
On Distance Measurement Methods for
Turbo Codes

Youssouf Ould Cheikh Mouhamedou

Department of Electrical & Computer Engineering
McGill University
Montreal, Canada

November 2005

A thesis submitted to McGill University in partial fulfillment of the requirements for the
degree of Doctor of Philosophy.

c© 2005 Youssouf Ould Cheikh Mouhamedou

i

To,

My beloved parents Salma Bint Habib and Mohamed Ould Cheikh Mouhamedou

and

in loving memory of my grandparents.

ii

Abstract

New digital communication applications, such as multimedia, require very powerful error

correcting codes that deliver low error rates while operating at low to moderate signal-to-

noise ratios (SNRs). Turbo codes have reasonable complexity and can achieve very low

error rates if a proper interleaver design is in place. The use of well-designed interleavers

result in very low error rates, especially for medium to long interleavers where turbo codes

offer the greatest potential for achieving high minimum distance (dmin) values.

The reliable determination of a code’s error performance at very low error rates using

simulations may take months or may not be practical at all. However, the knowledge

of dmin and its multiplicities can be used to estimate the error rates at high SNR. This

thesis is concerned with efficient and accurate distance measurement methods for turbo

codes. Since high values of dmin can be caused by high input weight values, say up to 20 or

higher, if a brute force algorithm is used the accurate determination of dmin requires that

all possible input sequences of input weight up to 20 be tested. Testing all possible input

sequences becomes impractical as the size of the interleaver and the value of input weight

increase. Thus, the accurate determination of the distance spectrum, or at least dmin and

its multiplicities, is a significant problem, especially for interleavers that yield high dmin.

Based on Garello’s true distance measurement method, this thesis presents an efficient and

accurate distance measurement method for single- and double-binary turbo codes that uses

proper trellis termination such as dual-termination or tail-biting. This method is applied

to determine the distance spectra for the digital video broadcasting with return channel

via satellite (DVB-RCS) standard double-binary turbo codes. It is also used to design

new interleavers for DVB-RCS that yield a significant improvement in error performance

compared to those in the standard.

This method fits particularly well with tail-biting turbo codes that use structured in-

terleavers. This is because the distance properties repeat and this method can use this

knowledge to reduce the search space. The reduction in search space results in significant

reduction in complexity (i.e., execution time), which allows the determination of high dmin

values in reasonable time. This efficiency is demonstrated for both single- and double-

binary turbo codes, using structured interleavers that have high dmin values for various

code rates. This method reduces the execution times by a factor of 40 to 400.

iii

Sommaire

Les récentes applications des communications numériques, comme le multimédia, requièrent

des codes correcteurs d’erreurs puissants ayant des taux d’erreur binaire faibles à des rap-

ports signal/bruit moyens et faibles. Les codes turbo ont une complexité acceptable et

permettent d’atteindre des taux d’erreur binaire très faibles lorsque munis d’un entrelaceur

approprié. L’utilisation d’entrelaceurs performants se traduit par de faibles taux d’erreur

binaire particulièrement pour les entrelaceurs de longueur moyenne à élevée qui permettre

aux codes turbos d’atteindre des valeurs élevées de distance libre minimum (dmin).

L’estimation exacte de la performance d’un code correcteur d’erreurs à très faibles taux

d’erreur binaire par le biais de simulations peut prendre des mois ou s’avérer irréalisable.

Cependant, la connaissance de dmin et de ses multiplicités peut être utilisée pour estimer le

taux d’erreur binaire des codes aux rapports signal/bruit élevés. Cette dissertation étudie

certaines méthodes efficaces et précises de calcul de la distribution des poids des codes

turbo. Les valeurs élevées de dmin peuvent être dues aux poids d’entrée élevés, jusqu’à

20 ou plus. Si une approche force brute était utilisée pour l’estimation de dmin, celle-ci

requerrait de tester toutes les séquences d’entrée ayant un poids de 20 et plus. Cette

approche devient irréalisable à mesure que la dimension de l’entrelaceur et les valeurs des

poids d’entrée augmentent. Par conséquent, l’estimation précise du spectre des distances

libres ou du moins dmin et ses multiplicités, est un problème de taille pour les entrelaceurs à

dmin élevé. Cette dissertation présente une méthode efficace et précise, basée sur la méthode

de distance libre de Garello, du calcul de la distance libre des codes turbo binaire simple

et duo-binaire qui utilisent une méthode de terminaison du treillis tel que la dualité ou

la circularité. La méthode est appliquée au calcul du spectre des distances libres du code

turbo duo-binaire du canal de retour de la norme de radio diffusion par satellite (DVB-

RCS). La méthode est également utilisée pour concevoir de nouveaux entrelaceurs pour

la norme DVB-RCS qui possèdent un taux d’erreur binaire grandement réduit comparé à

celui de la norme.

La méthode convient en particulier aux codes turbo à terminaison circulaire qui utilisent

des entrelaceurs structurés parce que la méthode utilise les caractéristiques répétitives de

la distribution de poids pour réduire l’espace de recherche. La diminution de l’espace de

rechercher entrâıne une réduction de complexité importante qui permet l’estimation de dmin

dans un délai raisonnable. Cette efficacité est illustrée pour divers taux de codage des codes

turbo binaire et duo-binaire à entrelaceur structuré et dmin élevé. La méthode réduit par

un facteur de 40 à 400 la période de recherche.

iv

Acknowledgments

I would like to express my sincere gratitude to my supervisor, Prof. Peter Kabal, for his

motivation, support and guidance. I would also like to express my deep appreciation to Dr.

John Lodge at the Communications Research Centre (CRC) in Ottawa not only for giving

me the excellent opportunity to work as a part of his team, where I learned theory and

applied it to practical and interesting problems, but also for his motivation and financial

support. I am very grateful to my supervisor at the CRC, Dr. Stewart Crozier, not only

for his guidance, patience, and support, but also for reviewing draft versions of this thesis.

It was a great experience to work with Prof. Kabal and Dr. Crozier. Without their help

and encouragement, this thesis could not have been completed in a timely manner.

I would like to thank Dr. Paul Guinand at the CRC for the numerous discussions on

turbo decoding and reviews that improved the outcome of this thesis. I am very thankful

to Prof. Roberto Garello at the Dipartimento di Elettronica of Politecnico di Torino for

graciously elaborating on some finer points related to his distance measurement method.

Special thanks to Prof. Fabrice Labeau for suggesting that I approach Prof. Kabal as

a supervisor for my Ph.D. I am also thankful to my Ph.D. committee members: Prof.

Jan Bajcsy and Prof. Frank Ferrie. Special thanks to my external examiner Prof. A. K.

Khandani of University of Waterloo, and the members of my Ph.D. defence committee:

Prof. P. Kabal, Prof. B. Champagne, Prof. J. Bajcsy, Prof. T. Le-Ngoc, Prof. K. Siddiqi,

and Prof. A. Ghrayeb of Concordia University for their valuable comments and suggestions.

I would like to thank Andrew Hunt at the CRC for many fruitful discussions on fun-

damental questions of coding. I am very thankful to Ken Gracie at CRC for his detailed

reviews that improved the quality of both my papers and this thesis. The advice, feedback

and reviews of Dr. Ron Kerr at the CRC are greatly appreciated. I am thankful to Dr.

François Patenaude at the CRC for his French translation of the thesis abstract.

Special thanks to my friends Abdulkareem Adinoyi at Carleton university and Abdul

Rafeeq Abdul-Shakoor at CRC. I would like to thank my fellow graduate students, including

Aziz Shalwani, Rickey Der, and Kamal Deep Singh Sahambi. I would like to extend my

thanks to my colleagues at the CRC, including Nandeesh Kumar, Pascal Chahine, Charles

Benoit, Dr. Hossein Najaf-Zadeh, and Dr. Nikhil Adnani.

Last but certainly not the least, I am indebted to my parents, my aunt – whom I sincerely

call, from the depth of my heart, beloved mother – Fatima Bint Habib, my sisters, and

brothers for their unfailing confidence, encouragement and love. The opportunities that

they have given me and their unlimited sacrifices are the reasons where I am and what I

have accomplished so far.

v

Contents

1 Introduction 1

1.1 The Structure of a Digital Communication System 2

1.2 Shannon Limit . 6

1.3 Motivation and Research Objective . 9

1.4 Research Contributions . 12

1.5 Overview of Thesis Structure . 14

2 Turbo Codes 15

2.1 Turbo-Code Encoder Structure . 15

2.1.1 The Constituent Encoders . 16

2.1.2 Interleaving . 18

2.1.3 Trellis Termination . 23

2.1.4 Puncturing . 27

2.2 Turbo Decoding . 27

2.3 MAP Algorithm . 29

2.4 Soft-decision and Hard-decision Decoding 39

2.4.1 Coding Gain with Soft-decision Decoding 39

2.4.2 Coding Gain with Hard-decision Decoding 41

2.4.3 Soft-decision Decoding versus Hard-decision Decoding 42

3 DVB-RCS Turbo Decoding 44

3.1 DVB-RCS Encoding Scheme . 47

3.1.1 Circular Coding . 47

3.1.2 Encoding Process . 50

3.1.3 Encoder Structure . 50

Contents vi

3.1.4 DVB-RCS Interleaving and Puncturing 51

3.2 Decoding of DVB-RCS Turbo Codes . 52

3.2.1 MAP and Log MAP decoding . 54

3.2.2 Max-Log MAP . 58

3.2.3 Initialization and Iterative Decoding 60

3.2.4 Enhanced Max-Log MAP and Enhanced Log MAP Decoding 63

3.3 Simulation Results . 64

3.3.1 Fixed Scale Factor over all Iterations 67

3.3.2 Iteration Dependent Scale Factor 68

3.3.3 Early Stopping . 68

3.3.4 The Effect of Overlap on Error Performance 72

3.4 Conclusion . 74

4 Distance Measurement Methods for Turbo Codes 78

4.1 Background . 79

4.2 Garello’s True Method . 81

4.2.1 Turbo-code Encoder . 81

4.2.2 Computing a Lower Bound on Minimum Distance 83

4.2.3 Recursive Construction of Minimum Distance 89

4.2.4 Techniques to Reduce the Computational Complexity and Memory

Requirement . 91

4.2.5 Comparison Between Theory and Simulation Results 99

4.2.6 Distance Results . 100

4.3 Berrou’s Error-Impulse Method . 105

4.4 Garello’s All-zero Iterative Decoding Method 110

4.5 Crozier’s Double-Impulse Iterative Decoding Method 111

4.5.1 Distance Results . 113

4.5.2 Complexity Comparison . 117

4.6 Conclusion . 118

5 An Efficient and Accurate Distance Measurement Method 120

5.1 Background . 120

5.2 Complexity Reduction . 121

Contents vii

5.2.1 Distance Properties . 122

5.2.2 How to Determine the Correct Multiplicity 123

5.3 Remarks on Complexity Reduction when Z is used 126

5.4 Example Distance and Complexity Results 126

5.5 Conclusion . 129

6 Conclusions 130

6.1 Research Achievements . 130

6.2 Future Work . 132

6.3 Contribution to the Literature . 133

References 135

viii

List of Figures

1.1 Model of a digital communication system. 2

1.2 Binary symmetric channel. 6

1.3 Normalized channel capacity versus channel SNR. 8

1.4 Region of turbo code performance. Error rates are in base 10 logarithmic

scale and SNRs (dB) are in linear scale. 10

2.1 Turbo-code encoder structure. 16

2.2 8-state constituent encoder used in UMTS turbo codes 18

2.3 Dithered relative prime (DRP) interleavers. 23

2.4 Turbo decoder structure. 29

2.5 Mapping the first two bits (c1, c2) and the last two bits (c3, c4) of a 16-QAM

signal point to two independent 4-PAM signals. 36

3.1 Double-binary CRSC encoder for DVB-RCS turbo code and its correspond-

ing trellis diagram. 48

3.2 A simple system model of DVB-RCS. 54

3.3 Different branches involved in the computation of the Log-Likelihood Ratio

of the information symbol (10) for DVB-RCS turbo codes. 55

3.4 Alpha(0) and Beta(0) extracted from trellis-diagram. 56

3.5 Computing of alphas and betas for circular decoder. 62

3.6 Iterative decoder for DVB-RCS turbo code. 63

3.7 Performance of ML-MAP decoding for ATM packet size and various code

rates using 8 iterations. 65

3.8 Performance of ML-MAP decoding for MPEG packet size and various code

rates using 8 iterations. 66

List of Figures ix

3.9 Comparison of four decoding algorithms for DVB-RCS with ATM packet size. 69

3.10 Comparison of four decoding algorithms for DVB-RCS with MPEG packet

size. 70

3.11 Performance of EML-MAP decoding using ramped and fixed scale factor. . 71

3.12 Performances of EML-MAP decoding without early stopping is compared to

that of EML-MAP decoding with early stopping (B=2). 73

3.13 Performance of ML-MAP decoding for ATM packet sizes using rate 1/3 and

various overlap lengths. 75

3.14 Performance of ML-MAP decoding for ATM packet sizes using rate 4/5 and

various overlap lengths. 76

3.15 Performance of ML-MAP decoding for MPEG packet sizes using rate 1/3

and various overlap lengths. 77

4.1 A general turbo-code encoder with two recursive convolutional encoders. . 82

4.2 Trellis diagram, termination-bits and its corresponding weights for an en-

coder with generator polynomials (feedback,feedforward)=(7, 5)octal. 86

4.3 Examples showing how to compute MWE22
tb and MWE22

umts for tail-biting

and UMTS-termination, respectively. 87

4.4 Examples showing how to compute MWE12
tb and MWE12

umts for tail-biting

and UMTS-termination, respectively. 90

4.5 Example showing how to use the modified definition to compute MWE1
2

tb and

MWE2
2

tb for u2 = (0, 1, 0,×,×,×,×) and the interleaver π = (3, 1, 6, 0, 5, 2, 4). 93

4.6 Cross section of a labelled binary tree for ENC1, where ENC1 starts in state

s1 and the basis input sequence is u2 = (0, 1, 0,×, · · · ,×). 95

4.7 Figure illustrating how to obtain MWE2
j

0 and MWE2
j

1. 97

4.8 The forward and backward MVA can be stopped early at trellis sections

ES LEFT and ES RIGHT, respectively. 97

4.9 FER and BER for MPEG-sized random interleaver of code rate Rc=1/3

(QPSK/AWGN). 99

4.10 FER and BER for interleavers of size 512 and code rate Rc=1/3 (BPSK/AWGN).102

4.11 FER and BER for ATM packets of code rate Rc=1/3 (QPSK/AWGN). . . 106

4.12 FER for MPEG packets of code rate Rc=1/3 (QPSK/AWGN). 107

4.13 BER for MPEG packets of code rate Rc=1/3 (QPSK/AWGN). 108

List of Figures x

4.14 Two events for the DVB-RCS standard packet of size 64 symbols (128 bits). 111

4.15 For DVB-RCS standard encoder and a random interleaver of size 48 symbols

(96 bits), the depicted two events cause the true dmin. The first encoder starts

and ends in state ‘001’. The second encoder starts and ends in state ‘011’. 116

4.16 For DVB-RCS standard encoder and a random interleaver of size 48 symbols

(96 bits), the depicted two events cause the true dmin. Both encoders start

and end in the all-zero state. 116

xi

List of Tables

1.1 Capacity limit for some selected code rates Rc using continuous-input continuous-

output and binary-input continuous-output AWGN channel. 8

3.1 Circulation state correspondence table. 50

3.2 Turbo code permutation parameters. 52

3.3 Turbo code puncturing patterns. 53

4.1 Distance results (dmin/Admin
/Wdmin

), and the next four distance terms, for

random interleaver with code rate Rc = 1/3. 100

4.2 Distance results (dmin/Admin
/Wdmin

), and the next two distance terms, for 4

UMTS interleavers and DRP interleavers with code rate Rc = 1/3. 101

4.3 Distance results (dmin/Admin
/Wdmin

) for the 12 DVB-RCS standard interleavers.103

4.4 Distance results (dmin/Admin
/Wdmin

) for DVB-RCS with exhaustive search for

DRP interleavers with M = 4. 104

4.5 Distance results (dmin) for rate 1/3 DVB-RCS codes with an exhaustive

search for DRP interleavers with M=1, 2 and 4. 104

4.6 Comparison of minimum distances obtained with Crozier’s double-impulse

method (DIM) using limited and full range search for the second impulse. . 113

4.7 Distances shown here are for the code rate 1/3. DVB-RCS standard inter-

leavers were used with normal early stopping. 114

4.8 Distances for MPEG size (K=752 2-bit symbols) using DVB-RCS standard

interleaver and standard puncturing. 115

4.9 Distances shown here are obtained using DVB-RCS standard encoder and

code rate 1/3. 1000 random interleavers were tested. 116

List of Tables xii

4.10 Distances shown here are obtained using DVB-RCS standard encoder and

code rate 1/3. 20 DRP interleavers were tested. 117

4.11 Distance results (dmin) and CPU times in minutes for rate 1/3 DVB-RCS

turbo-code encoder with various MPEG-sized interleavers (752 2-bit symbols).118

5.1 Minimum distances, multiplicities and CPU times in minutes for the DVB-RCS

turbo-code encoder with the MPEG-sized standard interleaver. 128

5.2 Minimum distances, multiplicities and CPU times in minutes for the DVB-RCS

turbo-code encoder with new MPEG-sized DRP interleavers. 128

5.3 Minimum distances, multiplicities and CPU times in minutes for the UMTS

turbo-code encoder with new MPEG-sized DRP interleavers. 128

xiii

Glossary of Acronyms

The following acronyms and terms are used within this thesis.

3GPP Third Generation Partnership Project

AWGN Additive White Gaussian Noise

APP A Posteriori Probability

ATM Asynchronous Transfer Mode

BCJR Bahl, Cocke, Jelinek and Raviv

BER Bit Error Rate

BPSK Binary Phase-Shift Keying

BSC Binary Symmetric Channel

CRSC Circular Recursive Systematic Convolutional

dB Decibel

DEC Decoder

DD Dithered-Diagonal

DIM Double Impulse Method

DMC Discrete Memoryless Channel

DRP Dithered Relative Prime

DSL Digital Subscriber Line

DVB-RCS Digital Video Broadcasting with Return Channel Via Satellite

ECC Error Correction Coding

EIM Error Impulse Method

EL-MAP Enhanced Log Maximum A Posteriori

EML-MAP Enhanced Max-Log Maximum A Posteriori

ENC Encoder

ETSI European Telecommunications Standards Institute

List of Terms xiv

XOR Exclusive OR

FER Frame Error Rate

FRS Full Range Search

FSK Frequency-Shift Keying

GEO Geostationary Earth Orbit

HSR High-Spread Random

Hz Hertz

ISI Intersymbol Interference

IW Input Weight

LDPC Low-density parity-check

LMDS Local Multipoint Distribution Service

LLR Log Likelihood Ratio

LRS Limited Range Search

MAP Maximum A Posteriori

ML Maximum Likelihood

ML-MAP Max-Log Maximum A Posteriori

MPEG Motion Picture Experts Group

MF-TDMA Multi-Frequency Time Division Multiple Access

MVA Modified Viterbi Algorithm

MWj Minimum weight of turbo-code encoder caused by the input sequence

uj = (u0, · · · , uj, 0, · · · , 0)

MWE1j Minimum weight of first encoder caused by the input sequence uj

MWE2j Minimum weight of second encoder caused by the input sequence uj
π

PAM Pulse Amplitude Modulation

PCCC Parallel Concatenated Convolutional Codes

PSD Power Spectral Density

PSK Phase-Shift Keying

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase-shift Keying

RP Relative Prime

RSC Recursive Systematic Convolutional

SCCC Serially Concatenated Convolutional Codes

SF Scale Factor

List of Terms xv

SIM Single Impulse Method

SISO Soft-In Soft-Out

SIT Satellite Interactive Terminal

SNR Signal-to-Noise Ratio

SOVA Soft-Output Viterbi-Algorithms

TCM Trellis-Coded Modulation

TDM Time Division Multiplex

TIM Triple Impulse Method

TUB Truncated Union Bound

UMTS Universal Mobile Telecommunications System

WE1 Hamming weight resulting from first encoder

WE2 Hamming weight resulting from second encoder

xvi

Glossary of Symbols

The following mathematical symbols are used in this thesis.

Greek Symbols

σ2 Variance of the AWGN

η Spectral efficiency

ηmax maximum spectral efficiency

ε Probability of bit error for a binary symmetric channel (crossover probability)

τr Number of rows in a matrix

τc Number of columns in a matrix

δ Number of delays in an RSC encoder

∆ Number of states of an RSC encoder

Ω Denotes the set of all states of an RSC encoder

φ0 Set of all possible input symbols

φ Set of all possible non-zero input symbols

αt(s) Forward state probability

βt−1(s
′) Backward state probability

γ
(z)
t (s′, s) Transition probability from state s′ to state s at time t caused

by input symbol z

π Interleaver

π−1 De-interleaver (inverse interleaver)

χ A non-zero symbol in an input umin that causes dmin

µ The average number of tested amplitudes in Berrou’s Error-Impulse method

λ The average number of iterations

List of Terms xvii

Latin Symbols

Amin Number of minimum distance codewords

B Baseband bandwidth

W Number of consecutive sets of hard decisions that must

agree before stopping

C Channel capacity

C(Ñ, K̃) Linear code

C(Ñ, K̃, t) Linear code capable of correcting at most t-error

dE(xi, xk) Euclidian distance between the vector xi and xk

dH(ci, ck) Hamming distance between the two codewords ci and ck

dmin, d
H
min Minimum Hamming distance

D Delay operator

Dn Delay of n symbol times

E Average energy of un-coded or coded bit

Eb, E
u
b Average energy per un-coded information bit

Ec
b Average energy for coded bit

F Number of constituent encoders

Gsoft Coding gain with soft-decision decoding

Ghard Coding gain with hard-decision decoding

G Generator matrix

I I-Component of an M-ary modulation

I Identity matrix

k Constraint length

k Size of an input symbol in bits that enters RSC encoder

K Size of information sequence in symbols

K̃ Size of information sequence in bits

(i) The number of consecutive zero symbols immediately preceding

a non-zero symbols at position i in uj
min

e(i) The number of consecutive zero symbols immediately preceding

an error event that starts at position i in uj
min

L Period of the feedback polynomial

Lapo A posteriori information

List of Terms xviii

Lt
apo, L

(z)(ût) A posteriori information for input symbol z at time t (i.e., ut = z)

Lapr A priori information

Lt
apr A priori information for input symbol ut

Lex Extrinsic information

Lex1 Extrinsic information produced by first decoder

Lex2 Extrinsic information produced by second decoder

Lin Intrinsic information

Lt
in Intrinsic information at time t

m Number of bits represented by a single constellation point

m Number of output sequences generated by first encoder

M Number of constellation points

M Number of repeating index increments for structured interleaver

M Overlap size in symbols for tail-biting

n Number of output sequences generated by second encoder

N Size of codeword in symbols

Ñ Size of codeword in bits

N0 One-sided noise power spectral density

Pb Bit error probability

Pn Average noise power

P i Parities of the i constituent encoder

Ps Average signal power

Pw Message error probability

q Number of parity bits generated by constituent encoder

at any time instant

q Total number of delays in first and second encoder

Q Q-Component of an M-ary modulation

R Length of read dither vector

Rb Data rate

Rc Code rate

R−1
c Reciprocal of code rate

Re Data rate at the output of the channel encoder

Rm Data rate at the output of the modulator

Rs Symbol rate

List of Terms xix

s Encoder state at time t

s′ Encoder state at time (t − 1)

S Amount of separation greater than S must be between any S consecutive

elements in a S-random interleaver

Sc Circular state

S ′′
new(i, j) Spread between two elements i and j in interleaver

S ′
new(i) Minimum spread associated with index i

Snew Overall minimum spread

u Input sequence to the encoders

umin Input sequence that causes dmin

ût Estimated symbol at time t

vt Output of RSC encoder at time t caused by input symbol ut

W Length of write dither vector

Wmin Information bit multiplicity (i.e., sum of hamming weights of input

sequences causing minimum distance)

y The output of the demodulator

yP1 Received parities of first encoders

yP2 Received parities of second encoders

ys Received systematic part

ys
π Interleaved version of the received systematic part

Operators

≈ Approximately equal to

>> Much greater than

<< Much less than

max(·) Returns the value of the biggest element of the argument

min(·) Returns the value of the smallest element of the argument

arg max
x

(f(x)) Return the argument x that maximizes the function f(x)

�x� The largest integer ≤ x

[x]K x modulo K

‖ · ‖ Multidimensional Euclidian distance(
N
n

)
Binomial coefficient

List of Terms xx

⊕ XOR operation

Q(·) Gaussian Q function

ln(x) Base e, logarithm of x

1

Chapter 1

Introduction

The efficient design of a communication system that enables reliable high-speed services is

challenging. ‘Efficient design’ refers to the efficient use of primary communication resources,

namely, power and bandwidth. The reliability of such systems is usually measured by the

required signal-to-noise ratio (SNR) to achieve a specific error rate. Also, a bandwidth

efficient communication system with perfect reliability, or as reliable as possible, using

as low a SNR as possible is desired. In order to enable a fair comparison between the

reliability of different communication systems, the SNR is usually expressed as Eb

N0
, where

Eb is the average energy per information bit and N0 the one-sided noise power spectral

density (PSD).

Error correction coding (ECC) is a technique that improves the reliability of commu-

nication over a noisy channel. The use of the appropriate ECC allows a communication

system to operate at very low error rates, using low to moderate SNR values, enabling

reliable high-speed multimedia services over a noisy channel. Although there are different

types of ECC that have their roots in diverse mathematical disciplines, they all have one

key ingredient in common, namely, achieving a high minimum Hamming distance1 that

occurs only for few codewords (i.e., low multiplicity). This is because achieving high Ham-

ming distance between codewords results in high Euclidean distance between modulated

codewords and it takes a lot of noise sample together to cause an error.

In this chapter, a basic communication system, the Shannon capacity limit and the

motivation for this thesis are discussed. A list that summarizes the main contributions of

1Minimum Hamming distance is the minimum number of bits that must be changed in order to convert
one codeword into another.

1 Introduction 2

this work is introduced.

1.1 The Structure of a Digital Communication System

The information source generates a message containing information that is to be transmit-

ted to the receiver. The information source can be an analog source that generates analog

signals such as audio or video. An analog communication system transmits such a signal

directly over the channel using analog modulation such as amplitude, frequency, or phase

modulation. The information source can also be a discrete source that generates a sequence

of symbols from a finite symbol alphabet. A teletype machine, where the output consists of

a sequence of symbols from a given alphabet and the numbers 0 through 9, is an example

of a discrete source.

In a digital communication system, shown in Fig. 1.1, the outputs of an analog or

discrete source are converted into a sequence of bits. This sequence of bits might contain

too much redundancy. The redundancy in the source might not be useful for achieving

high reliability. Ideally, the source encoder removes redundancy and represents the source

output sequence with as few bits as possible. Note that the redundancy in the source is

different from the redundancy inserted intentionally by the error correcting code.

The encrypter encodes the data for security purposes. Encryption is the most effective

way to achieve data security [1]. The three components, information source, source encoder

and encrypter can be seen as a single component called the source. The binary sequence

u is the output of the source. The number of bits the source generates per second is the

data rate Rb and is in units of bits per second (bps or bits/s).

Information

Source

u

û

Source

Encoder
Encrypter

Channel

Encoder

Transmitter/

Modulator

Information

Sink

Source

Decoder
Decrypter

Channel

Decoder

Receiver/

Demodulator

Source

Sink Codec Modem

Communication

Channel

Fig. 1.1 Model of a digital communication system.

The primary goal of the channel encoder is to increase the reliability of transmission

1 Introduction 3

within the constraints of signal power, system bandwidth and computational complexity.

This can be achieved by introducing structured redundancy into transmitted signals [2].

Channel coding is used in digital communication systems to correct transmission errors

caused by noise, fading and interference. In digital storage systems, channel coding is

used to correct errors caused by storage medium defects, dust particles and radiation. The

channel encoder assigns to each message of K̃ bits a longer message of Ñ bits called a

codeword. This usually results in either a lower data transmission rate or increased channel

bandwidth relative to an un-coded system. The data rate at the output of the channel

encoder is Re = Rb

Rc
bits/s, where Rc =

�K�N is the code rate. To make the communication

system less vulnerable to channel impairments, the channel encoder generates codewords

that are as different as possible from one another.

Since the transmission medium is a waveform medium, the sequence of bits generated by

the channel encoder can not be transmitted directly through this medium. The main goals

of modulation are not only to match the signal to the transmission medium, enable simul-

taneous transmission of a number of signals over the same physical medium and increase

the data rate, but also to achieve this by the efficient use of the two primary resources of

a communication system, namely, transmitted power and channel bandwidth. The channel

bandwidth is the band of frequencies allocated for the transmission of the message signal.

The modulator maps m encoded bits into M = 2m distinct waveforms. Consequently, the

symbol rate at the output of the modulator is Rs = Rb

Rc·m symbols/s. The M waveforms

can be obtained by varying the amplitude as in pulse amplitude modulation (PAM), the

phase as in phase-shift keying (PSK), the frequency as in frequency-shift keying (FSK)

or both amplitude and phase (PAM-PSK), which is also known as quadrature amplitude

modulation (QAM) [3]. For transmission that is free of intersymbol interference, Nyquist’s

criterion sets a limit of one pulse per single orthogonal signaling dimension. Since sin(2πfct)

and cos(2πfct) (fc is the carrier frequency) are orthogonal and can be sent using the same

bandwidth, one can send two pulses (one on in-phase and one on quadrature-phase) at the

same time. Thus, one can send at maximum 2B pulses per second in a bandwidth of B Hz.

This bandwidth refers to the one-sided positive frequencies of the real signal. Therefore,

the minimum signal bandwidth is B = Rs

2
= Rb

2Rc·m . This suggests that error correcting

codes can be used with higher order modulation schemes (M-ary) without any increase

in the bandwidth, which is often fixed, as is the case for telephone channel (B is about 3

kHz). For example, a communication system with data rate Rb can be realized using the

1 Introduction 4

same bandwidth with:

(a) un-coded QPSK modulation, which also results in a symbol rate of Rs = Rb

m
= Rb

2

symbols/s;

(b) error correcting code of code rate Rc = 2/3 and 8-PSK modulation, which also results

in a symbol rate of Rs = Rb

Rc·m = Rb

(2
3)·3

= Rb

2
symbol/s.

In (b), the potential increase in the bandwidth by a factor of R−1
c due to the use of the

error correcting code is compensated by the use of 8-PSK modulation. However, higher

M-ary modulation schemes are more susceptible to noise than the simple and robust binary

phase-shift keying (BPSK) and quadrature phase-shift keying (QPSK). This is because the

minimum Euclidean distance between the symbol points of M-ary modulation is smaller

than that for BPSK/QPSK for a fixed average transmitted power. Thus, in order to achieve

a coding gain, the greater susceptibility of M-ary modulation to error must be more than

compensated for by the error correcting code. For the example above, the use of un-coded

8-PSK instead of un-coded QPSK results in an Eb

N0
loss of about 3.6 dB2 at a bit error

rate (BER) of 10−5 [4]. The use of a convolutional code of constraint length k = 6 (i.e.,

memory 5) and a code rate of Rc = 2/3 together with QPSK leads to a coding gain in Eb

N0
of

about 4.2 dB at BER = 10−5 compared to un-coded QPSK [5]. Assuming the same coding

gain holds for 8-PSK, one can expect that the use of a 32-state 2/3-rate convolutional code

together with 8-PSK results in a coding gain of about (4.2 − 3.6) = 0.6 dB in Eb

N0
at a

BER = 10−5 compared to un-coded QPSK. This example shows that a ‘trivial’ mapping of

coded bits to the M-ary signal points does not necessarily result in a significant reduction

in Eb

N0
.

In 1982, Ungerboeck presented a new coding method called trellis-coded modulation

(TCM) [6, 7, 8, 9] which does not expand the bandwidth yet achieves a significant coding

gain. The strength of this method lies in the treatment of modulation and channel coding

as a combined entity rather than two separate operations. Ungerboeck presented a set of

rules, known as set partitioning, that allow a ‘non-trivial’ mapping of coded bits into the

M-ary signal points, and mapping of these points to the trellis of the convolutional encoder

(usually of rate m
m+1

). With Ungerboeck’s original mapping rule, a 32-state 8-PSK TCM

yields a coding gain of 3.3 dB at a BER of 10−5 compared to un-coded QPSK [10]. This

2The SNR is usually measured in decibels, according to Eb

N0
(dB) = 10 log10

(
Eb

N0

)
.

1 Introduction 5

coding gain of 3.3 dB is significant compared to the case discussed above with a gain of only

0.6 dB. As shown in [10] and [11], different mapping rules can improve the SNR required to

achieve a given BER by a further 0.5 dB. The asymptotic gain with 8-PSK TCM compared

to un-coded QPSK is 4.59 dB [12].

A communication channel refers to the combination of physical medium (copper wires,

radio medium or optical fiber) and electronic or optical devices (equalizers, amplifiers) that

are part of the path followed by a signal (Fig. 1.1). Channel noise, fading and interference

corrupt the transmitted signal and cause errors in the received signal. This thesis con-

siders only AWGN type channels, which ultimately limit system performance. Note that

many interference sources and background noise can be modelled as AWGN due to the

central limit theorem. A major contributor to AWGN is often the thermal noise due to the

electronic equipment such as amplifiers used in the transmitter and receiver. A communi-

cation channel is a system in which the output depends probabilistically on the input. If

the probability distribution of the output depends only on the input at that time and is

independent of previous channel inputs or outputs, the channel is said to be memoryless.

Suppose that the modulator and demodulator are considered to be parts of a memoryless

channel. The combined channel has a discrete-time input and a discrete-time output and

can be represented by a discrete memoryless channel (DMC). Such a composite channel is

characterized by the set of possible inputs, the set of possible outputs and the conditional

distribution of the output given the input.

The simplest channel model is obtained when the probability of error for binary value

0 and 1 are the same and the channel is memoryless. This channel is shown in Fig. 1.2

and is known as the binary symmetric channel (BSC). As an example, the use of BPSK

or Gray labelled QPSK signaling over AWGN channel and a matched filter receiver results

in bit error probability of Q
(√

2E
N0

)
[13], where Q(x) is the tail probability of a Gaussian

random variable with zero mean and variance σ2 = 1 (i.e., Q(x) = 1√
2π

∫∞
x

e−t2/2dt), and

E = Rc · Eb if coding is applied and E = Eb if no coding is used. Since the bit error

probability is symmetric with respect to the value of the transmitted bit, pX|Y (1|0) =

pX|Y (0|1) = ε = Q
(√

2E
N0

)
, where X ∈ {0, 1} and Y ∈ {0, 1} are the input and output of

the BSC channel, respectively.

At the receiving end of the communication system, the demodulator processes the

channel-corrupted transmitted waveform and makes a hard or soft decision on each symbol.

If the demodulator makes a hard decision, its output is a binary sequence and the sub-

1 Introduction 6

0

1

Output

1-

1-ε

ε

ε
ε

X Y

0

1

Input

Fig. 1.2 Binary symmetric channel.

sequent channel decoding process is called hard-decision decoding. A hard decision in the

demodulator results in some irreversible information loss. If the demodulator passes the

soft output of the matched filter to the decoder, the subsequent channel decoding process

is called soft-decision decoding.

The channel decoder works separately from the modulator/demodulator and has the

goal of estimating the output of the source encoder based on the encoder structure and a

decoding algorithm. In general, with soft-decision decoding, approximately 2 dB and 6 dB

of coding gain with respect to hard-decision decoding can be obtained in AWGN channels

and fading AWGN channels, respectively [14].

If encryption is used, the decrypter converts encrypted data back into its original form.

The source decoder transforms the sequence at its input based on the source encoding rule

into a sequence of data, which will be used by the information sink to construct an esti-

mate of the message. These three components, decrypter, source decoder and information

sink can be represented as a single component called the sink, as far as the rest of the

communication system is concerned. The binary sequence û is the input to the sink.

1.2 Shannon Limit

Both the communication channel and the signal that travels through it have their own

bandwidth. The bandwidth B of a communication channel defines the frequency limits of

the signals that it can carry. In order to transfer data very quickly, a large bandwidth is

required. Unfortunately, every communication channel has a limited bandwidth, whether

constrained artificially by communications standards, such as the digital video broadcasting

with return channel via satellite (DVB-RCS) standard [15], or physically by the transmis-

sion medium such as copper wire. Amplifiers or repeaters, used to boost signals so that

they can travel longer distances, also impose bandwidth constraints. Limitations on the

1 Introduction 7

data rate may be quantified by the spectral efficiency η = Rb

B
bits/s/Hz, where Rb is the

data rate at the output of the source (see Fig. 1.1).

In his landmark paper, Shannon proved in 1948 that if the data rate Rb at the output

of a source is less than a quantity called the channel capacity, C, then communication over

an AWGN channel with an error probability as small as desired is possible with proper

encoding and decoding [16, 17]. This fundamental result showed that noise sets a limit on

the data rate but not on the error probability, as had been widely believed before [18]. For

a continuous input to an AWGN channel, the channel capacity is given by the Shannon-

Hartley formula [19], which assumes a random codeword of length approaching infinity and

maximum likelihood (ML) decoding. This formula may be expressed as

C = B log2

(
1 +

Ps

Pn

)
bits/s. (1.1)

where Ps is the average signal power and Pn is the average noise power.

Assuming that the data rate is equal to the channel capacity (i.e., Rb = C), equa-

tion (1.1) can be expressed as

C

B
= log2

(
1 +

C

B

Eb

N0

)
bits/s/Hz. (1.2)

From (1.2) it follows that the minimum required SNR, Eb

N0
, for error-free transmission is

−1.59 dB [18], assuming that the bandwidth B approaches infinity and the code rate

approaches zero. Shannon’s theorem sets a limit for the coding gain that can be achieved

by error correcting codes over an AWGN channel relative to un-coded modulation schemes.

Practical systems operate with a non-zero error probability. For instance, un-coded

QPSK has a maximum spectral efficiency of ηmax = 2 bits/s/Hz and requires Eb

N0
= 9.6

dB to achieve BER=10−5 in AWGN. With coding, and no limitations on the signalling

levels, the same spectral efficiency can be achieved at Eb

N0
= 1.8 dB (Fig. 1.3), implying an

achievable coding gain of Eb

N0
= (9.6 − 1.8) = 7.8 dB.

The capacity limit depends on the code rate. Table 1.1 shows that a rate-1/2 code

requires a higher SNR by about 0.7 dB, 1.0 dB and 1.8 dB compared to rate-1/3, rate-1/4

and the ultimate capacity limit (code rate approaching 0), respectively, assuming a binary-

input continuous-output AWGN channel [20]. Since the Shannon coding theorem does not

say how to design specific codes achieving the maximum possible data rate at arbitrarily

1 Introduction 8

−2 −1 0 1 2 3 4 5 6
10

−2

10
−1

10
0

10
1

E
b
/N

0
 (dB)

C
/B

 (
bi

ts
/s

/H
z)

Data rate = C

Data rate < C

Data rate > C

Fig. 1.3 Normalized channel capacity versus channel SNR.

Table 1.1 Capacity limit for some selected code rates Rc using continuous-
input continuous-output and binary-input continuous-output AWGN channel.
Table is taken from [20].

Capacity limit in dB

Rc Continuous input Binary input

1/2 0.00 0.19

1/3 -0.55 -0.50

1/4 -0.82 -0.79

1/6 -1.08 -1.07

0 -1.59 -1.59

1 Introduction 9

small error probabilities, a great deal of effort has been expended to find efficient encoding

and decoding methods that approach the Shannon limit.

An important breakthrough in coding since the introduction of TCM in 1982 has been

the introduction of a new class of parallel concatenated convolutional codes (PCCC), called

turbo codes in 1993 [21]. The code consists of three parts: (a) the original information

sequence, (b) redundancy bits generated by the first constituent encoder that has the

original information sequence as an input and (c) redundancy bits generated by the second

constituent encoder that has a permuted version of the original information sequence as an

input. Turbo codes achieve good performance with reasonable complexity. This is because

(a) medium to high minimum distances can be achieved with low multiplicities, and (b)

the constituent decoders can exchange soft information in an iterative manner which allows

practical decoding that comes close to ML performance. Berrou et al. [21, 22] showed that

a rate 1/2 turbo code3 operating in AWGN can achieve a BER of 10−5 at an SNR of
Eb

N0
= 0.7 dB. The capacity limit is Eb

N0
= 0.19 dB for the binary-input AWGN channel

considered. Thus, it was shown that turbo codes can come within 0.5 dB of the binary-

input capacity limit, at least for a BER of 10−5. In other words, Berrou et al. showed

for the first time that a practical communications system that operates very close to the

capacity limit was possible. More recently, it has been shown in [23] that the use of 8-state4

serially concatenated convolutional codes (SCCC) [24] with an interleaver size of 106 and

300 iterations can achieve a BER of 10−5 at an SNR of Eb

N0
= 0.27 dB, which is within 0.1

dB of the capacity limit.

1.3 Motivation and Research Objective

Turbo codes have reasonable complexity and provide powerful error correcting capability

for various block lengths and code rates. Their typical error performance can be divided

in the three regions as shown in Fig. 1.4.

- At very low to low SNRs, the error performance is very poor and is certainly not

suitable for most communication systems.

3Two 16-state constituent encoders with (feedback polynomial, feedforward polynomial)=(37, 21)8 and
an interleaver size of 256x256=65536 were used. QPSK and 18 iterations using a modified BCJR (Bahl,
Cocke, Jelinek and Raviv) algorithm were used.

4(feedback polynomial, feedforward polynomial)=(17, 07)8

1 Introduction 10

- At low to medium SNRs, the error performance curve descends steeply, providing

very low error rates at moderate SNRs. The region associated with the start and end

of the steep error performance curve is known as waterfall region. In this region, the

performance is mainly determined by the convergence behavior of the decoder. Gen-

erally, the longer the interleaver, the better the convergence, and the better (steeper)

the waterfall performance is. This is mainly because of the nature of iterative de-

coding and has little to do with the potential improvement in distance properties for

longer interleavers.

- At medium SNRs, the error performance curve starts to flatten severely; further

improvements in the error performance require a significant increase in the SNR. The

region associated with this severe flattening of the error performance curve is known

as error flare or error floor region. The better the distance properties, the lower the

error flare is. In other words, high minimum distances with low multiplicities are

important for lowering the error flare.

SNR

E
rr

o
r

ra
te Low SNR Region

W
aterfall

R
eg

io
n

Error flare Region

Fig. 1.4 Region of turbo code performance. Error rates are in base 10
logarithmic scale and SNRs (dB) are in linear scale.

Turbo code complexity and error performance depend mainly on the following seven

factors. For details on turbo encoding and decoding, see Chapter 2.

1 Introduction 11

- Constituent encoder constraint length: The complexity and memory requirements

increase as the constraint length increases.

- Constituent encoder polynomials: Generally, the selection of the appropriate polyno-

mials depends on the SNR value. In other words, constituent encoder polynomials

affect both convergence (waterfall) performance and flare performance.

- Constituent decoder algorithm: The choice of the constituent decoder algorithm af-

fects both complexity and convergence (waterfall) performance.

- Data puncturing: The larger the number of bits punctured, the higher the code rate

is, but also the higher the SNR required to achieve the error performance of the

un-punctured code.

- Number of iterations: Generally, higher number of iterations results in better waterfall

performance, but it also leads to higher complexity and latency (delay).

- Interleaver size: Generally, longer interleavers improve the convergence and lower the

error flare, but they also lead to higher memory requirement and latency.

- Interleaver design: Well-designed interleavers provide both good convergence and

lower error flare without any increase in complexity. The memory required to store

interleaver indices can also be reduced significantly if interleaver is structured.

From this discussion, it follows that error performance can be improved without any in-

crease in complexity, memory requirement or latency if the interleaver is designed properly

(assuming the use of appropriate constituent encoder polynomials). Thus, it is important

to have a proper interleaver design in place that yields good distance properties.

Interleavers that yield high minimum distances can achieve very low error rates at

moderate SNRs. Unfortunately, reliable software simulations that determine very low error

rates may take months or not be applicable at all. However, experience indicates that the

first term or first few terms of the distance spectrum can be used in the union bound to

approximate those very low error rates. This is of particular use for the design of turbo

code interleavers. Frequently the problem of finding good turbo code interleavers reduces

to determining which of a class of interleavers gives the best performance. This can be

predicted by finding which of the interleavers produces the highest first or first terms of

1 Introduction 12

distance spectrum. In order to determine these terms, it is necessary to have a distance

measurement method. It is also important that the method have low computational com-

plexity that allows the computation of high distances in a reasonable time.

This thesis aims to develop efficient and accurate distance measurement methods for

turbo codes. The new method developed in this thesis is applied to single-binary turbo

codes included in the universal mobile telecommunications system (UMTS) standard [25]

(also known as third generation partnership project 3GPP) as well as the double-binary

turbo codes included in the digital video broadcasting with return channel via satellite

(DVB-RCS) standard [15]. Another aim of this thesis is the design of new interleavers that

yield significant improvement in error performance compared to the DVB-RCS standard

interleavers. To achieve this aim, the dithered relative prime (DRP) approach [26] has been

chosen as the basis for the new design. DRP interleavers are structured interleavers that

are memory efficient because the interleaver can be stored and generated “on the fly” using

only a few parameters instead of storing all the indices of the interleaver. The structure of

DRP interleavers can also be exploited to reduce the complexity in computing the distance

spectrum.

1.4 Research Contributions

The main contributions of this thesis can be summarized as follows:

• Garello’s true distance measurement method [27] is extended to dual-terminated and

tail-biting turbo codes. The extension is applied to both single-binary turbo codes

and DVB-RCS double-binary turbo codes (Chapter 4 and [28]). This new method

has lower complexity than the original one.

• A complete list of the first few terms of the distance spectra for all DVB-RCS standard

block sizes and code rates is determined using this new method (Chapter 4 and [28]).

These results complete the partial results in [29]. The results presented in [28] are

the first complete results.

• New interleavers based on the DRP approach are designed for all DVB-RCS standard

block sizes and code rates. Various interleavers are designed for motion picture experts

group (MPEG) packets of length 1504 information bits. These interleavers are the

1 Introduction 13

best ones known and provide a significant improvement in performance compared to

the DVB-RCS standard interleavers (Chapter 4 and [30]).

• The reliability of Crozier’s double-impulse iterative decoding method [31, 32] used for

distance measurement is improved. The improved Crozier’s method is compared with

Garello’s true distance method [27], Berrou’s error-impulse method [33] and Garello’s

all-zero iterative decoding method [34] (Chapter 4 and [30]).

• A new efficient and accurate distance measurement method for tail-biting turbo codes

that use structured interleavers such as DRP interleavers and the DVB-RCS standard

interleavers was developed. The significant reduction in complexity achieved with

this method was demonstrated by testing the best known interleavers for UMTS

and DVB-RCS. This method allows the determination of high minimum distances in

reasonable time (Chapter 5 and [35]). This is the fastest known distance measurement

method for tail-biting turbo codes that use structured interleavers [35]).

• An efficient DVB-RCS turbo decoder has been implemented. This turbo decoder has

been used to investigate various techniques that improve the error performance and

reduce the decoding complexity. Furthermore, it has been used to investigate the

capability of iterative decoding to provide reliable estimate for minimum distance.

• Efficient decoding techniques that improve error performance without an increase in

complexity are applied to the DVB-RCS standard turbo codes. These techniques

improve upon the known log maximum a posteriori (MAP) decoding, max-log MAP

decoding and are referred to as enhanced log MAP and enhanced max-log MAP

decoding, respectively, (Chapter 3 and [36]).

• An efficient early stopping rule that reduces the average complexity of decoding with-

out degradation in error performance is applied to DVB-RCS turbo codes. The re-

duction in computational complexity is significant, especially for simulation purposes

because the reliable determination of low error rates is very computational intensive

(Chapter 3 and [36]).

• For tail-biting turbo codes, the turbo decoder does not have any knowledge about the

start and end states of either encoders. To get reliable estimate for the probability

of start and end state of each constituent encoder, a pre-run over a number of trellis

1 Introduction 14

sections is required. This number of trellis sections is known as overlap size. The

relation between overlap size and (a) packet length, (b) code rate and (c) SNR value

is investigated using simulation (Chapter 3).

1.5 Overview of Thesis Structure

In Chapter 2, the building blocks of turbo codes, namely, constituent encoders, interleavers

and puncturing units are discussed. The MAP decoding algorithm and iterative decoding

are also discussed. To show the importance of soft-decision decoding, it is compared to

hard-decision decoding for antipodal signalling (i.e., BPSK and Gray labelled QPSK) over

an AWGN channel.

Chapter 3 introduces efficient decoding techniques for DVB-RCS double-binary turbo

codes. The effect of tail-biting overlap size on performance is investigated using simulation

results. An efficient early stopping technique is also applied to DVB-RCS.

Chapter 4 presents Garello’s true distance measurement method for turbo codes. This

method is extended to dual-terminated and tail-biting turbo codes. A simple technique

that reduces the computational complexity is introduced. Distance results for selected

UMTS block sizes and all DVB-RCS standard block sizes and code rates are presented.

Distance results are also presented for newly designed DRP interleavers for all DVB-RCS

standard block sizes and code rates. Error performances are compared for asynchronous

transfer mode (ATM) packet sizes (424 information bits) and MPEG packet sizes (1504

information bits) using DVB-RCS standard interleavers as well as the newly designed DRP

interleavers. Furthermore, this chapter compares distances obtained with the improved

Crozier’s double-impulse method to those obtained with Garello’s true distance method,

Berrou’s error-impulse method and Garello’s all-zero iterative decoding method.

Chapter 5 introduces an efficient and accurate distance measurement method for tail-

biting turbo codes that use structured interleavers such as DRP and DVB-RCS standard

interleavers. Distance results and execution times for selected well-designed interleavers for

UMTS and DVB-RCS are presented.

Finally, Chapter 6 summarizes the contributions of this work, draws conclusions and

discusses topics for future research.

15

Chapter 2

Turbo Codes

It is well known from information theory that a random code of sufficient length is capable of

approaching the “Shannon limit”, provided one uses maximum likelihood (ML) decoding.

Unfortunately, the complexity of ML decoding increases with the size of codeword up

to the point where decoding becomes impractical. Thus, a practical decoding of long

codes requires that the code possess some structure. Coding theorists have been trying

to develop codes that combine two ‘seemingly’ conflicting principles: (a) randomness, to

achieve high coding gain and so approach the Shannon limit, and (b) structure to make

decoding practical. In 1993, Berrou et al. introduced a new coding scheme that combines

these two seemingly conflicting principles in an elegant way. They introduced randomness

through an interleaver and structure by employing parallel concatenated convolutional

codes. These codes are called turbo codes and offer an excellent tradeoff between complexity

and error correcting capability. Concatenated codes are very powerful error correcting codes

that are capable of closely approaching the Shannon limit by using iterative decoding [21,

23].

2.1 Turbo-Code Encoder Structure

A turbo-code encoder consists of three building blocks: constituent encoders, interleavers

and a puncturing unit. The constituent encoders are used in parallel and each interleaver,

πi (i = 1, · · · , F), scrambles the information symbols before feeding them into the corre-

sponding constituent encoder. The puncturing unit is used to achieve higher code rates.

In general, turbo codes can have more than two parallel constituent convolutional encoders

2 Turbo Codes 16

ENCi (i = 1, · · · , F), where each encoder is fed with a scrambled version of the information

symbols u . Fig. 2.1(a) shows the general structure of turbo codes, where the outputs u,

P i (i = 1, · · · , F) are known as the systematic part and the parity part, respectively. In

practice, most applications use only two constituent encoders where only the input to the

second encoder is scrambled (see Fig. 2.1(b)).

ENC

u u

ENC2π

ENC

1P

2P

1

2

1π

P
u

n
ct

u
ri

n
g

Fπ
FPF

(a) General structure of turbo codes.

ENC

u

ENC

1

2
π

u

1P

2P

P
u

n
ct

u
ri

n
g

(b) Typical structure of turbo codes.

Fig. 2.1 Turbo-code encoder structure.

2.1.1 The Constituent Encoders

A non-recursive or feed-forward convolutional encoder can be driven back to the all-zero

state by δ zero symbols1, where δ is the number of delay elements in the encoder. This

means that the encoder starts and ends in the all-zero state for an input sequence u =

(0, · · · , 0, 1, 0, · · · , 0) of weight 1 leading to a codeword of very low weight. This causes

both the input sequence u and its permuted version to generate an output with very low

weight. Since code with low weight codewords (i.e., low minimum distance) has poor error

correcting capability, the use of feed-forward convolutional encoders in turbo codes is not

desirable.

1It is common that at each time instant a single-binary symbol (i.e., 0 or 1) enters the convolution
encoder. However, the input symbol need not be a single-binary symbol. For example, at each time
instant a double-binary symbol (i.e., 00,01,10 or 11) enters the convolution encoders used in the DVB-RCS
standard turbo codes [15].

2 Turbo Codes 17

Turbo codes use recursive systematic convolutional (RSC) encoders. The use of recursive

or feed-back encoders prevents the encoders from being driven back to the all-zero state by

zero symbols. Thus, assuming the RSC codes are terminated in the all-zero state, the

input sequence u must have at least two non-zero symbols. Since u is permuted before

entering ENC2, it is likely that one of the RSC code outputs will have high weight. This

discussion does not mean that turbo codes exhibit very high minimum distances. In fact,

achieving high minimum distances requires the use of a well designed interleaver of sufficient

length. Finding such an interleaver is not trivial. The systematic part helps the iterative

decoding to provide better convergence. Note that the systematic part prevents the tubo

codes from being catastrophic2 if no data puncturing is involved. If the systematic part is

punctured, two different input sequences can produce the same codeword making the codes

catastrophic [37]. Since repetition codes are not good codes, the systematic part from only

one of the constituent encoders is transmitted.

In information theory and coding theory, convolutional codes are often expressed in

terms of a set of polynomial generators that depend on the delay operator D, where Dn

indicates a delay of n symbol times. A feed-forward convolutional encoder can be trans-

formed easily to an RSC encoder with the same distance properties by dividing all poly-

nomial generators by one of the polynomials. For example, a convolutional encoder with

two feed-forward generator polynomials g1(D) and g2(D) is the ‘same’ as the RSC encoder

with transfer function G(D) = (1, g2(D)/g1(D)), where g2(D) is the feed-forward generator

polynomial and g1(D) is the feed-back generator polynomial. The ‘same’ means only that

the distance properties are unchanged, the mapping of input sequence to output sequence

is different. An example of an RSC encoder is the constituent encoder used in the universal

mobile telecommunications system (UMTS) [25] standard turbo codes (see Fig. 2.2). This

code has the transfer function G(D) = (1, (1 + D + D3)/(1 + D2 + D3)). It is convenient

and common to express the polynomial generators in octal representation. Thus, the feed-

back polynomial g1(D) = 1 + D2 + D3 is (1011) = (13)8 and the feed-forward polynomial

g2(D) = 1 + D + D3 is (1101) = (15)8. It is also convenient and common to describe the

functionality of a convolutional encoder using the state-transition diagram or the trellis

diagram [38].

Due to the presence of the interleaver, good convolutional encoders are not necessarily

good constituent encoders. The selection of constituent encoders from a distance spectrum

2A catastrophic code occurs when two or more information sequences are mapped to the same codeword.

2 Turbo Codes 18

D D D
Input

data

Parity part

Systematic part

Fig. 2.2 8-state constituent encoder used in UMTS turbo codes

perspective and a decoding perspective is thoroughly discussed in [39, 40] and [41, 42],

respectively. An important parameter for the design of constituent encoders is the period

L of the feedback polynomial. It is common to use a primitive feedback polynomial because

they provide the largest possible L for a given number of states δ (i.e., L = 2δ−1). However,

this does not suggest the use of high δ values such as 5, 6 or higher. A high δ value yields

high minimum distance and so lowers the error flare, but also significantly increases both

complexity and the memory requirements. A moderate δ value typically provides better

convergence than a high δ value. The use of a moderate δ value (i.e., δ = 3) is practical

and provides good error performance at low SNR as well as high minimum distance for

good error performance at high SNR, provided that the interleaver is designed properly.

2.1.2 Interleaving

Interleaving refers to the process of permuting symbols in the information sequence be-

fore it is fed to the second constituent encoder. The primary function of the interleaver

is the creation of a code with good distance properties. Note that interleaving alone can

not achieve good distance properties unless it is used together with recursive constituent

encoders. The interleaver can be represented in many ways. In this thesis, the interleaver

is a vector π, where π(i) is the position in the information sequence that is interleaved to

position i. In other words, the information sequence u = (u0, u1, · · · , uK−1) is interleaved

to uπ = (uπ(0), uπ(1), · · · , uπ(K−1)), where K is the number of symbols in the information

sequence u. This also means that the symbol at position i in u is interleaved to posi-

tion π−1(i) in uπ, where π−1 is the de-interleaver that acts on the interleaved information

sequence and restores the sequence to its original order. There is a growing body of litera-

ture on the design of interleavers. The approaches used in the literature vary from simple

random interleaving to highly structured interleaving.

2 Turbo Codes 19

Random interleavers are generated by selecting the elements (i.e., indices) of the in-

terleaver in a random manner without any restriction on the selected elements. Usually,

they yield codewords with low weight caused by input sequences of weight 2. In the

literature they are sometimes called pseudorandom interleavers and they provide useful

benchmarks. Another type of interleaver are the “spread” interleavers, known as S-random

interleavers [43, 44]. These interleavers spread low weight input patterns to generate higher

weight codewords. Thus, they can achieve better performance than average random inter-

leavers. The elements of the S-random interleaver are selected based on the criterion that

each element is not within ±S of any of the previously selected S elements. The interleaver

can be generated as follows. Select a random integer from the set {0, · · · , K − 1} as the

first element in the interleaver and delete it from the set. Each subsequent element in the

interleaver is selected randomly from the remaining integers in the set and compared with

the S previously selected elements. If the selected element is within ±S, then it is rejected

and a new element is selected until the selection criterion is satisfied. Repeat this process

until all K integers are selected. Note that backtracking might be required for a success-

ful completion of the process. Unfortunately, the search time increases with the desired

amount of separation, S, and the interleaver length K. Another drawback is that there is

no guarantee that the search process will finish successfully (experiments have shown that

the choice S <
√

N/2 usually produces a solution in a reasonable amount of time [45]).

The S-random interleaver approach has been modified in [46, 47] by adding another cri-

terion that considers the constituent encoders. The goal of this additional criterion is to

eliminate low-weight codewords with significant contributions to the error performance.

The elimination of a specific codeword can be done by breaking up the input pattern that

generates that codeword. This additional criterion, however, increases the search time of

the algorithm and is not guaranteed to eliminate all low-weight codewords.

A simple form of structured interleaver is the rectangular interleaver, often referred to in

the literature as block interleaver. It is defined by a matrix of τr rows and τc columns such

that the interleaver size is K = τr ×τc. This interleaving is performed as follows. Write the

data to be interleaved into the matrix row by row, and read the interleaved data column by

column, or vice versa. Rectangular interleavers that write in row by row and read column

by column from the upper left corner can be expressed as π(i) = iτc + �i/τr� mod K,

where �x� is the “floor” function3 of x. Such an interleaver, usually, yields a large number

3floor(x) is the largest integer less than or equal to x.

2 Turbo Codes 20

of low distance codewords caused by input sequences of weight 4 [45]. This is a direct

consequence of the nature of the rectangular interleaver. Thus, increasing the size of the

interleaver does not improve the distance properties and so does not improve the error

performance. Another type of structured interleaver is the circular-shifting interleaver [45].

The permutation is described by π(i) = (pi+ s) mod K, where s and p are known as offset

and step size, respectively. The value of p is chosen relatively prime4 to K to ensure that

each element in the interleaver differs from the others. Crozier et al. in [48] refer to this type

of interleaver as a relative prime (RP) interleaver. This interleaver can permute weight-2

input sequences that generate low distance into weight-2 input sequences that generate

high distance. However, this type of interleaver is less likely to permute an input sequence

of weight higher than 2 with low codeword weights into another input sequence with high

codeword weights [45]. Another type of interleavers that have algebraic structure was

introduced in [49]. This new algebraic interleaver design permutes a sequence of symbols

with nearly the same statistical distribution as a random interleaver and perform as well

as or better than the average of a set of random interleavers [49].

Interleaver design based on minimizing a cost function that takes into account the most

significant error patterns for the desired interleaver was proposed in [50]. The interleaver

grows iteratively to the desired length, with the cost function being minimized at each

iteration step. The complexity of this interleaver design methodology is high and is suitable

only for short interleavers. A short interleaver that yields a coding gain of 0.5 dB compared

to a random interleaver at a bit error rate (BER) of 10−5 was designed in [50]. Interleaver

design that is optimum in the sense of breaking up the weight-2 input sequences was

introduced in [51]. In [51], a short interleaver based on this design rule was designed

and simulated. The results show a significant improvement in performance compared to

a random interleaver [51]. It is also noted in [51] that breaking up only the weight-2

input sequences is not sufficient to achieve good distance properties. This is because input

sequences of weight higher than 2 are not broken up and can still lead to low codeword

weights.

Achieving good distance properties is a common criterion for interleaver design. This

fits very well with the concept of maximum likelihood (ML) decoding. Unfortunately, turbo

decoding is not guaranteed to perform a ML decoding, because of the independence as-

sumption made on the sequence to be decoded and the probabilistic information (known as

4Two positive integers are relatively prime if their greatest common divisor is 1.

2 Turbo Codes 21

extrinsic information5) passed between constituent decoders. This suggests an additional

design criterion based on the correlation between the extrinsic information. An interleaver

with good correlation properties (i.e., minimizing correlation between the extrinsic infor-

mation of constituent decoders) was designed in [52]. Simulation results show that such

interleavers perform better than S-random interleavers (improvement of about 0.1 dB).

It was recognized, shortly after the introduction of turbo codes, that spreading the

elements of the interleaver results in both fast convergence and good distance properties.

There are numerous structured interleaver approaches that have high-spread properties.

Examples for such interleaver are: dithered golden interleavers [48], high-spread random

(HSR) and dithered-diagonal (DD) interleavers [53] and dithered-relative prime (DRP)

interleavers [26]. These interleavers maximize the overall (minimum) spread, defined be-

low [26], and provide good error performance. The spread between two elements i and j in

an interleaver is defined as:

S ′′
new(i, j) = |π(i) − π(j)| + |i − j|. (2.1)

The minimum spread associated with index i is then

S ′
new(i) = min

j,j �=i
S ′′

new(i, j). (2.2)

The overall (minimum) spread is defined as:

Snew = min
i

S ′
new(i). (2.3)

The following discussion concerns the DRP design approach. Let �x� be the largest

integer ≤ x and [x]K be the x modulo K operation. The DRP design approach is shown

in Fig. 2.3 and consists of three steps [26]:

- First, the input vector, vin, is permuted locally using a small read dither vector, r, of

length R that is typically 2, 4, 8 or 16. The interleaved version va can be expressed

5Extrinsic information is discussed in detail in Section 2.3.

2 Turbo Codes 22

as

va(i) = vin(πa(i)),

where

πa(i) = R�i/R� + r ([i]R) , i = 0, · · · , K − 1.

(2.4)

- Next, the resulting vector, va, is permuted using a relative prime (RP) interleaver,

with starting index s and relative prime increment p, to obtain good spread. The

interleaved version vb can be expressed as

vb(i) = va(πb(i)),

where

πb(i) = [pi + s]K i = 0, · · · , K − 1.

(2.5)

- Finally, the resulting vector, vb, is permuted locally using a small write dither vector,

w, of length W. The interleaved version is the output vector vout and can be expressed

as

vout(i) = vb(πc(i)),

where

πc(i) = W �i/W � + w ([i]W) , i = 0, · · · , K − 1.

(2.6)

Consequently, the output vector vout can be expressed using the input vector vin and the

equivalent overall interleaver vector, π, referred to as the DRP interleaver.

vout(i) = vin(π(i)),

where

π(i) = πa(πb(πc(i))), i = 0, · · · , K − 1.

(2.7)

Note that the interleaver length, K, must be a multiple of both R and W .

For any dither vectors r and w, it can be shown that DRP interleavers have the following

property:

π(i + M) = [π(i) + pM]K i = 0, · · · , K − 1, (2.8)

2 Turbo Codes 23

v

v

R R

W W ...

...

...

...

read
dither

RP
Inter.

write
dither

v

v

a

b

in

out

K=nW

K=mR

s+ps s+2p ...

r

w

Fig. 2.3 Dithered relative prime (DRP) interleavers. Figure is taken
from [26].

where M is the least common multiple of R and W , and the integer values p and K

must be relative primes to ensure that the interleaver references all symbol elements. This

nice property results in a significant reduction in memory requirement because only M

repeating index increments need to be stored instead of the entire K indices. In other

words, DRP interleavers are memory-efficient and can be generated on the fly using only

M-index increments. In this thesis, the DRP approach is the basis for the new interleavers

designed for single- and double-binary turbo codes. This is partly because its structure

makes the search for good interleavers in the interleaver space relatively easy.

2.1.3 Trellis Termination

The truncation of ordinary convolutional codes without tail bits6 results in significant degra-

dation in error performance. This degradation occurs mainly for the bits near the unter-

minated end. For turbo codes the degradation in error performance is less. This is because

turbo decoding uses constituent decoders that exchange a priori probabilities (extrinsic

information) [54]. The higher the quality of the exchanged extrinsic information, the less

is the degradation in error performance. This discussion does not conclude or suggest that

trellis termination is not important for turbo codes. It just gives an intuitive explanation

that the main purpose of trellis termination in turbo codes is not to combat the degradation

in decoding performance that might occur near the end of the input sequence. Rather, the

6Tail bits are the extra bits needed to be encoded to drive the encoder to the all-zero state.

2 Turbo Codes 24

primary purpose is to avoid poor distance properties. This is demonstrated by the following

example.

Assume a rectangular interleaver, where the data to be interleaved are written into

the matrix row by row, and read in columns from the upper left corner. This interleaver

interleaves the last symbol in the input sequence to the same position. If both trellises

are not terminated, then the minimum distance is very low, namely 37, and is caused by

the input sequence u = (0, · · · , 0, 1). This is a simple example that demonstrates the

importance of proper trellis termination from a distance spectrum perspective. This poor

minimum distance can be improved by simply reading the columns from the lower right

corner instead of from the upper left corner. A good interleaver must prevent the moving

of symbols near the end of the input sequence to positions near the end of the interleaved

input sequence. Even so, this will not yield good distance properties, unless the trellises

are terminated properly. From this discussion, it follows that poor distance properties are

most likely to occur if neither of the trellises is terminated.

Since turbo codes use constituent recursive convolutional encoders, the problem associ-

ated with terminating both trellis at the same time is rather complicated. This is because

of the presence of the interleaver. There are various strategies of trellis termination. Some

of them are discussed next.

Both encoders are terminated with individual tail symbols

It is well known that any recursive convolutional encoder of δ delays is guaranteed to be

driven from any state sx to any state sy by a sequence of symbols, referred to as tail symbols,

that are no longer than δ symbols. The tail symbols that drive the encoder from the state

sx to the all-zero state can be pre-computed for all possible 2δ states and stored in a table.

The first encoder (ENC1) and the second encoder (ENC2) start encoding in the all-zero

state and are driven back to the all-zero state by δ1 and δ2 tail symbols, respectively. Here,

δ1 and δ2 are the number of delays in ENC1 and ENC2, respectively. These δ1 and δ2

tail symbols are not included in the interleaver but are sent together with their parities to

the decoder. This trellis termination has been adopted in the UMTS standard [25] and is

referred to in this thesis as UMTS-termination. Compared to the case where none of the

trellises are terminated, the minimum distance here is increased only by the extra weight

7Assuming the use of rate-1/2 constituent encoders.

2 Turbo Codes 25

resulting from δ1 and δ2 tail symbols and their corresponding parities. However, this type of

termination still can produce low minimum distance because both trellises are terminated

independently. Another drawback of this type of termination is the reduction in code rate,

especially for short interleavers. Assuming the use of rate-1/2 convolutional encoders, the

overall code rate is Rc = K/(3K + 2δ1 + 2δ2).

Only first encoder is terminated

A common trellis termination method found in the literature is to terminate ENC1 and to

leave ENC2 unterminated. ENC1 starts encoding in the all-zero state and is driven back

to the all-zero state after encoding the K information symbols by δ1 tail symbols. The

δ1 tail symbols are included in the sequence entering the interleaver, which implies that

the interleaver length is K + δ1. The interleaved sequence is fed to ENC2 that starts in

the all-zero state and is left unterminated in an unknown state after encoding the K + δ1

interleaved symbols. Terminating ENC1 reduce the likelihood of obtaining poor distance

properties because the minimum distance is guaranteed to be caused by an input sequence

of weight greater than or equal to 2. Assuming good spread, it is unlikely that both non-

zero symbols in the un-interleaved input sequence are interleaved to positions near the end

of the interleaved input sequence. For this reason, most small distances are eliminated.

A drawback of this type of termination is the reduction in code rate, especially for short

interleavers. Assuming the use of rate-1/2 convolutional encoders, the overall code rate is

Rc = K/(3(K + δ1)).

Both encoders are terminated with a single set of termination symbols

Both encoders start and end encoding into the all-zero state by inserting q = δ1 + δ2

termination symbols to the K information symbols [55]. The resulting input sequence has

K + q symbols and consequently the interleaver length is K + q. It is shown in [55] that

there is a q-by-q matrix that maps the q termination symbols to the final total state (the

final state of both encoders). The first step in the encoding process is to choose the q

termination positions within the K + q positions. The encoding is performed in two stages.

In the first stage, the K information symbols are placed in the non-termination positions

and the q termination positions are filled with zero symbols. This input sequence of length

K +q is encoded by the turbo-code encoder that uses an interleaver of length K +q and the

2 Turbo Codes 26

resulting total state is kept. This total state is multiplied with the inverse of q-by-q matrix to

obtain the values of the termination symbols. In the second and final stage, the termination

symbols are inserted into the input sequence and turbo encoding is performed to produce the

final codeword. The q termination positions are independent of the information symbols,

so they can be selected during the encoder design. Any q independent positions that

span the termination space will work. Thus, there are many possible choices for the q

termination positions. However, it is common to choose them close to the end of the non-

interleaved K + q symbols. This will reduce the extra complexity resulting from the second

encoding [56]. This trellis termination is referred to in this thesis as dual-termination. This

type of trellis termination provides good distance properties (assuming proper interleaver

design) because both encoders are terminated and all encoded symbols are included in the

interleaver. Again, this termination strategy results in a further reduction in code rate,

especially for short interleavers. Assuming the use of rate-1/2 convolutional encoders, the

overall code rate is Rc = K/(3(K + δ1 + δ2)).

Both encoders are terminated using tail-biting

Circular coding makes it possible to start the encoding at a data dependent state, which is

called the circular state Sc, and end the encoding in the same state without any reduction

in code rate. If the information sequence contains K symbols, where K is not a multiple

of the period of the encoding recursive generator, then the existence of circular state Sc

is guaranteed. Since the value of the circular state Sc depends on the sequence to be

encoded, determining the circular state requires a pre-encoding operation. For the pre-

encoding the encoder is initialized to the all-zero state. Then the data sequence goes

through the encoder. At the end of the pre-encoding stage the encoder state is S0
K . The

circular states Sc is then obtained from the expression Sc =
(
I ⊕ GK

)−1 · S0
K [57], where

⊕ denotes the bit-by-bit XOR operation. Here I and G are the identity matrix and the

generator matrix, respectively. The circular states can be pre-computed and stored for all

interleaver lengths of interest. For the case where K is a multiple of the period of the

encoding recursive generator, alternative circular coding schemes presented in [56, 58] can

be applied. This type of trellis termination has two advantages, namely, (a) no reduction

in code rate and (b) yields good distance properties, provided that the interleaver is well

designed. One disadvantage is that the decoder needs extra processing to estimate the

2 Turbo Codes 27

starting and ending states, which are unknown to it.

2.1.4 Puncturing

Puncturing refers to the process of removing certain bits from the codeword. The purpose

of puncturing is to increase the overall code rate. It is common to puncture only the parity

symbols of the first and second encoders. However, a significant improvement in the dis-

tance properties can be achieved if a small number of systematic symbols is punctured [37].

This is especially true for high code rates because the minimum distance is usually caused

by low input weight. This means that the number of punctured systematic symbols can

be increased without or with a small loss in the contribution of systematic part to the

overall minimum distance. Increasing the number of punctured systematic symbols means

that fewer parity symbols are punctured. This results in an improvement in the distance

properties because the minimum distance is mainly determined by the parity contribution,

especially for well designed interleavers.

In [59], a rate-1/2 turbo code that uses 4-state constituent encoders was designed con-

sidering the puncturing of the systematic part. The simulated results showed only a small

improvement in flare performance. This is partly because only random interleavers were

investigated. Results for 8 and 16-state turbo codes, for higher code rates with punctur-

ing of the systematic symbols, were presented in [26, 60, 37]. In practice, the desirable

code rate is usually achieved by puncturing the systematic part and the parities result-

ing from the first and second encoder using puncturing masks that repeat. However, care

must be taken when the systematic part is punctured. This is because certain puncturing

masks for the systematic part can lead to catastrophic puncturing, where different input

sequences produce the same codeword [37]. Catastrophic puncturing can be systematically

avoided, if highly structured interleaver, such as dithered relative prime (DRP) interleavers

are used [37].

2.2 Turbo Decoding

As mentioned earlier, tubo codes are used to construct “large codes” that can be decoded

with reasonable complexity using iterative decoding of the constituent codes that compose

the turbo codes. The important element in turbo decoding are the constituent soft-in

soft-out (SISO) decoders (Fig. 2.4). Each SISO takes as inputs:

2 Turbo Codes 28

- The output of the demodulator corresponding to the transmitted systematic part yS.

- The output of the demodulator corresponding to the transmitted parities associated

with the SISO (i.e., yP1 for SISO1 and yP2 for SISO2).

- A priori information Lapr. That is, Lt
apr = ln p(ut=1)

p(ut=0)
for single-binary turbo codes

and Lt
apr =

{
ln p(ut=01)

p(ut=00)
, ln p(ut=10)

p(ut=00)
, ln p(ut=11)

p(ut=00)

}
for double-binary turbo codes. Here

t = 0, · · · , K − 1 where K is the size of the information sequence in symbols.

Let ySISO be the part of received sequence corresponding to the SISO (i.e., ySISO = yS, yP1

for SISO1 and ySISO = yS, yP2 for SISO1). Each SISO is capable of producing two soft-

outputs:

- A soft-output called extrinsic information, Lex, suitable for exchange between con-

stituent decoders.

- A posteriori information that is suitable for hard-decision. That is, Lt
apo = ln

p(ut=1|ySISO)

p(ut=0|ySISO)

for single-binary turbo codes and Lt
apo=

{
ln

p(ut=01|ySISO)

p(ut=00|ySISO)
, ln

p(ut=10|ySISO)

p(ut=00|ySISO)
, ln

p(ut=11|ySISO)

p(ut=00|ySISO)

}
for double-binary turbo codes. Again, here t = 0, · · · , K − 1 where K is the size of

information sequence in symbols.

The SISO considered in this thesis is based on the maximum a posteriori (MAP) algorithm

described in detail in Section 2.3. In the case where the codeword is punctured before

transmission, the demodulator output corresponding to the punctured bits is set to zero.

The iterative decoding is performed as follows. The SISO1 takes as input the received

systematic part yS, the parities yP1 belonging to ENC1 and the a priori information Lapr1.

In the first iteration the Lapr1 values are initialized with zeros, assuming that all symbols

entering ENC1 are equally probable. SISO1 produces the extrinsic information Lex1 that

is interleaved, using the same interleaver π used by the turbo-code encoder, and passed

to SISO2. SISO2 takes as inputs the interleaved received systematic yS
π , the parities yP2

belonging to ENC2 and the extrinsic Lex1 provided by SISO1 as a priori information Lapr2.

SISO2 produces the extrinsic information Lex2 that is de-interleaved, using the inverse

interleaver π−1, and passed to SISO1 as a priori information. This procedure is repeated

iteratively. After a number of iterations, SISO2 produces a posteriori information Lapo2.

The Lapo2 values are de-interleaved, using π−1, to match the order of the systematic part.

2 Turbo Codes 29

Then, for each time instant t = 0, · · · , K − 1 a hard-decision is performed based on the

Lt
apo2 values (Fig. 2.4). The next paragraph discusses the relation between the number

of iterations and error rates. An iteration, also called a full-iteration, refers to two SISO

decodings. A half-iteration refers to a single SISO decoding.

SISO1 SISO2

π

Sy

1Py 2Py

1exL
π 2aprL1aprL 2exL

1−π

2apoL
1−π û

Fig. 2.4 Turbo decoder structure.

Turbo code error performance can be divided into three main regions: (a) low SNR

region; (b) medium SNR region; and (c) high SNR region. In region (a), the performance

is very poor and can be improved by increasing the number of iterations; however the overall

error performance is certainly not suitable for most communication systems. In region (b),

known as waterfall region, the error rates drops rapidly (see Fig. 1.4). In this region,

many iterations are required to achieve good performance and increasing the number of

iterations does improve the performance. Region (c), known as error flare or error floor

region, is characterized by severe flattening of the error rate curves (see (Fig. 1.4). In this

region the iterative decoder typically converges after a few iterations and further iterations

usually lead to only a negligible improvement in performance. The error flare is mainly

characterized by the minimum distance of the turbo code, which in turn is determined by

the interleaver used (assuming that the constituent encoders and puncturing patterns have

already been chosen).

2.3 MAP Algorithm

Bahl, Cocke, Jelinek and Raviv presented an optimal algorithm [61] for estimating the a

posteriori probabilities of states and state transitions of a Markov source observed through

a discrete memoryless channel. Since the codewords generated by a convolutional code

can be viewed as the output of a Markov source, this algorithm is suitable for decoding

convolutional codes. This algorithm, often referred to as the BCJR algorithm, was modified

2 Turbo Codes 30

by Berrou [21] to produce a posteriori probabilities for each information symbol. The

modified algorithm, often referred to as the maximum a posteriori (MAP) algorithm, is

optimal in the sense of minimizing the symbol error rate. In the turbo code literature, the

MAP algorithm is also referred to as the a posteriori probability (APP) algorithm or the

BCJR algorithm.

While the Viterbi algorithm [62, 63, 64] finds the most probable information sequence,

or maximum likelihood (ML) sequence, that was sent, the MAP algorithm finds the most

probable information symbol, at each time index, given the received coded sequence. The

MAP algorithm is a soft-in soft-out (SISO) algorithm that is suitable for the iterative de-

coding used in turbo codes, while the original Viterbi algorithm is a hard-output algorithm

(i.e., it does not produce a posteriori probabilities) and therefore it is not suitable for itera-

tive decoding. The max-log MAP algorithm [65, 66] is a reduced complexity version of the

MAP algorithm. There are two modifications to the Viterbi algorithm which produce soft-

output Viterbi-algorithms SOVAs. One is Battail’s SOVA [67] and the other is Hagenauer’s

SOVA [68]. The max-log MAP algorithm is about twice [65] as complex as the SOVA al-

gorithm [68] and provides a good tradeoff between performance and complexity. The use

of Hagenauer’s SOVA algorithm leads to a performance degradation of a few tenths [65]

of a decibel compared to the max-log MAP algorithm. A modified SOVA algorithm with

complexity lower than that of the max-log MAP algorithm and a small degradation in error

performance was presented in [69] and further discussed in [70].

The MAP algorithm is well described in the literature [21, 71, 72, 73, 74] for single-

binary recursive systematic convolution (RSC) codes and binary antipodal signalling. This

section discusses the MAP algorithm without putting any constraints on the type of RSC

encoder (i.e., single-binary, double-binary,...) or type of M-ary modulation scheme.

Let u = (u0, · · · , uK−1) be the K input symbols to a RSC encoder. Let s′ = st−1

be the encoder state at time (t − 1) and s = st the encoder state at time t due to the

information symbol ut. Note that at each time instant t, the information symbol ut and its

corresponding coded bits vt are fully determined by the pair (s′, s). Let y be the received

vector representing the transmitted coded sequence u and z be an element of the set φ0 of

all possible input symbols. The log likelihood ratio (LLR) for the APP of the information

2 Turbo Codes 31

symbol ut = z, given the received y, is expressed as [66]:

L(z)(ût) ≡ ln
p(ut = z | y)

p(ut = 0 | y)
= ln

∑
(s′→s,ut=z)

pt(s
′, s, y)∑

(s′→s,ut=0)

pt(s′, s, y)
, (2.9)

where p(ut = z | y) is the APP of the information symbol z given y. Note that L(z=0)(ût)

is zero and therefore does not need to be calculated explicitly. The sum of the joint

probabilities pt(s
′, s, y) in the numerator is taken over all transitions from state s′ to state

s caused by non-zero symbol z, whereas pt(s
′, s, y) in the denominator considers only the

transitions caused by the zero symbol. These soft-output LLR are the basis for a hard-

decision, ût = arg max
z∈φ0

L(z)(ût). If arg max
z∈φ0

L(z)(ût) returns more than one value, ût can be

set to any one of these values.

Assuming a transmission over a memoryless channel, the joint probability pt(s
′, s, y)

can be expressed as the product of three independent probabilities [66]:

pt(s
′, s, y) = p(s′, yj<t) · p(s, yt | s′) · p(yj>t | s)

= p(s′, yj<t)︸ ︷︷ ︸ · p(s | s′)p(ut = z | s′, s)p(yt | ut = z)︸ ︷︷ ︸ · p(yj>t | s)︸ ︷︷ ︸
= αt−1(s

′) · γ
(z)
t (s′, s) · βt(s)

(2.10)

where yj<t is the received sequence corresponding to the first (t− 1) trellis sections, yj>t is

the received sequence corresponding to the last (K−t) trellis sections and yt is the received

sequence corresponding to the trellis section at time t. The terms αt−1(s
′) = p(s′, yj<t) and

βt(s) = p(yj>t | s) are known as the forward and backward state probabilities, respectively,

and γ
(z)
t (s′, s) = p(s | s′)p(ut = z | s′, s)p(yt | ut = z) is the transition probability. Thus,

equation (2.9) can also be expressed as [66]:

L(z)(ût) = ln

∑
(s′→s,ut=z)

αt−1(s
′) · γ(z)

t (s′, s) · βt(s)∑
(s′→s,ut=0)

αt−1(s′) · γ(0)
t (s′, s) · βt(s)

. (2.11)

The forward state probability αt(s) represents the probability of being in the state s at

time t, given the knowledge of the previous received sequence corresponding to the first t

2 Turbo Codes 32

trellis sections. It can be computed recursively in the following manner [61]:

αt(s) =
∑

s′
αt−1(s

′) · γ(z)
t (s′, s), t = 1, · · · , K − 1. (2.12)

In other words, each new alpha at state s is the sum of the previous alphas multiplied by

the transition probabilities corresponding to the transitions form s′ to s. Assuming that

the encoder starts in the zero state, the initial forward state probabilities are α0(s
′ = 0) = 1

and α0(s
′
= 0) = 0.

The backward state probability βt−1(s
′) represents the probability of being in the state

s′ at time (t−1), given the knowledge of the future received sequence corresponding to the

last (K − t + 1) trellis sections. It can be computed recursively backwards in the following

manner [61]:

βt−1(s
′) =

∑
s

βt(s) · γ(z)
t (s′, s), t = K, · · · , 2 (2.13)

The values of betas are computed in the same way as those of alphas, but by starting at

the end of the trellis and going in the reverse direction. Assuming a terminated trellis, the

initial backward state probabilities are βK(s = 0) = 1 and βK(s
= 0) = 0. If the trellis is

not terminated, all βK(s) are assumed to be equally probable, implying that βK(s) = 1/∆,

where ∆ is the number of states of the RSC encoder. The initialization of alphas and betas

for tail-biting [56, 57, 58] is discussed in the next chapter, when DVB-RCS [15] standard

double-binary turbo codes are introduced.

The transition probability is expressed as [61]

γ
(z)
t (s′, s) = p(s | s′) · p(ut = z | s′, s) · p(yt | ut = z). (2.14)

If the transition s′ → s is determined by the input symbol z′, the probability p(ut = z | s′, s)

is either one or zero depending on whether ut = z′ or ut
= z′. Assuming a trellis without

parallel transitions, which is the case for convolutional codes, the probability p(s | s′) is

the same as the a priori probability p(ut = z) if p(ut = z | s′, s) = 1 [65]. Thus,

γ
(z)
t (s′, s) = p(ut = z) · p(yt | ut = z). (2.15)

A turbo decoder uses constituent MAP decoders that exchange probabilities in an iter-

ative manner, which improves the reliability of the a posteriori probabilities. Each MAP

2 Turbo Codes 33

decoder uses the same information symbols, also called the systematic symbols, to gener-

ate the a posteriori probabilities. Passing these probabilities between the constituent MAP

decoders results in reuse of the probabilities associated with the systematic part over and

over, which in turn affects the reliability of the a posteriori probabilities. Thus, the prob-

abilities passed between the constituent decoder should be properly composed. In other

words, only a specific part of the MAP decoder soft-output, L(z)(ût), should be exchanged

between the constituent decoders. This specific part is known as extrinsic information.

How to extract the extrinsic information from the L(z)(ût) is discussed next.

The information symbol ut = z enters the RSC encoder that produces the sequence

vt = (ut, vt), where ut is the systematic part and vt the parity part. Since there is a unique

mapping from ut = z to vt, the probability p(yt | ut = z) is the same as p(yt | vt). Let

y(ut) and y(vt) be the parts of the received vector y that corresponds to the transmitted

systematic part ut and parity part vt, respectively. The term p(yt | vt) can be expressed

as the product of two probabilities: (a) the probability of the systematic part, γ
(z)
t (ut) =

p(y(ut) | ut), and (b) the probability of the parity part, γ
(z)
t (vt) = p(y(vt) | vt). Using the

abbreviation γ
(z)
t (apr) = p(ut = z), equation (2.15) can be written as:

γ
(z)
t (s′, s) = γ

(z)
t (apr) · γ(z)

t (ut) · γ(z)
t (vt). (2.16)

Inserting (2.16) in (2.11) results in:

L(z)(ût) = ln

∑
(s′→s,ut=z)

αt−1(s
′) · γ(z)

t (apr) · γ(z)
t (ut) · γ(z)

t (vt) · βt(s)∑
(s′→s,ut=0)

αt−1(s′) · γ(0)
t (apr) · γ(0)

t (ut) · γ(0)
t (vt) · βt(s)

. (2.17)

Note that γ
(z)
t (apr) and γ

(z)
t (ut) in the numerator of (2.17) are the same for all trellis

branches at time t. Similarly, γ
(0)
t (apr) and γ

(0)
t (vt) in the denominator of (2.17) are the

same for all trellis branches at time t. These terms can be taken out of the summations.

This results in the following expression for the soft-output LLR:

L(z)(ût)︸ ︷︷ ︸
A posteriori LLR

= ln
γ

(z)
t (apr)

γ
(0)
t (apr)︸ ︷︷ ︸

A priori LLR

+ ln
γ

(z)
t (ut)

γ
(0)
t (ut)︸ ︷︷ ︸

Intrinsic LLR

+ ln

∑
(s′→s,ut=z)

αt−1(s
′) · γ(z)

t (vt) · βt(s)∑
(s′→s,ut=0)

αt−1(s′) · γ(0)
t (vt) · βt(s)︸ ︷︷ ︸

Extrinsic LLR

. (2.18)

2 Turbo Codes 34

Lt
apo = Lt

apr + Lt
in + Lt

ex. (2.19)

The a posteriori LLR, abbreviated Lt
apo, is composed of three LLRs. The first one, ab-

breviated Lt
apr, is the a priori LLR. The second one, abbreviated Lt

in and called intrinsic

information, contains the contribution of the systematic part given yt. The third one, ab-

breviated Lt
ex and called extrinsic information, provides the pure probabilistic contribution

of the parity, and the rest of the systematic, symbols given both the encoder structure and

the received sequence y. When iterating, the extrinsic information from the previous MAP

decoder becomes the a priori information for the current MAP decoder. That is,

Lt
apo(curr.) = Lt

ex(prev.) + Lt
in(curr.) + Lt

ex(curr.). (2.20)

The calculation of the bit LLR for an arbitrary constellation is not the focus of this

thesis. However, some pragmatic aspects, that are in line with common practice, are

discussed. The next discussion focuses on how to evaluate the probabilities γ
(z)
t (ut) and

γ
(z)
t (vt) for an arbitrary M-ary modulation.

In general, these probabilities (i.e.,γ
(z)
t (ut) and γ

(z)
t (vt)) are evaluated using bit probabil-

ities. The following example demonstrates why the evaluation is based on bit probabilities.

Assume that ut consists of two bits ut = (u1
t , u

2
t) and that the modulation scheme is 8-PSK.

Consider the transmission of the 3 symbols ut, ut+1, ut+2 = (u1
t , u

2
t , u

1
t+1, u

2
t+1, u

1
t+2, u

2
t+2).

Since the modulator maps every 3 bits to a single point in a two dimensional space (I-

and Q-component), (u1
t , u

2
t , u

1
t+1) and (u2

t+1, u
1
t+2, u

2
t+2) are transmitted and received as y

and y, respectively. The determination of γ
(z)
t (ut) and γ

(z)
t+2(ut+2) involves only y and y,

respectively. However, the determination of γ
(z)
t+1(ut+1) is not obvious because u1

t+1 is trans-

mitted in the received y and u2
t+1 is transmitted in the received y. A solution to this

problem is to determine the bit probabilities and combine them to get the desired symbol

probabilities. That is, γ
(z)
t+1(ut+1) = p(y(ut+1) | ut+1) is approximated by the product of

γ
(z)
t+1(u

1
t+1) = p(y(u1

t+1) = y | u1
t+1) and γ

(z)
t+1(u

2
t+1) = p(y(u2

t+1) = y | u2
t+1).

Let k and q be the number of bits in the information symbol ut and parity vt, respec-

tively. The probabilities γ
(z)
t (ut) and γ

(z)
t (vt) are

∏k
i=1 γ

(z)
t (ui

t) and
∏q

i=1 γ
(z)
t (vi

t), respec-

tively. This is strictly true only if the bits are associated with different received samples

with independent noise on each. For example, with 64-QAM there are 6 bits involved

but only 2 independent noise samples per symbol. Thus, these bit probabilities are not

independent. In fact, the bits are often interleaved (channel interleaving) before mapping

2 Turbo Codes 35

them to constellation points, so that the bits are spread out amongst different constellation

points. This way the bit probabilities can be considered to be essentially independent, so

that they can be simply combined later.

For binary antipodal signalling such as BPSK and Gray labelled QPSK, the determi-

nation of the bit probabilities is straight forward because each coded bit ct is mapped to

the value xt = (1 − 2ct)
√

E = (−1)ct
√

E, where E is the energy of a modulated bit. The

value xt is corrupted by noise during the transmission and the received value is denoted

by y(ct). Assume that the noise is AWGN with variance σ2 = N0

2
, N0 being the one-sided

power spectral density of the noisy channel. The probabilities γt(ct = 1) and γt(ct = 0) are

given by

γt(ct = 1) =
1√
2πσ

e
− 1

2

�
y(ct)+

√
E

σ

�2

γt(ct = 0) =
1√
2πσ

e
− 1

2

�
y(ct)−

√
E

σ

�2 (2.21)

It follows that the bit LLR is

ln
γt(ct = 1)

γt(ct = 0)
= −4

√
E

2σ2
y(ct) = −4

√
E

N0

y(ct). (2.22)

Note that BPSK and Gray labelled QPSK are widely used in practice, but they are not as

bandwidth efficient as 64-QAM, for example.

For high order M-ary modulations, the estimation of bit probabilities from the received

symbol increases the complexity and memory requirements, unless designed appropriately.

If the I- and Q-component of the M-ary constellation cannot be mapped to two inde-

pendent one-dimensional components, such as is the case for high order M-PSK (8-PSK,

16-PSK,· · · , etc), all possible M signal points have to be used to obtain an estimate for

each bit probability. Since this process has to be repeated for each received point, the com-

plexity increases significantly. However, the complexity and memory requirements can be

reduced for constellations made of two independent components such as 16-point quadra-

ture amplitude modulation (QAM) and 64-point QAM, where they can be modelled as two

independent 4-PAM and 8-PAM signals. To estimate the bit probability of 64-QAM, only

8 possible amplitudes have to be used, which means a reduction in complexity by a factor

of
√

M . The following example shows how to estimate the bit probabilities of a 16-QAM

2 Turbo Codes 36

constellation.

The modulator maps four coded bits (c1, c2, c3, c4) into a single point and transmits it

over the channel. The constellation points can be labelled in such a manner that (c1, c2)

are mapped to an I-component and (c3, c4) are mapped to a Q-component of the 16-QAM

constellation (Fig. 2.5). Since I- and Q-components are statistically independent, the bit

probability can be estimated given the received point (yI , yQ) [75].

=)c,c(21
(0,1) (0,0) (1,0) (1,1)

1I 0I 2I 3I

=)c,c(43
(0,1) (0,0) (1,0) (1,1)

1Q 0Q 2Q 3Q

Fig. 2.5 Mapping the first two bits (c1, c2) and the last two bits (c3, c4) of
a 16-QAM signal point to two independent 4-PAM signals.

γ(c1 = 1) = p(yI | I2) + p(yI | I3)

γ(c1 = 0) = p(yI | I1) + p(yI | I0)

γ(c2 = 1) = p(yI | I1) + p(yI | I3)

γ(c2 = 0) = p(yI | I0) + p(yI | I2).

(2.23)

Similarly, γ(c3) and γ(c4) can be estimated for both values 0 and 1 using the yQ component

of the received point (yI , yQ).

Note that when using higher order modulations, different bits will typically have differ-

ent average reliabilities. This leads to a nontrivial problem of how to best match the con-

stellation mapping to information bits and parity bits. It has been observed that mapping

the information bits to the most protected position yields the best convergence. Mapping

the parity bits to the most protected position yields the best flare. In other words, there

is a trade-off between convergence (waterfall) and flare performance.

Log MAP algorithm

The log MAP algorithm was introduced to reduce the complexity of the MAP algorithm.

Using the logarithmic domain, the multiplications and divisions become additions and

2 Turbo Codes 37

subtractions, which results in a reduction in complexity. In addition, the use of logarithms

tends to help with overflow and precision issues.

The log MAP algorithm is obtained by applying the natural logarithm to the equations

for the transition probabilities, the alphas and the betas:

γ
(z)
t (s′, s) ≡ ln γ

(z)
t (s′, s) = ln p(yt | ut = z) + ln p(ut = z) (2.24)

αt(s) ≡ ln αt(s) = ln
∑
s′

eαt−1(s′)+γ
(z)
t (s′,s) (2.25)

βt−1(s
′) ≡ ln βt−1(s

′) = ln
∑

s

eβt(s)+γ
(z)
t (s′,s). (2.26)

It follows that the soft-output LLR for the log MAP algorithm is:

L(z)(ût) = ln

∑
(s′→s,ut=z)

eαt−1(s′) · eγ
(z)
t (s′,s) · eβt(s)

∑
(s′→s,ut=0)

eαt−1(s′) · eγ
(0)
t (s′,s) · eβt(s)

. (2.27)

The problem associated with the evaluation of the sum of exponentials can be solved

using the expression [76]:

ln (ea1 + ea2) = max(a1, a2) + ln
(
1 + e−|a1−a2|) , (2.28)

where the correction term is ln
(
1 + e−|a1−a2|) can be approximated by a small lookup table

with a negligible affect on performance [74]. If the number of exponentials exceeds two, the

sum of these exponentials can be obtained recursively as follows, where f(x) = ln
(
1 + e−|x|)

ln (ea1 + ea2) ≡ max∗(a1, a2) = max(a1, a2) + f(a1 − a2)

ln (ea1 + ea2 + ea3) = ln
(
emax∗(a1,a2) + ea3

)
= max∗(max∗(a1, a2), a3)

etc.

(2.29)

As shown in [65, 74], the true values of the correction term
(
1 + e−|a1−a2|) can be

approximated using pre-calculated values that are stored in a one-dimensional lookup table,

2 Turbo Codes 38

which results in reduced complexity. Simulation results [65] have shown that the use of a

lookup table with only 8 values results in very little degradation compared to a true MAP

algorithm.

Since the evaluation of the conditional probability p(yt | ut = z) requires the knowledge

of the noise variance σ2, both the MAP and the log MAP algorithms require the knowledge

of the channel’s SNR. If the channel characteristics do not vary over time, it is sufficient to

use the SNR of the design point, otherwise, good variance estimators are available in [77, 78].

However, accurate estimation of the SNR is not necessary. It has been shown that iterative

decoding is more tolerant of an overestimation of the SNR than an underestimation [79, 80].

Max-Log MAP algorithm

The max-log MAP decoding algorithm [65, 66] is an approximation to the MAP decoding

algorithm and is used in practice because of its reduced computational complexity. The

reduction in complexity is due, in part, to the transformation of multiplications and divi-

sions to additions and subtractions, but is mainly due to avoiding the computation of the

exponential function by using the approximation

ln
∑

j

eaj ≈ max
j

(aj). (2.30)

However, the approximation leads to a degradation in the error rate performance. In the

next chapter a technique that reduces this degradation is introduced [36].

Applying the max-function gives the following expressions for γ, α and β

γ
(z)
t (s′, s) = ln p(yt | ut = z) + ln p(ut = z) (2.31)

αt(s) ≈ max
s′

(
αt−1(s

′) + γ
(z)
t (s′, s)

)
(2.32)

βt−1(s
′) ≈ max

s

(
βt(s) + γ

(z)
t (s′, s)

)
(2.33)

and

L(z)(ût) ≈ max
(s′→s,ut=z)

(
αt−1(s

′) + γ
(z)
t (s′, s) + βt(s)

)
− max

(s′→s,ut=0)

(
αt−1(s

′) + γ
(0)
t (s′, s) + βt(s)

)
.

(2.34)

Note that the max-log MAP algorithm is basically the log MAP algorithm without the

2 Turbo Codes 39

correction term (or lookup table). As opposed to the MAP and log MAP algorithms, the

max-log MAP algorithm does not require the knowledge of the SNR and is insensitive to

scaling of the intrinsic LLRs.

2.4 Soft-decision and Hard-decision Decoding

This section discusses the importance of soft-decision decoding. This is done by comparing

the SNR required with soft-decision decoding with that required for hard-decision decoding.

Binary antipodal signalling over an AWGN channel and maximum likelihood (ML) decoding

are assumed. BPSK and Gray labelled QPSK modulation are examples of binary antipodal

signalling.

2.4.1 Coding Gain with Soft-decision Decoding

In soft-decision decoding the demodulator passes the sampled, match filtered analog values

of the received vector y directly to the decoder. The ML-decoder chooses the message

signal that is closest to the received vector y in the Euclidean distance sense.

Define C(Ñ, K̃) as a linear code, where Ñ is the codeword length in bits and K̃ is the

number of information bits. Let the vectors xi and xk represent the transmitted signals

xi(t) and xk(t), respectively, in an orthonormal system that spans the signal space. The

message error probability is bounded by the union bound [81]:

Pw ≤ 1

M

M−1∑
i=0

M−1∑
k=0,k �=i

Q

(
dE(xi, xk)√

2N0

)
, (2.35)

where M = 2
�K is the number of binary messages, Q(x) =

∫∞
x

e−t2/2√
2π

dt and dE(xi, xk) =

‖xi − xk‖ is the Euclidean distance between the vectors xi and xk. For binary antipodal

signalling, each bit b is mapped to (1− 2b)
√

E = (−1)b
√

E, where E is the energy used to

transmit each modulated bit. Therefore, the Euclidian distance can be expressed as:

dE(xi, xk) = 2
√

EdH(ci, ck), (2.36)

where dH(ci, ck) is the Hamming distance (number of bits that are different) between

the two codewords ci and ck. Note that for a linear code, all codewords see the same

2 Turbo Codes 40

neighborhood, that is dH(ci, ck) = dH(c0, cj = ci ⊕ ck), where c0 is the all-zero codeword

and ⊕ denotes the bit-by-bit XOR operation. Therefore, the message/codeword error

probability is:

Pw ≤
M−1∑
j=1

Q

(
2
√

EdH(c0, cj)√
2N0

)
. (2.37)

The function Q(x) asymptotically approaches e−
x2

2 as x approaches ∞. Therefore, the

codeword error probability is upper bounded by the sum of (M−1) exponentials. Since each

probability decays exponentially as the Hamming distance dH(c0, cj) grows, the minimum

Hamming distance dH
min = min

j �=0
dH(c0, cj) dominates the sum. Therefore, the asymptotic

codeword error probability is:

Pw ≈ AminQ

(√
2dH

min

E

N0

)
, (2.38)

where Amin is the number of codewords at dH
min. It follows that the asymptotic information

bit error probability is:

Pb ≈ Wmin

K̃
Q

(√
2dH

min

E

N0

)
, (2.39)

where Wmin is the sum of the Hamming weights of all input sequences causing dH
min. For a

fixed K̃ and large SNR, the term Wmin/K̃ is negligible for evaluating performance as a func-

tion of asymptotic SNR and therefore the information bit probability can be approximated

as

Pb ≈ Q

(√
2dH

min

E

N0

)
. (2.40)

If coding is employed, then E = Ec
b = Rc · Eu

b , where Ec
b is the energy per coded bit,

Eu
b is the energy per un-coded bit and Rc is the code rate. Using e−

x2

2 for x approaching

∞, the asymptotic information bit error probability Pb can be expressed as

Pb ≤ e
−RcdH

min

Eu
b

N0 , as
Eu

b

N0
→ ∞ (2.41)

2 Turbo Codes 41

The information bit error probability for un-coded case is given by [82]

Pb = Q

(√
2
Eu

b

N0

)
. (2.42)

Thus, the asymptotic information bit error probability for un-coded case is:

Pb ≤ e
−Eu

b
N0 , as

Eu
b

N0

→ ∞ (2.43)

From (2.41) and (2.43) it follows that the asymptotic information bit error probabil-

ity achieved for the un-coded case at an SNRu =
Eu

b

N0
can be achieved at an SNRc =(

Eu
b

N0

)
/(Rcd

H
min). Therefore, the asymptotic coding gain with soft-decision decoding can be

expressed as:

Gsoft = 10 log10 (SNRu) − 10 log10 (SNRc) = 10 log10

(
Rcd

H
min

)
dB. (2.44)

2.4.2 Coding Gain with Hard-decision Decoding

In hard-decision decoding, the demodulator makes a hard-decision on the components of

the received vector y, that is it decides whether bit 0 or bit 1 was transmitted, and passes

these binary bits to the decoder. The ML-decoder chooses the codeword that minimizes

the Hamming distance between the codeword and the binary sequence received from de-

modulator.

Let C(Ñ, K̃, t) be a code that is capable of correcting at most t-errors. Assuming that

the bit errors are independent and that the channel is BSC with transition probability ε

(bit error probability), the codeword error probability is upper bounded by [4]

Pw ≤
�N∑

n=t+1

(
Ñ

n

)
εn(1 − ε)

�N−n. (2.45)

As the SNR approaches ∞, the transition probability ε approaches 0. Therefore, for a fixed

Ñ and t, the asymptotic codeword error probability is Pw ≈ εt+1. Without investigating

how the information bit error probability Pb compares to the codeword error probability

Pw, it is obvious that Pb ≤ Pw and can be approximated as Pb ≈ εt+1. For binary antipodal

2 Turbo Codes 42

signalling, the transition probability is given by [4]

ε = Q

(√
2

E

N0

)
. (2.46)

If coding is employed (E = Ec
b = Rc · Eu

b), the asymptotic information bit error proba-

bility can be approximated as:

Pb ≈ e
−(t+1)Rc

Eu
b

N0 , as
Eu

b

N0

→ ∞ (2.47)

Using (2.42), the asymptotic bit error probability for the un-coded case can be approx-

imated as:

Pb ≈ e
−Eu

b
N0 , as

Eu
b

N0
→ ∞ (2.48)

From (2.47) and (2.48) it follows that the asymptotic coding gain with hard-decision

decoding is given by:

Ghard = 10 log10 (Rc(t + 1)) dB (2.49)

2.4.3 Soft-decision Decoding versus Hard-decision Decoding

Assuming binary antipodal signalling, AWGN channel and ML decoding it follows from (2.44)

and (2.49) that the coding gain with soft-decision decoding over hard-decision decoding is:

Gsoft vs. hard = 10 log10

(
dH

min

t + 1

)
dB. (2.50)

If the code C(Ñ, K̃, t) is a linear code with minimum distance dH
min, then the hard-

decision error-correcting capability of this code is guaranteed to be t =
⌊

dH
min−1

2

⌋
[83],

where �x� is the largest integer ≤ x. Therefore, soft-decision decoding is asymptotically

(SNR approaches ∞) about 3 dB more efficient that hard-decision decoding. At realistic

SNRs a figure of 2 dB is more appropriate [2].

The above discussion demonstrates that the correction capability of a code can be

improved significantly by applying soft-decision decoding. In practice, the soft output of the

matched filter must be quantized. The finer the quantization, the higher the coding gain.

In practice, 4 and 5 bits of quantization is usually sufficient for binary antipodal signalling

2 Turbo Codes 43

schemes [84]. Finer quantization are required for higher order modulation schemes, such

as 16- or 64-QAM

44

Chapter 3

DVB-RCS Turbo Decoding

The broadband access market is dominated by Digital Subscriber Line (DSL) and cable

modem technology, with increasing competition from terrestrial wireless Local Multipoint

Distribution Service (LMDS) technologies, and emerging competition from satellite wireless

technologies. The technical limitations of DSL (e.g., distance from the switching office),

cable modem (e.g., shared line capacity), and LMDS (e.g., lack of line of sight to towers)

have led to service degradation, which has resulted in slower customer acceptance.

Given rapid growth in the broadband access market and the limitations of existing

technologies, satellite broadband access has emerged as an alternative technology with

particular advantages. One is that a satellite can deploy service over a large area, once

a single hub infrastructure is in place. Others are the low cost and the constant service

quality for all user in the system. This is in contrast to a DSL system, where service quality

depends on the distance to the switching office.

Digital video broadcasting with return channel via satellite (DVB-RCS) is an open

standard that provides a satellite return channel to systems based on the digital video

broadcasting (DVB) standard for satellite transmission. It is published and maintained by

the European Telecommunications Standards Institute (ETSI) for digital video broadcast-

ing [15]. DVB-RCS supports a wide range of applications such as web browsing, videocon-

ferencing, teleworking and distance education. DVB-RCS systems enable two-way commu-

nications between a hub station and remote terminals, referred to as satellite interactive

terminals (SITs). The communication path from the hub station towards the SITs is re-

ferred to as the forward link. The communication path from the SITs back to the hub

3 DVB-RCS Turbo Decoding 45

station is referred to as the return link. The hub station continuously transmits on the

forward link using a time division multiplex (TDM) access technique. The SITs transmit

as needed, sharing the return link resources using a multi-frequency time division multiple

(MF-TDMA) access technique. On the forward link, packets are encapsulated in an MPEG

DVB data-stream received by all SITs. On the return link, packets are encapsulated in

ATM or MPEG data-steam to the hub. Typical data rates forDVB-RCS range from 1 to

10 Mbps on the forward link and 144 kbps to 2Mbps on the return link.

For deep-space and satellite communications where power savings are especially impor-

tant, turbo codes allow for increased energy efficiency without compromising performance.

The DVB-RCS return link uses 8-state double-binary turbo codes of various code rates (1/3

to 6/7) and block sizes (12 to 216 bytes) that include ATM and MPEG sizes. Compared

to classical turbo codes, which use single-binary codes, double-binary turbo codes have a

number of advantages:

- Double-binary turbo codes double the decoding rates in a hardware implementation,

because they allow memory access of two bits at each time instant. The reason for

such decoding rates is the fact that the extrinsic information, which must be passed

to the next decoder after interleaving or de-interleaving, represents two bits at each

time instant. Doubling the decoding rates leads to a reduction in the latency of the

decoder by one half.

- Double-binary turbo codes reduce the sensitivity to puncturing [85]. This can be

explained as follows. Since the rate 1/2 double-binary recursive systematic convo-

lutional (RSC) encoder produces two parity streams, most of the code rates can be

obtained by simply ignoring one of these parity streams and puncturing the other

(if necessary). Ignoring one of the two parity streams results in a new RSC encoder

with a single parity stream. This single parity stream is less punctured compared to

similar single-binary convolutional RCS encoders, which results in less sensitivity to

puncturing.

- Double-binary turbo codes reduce the correlation effects between component de-

coders, which leads to improved convergence [86].

For practical purposes, it is important to reduce the computational complexity of turbo

decoding. An approach for reducing the computational complexity of maximum a posteriori

3 DVB-RCS Turbo Decoding 46

(MAP) decoding [61] has been introduced in [74] for single-binary turbo codes, where there

are only two branches entering and leaving each state. The idea behind this approach is to

avoid the computation of ln(ea + eb) by using the expression [76]

ln (ea1 + ea2) = max(a1, a2) + ln
(
1 + e−|(a1−a2)|) , (3.1)

where the correction term ln
(
1 + e−|a1−a2|) is approximated in a small lookup table with a

negligible effect on performance.

As opposed to single-binary codes where only two branches enter and leave each state,

in double-binary turbo codes there are four branches entering and leaving each state. As

a result of the four branches, the following expression must be evaluated for double-binary

codes

ln
4∑

i=1

eai = max(a1, a2, a3, a4) + ln
4∑

i=1

eai−max(a1,a2,a3,a4). (3.2)

This expression can be evaluated in recursive manner using (2.29) in Section 2.3. However,

this has the following drawbacks:

- Due to the presence of the four values a1, a2, a3, a4 a much larger lookup table is

required to guarantee a reliable approximation for ln
∑4

i=1 eai . This results in an

increase in memory requirements compared to single-binary turbo codes.

- An increase in computational complexity as a result of the evaluation of the expression

ln
∑4

i=1 eai in a recursive way. This is because of (a) the extra computation implied

by (ai − max(a1, a2, a3, a4)) where i = 1, · · · , 4, and (b) the search for the correction

term in the lookup table.

The discussion above shows that the use of true MAP decoding for double-binary turbo

codes results in both extra computational complexity and extra memory requirements. It

is clear that these drawbacks can be avoided by using max-log MAP decoding. However,

the use of max-log MAP decoding results in a degradation in error performance compared

to true MAP decoding. This chapter discusses techniques that improve the max-log MAP

decoding performance. The key element here is the fact that these techniques do not

increase the computational complexity of max-log MAP decoding and yet provide error

performance very close to that of true MAP decoding. This techniques are applied to

3 DVB-RCS Turbo Decoding 47

DVB-RCS turbo codes for ATM and MPEG packet sizes, and simulation results are pre-

sented. A further reduction in computational complexity can be achieved by applying an

effective early stopping criterion. An efficient early stopping criterion that does not affect

the error performance is applied and simulation results are presented for DVB-RCS turbo

codes. Finally, the relation between the error performance and overlap length needed for

decoding of tail-biting turbo codes is investigated for various packet sizes and code rates.

3.1 DVB-RCS Encoding Scheme

3.1.1 Circular Coding

Due to block-oriented encoding, where the data stream is encoded block wise, the convo-

lutional component codes are likely to end in unknown states at the end of the encoding

process. Since the states of the encoders at the end of the encoding process are unknown

to the constituent decoders, the bits at the end of the block are not as well protected. This

results in a degradation in error rate performance if no precautions are taken. The most

common method to overcome this problem is to force the encoder to a known state at the

end of the encoding stage by the addition of termination bits, which are then sent to the

decoder. This lowers the code rate and hence the data rate, especially for short blocks,

resulting in a decrease in the spectral efficiency [87]. Circular coding makes it possible to

start the encoding at a data dependent state, which is called the circular state Sc, and end

the encoding in the same state while avoiding this drawback.

To determine the circular state Sc for the DVB-RCS turbo-code encoder shown in

Fig. 3.1(a), note that the state of the encoder at time t denoted by St depends on the

previous state St−1 and the input couple (At, Bt). At time t the contents of the registers

of the encoder are [57]:

S1,t = S1,t−1 ⊕ S3,t−1 ⊕ At ⊕ Bt

S2,t = S1,t−1 ⊕ Bt

S3,t = S2,t−1 ⊕ Bt,

(3.3)

where ⊕ denotes bit-by-bit XOR operation. This equation can be written in a compact

way as

St = G · St−1 ⊕ X t, (3.4)

3 DVB-RCS Turbo Decoding 48

A

Y1 or Y2 W1 or W2

1
2

C
o
d
ew

o
rd

Systematic part

S1 S2 S3
Interleaver

B
1

2

Puncturing

(a)

0

states states
0

1 1

2 2

3 3

44

55

66

77

00/00 11/00 10/11 01/11 000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

10/11 01/11 00/00 11/00

00/10 11/10 10/01 01/01

10/01 01/01 00/10 11/10

01/00 10/00 11/11 00/11

11/11 00/11 01/00 10/00

01/10 10/10 11/01 00/01

11/01 00/01 01/10 10/10

YWAB /

(b)

Fig. 3.1 Double-binary CRSC encoder for DVB-RCS turbo code and its
corresponding trellis diagram.

3 DVB-RCS Turbo Decoding 49

where the current state St, the generator matrix G and the input vector X t are given by

the following expressions:

St =

 S1,t

S2,t

S3,t

 ; G =

 1 0 1

1 0 0

0 1 0

 ; X t =

 At ⊕ Bt

Bt

Bt

.

When (3.4) is employed, the following expressions are obtained:

S1 = G · S0 ⊕ X1

S2 = G · S1 ⊕ X2

...

SK = G · SK−1 ⊕ XK .

(3.5)

SK can be written in a compact form as a function of the initial state S0 and the input

couples entering the encoder between time 1 and K.

SK = GK · S0 ⊕
K∑

l=1

GK−l · X l (3.6)

If the encoding starts in the state S0 = Sc and ends in the state SK = Sc, then the

following expression can be derived from (3.6):

Sc =
(
I ⊕ GK

)−1 ·
K∑

l=1

GK−l · X l. (3.7)

The circular encoding is performed in two stages. First, the encoder is initialized in the

all-zero state and the input sequence in encoded. The final state S0
K =

∑K
l=1 GK−l · X l is

used to determine the circular state Sc as follows

Sc =
(
I ⊕ GK

)−1 · S0
K . (3.8)

In the second and final stage, the encoder is initialized with the circular state Sc and the

input sequence is encoded again. In this way, the encoder is guaranteed to start and end

in the the same state, namely, the circular state Sc.

3 DVB-RCS Turbo Decoding 50

The existence of such a circular state Sc is guaranteed only if
(
I ⊕ GK

)
is invertible.

If K is a multiple of the period of the encoding recursive generator, then such a circular

state Sc may not exist. This limitation can be overcome by using the alternative circular

coding scheme presented in [56, 58].

3.1.2 Encoding Process

If the data to be encoded contains K couples, where K is not a multiple of the period of

the encoding recursive generator, then the existence of circular state Sc is assured. Since

the value of the circular state Sc depends on the contents of the sequence to be encoded,

determining the circular state requires a pre-encoding operation. For the pre-encoding,

the encoder is initialized to the all-zero state. Then the data sequence goes through the

encoder. At the end of the pre-encoding stage the encoder state is S0
K1

for unpermuted and

S0
K2

for permuted data sequence. The circular states Sc1 and Sc2 corresponding to the first

and second RSC encoders are then obtained from the expression Sci
=
(
I ⊕ GK

)−1 · S0
Ki

,

where i ∈ {1, 2}. Based on the length K and the final state of pre-encoding, the circular

state Sci
can be obtained from Table 3.1.

Table 3.1 Circulation state correspondence table.

K mod 7 S0
K

0 1 2 3 4 5 6 7

1 0 6 4 2 7 1 3 5

2 0 3 7 4 5 6 2 1

3 0 5 3 6 2 7 1 4

4 0 4 1 5 6 2 7 3

5 0 2 5 7 1 3 4 6

6 0 7 6 1 3 4 5 2

3.1.3 Encoder Structure

The standardized DVB-RCS encoder is composed of two identical double-binary circular

recursive systematic convolutional (CRSC) encoders. Each pair of bits is fed to the encoder

3 DVB-RCS Turbo Decoding 51

twice in uninterleaved mode (switch in position 1), and twice in interleaved mode (switch in

position 2), as shown in Fig. 3.1(a). The data sequence is fed to the encoder in the form of

packets of length K couples, where K is not a multiple of seven to make sure that a circular

state Sc exists. The output of the encoder at time t is Ct = (At, Bt, Y1t, W1t, Y2t, W2t) and

consists of 6 bits, the input couple dt = (At, Bt), also called the systematic part, the

redundancy couple (Y1t, W1t) resulting from the first CRSC encoder and the redundancy

couple (Y2t, W2t) resulting from the second CRSC encoder. The redundancy bits are also

called parity bits.

Fig. 3.1(b) shows the trellis diagram of the 8-state double-binary convolutional encoder

described above. The input to the encoder (A, B) and their corresponding trellis outputs

(Y, W) are shown on the left of each state. The corresponding state transitions are shown

for each state. The state transitions from top to bottom, exiting from each state, are

represented by the numbers from left to right.

3.1.4 DVB-RCS Interleaving and Puncturing

DVB-RCS interleaving

The permutation is done on two levels, the first one inside the couple (level 1), the second

one between couples (level 2). Let K be the number of data couples in each block at the

encoder input (each block contains 2K information bits). The two levels of interleaving are

described as follows [15]:

Level 1:

For j = 0, . . . , K − 1

- If j mod 2 = 0, invert the couple (Aj , Bj) = (Bj , Aj)

Level 2:

For j = 0, . . . , K − 1

- If j mod 4 = 0, then set P = 0

- If j mod 4 = 1, then set P = K/2 + P1

- If j mod 4 = 2, then set P = P2

- If j mod 4 = 3, then set P = K/2 + P3

- Set i = (P0 · j + P + 1) mod K

The jth information symbol is permuted to the new position, i. Table 3.2 provides the

combinations of the default parameters P0, P1, P2 and P3 to be used.

3 DVB-RCS Turbo Decoding 52

Table 3.2 Turbo code permutation parameters.

Frame size in couples (K) P0 {P1, P2, P3}
48 (12 bytes) 11 {24,0,24}
64 (16 bytes) 7 {34,32,2}
212 (53 bytes) 13 {106,108,2}
220 (55 bytes) 23 {112,4,116}
228 (57 bytes) 17 {116,72,188}
424 (106 bytes) 11 {6,8,2}
432 (108 bytes) 13 {0,4,8}
440 (110 bytes) 13 {10,4,2}
752 (188 bytes) 19 {137,224,600}
848 (212 bytes) 19 {2,16,6}
856 (214 bytes) 19 {428,224,652}
864 (216 bytes) 19 {2,16,6}

DVB-RCS puncturing

The puncturing patterns for the seven rates defined in the DVB-RCS standard [15] (Rc=1/3,

2/5, 1/2, 2/3, 3/4, 4/5, and 6/7) are shown in Table 3.3. The puncturing patterns are the

same for both sets of parity (Y1t, W1t) and (Y2t, W2t). A ‘1’ indicates that the redundant

bit is transmitted and a ‘0’ indicates that the redundant bit is not transmitted. The first

and second rows of each matrix in Table 3.3 gives the repeating puncturing patterns for Y

and W , respectively. Note that the code rates 3/4 and 6/7 are exact only if K is a multiple

of 3 and 6, respectively. Since the standardized frame sizes are a multiple of 8, the other

code rates are exact.

3.2 Decoding of DVB-RCS Turbo Codes

Define ut = (At, Bt) as the transmitted information couple at time t and ct = (At, Bt, Yt, Wt)

as its corresponding output from the CRSC encoder. The encoder outputs are modulated

by Gray labelled quadrature phase shift keying (QPSK) with absolute mapping according

3 DVB-RCS Turbo Decoding 53

Table 3.3 Turbo code puncturing patterns.

Code Rate puncturing patterns

1/3

[
1
1

]

2/5

[
1 1
1 0

]

1/2

[
1
0

]

2/3

[
1 0
0 0

]

3/4

[
1 0 0
0 0 0

]

4/5

[
1 0 0 0
0 0 0 0

]

6/7

[
1 0 0 0 0 0
0 0 0 0 0 0

]

3 DVB-RCS Turbo Decoding 54

to the relation x = 1−2a, where a ∈ {0, 1} and x ∈ {1,−1} are the input and output of the

modulator, respectively. The modulated bits are then transmitted over a noisy channel.

As shown in Fig. 3.2, at the receiver side, the observed samples are yt = (1− 2At + n1, 1−
2Bt + n2, 1− 2Yt + n3, 1 − 2Wt + n4,), where ni are samples of the noise from the channel

(Fig. 3.2).

Encoder Modulator Receiver
u c x y d

^

n

Fig. 3.2 A simple system model of DVB-RCS.

3.2.1 MAP and Log MAP decoding

Turbo codes [21], [22] use constituent codes that allow soft decoding to provide reliability

estimates that can be passed between the constituent decoders. The Bahl, Cocke, Je-

linek, and Raviv (BCJR) algorithm [61] or maximum a posteriori (MAP) decoding (also a

posteriori probability (APP) decoding) computes the log-likelihood ratio (LLR) as

L(z,z′)
apo (ût) ≡ ln

p(ut = z | y)

p(ut = z′ | y)
, (3.9)

where z and z′ are elements of the set of all information symbols. Note that L(z,z)(ut) is

zero and does not need to be considered, because it does not provide any information. For

double-binary codes such as DVB-RCS, there are 12 LLRs resulting from the combinations

(z
= z′) ∈ φ0 = {00, 01, 10, 11}. However, all useful information is contained in the three a

posteriori LLRs given by

L(z)
apo(ût) ≡ ln

p(ut = z | y)

p(ut = 00 | y)
, (3.10)

where z ∈ φ = {01, 10, 11}.
In order to write (3.10) in a simple form, assume that the CRSC encoder goes from

state s′ = st−1 at time (t − 1) to state s = st at time t via the input symbol z = ut ∈ φ0.

As discussed in detail in Section 2.3, equation (3.10) can be expressed in a simple form

3 DVB-RCS Turbo Decoding 55

suitable for both software and hardware implementations, namely

L(z)
apo(ût) = ln

∑
(s′→s,z)

αt−1(s
′) · γ(z)

t (s′, s) · βt(s)∑
(s′→s,00)

αt−1(s′) · γ(00)
t (s′, s) · βt(s)

. (3.11)

Fig. 3.3 shows, for DVB-RCS turbo codes, the different branches involved in the computa-

tion of the log-likelihood ratio L
(10)
apo (ût) of the information symbol (10). The dashed and solid

lines represent the transitions (s′ → s) caused by the inputs (10) and (00), respectively.

Alphas BetasGammas

)0(1−tα

)1(1−tα

)2(1−tα

)3(1−tα

)4(1−tα

)5(1−tα

)6(1−tα

)7(1−tα

)0(tβ

)1(tβ

)2(tβ

)3(tβ

)4(tβ

)5(tβ

)6(tβ

)7(tβ

Fig. 3.3 Different branches involved in the computation of the Log-
Likelihood Ratio of the information symbol (10) for DVB-RCS turbo codes.
The dashed and solid lines represent the transitions (s′ → s) caused respec-
tively by the inputs (10) and (00), respectively

Transition probability (gamma)

In the following discussion, it is assumed that the channel is additive white Gaussian noise

(AWGN). The vector ct = (At, Bt, Yt, Wt) corresponding to the transition (s′ → s) caused

by the input symbol ut = (At, Bt) is modulated to xt = (1− 2At, 1− 2Bt, 1− 2Yt, 1− 2Wt)

and sent over the AWGN channel. The probability that yt is received, given ut, is given by

3 DVB-RCS Turbo Decoding 56

the probability density function

p(yt | ut) = p(yt | xt) =
3∏

i=0

1√
2πσ

e
− 1

2

�
yt[i]−xt[i]

σ

�2

(3.12)

where xt[i] and yt[i] are the ith elements of xt and yt, respectively.

The transition probability is given by the equation

γ
(z)
t (s′, s) = p(s | s′) · p(yt | s′, s)

= p(yt | ut = z) · p(ut = z)
(3.13)

How to obtain p(yt | ut = z) will be discussed later.

Forward recursion

Each new alpha metric is the sum of the previous alphas multiplied by the branch metrics

along each branch from the four previous states s′ to the current state s.

αt(s) =
∑

s′
αt−1(s

′) · γt(s
′, s) (3.14)

An example for αt(0) is shown in Fig. 3.4

)0(1t

)1(1t

0

1

6

7

)0(t

)00(

t

)10(

t

)01(

t

)11(

t

)6(1t

)7(1t

)3(t

States s

)0(t

)4(t

)7(t

0

3

4

7

)0(1t

States s

)00(

t

)11(

t

)10(

t

)01(

t

States s States s

Fig. 3.4 Alpha(0) and Beta(0) extracted from trellis-diagram.

3 DVB-RCS Turbo Decoding 57

Backward recursion

The computation of the beta metrics is similar to that of the alphas but starting at the

end of the trellis and going in the reverse direction, i.e.,

βt−1(s
′) =

∑
s

βt(s) · γt(s
′, s). (3.15)

An example for βt−1(0) is shown in Fig. 3.4.

Extrinsic information

MAP decoding provides probabilistic information about the transmitted information sym-

bol ut, called extrinsic information L
(z)
ex (ut), based on the a posteriori LLR information

L
(z)
apo(ût), the a priori LLR information L

(z)
apr(ut) and the intrinsic information L

(z)
in (ut) re-

sulting from the systematic part of the received samples. Specifically,

L(z)
ex (ût) = L(z)

apo(ût) − L(z)
apr(ut) − L

(z)
in (ut). (3.16)

The a priori LLR information can be obtained from

L(z)
apr(ut) = ln

p(ut = z)

p(ut = 00)
, (3.17)

and the intrinsic information resulting from the systematic part can be obtained from

L
(z)
in (ut) = ln

p(ys
t | ut = z)

p(ys
t | ut = 00)

, (3.18)

where ys
t is the systematic part of the received codeword corresponding to the transmitted

information symbol ut = z. This extrinsic information L
(z)
ex (ut) will be passed to the next

decoder as a new estimate for the a priori probability of the information symbol ut = z.

The log MAP (L-MAP) algorithm is obtained by applying the natural logarithm to the

equations for the gammas, alphas and betas:

γ
(z)
t (s′, s) ≡ ln γ

(z)
t (s′, s)

= ln p(yt | ut = z) + ln p(ut = z)
(3.19)

3 DVB-RCS Turbo Decoding 58

αt(s) ≡ ln αt(s)

= ln
∑

s′
eαt−1(s′)+γ

(z)
t (s′,s) (3.20)

βt−1(s
′) ≡ ln βt−1(s

′)

= ln
∑

s

eβt(s)+γ
(z)
t (s′,s).

(3.21)

Consequently, the a posteriori LLR for the L-MAP is

L(z)
apo(ût) = ln

∑
(s′→s,z)

eαt−1(s′) · eγ
(z)
t (s′,s) · eβt(s)

∑
(s′→s,00)

eαt−1(s′) · eγ
(00)
t (s′,s) · eβt(s)

. (3.22)

The L-MAP can be easily simplified, resulting in a significant reduction in computational

complexity. This simplification is known as max-log MAP and will be discussed in the next

section. The use of the logarithm also tends to reduce the severity of overflow and precision

issues.

3.2.2 Max-Log MAP

The max-log MAP (ML-MAP) decoding algorithm is an approximation to the MAP decod-

ing algorithm and is widely used in practice because of its lower computational complexity.

The reduction in complexity is due, in part, to the transformation of multiplication to ad-

dition, but is mainly due to avoiding the computation of the exponential function by using

the approximation

ln
∑

j

eaj ≈ max
j

(aj). (3.23)

However, this approximation leads to degradation in the error rate performance. Later a

technique that reduces this degradation will be introduced.

Applying the max-function gives the following expressions for α, β and γ

γ
(z)
t (s′, s) = ln p(yt | ut = z) + ln p(ut = z) (3.24)

αt(s) ≈ max
s′

(
αt−1(s

′) + γ
(z)
t (s′, s)

)
(3.25)

3 DVB-RCS Turbo Decoding 59

βt−1(s
′) ≈ max

s

(
βt(s) + γ

(z)
t (s′, s)

)
(3.26)

and

L(z)
apo(ût) ≈ max

(s′→s,z)

(
αt−1(s

′) + γ
(z)
t (s′, s) + βt(s)

)
− max

(s′→s,00)

(
αt−1(s

′) + γ
(00)
t (s′, s) + βt(s)

)
.

(3.27)

Taking the natural logarithm of (3.12) results in the expression

ln p(yt|ut = z) = ln p(yt|xt)

= 4 ln

(
1√
2πσ

)
−

3∑
i=0

1

2σ2
(yt[i] − xt[i])

2 .
(3.28)

Dropping the constant term 4 ln
(

1√
2πσ

)
and eliminating the constant factor 1

2σ2 , (3.28)

simplifies to

ln p(yt|ut = z) = ln p(yt|xt) ≈
3∑

i=0

− (yt[i] − xt[i])
2 . (3.29)

The intrinsic information L
(z)
in (ut), as given in (3.18), can be simplified for each individual

symbol z ∈ φ = {01, 10, 11}. The intrinsic information L
(01)
in (ut) can be expressed in the

following simple form, by ignoring the constant factor 1
2σ2 , which does not influence the

reliability of extrinsic values obtained from (3.16), if ML-MAP is used:

L
(01)
in (ut) = ln

p(ys
t | ut = 01)

p(ys
t | ut = 00)

= ln
p(ys

t | xt = 1,−1)

p(ys
t | xt = 1, 1)

= − 1

2σ2
(ys

t [0] − 1)2 − 1

2σ2
(ys

t [1] + 1)2+

1

2σ2
(ys

t [0] − 1)2 +
1

2σ2
(ys

t [1] − 1)2

= − 1

2σ2
· 4ys

t [1]

≈ −4ys
t [1].

(3.30)

3 DVB-RCS Turbo Decoding 60

Similarly, L
(10)
in (ut) and L

(11)
in (ut) can be expressed as

L
(10)
in (ut) ≈ −4ys

t [0]

L
(11)
in (ut) ≈ −4(ys

t [0] + ys
t [1]).

(3.31)

Note that the extrinsic values in (3.16) depend on L
(z)
in (ut) in (3.30), (3.31) and L

(z)
apo(ût)

in (3.27), which in turn depends on (3.29). To get consistent extrinsic values, the same

factor 1
2σ2 in (3.29), (3.30) and (3.31) should be ignored. Thus, the factor 4 in (3.30), (3.31)

must be retained.

The use of the simplified (3.29), (3.30) and (3.31) leads to a further reduction in the

computational complexity. It is important to note that the standard deviation σ of the

AWGN channel is not involved in the computation of the ML-MAP algorithm and so the

signal to noise ratio (SNR) is not required, unlike the MAP and L-MAP algorithms.

3.2.3 Initialization and Iterative Decoding

A Priori probabilities of information symbols

In iterative decoding [88] for turbo codes the extrinsic information L
(z)
e (ut) from the previous

decoder is passed to the next decoder as the a priori probability p(ut = z) of the transmitted

information symbol ut = z:

L(z)
ex (ut) ≡ ln

p(ut = z)

p(ut = 00)
. (3.32)

For simplicity, L
(z)
ex is used as an abbreviation for L

(z)
ex (ut). Since

p(ut = 00) + p(ut = 01) + p(ut = 10) + p(ut = 11) = 1, (3.33)

and

p(ut = z) = p(ut = 00) · eL
(z)
ex , (3.34)

3 DVB-RCS Turbo Decoding 61

it follows that [89]

p(ut = 00) =
1

1 + eL
(01)
ex + eL

(10)
ex + eL

(11)
ex

= b

p(ut = 01) = b · eL
(01)
ex

p(ut = 10) = b · eL
(10)
ex

p(ut = 11) = b · eL
(11)
ex .

(3.35)

Applying (3.23) to (3.35) leads to the following expressions [89]

ln p(ut = 00) = −max(0, L(01)
ex , L(10)

ex , L(11)
ex)

ln p(ut = 01) = L(01)
ex − max(0, L(01)

ex , L(10)
ex , L(11)

ex)

ln p(ut = 10) = L(10)
ex − max(0, L(01)

ex , L(10)
ex , L(11)

ex)

ln p(ut = 11) = L(11)
ex − max(0, L(01)

ex , L(10)
ex , L(11)

ex).

(3.36)

The scalar b in (3.35) is a fixed value for each trellis stage. Setting b to any non-zero value

will not have any effect on the error rate performance. To avoid the computation of the

max-function in (3.36) and thereby lower the computational complexity, the scalar b can

be set to 1, which leads to the following simple expressions:

ln p(ut = 00) = 0

ln p(ut = 01) = L(01)
ex

ln p(ut = 10) = L(10)
ex

ln p(ut = 11) = L(11)
ex .

(3.37)

For the first half-iteration, it is assumed that all information symbols are equally likely,

because there is no a priori information available (i.e., L
(00)
ex = L

(01)
ex = L

(10)
ex = L

(11)
ex = 0).

Using (3.36) or (3.37) for the first half-iteration leads to

ln p(ut = 00) = 0

ln p(ut = 01) = 0

ln p(ut = 10) = 0

ln p(ut = 11) = 0.

(3.38)

3 DVB-RCS Turbo Decoding 62

For subsequent iterations of the first decoder and all iterations of the second decoder,

equation (3.37) is used.

After some number of iterations a hard decision is made based on the a posteriori LLRs

of all information symbols. For simplicity, L
(z)
apo is used as an abbreviation for L

(z)
apo(ût)

L(z)
apo = max(L(00)

apo = 0, L(01)
apo , L(10)

apo , L(11)
apo)

ût = z.
(3.39)

Overlapping for CRSC codes

Let the frame to be decoded have K symbols. For circular coding the decoder does not

know the initial state of the encoder at time t = 0 or t = K, so pre-computing of alphas

and betas over M trellis stages must be done to get reliable initialization values for them.

The pre-computing of alphas starts at time t = (K − M) and betas at time t = M . The

alpha values at time t = K become the initial alpha values at time t = 0 and the beta

values at time t = 0 become the initial beta values at time t = K, as shown in Fig. 3.5.

()N M sα −)(1 sN −α

)(s
N

α)(0 sα

)(0 sβ

)(1 sβ)(s
M

β

)(s
N

β

0γ 1γ N Mγ − 1−Nγ

0=t M N M− 1−N

State s

State s

Pre-computing of alpha

Pre-computing of beta

1

Fig. 3.5 Computing of alphas and betas for circular decoder.

Iterative decoding

Fig. 3.6 shows a block diagram of the iterative decoder for the DVB-RCS double-binary

turbo code. Let u be the transmitted data sequence. For the first half-iteration, the a priori

LLRs L1(z)
apr (u), z ∈ {01, 10, 11}, are initialized to zero. The first decoder (DEC1) computes

the a posteriori LLR L1(z)
apo (û) based on L1(z)

apr (u), the received systematic symbols yS, the

3 DVB-RCS Turbo Decoding 63

received first set of parity yP1 and the structure of first encoder. DEC1 then computes the

extrinsic information L1(z)
ex (u) = L1(z)

apo (û)−L1(z)
apr (u)−L

1(z)
in (u). The extrinsic information

from DEC1 is interleaved and passed to the second decoder (DEC2) where it is used as the

a priori information L2(z)
apr (u). Interleaving of the extrinsic LLRs occurs in two levels. In

the first level, at each time instant t where (t mod 2) = 0, the extrinsic values L(00)
ex , L(01)

ex ,

L(10)
ex and L(11)

ex becomes L(00)
ex , L(10)

ex , L(01)
ex and L(11)

ex , respectively. In the second level, the

entire extrinsic information are permuted according to level 2 in 3.1.4.

SISO

DEC1

Interleaver

Interleaver

SISO

DEC2

De-interleaver

D
e

-in
te

rle
a

v
e

r

Hard decisionuz {01,10,11}∈

)()z(1
ex uL

SySy
)()z(2

apo uL)()z(1
apo uL

2Py1Py

^

)()z(2
ex uL

0)()z(1
apr =uL

^ ^

)()z(2
apr uL

Fig. 3.6 Iterative decoder for DVB-RCS turbo code.

DEC2 computes the a posteriori log-likelihood-ratio L2(z)
apo (û) based on interleaved ex-

trinsic information from the first decoder L2(z)
apr (u), the permuted received systematic sym-

bols, the received second set of parity yP2 and the structure of second encoder. DEC2

computes the extrinsic information L2(z)
ex (u) = L2(z)

apo (û) − L2(z)
apr (u) − L

2(z)
in (u). DEC1 will

use the de-interleaved extrinsic information from DEC2 as a priori information L1(z)
apr (u) in

the subsequent iterations. This procedure is repeated for each iteration. After a number of

iterations, a hard decision is made based on the de-interleaved a posteriori log-likelihood-

ratio. DEC1 and DEC2 have the same structure since the two component codes of the

DVB-RCS turbo code are the same. If puncturing is involved, the demodulator output

corresponding to the punctured parities is initially set to zero.

3.2.4 Enhanced Max-Log MAP and Enhanced Log MAP Decoding

In iterative decoding [88], both decoders need a priori probabilities of the information

symbols to compute the a posteriori LLRs. Each decoder produces a reliability value, called

extrinsic information, for each information symbol and passes it to the other decoder. In

this way each decoder takes advantage of the extrinsic information computed by the other.

3 DVB-RCS Turbo Decoding 64

The extrinsic output of the first decoder in the first iteration depends only on the

systematic bits and the first set of parity, due to the fact that the extrinsic input to DEC1

is set to zero in the first iteration. The extrinsic output of the second decoder depends

on the systematic bits, the second set of parity and the non-zero extrinsic input coming

from DEC1, which in turn depends on the systematic bits. This means that information

derived from the systematic bits will be used again by the second decoder, which makes the

extrinsic output of DEC2 sub-optimal. The extrinsic output of DEC2 in the first iteration

will be used by DEC1 in the second iteration, making the extrinsic output of DEC1 in the

second and subsequent iterations sub-optimal. In other words, the iterative decoding for

turbo codes with MAP decoding is optimal only for the first half-iteration. For all other

iterations it is sub-optimal, due to the fact that the extrinsic input into the decoders is

dependent on information derived from the systematic bits, i.e., the extrinsics for the two

decoders are correlated.

The idea behind enhanced log MAP (EL-MAP) and enhanced max-log MAP (EML-

MAP) is to scale the extrinsic output of each decoder with an appropriate value, so that each

decoder can give a better extrinsic estimate to the next decoder. The improvement of EML-

MAP over ML-MAP is probably because the scaled extrinsic reduces the overestimation of

the extrinsic produced by ML-MAP compared with L-MAP.

The idea of scaling the extrinsic information was first introduced in [90], where the

extrinsic output of a soft-output-Viterbi-algorithm (SOVA) [68] is scaled by an appropriate

scale factor (SF). Scaling the extrinsic information for ML-MAP was introduced in [91].

Similar enhancements have also been presented in [92], [93]. EML-MAP is applied here to

DVB-RCS (double-binary turbo code) using appropriate SFs [36].

Note that iterative decoding of turbo codes with log MAP (L-MAP) is not optimal

in the sense of making a maximum likelihood decision [94]. However, scaling the extrinsic

information of L-MAP with an appropriate SF improve the iterative decoding performance.

This approach is referred to in this thesis as enhanced log MAP (EL-MAP).

3.3 Simulation Results

The BER and FER for the seven standardized code rates were simulated using ML-MAP

for the ATM packet size of 424 bits and the MPEG packet size of 1504 bits (see Fig. 3.7

and Fig. 3.8). The number of iterations was set at 8.

3 DVB-RCS Turbo Decoding 65

1 2 3 4 5 6
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 (dB)

B
E

R
 (

A
T

M
)

R
c
=1/3

R
c
=2/5

R
c
=1/2

R
c
=2/3

R
c
=3/4

R
c
=4/5

R
c
=6/7

(a)

1 2 3 4 5 6
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

FE
R

 (
A

T
M

)

R
c
=1/3

R
c
=2/5

R
c
=1/2

R
c
=2/3

R
c
=3/4

R
c
=4/5

R
c
=6/7

(b)

Fig. 3.7 Performance of ML-MAP decoding for ATM packet size and various
code rates using 8 iterations. The size of overlap is 150 bits (75 symbols) for
all code rates. For all code rates, at least 100 ATM packet errors were counted
at the highest simulated SNR value.

3 DVB-RCS Turbo Decoding 66

1 2 3 4 5
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 (dB)

B
E

R
 (

M
PE

G
)

R
c
=1/3

R
c
=2/5

R
c
=1/2

R
c
=2/3

R
c
=3/4

R
c
=4/5

R
c
=6/7

(a)

1 2 3 4 5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

FE
R

 (
M

PE
G

)

R
c
=1/3

R
c
=2/5

R
c
=1/2

R
c
=2/3

R
c
=3/4

R
c
=4/5

R
c
=6/7

(b)

Fig. 3.8 Performance of ML-MAP decoding for MPEG packet size and var-
ious code rates using 8 iterations. The size of overlap is 150 bits (75 symbols)
for all code rates. For all code rates, at least 30 MPEG packet errors were
counted at the highest simulated SNR value.

3 DVB-RCS Turbo Decoding 67

The four algorithms (ML-MAP, EML-MAP, L-MAP and EL-MAP) was compared for

rate 1/3 using ATM and MPEG packet sizes. The maximum number of iterations was

fixed at 8. For computing the initial αi and βi values, the overlap for circular decoding is

set to 100 bits (50 symbols) for both ATM and MPEG packets. To reduce the statistical

differences, the same noise sequence was used for the four algorithms at each SNR value.

The results of these comparisons are shown below. Each subsection discusses different

decoding parameters and their effect on performance.

3.3.1 Fixed Scale Factor over all Iterations

Simulations were run with SFs from 0.05 to 0.95 (in steps of 0.05). As expected, it has

been found that the appropriate value of SF depends on the value of SNR. The higher

the SNR, the higher the SF should be. It was found that the SF of 0.75 and 0.9 are good

choices over all iterations for un-punctured EML-MAP and EL-MAP, respectively.

EML-MAP versus ML-MAP

Compared to ML-MAP, EML-MAP (SF=0.75) has an improvement of about 0.2 dB at

moderate SNRs for both BER and FER for both packet sizes. As mentioned above the

higher the SNR, the higher the SF. Thus, the higher the SNR, the smaller the improvement

with EML-MAP compared to ML-MAP. Simulation results are shown in Fig. 3.9 and

Fig. 3.10.

EML-MAP versus L-MAP

For both packet sizes, EML-MAP (SF=0.75) reduces the gap from L-MAP to about 0.1 dB

at low to medium SNRs for both BER and FER. Also, the higher the SNR, the lower is

the gap between EML-MAP and L-MAP. At high SNRs EML-MAP outperforms L-MAP

for both packet sizes (see Fig. 3.9 and Fig. 3.10).

EL-MAP versus L-MAP

For both packet sizes, EL-MAP (SF=0.9) has an improvement of about 0.1 dB versus

L-MAP for both BER and FER at high SNRs (see Fig. 3.9 and Fig. 3.10). Note that

the BER/FER of EML-MAP (SF=0.75) and EL-MAP (SF=0.9) can be better than the

3 DVB-RCS Turbo Decoding 68

BER/FER of L-MAP. This is because iterative decoding is sub-optimal due to the corre-

lation effects between the component decoders.

3.3.2 Iteration Dependent Scale Factor

Fig. 3.11 shows that an iteration dependent SF with constant step size over the interval

[0.70, 0.85] gives a small improvement in error rate performance compared to a fixed SF of

0.75. Note that the first and the last value of the interval correspond to the SFs for the

first and the eighth iteration, respectively. Also, the extrinsic information from the first

and the second decoder use the same scale factor.

3.3.3 Early Stopping

Computational complexity can be substantially reduced by using early stopping to reduce

the average number of iterations. The effect of early stopping [95] is tested based on

the EML-MAP approach. Define B as the number of consecutive sets of hard decisions

that must agree before stopping. Thus, the minimum value for B is 2. The hard deci-

sions are made based on the LLR a posteriori information Lapo, which are the sum of the

scaled (SF=0.75) extrinsic outputs of the previous decoder L(prev.)
ex (scaled), the intrinsic

information Lin and the unscaled (SF=1.00) extrinsic outputs from the current decoder

L(curr.)
ex (unscaled), i.e.,

Lapo = Lin + L(prev.)
ex (scaled) + L(curr.)

ex (unscaled). (3.40)

Note that the hard decisions are based on unscaled extrinsic outputs from the current

decoder. It was found that using scaled extrinsic outputs from the current decoder led to

a degradation in error rate performance with early stopping [34].

Fig. 3.12 shows almost no degradation in BER/FER by choosing B = 2. Note that the

curves for early stopping and no early stopping in Fig. 3.12 are essentially superimposed.

Using B = 2 and a maximum number of full-iterations equal to 8 leads to an average

reduction in computational complexity by a factor of 2 to 4 for SNR values above 1.5

dB, which is a significant reduction. Note that with B=2 the extra processing is only a

single half-iteration on average compared to ideal (genie) early stopping. With genie early

stopping, it is assumed that the transmitted codeword is known at the receiver and that

3 DVB-RCS Turbo Decoding 69

0 0.5 1 1.5 2
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R
 (

A
T

M
, R

c=
1/

3)

Max−Log MAP
Enh. Max−Log MAP (Fixed SF=0.75)
Log MAP
Enh. Log MAP (Fixed SF=0.90)

(a)

0 0.5 1 1.5 2
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

FE
R

 (
A

T
M

, R
c=

1/
3)

Max−Log MAP
Enh. Max−Log MAP (Fixed SF=0.75)
Log MAP
Enh. Log MAP (Fixed SF=0.90)

(b)

Fig. 3.9 Comparison of four decoding algorithms for DVB-RCS with ATM
packet size. The size of overlap is 100 bits (50 symbols). The code rate is 1/3
and the number of iterations is 8. 10 million ATM packets were simulated at
2 dB.

3 DVB-RCS Turbo Decoding 70

0 0.5 1 1.5 2
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R
 (

M
PE

G
, R

c=
1/

3)

Max−Log MAP
Enh. Max−Log MAP (Fixed SF=0.75)
Log MAP
Enh. Log MAP (Fixed SF=0.90)

(a)

0 0.5 1 1.5 2
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

FE
R

 (
M

PE
G

, R
c=

1/
3)

Max−Log MAP
Enh. Max−Log MAP (Fixed SF=0.75)
Log MAP
Enh. Log MAP (Fixed SF=0.90)

(b)

Fig. 3.10 Comparison of four decoding algorithms for DVB-RCS with
MPEG packet size. The size of overlap is 100 bits (50 symbols). The code
rate is 1/3 and the number of iterations is 8. 15 million MPEG packets were
simulated at 2 dB.

3 DVB-RCS Turbo Decoding 71

0 0.5 1 1.5 2
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R
/F

E
R

 (
A

T
M

, R
c=

1/
3)

FER (Fixed SF=0.75)
FER (Ramped SF=0.70 to 0.85)
BER (Fixed SF=0.75)
BER (Ramped SF=0.75 to 0.85)

(a)

0 0.5 1 1.5 2
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 (dB)

B
E

R
/F

E
R

 (
M

PE
G

, R
c=

1/
3)

FER (Fixed SF=0.75)
FER (Ramped SF=0.70 to 0.85)
BER (Fixed SF=0.75)
BER (Ramped SF=0.70 to 0.85)

(b)

Fig. 3.11 Performance of EML-MAP decoding using ramped and fixed scale
factor. The size of overlap is 100 bits (50 symbols) for ATM and MPEG
packets. The number of iterations is 8. 10 million ATM packets and 15
million MPEG packets were simulated at 2 dB.

3 DVB-RCS Turbo Decoding 72

the decoder stops when at any half-iteration the transmitted codeword is produced.

Assuming ML-MAP or EML-MAP, it has been shown for single-binary turbo codes

that a values of B higher than 2 is required for high SNRs [34] where the error performance

curve starts to flare. However, it has been shown recently that B = 2 is sufficient to

avoid any noticeable error rate degradation for all SNR values if path ambiguities in the

decoding trellis are removed before applying the early stopping criterion. That is, the early

stopping criterion is applied only if the a posteriori LLR values are not ambiguous (i.e.,

all a posteriori LLRs are different) [84]. Similar behavior is expected with double-binary

turbo codes.

Note that this early stopping case (B = 2) works well only for ML-MAP and EML-

MAP, where the SISO decisions correspond to the maximum likelihood codeword [65], as

with a Viterbi decoder [64]. Higher values for B are needed for L-MAP and EL-MAP,

because the SISO decisions correspond to the most likely individual bit decisions, not the

most likely bit sequence.

From previous work, it has been observed that early stopping with B = 2 works well

for dual-terminated [55] single-binary turbo codes. A value of B = 2 is also expected to

work well with single-binary turbo codes. If trellises are not terminated properly, B > 2

may be required.

3.3.4 The Effect of Overlap on Error Performance

Due to the nature of tail-biting, the turbo decoder does not have any knowledge about the

start and end states of either encoders. To get reliable initial values for the alphas and

betas at the beginning of the decoding process, a pre-computation of the alphas and betas

over a number of trellis sections must be done.

As shown for ATM packets in Fig. 3.13 and Fig. 3.14, setting the size of overlap to 20

bits is enough for rate 1/3, whereas an overlap size of at least 50 bits is needed for rate

4/5. Fig. 3.15 shows for MPEG packets that an overlap size of 20 bits is enough for rate

1/3. An overlap size of 150 bits (75 symbols) is a safe choice over all code rates for both

ATM and MPEG packets.

From the performance results shown in Figs. 3.13, 3.14, and 3.15 the following points

can be made:

- There is a severe flaring of the error rate curves at medium to high SNRs if the

3 DVB-RCS Turbo Decoding 73

0 0.5 1 1.5 2
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R
/F

E
R

 (
A

T
M

, R
c=

1/
3)

FER (Fixed SF=0.75)
FER (Fixed SF=0.75), B=2
BER (Fixed SF=0.75)
BER (Fixed SF=0.75), B=2

(a)

0 0.5 1 1.5 2
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R
/F

E
R

 (
M

PE
G

, R
c=

1/
3)

FER (Fixed SF=0.75)
FER (Fixed SF=0.75), B=2
BER (Fixed SF=0.75)
BER (Fixed SF=0.75), B=2

(b)

Fig. 3.12 Performances of EML-MAP decoding without early stopping is
compared to that of EML-MAP decoding with early stopping (B=2). The
size of overlap is 100 bits (50 symbols) for ATM and MPEG packets. The
maximum number of iterations is 8. 10 million ATM packets and 15 million
MPEG packets were simulated at 2 dB.

3 DVB-RCS Turbo Decoding 74

pre-computation of alphas and betas is ignored (i.e., size of overlap is 0 bit).

- The best overlap length depends on both the code rate and the value of SNR.

- The greater the overlap length, the better the error performance obtained at high

SNRs. For low SNRs, increasing the overlap length did not improve the error perfor-

mance.

- The best overlap length depends on packet length. In general, longer packets require

longer overlap size in order to minimize the degradation in error performance.

3.4 Conclusion

The EML-MAP and EL-MAP decoding algorithms have been introduced for DVB-RCS

turbo codes. The BER/FER performance of EML-MAP is very close to that of L-MAP.

At high SNRs, both EML-MAP and EL-MAP outperform L-MAP. Compared to EML-

MAP with a fixed SF of 0.75, slightly better results have been obtained with ramp scale

factors of a constant step size, where a SF of 0.70 for the first full-iteration and a SF of

0.85 for the eighth full-iteration have been used.

A simple and effective early stopping criterion that reduces the average computational

complexity for EML-MAP at medium to high SNRs by a factor of 2 to 4 with almost no

degradation in BER/FER has been introduced for DVB-RCS turbo codes, and its perfor-

mance given for a maximum number of full-iteration equal to 8. Note that this reduction

in average computational complexity is proportional to the number of full-iterations.

The error performance of tail-biting turbo codes depends on the length of the overlap.

The best overlap length depends on the code rate and SNR value. For high SNRs and longer

packets, an increase in the overlap length improved the observed error rate performance.

3 DVB-RCS Turbo Decoding 75

0 0.5 1 1.5 2 2.5
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R
 (

A
T

M
, R

c=
1/

3)

Size of overlap = 0 bit
Size of overlap = 10 bits
Size of overlap = 20 bits
Size of overlap = 30 bits
Size of overlap = 100 bits

(a)

0 0.5 1 1.5 2 2.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

FE
R

 (
A

T
M

, R
c=

1/
3)

Size of overlap = 0 bit
Size of overlap = 10 bits
Size of overlap = 20 bits
Size of overlap = 30 bits
Size of overlap = 100 bits

(b)

Fig. 3.13 Performance of ML-MAP decoding for ATM packet sizes using
various overlap lengths. The sizes of overlap are 0, 10, 20, 30 and 100 bits.
The code rate is 1/3 and the number of iteration is 8. 50 ATM packet errors
were counted at the highest simulated SNR value.

3 DVB-RCS Turbo Decoding 76

1 2 3 4 5
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R
 (

A
T

M
, R

c=
4/

5)

Size of overlap = 0 bit
Size of overlap = 20 bits
Size of overlap = 30 bits
Size of overlap = 50 bits
Size of overlap = 200 bits

(a)

1 2 3 4 5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

FE
R

 (
A

T
M

, R
c=

4/
5)

Size of overlap = 0 bit
Size of overlap = 20 bits
Size of overlap = 30 bits
Size of overlap = 50 bits
Size of overlap = 200 bits

(b)

Fig. 3.14 Performance of ML-MAP decoding for ATM packet sizes using
various overlap lengths. The sizes of overlap are 0, 20, 30, 50 and 200 bits.
The code rate is 4/5 and the number of iteration is 8. 100 ATM packet errors
were counted at the highest simulated SNR value.

3 DVB-RCS Turbo Decoding 77

0 0.5 1 1.5 2 2.5
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R
 (

M
PE

G
, R

c=
1/

3)

Size of overlap = 0 bit
Size of overlap = 10 bits
Size of overlap = 20 bits
Size of overlap = 30 bits
Size of overlap = 100 bits

(a)

0 0.5 1 1.5 2 2.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

FE
R

 (
M

PE
G

, R
c=

1/
3)

Size of overlap = 0 bit
Size of overlap = 10 bits
Size of overlap = 20 bits
Size of overlap = 30 bits
Size of overlap = 100 bits

(b)

Fig. 3.15 Performance of ML-MAP decoding for MPEG packet sizes using
various overlap lengths. The sizes of overlap are 0, 10, 20, 30 and 100 bits.
The code rate is 1/3 and the number of iteration is 8. 25 MPEG packet errors
were counted at the highest simulated SNR value.

78

Chapter 4

Distance Measurement Methods for

Turbo Codes

Consider the transmission of a linear binary code C(Ñ, K̃) (Ñ is the codeword length in

bits, K̃ is the number of information bits) over the additive white gaussian noise (AWGN)

channel using binary phase-shift keying (BPSK) or quadrature phase-shift keying (QPSK)

modulation. Applying maximum-likelihood (ML) decoding, the frame error rate (FER)

and bit error rate (BER) are upper bounded by the union bounds [18]:

FER ≤
∑

d≥dmin

AdQ

√
2d

K̃

Ñ

Eb

N0

 (4.1)

BER ≤
∑

d≥dmin

Wd

K̃
Q

√
2d

K̃

Ñ

Eb

N0

 (4.2)

Here, dmin is the minimum distance of the code, the multiplicity Ad is the number of

codewords with Hamming weight d, the information bit multiplicity Wd is the sum of

the Hamming weights of the Ad input sequences generating the codewords with Hamming

weight d, the function Q(x) is given by the expression 1√
2π

∫∞
x

e−t2/2dt, Eb is the energy per

information bit and N0 is the one-sided noise power spectral density. The function Q(
√

x)

decreases exponentially with x, thus the first term or first few terms of (4.1) and (4.2) can

be used to approximate FER and BER at high SNRs. However, it is important to keep

in mind that turbo codes [21, 22] use iterative soft decoding [88], which is sub-optimal

4 Distance Measurement Methods for Turbo Codes 79

compared to ML decoding. See [96] for examples and further discussion.

The rapid growth in multimedia applications requires error correcting codes that achieve

very low error rates at moderate SNR values. Unfortunately, the reliable determination

of very low error rates using software simulation may take months or may not be feasible

at all. However, simulation results indicate that the first term or first few terms of (4.1)

and (4.2) give a good approximation to the performance of turbo codes at high SNRs (see

Section 4.2.5). This is useful for the design of turbo code interleavers. Frequently, the

problem of finding good turbo code interleavers reduces to determining which of a class

of interleavers gives the best performance. This can be predicted by finding which of the

interleavers produces the smallest first few terms of (4.1) and (4.2). In order to determine

these terms, it is necessary to have a distance measurement method. It is also important

that the method have low computational complexity to allow the determination of high

distances in a reasonable time.

This chapter discusses Garello’s true distance measurement method [27] in detail. This

method is extended to tail-biting turbo codes and a technique that reduces the compu-

tational complexity is presented [28]. The first term of the distance spectrum for all

DVB-RCS standard packets and code rates is presented. New interleavers are designed for

all DVB-RCS standard packets and code rates. Simulation results show that the new inter-

leavers for ATM and MPEG packet sizes provide significantly better error performance than

the DVB-RCS standard interleavers. Furthermore, Berrou’s error-impulse method [33],

Garello’s all-zero iterative decoding method [97], Crozier’s double-impulse method [31, 32]

and an improvement to Crozier’s method [30] are discussed. Minimum distances obtained

with these methods for DVB-RCS turbo codes are compared with those obtained with

Garello’s true method. The complexities of the various methods are compared.

4.1 Background

Finding efficient and reliable methods to determine the true distance spectrum, or even the

true minimum distance, dmin, for turbo codes is a big challenge. This is particularly true

for long interleavers with potentially high minimum distances.

A number of brute force approaches to computing dmin have been proposed. The basic

idea is to consider all possible candidate sequences for the first constituent encoder, then

interleave and encode each sequence with the second constituent encoder to find the total

4 Distance Measurement Methods for Turbo Codes 80

turbo code distance. These brute force approaches are practical, even for large block sizes,

as long as dmin remains small (i.e., close to the minimum possible dmin). For well designed

interleavers, however, the computational complexity quickly becomes unacceptable as the

value of dmin increases. See [96] and [27] and the references therein for examples and further

discussion.

Assuming a random interleaver of size approaching infinity, one can expect that the dmin

of a turbo code is equal to dmin(2), where dmin(2) is the distance due to input sequences of

weight 2 [98]. This approach leads to a significant reduction in computational complexity,

because only
(�K

2

)
of the (2

�K − 1) non-zero input sequences must be tested. Unfortunately,

this approach is not applicable for interleavers of small to medium sizes. In fact, dmin can be

produced by an input sequence of any weight, even when the interleavers are random and

very large. The necessity of considering input-weights larger than two has been confirmed

analytically in [99]. Thus dmin(2) gives a loose upper bound on the true dmin. Furthermore,

from a practical point of view, it is easy to increase dmin(2) by designing interleavers with

high spread [26, 100, 60]. In this case dmin(2) tends to be a very loose upper bound on

dmin. However, this approach can still be used in practice to first discard bad interleavers

(i.e., low dmin(2)) and the remaining interleavers can then be tested by a true distance

measurement method.

The first significant approach to determine the minimum distance was introduced by

Robertson [73]. This brute force approach is practical, even for long interleavers, as long

as the minimum distance remains small. The complexity of this approach quickly becomes

unacceptable if the minimum distance is due to high input-weights, which is often the case

for well-designed interleavers. Similar approaches have been presented in [101] and [102].

Robertson’s approach was improved in [103] by introducing a back tracking algorithm that

efficiently computes the distances caused by low input-weights.

Another method based on combining low input-weight patterns that lead to low-weight

codewords has been presented in [100]. An essential aspect of this approach is to determine

which combinations of low input-weight patterns should be considered. It has been observed

that these combinations depend on the spread, defined as:

Snew = min
(i,j �=i)

(| π(i) − π(j) | + | i − j |), ∀i, j ∈ {0, · · · , K̃ − 1}, (4.3)

where π represents an interleaver permutation. A high spread constraint easily eliminates

4 Distance Measurement Methods for Turbo Codes 81

many of the worst input-weight combinations. However, some input-weight combinations

do not improve with spread. Improving the distance for these cases requires specific dis-

tance tests to be performed. Fortunately, many of the remaining worst-case input-weight

combinations are fairly easy to test with reasonable computational complexity. See [100]

for the recommended cases to test and further details. This method has been found to

give a fairly tight upper bound on the true dmin and thus is very useful for designing good

interleavers in a reasonable time. The approach is very efficient, demonstrated by the fact

that it was possible to find a distance upper bound of 110 for a 16-state single-binary turbo

code with K̃=32768 bits [100]. Also, for large interleavers with sufficiently high spread,

the upper bounds are guaranteed to be the true minimum distances for all cases up to and

including an input-weight of 6. Unfortunately, the higher the upper bound that is achieved,

the less likely the bound is to be tight. That is, the more likely the true dmin will be caused

by one of the higher input-weight cases not tested.

4.2 Garello’s True Method

A novel and efficient method to compute the true dmin, the true multiplicity Admin
and the

true information bit multiplicity Wdmin
based on the notion of constrained subcodes has

been presented by Garello [27]. This method has been improved and extended in [104, 105]

to high rate turbo codes using high rate non-punctured constituent codes. It has also been

improved and extended in [29, 28] to tail-biting turbo codes.

Details of Garello’s distance measurement method are explained and techniques that

reduce the computational complexity of this method are presented. Furthermore, Garello’s

method for trellis-terminated [44] turbo codes is extended to tail-biting [56, 57, 58] turbo

codes. The improved method is applied to both single- and double-binary turbo codes,

such as those used in the UMTS/3GPP standard [25] and in the DVB-RCS standard [15],

respectively.

4.2.1 Turbo-code Encoder

In general turbo codes use the information sequence and two recursive convolutional en-

coders in parallel. The method presented here is for trellis-terminated and tail-biting

turbo codes and works with puncturing (see Fig. 4.1). For any input sequence u =

4 Distance Measurement Methods for Turbo Codes 82

(u0, · · · , u �K−1) ∈ [GF (2)]
�K , where GF (2) represents the binary Galois Field, the turbo-

code encoder generates the following three outputs:

- The input sequence itself u (called the systematic bits).

- The m-output sequences (P 11, · · · , P 1m) generated by the first feedback convolu-

tional encoder (ENC1) from the input sequence u. The zth-output sequence (called

zth parity of ENC1) consists of K̃ bits, also P 1z = (p1z0, · · · , p1z �K−1), where z ∈
{1, · · · , m}.

- The n-output sequences (P 21, · · · , P 2n) generated by the second feedback convolu-

tional encoder (ENC2) from the permuted input sequence uπ, where π consists of

K̃ unique elements in {0, · · · , K̃ − 1} representing the permutation indices. The

lth-output sequence (called lth parity of ENC2) consists of K̃ bits, also P 2l =

(p2l0, · · · , p2l �K−1), where l ∈ {1, · · · , n}.

ENC1

u

π

P
u

n
ct

u
ri

n
g

ENC2

11P

m1P

n2P
21P

u

Fig. 4.1 A general turbo-code encoder with two recursive convolutional en-
coders.

The trellis termination described in [44] starts encoding in the all-zero state and uses

additional δ1 and δ2 termination-bits to flush the first and the second encoders into the

all-zero state, respectively. Here, the first and second encoders are of memory δ1 and

δ2, respectively. These termination-bits are not included in the interleaver but are sent

together with their parities to the decoder. This trellis termination has been adopted in

the UMTS/3GPP standard [25] and is referred to in this thesis as UMTS-termination.

A better termination method was introduced in [55]. This method, referred to in this

thesis as dual-termination, also uses additional (nδ1 + mδ2) termination-bits to flush both

encoders into the all-zero state. However, these termination-bits are included in the in-

terleaver, which means that they are included with the systematic part of the codeword.

4 Distance Measurement Methods for Turbo Codes 83

This makes the codeword with dual-termination (δ1 + δ2) bits longer than the codeword

with UMTS-termination. This results in a small decrease in the code rate compared to

UMTS-termination, but it usually increases the dmin compared to UMTS-termination.

UMTS-termination [44] and dual-termination [55], both result in a decrease in code

rate. Furthermore, UMTS-termination impedes the achievement of high dmin. With the

various tail-biting approaches [56, 57, 106, 107, 108, 109, 58] each encoder starts and stops

in the same data dependent state, without using any termination-bits. This avoids any

decrease in the code rate and allows the achievement of high dmin.

4.2.2 Computing a Lower Bound on Minimum Distance

This lower bound is a key element in lowering the computational complexity and will be

used in the next section to determine the exact dmin in a recursive manner.

With UMTS-termination and dual-termination, both encoders start in the all-zero state

and are forced back to the all-zero state after encoding the original input sequence. How-

ever, with UMTS-termination the termination-bits are not included in the interleaver. With

tail-biting, the first encoder (ENC1) must start and stop in the same state. The second

encoder (ENC2) must also start and stop in the same state. Any combination of starting

states for the two encoders is allowed. As an example, for an 8-state turbo code there are

64 possible starting state combinations.

Turbo codes are linear codes, thus the minimum distance dmin is given by the codeword

with the minimum Hamming weight. The goal is to find all input sequences that cause dmin

from the (2
�K − 1) possible non-zero input sequences. Define u = (u0, · · · , uj, · · · , u �K−1)

and uπ =
(
uπ(0), · · · , uπ(j), · · · , uπ(�K−1)

)
as the input sequences into the single-binary

ENC1 and ENC2, respectively, where π is an interleaver of length K̃. In other words,

any information bit uj entering ENC1 at time j will enter ENC2 at time π−1(j). Let

w(u) = WE1 + WE2 be the Hamming weight of the codeword generated by the input

sequence u, where WE1 is the sum of the Hamming weights of u and its corresponding

parities generated by ENC1,

WE1 =

�K−1∑
i=0

ui +

m∑
l=1

�K−1∑
i=0

p1li, (4.4)

4 Distance Measurement Methods for Turbo Codes 84

and WE2 is the Hamming weight of the parities generated by ENC2,

WE2 =
n∑

l=1

�K−1∑
i=0

p2li. (4.5)

Consider an input sequence uj , where only the first (j + 1) information bits u≤j =

(u0, · · · , uj) are known and the other (K̃−j−1) bits u>j = (uj+1, · · · , u �K−1) = (×, · · · ,×)

are unknown (× can be 0 or 1). The aim is to find the unknown information bits u>j in

uj that minimize the weight W j = WE1j + WE2j. Define MWE1j and MWE2j as the

minimum output-weight generated respectively by the input sequences uj into ENC1 and

uj
π into ENC2. Note that the input bits at positions (j + 1, · · · , K̃ − 1) in uj leading to

MWE1j are not necessarily the same input bits at positions (π−1(j+1), · · · , π−1(K̃−1)) in

uj
π leading to MWE2j, because MWE1j and MWE2j are computed separately based only

on the common knowledge of the known bits u≤j . If the u≤j agree with the first (j + 1)

information bits of any input sequence umin that causes dmin, then MWj = MWE1j +

MWE2j is a lower bound for dmin, i.e.,

MWj ≤ (w(umin) = dmin). (4.6)

Computation of MWE2j for tail-biting

The computation of MWE2j
tb for tail-biting turbo codes is obtained by applying the fol-

lowing modified forward Viterbi algorithm (MVA) [27]. Each branch of the trellis of

ENC2 is labelled with the usual weight except the irrelevant branches of ENC2 at sec-

tions (π−1(0), · · · , π−1(j)) are labelled with an effectively infinite value (in practice, it is

enough to set this value to Ñ). The irrelevant branches are the branches associated with

bits of the complementary input sequence ũ≤j , where ũ≤j =
(
(1, · · · , 1) ⊕ u≤j

)
and ⊕

denotes the bit-by-bit XOR operation. Furthermore, assume that the encoder starts and

ends in the state sx. The steps to compute MWE2j
tb are:

1. Initialize t = 0; w(sx) = 0; w(s
= sx) = ∞.

2. Increase t by 1.

- Compute all weights of each state s by adding the weight of the branch entering

s from state s′ and the weight of the state s′ at time (t − 1), then set w(s) to

4 Distance Measurement Methods for Turbo Codes 85

the smallest weight. Repeat until t = K̃.

3. The value MWE2j
tb is w(sx).

This procedure is repeated for all starting states of ENC2 and then the minimum is selected

to be MWE2j
tb.

The encoding process of dual-termination [55] is different from that of tail-biting because

of the use of flush bits that force both encoders simultaneously to start and end in the all-

zero state. However, the distance spectrum of dual-termination is basically a subset of the

distance spectrum of tail-biting. The determination of MWE2j
dt for dual-termination is

done by applying the three step algorithm described above for tail-biting, where the start

and end state sx is the all-zero state.

Computation of MWE2j for UMTS-termination

Given any state, the termination-bits [44] and their corresponding weights can be deter-

mined offline. Define wumts(sσ) as the weight resulting from driving the encoder from the

state sσ to the state s0. The computation of MWE2j

umts for UMTS-terminated turbo codes

is done by adding the offline computed weights wumts(sσ) to the weights w(sσ) obtained

at time t = K̃ from the already described forward MVA (w(s0) = 0; w(s
= s0) = ∞) and

then selecting the minimum value

MWE2j

umts = min
sσ∈Ω2

(w(sσ) + wumts(sσ)), (4.7)

where Ω2 denote the set of all states of ENC2.

Example showing how to compute MWE2j for tail-biting and UMTS-termination

To show how to compute MWE2j
tb and MWE2j

umts, consider a 4-state single-binary turbo

code (for simplicity) where both encoders have the same generator polynomials (feedback,

feedforward)=(7,5)octal. The trellis diagram for the constituent encoder and the extra

weights resulting from termination-bits for UMTS-termination are depicted in Fig. 4.2(a)

and Fig. 4.2(b), respectively. Assume for tail-biting that ENC2 starts and ends in the state

s2, u2 = (0, 1, 0,×,×,×,×) and π = (3, 1, 6, 0, 5, 2, 4). For UMTS-termination, ENC2

starts in the all-zero state and is forced back to the all-zero state at the end of encoding

the original input sequence.

4 Distance Measurement Methods for Turbo Codes 86

states

0/0

1/1

1/1

0/0 1/0

0/1 0/
1

1/0

00

01

10

11

states

00

01

10

11

=

=

=

=

0s

1s

2s

3s

(a) Trellis diagram.

states

00

01

10

11

output-

weight

termination-

bits

00

10

11

01

0+0=0

1+1=2

2+1=3

1+2=3

(b) Termination-bits and
its corresponding weights
(input+parity).

Fig. 4.2 Trellis diagram, termination-bits and its corresponding weights for
an encoder with generator polynomials (feedback,feedforward)=(7, 5)octal .

To obtain MWE22
tb for tail-biting, as shown in Fig. 4.3(a), the forward MVA (w(s2) = 0;

w(s
= s2) = ∞) is applied leading to an output-weight of 2 at state s2 and so MWE22
tb = 2.

The computation of MWE22
umts for UMTS-termination is illustrated in Fig. 4.3(b).

The forward MVA (w(s0) = 0; w(s
= s0) = ∞) is applied leading to the weights w(s) =

(2, 1, 3, 2) corresponding to the states (s0, s1, s2, s3) at the end of the trellis. These weights

w(s) are added to the already precomputed weights wumts(s) = (0, 2, 3, 3) leading to the

weights (2, 3, 6, 5) at states (s0, s1, s2, s3). Thus, MWE22
umts is 2.

Noting that the path leading to MWE22
umts in Fig. 4.3(b) starts and ends in the state

s0, it follows that MWE22
dt for dual-termination is also 2.

Computation of MWE1j for tail-biting

The computation of MWE1j
tb for tail-biting turbo codes consists of three parts:

- The output-weight ENC1(u≤j) resulting from encoding the known input sequence u≤j

with ENC1. ENC1 starts encoding u≤j at time t = 0 in state sx and ends encoding

at time t = j in state sy. The computation of ENC1(u≤j) and the determination of

sy is straightforward.

- The minimum output-weight ENC1(u>j) resulting from encoding the unknown input

sequence u>j with ENC1, which starts encoding u>j at time t = j in the state sy and

4 Distance Measurement Methods for Turbo Codes 87

X 1 X 0 X 0 X

0/0

0/1

0/
1

0/0
0/

1

1/0

∞

∞

∞

0 2

3

2

2

2

3

0/1

1/1

1/0

0

1

1

1

∞

∞

∞

∞

1
/1

2

1/0 1

1/
0

1

4

2

0/0

0/
1

0/0

0/0

0/1

2

0/0

0/1

3

1 1

2

1/1

1/0

0/01 0/0

1/1

1/
0

0/1

1/0 3

2

1

Forward modified Viterbi algorithm

2
π =u
0s

1s

2s

3s

(a) Computing MWE22
tb = 2 for tail-biting by applying forward MVA. Branches are

labelled with weight of input/parity.

X 1 X 0 X 0 X

0/0

0/1

0/
1

0/0
0/

1

∞

∞

1

4

1

3

3

2

0

1∞

∞

1
/1

1

2

1/
0

2

3

0/0

0/0

0/1

1

0/0

0/1

2

2 2

1

1/1

1/0

0/02 0/0

1/1

1/
1

0/1

2

0/00

∞

∞

1
/1

1
1/

0

1

∞

1/
0

0/1

0/0 1/
00/0

1

2

3

+

0

2

3

3

+

+

+

Forward modified Viterbi algorithm

2
π =u

0s

1s

2s

3s

(b) Computing MWE22
umts = 2 for UMTS-termination by applying forward MVA.

Branches are labelled with weight of input/parity.

Fig. 4.3 Examples showing how to compute MWE22
tb and MWE22

umts for
tail-biting and UMTS-termination, respectively. For tail-biting, ENC2 starts
and ends in state s2. For UMTS-termination, ENC2 starts and ends in s0.
The input sequence is u2 = (0, 1, 0,×,×,×,×) and the interleaver is π =
(3, 1, 6, 0, 5, 2, 4).

4 Distance Measurement Methods for Turbo Codes 88

ends encoding in the state sx at time t = K̃. Applying the backward MVA (t = K̃;

initial state=sx; w(sx) = 0; w(s
= sx) = ∞; decreasing t by 1 until t = j) gives a

minimum weight at time t = j for the state sy. This weight is the needed minimum

output-weight ENC1(u>j).

- The MWE1j
tb is the sum of ENC1(u≤j) and ENC1(u>j).

This procedure is repeated for all starting states of ENC1 and then the minimum is selected

to be MWE1j
tb.

As discussed before, the distance spectrum of dual-termination is basically a subset of

the distance spectrum of tail-biting. The computation of MWE1j
dt for dual-termination is

the same as MWE1j
tb, where the only start and end state sx allowed is the all-zero state.

Computation of MWE1j for UMTS-termination

The computation of MWE1j

umts for UMTS-terminated turbo codes is in principle the same

as the one for tail-biting, assuming ENC1 starts encoding u≤j in the all-zero state. The only

difference is the initialization of the backward MVA for the computation of ENC1(u>j).

The backward MVA should be initialized at time t = K̃ with the extra weights wumts(s)

resulting from the termination-bits.

Example showing how to compute MWE1j for tail-biting and UMTS-termination

To show how to compute MWE1j
tb and MWE1j

umts, consider the same 4-state single-binary

turbo code and the input sequence u2 used earlier. Assume for tail-biting that ENC1 starts

and ends in the state s1. For UMTS-termination ENC1 starts in the all-zero state and is

forced back to the all-zero state at the end of encoding the original input sequence.

To obtain MWE12
tb, ENC1 starts encoding u≤2 in state s1 and ends encoding in state s2

with output-weight of 1. The minimum weight resulting from u>2 is obtained by applying

the backward MVA with the initialization (w(s1) = 0; w(s
= s1) = ∞), which leads

to an output-weight of 3 at state s2 and therefore MWE12
tb = 1 + 3 = 4 (Fig. 4.4(a)).

Consequently, MW2
tb = MWE12

tb + MWE22
tb = 4 + 2 = 6.

For the computation of MWE12
umts, ENC1 starts encoding u≤2 in state s0 and ends

encoding in state s3 with output-weight of 3. The minimum weight resulting from u>2

is obtained by applying the backward MVA with the initialization w(s) = wumts(s) =

4 Distance Measurement Methods for Turbo Codes 89

(0, 2, 3, 3), which leads to an output-weight of 3 at state s3 and therefore MWE12
umts =

3+3 = 6 (Fig. 4.4(b)). Consequently, MW2
umts = MWE12

umts +MWE22
umts = 6+2 = 8.

Noting that the path leading to MWE12
umts in Fig. 4.4(b) starts and ends in the

state s0, it follows that MWE12
dt for dual-termination is also 6. Consequently, MW2

dt =

MWE12
dt + MWE22

dt = 6 + 2 = 8.

4.2.3 Recursive Construction of Minimum Distance

The search for dmin consists of an iterative construction of input sequences that generate

codewords of weight dmin. Assume d∗ is an upper bound for dmin and IW ∗ is the maximum

allowed input-weight that can cause dmin. Any input sequence u = uj fulfilling the criteria

(weight of uj) ≤ IW ∗ and MWj ≤ d∗ could generate dmin and will be the basis for the next

iteration uj+1
0/1 , where uj+1

0/1 = (u≤j, 0/1,×, · · · ,×). If both uj+1
0 and uj+1

1 fulfill the crite-

ria, then keep uj+1
1 to be used as a basis for another iteration later and set u = uj+1

0 as the

current basis for the next iteration uj+2
0/1 = (u≤j+1, 0/1,×, · · · ,×). If only uj+1

b = uj+1
0 or

uj+1
b = uj+1

1 fulfill the criteria, then set u = uj+1
b as the current basis for the next iteration

uj+2
0/1 and there is no need to keep uj+1

b
(b denotes the complement of bit b). The iterations

continue until u
�K−1
0/1 = (u≤ �K−2, 0/1). If the MW

�K−1 resulting from u
�K
0 or u

�K
1 is lower than

d∗, then set d∗ to MW
�K−1. This leads to a reduction in the number of bases to be considered

in subsequent iterations and thus fewer input sequences need to be tested, leading to re-

duced computational complexity. To make sure that all possible (2
�K −1) non-zero input se-

quences are tested, the following input sequences u0 = (1,×, · · · ,×), u1 = (0, 1,×, · · · ,×),

u2 = (0, 0, 1,×, · · · ,×),· · · , u
�K−2 = (0, · · · , 0, 1,×), u

�K−1 = (0, · · · , 0, 0, 1) must be

used as bases for subsequent iterations. The unique offsets corresponding to u≤0 = (1),

u≤1 = (0, 1), u≤2 = (0, 0, 1),· · · ,u≤ �K−2 = (0, · · · , 0, 1), u≤ �K−1 = (0, · · · , 0, 0, 1) must

be used to guarantee the exact values of distance d, multiplicity Ad and information bit

multiplicity Wd.

To find the exact distance spectrum for turbo codes using UMTS-terminated [44] it is

enough to consider the single case, where both encoders are initialized in the all-zero state

and driven back to the all-zero state at the end of encoding the original input sequence.

To find the exact distance spectrum for tail-biting turbo codes [56, 57, 58] the algorithm

is run (∆1 · ∆2) times, where ∆1 and ∆2 are the number of states of ENC1 and ENC2,

respectively. To find the exact distance spectrum for dual-terminated turbo codes [55], the

4 Distance Measurement Methods for Turbo Codes 90

X X X X

1/1

0/
1

1
/2

0/0

0/1

1/1

0/0

1/
1

0/0

0/
1

1/
1

0/1

∞

∞

∞

∞

∞ 0

1

1

3

1

2

2

3

2

2

2

3

0 1 0

1/1
0/0

0/0

0

0

1

1

3

2

3 0/0

0/0

0
/1

Backward modified Viterbi algorithm

2 =u
0s

1s

2s

3s

(a) Computing MWE12
tb = ENC1(u≤2) + ENC1(u>2) = 1 + 3 = 4 for tail-biting by

applying backward MVA. Branches are labelled with weight of input/(input+parity).

X X X X

1/1

0/
1

1/
2

0/0

2

0 1 0

0/0

1
/2

0

2 3

3

1/1

0/
1

1/
2

0/0

2

0

3

3

1/1

0/
1

1/
2

0/0

2

0

3

3

1/1

0/
1

1/
2

0/0

2

0

3

3

2

0

3

3
0/1

3

0

Backward modified Viterbi algorithm

2 =u
0s

1s

2s

3s

(b) Computing MWE12
umts = ENC1(u≤2) + ENC1(u>2) = 3 + 3 = 6 for UMTS-

termination by applying backward MVA. Branches are labelled with weight of in-
put/(input+parity).

Fig. 4.4 Examples showing how to compute MWE12
tb and MWE12

umts for
tail-biting and UMTS-termination, respectively. For tail-biting, ENC1 starts
and ends in state s1. For UMTS-termination, ENC1 starts and ends in s0.
The input sequence is u2 = (0, 1, 0,×,×,×,×) and the interleaver is π =
(3, 1, 6, 0, 5, 2, 4).

4 Distance Measurement Methods for Turbo Codes 91

algorithm is run only one time, where both encoders start and end in the all-zero state. It

has been observed for non-punctured tail-biting turbo codes that most of the computation

is used in finding dmin for the case where both encoders are assumed to start in the all-zero

state. This is because the number of surviving bases to be tested is significantly higher

than that for other starting state combinations. Thus, the computational complexity with

tail-biting is typically not much more than with dual-termination.

4.2.4 Techniques to Reduce the Computational Complexity and Memory

Requirement

Some techniques that are used by Garello to reduce the computational complexity and

memory requirements are discussed. A new technique that further reduces the computa-

tional complexity is also presented.

Garello’s modified definitions for WE1 and WE2

Garello’s modified definitions for WE1 and WE2 are explained. The computational com-

plexity of the distance measurement method presented here depends strongly on the number

of bases that must be considered for later testing. This number in turn depends on the

value of MWj for each basis uj, j ∈ {0, · · · , K̃−1}. The aim now is to increase the value of

MWj, because the higher MWj is, the lower the number of bases that must be considered

and thus the fewer the input sequences that must be tested.

Note that any single-binary recursive convolutional code with memory δ can be driven

from any state sx to any state sy by an input sequence of length and weight less than or

equal to δ. Given uj, ENC1 is guaranteed to be driven into the all-zero state with δ input

bits. Also, considering the weight of the systematic bits resulting from the (K̃ − j − 1)

unknown consecutive input bits in MWE1j will not bring any significant weight. It is

better to consider their weight in MWE2j, because the (K̃ − j − 1) unknown consecutive

bits get scattered and enter ENC2 in non-consecutive order leading to higher MWE2j. The

modified definition for the weight of ENC1 is

WE1 =

[
-Weight of both systematic and parity of ENC1 for known input bits, plus

-Weight of only parity of ENC1 for unknown input bits.

(4.8)

4 Distance Measurement Methods for Turbo Codes 92

This modified definition (WE1) leads to a lower weight for MWE1
j

compared to MWE1j

from the previous definition (WE1), i.e.,

MWE1
j ≤ MWE1j. (4.9)

The modified definition for the weight of ENC2 is

WE2 =

[
-Weight of only parity of ENC2 for known input bits, plus

-Weight of both systematic and parity of ENC2 for unknown input bits.

(4.10)

On average, the modified definition (WE2) leads to significantly higher weight for MWE2
j

compared to MWE2j in the previous definition (WE2), i.e.,

MWE2
j
>> MWE2j. (4.11)

On average, the lost weight in (4.9) is more than compensated for by the gained weight

in (4.11). The effect of this compensation becomes especially clear if the number of unknown

bits (K̃−j−1) in uj is significantly larger than δ for most j (i.e., (K̃−j−1) >> δ), which is

the case for all interleavers of practical length. On average, the modified definitions increase

the minimum weight MW
j
= MWE1

j
+MWE2

j
resulting from the sum of minimum weights

of ENC1 and ENC2. This eliminates the test of many input sequences, which in turn

significantly reduces the computational complexity. That is,

MW
j ≥ MWj . (4.12)

To show the effect of these definitions for tail-biting, lets apply them on the same 4-

state turbo code used earlier using the same basis input sequence u2 = (0, 1, 0,×,×,×,×).

As shown in Fig. 4.5(a), MWE1
2

tb = ENC1(u≤2) + ENC1(u>2) = 1 + 2 = 3 is less than

the MWE12
tb of 4 (see Fig. 4.4(a)). However, the MWE2

2

tb is 4 (see Fig. 4.5(b)), which

is higher than the MWE22
tb of 2 (see Fig. 4.3(a)). This example shows that even for a

very short interleaver (K̃ = 7), MW
2

tb = 7 is obtained using the new definitions instead of

MW2
tb = 6 obtained with the previous definitions. Similarly, an example can be shown for

UMTS-termination. The increase in MW
j

compared to MWj is even more significant for

longer interleavers.

4 Distance Measurement Methods for Turbo Codes 93

2

0 1 0 X X X X

1/0

0/
1

1
/1

0/0

0/1

1/0

0/0
1/

0

0/0

0/
1

1/
0

0/1

1/1
0/0

0/0

∞

∞

∞

∞

∞ 0

0

1

1

0

2

1

1

2

0

1

0

0

0

1

0/0

1
/1

1

0/0

1/1

1/01/0

0

1

Backward modified Viterbi algorithm

2 =u
0s

1s

2s

3s

(a) Computing MWE1
2

tb = ENC1(u≤2) + ENC1(u>2) = 1 + 2 = 3 by applying
backward MVA. Branches are labelled with weight of input/(input+parity) for known
bits and with weight of input/parity for unknown bits.

X 1 X 0 X 0 X

0/0

0/1

0/
1

0/0
0/

1

1/1

∞

∞

∞

0 3

4

3

3

3

5

0/1

1/1

1/0

1

1

2

1

∞

∞

∞

∞

1
/2

4

1/1 2

1/
1

2

4

4

0/0

0/
1

0/0

0/0

0/1

2

0/0

0/1

3

2 2

2

0/02 0/0

1/2

1/
1

0/1

4

4

2

0/0

Forward modified Viterbi algorithm

2
π =u

0s

1s

2s

3s

(b) Computing MWE2
2

tb = 4 by applying forward MVA. Branches are labelled with
weight of input/parity for known bits and with weight of input/(input+parity) for
unknown bits.

Fig. 4.5 Example showing how to use the modified definition to compute
MWE12

tb and MWE22
tb for u2 = (0, 1, 0,×,×,×,×) and the interleaver π =

(3, 1, 6, 0, 5, 2, 4).

4 Distance Measurement Methods for Turbo Codes 94

Memory reduction

This technique was introduced by Garello to achieve the following two goals:

- Reduce the memory required to keep the new bases.

- Avoid unnecessary repeated computation of the value ENC1(u≤j).

For all possible bases u0, u1, · · · , u
�K−2, u

�K−1 the memory required without the memory

reduction technique is:

- K̃ bits to save the u≤j known bits.

- Buffers of sizes (2, 3, · · · , K̃ −1) bits to save the new bases. This results in a memory

requirement of
�K−1∑
i=2

i = (�K−2)(�K+1)
2

bits.

The overall memory required in bits is:

M = K̃ +
(K̃ − 2)(K̃ + 1)

2
(4.13)

To lower the memory requirement during the recursive construction of dmin, consider all

possible next iterations ut=j+1
1 , ut=j+2

1 , · · · , ut= �K−1
1 as branches of a binary tree. Each

branch Bt is labelled with four variables (t, It, Wt, st+1) where It is the input-weight at time

t resulting from u≤t (the t + 1 known bits), Wt is the output-weight (i.e., weight of input

and parity) of ENC1 generated by the input sequence u≤t and st+1 is the state of ENC1

after encoding u≤t. For each basis input sequence ut=j+1
1 , ut=j+2

1 , · · · , ut= �K−1
1 fulfilling the

criteria (weight of ut) ≤ IW ∗ and MW
t ≤ d∗, instead of saving it, it is enough to label its

corresponding branch Bt with the four values (t, It, Wt, st+1).

To demonstrate the labelling strategy, consider the same 4-state single-binary turbo

code described earlier, where ENC1 starts and ends in state s1 and u2 = (0, 1, 0,×, · · · ,×)

is the basis input sequence. A cross section of the binary tree is shown in Fig. 4.6.

After the last iteration ut= �K−1
0/1 is done, where all unknown input bits become known,

trace back the last saved branch Bt′ and extract from it the new basis. The new basis for

the next iteration can be extracted easily by using the first t′ bits from the known ut= �K−1
0/1

and concatenating them with the input sequence (1,×, · · · ,×), which gives

uj=t′ = (u≤(t′−1), 1,×, · · · ,×) (4.14)

4 Distance Measurement Methods for Turbo Codes 95

0/0 1/1 0/0

(01) (10) (01) (10)

0/1

1/1)01(s;2W

2I;3t

43

3

==
==

0/1

(11)
)11(s;3W

2I;4t

54

4

==
==

0/0

)00(s;5W

2I;5t

65

5

==
==

(11)

(00)

(01)

(01)

(10)

1/1

1/2 (01)

0/1 (11)

)01(s;4W

2I;6t

76

6

==
==1/1

Fig. 4.6 Cross section of a labelled binary tree for ENC1, where ENC1 starts
in state s1 and the basis input sequence is u2 = (0, 1, 0,×, · · · ,×). Branches
are labelled with weight of input/(input+parity). Each node of the binary
tree represents the current state of the ENC1. The branches corresponding to
the input bit ‘1’ fulfilling the criteria (weight of ut) ≤ IW ∗ and MWt ≤ d∗

are the thick branches labelled with (t, It,Wt, st+1).

One advantage of using a labelled binary tree is the fact that only a single buffer of

K̃ bits is needed for all basis input sequences u0, u1, · · · , u
�K−1 instead of the M bits as

previously mentioned in (4.13). Of course, labelling the needed (K̃ − 2) branches requires

an extra 3(K̃ − 2) + 2(K̃ − 2) = 5(K̃ − 2) bytes (assuming that time index t needs 2 bytes

and the other 3 labels require only 1 byte). The labelling technique requires a memory

of about 5K̃ bytes, but this is still negligible compared to the previously required M bits

in (4.13). The saving is significant even for medium sized interleavers.

Recall that the main objective is to compute MW
j

= MWE1
j

+ MWE2
j
, where

MWE1
j
= ENC1(u≤j) + ENC1(u>j). Another advantage of using a labelled binary tree is

its lower computational complexity, due to the fact that it is enough to compute MWE2
j

to obtain the needed MW
j
, because ENC1(u≤j) is given by the value of Wt′=j labelling the

branch Bt′=j and ENC1(u>j) at state st′+1=j+1 is already computed offline as suggested

earlier.

Other useful techniques to reduce complexity

The following techniques have also been used to reduce the computational complexity in

Garello’s distance measurement routine:

4 Distance Measurement Methods for Turbo Codes 96

1. Finding a tight upper bound for dmin at the beginning of the iterative process

reduces the number of input sequences to be tested and thus lowers the computational

complexity. Hence, use uj= �K−1 = (0, · · · , 0, 0, 1), uj= �K−2 = (0, · · · , 0, 1,×), uj= �K−3 =

(0, · · · , 0, 1,×,×), · · · , uj=0 = (1,×, · · · ,×) successively as the basis for the next iteration

uj+1
0/1 , where × can be 0 or 1. This tends to quickly lower the upper bound d∗ because

the first bases tested will have large numbers of consecutive leading zero bits and very few

trailing unknown bits.

2. To reduce the computational complexity of MWE1
j
for all j ∈ {K̃−1, K̃−2, · · · , 0},

ENC1(u>j = (×, · · · ,×)) can be computed offline for all states and all trellis sections

{K̃ − 1, K̃ − 2, · · · , 0} by applying the backward MVA. Similarly, the value ENC2(u>j =

(×, · · · ,×)) for all j ∈ {K̃ − 1, K̃ − 2, · · · , 0} can also be computed offline. The values of

ENC2(u>j = (×, · · · ,×)) are used to stop earlier the computation of MWE2
j
.

3. The MWE2
j

0 resulting from the input sequence uj
0 and the MWE2

j

1 resulting from

the input sequence uj
1 can be computed separately by applying the forward MVA, but this

leads to unnecessarily repeated computation over trellis sections (0, · · · , π−1(j) − 1) and

(π−1(j)+1, · · · , K̃ −1). To lower the computational complexity, MWE2
j

0 and MWE2
j

1 can

be computed in a single run by applying (see Fig. 4.7):

a. Forward MVA over trellis sections 0, · · · , π−1(j) − 1.

b. Backward MVA over trellis sections K̃ − 1, · · · , π−1(j) + 1.

c. Combining the results of (a) and (b) at trellis section t = π−1(j) for case × = 0 to

get MWE2
j

0 and for case × = 1 to get MWE2
j

1.

4. The forward MVA used to determine MWE2
j

can be stopped earlier at the end of

the trellis section ES LEFT if the minimum weight resulting from the summation of (a)

current weights at end of trellis section ES LEFT in ENC2, and (b) the ENC2(u>ES LEFT)

weights computed offline and (c) MWE1
j

is higher than d∗ (see Fig. 4.8).

Similarly, the backward MVA used to determine MWE2
j

can be stopped earlier at

the beginning of the trellis section ES RIGHT if the minimum weight resulting from the

summation of (a) current weights at beginning of trellis section ES RIGHT in ENC2, and

(b) the weights ENC2(u≤ES RIGHT) and (c) MWE1
j

is higher than d∗ (see Fig. 4.8).

It has been observed that the combination of an early stopping at trellis section ES LEFT

together with an early stopping at trellis section ES RIGHT does not lower the average

4 Distance Measurement Methods for Turbo Codes 97

Forward MVA Backward MVA

0

X=0/1

0s

)1(2
s

1()j 1K

Fig. 4.7 This Figure illustrate how to obtain MWE2j
0 and MWE2j

1. Apply-
ing (a) forward MVA and (b) backward MVA, then combining the results of
(a) and (b)at trellis section π−1(j) for input bits 0 and 1 leads to MWE2j

0 and
MWE2j

1, respectively.

computational complexity. In fact, the computational complexity is the same for inter-

leavers of lengthes K̃ ≤ 200 and is significantly higher for longer interleavers. Thus, it is

recommended to use early stopping only at trellis section ES LEFT or ES RIGHT, but not

both at the same time. In this thesis, the computation of MWE2
j

is stopped earlier only

at the end of trellis section ES LEFT.

Forward MVA

1()j

Backward MVA

Early stopping

at trellis section

ES_LEFT

Early stopping

at trellis section

ES_RIGHT

0

X=0/1

0s

)1(2
s

1K

Fig. 4.8 The forward and backward MVA can be stopped early at trellis sec-
tions ES LEFT and ES RIGHT, respectively. This thesis uses early stopping
only at trellis sections ES LEFT.

4 Distance Measurement Methods for Turbo Codes 98

A new technique to reduce complexity

The complexity involved with the determination of MW
j

0/1 is mainly due to the computation

of MWE2
j

0/1. The new technique proposed here reduces the complexity resulting from

the determination of MWE2
j

0/1 by avoiding unnecessary re-computation of forward and

backward MVA.

During the computation of MWE2
j

0/1 the forward MVA starts at trellis section LEFT=0

and ends at trellis section ES LEFT or (π−1(j) − 1) and the backward MVA starts at

trellis section RIGHT=(K̃-1) and ends at trellis section (π−1(j) + 1). The computation of

MWE2
j+1

0/1 will also use LEFT=0 and RIGHT=(K̃-1), which leads to a re-computation of

backward and forward MVA over many trellis sections. To avoid this re-computation, the

following strategy is proposed:

- The computation of MWE2
j

0/1 for all bases uj= �K−2 = (0, · · · , 0, 1,×), uj= �K−3 =

(0, · · · , 0, 1,×,×), · · · , uj=0 = (1,×, · · · ,×) and (bases kept from previous iterations)

is done by setting LEFT=0 and RIGHT=(K̃-1). The computed weights for all states

at begin end end of each trellis section must be stored in a (K̃ + 1)− by −∆2 matrix

(i.e., MVA MATRIX[K̃+1][∆2]) .

- The computation of MWE2
j+1

0/1 uses the new values for LEFT and RIGHT, which

depend on the positions π−1(j) and ES LEFT from the previous iteration and the

current position π−1(j +1) and can be obtained using the following simple structure:

- LEFT=min(π−1(j + 1), π−1(j), ES LEFT).

- RIGHT=max(π−1(j + 1), π−1(j)).

The forward and backward MVA are initialized with MVA MATRIX[LEFT] at trellis

section LEFT and MVA MATRIX[RIGHT+1] at trellis section RIGHT+1, respec-

tively. The values of the MVA MATRIX must be updated for the trellis sections

(LEFT, · · · , RIGHT) during the computation of MWE2
j+1

0/1 , so they can be used for

the computation of MWE2
j+2

0/1 , if needed.

Simulation results with DRP interleavers [26, 100, 60] of various lengths show that this

strategy reduces the average computational complexity by about a factor of 2.

4 Distance Measurement Methods for Turbo Codes 99

4.2.5 Comparison Between Theory and Simulation Results

For comparison purposes, simulation results for a random interleaver were compared to the

analytical union bounds given in (4.1) and (4.2) that used the first and the first five terms

of the distance spectrum listed in Table 4.1. TUB(1) and TUB(5) refer to truncated union

bound that uses the first and the first five terms of the distance spectrum, respectively. As

expected, Fig. 4.9 shows that the simulation results agree with the analytical bounds in

the flare region (i.e., at high SNR values). Furthermore, Fig. 4.9 shows that increasing the

number of distance spectrum terms used in the union bound reduces the gap between the

simulation results and the analytical bounds. Thus, it is desirable to use as many terms

as possible when the error performance is predicted based on the analytical union bound.

This in turn shows the importance of efficient distance measurement methods, capable of

computing high distances in reasonable times.

0 0.5 1 1.5 2 2.5 3 3.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

FE
R

/B
E

R
 (

M
PE

G
, R

c=
1/

3)

FER
BER
FER: TUB(1)
FER: TUB(5)
BER: TUB(1)
BER: TUB(5)

Fig. 4.9 FER and BER for MPEG-sized random interleaver of code rate
Rc=1/3 (QPSK/AWGN). The size of overlap is 75 symbols (150 bits) and
the number of iterations is 8. Enhanced max-log MAP (EML-MAP) decoding
with an extrinsic scale factor of 0.75 was used by the DVB-RCS turbo decoder.
1000 MPEG packet errors were counted at each simulated SNR value. The
TUB(1) and TUB(5) curves are the truncated union bounds using the first
and the first five terms of the distance spectrum, respectively.

Another way to check the results is to determine the distance between the transmitted

4 Distance Measurement Methods for Turbo Codes 100

Table 4.1 Distance results (dmin/Admin
/Wdmin

), and the next four distance
terms, for a K̃=1504 bit random interleaver with code rate Rc = 1/3.

�K first term second term third term forth term fifth term

1504 12/3/9 13/2/6 15/4/15 16/3/8 17/4/12

codeword and the decoded codeword in the simulation when a packet is in error. Obviously,

this distance provides an upper bound on the true dmin. At high SNR values, this upper

bound is usually very tight and often is equal to the true dmin, especially when dmin is

not very high. The minimum distance obtained from the simulation, with the random

interleaver, did agree with the true dmin obtained algorithmically. This provides a good

indication that the method is working properly.

Note that both methods described above were used only for comparison purposes and

they do not verify the computed minimum distance. They just increase the confidence that

the method was implemented correctly.

4.2.6 Distance Results

The new interleaver design for the DVB-RCS [15] turbo codes is based on the dithered

relative prime (DRP) approach [26, 100, 60]. DRP interleavers are highly structured and

ideal for designing low-memory interleaver banks for turbo codes. Each interleaver can be

stored and implemented using only a few parameters. These parameters can be computed

at run-time if desired. The interleaver bank resolution is determined by the dither window

size, M . An M value of 4 works well for blocks of length K̃ < 400 and an M value of 8 is

better for blocks of length 400 ≤ K̃ ≤ 1500. An M value of 16 or higher is recommended

for larger blocks.

Distance results are shown for some UMTS standard interleavers and all DVB-RCS stan-

dard interleavers and code rates. The code rate is Rc and the 3 values (dmin/Admin
/Wdmin

)

represent minimum distance, codeword multiplicity and information bit multiplicity, re-

spectively.

4 Distance Measurement Methods for Turbo Codes 101

UMTS/3GPP results

Table1 4.2 shows that the distance results for the UMTS standard interleavers barely im-

prove with tail-biting. This is because the lowest distances are usually caused by the

interleaver itself, and not the termination technique.

Table 4.2 also shows that the distance results for the DRP interleavers are consistently

better than those shown for the UMTS standard. This is especially true for tail-biting.

Thus, it is recommended to use UMTS encoders and decoders that use tail-biting [56, 57, 58]

or dual-termination [55].

Table 4.2 Distance results (dmin/Admin
/Wdmin

), and the next two distance
terms, for 4 UMTS interleavers and DRP interleavers with code rate Rc = 1/3.
K̃ is in bits.

standard UMTS interleavers DRP interleavers�K UMTS-termination tail-biting UMTS-termination tail-biting

12/1/4 12/1/4 14/4/8 25/160/640

80 16/3/12 16/4/16 16/1/2 26/160/960

17/7/23 17/11/33 17/3/7 27/440/2200

16/1/2 17/2/6 21/4/8 31/80/400

160 17/2/6 20/3/12 23/6/18 32/160/640

20/4/16 21/10/30 24/4/16 33/480/3040

24/1/4 24/1/4 24/1/2 38/800/4480

320 25/2/6 25/1/3 25/2/6 39/2160/15920

26/2/4 26/2/4 26/4/10 40/400/2560

27/9/81 27/9/81 30/2/6 42/160/960

640 28/160/640 28/162/648 31/2/4 43/320/1920

29/8/24 29/5/15 32/3/8 44/480/1920

Fig. 4.10 shows, for interleavers of length 512, an improvement with the DRP interleaver

greater than 0.5 dB at FERs below 10−6 compared to the UMTS standard interleaver. The

UMTS standard interleaver has a dmin of 21 with Admin
=1 and Wdmin

=3 for both UMTS-

termination [25] and dual-termination [55]. The DRP interleaver with M = 8 has a dmin of

42 with Admin
=410 and Wdmin

=2460 for dual-termination. Since the minimum distance with

1Special thanks to the communications and signal processing group at the Communications Research
Centre (CRC) in Ottawa for providing the DRP interleavers used in Table 4.2 and Fig. 4.10 as well as the
simulation software used to generate Fig. 4.10. Distance results for tail-biting in Table 4.2 are determined
using Garello’s extended method proposed in this chapter.

4 Distance Measurement Methods for Turbo Codes 102

UMTS-termination dmin(UMTS) is always less than or equal to the minimum distance with

dual-termination, then it is fair to compare the error rate performance of both interleavers

based on dual-termination. Note that the constituent decoders used enhanced max-log

maximum a posteriori (MAP) decoding with an extrinsic scale factor of 0.8.

The truncated union bounds (TUBs) in Fig. 4.10 used only the first term of the distance

spectrums. The gaps between the analytical bounds and the simulated curves are expected

to be reduced when more terms of the distance spectrums are used. Unfortunately, the

determination of higher terms is very computationally intensive because the dmin value is

already quite high.

0.5 1 1.5 2 2.5
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

E
b
/N

0
 (dB)

FE
R

/B
E

R
 (

R
c=

1/
3)

FER: (Standard, d
min

=21)
FER: (DRP, d

min
=42)

BER: (Standard, d
min

=21)
BER: (DRP, d

min
=42)

FER: TUB(1): (DRP, d
min

=42)
BER: TUB(1): (DRP, d

min
=42)

Fig. 4.10 FER and BER for interleavers of size 512 and code rate Rc=1/3
(BPSK/AWGN). The number of iterations is 16. Enhanced max-log MAP
(EML-MAP) decoding with an extrinsic scale factor of 0.8 was used by the
turbo decoder. 600 million packets were simulated for both interleavers at 2.25
dB. Both interleavers were used with dual-termination. The TUB(1) curves are
the truncated union bounds using only the first term of the distance spectrum.

4 Distance Measurement Methods for Turbo Codes 103

DVB-RCS results

For double-binary turbo codes the bits within the symbols can also be manipulated, for

example as per the original DVB-RCS standard. Let K = K̃/2 be the interleaver length in

symbols (2 bits). Since symbols are interleaved, the dither window operates on M symbols

(2M bits).

Table 4.3 shows the distance results for the twelve DVB-RCS standard interleavers for

the seven standard code rates. Some of the distance results shown in Table 4.3 have also

been independently computed by Rosnes, et al. [29] using a different modified version of

Garello’s original algorithm. The results in Table 4.3 agree exactly with the subset of cases

considered in [29].

Table 4.3 Distance results (dmin/Admin
/Wdmin

) for the 12 DVB-RCS stan-
dard interleavers. K is in 2-bit symbols.

K Rc = 1/3 Rc = 2/5 Rc = 1/2 Rc = 2/3 Rc = 3/4 Rc = 4/5 Rc = 6/7

48 21/72/240 17/48/192 13/72/168 8/120/360 4/8/32 4/12/36 3/16/32

64 25/192/1248 18/32/192 14/32/128 8/64/256 5/4/13 4/16/64 3/2/5

212 31/106/954 25/159/1325 18/159/954 11/159/901 7/10/50 6/159/742 4/9/27

220 31/110/990 25/165/1265 19/165/1265 11/220/1210 7/10/35 6/110/550 4/2/8

228 30/114/855 24/57/342 18/171/1197 10/57/342 7/19/57 6/171/798 5/247/836

424 30/212/1696 24/212/1696 18/212/1696 13/530/3710 8/21/84 7/212/954 5/80/287

432 31/108/972 27/324/3132 18/108/972 12/432/2160 8/36/144 6/108/324 5/72/288

440 28/110/1100 22/110/1100 16/110/1100 12/110/440 8/27/108 8/1100/5500 4/10/40

752 33/376/3384 27/376/3384 19/376/3384 12/188/1316 9/27/171 9/3572/20680 6/199/826

848 36/848/7420 28/636/5088 20/636/5088 13/212/1272 9/1/4 8/212/848 5/67/176

856 33/428/3852 27/428/3852 19/428/3852 12/214/1498 9/8/40 9/3210/17762 5/16/64

864 36/864/7560 28/648/5184 20/648/5184 13/216/1296 9/72/144 8/648/2160 6/288/1008

Table 4.4 shows additional distance results for the first 9 standard interleaver sizes for

DVB-RCS. These minimum distances were obtained using DRP interleavers that were

found with an exhaustive search over all possible dither patterns with M = 4 (except

for some high code rates for K=752 2-bit symbols the search was not exhaustive). All 4

repeating possibilities of swapping the 2 bits within a symbol over 2 consectutive symbols

were also considered. For all the packet sizes and code rates, the minimum distances

shown in Table 4.4 are as good or better than those shown in Table 4.3 for the standard

interleavers.

Results were also generated for DRP interleavers with M values of 1 and 2 and a code

4 Distance Measurement Methods for Turbo Codes 104

Table 4.4 Distance results (dmin/Admin
/Wdmin

) for DVB-RCS with exhaus-
tive search for DRP interleavers with M = 4. Standard puncturing was used.
K is in 2-bit symbols.

K Rc = 1/3 Rc = 2/5 Rc = 1/2 Rc = 2/3 Rc = 3/4 Rc = 4/5 Rc = 6/7

48 24/24/144 20/192/960 14/96/288 8/24/60 6/64/224 5/108/420 4/156/520

64 28/384/2528 22/64/384 17/256/1920 9/64/256 6/16/67 5/16/48 3/1/2

212 36/1007/7420 28/53/530 22/1908/14416 12/106/318 8/24/96 8/2173/9858 4/1/4

220 36/715/6380 28/110/880 21/220/1210 12/55/275 8/9/42 8/1815/8305 4/1/3

228 36/342/1710 29/627/3933 22/1995/14649 12/285/1197 9/133/684 8/2337/12084 6/1216/5092

424 36/106/636 30/848/5088 23/530/4770 14/318/2014 9/2/11 9/1802/9434 5/1/4

432 36/108/648 30/864/5184 23/756/7020 14/540/3348 10/72/360 9/2160/10584 6/36/180

440 36/330/2970 30/880/5280 23/880/7260 14/330/2090 9/1/2 9/1760/9130 6/246/1155

752 36/3196/24064 30/1504/9024 22/3760/28388 14/188/1692 10/137/793 10/7332/41924 6/108/479

rate of 1/3. Table 4.5 shows that the (empirical) upper bounds on dmin with M=1,2 and

4 are 28, 32 and 36, respectively. Note that DRP interleavers with M = 1 correspond

to simple relative prime interleavers. Results for M=1,2 and 4 were obtained with an

exhaustive search considering the four repeating possibilities of swapping the 2 bits within

a symbol over 2 consecutive symbols. To get a dmin higher than 36, the dither window size

must be greater than M = 4. Unfortunately, an exhaustive search with M = 16 or even

M = 8 is impossible in a reasonable time due to the very large number of dither patterns

to be tested. Thus, the search was limited to randomly selected dither patterns. A dmin

of 40 with Admin
=1175 and Wdmin

=8084 was obtained for MPEG-sized packets (K=752

2-bit symbols) using the DRP approach with M = 16, whereas the dmin for the DVB-RCS

standard interleaver is just 33.

Table 4.5 Distance results (dmin) for rate 1/3 DVB-RCS codes with an
exhaustive search for DRP interleavers with M=1, 2 and 4. K is in 2-bit
symbols.

M K=48 K=64 K=212 K=220 K=228 K=424 K=432 K=440 K=752

1 24 27 28 28 28 28 28 28 28

2 24 27 32 32 32 32 32 32 32

4 24 28 36 36 36 36 36 36 36

The ATM-sized DRP interleaver [110] used in Fig. 4.11 can be generated using (4.15),

where the first 4 indices of the interleaver are {54, 0, 181, 135}, M=4 and r=100. The

MPEG-sized DRP interleaver [110] used in Fig. 4.12 and Fig. 4.13 can be generated us-

4 Distance Measurement Methods for Turbo Codes 105

ing (4.15), where the first 16 indices of the interleaver are {314, 230, 464, 3, 40,700, 577,

431, 194, 263, 665, 510, 68, 397, 629, 107}, M=16 and r=144. For both DRP interleavers,

the 2 bits in each symbol were swapped before applying interleaving.

π(i + M) = (π(i) + r) mod K, i = 0, · · · , K − 1. (4.15)

Fig. 4.11 shows, for an ATM packet with K=212 2-bit symbols, an improvement with

the DRP interleaver greater than 0.15 dB at FERs below 10−6 compared to the DVB-RCS

standard interleaver. Fig. 4.12 shows, for an MPEG packet with K=752 2-bit symbols, an

improvement with the DRP interleaver greater than 0.4 dB at FERs below 10−6 compared

to the DVB-RCS standard interleaver. Figs. 4.11, 4.12 and 4.13 were generated using

enhanced max-log MAP decoding [36] with an extrinsic scale factor of 0.75.

The truncated union bounds (TUBs) in Figs. 4.11, 4.12 and 4.13 used only the first

term of the distance spectrums. The gaps between the analytical bounds and the simulated

curves are expected to be reduced when more terms of the distance spectrums are used.

Unfortunately, the determination of higher terms is very computationally intensive because

the dmin values are already quite high.

For comparison purposes, the performance of an S-random interleaver with dmin=21,

Admin
=1 and Wdmin

=6 was also simulated. Fig. 4.12 and Fig. 4.13 show that the S-random

interleaver performs better than the standard interleaver, and closer to the DRP inter-

leaver, at low SNR values. This is mainly because of the low multiplicity of the S-random

interleaver, but the S-random interleaver also provides better convergence in the waterfall

region. However, at high SNRs the performance of the S-random interleaver is worse than

both the standard and DRP interleavers. This is because of the low dmin given by the

S-random interleaver.

4.3 Berrou’s Error-Impulse Method

Berrou et al. introduced in [33] a fast method for estimating the minimum distance based

on the ability of a soft-in decoder to overcome error-impulse inputs. This method inserts a

low-amplitude impulse into the all-zero codeword at a specific index to see if the decoder

can correct it. This amplitude is increased in steps of 1 until the decoder fails. The lowest

amplitude at which the decoder fails is recorded. Testing all data indices in the all-zero

4 Distance Measurement Methods for Turbo Codes 106

0.5 1 1.5 2 2.5
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 (dB)

FE
R

/B
E

R
 (

A
T

M
, R

c=
1/

3)

FER: (Standard, d
min

=31)
FER: (DRP, d

min
=36)

BER: (Standard, d
min

=31)
BER: (DRP, d

min
=36)

FER: TUB(1): (DRP, d
min

=36)
BER: TUB(1): (DRP, d

min
=36)

Fig. 4.11 FER and BER for ATM packets of code rate Rc=1/3
(QPSK/AWGN). The size of overlap is 50 symbols (100 bits) and the number
of iterations is 8. Enhanced max-log MAP (EML-MAP) decoding with an
extrinsic scale factor of 0.75 was used by the DVB-RCS turbo decoder. 100
million packets were simulated for both interleavers at 2.5 dB. The TUB(1)
curves are the truncated union bounds using only the first term of the distance
spectrum.

4 Distance Measurement Methods for Turbo Codes 107

0.5 1 1.5 2 2.5
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

E
b
/N

0
 (dB)

FE
R

 (
M

PE
G

, R
c=

1/
3)

FER: (S−Random, d
min

=21)
FER: (Standard, d

min
=33)

FER: (DRP, d
min

=40)
FER: TUB(1): (DRP, d

min
=40)

Fig. 4.12 FER for MPEG packets of code rate Rc=1/3 (QPSK/AWGN).
The size of overlap is 75 symbols (150 bits) and the number of iterations is 8.
Enhanced max-log MAP (EML-MAP) decoding with an extrinsic scale factor
of 0.75 was used by the DVB-RCS turbo decoder. The numbers of packet
errors at 2.5 dB were 100, 50 and 15 for the S-Random, standard and the
new DRP interleaver, respectively. The TUB(1) curve is the truncated union
bound using only the first term of the distance spectrum.

4 Distance Measurement Methods for Turbo Codes 108

0.5 1 1.5 2 2.5
10

−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

E
b
/N

0
 (dB)

B
E

R
 (

M
PE

G
, R

c=
1/

3)

BER: (S−Random, d
min

=21)
BER: (Standard, d

min
=33)

BER: (DRP, d
min

=40)
BER: TUB(1): (DRP, d

min
=40)

Fig. 4.13 BER for MPEG packets of code rate Rc=1/3 (QPSK/AWGN).
The size of overlap is 75 symbols (150 bits) and the number of iterations is 8.
Enhanced max-log MAP (EML-MAP) decoding with an extrinsic scale factor
of 0.75 was used by the DVB-RCS turbo decoder. The numbers of packet
errors at 2.5 dB were 100, 50 and 15 for the S-Random, standard and the
new DRP interleaver, respectively. The TUB(1) curve is the truncated union
bound using only the first term of the distance spectrum.

4 Distance Measurement Methods for Turbo Codes 109

codeword in this manner gives a list of amplitudes. The lowest amplitude gives an estimate

of dmin.

A short description of this method follows. Define x = (1, 1, . . . , 1) as the modulated

codeword generated by the all-zero input sequence and y = (1, 1, . . . , 1, 1 − Ei, 1 . . . , 1) as

the input to the decoder (Ei is called the error-impulse at position i and is a real number).

Assuming that dmin lies in the interval [d0, d1], where d0 and d1 are two integers and a ML

decoder is used, then dmin can be determined with the following algorithm

‖ set Emin = d1 + 0.5;

‖ for i = 0 to (Ñ − 1) do

– E = d0 − 0.5;
– set [(x̂ = x) = TRUE];
– while [(x̂ = x) = TRUE] and (E ≤ Emin − 1.0)

do

- E = E + 1.0;
- y = (1, . . . , 1, 1 − E, 1 . . . , 1); where (1 − E) is in position i;
- ML decoding of y ⇒ x̂;
- If (x̂
= x) then [(x̂ = x) = FALSE];

end while
– Emin = E

end for

‖ dmin is the integer part of Emin

For turbo codes, because they are systematic, it is enough to consider the indexes of the

K̃ information bits instead all Ñ indexes of the codeword. Thus, the first loop is reduced

to: for i = 0 to (K̃ − 1).

Since the iterative decoding complexity is linear in the codeword length, the complexity

of this method is O(λµK̃2), where λ is the average number of iterations, µ is the average

number of tested amplitudes (typically proportional to dmin) and K̃ is the number of in-

formation bits. To achieve good convergence, the maximum λ must be high. However, the

average number of iterations can be significantly reduced using early stopping techniques,

especially for amplitudes lower than the estimated dmin.

It was shown in [33] that this method is guaranteed to find the true minimum distance if

the decoder uses true maximum likelihood (ML) decoding. Unfortunately, turbo decoding

is not guaranteed to perform a ML decoding because of the iterative nature of the decoding

process. Thus, the relationship between the distance obtained with this method and the

4 Distance Measurement Methods for Turbo Codes 110

true dmin remains uncertain. It has been observed that this method is usually pessimistic,

but distances higher than dmin have also been found. Even so, the approach may prove to

be very useful for finding good interleavers.

4.4 Garello’s All-zero Iterative Decoding Method

Garello et al. introduced a method [97] similar to Berrou et al.’s method [33]. Instead

of increasing the amplitude of the error-impulse in steps of 1 until the decoder fails to

converge to the all-zero codeword [33], this method [97] intentionally sets the amplitude

of the error-impulse to a high value so that the decoder can not converge to the all-zero

codeword. Since the decoder fails, it estimates a non-zero input sequence. Encoding this

input sequence leads to a non-zero codeword. The hamming weight of this codeword is an

upper bound for the true dmin.

A short description of this method follows. Let d∗ be an upper bound on dmin and w(ĉ)

be the hamming weight of the estimated codeword ĉ. The vector y represents the input to

the decoder, assuming that the all-zero codeword is modulated using antipodal signaling.

The index i corresponds to the information bit forced to be ‘1’ and Amin is an estimate of

the minimum distance multiplicity. If log MAP decoding is applied then a value for the

noise variance, σ2, must be selected.

‖ choose σ2, if log MAP decoding is used;

‖ set Ei ≈ 2d∗. set dmin = d∗. set Amin = 1;

‖ for i = 0 to (K̃ − 1) do

– set y = (1, . . . , 1,−Ei, 1 . . . , 1), where (−Ei) is in position i;
– iterative decoding of y ⇒ x̂;
– encoding of x̂ ⇒ ĉ;
– determine w(ĉ);
– if w(ĉ) < dmin, set dmin = w(ĉ) and Amin = 1;
– else if w(ĉ) = dmin, update Amin;

end for

Note that setting the amplitude of the error-impulse too high may lead to precision prob-

lems during the decoding, especially when log MAP decoding [61] is used. This method is

slightly more reliable with log MAP decoding than with max-log MAP decoding. However,

this does not mean that log MAP decoding is recommended. This is because the minimum

4 Distance Measurement Methods for Turbo Codes 111

distance estimated with log MAP decoding is still a very loose upper bound on the true

dmin, at least for well designed interleavers. Also, more iterations can be used with max-log

MAP for the sam complexity.

The complexity of this method is O(λK̃2), but it only works well for interleavers with

low minimum distances. The reason is that these poor distances are usually due to only

two short events, one associated with the un-interleaved input sequence entering ENC1

and the other associated with the interleaved input sequence entering ENC2. Forcing the

information bit to be ‘1’ at index i, by setting the amplitude of the error-impulse to a high

value, and testing all indexes i ∈ {0, ..., K̃ −1} usually allows the decoder to find these two

events. Sometimes, this method is not able to find the true minimum distance, even when

it is due to only two error events, especially for short interleavers, where the spread is low.

Fig. 4.14 illustrates a case found with two error events for the DVB-RCS standard packet

of size 64 symbols (128 bits), where the true dmin is 25 and the estimated dmin is 30.

00 00 11 00 00 00 00 0000 00 11 00u

πu
00 11 00 00 00 00 0000 00

0 1 2 3 5 6 7 84 9 10 63

01

11

00

12

0 39 40 42 43 44 4541 46 47 6348 49

00 11 01 0000

38

0s

0s

Fig. 4.14 Two events for the DVB-RCS standard packet of size 64 symbols
(128 bits). Both encoders start and end in the all-zero state. The pattern
above gives the true dmin of 25. The dmin estimated by the all-zero iterative
decoding method is 30.

4.5 Crozier’s Double-Impulse Iterative Decoding Method

Crozier et al. in [31, 32] improved upon the all-zero iterative decoding method [97] by

introducing second (and third) impulse(s). Forcing the information bit to be ‘1’ at a single

index helps the decoder to converge to two events, one in the first encoder (ENC1) and the

other in the second encoder (ENC2). Since high distances are often a result of more than

two events, forcing two information bits to be ‘1’ helps the decoder to converge to more

events. The double-impulse method described in [31, 32] considered two impulses within

a limited range of each other, where the maximum range required was about twice the

4 Distance Measurement Methods for Turbo Codes 112

expected dmin value. This limited range approach keeps the complexity low, but typically

only allows three separate events (one in ENC1 and two in ENC2) to be directly influenced

by an impulse. Table 4.6 shows that the reliability of the double-impulse method can be

improved by considering a full range search for the second impulse [30]. This is because

a full range search typically allows up to four separate events (two in ENC1 and two in

ENC2) to be directly influenced by an impulse. A short description of the full range double-

impulse method follows, where i and j are the indexes for the two information bits forced

to be ‘1s’.

‖ choose σ2, if log MAP decoding is used;

‖ set Ei = Ej � 2d∗. set dmin = d∗. set Amin = 1;

‖ for i = 0 to (K̃ − 1) do

‖ for j = i to (K̃ − 1) do

– set y = (1, . . . , 1,−Ei, 1, . . . , 1,−Ej , 1, . . . , 1),
where (−Ei) and (−Ej) are in positions i and j;

– iterative decoding of y ⇒ x̂;
– encoding of x̂ ⇒ ĉ;
– determine w(ĉ);
– if w(ĉ) < dmin, set dmin = w(ĉ) and Amin = 1;
– else if w(ĉ) = dmin, update Amin;

end for

end for

With this method the decoder must decode K̃ · (K̃ +1)/2 packets, which results in com-

plexity of O(λK̃3). However, the complexity is reduced when testing structured interleavers

such as dithered relative prime (DRP) interleavers [60] for tail-biting turbo codes because

the distance properties repeat every M indexes (typical values for M are 4, 8, 16 and 32).

Since only M indexes in the first loop need to be tested, the complexity is O(λMK2). It

has been observed for this method and the all-zero iterative decoding method that a high

value for λ does not necessarily increase the reliability. Thus, it is usually sufficient to set

λ to a moderate value (e.g., 16 or 32).

This method, as well as the other iterative methods, works best for interleavers with

high spread. It has also been found that this method works very well with max-log MAP

decoding, where the knowledge of SNR is not required.

4 Distance Measurement Methods for Turbo Codes 113

Note2 that the double-impulse method with a limited range search was able to find the

true minimum distance for most of the interleavers tested in [32] (see Fig. 1 and Fig. 2

in [32]). Table 4.6 shows a few examples selected from [32], where the limited range search

was not able to provide the true dmin values. The minimum distances, dmin(true or TIM), are

obtained partially by Garllo’s true method and partially by Crozier’s triple-impulse method

(TIM) [32]. Minimum distances obtained with double-impulse method using limited and

full range search are referred to as dmin(LRS) and dmin(FRS), respectively.

Table 4.6 Comparison of minimum distances obtained with Crozier’s
double-impulse method (DIM) using limited and full range search for the sec-
ond impulse. Double-impulse method with limited and full range search as
well as TIM method used 16 full iterations. K̃ is in bits.

�K 504 728 1024 1256 1512 1616 1728 2120 2160

dmin(true or TIM) 40 43 46 49 51 51 52 52 52

dmin(LRS) 42 44 48 50 52 52 54 54 53

dmin(FRS) 40 43 46 49 51 52 52 53 53

4.5.1 Distance Results

The all-zero iterative decoding method and double-impulse iterative decoding method with

full range search are referred to in this section as the single-impulse method (SIM) and

the double-impulse method (DIM), respectively. Using the DVB-RCS turbo-code encoder,

the true dmin values, obtained using the method in [28], are compared with the distances

obtained with the error-impulse method (EIM), the SIM and the DIM. The EIM uses

max-log MAP decoding with early stopping (ES), where B is the number of consecutive

sets of hard decisions that must agree before stopping [95, 36, 34]. Genie ES can also

be used with the EIM. With genie ES the decoder stops when at any half-iteration the

all-zero codeword is produced. The maximum number of full iterations was set to 256 for

EIM and 16 for SIM and DIM. dmethod and σmethod are the average distance and the

standard deviation for a specific method, respectively, and K = K̃/2 is the number of 2-bit

information symbols.

2Special thanks to the communications and signal processing group at the Communications Research
Centre (CRC) in Ottawa for providing the DRP interleavers used in Table 4.6 as well the distance results
shown in Table 4.6.

4 Distance Measurement Methods for Turbo Codes 114

DVB-RCS standard interleavers

The distances shown in Table 4.7 are for the twelve DVB-RCS standard interleavers. The

code rate is 1/3 and early stopping with different B values were investigated. The use of

ES reduces the computational complexity of the EIM. The EIM is used with both normal

ES and genie ES.

Table 4.7 shows that the distances estimated using the EIM with normal ES are pes-

simistic. The EIM with normal ES and B = 16 gives the same distances as with B = 8, thus

in the following sections only B = 8 was used. The EIM with genie ES gives pessimistic

results for packet sizes less than or equal to 228 2-bit symbols and optimistic results for

packet sizes greater than or equal to 424 2-bit symbols. The SIM tends to be very opti-

mistic. In fact, it always provides an upper bound on the true dmin. The DIM was able to

find the true dmin for all twelve DVB-RCS standard interleavers.

Table 4.7 Distances shown here are for the code rate 1/3. DVB-RCS stan-
dard interleavers were used with normal ES, where B is the number of con-
secutive sets of hard decisions that must agree before stopping. The sign –
indicates that there is no difference between the corresponding result and the
result estimated with normal ES and B=4. K is in 2-bit symbols.

true dmin dEIM with normal ES dEIM with genie ES dSIM dDIM
K B = 4 B = 8 B = 16

48 21 17 – – 18 21 21

64 25 16 – – 17 31 25

212 31 25 24 24 30 188 31

220 31 23 22 22 28 257 31

228 30 25 – – 29 84 30

424 30 24 – – 32 364 30

432 31 25 – – 33 497 31

440 28 25 24 24 32 509 28

752 33 28 – – 38 204 33

848 36 28 27 27 37 634 36

856 33 28 – – 38 332 33

864 36 27 – – 35 332 36

Table 4.8 shows the distances with the MPEG packet size for the seven standard code

rates (Rc). Each distance estimated with EIM using normal ES is pessimistic. The EIM

with genie ES gives optimistic results for the lower code rates and pessimistic results for

the higher code rates. Note that the SIM continues to give very optimistic results with

4 Distance Measurement Methods for Turbo Codes 115

puncturing. The DIM was able to find the true dmin for all but one of the seven code rates.

For the rate 3/4 case, the estimated minimum distance was only dmin + 1.

Table 4.8 Distances for MPEG size (K=752 2-bit symbols) using DVB-RCS
standard interleaver and standard puncturing. Normal ES with various B were
used. The sign – indicates that there is no difference between the correspond-
ing result and the result with normal ES and B=4.

true dmin dEIM with normal ES dEIM with genie ES dSIM dDIM
Rc B = 4 B = 8 B = 16

1/3 33 28 – – 38 204 33

2/5 27 23 – – 30 397 27

1/2 19 17 – – 20 219 19

2/3 12 11 – – 14 394 12

3/4 9 7 – – 8 32 10

4/5 9 7 6 6 9 110 9

6/7 6 4 – – 5 12 6

Random interleavers

Tables 4.7 and 4.8 indicate that the distances estimated with the EIM and genie ES can

be misleading. They are a mix of optimistic and pessimistic results. Thus, in this section

the investigation of EIM was limited to normal ES with B = 8. The four methods were

tested with 1000 random interleavers for the code rate 1/3.

Table 4.9 indicates that the longer the interleaver is, the better the distance estimated

with EIM. One possible explanation is that increasing the size of a random interleaver

does not imply a significant increase in dmin, but it improves the reliability of the extrinsic

information, which in turn helps convergence.

The SIM produced the true dmin in all cases, except for two short interleavers of size 48

2-bit symbols. It is interesting to note that the two events (one in ENC1 and one in ENC2)

leading to the true dmin for both interleavers were short events. This means that the SIM

fails sometimes even when dmin is caused by only two short events. These two cases are

shown in Fig. 4.15 and Fig. 4.16. However, the estimated minimum distance tends to be a

tight upper bound on dmin for random interleavers.

Since the SIM is a subset of the DIM, and both methods give true upper bound on

dmin, it is enough to test these two interleavers of size 48 2-bit symbols with the DIM. The

4 Distance Measurement Methods for Turbo Codes 116

Table 4.9 Distances shown here are obtained using DVB-RCS standard en-
coder and code rate 1/3. K is in 2-bit symbols. The m random interleavers
were tested using normal ES with B = 8. The signs – and • indicate that there
is no difference between the estimated dmethod, σmethod and the true ones.
The abbreviations “agr.” and “disagr.” refer to the number of agreements and
disagreements compared to true dmin.

true dmin EIM(B = 8) SIM EIM(B=8) SIM

K m dmin σmin dEIM σEIM dSIM σSIM agr. disagr. agr. disagr.

48 1000 10.545 1.445 10.057 1.122 10.547 1.447 627 373 998 2

212 1000 10.743 1.509 10.604 1.435 – • 888 112 1000 0

752 1000 10.854 1.543 10.808 1.507 – • 961 39 1000 0

1024 1000 10.874 1.554 10.854 1.546 – • 981 19 1000 0

1504 1000 10.781 1.541 10.768 1.536 – • 988 12 1000 0

00 00 01 00 00
u

πu
10

0 1 2 3 10

11

46

10

47

0 46 47

00 11

2

0010

1

1s

3s

Fig. 4.15 For DVB-RCS standard encoder and a random interleaver of size
48 symbols (96 bits), the depicted two events cause the true dmin. The first
encoder starts and ends in state ‘001’. The second encoder starts and ends
in state ‘011’. The pattern above gives the true dmin of 11. The distance
estimated by the single-impulse method (SIM) is 12.

00 10 01 10

00

0 1 2 3

00

47

0 47

00 00

00

4

30 31 32

10 10 00

33

10

34

00

29

0s

0s

u

πu

Fig. 4.16 For DVB-RCS standard encoder and a random interleaver of size
48 symbols (96 bits), the depicted two events cause the true dmin. Both en-
coders start and end in the all-zero state. The pattern above gives the true
dmin of 12. The distance estimated by the single-impulse (SIM) method is 13.

4 Distance Measurement Methods for Turbo Codes 117

DIM found the true dmin for these two interleavers. Thus, the DIM found the true dmin in

all cases.

Dithered relative prime interleavers

The four methods were tested with 20 DRP interleavers for the code rate 1/3. All 20 inter-

leavers were unique in the tail-biting sense, meaning that any shift or offset or combination

of both to any interleaver does not result in any other interleaver. The EIM used normal

ES with B = 8.

Table 4.10 shows that EIM and SIM were not able to find the true dmin for any of the

tested DRP interleavers. The results show that EIM and SIM are very pessimistic and

optimistic, respectively. The DIM was able to find the true dmin for all tested interleavers.

Further investigation, showed that the DIM is also able to find the true minimum

distance, even when the distances are high. The DIM found the true dmin values of 36 and

40 for DRP-interleavers of sizes 212 and 752 2-bit symbols, respectively.

Table 4.10 Distances shown here are obtained using DVB-RCS standard
encoder and code rate 1/3. K is in 2-bit symbols. The m DRP interleavers
were tested with normal ES and B = 8. The abbreviations “agr.” and “disagr.”
refer to the number of agreements and disagreements compared to true dmin.

EIM(B=8) SIM DIM

K m dmin dEIM dSIM dDIM agr. disagr. agr. disagr. agr. disagr.

48 20 22 15.2 51.9 22 0 20 0 20 20 0

212 20 31 23.2 154.9 31 0 20 0 20 20 0

752 20 36 26.4 280.5 36 0 20 0 20 20 0

4.5.2 Complexity Comparison

The EIM and SIM have the lowest complexity and are very fast methods. However, they

provide very poor estimates for dmin, especially for well-designed interleavers. Thus, they

are not considered in the comparison. This comparison is restricted to the Garello’s true

distance measurement method and the more reliable DIM. In this comparison, the DIM

used 16 iterations. Note that an increase in the number of iterations usually leads to better

reliability of the DIM, especially for interleavers that yield high dmin values.

Rate 1/3 DVB-RCS standard turbo-code encoder was used together with 3 MPEG-sized

interleavers, namely, the standard interleaver and two new DRP interleavers. The reported

4 Distance Measurement Methods for Turbo Codes 118

CPU times were obtained with a 2.4 GHz Pentium 4 (Xeon) processor. TDIM and TGarello

refer to CPU times (in minutes) required with the DIM and the Garello’s true method,

respectively.

Table 4.11 shows that the execution times with Garello’s true method depend strongly

on the value of dmin. The test of the new MPEG-sized DRP interleavers that yield dmin=36

and 40 increased the execution times by a factor of 4 and 29, respectively compared to

the standard interleavers that yield a dmin=33. This demonstrates that the execution

time increases very rapidly with dmin. Thus, an efficient distance measurement method is

required to allow the test of high dmin in a reasonable time.

Table 4.11 shows that the execution times with DIM are the same for all interleavers and

are much less than the lowest reported TGarello. These results are encouraging because of

the low complexity and the good reliability of the DIM. However, the DIM is not guaranteed

to provide the true dmin. Even if it finds the true dmin, the multiplicities remains uncertain.

Since the aim is to develop a distance measurement method that determines at least the

true minimum distance, the focus of the next chapter is to further reduce the complexity of

the Garello’s true method to allow the accurate determination of high minimum distances

in reasonable times.

Table 4.11 Distance results (dmin) and CPU times in minutes for rate 1/3
DVB-RCS turbo-code encoder with various MPEG-sized interleavers (752 2-
bit symbols). The DIM used 16 iterations.

DVB-RCS standard interleaver (dmin=33) DRP interleaver (dmin=36) DRP interleaver (dmin=40)

TDIM 199 199 199

TGarello 348 1400 10153

4.6 Conclusion

Garello’s true distance measurement method for turbo codes was discussed and extended to

tail-biting turbo codes. Garello’s techniques to reduce the computational complexity were

discussed. A new technique that reduces the average computational complexity by a factor

of 2 was presented. This reduction in computational complexity is significant because

the measurement of high distances (i.e., dmin > 51) can take months (or even years).

Distance results for some UMTS standard interleavers were presented. Distance results for

the twelve DVB-RCS standard interleavers over all standard code rates were presented.

4 Distance Measurement Methods for Turbo Codes 119

New DVB-RCS interleavers of lengths 212 (ATM) and 752 (MPEG) 2-bit symbols were

designed based on DRP approach. The new DVB-RCS interleaver design achieves, for

rate-1/3 ATM packets, an improvement of at least 0.15 dB at FERs below 10−6 compared

to the UMTS standard interleaver. The new DVB-RCS interleaver design, for rate-1/3

MPEG packet achieves, an improvement of at least 0.4 dB at FERs below 10−6 compared

to the DVB-RCS standard interleaver.

Four distance measurement methods were compared based on the DVB-RCS standard

interleavers, random interleavers and dithered relative prime (DRP) interleavers. Garello’s

method always finds the true dmin value, but it is the most computationally intensive.

The error-impulse method (EIM) is usually pessimistic, whereas the single-impulse method

(SIM) is usually optimistic and it always gives a true upper bound on dmin. These two

iterative methods can be useful for estimating low minimum distances, typically associated

with random interleavers. For random interleavers with low distances, the reliability of both

methods increases with the size of the interleaver. The double-impulse method (DIM) with

full range search is much more reliable and was able to find the true minimum distance in

almost all cases.

The EIM and SIM have low complexity that grows linearly with interleaver size, whereas

the DIM has a moderate complexity that grows in a quadratic manner with interleaver

size. The complexity of Garello’s true distance measurement method depends mainly on

the value of dmin and increases very rapidly with dmin. The next chapter introduces a new

method that reduces the complexity of Garello’s true method to allow the determination

of high minimum distances in reasonable time.

120

Chapter 5

An Efficient and Accurate Distance

Measurement Method for Tail-biting

Turbo Codes that use Structured

Interleavers

An efficient and accurate distance measurement method for tail-biting turbo codes that use

structured interleavers is presented. This method takes advantage of the structure in the

interleaver as well as the circular property of tail-biting. The efficiency of this method is

demonstrated for both single- and double-binary turbo codes using the best known MPEG-

sized interleavers (1504 information bits) [60, 37, 28, 30] for various code rates.

5.1 Background

There is a growing body of literature on the design of interleavers that yield high minimum

distances (dmin) [60, 111]. Such interleavers are important for lowering the error flare of

turbo codes, allowing them to achieve very low error rates at low to moderate signal-to-

noise ratios (SNRs). A significant challenge is to determine their distance spectra or at

least their dmin values and corresponding multiplicities.

Berrou et al. introduced in [33] a fast method that uses error-impulse inputs. This

method is suitable for iterative decoding and has been applied to single-binary turbo codes

5 An Efficient and Accurate Distance Measurement Method 121

in [31, 32] and to double-binary turbo codes in [33, 30]. It has been shown in [31, 32, 30] that

this method usually gives a lower bound on dmin, but distances higher than dmin have also

been found. A similar method has been presented by Garello et al. in [97]. This method

tends to be very optimistic, see [31, 32, 30]. The accuracy of these two methods is very

poor for high dmin interleavers [31, 32, 30]. More accurate iterative decoding methods with

low complexity were presented in [31, 32]. As shown in [31, 32, 30], these more accurate

methods find the correct dmin most of the time. However, the accuracy of these methods

remains uncertain, especially for long interleavers that yield high dmin values. Even if they

find the true dmin, they cannot be guaranteed to find the correct multiplicities.

A novel and accurate distance measurement method was introduced by Garello et al.

in [27] for single-binary turbo codes. It has been improved significantly by Rosnes in [112]

and extended to tail-biting and double-binary turbo codes in [29, 28]. This method tests all

possible non-zero input data sequences uK−1 = (0, · · · , 0, χ), uK−2 = (0, · · · , 0, χ,×), · · · ,
u1 = (0, χ,×, · · · ,×), u0 = (χ,×, · · · ,×). Here, K is the interleaver length in symbols and

0 represents the zero-symbol (i.e., {0} for single-binary turbo codes and {00} for double-

binary turbo codes). The variable χ is either {1} for single-binary turbo codes or an element

of {01, 10, 11} for double-binary turbo codes. The variable × is an element of {0, 1} or

{00, 01, 10, 11} for single- or double-binary turbo codes, respectively. For more details,

see [27, 28] and Chapter 4. This method provides the true dmin and the true multiplicities.

However, for interleavers that yield high dmin values, the complexity increases rapidly with

dmin, making the test impractical. This complexity can be reduced significantly for tail-

biting turbo codes [56, 57, 58] that use highly structured interleavers. This is because the

distance properties repeat every few data symbols. However, one must be careful when

computing the multiplicities. It is not as simple as just testing a small number of indices.

Examples showing this problem are discussed in the next section and a solution is also

presented.

5.2 Complexity Reduction

The new method is based on Garello’s true distance measurement method [27, 28]. In fact,

the core of the algorithm remains the same as Garello’s algorithm for each symbol index

tested. The new method efficiently determines the true dmin and the true multiplicities

for tail-biting turbo codes that use structured interleavers. Structured interleavers, such

5 An Efficient and Accurate Distance Measurement Method 122

as dithered relative prime (DRP) interleavers [60], standard digital video broadcast with

return channel via satellite (DVB-RCS) interleavers [15] and almost regular permutation

(ARP) interleavers [111] have the following property:

π ([i + M]K) = [π(i) + Mp]K , i = 0, . . . , K − 1 (5.1)

where [x]K is x modulo K, and M is the number of repeating index increments required

to implement the interleaver π. K must be a multiple of M and the integer values p and

K must be relative primes to ensure that the interleaver references all symbol indices.

5.2.1 Distance Properties

Let L be the least common multiple of M , the various mask lengths used to puncture the

data and parity symbols, and the pre-interleaving mask length used in non single-binary

turbo codes to manipulate the bits within a symbol before the actual interleaving. For

structured interleavers, the distance properties of tail-biting turbo codes repeat every L

indices if K is a multiple of L. This can be explained as follows.

i From (5.1) it follows that a circular shift over qM positions (q is an integer) of an

input sequence u entering the first encoder (ENC1) results in a circular shift over

qpM positions of the corresponding input sequence uπ entering the second encoder

(ENC2).

ii From the circular property of tail-biting it follows that circular shifts of u and uπ

result in circular shifts of their parities.

Form (i) and (ii), it follows that the distance resulting from a circular shift of u over qM

positions is the same as the distance resulting from a non-shifted u, provided that no

puncturing or pre-interleaving is involved. If puncturing or pre-interleaving is involved, the

distance is guaranteed to be shift-invariant, if the circular shift of u goes over qL positions.

Thus, the distance properties repeat every L indices.

To summarize, without puncturing, the distance properties of tail-biting turbo codes

repeat every M indices. With puncturing, they repeat every L indices. Thus, the dmin is

guaranteed to be found if the first L indices are tested for all ∆1 · ∆2 state combinations,

where ∆1 and ∆2 are the number of starting (and ending) states in ENC1 and ENC2,

respectively.

5 An Efficient and Accurate Distance Measurement Method 123

An error event refers to the input symbols associated with a path in the trellis that

departs from the all-zero state and returns to the all-zero state without passing through

the all-zero state. Each input sequence umin that causes dmin has at least Z consecutive zero

symbols that are not a part of any error events. Note that Z can be as small as 0 for very

short interleavers, but is typically much greater than zero for most interleavers of interest.

This Z determines the number of state combinations that need to be considered and the

locations of the L indices to be tested. If Z < (L − 1), the first L indices {L − 1, · · · , 0}
must be tested considering all ∆1 ·∆2 state combinations. If Z ≥ (L− 1), which is usually

the case even for fairly short interleavers, only the state combinations where ENC1 starts

and ends in the all-zero state need to be considered (i.e., ∆2 state combinations). This

leads to a reduction in complexity, especially if puncturing is involved. It is also enough to

test the L indices {Z, · · · , Z −L+1}. This reduces the complexity even further, especially

for large Z. This is because a large number of leading symbols are know to be zero-symbols,

as discussed earlier.

5.2.2 How to Determine the Correct Multiplicity

As mentioned above, care must be taken when determining the multiplicities. A ‘shift’

of an input sequence refers to a circular shift of the input sequence by a multiple of L

positions. Any input sequence that causes dmin can be used to represent all shifts of that

input sequence that also cause dmin. The multiple shifts of this input sequence will be

counted later by multiplying by K/L. The goal now is to count only one representative

from each unique set of shifted input sequences. The following two examples demonstrate

the details associated with the determination of such representative input sequences for

two cases, namely, Z < (L − 1) and Z ≥ (L − 1). For the examples considered below, let

L be 4.

Case (Z < L − 1):

Assume that dmin is caused by the representative input sequence umin. Recall that all state

combinations must be considered. Thus, H shifts of umin will be found where H is the

number of χ variables in umin that are immediately preceded by at least b consecutive

zero symbols that satisfy b ≥ [i]L, where i is the position of χ in umin. This means that

each χ in umin could cause a shift of umin to be found. This is demonstrated using the

5 An Efficient and Accurate Distance Measurement Method 124

universal mobile telecommunications system (UMTS) 8-state polynomial generators [25].

Assume that dmin is caused by the representative single-binary input sequence umin =

(10, 0, 0, 1, 0, 0, 12, 1, 0, 11, 0, 1), where subscripts are used for reference purposes. When

testing the first L = 4 indices, three shifts of umin will be found (i.e., H = 3):

- u2
min = (0, 0, 12, 1, 0, 11, 0, 1, 10, 0, 0, 1)

- u1
min = (0, 11, 0, 1, 10, 0, 0, 1, 0, 0, 12, 1)

- u0
min = (10, 0, 0, 1, 0, 0, 12, 1, 0, 11, 0, 1)

when indices 2, 1 and 0 are tested, respectively. This is because 12, 11 and 10 at positions

6, 9 and 0 in umin are immediately preceded by at least [6]4 = 2, [9]4 = 1 and [0]4 = 0

zeros, respectively. Since u2
min, u1

min and u0
min are shifts of umin by 4, 8 and 0 positions

to the left, respectively, three shifts of umin are found. However, the goal is to count only

one representative of umin. One efficient solution is to recognize that when u2
min is found,

u1
min and u0

min will also be found. Similarly, when u1
min is found, u2

min and u0
min will also be

found. As well, when u0
min is found, u2

min and u1
min will also be found. To count umin only

once, each shift of umin that is found is counted only 1/H of the time, where H is the total

number of shifts found. In this example, H = 3 and umin is counted only once by counting

it 1
3

of the time each of the three times a shift of it is found.

Case (Z ≥ L − 1):

Since ENC1 starts and ends in the all-zero state, only χ at the beginning of an error event

could cause a shift of umin to be found. Again, this is demonstrated using the UMTS 8-state

polynomial generators. Assume that dmin is caused by the representative single-binary in-

put sequence umin = (0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1) = (0, e1, 0, 0, 0, 0, e2, e),

where e1 = (1, 1, 1, 0, 1), e2 = (1, 1, 0, 0, 0, 1) and e = (1, 0, 1, 1) are distinct error events. In

this example, Z is 4 and the indices to be tested are {4, 3, 2, 1}. Only two shifts of umin

will be found:

- u2
min = (0, 0, e2, e, 0, e1, 0, 0)

- u1
min = (0, e1, 0, 0, 0, 0, e2, e)

5 An Efficient and Accurate Distance Measurement Method 125

when indices 2 and 1 are tested, respectively. Since u2
min and u1

min are shifts of umin by 8

and 0 to the left, respectively, two shifts of umin are found. However, the goal is to count

only one representative of umin. As before, one solution is to recognize that when u2
min is

found, u1
min will also be found and vice versa. In this example, H = 2 and umin is counted

only once by counting it 1
2

of the time each of the two times a shift of it is found.

Given that an arbitrary uj
min was found while testing index j, the question now is how

to recognize the other shifts of uj
min that will also be found. The answer is as follows for

the two cases.

Case (Z < L − 1):

Let (i) be the number of consecutive zero symbols immediately preceding a χ at position

i in uj
min, where i = j + 1, · · · , K − 1 are tested for χ. From the first example given above,

it follows that a shift of uj
min is guaranteed to be found during the test of index [i]L if

(i) ≥ [i]L.

Case (Z ≥ L − 1):

Let e(i) be the number of consecutive zero symbols immediately preceding an error event

that starts at position i in uj
min, where i = j+1, · · · , K−1 are tested for the start of an error

event. A circular shift of position i must result in a new position i′ ∈ {Z, · · · , Z − L + 1}.
From the second example given above, it follows that a shift of uj

min is guaranteed to be

found during the test of index i′ if e(i) ≥ i′. It can be shown that

i′ = i − L · �(i − Z + L − 1)/L� , (5.2)

where �x� is the largest integer less than or equal to x.

Recall that H is the total number of shifts found. Each time an input sequence umin that

causes dmin is found, H is determined and the codeword multiplicity is increased by 1
H

. Also,

the information bit multiplicity is increased by w(umin)/H , where w(umin) is the Hamming

weight of umin. The overall true codeword multiplicity (Admin
) and the true information

bit multiplicity (Wdmin
) are obtained by multiplying the multiplicities determined above by

K/L.

The approach is easily extended to higher distances so that more terms of the distance

5 An Efficient and Accurate Distance Measurement Method 126

spectrum can be determined.

5.3 Remarks on Complexity Reduction when Z is used

A deterministic polynomial-time algorithm to compute the minimum distance would be

a good step toward the ideal solution. This is because such an algorithm could be used

to construct good turbo codes by choosing an interleaver at random and checking if the

associated code has a large minimum distance. Unfortunately, no such algorithm is known.

More details about the hardness of computing the minimum distance for the class of binary

linear codes can be found in [113, 114, 115].

The complexity of Garello’s distance measurement method is hard to determine an-

alytically. Thus, the reduction in complexity due to the use of Z is discussed based on

a brute force method. Applying the standard Garello’s method requires testing 2K − 1

non-zero input sequences, whereas the use of Z requires testing only 2(K−Z) − 1 non-zero

input sequences. Consequently, the use of Z yields a reduction in complexity by a factor

of about 2Z . This clearly shows that the use of even a moderate Z value has the potential

to result in a significant reduction in complexity.

Obviously, Garello’s method does not explicitly test all possible non-zero input se-

quences. Thus, the reduction in complexity is upper bounded by 2Z . The brute force

method used above was introduced to demonstrate that the use of Z could yield a signifi-

cant reduction in complexity. The actual observed reductions in complexity are typically

much smaller, but still very significant, as shown in Tables 5.1, 5.2 and 5.3, for example.

5.4 Example Distance and Complexity Results

Distance results and execution times are reported for both a double-binary turbo code

that uses the DVB-RCS 8-state polynomial generators [15] and a single-binary turbo code

that uses the UMTS 8-state polynomial generators [25]. Results are presented for MPEG-

sized (1504 information bits) interleavers, various code rates, Rc, and several Z values for

the new method. The reported CPU times (in minutes) TOld and TNew(Z) required with

the old and new methods, respectively, were obtained with a 2.4 GHz Pentium 4 (Xeon)

processor. Note that all methods have been implemented in C programming language. As

a consistency check, for cases where original Garello’s true method is applicable, this new

5 An Efficient and Accurate Distance Measurement Method 127

method gave identical results (in much shorter time).

Table 5.1 shows the results for the double-binary DVB-RCS 8-state turbo-code encoder

with the MPEG-sized standard interleaver. A value of L = 4 symbols is sufficient for all

the standard code rates reported in Table 5.1. The TNew(Z) results are for Z = L − 1 = 3

symbols (6 bits) and Z = 150 symbols (300 bits). Comparing TOld with TNew(Z = 3)

shows that the execution times are reduced significantly using a Z value of only 3 symbols.

Further reductions in the execution times is achieved using Z = 150 symbols. As expected,

the measured distances and multiplicities were exactly the same for all three methods used.

Table 5.2 shows the results obtained with new MPEG-sized DRP interleavers for the

DVB-RCS encoder. The reported code rates use DVB-RCS standard puncturing masks. A

value of L = 4 symbols is sufficient for all the code rates reported in Table 5.2, except for

rate 1/3 where L = 8 symbols. As an example, for rate 2/5, the use of Z = 3 and Z = 150

symbols reduced the execution times by factors of 25 and 400, respectively, compared to

the old method. Note that for rate 1/3, the new DRP interleaver gives a dmin of 40, whereas

the standard interleaver gives a dmin of 33.

Table 5.3 shows the results for the single-binary UMTS 8-state turbo-code encoder with

new MPEG-sized DRP interleavers. A value of L = 8 symbols is sufficient for all the code

rates reported in Table 5.3. The accurate determination of dmin = 51 would not be possible

in reasonable time without the use of the new method. The reported TOld values for code

rates 1/3, 2/5 and 1/2 are optimistic estimates obtained by testing only a subset of indices.

The use of Z values of 150 symbols, 150 symbols and 200 bits in Tables 5.1, 5.2 and 5.3,

respectively, show a typical reduction in execution time by a factor of 40 to 400. Those Z

values were obtained using safe lower bounds on Z based on the constituent encoders and

the structure of the interleavers. The true Z values are likely much higher. Future work

includes finding tighter lower bounds for Z, so the complexity can be reduced even further.

This method described above is the fastest known distance measurement method for tail-

biting turbo codes that use structured interleavers. In [112], Rosnes reduced significantly

the complexity of Garello’s true distance measurement method [27]. Combining this new

method with that of Rosnes [112] will further reduce the execution times.

5 An Efficient and Accurate Distance Measurement Method 128

Table 5.1 Minimum distances, multiplicities and CPU times in minutes for
the DVB-RCS turbo-code encoder with the MPEG-sized standard interleaver.

Rc 1/3 2/5 1/2 2/3 4/5

dmin 33 27 19 12 9

Admin
376 376 376 188 3572

Wdmin
3384 3384 3384 1316 20680

TOld 351 353 120 52 240

TNew(Z = 3) 6.95 7.18 2.10 1.66 3.65

TNew(Z = 150) 3.36 3.00 0.91 0.38 2.25

Table 5.2 Minimum distances, multiplicities and CPU times in minutes for
the DVB-RCS turbo-code encoder with new MPEG-sized DRP interleavers.

Rc 1/3 2/5 1/2 2/3 4/5

dmin 40 30 22 14 10

Admin
1128 1504 3760 188 7332

Wdmin
7332 9024 28388 1692 41924

TOld 10153 751 482 854 1215

TNew(Z = 3) 482 29 14 17 22

TNew(Z = 150) 270 1.80 2.91 7.20 10.88

Table 5.3 Minimum distances, multiplicities and CPU times in minutes for
the UMTS turbo-code encoder with new MPEG-sized DRP interleavers.

Rc 1/3 2/5 1/2 2/3 4/5

dmin 51 38 28 14 9

Admin
940 376 1692 376 2068

Wdmin
7708 2256 9588 1692 10152

TOld 302400 129600 34560 1421 504

TNew(Z = 7) 12108 6468 1353 17 6.3

TNew(Z = 200) 5578 908 651 10.35 3.53

5 An Efficient and Accurate Distance Measurement Method 129

5.5 Conclusion

A new and very efficient distance measurement method for tail-biting turbo codes that

use structured interleavers has been presented. This new method takes advantage of the

interleaver structure and the circular property of tail-biting. In this way, the search space for

Garello’s true method is reduced drastically, which in turn results in a significant reduction

in complexity. The efficiency of this method was demonstrated for both single- and double-

binary turbo codes, using structured interleavers that yield high minimum distances for

various code rates. The execution times were reduced by a factor of 40 to 400. This means

much larger interleavers with distances higher than 51 can be tested using this true dmin

measurement method.

130

Chapter 6

Conclusions

This chapter summarizes the research achievements of the thesis and suggests some direc-

tions for future research work. A list of publications made during the course of this thesis

is provided.

6.1 Research Achievements

In this thesis, efficient distance measurement methods have been introduced for both single-

and double-binary turbo codes that use proper trellis termination such as dual-termination

or tail-biting. Furthermore, various techniques that improve error performance and lower

the decoding complexity have been introduced for the digital video broadcasting with re-

turn channel via satellite (DVB-RCS) standard double-binary turbo codes. The research

achievements made during the course of this thesis are the following:

• Efficient distance measurement method for dual-terminated and tail-biting turbo

codes based on Garello’s true minimum distance method. This extended method

reduces the computational complexity of Garello’s true method by a factor of 2.

This reduction in computational complexity is significant because the determination

of minimum distances higher than 51 can easily take months (or even years) on a

fast computer. This method has been applied to the double-binary tail-biting turbo

codes used in the DVB-RCS standard. Minimum distances and multiplicities were

determined for all twelve DVB-RCS standard interleavers and seven code rates.

• New interleavers have been designed for all DVB-RCS standard block sizes and code

6 Conclusions 131

rates. These interleavers have been designed based on the dithered relative prime

(DRP) approach using the distance measurement method mentioned above. From a

practical point of view, DRP interleavers are memory efficient because they can be

stored and generated on the fly using only a few parameters instead of storing all the

indices of the interleaver. The minimum distances of the new DRP interleavers are

as good or better than those for the standard interleavers, for all the packet sizes and

code rates. For rate-1/3, the new DRP interleavers designed for ATM and MPEG

packet sizes achieve an improvement of at least 0.15 dB and 0.4 dB, respectively,

at FERs below 10−6 compared to the standard interleavers. Thus, the new DRP

interleavers designed for ATM and MPEG are the best ones known in the literature.

• Improving the reliability of Crozier’s double-impulse iterative decoding method for

distance measurement. The reliability of this new method has been investigated for

various code rates using different types of interleavers such as random interleavers,

DVB-RCS standard interleavers and DRP interleavers. Distance results show that

this improved method is much more reliable than other iterative methods such as

Berrou’s error-impulse method or Garello’s all-zero iterative decoding method. In

fact, the improved method provides the true minimum distance most of the time.

This method has (a) low complexity compared to Garello’s true method and (b)

provides a true upper bound on the minimum distance. These two features make it a

very powerful tool for designing good interleavers in reasonable time. This is because

bad interleavers (i.e., low minimum distances) can be rejected easily and only good

interleavers (i.e., potentially high minimum distances) are retained to be evaluated

using a true distance measurement method.

• A new and very efficient distance measurement method for tail-biting turbo codes that

use structured interleavers such as DRP interleavers and the DVB-RCS standard in-

terleavers has been introduced. This method takes advantage of (a) the structure

of interleavers, (b) the circular property of tail-biting and (c) the number of con-

secutive zeros between error event(s). The accurate determination of dmin = 51 and

its corresponding true multiplicities for MPEG-sized interleaver would not be pos-

sible in reasonable time without the use of the new method. The efficiency of this

method has been demonstrated for both single- and double-binary turbo codes, using

MPEG-sized structured interleavers that yield high minimum distances for various

6 Conclusions 132

code rates. The execution times have been reduced by a factor of 40 to 400. This

significant reduction in execution times will enable the testing of longer interleavers

that yield minimum distances higher than 51 in acceptable time.

• Extended efficient decoding techniques, previously applied to single-binary, to double-

binary to improve the performance of DVB-RCS standard double-binary turbo codes.

These techniques are practical because they do not increase the decoding complexity.

These techniques improve upon the known log maximum a posteriori (MAP) decod-

ing and max-log MAP decoding, and are referred to as enhanced log MAP (EL-MAP)

and enhanced max-log MAP (EML-MAP) decoding, respectively. The EL-MAP and

EML-MAP decodings have been compared to the log MAP (L-MAP) and max-log

MAP (ML-MAP) decodings using the DVB-RCS standard interleavers for the asyn-

chronous transfer mode (ATM) (424 information bits) and the motion picture experts

group (MPEG) (1504 information bits) packet sizes. For rate-1/3, EL-MAP has an

improvement of about 0.1 dB at frame error rates (FERs) below 10−4 compared to

ML-MAP, for both packet sizes. For rate-1/3, EML-MAP has an improvement of

about 0.2 dB at moderate signal-to-noise ratios (SNRs) compared to ML-MAP, for

both packet sizes.

• Extended an early stopping stopping technique, previously applied to single-binary, to

double-binary to significantly reduce the average decoding complexity of the DVB-RCS

standard turbo codes without degradation in error performance. The reduction in

complexity is achieved by allowing the decoder to stop early, before reaching the max-

imum number of iterations. This technique is useful for simulation purposes, where

the determination of reliable low error rates is very computationally intensive (i.e., it

can take months even when a very fast decoder is used).

6.2 Future Work

To extend the work presented in this thesis, the following topics can be considered for

future work. The suggested directions for future research work are summarized below.

• Since the execution time for the true distance measurement method presented in

Chapter 5 depends strongly on the true value of the minimum distance, the determi-

nation of minimum distance can become impractical for long interleavers since they

6 Conclusions 133

can offer the greatest potential in achieving high minimum distances. However, it

has been shown in Chapter 5 that a significant reduction in execution time can be

achieved for tail-biting turbo codes that use structured interleavers if one takes ad-

vantage of the number of consecutive zeros, Z, preceding or following an error event

in an input sequence that causes the minimum distance. Since (a) the minimum

distance grows approximately with the base-3 logarithm of the interleaver size [116]

and (b) Z increases with interleaver size, the use of a tight lower bound on Z will

reduce the execution time further allowing the testing of long interleavers in accept-

able time. Thus, the development of methods that provide a tight lower bound on Z

is important for lowering the average execution time.

• A modification of Berrou’s error-impulse method has been used in [117] to determine

the minimum distance of low-density parity-check (LDPC) codes [118]. As shown

in Chapter 4, Crozier’s double-impulse method determines the minimum distance

of turbo codes most of the time. A similar approach with two or more impulses is

also expected to work well for LDPC codes. Thus, it is of interest to apply Crozier’s

multiple-impulse methods to LDPC codes and compare the reliability and complexity

to that of the method presented in [117].

• A method that reduces significantly the complexity of Garello’s true distance mea-

surement method was presented by Rosnes in [112]. A new and efficient method that

exploits the structure of interleaver and the circular property of tail-biting has been

presented in Chapter 5. This new method is also based on Garello’s true method.

It is interesting to combine this new method with that of Rosnes [112]. This will

tremendously reduce the complexity and thereby allows the test of long interleavers

with high minimum distances in much shorter time than the known methods.

6.3 Contribution to the Literature

Conference Papers

1. Y. Ould-Cheikh-Mouhamedou, P. Guinand, and P. Kabal, “Enhanced Max-Log-APP

and enhanced Log-APP decoding for DVB-RCS,” Proc. 3rd Int. Symp. turbo codes,

September 2003, pp. 259-262, (Brest, France).

6 Conclusions 134

2. Y. Ould-Cheikh-Mouhamedou, S. Crozier and P. Kabal, “Distance Measurement

Method For Double Binary Turbo Codes and A New Interleaver Design For DVB-

RCS,” Proc. IEEE Globecom, November 29 - December 3 2004, p. 7, (Dallas, Texas,

USA).

3. Y. Ould-Cheikh-Mouhamedou, S. Crozier and P. Kabal, “Comparison of Distance

Measurement Methods for Turbo codes,” 9th Canadian Workshop on Inform. Theory

(CWIT’05), June 2005, pp. 36-39, (Montreal, Quebec, Canada).

Submitted Journal Papers

1. Y. Ould-Cheikh-Mouhamedou, S. Crozier and P. Kabal, “Efficient Distance Measure-

ment Method for Turbo Codes That use Structured Interleavers,” IEEE Commun.

Letters, Submitted in June, 2005.

135

References

[1] D. R. Stinson, Cryptography - Theory and Practice. CRC Press, 2002.

[2] G. C. Clark and J. B. Cain, Error-Correction Coding for Digital Communications.
Plenum Press, 1988.

[3] S. Haykin, Communication Systems. John Wiley & Sons, 2001.

[4] B. Sklar, Digital Communications, Fundamentals and Applications. Prentice Hall
PTR, 2001.

[5] I. M. Jacobs, “Practical applications of coding,” IEEE Trans. Inform. Theory, vol. 20,
p. 305310, May 1974.

[6] G. Ungerboeck and I. Csajka, “On improving data-link performance by increasing
the channel alphabet and introducing sequence coding,” in Proc. IEEE Int. Symp.
Inform. Theory (ISIT’76), June 1976. (Ronneby, Sweden).

[7] G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Trans. In-
form. Theory, vol. 28, pp. 55–67, Jan. 1982.

[8] G. Ungerboeck, “Trellis-coded modulation with redundant signal sets, part I,” IEEE
Commun. Mag., vol. 25, pp. 5–11, Feb. 1987.

[9] G. Ungerboeck, “Trellis-coded modulation with redundant signal sets, part II,” IEEE
Commun. Mag., vol. 25, pp. 12–21, Feb. 1987.

[10] W. Zhang, Finite State Systems in Mobile Communications. Ph.D. Dissertation,
University of South Australia, Feb. 1996.

[11] J. Du and M. Kasahara, “Improvements in the information-bit error rate of trellis
coded modulation systems,” Trans. of IEICE, vol. E-72, pp. 609–614, May 1989.
(Japan).

[12] E. Biglieri, D. Divsalar, P. J. McLane, and M. K. Simon, Introduction to Trellis-Coded
Modulation with Applications. Macmillan, 1991.

References 136

[13] S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and Applications.
Prentice-Hall, 1983.

[14] J. G. Proakis, Digital Communications. McGraw Hill, 2001.

[15] European Telecommunications Standards Institute, Interaction channel for satellite
distribution systems. ETSI EN 301 790, V1.3.1, Mar. 2003.

[16] C. E. Shannon, “A mathematical theory of communications, part I,” Bell System
Technical Journal, vol. 27, pp. 379–423, 1948.

[17] C. E. Shannon, “A mathematical theory of communications, part II,” Bell System
Technical Journal, vol. 27, pp. 623–657, 1948.

[18] B. Vucetic and J. Yuan, Turbo Codes: Principles and Applications. Kluwer, 2000.

[19] J. M. Wozencraft and I. M. Jacobs, Principles of Communication Engineering. Wiley,
1965.

[20] S. Dolinar, D. Divsalar, and F. Pollara, “Code performance as a function of block
size,” in JPL, The Telecommunications and Mission Operations Progress Report:
Technical Report 42-133, pp. 1–23, May 15 1998.

[21] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting
coding and decoding: Turbo-codes,” in Proc. IEEE Int. Conf. Commun. (ICC’93),
pp. 1064–1070, May 1993. (Geneva, Switzerland).

[22] C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding:
turbo-codes,” IEEE Trans. Commun., vol. 44, pp. 1261–1271, Oct. 1996.

[23] S. T. Brink, “Rate one-half code for approaching the Shannon limit by 0.1dB,” Elec-
tronics Letters, vol. 36, pp. 1293–1294, July 2000.

[24] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Serial concatenation of in-
terleaved codes: Performance analysis, design, and iterative decoding,” IEEE Trans.
Inform. Theory, vol. 44, pp. 909–926, May 1998.

[25] 3rd Generation Partnership Project (3GPP) Technical Specif ication Group: Univer-
sal Mobile Telecommunications System (UMTS); Multiplexing and Channel Coding
(FDD), TS 25.212 v3.4.0. Sept. 2000.

[26] S. Crozier and P. Guinand, “High-performance low-memory interleaver banks for
turbo-codes,” in Proc. 54th IEEE Vehicular Technology Conf. (VCT’01), pp. 2394–
2398, Oct. 2001. (Atlantic City, New Jersey, USA),(www.crc.ca/fec).

References 137

[27] R. Garello, P. Pierleoni, and S. Benedetto, “Computing the free distance of turbo
codes and serially concatenated codes with interleavers: Algorithms and applica-
tions,” IEEE J. on Selected Areas Commun., vol. 19, pp. 800–812, May 2001.

[28] Y. Ould-Cheikh-Mouhamedou, S. Crozier, and P. Kabal, “Distance measurement
method for double binary turbo codes and a new interleaver design for DVB-RCS,”
in Proc. IEEE Globecom, Nov. 29-Dec. 3 2004. (Dallas, Texas).

[29] E. Rosnes and O. Ytrehus, “An efficient algorithm for tailbiting turbo code weight
distribution calculation,” in Proc. 3rd Int. Symp. turbo codes, pp. 439–442, Sept. 2003.
(Brest, France).

[30] Y. Ould-Cheikh-Mouhamedou, S. Crozier, and P. Kabal, “Comparison of distance
measurement methods for turbo codes,” in 9th Canadian Workshop on Inform. The-
ory (CWIT’05), pp. 36–39, June 2005. (Montreal, Quebec, Canada).

[31] S. Crozier, P. Guinand, and A. Hunt, “Computing the minimum distance of turbo-
codes using iterative decoding techniques,” in Proc. 22nd Biennial Symp. Commun.,
pp. 306–308, May 31-June 3 2004. (Kingston, Ontario, Canada),(www.crc.ca/fec).

[32] S. Crozier, P. Guinand, and A. Hunt, “Estimating the minimum distance of turbo-
codes using double and triple impulse methods,” IEEE Commun. Letters, vol. 9,
pp. 631–633, July 2005.

[33] C. Berrou, S. Vaton, M. Jézéquel, and C. Douillard, “Computing the minimum dis-
tance of linear codes by the error impulse method,” in Proc. IEEE Globecom, pp. 10–
14, Nov. 2002. (Taipei, Taiwan).

[34] K. Gracie, S. Crozier, and P. Guinand, “Performance of an MLSE-based early stop-
ping technique for turbo codes,” in Proc. 60th IEEE Vehicular Technology Conf.
(VCT’04), Sept. 2004. (Los Angeles, California).

[35] Y. Ould-Cheikh-Mouhamedou, S. Crozier, and P. Kabal, “Efficient distance mea-
surement method for turbo codes that use structured interleavers,” IEEE Commun.
Letters, Submitted in June 2005.

[36] Y. Ould-Cheikh-Mouhamedou, P. Guinand, and P. Kabal, “Enhanced Max-Log-APP
and enhanced Log-APP decoding for DVB-RCS,” in Proc. 3rd Int. Symp. turbo codes,
pp. 259–262, Sept. 2003. (Brest, France).

[37] S. Crozier, P. Guinand, and A. Hunt, “On designing turbo-codes with data punc-
turing,” in 9th Canadian Workshop on Inform. Theory (CWIT’05), pp. 32–35, June
2005. (Montreal, Quebec, Canada).

References 138

[38] R. Johannesson and K. S. Zigangirov, Fundamentals of Convolutional Coding. IEEE
Press, Piscataway, N. J., 1999.

[39] S. Benedetto, R. Garello, and G. Montorsi, “A search for good convolutional codes
to be used in the construction of turbo codes,” IEEE Trans. Commun., vol. 46,
pp. 1101–1105, Sept. 1998.

[40] M. S. C. Ho, S. S. Pietrobon, and T. Giles, “Improving the constituent. codes of
turbo encoders,” IEEE Globecom, vol. 6, pp. 3525–3529, Nov. 1998.

[41] S. T. Brink, “Iterative decoding trajectories of parallel concatenated codes,” in Proc.
of the 3rd Int. ITG Conf. on Source and Channel Coding (SCC), pp. 75–80, Jan.
2000. (Munich, Germany).

[42] J. Hokfelt, “On the design of turbo codes,” in Ph.D. Dissertation, Aug. 2000. Lund
University, Sweden.

[43] D. Divsalar and F. Pollara, “Multiple turbo codes for deep-space communications,”
in JPL, TDA progress report 42-121, May 15 1995.

[44] D. Divsalar and F. Pollara, “Turbo codes for PCS applications,” in Proc. IEEE Int.
Conf. Commun. (ICC’95), pp. 54–59, June 1995. (Seattle, WA).

[45] S. Dolinar and D. Divsalar, “Weight distribution for turbo codes using random and
nonrandom permutations,” in JPL, TDA progress report 42-122, pp. 56–65, August
15 1995.

[46] J. Yuan, B. Vucetic, and W. Feng, “Combined turbo codes and interleaver design,”
IEEE Trans. Commun., vol. 47, pp. 484–487, Apr. 1999.

[47] W. Feng, J. Yuan, and B. Vucetic, “A code-matched interleaver design for turbo
codes,” IEEE Trans. Commun., vol. 50, pp. 926–937, June 2002.

[48] S. Crozier, J. Lodge, P. Guinand, and A. Hunt, “Performance of turbo codes
with relative prime and golden interleaving strategies,” in Proc. of the 6th Int.
Mobile Satellite Conf. (IMSC ’99), pp. 268–275, June 1999. (Ottawa, Ontario,
Canada),(www.crc.ca/fec).

[49] O. Y. Takeshita and D. J. Costello, Jr., “New classes of algebraic interleavers for
turbo-codes,” in Proc. IEEE Int. Symp. Inform. Theory (ISIT’98), p. 419, Aug.
1998.

[50] F. Daneshgaran and M. Mondin, “Design of interleavers for turbo codes based on a
cost function,” in Proc. 1st Int. Symp. turbo codes, pp. 255–258, Sept. 1997. (Brest,
France).

References 139

[51] A. K. Khandani, “Design of the turbo-code interleaver using Hungarian method,”
Electronics Letters, vol. 34, pp. 63–65, Jan. 1998.

[52] J. Hokfelt, O. Edfors, and T. Maseng, “Interleaver design for turbo codes based on
the performance of iterative decoding,” in Proc. IEEE Int. Conf. Commun. (ICC’99),
pp. 93–97, June 1999. (Vancouver, BC, Canada).

[53] S. Crozier, “New high-spread high-distance interleavers for turbo codes,” in
Proc. 20th Biennial Symp. Commun., pp. 3–7, May 2000. (Kingston, Ontario,
Canada),(www.crc.ca/fec).

[54] J. Hokfelt, O. Edfors, and T. Maseng, “A survey on trellis termination alternatives for
turbo codes,” in Proc. IEEE Vehicular Technology Conf. (VTC’99), pp. 2225–2229,
May 1999. (Houston, Texas).

[55] P. Guinand and J. Lodge, “Trellis termination for turbo encoders,” in Proc. 17th

Biennial Symp. Commun., pp. 389–392, May 30-June 1 1994. (Queens University,
Kingston, Canada) , (www.crc.ca/fec).

[56] S. Crozier, P. Guinand, J. Lodge, and A. Hunt, “Construction and performance of
new tail-biting turbo codes,” in Proc. of the 6th Int. Workshop on Digital Signal
Processing Techniques for Space Applications (DSP’98), Sept. 1998. (Estec, Noord-
wijk, Netherlands),(www.crc.ca/fec).

[57] C. Berrou, C. Douillard, and M. Jézéquel, “Multiple parallel concatenation of circular
recursive convolutional (CRSC) codes,” Annals Telecommun., vol. 54, pp. 166–172,
March-April 1999.

[58] J. Sun and O. Y. Takeshita, “Extended tail-biting schemes for turbo codes,” IEEE
Commun. Letters, vol. 9, pp. 252–254, Mar. 2005.

[59] I. Land and P. Hoeher, “Partially systematic rate 1/2 turbo codes,” in Proc. 2nd Int.
Symp. turbo codes, pp. 287–290, Sept. 2000. (Brest, France).

[60] S. Crozier and P. Guinand, “Distance upper bounds and true minimum distance
results for turbo-codes designed with DRP interleavers,” in Proc. 3rd Int. Symp.
turbo codes, pp. 169–172, Sept. 2003. (Brest, France).

[61] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for
minimizing symbol error rate,” IEEE Trans. Inform. Theory, vol. 20, pp. 284–287,
Mar. 1974.

[62] A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm,” IEEE Trans. Inform. Theory, vol. 13, pp. 260–269, Apr. 1967.

References 140

[63] A. J. Viterbi, “Convolutional codes and their performance in communication sys-
tems,” IEEE Trans. Commun. Technology, vol. COM-19, pp. 751–772, Oct. 1971.

[64] G. D. Forney, “The Viterbi algorithm,” Proc. IEEE, vol. 61, pp. 218–278, Mar. 1973.

[65] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and suboptimal
MAP decoding algorithms operating in the log domain,” in Proc. IEEE Int. Conf.
Commun. (ICC’95), pp. 1009–1013, June 1995. (Seattle, WA).

[66] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and con-
volutional codes,” IEEE Trans. Inform. Theory, vol. 42, pp. 429–445, Mar. 1996.

[67] G. Battail, “Ponderation des symboles décodés par lalgorithme de Viterbi,” in An-
nales Télécommunic, vol. 42, pp. 31–38, Jan. 1987.

[68] J. Hagenauer and P. Hoeher, “A Viterbi algorithm with soft-decision outputs and its
applications,” in Proc. IEEE Globecom, pp. 1680–1686, Nov. 1989. (Dallas, Texas).

[69] M. Fossorier, F. Burkert, S. Lin, and J. Hagenauer, “On the equivalence between
SOVA and max-log-MAP decodings,” IEEE Commun. Letters, vol. 2, pp. 137–139,
May 1998.

[70] L. Cong, C. Long, and W. Xiaofu, “Further results on the equivalence between SOVA
and max-log-MAP decodings,” in Proc. IEEE ICCT 2000, vol. 2, pp. 1689–1692, Aug.
2000.

[71] P. Robertson, “Improving decoder and code structure of parallel concatenated recur-
sive systematic (turbo) codes,” in IEEE Trans. of Int. Conf. on Universal Personal
Commun., pp. 183–187, Sept. 1994. (San Diego, CA).

[72] J. Hagenauer, E. Offer, and L. Papke, “Iterative (turbo) decoding of systematic
convolutional codes with the MAP and SOVA algorithms,” in Proc. of Int. ITG Conf.
on Source and Channel Coding (SCC), pp. 1–9, Oct. 1994. (Munich, Germany).

[73] P. Robertson, “Illuminating the structure of code and decoder of parallel concate-
nated recursive systematic (turbo) codes,” in Proc. IEEE Globecom, pp. 1298–1303,
Nov.-Dec. 1994. (San Francisco, CA).

[74] P. Robertson and P. Hoeher, “Optimal and sub-optimal maximum a posteriori algo-
rithms suitable for turbo decoding,” European Trans. Telecommun., vol. 8, pp. 119–
125, Mar.-Apr. 1997.

[75] A. S. Barbulescu, J. A. Torres, F. Hirzel, and V. Demjanenko, “Turbo codes 2000,”
VOCAL Technologies, white paper: Temporary Document CF-036, 08-12 jan 2001.
(Clearwater, Florida).

References 141

[76] J. Erfanian, S. Pasupathy, and G. Gulak, “Reduced complexity symbol detectors with
parallel structures for ISI channels,” IEEE Trans. Commun., vol. 42, pp. 1661–1671,
Feb./Mar./Apr. 1994.

[77] M. Reed and J. Asenstorfer, “A novel variance estimator for turbo-code decoding,” in
Int. Conf. Telecommun. (ICT’97), pp. 173–178, Apr. 1997. (Melbourne, Australia).

[78] T. A. Summers and S. G. Wilson, “SNR mismatch and online estimation in turbo
decoding,” IEEE Trans. Commun., vol. 46, pp. 421–423, Apr. 1998.

[79] M. Jordan and R. Nichols, “The effects of channel characteristics on turbo code
performance,” in Proc. IEEE Military Commun. Conf., pp. 17–21, Oct. 1996.

[80] A. Worm, P. Hoeher, and N. Wehn, “Turbo-decoding without SNR estimation,” IEEE
Commun. Letters, vol. 4, pp. 193–195, June 2000.

[81] J. B. Anderson and A. Svensson, Coded modulation systems. Kluwer, 2003.

[82] J. G. Proakis and M. Salehi, Communication System Engineering. Prentice Hall,
1994.

[83] S. G. Wilson, Digital Modulation and Coding. Prentice-Hall, 1996.

[84] K. Gracie, A. Hunt, and S. Crozier, “MLSE-based early stopping for turbo codes - fi-
nite quantization effects,” in 9th Canadian Workshop on Inform. Theory (CWIT’05),
pp. 231–234, June 2005. (Montreal, Quebec, Canada).

[85] P. J. Lee, “Constructions of rate (n− 1)/n punctured convolutional codes with min-
imum required SNR criterion,” IEEE Trans. Commun., vol. 36, pp. 1171–1174, Oct.
1988.

[86] C. Berrou, M. Jézéquel, C. Douillard, and S. Kérouédan, “The advantages of non-
binary turbo codes,” in Proc. IEEE Inform. Theory Workshop, pp. 61–63, Sept. 2001.
(Cairns, Australia).

[87] C. Douillard, M. Jézéquel, and C. Berrou, “The turbo code standard for DVB-RCS,”
in Proc. 2nd Int. Symp. turbo codes, pp. 551–554, Sept. 2000. (Brest, France).

[88] J. Lodge, R. Young, P. Hoeher, and J. Hagenauer, “Using seperable MAP ’filters’ for
the decoding of product and concatinated codes,” in Proc. IEEE Int. Conf. Commun.
(ICC’93), pp. 1740–1745, May 1993. (Geneva, Switzerland),(www.crc.ca/fec).

[89] M. R. Soleymani, Y. Gao, and U. Vilaipornsawai, Turbo Coding for Satellite and
Wireless Communications. Kluwer Academic Publishers, 2002.

References 142

[90] L. Papke and P. Robertson, “Improved decoding with the SOVA in a parallel con-
catenated (turbo-code) scheme,” in Proc. IEEE Int. Conf. Commun., pp. 102–106,
June 1996. (Dallas, TX).

[91] A. Hunt, “Hyper-codes: High-performance low-complexity error-correcting codes,”
in Master’s Thesis, May 1998. (Carleton University, Ottawa, Ontario,
Canada),(www.crc.ca/fec).

[92] S. Crozier, A. Hunt, K. Gracie, and J. Lodge, “Performance and complexity compar-
ison of block turbo-codes, hyper-codes and tail-biting convolutional codes,” in Proc.
19th Biennial Symp. Commun., pp. 84–88, May 31-June 3 1998. (Kingston, Ontario,
Canada),(www.crc.ca/fec).

[93] J. Vogt and A. Finger, “Improving the max-log-map turbo decoder,” Electronics
Letters, vol. 36, pp. 1937–1939, Nov. 2000.

[94] J. Hokfelt, O. Edfors, and T. Maseng, “Turbo codes: Correlated extrinsic informa-
tion and its impact on iterative decoding performance,” in Proc. IEEE Vehicular
Technology Conf. (VTC’99), pp. 1871–1875, May 1999. (Houston, Texas).

[95] K. Gracie, S. Crozier, and A. Hunt, “Performance of a low-complexity turbo decoder
with a simple early stopping criterion implemented on a SHARC processor,” in Proc.
Sixth Int. Mobile Satellite Conf., pp. 281–286, June 1999. (Ottawa, Canada).

[96] L. C. Perez, J. Seghers, and D. J. Costello, Jr., “A distance spectrum interpretation
of turbo codes,” IEEE Trans. Inform. Theory, vol. 42, pp. 1698–1709, Nov. 1996.

[97] R. Garello and A. Vila, “The all-zero iterative decoding algorithm for turbo code min-
imum distance computation,” in Proc. IEEE Int. Conf. Commun. (ICC’04), pp. 361–
364, June 2004. (Paris, France).

[98] S. Benedetto and G. Montorsi, “Design of parallel concatenated convolutional codes,”
IEEE Trans. Commun., vol. 44, pp. 591–600, May 1996.

[99] M. Breiling and J. Huber, “Combinatorial analysis of the minimum distance of turbo
codes,” IEEE Trans. Inform. Theory, vol. 47, pp. 2737–2750, Nov. 2001.

[100] S. Crozier and P. Guinand, “Distance bounds and the design of high-distance inter-
leavers for turbo-codes,” in Proc. 21st Biennial Symp. Commun., pp. 10–14, June
2002. (Kingston, Ontario, Canada),(www.crc.ca/fec).

[101] F. Daneshgaran and M. Mondin, “An efficient algorithm for obtaining the distance
spectrum of turbo codes,” in Proc. 1st Int. Symp. turbo codes, pp. 251–254, Sept.
1997. (Brest, France).

References 143

[102] P.-C. Yeh, A. O. Yilmaz, and W. Stark, “On the error floor analysis of turbo codes:
Weight spectrum estimation (wse) scheme,” in Proc. of the Int. Symp. on Inform.
Theory, p. 439, June 2003. (Yokohama, Japan).

[103] M. Breiling and J. Huber, “A method for determining the distance profile of turbo
codes,” in Proc. of the 3rd Int. ITG Conf. on Source and Channel Coding (SCC),
pp. 219–224, Jan. 2000. (Munich, Germany).

[104] E. Rosnes and O. Ytrehus, “On algorithms for determination of turbo code weight
distribution,” in Proc. IEEE Int. Symp. Inform. Theory (ISIT’02), p. 82, June 2002.
(Lausanne, Switzerland).

[105] E. Rosnes and O. Ytrehus, “Improved algorithms for high rate turbo code weight
distribution calculation,” in Proc. 10th Int. Conf. Telecommun. (ICT’03), pp. 104–
111, Feb. 2003. (Papeete, French Polynesia).

[106] J. Anderson and S. Hladik, “MAP tailbiting decoders,” in Proc. IEEE Int. Symp.
Inform. Theory (ISIT’97), p. 224, June 29-July 4 1997.

[107] Y.-P. Wang, R. Ramesh, A. Hassan, and H. Koorapaty, “On MAP decoding for tail-
biting convolutional codes,” in Proc. IEEE Int. Symp. Inform. Theory (ISIT’97),
p. 225, June 29-July 4 1997.

[108] H.-A. Loeliger, “New turbo-like codes,” in Proc. IEEE Int. Symp. Inform. Theory
(ISIT’97), p. 109, June 29-July 4 1997.

[109] J. Anderson and S. Hladik, “Tailbiting MAP decoders,” IEEE J. on Selected Areas
Commun., vol. 16, pp. 297–302, Feb. 1998.

[110] S. Crozier and P. Guinand, High-performance low-memory interleaver banks for turbo-
codes. U.S. Patent 6,857,087, Feb. 2005.

[111] C. Berrou, Y. Saouter, C. Douillard, S. Kerouédan, and M. Jézéquel, “Designing
good permutations for turbo codes: towards a single model,” in Proc. IEEE Int.
Conf. Commun. (ICC’04), pp. 341–345, June 2004. (Paris, France).

[112] E. Rosnes and O. Ytrehus, “Improved algorithms for the determination of turbo-code
weight distributions,” IEEE Trans. Commun., vol. 53, pp. 20–26, Jan. 2005.

[113] E. R. Berlekamp, R. J. McEliece, and H. C. A. van Tilborg, “On the inherent
intractability of certain coding problems,” IEEE Trans. Inform. Theory, vol. 24,
pp. 384–386, May 1978.

[114] A. Vardy, “The intractability of computing the minimum distance of a code,” IEEE
Trans. Inform. Theory, vol. 43, pp. 1757–1766, Nov. 1997.

References 144

[115] I. Dumer, D. Micciancio, and M. Sudan, “Hardness of approximating the minimum
distance of a linear code,” IEEE Trans. Inform. Theory, vol. 49, pp. 22–37, Jan. 2003.

[116] A. Perotti and S. Benedetto, “A new upper bound on the minimum distanceof turbo
codes,” IEEE Trans. Inform. Theory., vol. 50, pp. 2985–2997, Dec. 2004.

[117] X.-Y. Hu, M. P. C. Fossorier, and E. Eleftheriou, “On the computation of the mini-
mum distance of low-density parity-check codes,” in Proc. IEEE Int. Conf. Commun.
(ICC’04), pp. 767–771, June 2004.

[118] R. G. Gallager, “Low-density parity-check codes,” IEEE Trans. Inform. Theory,
vol. 8, pp. 21–28, Jan. 1962.

