, i = 0, . . . , N − 1 (in case of a tie in the
number of bits, choose configuration with fewest overall antennas).

10. Compute P̄ ′.

11. If both P̄ > PT and P̄ ′ > PT (resp. P̄ ≤ PT and P̄ ′ ≤ PT ), and no previous
straddling of PT , let P̄ = P̄ ′, P̂ = P̂ − δ (resp. P̂ = P̂ + δ), and go to Step 8, else
go to Step 12.

12. If both P̄ ≤ PT and P̄ ′ ≤ PT , and PT was straddled before, let P̄ = P̄ ′, P̂ = P̂ + δ,
and go to Step 8, else go to Step 13.

13. If both P̄ and P̄ ′ are straddling PT and the number of times this occurred is less
than a specified amount, reduce δ, let P̄ = min(P̄ , P̄ ′), set P̂ = P̂ ± δ (the future
P̄ ′ should be on the same side of PT as P̄ ), and go to Step 8. Otherwise, finalize
the allocation and end the algorithm.

Fig. 4.4 Proposed antenna subset selection algorithm with bit allocation
(antenna configuration chosen on a subcarrier basis).
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4.2.2 Subcarrier-Based Selection3

The proposed antenna subset selection algorithm performing bit allocation is presented in

Fig. 4.4. Unlike the previous proposed algorithm, there is no constraint on the subcarriers

to use the same antenna configuration. Although the flexibility of the proposed algorithms

may allow them to come closer to the optimal allocation, its complexity may be too high

for an actual hardware implementation. However, the proposed algorithms indicates the

performance gains a system can achieve when the flexibility (and the associated complexity)

increases.

As with the other algorithms, the proposed algorithm in this section starts off by com-

puting the theoretical values for Pi for all possible antenna configurations and modulation

schemes and storing them in a look-up table for easy access. The Steps 2 and 3 are per-

formed to allow a quick exit in case it is not worth performing antenna subset selection

and bit allocation. The algorithm then performs a search of each subcarrier and antenna

configuration for the largest signal constellation such that Pi ≤ P̂ is satisfied. The antenna

configuration that yields the largest subcarrier throughput is then chosen for each subcar-

rier. In the case of a tie, the configuration employing the fewest antennas is chosen. Then

P̄ is computed and the value of P̂ is modified by an amount δ.

Steps 4 and 5 are then repeated with the new value of P̂ to yield a new configuration,

from which the mean BER P̄ ′ is computed. The values of P̄ and P̄ ′ are compared with PT

and their relation with the mean BER threshold will determine the next steps the algorithm

will perform. If both are above or below PT , the value of P̂ is steadily modified until P̄

and P̄ ′ straddle PT , in which case the algorithm zooms in on PT . The algorithm stops

when it has found a configuration and allocation that has maximized the throughput while

satisfying P̄ ≤ PT .

From the four proposed algorithms, each of them vary in terms of complexity and ability

to maximize throughput. The more complex an algorithm is relative to another, the better

its chances are at achieving a larger throughput. The opposite also holds true. In the

next section, the throughput results of the four proposed algorithms are presented for both

uncorrelated and correlated MIMO channels.

3The work has been submitted to the IEEE International Conference on Communications [261].
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4.3 Results

To evaluate the performance of the proposed algorithms found in this chapter, a multicarrier

system based on some of the operating parameters used in the IEEE 802.11a standard are

employed. In particular, the system possesses N = 64 subcarriers, with 6 subcarriers at

each end of the 16.6 MHz bandwidth set as “guard subcarriers”, i.e., nulled in order to

avoid interference with adjacent bands [2]. The available modulation schemes for each

subcarrier are BPSK, QPSK, square 16-QAM, and square 64-QAM. The option to null

subcarriers also exists in circumstances where the prevailing channel conditions are too

poor. However, unlike the standard, where the same modulation scheme is employed across

all the subcarriers, the proposed algorithms that employ bit loading can use a different

modulation scheme for each subcarrier. Results from all the proposed algorithms were

obtained for a PT value of 10−5.

The operating frequency of the system is 5 GHz, resulting in a wavelength of λ = 0.06 m.

The antenna elements employed by the antenna arrays are λ/2 omnidirectional dipole

antennas placed in a uniformly-spaced linear array with adjacent antenna separation of d

and oriented such that they are all perpendicular to the xy-plane, i.e., vertically polarized.

In the literature, there have been many studies on the performance of systems employing

large multiple antenna arrays. Both for reasons of complexity and physical size constraints,

we examine only a system employing a maximum of 2 antennas. Moreover, when multiple

antennas are used at the transmitter, they all transmit the same signal on a per-subcarrier

basis. At the receiver, MRC is performed to recombine the received signals (results for

when EGC is employed showed a small decrease in throughput performance).

The physical separation between the basestation (transmitter) and mobile (receiver)

was varied between 1 m and 60 m. The change in transmitter/receiver separation distance

corresponds to an SNR change ranging from 59 dB to -11 dB. The MIMO channel consists

of a collection of SISO channel responses generated using the method proposed by Saleh

and Valenzuela [130]. The channel was assumed to be time-invariant and no line-of-sight

existed between the transmitter and receiver. The SISO components of the MIMO channel

were assumed to be uncorrelated. However, the effect of antenna separation on system

performance was also examined for d = λ and d = 0.25λ. To model the correlation in

the MIMO channel model for these antenna separation values, the procedure outlined in

Section 2.2.2 and Appendix D were employed using Clarke’s correlation expression [144].
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Table 4.1 Normalized transformation matrices for creating correlated
MIMO channels, with correlation matrix Σ, from uncorrelated MIMO chan-
nels, given (NT ,NR).

d = 0.25λ
(1,2) or (2,1):

P =

[
0.9043 0.0000
0.2015 0.8816

]

(2,2):

P =







0.8178 0.0000 0.0000 0.0000
0.1822 0.7973 0.0000 0.0000
0.1822 0.0000 0.7973 0.0000
0.0406 0.1776 0.1776 0.7772







d = λ
(1,2) or (2,1):

P =

[
0.9766 0.0000
0.0474 0.9754

]

(2,2):

P =







0.9537 0.0000 0.0000 0.0000
0.0463 0.9526 0.0000 0.0000
0.0463 0.0000 0.9526 0.0000
0.0022 0.0462 0.0462 0.9515







d = 5λ
(1,2) or (2,1):

P =

[
0.9950 0.0000
0.0100 0.9949

]

(2,2):

P =







0.9900 0.0000 0.0000 0.0000
0.0099 0.9899 0.0000 0.0000
0.0099 0.0000 0.9899 0.0000
0.0001 0.0099 0.0099 0.9899
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The resulting transformation matrices to convert an uncorrelated MIMO channel into a

correlated MIMO channel model with correlation matrix Σ are shown in Table 4.1. Finally,

for each MIMO channel realization, the algorithms were operating at 70 different averaged

SNR values equally spaced in the logarithmic domain. The trials were repeated for 10000

different MIMO channel realizations and the results averaged.

The throughput and mean BER results of a system employing the proposed signal-

based antenna subset selection algorithm for array configurations (NT = 1,NR = 1), (NT =

1,NR = 2), (NT = 2,NR = 1), and (NT = 2,NR = 2) are shown in Figs. 4.5 and 4.6. It

is observed that as the total number of antennas increase, so does the overall throughput

and mean BER results. This is due to the spatial diversity offered by the antenna arrays,

where several copies of the same signal are filtered by different CIRs and combined at the

receiver. The combination process smoothes out the composite CIR, keeping the impact of

the frequency selectivity to a minimum. It should also be noted that if the total number

of antennas used by the system is equal, the configuration with more receive antennas

will possess better performance. For instance, observing the throughput results for (NT =

1,NR = 2) and (NT = 2,NR = 1), the former has better performance since it uses MRC,

which weights each of the received signals according to its received quality. As for the

(NT = 2,NR = 1) configuration, the received signal is essentially combined equally4.

The throughput and mean BER results for the same array configurations employing the

proposed subcarrier-based antenna subset selection algorithm are shown in Figs. 4.7 and

4.8. It is observed that relative to the signal-based algorithm, the throughput and mean

BER results are larger. For instance, the largest mean BER value in Fig. 4.6 is 1.8 × 10−6

while in Fig. 4.8 it is 7.5 × 10−6. Moreover, the throughput for all array configurations,

except for the (NT = 1,NR = 1) case, have increased by up to 100 bits per symbol. Finally,

the gap in throughput between the (NT = 1,NR = 2) and (NT = 2,NR = 1) cases is

smaller relative to the system employing the signal-based algorithm. This is all due to the

additional flexibility introduced to the system by performing the antenna subset selection

per-subcarrier. As a result, the algorithm now has the opportunity to choose configurations

that may yield solutions that are closer to the optimal allocation while obeying the mean

BER constraint.

4The antenna subset selection algorithm and the communication system that employs it are based on
the principles of diversity combining. Thus, it has a diversity gain (depending on adjacent antenna spacing)
but no multiplexing gain [262].
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Fig. 4.5 Throughput of a multicarrier system with several array configura-
tions employing the proposed signal-based antenna subset selection algorithm.
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Fig. 4.6 Mean BER of a multicarrier system with several array configura-
tions employing the proposed signal-based antenna subset selection algorithm.



4 Multicarrier Systems with Multiple Antennas and Bit Loading 117

0 10 20 30 40 50
0

50

100

150

200

250

300

Signal−to−Noise Ratio (dB)

T
hr

ou
gh

pu
t (

bi
ts

/s
ym

bo
l)

N
T
=2, N

R
=2

N
T
=2, N

R
=1

N
T
=1, N

R
=2

N
T
=1, N

R
=1

Fig. 4.7 Throughput results of the proposed subcarrier-based antenna sub-
set selection algorithm.
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Fig. 4.8 Mean BER results of the proposed subcarrier-based antenna subset
selection algorithm.
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Table 4.2 Average (transmit antenna, receive antenna) usage for the four
proposed algorithms at several SNR values with (NT = 2,NR = 2) antennas
available for selection.

SNR (dB) Signal-level Subcarrier-level Signal-level Subcarrier-level
(no bit loading) (no bit loading) (with bit loading) (with bit loading)

14.6 (1.1713,1.2447) (1.0024,1.0017) (1.2370,1.5684) (1.0583,1.0615)
24.6 (1.1611,1.2154) (1.0006,1.0003) (1.2337,1.4343) (1.0010,1.0007)
34.6 (1.0470,1.0339) (1.0000,1.0000) (1.0490,1.0320) (1.0000,1.0000)

Substantial increases in both the overall throughput and mean BER results are observed

when bit allocation is employed in tandem with the antenna subset selection algorithms.

The throughput and mean BER results for a system employing the proposed signal-based

antenna subset selection algorithm with bit loading are shown in Figs. 4.9 and 4.10. When

compared to Figs. 4.5 and 4.5, the difference in throughput is as large as 135 bits per symbol

while the mean BER is close to 0.9 × 10−5. As explained previously, the introduction of

bit loading allows for a greater number of configurations that the algorithm can choose.

As for the difference in throughput and mean BER with Figs. 4.7 and 4.8, there is still an

increase when bit loading is employed. For example, the maximum increase in throughput

is about 45 bits per symbol. This is due to the greater flexibility available in bit loading,

which has N subcarriers to modify, relative to the antenna subset selection, which has at

most two antennas at either the transmitter or receiver.

Finally, the throughput and mean BER results for the proposed subcarrier-based an-

tenna subset selection algorithm employing bit loading is shown in Figs. 4.11 and 4.12.

Compared to all the other proposed algorithms, this algorithm achieves the largest through-

put results and possess mean BER values that are the closest to PT = 1 × 10−5. This is

due to the numerous configurations, which is a combination of all the possible bit alloca-

tions and array configurations, that the algorithm can choose. If fact, the configurations

available to the previous algorithms are all subsets of the configurations available to this

algorithm. As a result, the algorithm can choose a configuration whose throughput is the

closest to the throughput of the optimal configuration.

To reduce the power consumption of multiple antenna system, antennas that yield no

increase in the overall throughput of the system are identified by the proposed algorithms

in this chapter and are turned off. The remaining antennas are then used in a diversity
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Fig. 4.9 Throughput results of the proposed signal-based antenna subset
selection algorithm with bit loading.
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Fig. 4.10 Mean BER results of the proposed signal-based antenna subset
selection algorithm with bit loading.
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Fig. 4.11 Throughput results of the proposed subcarrier-based antenna sub-
set selection algorithm with bit loading.
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Fig. 4.12 Mean BER results of the proposed subcarrier-based antenna sub-
set selection algorithm with bit loading.
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transmission/combining scheme by the system. However, different channel conditions may

require a different number of transmit and receive antennas. The results for the average

transmit and receive antenna usage by the four proposed algorithms are presented in Ta-

ble 4.2. The algorithm has a choice of NT = 2 transmit antennas and NR = 2 receive

antennas, although none of the results reach the maximum number of transmit and re-

ceive antennas. It is observed that the algorithms using the same antenna configuration

for all subcarriers have a higher usage of antennas relative to the algorithms with different

antenna configurations across the subcarriers. This is due to the increased flexibility of

the subcarrier-level algorithms (i.e., different antenna configurations for each subcarrier)

to tailor the antenna configurations to the prevailing channel conditions. As a result, these

algorithms need fewer antennas to achieve the same performance relative to the signal-level

algorithms (i.e., same antenna configurations across all subcarriers).

The results presented thus far are only use an uncorrelated MIMO channel model.

However, when correlation is introduced into the MIMO channel model, it negatively im-

pacts the throughput performance of the system. The difference in throughput between

the uncorrelated and correlated cases, with an adjacent antenna spacing of d = λ, is

shown in Figs. 4.13 and 4.14 for the subcarrier- and signal-based algorithms, respectively.

It is observed that the largest decrease in throughput is between 6 and 8 bits per sym-

bols. As for an antenna separation of d = 0.25λ, the decrease in throughput is more

significant, i.e., on the order of 20 to 30 bits per symbols. It is observed that the array

configuration (NT = 2,NR = 2) experiences the largest loss in throughput relative to the

other configurations. Since the other array configurations have smaller gains relative to

the (NT = 2,NR = 2) case, they have less to lose when the spatial diversity decreases.

However, even with some correlation, the performance of the proposed subcarrier-based

antenna subset selection algorithm employing bit loading possesses the best throughput

performance of all the proposed algorithms, at the expense of increased complexity.

4.3.1 An Example

To evaluate the relative performance of the four proposed algorithms, the throughput val-

ues for a (NT = 2,NR = 2) system operating at an SNR of 20 dB and employing these

algorithms are compared. For the proposed subcarrier-based antenna subset selection algo-

rithm with bit loading, the throughput is 305 bits per symbol (indicated by the cross-hairs
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Fig. 4.13 Throughput difference results between arrays with antenna spac-
ings of d = 5λ and d = λ for the proposed subcarrier-based antenna subset
selection algorithm employing bit loading.
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Fig. 4.14 Throughput difference results between arrays with antenna spac-
ings of d = 5λ and d = λ for the proposed signal-based antenna subset selection
algorithm employing bit loading.
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on Fig. 4.11). The throughput for the proposed signal-based antenna subset selection al-

gorithm with bit loading is 280 bits per symbol (indicated by the cross-hairs on Fig. 4.9).

The throughput values for the proposed signal- and subcarrier-based antenna subset selec-

tion algorithms are 150 and 240 bits per symbol, respectively (indicated by the cross-hairs

on Figs. 4.5 and 4.7). It is observed that as the flexibility of the algorithm to choose a

configuration increases, the system experiences a modest increase in the overall throughput.

4.4 Chapter Summary

Four novel antenna subset selection algorithms were proposed in this chapter. Each of the

algorithms possessed a different amount of computational and implementation complexity,

yielding different throughput performances. Two of the proposed algorithms performed bit

allocation while the other two did not. For each pair of algorithms, one would perform

the antenna subset selection on a per-subcarrier basis while the other would do so on a

signal basis. Moreover, the antenna subset selection algorithm made use of all possible

configurations, unlike what is found in the literature where algorithms must choose a fixed

number of antennas.

The results show that as the complexity of the algorithm increases, it gains flexibility

in its choices of possible allocations. Therefore, the granularity for the set of possible al-

locations becomes finer, resulting in solutions that are closer to the mean BER limit PT

and yielding greater throughputs. However, there is a tradeoff between enhanced perfor-

mance and complexity. In particular, the subcarrier-level antenna subset selection with

bit loading yields the best results while having the largest implementation complexity. On

the other hand, the simple signal-level antenna subset selection algorithm has the lowest

implementation complexity but the lowest throughput results.

The effects of correlation due to adjacent antenna spacing was also studied for the

system employing the proposed algorithms that performs diversity transmission/combining.

However, as the antenna spacing decreases, so does the throughput due to the decrease in

spatial diversity. The results show that the effects of correlation are more pronounced when

more array elements are present.

It can be concluded that for systems employing multiple antennas that are spaced far

enough, and bit allocation is performed in tandem, the resulting throughput performance

of the system is significantly enhanced.
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Chapter 5

Conclusion

5.1 Research Achievements

In this dissertation, a number of contributions have been made in the area of adaptive load-

ing for multicarrier data transmission for indoor wireless networks. The research achieve-

ments of this thesis are the following:

• Two low-complexity discrete bit loading algorithms that achieve a final allocation

close to the optimal solution. Moreover, the speed at which these algorithms reach

their final solution is significantly faster relative to several other algorithms found in

the literature. These proposed algorithms have achieved a balance between compu-

tational complexity and closeness to the optimal solution.

• A realistic power loading algorithm that obeys a frequency interval power constraint.

Other published power loading algorithms employ a total power constraint. The

proposed algorithm uses a stricter constraint in order to avoid any violation of the

regulatory requirements. Moreover, this algorithm has more flexibility to allocate

power relative to algorithms that employ a subcarrier power constraint, which is

considered too strict.

• Two algorithms that allocate equalizer taps non-uniformly across all the subcarriers.

The first algorithm allocates taps per subcarrier in order to reduce the subcarrier

distortion to be below some subcarrier distortion threshold. The rationale behind the

second algorithm is to allocate taps to subcarriers that achieve the greatest reduction
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in overall distortion. The number of taps that can be allocated to each subcarrier is

limited, and the algorithm stops allocating taps once the change in overall distortion

is negligible. Results for an MCM system employing the proposed algorithms show

that the error performance is significantly better relative to a uniform allocation of

equalizer taps with the same overall number of equalizer taps employed.

• A suboptimal output level placement technique for the quantization of subcarrier

SNR values. By quantizing the SNR values in a non-uniform fashion, where the

output levels are placed based on the characteristics of the BER curves, the amount

of error due to quantization is reduced.

• An antenna subset selection scheme that can either operate across all subcarriers si-

multaneously or on a per-subcarrier basis. The algorithm allows the system to employ

any number of antennas at the transmitter and receiver, unlike conventional antenna

selection where the number of antennas to choose from is always of a fixed size. Thus,

the granularity of the possible allocations and configurations is significantly reduced.

Thus, systems can reach a solution that can maximize the throughput while come

very close to, but not exceed, the mean BER threshold.

• A combination of the proposed antenna subset selection algorithm with peak BER

bit loading algorithm. Using the two algorithms in tandem, the results show that

the throughput performance significantly increased relative to when only either is

employed.

5.2 Future Work

There exists a number of topics that have resulted from this research that could be contin-

ued.

• In the literature and in this dissertation, research was performed on multi-tap FEQs.

However, the idea of channel shortening was not addressed, as well as variable-length

cyclic prefixes. One research topic is to create an algorithm that designs a channel

shortening TEQ and subcarrier FEQs while attempting to minimize the length of the

cyclic prefix in OFDM systems.
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• Although spatial diversity techniques presented in Chapter 4 allowed the system

to increase throughput while maintaining the same robustness to errors, it would be

interesting to extend the bit loading algorithms of Chapter 3 to a spatial multiplexing

framework.

• All the algorithms in this dissertation assumed there was no latency in the feedback

between the transmitter and the receiver. Since the channel conditions of indoor

environments do change over time, the impact of outdated channel state information

on the performance of the proposed bit loading and power loading algorithms, as well

as the equalizer tap allocation algorithms and antenna subset selection algorithms,

would be significant. Two aspects of this problem should be studied: (1) evaluating

the impact of outdated channel state information on system performance through

mathematical analysis and computer simulations, and (2) devising techniques to make

these algorithms more robust to outdated channel state information (e.g., predicting

the long-term behaviour of the channel).

• The case of a single user receiving information from an access point was studied.

However, this is not realistic since the system should be able to support multiple

users. Thus the impact of multi-user interference on the performance of the system

should be studied in the context of adaptive loading. In particular, the proposed

power loading algorithm in conjunction with the proposed bit loading algorithm could

be modified to reduce interference to other users. This could further be improved with

beamforming.
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Appendix A

Data-Aided Channel Estimation

Error

The deviation between the actual bit allocation and the optimal allocation is dependent

on the adaptive bit loading algorithm employed and the quality of the CSI. This quality is

partially dependent on the channel estimation technique. In this work, data-aided channel

estimation is employed, where the transmission of data is interrupted as needed in order for

training symbols to be sent across the channel. At the receiver, the training symbols are

extracted and a channel estimate is communicated back to the transmitter using the reverse

channel. Thus, the data throughput decreases due to increase in transmission overhead.

Referring to Fig. 2.1, let x(i)(n), i = 0, . . . , N − 1, be a collection of BPSK-modulated

training signals which are known at the receiver. Given that the K-point DFT is defined

as

X(m) ,
K−1∑

n=0

x(n)e−j2πnm/K , 0 ≤ m ≤ K − 1, (A.1)

where K is sufficiently long, the K-point DFT of y(i)(n), g(i)(n), h(n), v(n), and f (i)(n) is

Y (i)(m), G(i)(m), H(m), V (m), and F (i)(m), respectively.

Under ideal channel conditions (i.e., no noise is present, no multipath propagation), the

output of the ith analysis filter in terms of Y (i)(m) is given by

Ŷ
(i)
Ideal(m) = F (i)(m)

N−1∑

k=0

G(k)(m)Y (k)(m). (A.2)
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However, when a dispersive channel h(n) and noise v(n) are present in the system, Eq. (A.2)

becomes

Ŷ (i)(m) = F (i)(m)H(m)
N−1∑

k=0

G(k)(m)Y (k)(m)

+ F (i)(m)V (m)

= H(m)Ŷ
(i)
Ideal(m) + F (i)(m)V (m). (A.3)

Given that y(i)(n), g(i)(n), and f (i)(n) are known at the receiver, the channel estimate

in the passband of subcarrier i, with the frequency range corresponding to the bins m
(i)
L ≤

m < m
(i)
U , is computed using [198]:

Ĥ(i)(m) =
Ŷ (i)(m)

Ŷ
(i)
Ideal(m)

=
Ŷ (i)(m)Ŷ

(i) ∗
Ideal(m)

∣
∣
∣Ŷ

(i)
Ideal(m)

∣
∣
∣

2

= H(m) +
F (i)(m)V (m)Ŷ

(i) ∗
Ideal(m)

∣
∣
∣Ŷ

(i)
Ideal(m)

∣
∣
∣

2

= H(m) + ∆(i)(m), (A.4)

where Ĥ(i)(m) is the K-point DFT of the channel estimate ĥ(i)(n), ∆(i)(m) is the channel

estimation error associated with subcarrier i, and m
(i)
L (resp. m

(i)
U ) is the frequency bin

corresponding to the lowest (resp. highest) frequency portion of the passband for subcarrier

i. The estimate of the entire channel response is simply the sum of Eq. (A.4) across all the

subcarriers, which yields

Ĥ(m) = H(m) +
N−1∑

i=0

∆(i)(m). (A.5)

From Eq. (A.5), it is observed that the ∆(i)(m) term represents the uncertainty of

the channel estimation procedure. Therefore, the accuracy of the channel estimation is

dependent on the amount of noise present in the channel as well as on the choice of synthesis

and analysis filters used by the system.
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Referring to Eq. (A.4), the SNR for subcarrier i based on channel estimates is given by

γ̂(i) =
1

M
(i)
bins

m
(i)
U∑

m=m
(i)
L

π(i)
∣
∣Ĥ(i)(m)

∣
∣
2

σ2
v

=
1

M
(i)
bins

m
(i)
U∑

m=m
(i)
L

π(i)
∣
∣H(m) + ∆(i)(m)

∣
∣
2

σ2
v

=
1

M
(i)
bins

m
(i)
U∑

m=m
(i)
L

(

π(i)
∣
∣H(m)

∣
∣
2

σ2
v

+
π(i)
(
2Re

{
H(m)∆(i) ∗(m)

}
+
∣
∣∆(i)(m)

∣
∣
2)

σ2
v

)

= γ(i) + ǫ(i)
(
γ(i)
)

(A.6)

where M
(i)
bins = m

(i)
U −m

(i)
L +1 is the number of frequency bins corresponding to the passband

of subcarrier i, π(i) is the transmit power for subcarrier i, σ2
v is the noise variance, γ(i) is

the actual SNR of subcarrier i, and ǫ(i)
(
γ(i)
)

is the contribution of the channel estimation

error to the subcarrier SNR. Note that ǫ(i)
(
γ(i)
)

is a function of the subcarrier SNR, γ(i).

The system performance is also affected by the time variation of the channel and the

rate at which the channel estimate is updated [65, 66]. When the channel varies rapidly

over time, the rate at which the channel estimate needs to be updated must also be high,

resulting in increased transmission overhead. If the update rate is too low, the system will

use outdated channel estimates which may lead to significant performance degradation. On

the other hand, if the rate is too high, the data throughput significantly decreases (with no

additional performance gain). Thus, the dynamics of the channel must be known in order

to determine the appropriate channel estimate update rate. Since indoor wireless networks

are studied in this work, where the channel is assumed to be quasi-stationary due to the

low velocities of the mobiles in this environment [198], it can be assumed that the channel

is time invariant over a reasonably long period of time.
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Appendix B

Optimal Fractionally-Spaced MMSE

Subcarrier Equalizers

B.1 System Transfer Function

The system transfer function of a MDFT filterbank multicarrier system is derived using

the framework developed in Section 2.1.3. Referring to Figs. 2.2 and 2.7, the modulated

data streams x(i)(n), i = 0, . . . , N − 1, are each defined in this derivation as a vector of

length L

x
(k)
n,n−L+1 =

[

x(k)(n) · · · x(k)(n − L + 1)
]T

,

for k = 0, . . . , N − 1. These vectors are then used as inputs to the MDFT pre-processing

stage of the system, the outputs of which are the vectors y
(k)
n,n−2L+1, k = 0, . . . , N − 1,

with length 2L. These outputs are then upsampled using a (2LR + D)× (2L) upsampling

matrix Tu,R,D, defined by Eq. (2.15), where R is the sampling rate, and D is the delay.

In this case, the sampling rate is R = N
2

since combined with the MDFT pre-processing

stage, which performs an upsampling by a factor of 2, the overall sampling rate is N (i.e.,

critically-sampled filterbanks). The delay is D = 2⌊τ⌋ + ⌊τch⌋, where τ is the group delay

of the synthesis or analysis filter, and τch is the group delay of the channel. By sufficiently

zero-padding the transmitted signal, the total group delay introduced by the system would

be adequately compensated for prior to downsampling [85].

The upsampled signals are then filtered by the synthesis filters g
(k)
0,P−1, k = 0, . . . , N −1,

of length P . The filtered signals are then summed together and transmitted across the
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channel, with an impulse response h0,S−1 of length S. The received signal is decomposed

into N subcarriers using the analysis filters f
(k)
0,P−1, k = 0, . . . , N−1, of length P before being

downsampled by the (2Q)×(2LR+D−2P−S+3) downsampling matrix Td,N/2,0 = TT
u,N/2,0,

where 2Q is the length of the fractionally-spaced MMSE equalizer.

Filtering is performed in this derivation using convolution matrices [254, 255]. Therefore,

g
(k)
0,P−1 can be represented as an (2LR+D−P +1)×(2LR + D) convolution matrix defined

by Eq. (2.18). Furthermore, the channel h0,S−1 and the kth analysis filter f
(k)
0,P−1, can be

represented as (2LR + D − P − S + 2) × (2LR + D − P + 1) and (2LR + D − 2P − S +

3) × (2LR + D − P − S + 2) convolution matrices, H and F(k), respectively.

The transfer function for the kth subcarrier prior to the equalization and MDFT post-

processing is given by

ȳ
(k)
n,n−2Q+1 = Td,R,0F

(k)H

N−1∑

l=0

G(l)Tu,R,Dy
(l)
n,n−2L+1

+ Td,R,0F
(k)v0,2LR+D−P−S+2

(B.1)

where v0,NL+D−P−S+1 is the additive white Gaussian noise (AWGN) contribution of the

channel.

To compensate for the distortion added to ȳ
(k)
n,n−2Q+1 by the channel, as well as the

synthesis and analysis filters, optimal 2Q-tap fractionally-spaced MMSE equalizers w
(k)
0,2Q−1,

k = 0, . . . , N−1, are employed before performing MDFT post-processing. Thus, the output

of the equalizer is given by

ŷ(k)(n) = w
(k) H
0,2Q−1ȳ

(k)
n,n−2Q+1. (B.2)

In the next subsection, the derivation for the MMSE cost function at the output of the

MDFT post-processing stage and optimal equalizer are presented.

B.2 Optimal MMSE Equalizer Derivation

Since the desired real and imaginary information of ȳ
(k)
n,n−2Q+1 are 90◦ out-of-phase with

each other and that they occur only at every second sample, the distortion of the real and

imaginary components must be reduced separately at specific sampling instants.

Therefore, the mean squared error (MSE) cost function of the desired real and imaginary
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components can be defined as

J (k) =
1

2
E{|Re

(
y(k)(2m) − ŷ(k)(2m)

)
|2}

+
1

2
E{|Im

(
y(k)(2m + 1) − ŷ(k)(2m + 1)

)
|2}

=
1

8
E{|y(k)(2m) − ŷ(k)(2m)

+ y(k) ∗(2m) − ŷ(k) ∗(2m)|2}

+
1

8
E{|y(k)(2m + 1) − ŷ(k)(2m + 1)

− y(k) ∗(2m + 1) + ŷ(k) ∗(2m + 1)|2} (B.3)

where, without loss of generality, n = 2m corresponds to the desired sampling instants for

the real information in subcarrier k while n = 2m+1 defines the desired sampling instants

for the imaginary data.

Expanding Eq. (B.3) and employing Eq. (B.2) yields

J (k) = σ2
y − Re{p(k) H

y,r w(k)} − Re{p(k) H
y,i w(k)}

+
1

4

(

Re{w(k) HR(k)
y,rw

(k)} + Re{w(k) HR
(k)
y,i w

(k)}

+ Re{w(k) HR(k) ′
y,r w(k) ∗} − Re{w(k) HR

(k) ′
y,i w(k) ∗}

)

(B.4)

where

w(k) = w
(k)
0,2Q−1

σ2
y = E{y(k)(2m)y(k) ∗(2m)}

= E{y(k)(2m + 1)y(k) ∗(2m + 1)}
p(k) H

y,r w(k) = E{y(k)(2m)ŷ(k) ∗(2m)}
p

(k) H
y,i w(k) = E{y(k)(2m + 1)ŷ(k) ∗(2m + 1)}

w(k) HR(k)
y,rw

(k) = E{ŷ(k)(2m)ŷ(k) ∗(2m)}
w(k) HR

(k)
y,i w

(k) = E{ŷ(k)(2m + 1)ŷ(k) ∗(2m + 1)}
w(k) HR(k) ′

y,r w(k) ∗ = E{ŷ(k)(2m)ŷ(k)(2m)}
w(k) HR

(k) ′
y,i w(k) ∗ = E{ŷ(k)(2m + 1)ŷ(k)(2m + 1)}
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To get the minimum cost function for subcarrier k, J
(k)
min, the optimal fractionally-spaced

MMSE equalizer weights must be determined. To achieve that, the Wirtinger derivative is

applied to Eq. (B.4), namely [263],

∂

∂w(k) ∗
=

1

2











∂

∂w
(k)
R

(0)
+ j ∂

∂w
(k)
I

(0)

∂

∂w
(k)
R

(1)
+ j ∂

∂w
(k)
I

(1)
...

∂

∂w
(k)
R

(2Q−1)
+ j ∂

∂w
(k)
I

(2Q−1)











, (B.5)

where w
(k)
R (m) and w

(k)
I (m) are the real and imaginary components of w(k)(m). This yields

∂J (k)

∂w(k) ∗
= −4(p(k)

y,r + p
(k)
y,i ) + 2(R(k)

y,r + R
(k)
y,i )w

(k)

+ 2(R(k) ′
y,r − R

(k) ′
y,i )w(k) ∗

= 0

which can be equivalently written as

2(p(k)
y,r + p

(k)
y,i ) = (R(k)

y,r + R
(k)
y,i )w

(k)

+ (R(k) ′
y,r − R

(k) ′
y,i )w(k) ∗. (B.6)

To solve for the optimal equalizer, Eq. (B.6) is arranged into a block matrix expression

Aw = 2p, namely

[

A11 A12

A21 A22

][

Re(w(k))

Im(w(k))

]

= 2

[

Re(p
(k)
y,r + p

(k)
y,i )

Im(p
(k)
y,r + p

(k)
y,i )

]

(B.7)

where

A11 = Re(R(k)
y,r + R

(k)
y,i ) + Re(R(k) ′

y,r − R
(k) ′
y,i )

A12 = −Im(R(k)
y,r + R

(k)
y,i ) + Im(R(k) ′

y,r − R
(k) ′
y,i )

A21 = Im(R(k)
y,r + R

(k)
y,i ) + Im(R(k) ′

y,r − R
(k) ′
y,i )

A22 = Re(R(k)
y,r + R

(k)
y,i ) − Re(R(k) ′

y,r − R
(k) ′
y,i ).
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The optimal equalizer weights are then determined by solving w = 2A−1p, where the

inverse of the block matrix A is [264]

A−1 =

[

A−1
11 + A−1

11 A12S
−1A21A

−1
11 −A−1

11 A12S
−1

−S−1A21A
−1
11 S−1

]

(B.8)

and S = A22 − A21A
−1
11 A12 is its Schur complement.
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Appendix C

Subcarrier SNR Calculation for

Multiple Antenna Systems

When conducting performance analysis of MIMO communication systems or any of its

degenerate forms (i.e., MISO, SIMO, and SISO), it is important to determine the theoretical

value for the SNR. Doing so allows for a fair comparison of performance metrics between

different implementations. In the next four subsections, theoretical SNR expressions will

be derived for MIMO systems and its degenerate cases when the communication system

employs only transmit and/or receive diversity combining.

C.1 SISO Scenario

The first scenario investigated is the single-input single-output or SISO communication

system. Since the definition for the SNR is the ratio of the received power to the noise

power [128, 257], the SNR of the SISO system shown in Fig. C.1 for subcarrier i is defined

as

γi =
πi · |Hi|2

σ2
ν

(C.1)

where πi is the transmit signal power of xi(n), σ2
ν is the power of the noise ν(n), and Hi is

the frequency response of h(n) across subcarrier i.
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Tx 1 Rx 1

receivertransmitter

Fig. C.1 Schematic of a SISO communication system (NT = 1, NR = 1).

C.2 MISO Scenario

An example of a multiple-input single-output or MISO communication system is shown in

Fig. C.2, where the (NT = 3, NR = 1) system is transmitting the same subcarrier signal,

xi(n), across three different channel paths (i.e., hi,11(n), hi,21(n), and hi,31(n)). When

compared with the SISO system, there are a number of significant differences. First, the

transmit power is 1/NT relative to the SISO system. Assuming that the SISO system is

transmitting at the maximum allowable power specified by a spectrum regulatory agency,

if several transmitters emanate the same signal, their power levels must be reduced. This

is done in order to avoid a violation of regulatory requirements when the signals combine

constructively. Second, each transmitted signal passes through a different channel (NT in

total). Referring to Fig. 2.11, it is observed that each transmit antenna is at a different

location. Thus, the multipath propagation is different between each transmit antenna and

the receive antenna.

+ +( )

3
ix n

,11( )ih n

,21( )ih n

,31( )ih n
( )v n

channel

( )iy n

Rx 1

receiver

Tx 1

Tx 2

Tx 3

transmitter

Fig. C.2 Schematic of a MISO communication system (NT = 3, NR = 1).
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Fig. C.3 Schematic of a SIMO communication system (NT = 1, NR = 3).

Using the definition for the SNR, the subcarrier SNR is given by

γi =

πi

NT
· |Hi,11(ω) + Hi,21(ω) + · · · + Hi,NT 1(ω)|2

σ2
ν

. (C.2)

where Hi,nt1(ω) = F {hi,nt1(n)}, nt = 1, . . . , NT , are the channel frequency responses across

subcarrier i due to multipath propagation between the receive antenna and transmit an-

tennas 1, . . . , NT .

C.3 SIMO Scenario

Unlike the MISO system, a single-input multiple-output or MISO system, like the one shown

in Fig. C.3, does not require an reduction in transmit power levels. On the other hand,

it has a collection of NR channel impulse responses (e.g., hi,11(n), . . . , hi,1NR
(n)) that

correspond to the paths between the transmit antenna and the NR receive antennas.

When multiple receive antennas are employed, the inputs to the receive antennas of

subcarrier i are combined using a set of weights {ai,r}, r = 1, . . . , NR. These weights can

be defined using any number of techniques, such as Antenna Selection, EGC, or MRC (refer

to Section 2.6.2 for more information). Thus, for Fig. C.3 the post-combining SNR is given

as

γi =
πi · |ai,1 · Hi,11(ω) + ai,2 · Hi,12(ω) + · · · + ai,NR

· Hi,1NR
(ω)|2

(a2
i,1 + a2

i,2 + · · · + a2
i,NR

) · σ2
ν

. (C.3)
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Fig. C.4 Schematic of a MIMO communication system (NT = 2, NR = 2).

C.4 MIMO Scenario

Finally, the multiple-input multiple output or MIMO system is a combination of the MISO

and SIMO systems, as shown in Fig. C.4 for the case of NT = 2 and NR = 2. Thus, the

post-combining SNR is equal to

γi =

πi

NT
· |ai,1 · (Hi,11(ω) + · · · + Hi,NT 1(ω)) + · · · + ai,NR

· (Hi,1NR
(ω) + · · · + Hi,NT NR

(ω))|2

(a2
i,1 + · · · + a2

i,NR
) · σ2

ν

.

(C.4)
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Appendix D

Normalization of MIMO Channel

Model Correlation Matrix

In order to fairly compare the results of systems operating in a correlated MIMO channel

with those operating in an uncorrelated MIMO channel, the correlation matrix Σ used by

the channel model must be appropriately normalized to ensure that both channel models

have the same average power. Extending Eq. (2.28) to the case where the transmitted

signal is filtered by several channel impulse responses in parallel, the SNR for subcarrier i

at the receiver output can be defined as

γi =
πi|
∑NT

nt=1

∑NR

nr=1 Hi,ntnr
(ω)|2

σ2
ν

, (D.1)

which is similar to Eqs. (C.2), (C.3), and (C.4) with the exception of the gain terms.

The objective is to have the power of the sum of uncorrelated channel responses equal

to the power of the sum of correlated channel responses. In other words,

E







1

2π

π∫

−π

∣
∣
∣
∣
∣

NT∑

nt=1

NR∑

nr=1

Hi,ntnr
(ω)

∣
∣
∣
∣
∣

2

dω






= E







1

2π

π∫

−π

∣
∣
∣
∣
∣

NT∑

nt=1

NR∑

nr=1

H ′
i,ntnr

(ω)

∣
∣
∣
∣
∣

2

dω






(D.2)

where E{} is the expected value, and (.)′ denotes the correlated version.



D Normalization of MIMO Channel Model Correlation Matrix 140

By Parseval’s Relationship [91], Eq. (D.2) can be rewritten as

E







∞∑

n=−∞

∣
∣
∣
∣
∣

NT∑

nt=1

NR∑

nr=1

hi,ntnr
(n)

∣
∣
∣
∣
∣

2





= E







∞∑

n=−∞

∣
∣
∣
∣
∣

NT∑

nt=1

NR∑

nr=1

h′
i,ntnr

(n)

∣
∣
∣
∣
∣

2





. (D.3)

The correlated channel impulse responses can be written in terms of the uncorrelated

channel impulse response via the matrix equation







h′
i,11(n)

...

h′
i,NT NR

(n)







︸ ︷︷ ︸

H′

=







ρi,11 · · · ρi,1(NT ·NR)

...
. . .

...

ρi,(NT ·NR)1 · · · ρi,(NT ·NR)(NT ·NR)







︸ ︷︷ ︸

P

·







hi,11(n)
...

hi,NT NR
(n)







︸ ︷︷ ︸

H

(D.4)

where the Cholesky Factorization is applied to the correlation matrix Σ to yield the weight

matrix P . Therefore, expanding Eq. (D.3) yields

(NT NR)Lσ2
h = Lσ2

h

NT NR∑

k=1

(
NT NR∑

j=1

ρi,jk

)2

(NT NR) =

NT NR∑

k=1

(
NT NR∑

j=1

ρi,jk

)2
(D.5)

where L is the length of the channel impulse responses, the channel responses are i.i.d, and

σ2
h is the variance of the channel responses.

The simplest solution to achieve an equality in Eq. (D.3) is to multiply the weight

matrix P by a scaling factor κ. This means that the scaled correlation matrix is κ2 ·Σ and

the right hand side of Eq. (D.5) is equal to

(NT NR) = κ2

NT NR∑

k=1

(
NT NR∑

j=1

ρi,jk

)2

. (D.6)
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Thus isolating for κ yields

κ =

√
√
√
√

NT NR

∑NT NR

k=1

(
∑NT NR

j=1 ρi,jk

)2 , (D.7)

which can then be applied to Σ to obtain an equivalence between the power of the sum of

uncorrelated channel responses and the power of the sum of correlated channel responses.
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Appendix E

Bit Error Rate Simulation

Parameters

E.1 Calculation of the Simulation Runtime Parameters

Some of the simulations performed were based on the Monte Carlo Method. Several pa-

rameters must be derived in order to ensure that these simulations have an adequate level

of accuracy.

Consider the multicarrier system as a set of N series of n independent random variables

occurring in parallel. Furthermore, all the random variables are defined to be Bernoulli

with the probability of error for series i equal to pi. Finally, the series are considered to be

independent of each other.

Referring to [265] and [266], the error events for series i possess a binomial distribution,

namely

B(n, pi) =

(
n

k

)

pk
i (1 − pi)

n−k (E.1)

where k is the number of errors occurring within the series. Moreover, the mean and

variance of the binomial distribution are µi = pin and σ2
i = npi (1 − pi), respectively.

Using the statistics of the individual subcarriers defined above, the mean and variance

of the overall transmission error can be derived. Noting the independence assumptions
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made earlier, the mean can be written as

µ =
N∑

i=1

µi = n ·
N∑

i=1

pi (E.2)

while the variance is defined as

σ2 =
N∑

i=1

σ2
i = n ·

N∑

i=1

pi (1 − pi) (E.3)

Thus, using (E.2) and (E.3), the ratio of the standard deviation relative to the mean

value is given by

σ

µ
=

√
∑N

i=1 pi (1 − pi)
√

n ·∑N
i=1 pi

(E.4)

The use of (E.4) to determine the minimum value of n needed to achieve reliable sim-

ulation is essential in limiting the simulation run-time. Therefore, using the estimates for

the error probabilities per subcarrier and the desired standard deviation as a percentage of

the mean, σ/µ, may one be able to determine n.
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