
A Study of Bit Allocation for Gaussian
Mixture Model Quantizers and Image Coders

Denis Tran

Department of Electrical & Computer Engineering
McGill University
Montreal, Canada

September 2005

A thesis submitted to McGill University in partial fulfilment of the requirements of the
degree of Masters of Engineering.

c© 2005 Denis Tran

i

Abstract

This thesis describes different bit allocation schemes and their performances when applied

on coding line spectral frequencies (LSF) using the GMM-based coder designed by Sub-

ramaniam and a simple image transform coder. The new algorithms are compared to

the original bit allocation formula, the Pruning algorithm used by Subramaniam, Segall’s

method and the Greedy bit allocation algorithm using the Log Spectral Distortion and the

Mean-Square Error for the LSF quantizer and the Peak Signal-to-Noise Ratio for the image

coder.

First, a Greedy level allocation algorithm is developed based on the philosophy of the

Greedy algorithm but it does so level by level, considering the best benefit and bit cost

yielded by an allocation. The Greedy level allocation algorithm is computationally intensive

in general, thus we discuss combining it with other algorithms to obtain lower costs.

Second, another algorithm solving problems of negative bit allocations and integer level

is proposed. The level allocations are to keep a certain ratio with respect to each other

throughout the algorithm in order to remain closest to the condition for lowest distortion.

Moreover, the original formula assumes a 6dB gain for each added bit, which is not generally

true. The algorithm presents a new parameter k, which controls the benefit of adding one

bit, usually set at 0.5 in the high-rate optimal bit allocation formula for MSE calling the

new algorithm, the Two-Stage Iterative Bit Allocation (TSIBA) algorithm. Simulations

show that modifying the bit allocation formula effectively brings about some gains over the

previous methods.

The formula containing the new parameter is generalized into a formula introducing

a new parameter which weights not only the variances but also the dimensions, training

the new parameter on their distribution function. The TSIBA was an a-posteriori decision

algorithm, where the decision on which value of k to select for lowest distortion was decided

after computing all distortions. The Generalized TSIBA (GTSIBA), on the other hand,

uses a training procedure to estimate which weighting factor to set for each dimension

at a certain bit rate. Simulation results show yet another improvement when using the

Generalized TSIBA over all previous methods.

ii

Sommaire

Cette thèse décrit différentes méthodes d’attribution de bits et leurs performances quand

elles sont appliquées au codage de fréquences spectrales (LSF) de lignes en utilisant le

codeur de la parole conçu par Subramaniam et un codeur d’image à transformation. Ces

méthodes sont comparées avec la formule d’attribution de bit original, la méthode de Prun-

ing utilisée par Subramaniam, la méthode de Segall et l’algorithm Avare d’attribution de

bits en utilisant la distortion spectrale logarithmique (LSD) et l’erreur carrée moyenne

(MSE) pour le quantizeur de fréquences spectrales en ligne (LSF) et le rapport maximal

de signal-bruit (PSNR) pour le codeur d’images.

Premièrement, un algorithm Avare d’attribution de niveau (GRLA) est conçu basé

sur la philosophie de l’algorithm Avare d’attribution de bits, parcontre attribuant niveau

par niveau en considérant le meilleur bénéfice et le coût d’une attribution de niveau. Le

GRLA est très onéreux au point de vue calculs et, donc, sa pratiqualité est discutable et

l’algorithme doit être combiné avec un algorithm plus simple.

Deuxièmement, un algorithme résolvant les problèmes d’attribution négative de bits et

de nombres entiers de niveaux est proposé. L’attribution de niveau doit garder un certain

rapport entre les dimensions pour avoir une distortion la plus basse. De plus, la formule

originale d’attribution de bits sous-entend un gain de 6dB par bit alors qu’en général, ce

n’est pas le cas. L’algorithm présente un nouveau paramètre k qui contrôle le bénéfice

d’une addition d’un bit, habituellement ajusté à 0.5 dans la formule optimale pour haut

débit binaire. Les simulations montrent que la modification de la formule d’attribution de

bit amène un gain.

La formule contenant le nouveau paramètre est ensuite généralisé en une formule intro-

duisant un nouveau paramètre qui varie aussi dépendemment de la fonction de distribution

de chaque dimension. L’algorithme trouvant le k optimal décide a-posteriori du k optimal

alors que cet algorithme général utilise une procédure d’entrâınement pour estimer le fac-

teur pesant l’attribution de bit de cette dimension. Les résultats de la simulation montrent

encore une amélioration sur les méthodes précédentes.

iii

Acknowledgments

I would like to thank my professors, Dr. Peter Kabal for guidance, supervision, financial

support and kind presence, Dr. Richard D. Rose for financial support and friendliness and

Dr. Fabrice Labeau for providing help with writing papers.

All of TSP laboratory, especially Dr. Turaj Zakizadeh Shabestary for solid help on

theory and practice, Wei-Shou Hsu for miscellaneous help on how to use a computer,

Alexander Wyglinski for all the details on Rules and Regulations of Graduate Studies, and

Patrick Kechichian for the great team work on preliminary research, all without whom

graduation may have been but a dream.

And finally, last but not least, family and friends for constant love, support and keeping

me sane throughout the years.

iv

Contents

1 Introduction 1

1.1 The Need for Compression . 1

1.2 Linear Prediction . 1

1.3 Image and Transform Coding . 2

1.4 Quantization . 3

1.4.1 Scalar Quantization . 3

1.4.2 Vector Quantization . 3

1.5 Transform Coding . 5

1.6 Gaussian Mixture Models . 6

1.7 Bit Allocation . 6

1.8 Description of Thesis Work . 7

1.9 Thesis Organization . 8

2 Coder Designs 10

2.1 Gaussian Mixture Models . 10

2.1.1 Expectation-Maximization Algorithm 12

2.2 Distortion Measures . 12

2.2.1 Mean Square Error . 12

2.2.2 Log Spectral Distortion . 13

2.2.3 Peak Signal-To-Noise Ratio . 14

2.3 Transform . 15

2.4 Bit Allocation . 15

2.4.1 Traditional Optimal Bit Allocation formula for MSE 16

2.4.2 Intuitive Derivation of Bit Allocation Formula 18

Contents v

2.5 Greedy Bit Allocation Algorithm . 21

2.5.1 Motivation and Background on Greedy Bit Algorithm 21

2.5.2 The Greedy Algorithm Based on Discrete Optimization via Marginal

Analysis . 22

2.5.3 Application to Bit Allocation . 23

2.5.4 The Greedy Bit Allocation algorithm 23

2.5.5 Further Approximations . 24

2.6 Level Allocation . 25

2.7 Compandor . 27

2.8 GMM Coder Design . 28

2.9 Image Coder Design . 30

3 A Greedy Level Allocation Algorithm 32

3.1 Problem of the Greedy Bit Allocation Algorithm 32

3.2 Greedy Level Allocation Algorithm . 33

3.3 Criteria To Optimize For . 33

3.3.1 Cost . 33

3.3.2 Benefit . 33

3.3.3 Benefit-to-Cost ratio . 33

3.3.4 Intuitive Understanding of the GRLA 34

3.3.5 Level Allocation Flattening . 35

3.3.6 Level Allocation Unflattening . 36

3.4 Greedy Level Allocation Algorithm . 39

3.5 Experimental Results . 41

3.5.1 Simulations and Results on LSF Quantizer 41

3.6 Conclusion . 43

4 Improved Bit Allocation Formula 45

4.1 Introduction . 45

4.1.1 Traditional Bit Allocation Formula For High-Rate KLT 45

4.2 Non-Negative Bit Allocation . 46

4.3 A Study on Low Rate Effect of Level Allocation 47

4.4 The TSIBA Algorithm . 50

Contents vi

4.4.1 Finding the Low Rate Bit Allocation More Optimal Formula 53

4.5 Training the Generalized TSIBA . 55

4.6 Simulations and Results . 57

4.6.1 TSIBA on LSF quantizer . 58

4.6.2 GTSIBA on LSF quantizer . 61

4.7 Simulations and Results on Image Coder 63

4.8 Conclusion . 64

5 Conclusion 65

5.1 Summary of Work . 65

5.1.1 Greedy Level Allocation Algorithm 65

5.1.2 Two-Stage Iterative Bit Allocation Algorithm 66

5.1.3 Generalized Two-Stage Iterative Bit Allocation Algorithm 67

5.1.4 Comparison Between the Methods 67

5.2 Future Work . 68

5.2.1 Generalizing the TSIBA by Powering the Variance of Each Dimension 68

5.2.2 An Analytic GTSIBA . 68

5.2.3 The Sensitivity Matrix . 68

References 69

A Linear Predictive Coefficients 71

A.1 Linear Combination . 71

A.2 Line Spectral Frequencies . 72

B Karhunen-Loève Transform 73

B.1 KLT as a Transform . 73

B.2 Optimality of the KLT . 73

C Expectation-Maximization Algorithm 76

D VQ vs SQ advantages 81

E Other Bit Allocation Algorithms 84

E.1 Pruning Used by Subramaniam . 84

Contents vii

E.2 Segall’s Bit Allocation . 85

viii

List of Figures

1.1 Block Diagram of an LP coder . 2

1.2 Types of Scalar Quantizers . 4

1.3 Block Diagram of a Vector Quantizer . 4

1.4 Level Allocation . 6

2.1 Gaussian Mixture Models to Represent a Distribution Function 11

2.2 Effect of GMM on Bit Allocation . 11

2.3 Log Spectral Distortion . 13

2.4 Block Diagram of a Transform Coder . 15

2.5 3 Levels Versus 4 Levels Symmetrical Uniform Quantizers 27

2.6 Block Diagram of a Compandor . 28

2.7 Simple Compressor-Expander Pair . 29

2.8 Overall GMM Coder Designed by Subramaniam 29

2.9 A Branch of the GMM Coder Designed by Subramaniam 29

2.10 Images Used for Testing . 31

3.1 MSE Versus Bit Rate . 34

3.2 GRLA Using Different Benefits . 38

3.3 Plot of Performance of Different Definitions of Benefit-to-Cost Ratio 42

3.4 Plot of Performance of the GRLA Compared to Standard Algorithms . . . 43

4.1 MSE of Uniform Distribution . 48

4.2 MSE of Gaussian Distribution . 51

4.3 Benefit per Bit for Lloyd-Max Quantizer on Gaussian Distribution 52

4.4 PSNR for Different k for Lena Image . 54

List of Figures ix

4.5 Distribution of data for the dimension associated with the largest variance

for the decorrelated Lena image . 56

4.6 Smoothening the Ki(bi) Curve . 57

4.7 TSIBA with Different Values of k . 59

4.8 Pruning Algorithm with Different Values of k 60

4.9 Plot of Performance of GTSIBA and TSIBA Versus Different Standard Al-

gorithms for LSF quantizer . 61

4.10 Plot of Performance of GTSIBA and TSIBA Versus Different Standard Al-

gorithms for Lena . 63

B.1 Effect of KLT . 75

D.1 Space-Filling Advantage . 81

D.2 Shape Advantage . 82

D.3 Memory Advantage . 83

x

List of Tables

2.1 Bit Allocation Versus Variances . 20

2.2 Rounding the Bits . 26

2.3 Level Allocation Versus Bit Allocation . 26

3.1 Level Allocation without Cost . 35

3.2 Level Allocation with Flattening and Unflattening for 27 Bits 38

4.1 Gaussian: Optimum MSE of Quantization Noise for Various Values of Li . 54

4.2 Level Allocation Infinite Loop . 57

4.3 Table of Used Bits for Pruning and TSIBA with k = 0.5 60

4.4 Table of Bit Rates for an LSD of 1dB . 62

4.5 Table of Used Bits for Pruning and Generalized TSIBA 62

4.6 Table of Bit Rates for a PSNR of +35dB on Lena Image 64

1

Chapter 1

Introduction

1.1 The Need for Compression

Nowadays, most signals are processed digitally rather than using traditional analog devices.

Telephone conversations, photos and movies all go through analog-to-digital conversion

before being processed digitally and replayed.

For digital transmission of speech signals, lower bit rates make more efficient use of

transmission bandwidth. Digital images can also be compressed to occupy less storage

space.

Source coding exploits speech and image predictibility through various coding strategies.

It can be used to efficiently compress signals such as speech or images.

1.2 Linear Prediction

Many low rate speech coders use linear prediction (LP), described in Appendix A, where the

current sample is predicted with a weighted linear combination of previous samples. These

coefficients can be adapted at each time frame. The residual error is sent, but since the

decoder needs to know the predictive coefficients in order to synthesize the original signal,

the coefficients need to be sent as side information as shown in Figure 1.1. Efficiently

coding the LP coefficients will reduce the side information.

LP is simply a generalization of the differential pulse code modulation (DPCM)[12]

scheme to a higher predictive order. From the LP coefficients of a frame, which can be

seen as a linear filter, one can reconstruct the spectral envelope of the signal for the given

1 Introduction 2LP calculationLP analysis LP synthesis][nx

][ne

channelSide information (LP coefficients)QQ Q-1Q-1][ˆ nx

Fig. 1.1 Block Diagram of an LP coder

frame. In fact, the same procedure can be undertaken to transform a time-domain filter

into a frequency response on the LP coefficients and one would get the frequency spectrum

contents of the frame that was just analyzed. The higher the order of the LP coefficients,

the more precisely the envelope will be approximated.

This coding scheme has great compression capability, however, the coefficients need to

be quantized themselves. Small rounding errors in direct form quantization of these coef-

ficients can yield a large error when extracting the spectral envelope. Therefore, different

representations of the LP coefficients have been developed to improve quantization noise

robustness. One such representation is called line spectral frequencies (LSF) also known as

line spectral pairs (LSP), described in more details in Appendix A.

1.3 Image and Transform Coding

In image coding, an image is often split into blocks, typically 8 x 8 pixels. Each block of data

is then transformed using a transformation such as the Karhunen-Loève transform (KLT)

or the Discrete Cosine Transform (DCT) hoping to decorrelate the block. Quantization is

applied to those transformed coefficients.

One can use the Karhunen-Loève transform (KLT), described in Appendix B, in order

to decorrelate the data set. The KLT is a data-dependent transform and, when applied to

the data set, is known to diagonalize the covariance matrix, effectively decorrelating the

data set.

The Gaussian Mixture Model (GMM) based coder, described in section 2.8, is also a

transform coder. The GMMs model an arbitrary distribution function as a sum of many

1 Introduction 3

single Gaussian mixtures, or clusters, each having its own average and covariance matrix.

The GMM-based coder then transforms the data using the optimal KLT trained specially

for each cluster. A vector to be coded, in our case a representation of the LP coefficients

called the LSF defined in Appendix A, is coded using the coder described in section 2.8

for each cluster. The cluster yielding the least distortion is chosen as the best path. Using

a GMM also allows the use of standard parameter estimation such as the Expectation-

Maximization (EM) developed in Appendix C.

1.4 Quantization

When digitizing an analog signal, the signal needs to be quantized to occupy finite space

or bits in the digital world. There are two ways of quantizing a signal.

1.4.1 Scalar Quantization

The first way is using a scalar quantizer (SQ). The scalar quantizer is the simplest way of

quantizing a sample: the sample is simply mapped to the closest level in the quantizer. At

the decoder, the received signal is mapped to a value, usually the level itself. There also

exists two types of scalar quantizers: uniform and non-uniform as seen in Figure 1.2. A

uniform quantizer has equally spaced levels. This is a simple and computationally efficient

quantization since the quantization regions are highly organized as seen in Figure 1.2(a),

efficient quantization methods such as rounding can be used. The non-uniform quantizer,as

seen in Figure 1.2(b) permits finer quantization of regions of larger interest, i.e. with more

probability of occurrence, such as the region around the mean for a Gaussian distribution

function. However, the non-uniform quantizer requires more computationally intensive

quantization involving search to find the optimal quantization point since the regions are

unequally spaced. A compandor can be used to compress the quantization levels and

effectively implement a non-uniform quantizer using a uniform quantizer, quantization then

becomes simple and computationally efficient as one can use rounding functions.

1.4.2 Vector Quantization

The second way is using vector quantization (VQ). To maximally exploit correlation be-

tween samples, one can code a vector of samples rather than one by one independently

1 Introduction 4

x

x
ˆ

(a) Uniform Scalar Quantizer

x

x
ˆ

(b) Non-Uniform Scalar Quantizer

Fig. 1.2 Types of Scalar Quantizers

matching it to a most corresponding vector of points(codebook entry or codevector), then

only the codebook index is sent. This is vector quantization (VQ) as seen in Figure 1.3,

where Ci is the codebook index associated with the codevector xi. Codebook entries can

be chosen such that, for a training set and a given distortion measure, there will be least

distortion, and thus and optimal distribution of codevectors. However, this comes with

memory requirements and computational cost as the codebook needs to be stored and the

best matching point to the vector needs to be searched for.

... ...

)(1 xC
)(2 xC

)(xCN

x
r codevector codebook index

1x
r

2x
r
Nx

r
Fig. 1.3 Block Diagram of a Vector Quantizer

VQ has three advantages over SQ. The first advantage is memory advantage, which only

exists when the variables to be coded are correlated. It relates to the coder knowing that

if dimension 1 is a certain value, then, dimension 2 is likely to be in a certain range. The

second advantage is the space-filling advantage which is related to the form of a quantization

1 Introduction 5

cell. When applying SQ to n-dimensions, the quantization cells are hypercubes whereas VQ

can have hexagonal n-dimensional polygons, which reduces the average error. The third

advantage is the shape advantage and is related to the more optimal way of VQ to place

codevectors in d-dimensions depending on the marginal probability density functions (PDF)

when compared to the SQ. These advantages are discussed in more details in Appendix D.

A VQ which simply contains many entries, where the distance between a vector to be

coded and a codebook entry (centroid) is computed and the index of the entry giving the

least distortion taken as the code is called an unstructured VQ. This type of VQ, where

the centroids are placed without order is named in contrast with a structured VQ where

the centroids are placed following a way which makes it unnecessary to have an exhaustive

search through all centroids to find a suitable code. An SQ is an example of a structured

VQ.

There are two major problems associated with an unstructured VQ. First, all the code-

vectors and indices have to be stored in a codebook which number of entries grows expo-

nentially with the bit rate and quickly grows into unrealizable sizes. The second problem

is computational cost. The encoder finds the best codevector to represent each vector by

a search through the codebook entries, computing distortion for each. Since the codebook

size grows exponentially with the bit rate, the computational cost at the encoder also grows

exponentially.

1.5 Transform Coding

As stated in the previous section, the SQ is more computationally realizable than the VQ

at the cost of the three advantages. The SQ can approach the performance of the VQ

using the mean squared error (MSE) as the distortion measure, assuming high-rate if the

variables to be coded are independent, in that way, the VQ is no longer needed to exploit

the memory advantage. Thus, it is desirable to make the variables independent by means

of a transform.

The high-rate assumption refers to a bit rate that is high enough so that the benefit of

adding one bit to the quantizer yields a gain sufficiently close to +6dB.

1 Introduction 6

1.6 Gaussian Mixture Models

Gaussian Mixture Model (GMM)-based quantization is an approach which models data

distribution by several Gaussian mixtures and uses a different transform coder for each

mixture, treating each cluster as a Gaussian.

A GMM-based quantizer often uses a quantizer designed for each mixture having a

compander and an SQ for each dimension avoiding the need for a codebook, therefore, one

can use a GMM instead of a VQ. GMM-based quantizers are an example of structured VQ,

which does not need a codebook because the codevectors are well structured.

1.7 Bit Allocation

A vector of random variables usually has a different quantizer for each dimension because

each dimension has a different distribution function. The distortion yielded by each quan-

tizer is a function of the number of bits allocated to that dimension’s quantizer. One should

distribute bits in a manner so that the total distortion is minimized, discriminating more

important dimensions from less important ones as seen in Figure 1.4 in which one sees that

giving more bits to dimension x1 is more beneficial than bits to dimension x2.

1x

2x

Fig. 1.4 Level Allocation where the straight lines are the quantization levels
and the concentric oval shapes represent equiprobable contour lines

Huang and Schultheiss derived an optimal bit allocation formula assuming high-rate and

Gaussian distribution functions [2]. The derived formula did not put a constraint on integer

number of levels or non-negative bit allocation. Moreover, they assume high-rate, which

is not usually the case. The method used by Subramaniam is a Pruning algorithm where

levels are overallocated and then removed until there are just enough. The problem lies

1 Introduction 7

in keeping the proper ratio of levels between the dimensions which the Pruning algorithm

does not do, this requirement will be shown in section 2.4.2. Segall [6] designed another

method which takes into account low-rate and constrains the allocations to non-negative

bit allocations. It can however get quite far from the required bit rate when rounding down

the number of levels of each dimension to ensure integer number of levels. The Greedy bit

allocation algorithm is also a very popular method which consists of distributing bits one

by one to the dimension with the current largest need until there are no bits left. The

Greedy bit algorithm, due to its integer bit nature, has trouble getting to the optimal bit

allocation ratios and would often have a few dimensions with too many levels and others

with too few.

1.8 Description of Thesis Work

The basis LSF quantizer structure used in this thesis is the quantizer described by Subra-

maniam [1]. The coder in question is simply a transform coder which uses GMM to cluster

the data first, and then, for each cluster, the KLT decorrelation matrix associated with the

covariance matrix of the cluster is used to transform the data. This scheme is quite simple

and yet powerful as the data distribution in each cluster approaches that of a Gaussian, as

the number of Gaussian mixtures tends to infinity.

The bit allocation has often been done using ad hoc methods to fix the problem of

negative bit allocations and of non-integer bits, or levels, allocations. Moreover, some of

those methods assume Gaussian distribution, which may not be the case. And finally, some

of them do not make good use of the given bits and end up wasting fractions of bits.

A method is proposed to iteratively prune dimensions with negative bit allocations,

increase the wanted bit rate and use the well-known optimal bit allocation formula given in

Chapter 2 (or a modified version) to allocate bits to the remaining dimensions, i.e. those

having high enough variances.

The proposed method does not get close enough to the required bit rate, because it

keeps the ratio of levels between the dimensions, it wastes a lot of bits. Therefore, a

method following the philosophy of the Greedy algorithm is designed to allocate levels in

a Greedy way, i.e. level-by-level until none can be allocated anymore. Because of high

computational complexity, the Greedy Level Allocation algorithm (GRLA) is simply used

as a filler algorithm, i.e. it acts after the bit allocation formula. The GRLA allocates bits

1 Introduction 8

according to a definition of the benefit-to-cost ratio, different definitions and their effects

are studied.

Another problem lies in the optimal bit allocation formula itself: the bit allocation

formula assumes high-rate and Gaussian distribution or uniform distribution. In nowadays

applications, high-rate is rarely a valid assumption, and Gaussianity is only valid if one

uses a GMM with an infinite (or very high) number of mixtures. Therefore, the optimal

bit allocation formula will have to be modified to match the requirements of the quantizer.

The proposed method called the Two-Stage Iterative Bit Allocation (TSIBA), developed

in Chapter 4, uses a factor k to change the benefit of adding one bit in a scalar quantizer,

which is usually assumed to be 6dB per bit. The proposed method gave quite remarkable

improvements over other bit allocation schemes, i.e. the Greedy algorithm, Segall’s method

and the Pruning algorithm described earlier.

This method is then generalized to use a different factor for each dimension since each

dimension has a different distribution and number of bits allocated to them. The perfor-

mance of the generalized algorithm gives even better performance and adds a possibility of

training rather than an a-posteriori decision on which factor k to use for each dimension

as in the TSIBA.

The proposed methods are adapted to the probability density functions and therefore

are expected to yield some good performance gain.

1.9 Thesis Organization

This thesis topic is bit allocation. Different bit allocation methods will be presented and

results are shown comparing these methods with more standard techniques such as the

Greedy algorithm, the method designed by Segall [6] and the Pruning algorithm used by

Subramaniam.

The second chapter presents some background information about the coder designs that

will be used throughout the work.

The third chapter shows a method of distributing the levels one-by-one using a Greedy-

like algorithm. Many definitions of the benefit-to-cost ratio used to decide which dimension

should be allocated the levels are studied and the results are compared. The concept of

levels allocation flattening and unflattening is also discussed.

The fourth chapter shows a bit allocation algorithm which keeps the ratio of bits between

1 Introduction 9

dimensions, and fixes the problem of negative bit allocations and non-integer levels. This

method also varies the benefit of adding a bit to a dimension, making the levels allocation

flatten and unflatten depending on the value of the chosen benefit. Then, since the proper

benefit depends on bit rate and distribution function, the algorithm is generalized to give

different benefits for each dimension to better match the benefits at the bit rates and for

the distribution in question.

And finally, the fifth chapter summarizes and concludes what has been done in this

work.

10

Chapter 2

Coder Designs

2.1 Gaussian Mixture Models

The transform coder yields great performance given that the input has Gaussian distribu-

tion which, in practice, is rarely the case. The distribution could be some other probability

density function (PDF) such as Laplacian, Gamma or general multimodal distribution. If

one were to model data as one Gaussian and have a uniform scalar quantizer, the resulting

distortion could be large since most codepoints are rarely used and precision would be lost

for the regions of interest as shown on Figure 2.2a). Therefore, one could model the distri-

bution of data with several Gaussian mixtures rather than a single one, each having their

own quantizer and transform as shown on Figure 2.2b), then the distribution inside each

cluster would approach a Gaussian PDF and thus, the assumption of Gaussianity would

be more valid. For instance, in modelling LSFs, data is most likely to be clustered since

to each sound forming a phoneme, there is a set of formant frequencies associated [12].

Therefore, the use of GMM to represent this clustered distribution as seen in Figure 2.1 is

justified.

However, one drawback caused by using GMM would be in case of overlap of Gaussians

which becomes more important as the number of Gaussians increases. An overlap wastes

levels because levels are allocated in the overlap region by both mixtures whereas they

could be used elsewhere, such as in non-overlapping regions.

2 Coder Designs 11

x

)
(
x
f

Fig. 2.1 Gaussian Mixture Models to Represent a Distribution Function

1x

2x

(a) Bit Allocation not Using GMM

1x

2x

(b) Bit Allocation Using GMM

Fig. 2.2 Effect of GMM on Bit Allocation

2 Coder Designs 12

2.1.1 Expectation-Maximization Algorithm

Another advantage of using GMM is to be able to use the EM algorithm to estimate the

parameters of the model. The Expectation-Maximization (EM) algorithm is a maximum-

likelihood estimation algorithm which is both simple and stable. When using the EM

algorithm, the likelihood of the training data is guaranteed to not decrease every itera-

tion [14] until it reaches a local optimum. The proof of convergence and derivation of the

update equations for the GMM parameters can be found in Appendix C.

2.2 Distortion Measures

Algorithms need to be compared to determine which ones give the best performance. Fur-

thermore, often an algorithm will have several paths it can follow, the decision as to which

path is the best will be made based on an error criterion, in which the minimum error will

be chosen as the best path.

There exist several distortion measures that are used in various situations, the three

that will be used in this work are the mean squared error (MSE), the peak signal-to-noise

ratio (PSNR), and the log spectral distortion (LSD).

2.2.1 Mean Square Error

The MSE relates to the Euclidean distance between the original signal and the quantized

signal in d dimensions. If the signal is a time signal or frequency spectrum, then the MSE

is also related to the power of the error.

This distortion measure is simply:

MSE =
d∑

i=1

(x̂i − xi)
2 (2.1)

where d is the number of dimensions, x is the input signal, xi is the ith component of the

vector x and x̂ is the quantized signal.

This distortion criteria has the advantage of very low complexity, however, in many

cases, the MSE is not subjectively meaningful [9]. For instance, in the case of quantizing

Line Spectral Frequencies (LSF), it is clear that certain coefficients will affect the frequency

spectrum more than others. The importance of each coefficient is measured in a sensitivity

2 Coder Designs 13

matrix, which is the derivative of the log spectral distortion (LSD) with respect to the

dimension in question. The LSD, to be defined next, can also be viewed as a weighted

mean-square error, where the weight is data-dependent [17].

2.2.2 Log Spectral Distortion

The log spectral distortion (LSD) is the preferred distortion measure for LSF quantiza-

tion. The LSD relates to the differences in frequency spectral envelope and therefore has

more significance in comparing the quantized LSF to the original LSF vector as seen in

Figure 2.3. Moreover, the log spectral distortion is considered to be a perceptually mean-

ingful measure. For transparent quality on the spectral envelope as side information, i.e.

when the quantized LP coefficients are recombined with the residual signal, as shown in

Figure 1.1, the degradation is not perceptible, the equivalent LSD benchmark would be

an average LSD lower than 1dB, a percentage of outliers 2dB–4dB of less than 1% and no

outliers larger than 4dB [17].

0 1000 2000 3000 4000
−10

−8

−6

−4

−2

0

2

4

6

frequency in Hz

po
w

er
 in

 d
B

Fig. 2.3 Log Spectral Distortion, Solid Line: Original Signal Spectrum; Dot-
ted Line: Quantized Signal Spectrum

2 Coder Designs 14

The formula for computing the LSD (in dB) is

SD2
fs/2 =

20 2

fs/2

∫ fs/2

0


log10

∣∣H (e j2πf)
∣∣

∣∣∣Ĥ (e j2πf)
∣∣∣




2

df (2.2)

where fs is the sampling frequency, H(ej2πf) is the frequency representation of the spectral

envelope and Ĥ(ej2πf) is the quantized frequency representation of the spectral envelope.

This formula involves an integral, which can be approximated by a sum of a finite number

of terms.

There are 2 ways of computing the average spectral distortion: root-mean-square(RMS)

and mean-root square(MRS).

RMS is defined by

SDRMS =

√√√√ 1

N

N∑
n=1

SD2
n (2.3)

and MRS is defined by

SDMRS =
1

N

N∑
n=1

SDn (2.4)

where SD is the log spectral distortion of the LP coefficients and N is the number of points

used to approximate the spectral distortion. In this work, the MRS definition is used as it

is most commonly used in other works.

The cost of computing the LSD is much higher than computing the MSE as can be seen

by comparing (2.4) and (2.1).

For speech signals, since the spectrum has low power at high-frequencies, spectral dis-

tortion will be greatly increased for those regions. Therefore, for an 8kHz sampling rate,

spectral distortion is often calculated from 0–3000Hz, as is done in this work, rather than

0–4000Hz keeping in mind that the signal is band-limited [17].

2.2.3 Peak Signal-To-Noise Ratio

The PSNR is the distortion measure that will be used for image coders. The PSNR is

closely related to the MSE and thus inherits its properties and therefore does not relate

directly with human perception, but it is a simple measure to compute and gives a good

idea of the quality of the reconstructed image. Typical PSNR values used for reasonable

2 Coder Designs 15

image quality are in the range of +25dB to +35dB.

The PSNR is the measure to be used in image coding. Its definition is

PSNR = 10 log10




(max
i

(xi))
2

MSE


 (2.5)

where maxi (xi) is the maximum value of x.

2.3 Transform

There are a few properties that a good transform should have. The first one is invertibility:

one wants to use the transform at the encoder and use the inverse for the decoder. The

second property is preserving distortion. A unitary transform is usually chosen because

it preserves the MSE distortion. A typical way of using a transform coder is shown in

Figure 2.4, where T is the transform and T−1 is the inverse transform.Quantizerx y ŷ x̂
T 1−T

Fig. 2.4 Block Diagram of a Transform Coder

A popular transform is the Karhunen-Loève transform, which is used to decorrelate a

set of data through an orthogonal transform. Its benefits and derivation are outlined in

Appendix B. The KLT is the transform used in this work.

2.4 Bit Allocation

The bit allocation problem is the core interest of this work. The methods that will be

presented in the following chapters will be compared to a few more traditional bit allocation

formulas.

2 Coder Designs 16

2.4.1 Traditional Optimal Bit Allocation formula for MSE

The bit allocation will be done in such a way that the MSE over all dimensions is minimized.

The derivation can be found in [2].

Assuming Di = Ai(bi)2
−2bi = Ai(bi)e

−2bi ln 2 to be the distortion over dimension i, where

Di is the MSE distortion i, Ai(bi) is a factor weighting the benefit of adding a bit to

dimension i, bi is the number of bits allocated to dimension i. Let us rewrite Ai(bi) as

Ki(bi)λi, and approximate Ki(bi) by K, which is a constant number, and λi is the variance

of dimension i, the total distortion can be written as

D ≈
d∑

i=1

λiKe−2bi ln 2 (2.6)

And now, using a Lagrange multiplier, we minimize the distortion under the constraint

that
∑d

i=1 bi = btot.

∂

[
(1/N)

N∑
i=1

λiKe−2bi ln 2 + β

N∑
i=1

bi

]

∂bj

= 0

−(1/N)λjK2 ln 2e−2bj ln 2 + β = 0

then

λje
−2bj ln 2 =

Nβ

K2 ln 2
= C (2.7)

for j = 1, 2, ...N.

And now, solving for bj,

bj = b̄ +
1

2 ln 2

[
ln λj − (1/N) ln

(
N∏

i=1

λi

)]

= b̄ +
1

2 ln 2
[ln λj − (1/N) ln (|Mx|)]

= b̄ + 1/2 log2

λj

(|Mx|)(1/N)

(2.8)

2 Coder Designs 17

where b̄ is the average bit rate Mx is the covariance matrix of x and |Mx| is the determinant

of Mx.

The formula (2.8) can be shown to be equivalent to requiring the ratio of levels allocated

to dimension i and dimension j to be equal the ratio of the standard deviation of dimension

i and dimension j.

bi = b̄ + 1/2 log2

λi

(|Mx|)(1/N)

2b
i = 2

b̄+1/2 log2
λi

(|Mx|)(1/N)

2b
i/2

b
j =

2
b̄+1/2 log2

λi

(|Mx|)(1/N)

2
b̄+1/2 log2

λi

(|Mx|)(1/N)

Li/Lj =
2b̄

2b̄

2
1/2 log2

λi

(|Mx|)(1/N)

2
1/2 log2

λj

(|Mx|)(1/N)

Li/Lj =
2

log2

λ
1/2
i

(|Mx|)(1/2N)

2
log2

λ
1/2
j

(|Mx|)(1/2N)

Li/Lj =
λ

1/2
i

λ
1/2
j

Li/Lj =
σi

σj

(2.9)

where Li is the number of levels allocated to dimension i and σi is the standard deviation

of dimension i, which is also λ
1/2
i .

This provides a closed-form expression for the optimal bit allocation but suffers two

problems: some dimensions may get negative bit allocation resulting from the log2 term

for small variances and fractional bit rates because the bit allocation does not guarantee

an integer number of levels for all dimensions.

2 Coder Designs 18

2.4.2 Intuitive Derivation of Bit Allocation Formula

There has been many derivations of the optimal bit allocation formula. Huang and Schultheiss

[2] derived it using an approximation of the distortion and assuming the total distortion to

be the sum of distortions among the dimensions. The derivation is a standard optimiza-

tion procedure involving one constraint: the sum of bits must be equal to the desired bit

rate. This derivation is an elegant mathematical derivation and yields the desired formula.

However, the assumption of the variable Ai(bi) in the distortion formula for dimension i is

very hard to integrate into a more general formula.

Here we present a derivation that is simple and intuitive, yielding the same result yet

easily generalized to introduce the variable Ki(bi) term.

Assuming Dtot =
∑d

i=1 Di and Di = Ai(bi)2
−2bi [2]

Dtot =
d∑

i=1

Ai(bi)2
−2bi (2.10)

where 2−2bi = 1/L2
i and d is the number of dimensions.

Let us rewrite Ai(bi) as Ki(bi)λi, and approximate Ki(bi) by K, which is a constant

number, we get

Dtot = K

d∑
i=1

λi

L2
i

≤ Kd max
i

λi

L2
i

(2.11)

with equality when all the λi/L
2
i are equal. It is then obvious that to minimize the total

distortion, one needs to minimize the bound, which means minimizing maxi λi/L
2
i and

therefore making the terms equal as it was also seen in section 2.4.1 in (2.9).

So we want to make all the λi/L
2
i terms equal to a constant. Let

λi

L2
i

= 1/γ. (2.12)

2 Coder Designs 19

We know furthermore that

d∏
i=1

Li = 2btot

d∏
i=1

L2
i = 22btot .

(2.13)

Combining (2.13) and (2.12), one gets

d∏
i=1

L2
i = γ

d∏
i=1

λi

γ =




22btot

d∏
i=1

λi




1
d

=
L2

i

λi

.

(2.14)

Then use this γ in the original equation for levels

L2
i = λiγ

L2
i = λi




22btot

d∏
i=1

λi




1
d

2 log2 Li = log2

λi

(
d∏

i=1

λi

) 1
d

(
2
2btot
d

)

bi =
btot

d
+ 0.5 log2

λi

(
d∏

j=1

λj

) 1
d

(2.15)

2 Coder Designs 20

which is the well-known bit allocation formula.

We can simply reintroduce the Ki(bi)λi term following the derivation as it was approx-

imated as Kλi. And then, we would get

bi =
btot

d
+ 0.5 log2

λiKi(bi)

(
d∏

j=1

λjK(bj)

)1
d

(2.16)

which is an equation that can be solved iteratively.

The function Ki(bi) is distribution dependent. Lloyd [3] develops a few examples for

the uniform, Gaussian and Laplacian distributions. In our problem, data is assumed to

be Gaussian distributed. Thus, for our coder, one could assume Ki(bi) to be constant and

thus, yield the well-known bit allocation formula. From Lloyd [3]

Ai(bi) = Eq · L2
i

Ki(bi) =
Eq · L2

i

λi

(2.17)

where Eq is the quantization noise of the optimal quantizer for dimension i and Li is the

number of levels allocated to dimension i.

However, even for a Gaussian distribution, at low bit rates, Ki(bi) is dependent on bi [4].

Let us now confirm the fact that the bit allocation formula makes all λi

L2
i

terms equal to

each other. We will enter hypothetical variances and see what the bit allocation formula

gives us

Table 2.1 Bit Allocation Versus Variances

σ2
i 14 3 2 1 0.1

σi 3.74 1.73 1.41 1.00 0.32

bi 21.60 20.49 20.19 19.69 18.03
Li 3.17× 106 1.47× 106 1.20× 106 8.48× 105 2.68× 105

σi/Li 1.18× 10−6 1.18× 10−6 1.18× 10−6 1.18× 10−6 1.18× 10−6

where σ2
i is the variance of dimension i, σi is the standard deviation of dimension i, bi is

2 Coder Designs 21

the number of bits allocated to dimension i and Li is the number of levels allocated to

dimension i.

From this table of level allocation, one can see indeed that following the original bit

allocation formula (2.15), the resulting bit allocation will make all the σi/Li or λi/L
2
i equal.

Moreover, scaling down the total number of bits would scale down equally the average bit

rate component in the bit allocation formula (2.15), but the ratio between the dimensions

would be kept constant, if there are enough bits and it will be shown in Chapter 4 what

happens when it is not the case, to preserve the λi/L
2
i equality.

2.5 Greedy Bit Allocation Algorithm

2.5.1 Motivation and Background on Greedy Bit Algorithm

The optimal bit allocation formula derived by Huang and Schultheiss [2] has two problems:

it does not guarantee that all dimensions have non-negative bit allocation and it does not

guarantee that each dimension is allocated a number of bits resulting in an integer number

of levels (2bi).

Segall [6] derived an algorithm which solves the problem of negative bits allocation.

This algorithm, furthermore, can take care of low bit rate bit allocation.

The Greedy bit allocation algorithm is based on the procedure given by Fox [7] on

discrete optimization via marginal analysis and is proposed to avoid these two problems.

The Greedy bit allocation algorithm is optimal for low-rate integer bit allocation because it

allocates bits to the dimensions with biggest need under the condition that distortion-rate

functions are concave and assumption that the total distortion Dtot is the sum of individual

distortions Di.

The additive nature of the MSE is essential for the Greedy bit allocation algorithm, it

permits one to separately determine which dimension has the largest need without affecting

other dimensions. For the LSD, the error in one dimension might affect the total distortion

more than the error in another dimension, therefore the LSD is not an additive distortion

measure, the Greedy algorithm would perform quite poorly since the assumption is violated.

2 Coder Designs 22

2.5.2 The Greedy Algorithm Based on Discrete Optimization via Marginal

Analysis

Here is the procedure that Fox [7] gives for allocating resources:
Algorithm 2.5.1: Discrete Optimization(c(x), φ(x))

comment: Initialize all allocations to 0

1.x0 = 0

2.k = 1

3.xk = xk−1 + ei

4.if C(xk) > M

then done,

else k ← k + 1 and go to step 3

where ei is the ith unit vector and i is the index for which

φj(x
k−1
j + 1)− φj(x

k−1
j)

cj(x
k−1
j + 1)− cj(x

k−1
j)

(2.18)

is maximum, where cj(x
k
j) and φj(x

k
j) are respectively the cost and error associated with

dimension j at allocation k, C(xk) is the total cost over all dimensions.

The Greedy algorithm is due to Fox [7]. In [7], it is said that the criterion to be maxi-

mized is (2.18) in which j is the dimension and k is the kth allocation and in which φj(x
k−1
j)

must be concave and strictly increasing and cj(x
k−1
j) is convex and strictly increasing guar-

anteeing that the allocations are undominated.

Allocations x satisfying

φ(y) > φ(x) → C(y) > C(x)

φ(y) = φ(x) → C(y) ≥ C(x)
(2.19)

for all y are called undominated or efficient, i.e. no other allocation gives a smaller distortion

for the same cost.

2 Coder Designs 23

2.5.3 Application to Bit Allocation

Equation (2.18) has the form of a ratio of benefit-to-cost. The benefit is defined by the

reduction in MSE and the cost is the cost in bits of such an allocation. This is done by

setting −φj(x
k−1
j) to be the distortion-rate function, which is, for log-convex distribution

functions, concave and stricly increasing and cj(x
k−1
j) to be the functions which converts

levels to bits, i.e. log2(x) which is a convex and strictly increasing function. Therefore, the

conditions for (2.18) to be undominated are satisfied.

Replacing the variables used by Fox to the variables applicable in the bit allocation

context, where xk−1
j is the number of levels Lk

j allocated to dimension j at allocation k− 1

and −φj(x
k−1
j) is the MSE distortion Dj(L

k
j), the equation is then rewritten as

Dj(L
k
j + 1)−Dj(L

k
j)

log2 (Lk−1
j + 1)− log2 (Lk−1

j)
. (2.20)

2.5.4 The Greedy Bit Allocation algorithm

The concept is intuitive: allocate bits to dimensions that most need them. It is actually

an iterative procedure where at each iteration, one bit is distributed to the dimension

with largest demand, i.e. variance in the MSE case, thus reducing the distortion of the

dimension, and consequently, the total distortion. In this way, the Greedy algorithm only

sees the benefit of the next allocation and not any further.

The Greedy algorithm has the advantage of being very simple and optimal under the

assumption that
∑

Di = Dtot and the distortion in a dimension decreases for every bit

given to that dimension. It avoids the problem of negative bits allocated to dimensions

with low variance and of non-integer bits.

However, the Greedy algorithm inserts another constraint: to each dimension must be

allocated an integer number of bits. This yields a number of levels which is a power of 2

and each dimension can be coded independently. This creates its own problem as it makes

the allocation farther from the ratio found using the bit allocation formula and thus less

optimal as seen in the Chapter 1.

Here is an outline of the Greedy algorithm from [9]:

2 Coder Designs 24

Algorithm 2.5.2: Greedy(bits,Di(bi))

comment: Initialize variables

for each i ∈ 1 to N

do bi = 0

bitsremain = bits

comment: Distribute bits 1 by 1

repeat

j = arg maxi (Di(bi)−Di(bi + 1))

bj ← bj + 1

bitsremain ← bitsremain − 1

until bitsremain = 0

where bj is the number of bits allocated to dimension j, bitsremain is the number of bits

remaining after each allocation and Di(bi) is the distortion of dimension i with bi bits.

The Di(bi) can be stored in a look-up table. For Gaussian distribution, values can be

taken from Max [4].

2.5.5 Further Approximations

The values of decrease in distortion per bit can be approximated to analytic functions to

avoid the use of a look-up table. Segall presented an algorithm which uses an analytical

formula to approximate the benefit of adding one bit [6].

The formula for distortion is written as

D(bi) =
d∑

i=1

σ2
i Ai(bi) (2.21)

where σi is the standard deviation, σ2
i is equal to the variance λi and Ai(bi) depends on

the distribution of the dimension to be coded.

Segall develops Ai(bi) for a Lloyd-Max quantizer used on a Gaussian random variable

2 Coder Designs 25

and Ai(bi) is written as

Ai(bi) =





2−1.57bi , if bi ≤ 2.32

2.73 2bi

(2bi + 0.853)3 , if bi ≥ 2.32
(2.22)

Huang and Schultheiss [2] made a further assumption in their derivation of the bit allo-

cation formula which assumes the benefit to be 6dB per bit. This assumption corresponds

to assuming high-rate quantization as one can see from Segall’s formula (2.22) when using a

large bi. When assuming high-rate and thus 6dB per bit, the Greedy bit algorithm reduces

to a much simpler form where for every bit, the distortion reduces by a factor 4. Then

the algorithm only needs to find the dimension which currently has largest distortion and

allocates a bit.

2.6 Level Allocation

One can observe that allocating bits adds another constraint to the optimization: the num-

ber of bits allocated to a dimension must be an integer. Assuming Gaussian distribution,

for best MSE, the bit allocation must match most closely what is given by the optimal bit

allocation formula (2.15) and therefore the ratio between levels allocated to each dimension

as seen in the previous derivation, by constraining the number of bits to integers, we may

get quite far away from the bit allocation formula (2.8) as it can be unfeasible to match

fractional number of bits given by the formula. The magnitude of this problem can be re-

duced by using level allocations instead, in this way, only levels have to be integer numbers

and the optimal bit allocation can be more closely matched. For the bit allocations to be

integers, one needs to round down the bits. The extreme example in Table 2.2, where the

bit allocation formula 2.15 has been used to assign bits, shows that one cannot round up

neither simply round or one might over allocate bits.

In this case, rounding down respects the maximum bit rate but ends up wasting all the

bits. Of course, there exists clever algorithms to distribute the remaining bits after the

allocation such as the Greedy Algorithm. The example in Table 2.3 illustrates the problem

of integer bit allocation that occurs even when using the Greedy Algorithm, showing that

the Greedy algorithm does not get close enough to the optimal bit allocation formula.

From this table, one can see that using levels instead of bits will ultimately lose fractions

2 Coder Designs 26

Table 2.2 Rounding the Bits

Dim Bits from formula Round up Round down Round

dim 1 0.75 1 0 1
dim 2 0.75 1 0 1
dim 3 0.75 1 0 1
dim 4 0.75 1 0 1

total bits 3 4 0 4

Table 2.3 Level Allocation Versus Bit Allocation

Dim Bits from formula Greedy Levels Resulting Bits

dim 1 5.75 6 53 5.7279
dim 2 5.75 6 53 5.7279
dim 3 5.75 6 53 5.7279
dim 4 5.75 5 53 5.7279

total bits 23 23 22.9117 22.9117

2 Coder Designs 27

of a bit. However, with proper algorithms such as the Greedy Level Allocation algorithm

presented later, one can get an allocation reaching 22.9926 bits (54,54,54,53 levels) in this

case. The match with respect to the bit allocation formula however shows clearly that

using levels is a much closer approximation and may give lower total distortion.

There are a few inconveniences associated with using levels instead of bits. A problem is

the symmetrical uniform scalar quantizer suboptimality for certain distribution functions,

for instance, having 4 levels might give worse distortions than having 3 levels. Considering

the simple example in Figure 2.5, one can see that the quantizer with 3 levels is more suited

to this distribution than the quantizer with 4 levels and this means that the Distortion-

Rate (D(R)) curve may not be a strictly decreasing function. The D(R) curve maps a

distortion for representative values of bit rate, this way, one can compare two algorithms

based on their D(R) curves as it is only fair to compare two algorithms by looking at the

resulting distortions at the same bit rate, or seeing how many bits each require to achieve

a same distortion. However, when allocating bits, adding a bit simply adds a level between

the current levels, with the current levels remaining intact, therefore, the D(R) curve would

be strictly decreasing.

x

)(xf

(a) Symmetrical Uniform Quantizer With 3
Levels

x

)(xf

(b) Symmetrical Uniform Quantizer With 4
Levels

Fig. 2.5 3 Levels Versus 4 Levels Symmetrical Uniform Quantizers

2.7 Compandor

Trying to benefit from both scalar quantizer types advantages, one can build a non-uniform

quantizer from a uniform quantizer and a compandor. The block diagram of a typical

compandor is shown in Figure 2.6.

2 Coder Designs 28

Uniform Scalar

Quantizer

Compressor
 Expander

x
)
(
x
f
)
(
ˆ
 x
f
 x
ˆ

Fig. 2.6 Block Diagram of a Compandor

The idea is to compress and expand the signal so that the uniform quantizer levels

would map to the regions of interest such as the region around the mean rather than the

tails of the probability density function of a Gaussian distribution function, thus expanding

the region where most data points would fall in as opposed to the rest which is a larger

interval yet with fewer occurrences. The expander reverses the mapping to get the original

scale as shown in Figure 2.6. The optimal high-rate compressor is developed in [9] and is

given by

C(x) =

∫ x

−∞
f(y)1/3dy

∫ ∞

−∞
f(y)1/3dy

(2.23)

where f(y) is the probability density function (PDF) of the variable to be compressed and

C(x) is the compressed variable.

A typical compressor-expander pair is shown in Figure 2.7. Note that the resulting

quantizer becomes a non-uniform quantizer as expected as seen on Figure 2.7(a).

2.8 GMM Coder Design

The GMM coder designed by Subramaniam is the basis of all experiments with speech for

the course of this work. It is used here to code LSF speech parameters.

The complete coder is shown in Figure 2.8 and for each Gaussian mixture, the branch

labeled “mixture” is implemented as seen in Figure 2.9, where µ and σ are the parameters

representing respectively the averages and standard deviations of the Gaussian mixture or

cluster of the branch and Q is the eigenvector matrix used as the KLT decorrelating the

input data.

This coder is simply a transform coder. The signal is being processed by several trans-

form branches simultaneously and the branch giving the smallest distortion is considered

2 Coder Designs 29

x

)
(
x
f

(a) Compressor

x

)
(
x
f

(b) Expander

Fig. 2.7 Simple Compressor-Expander Pair

minimum

distortion

x
ˆ
x
 mixture 1

mixture M

...

Fig. 2.8 Overall GMM Coder Designed by Subramaniam

+ +×÷ compress quantize expand
σµ σ µ

TQQ
x x̂

Fig. 2.9 A Branch of the GMM Coder Designed by Subramaniam

2 Coder Designs 30

the Gaussian source generating the signal. The transformation Q on each branch is the

KLT associated to the covariance matrix of the corresponding gaussian mixture.

For the purpose of this thesis, all training and testing was performed on a GMM-based

LSF quantizer with 64 mixtures with full covariance matrices. For the GMM-based LSF

quantizer, the training set was a set of 1000 speech files and the test set was 200 speech

files when the error criterion was the MSE and 50 when the error criterion was the LSD.

All speech files were from the McGill TSP lab speech sample database. These speech files

were recorded at 8000Hz, from there, 10th order linear predictive (LP) coefficients were

computer from frames of 32milliseconds (ms) with a 50% overlap. Finally, 10th order

line spectral frequencies (LSF) are derived from the LP coefficients as they are simply a

representation of the LP coefficients.

2.9 Image Coder Design

The image coder is a simple transform coder using the Karhunen-Loève Transform (KLT)

as the transformation matrix.

The coder is used to compress a 512x512 pixels standard image such as the popular

“Lena” and the “gold hill”. These pictures have broad frequency content, it has both low,

medium and high frequency content and therefore form a good test set.

In order to separate the training set from the test set to obtain more fair results,

training is performed on one image and testing on another image, as it is not good practice

to perform training and testing on the same set. In this case, training is performed on the

“gold hill” image and testing is performed on the “Lena” image.

The image is first split into 8x8 pixels blocks. These blocks form the training data set

for the KLT to be used to decorrelate the blocks of the image. Each block is rewritten

as a 64-dimensional vector. Next, the vectors are used to train the KLT by finding the

covariance matrix of the data and getting its eigenvectors matrix which is the KLT. This

completes the training for the transformation matrix.

Now each block of the test image is decorrelated using the newly found KLT matrix.

Then the transformed coefficients are quantized using previously optimized quantizers for

each dimensions for Gaussian data. One such quantizer takes the range as a multiple of the

variance and divides the range by the number of levels allocated by the levels allocation

algorithms. The implemented quantizer is a scalar uniform quantizer.

2 Coder Designs 31

Finally, the quantized block is recorrelated and recomposed into the 512x512 image.

The distortion on the original image and reconstructed image is computed.

Here are the two images that will be used for training and testing.

100 200 300 400 500

100

200

300

400

500

(a) Lena

100 200 300 400 500

100

200

300

400

500

(b) Gold Hill

Fig. 2.10 Images Used for Testing

32

Chapter 3

A Greedy Level Allocation Algorithm

3.1 Problem of the Greedy Bit Allocation Algorithm

The Greedy bit algorithm allocates integer bits. If one wants to allocate integer number of

levels to each dimension and code dimensions as a vector, then one needs to develop a new

greedy algorithm. This problem is only made worse because of the fractional bit nature of

the coder designed by Subramaniam [1]. In the coder in question, there is first a cluster

bit allocation which allocates the 2btot levels to the M Gaussian mixtures according to the

variances in the mixture and the prior probability of the mixture component. The cluster

bit allocation formula is written as

2bj = 2btot
(αjcj)

d
d + 2

d∑
i=1

αici

d
d + 2

(3.1)

where d is the number of dimensions, αj is the prior probability of a Gaussian mixture j

and cj =
∏d

i=1 λj,i
1/d in which λj,i is the variance of dimension i of cluster j.

From (3.1), it is obvious that the number of bits given to each cluster has no guarantee

of being an integer, but if one requires integer bits, then the fractional number of bits

will have to be truncated, hence the big loss of bits due to integer bit allocation. Then,

the fractional number of bits is allocated among the dimensions. For levels allocation, the

algorithm works well and there is but small losses due to integer levels,

Moreover, the Greedy algorithm indeed does not have the problem of negative bit

3 A Greedy Level Allocation Algorithm 33

allocation and is extremely simple to compute but lacks the precise fractional bits allocation

that can further match the bit allocation formula.

3.2 Greedy Level Allocation Algorithm

The proposed algorithm allocates level-by-level to each dimension, trying to reduce the

distortion of each dimension and by spending the least amount of bits.

3.3 Criteria To Optimize For

3.3.1 Cost

When allocating a level, there is an associated cost. In the Greedy bit allocation algorithm,

it was easy to find the cost: it would be simply 1 bit. When allocating a level, the cost

depends on the previous number of levels the dimension already had. If the dimension

had 1 level and we increment it to 2, 1 bit is used whereas if the dimension had 10 levels,

incrementing it to 11 doesn’t cost much, in fact only log2 (11/10)bits.

3.3.2 Benefit

The benefit is defined as the difference in total distortion before and after the allocation

benefit = Dold − Dnew . (3.2)

Fox used the difference of objective functions as the benefit as well in [7].

3.3.3 Benefit-to-Cost ratio

Assume the total distortion is simply the sum of all individual dimension distortions. The

ratio to optimize is written as:

ratioi ,j =
benefiti ,j
costi ,j

(3.3)

benefiti ,j = Dtot(i, j − 1)−Dtot(i, j) (3.4)

costi ,j = log2

Ltot(j)

Ltot(j − 1)
(3.5)

3 A Greedy Level Allocation Algorithm 34

where Ltot(j) is the product of the levels Li at allocation j and Dtot(i, j) is the distortion

of dimension i with allocation j.

This criteria makes sense because when allocating a level to a certain dimension, we

must evaluate how beneficial it is and also the cost of doing so, which was not useful for

the Greedy bit allocation algorithm because when allocating one bit, the cost would be one

bit. Here allocating one level can be more or less bits depending on the number of levels

already allocated to the dimension.

3.3.4 Intuitive Understanding of the GRLA

To further understand the principle through the GRLA, the following graphical example

will be used.

0 2 4 6
0

0.5

1

1.5

2

bit rate

M
S

E

dim 1
dim 2

Fig. 3.1 MSE Versus Bit Rate for 2 Components, one with variance equal
to 1, and one with variance equal to 2

From Figure 3.1, one can see the theoretical Lloyd-Max quantizer MSE distortion versus

the given bit rate. From the graph, one can call ∆xi the cost in bits and ∆yi the benefit

in MSE. Then the slope
∆yi

∆xi
is simply the previously described benefit-to-cost ratio.

From the previous definitions, it is also obvious that a level should be given to the curve

with the allocation yielding the largest slope, i.e. benefit-to-cost ratio. The first level would

be given to dimension 1. Then, the current slope of dimension 2 becomes steeper than the

3 A Greedy Level Allocation Algorithm 35

current slope of dimension 1, thus, a level is allocated to dimension 2. This procedure

continues, each time looking at the current slope. This is the intuitive understanding of

the GRLA.

So far, the definition of the benefit for the GRLA is quite similar to that of the Greedy

bit allocation algorithm. One could again make some approximations by assuming high-

rate and Gaussian distribution. Then the distortion can simply be computed analytically

as

Dtot =
d∑

i=1

K
σ2

i

L2
i

(3.6)

where one can simply compute
σ2

i

L2
i

as a comparison value for each dimension.

3.3.5 Level Allocation Flattening

There are many possible variations of the benefit and cost functions. For instance, one can

ignore the cost totally and only use the benefit in the benefit-to-cost ratio. The effect is a

flattening of the level allocations, which can be observed in this simple example. Consider

the initial variance λ1 = 1 = σ2
1 and λ2 = 1024 = σ2

2 and we have 5 bits to allocate. The

right bit allocation will make σ1/L1i = σ2/L2i (from the bit allocation formula derived

in section 2.4.2), where L1 and L2 denote respectively the number of levels allocated to

dimensions 1 and 2. Therefore, it is obvious that the level allocation is L1 = 1 and L2 = 32.

However, when not taking the cost into account, the level allocation in Table 3.1 occurs.

Table 3.1 Level Allocation without Cost

L1i L2i σ1/L1i σ2/L2i

1 1 1 32
· · · 1 13 1 32/13

1 14 1 32/14
2 14 1/2 32/14
2 15 1/2 32/15
2 16 1/2 2

The problem occurs at the last line where the algorithm decides to allocate a level to

dimension 1 because σ1/L1i would be reduced by 12− (1/2)2 = 0.75 whereas σ2/L2i would

3 A Greedy Level Allocation Algorithm 36

only have been reduced by (32/14)2 − (32/15)2 = 0.673. Therefore, only using the benefit

to allocate bits would result in adding a bit to dimension 1 and this in turn causes the

algorithm to never reach the optimal ratio of 1 : 32 levels equal to the ratio of standard

deviations. This flattens the level allocation among the dimensions

In general, flattening the level allocation gives bad performance since one gets farther

from the allocation corresponding to the ratio of standard deviations. This effect is in fact

easy to observe as a dimension which has never had a level allocated to it will react much

more to getting one more level, increasing from 1 to 2 levels, decreasing the distortion

by 1/2 whereas a dimension with larger variance would already have 1024 levels and an

addition would only be a change of variance of 1/1024. It is true that giving the level to the

dimension with fewer levels would decrease the total distortion more, but the opportunity

cost is something that is important to take into account as now: by allocating a level to

the dimension with a lower number of levels, one prevents the dimension with 1024 levels

to go from 1024 to 2048. Therefore, cost is important.

3.3.6 Level Allocation Unflattening

There is yet another variation to the Greedy Level Allocation (GRLA) algorithm, it consists

of changing the benefit function to emphasize variance. Emphasizing variance has an

obvious effect when one looks at the bit allocation formula derived in Chapter 4 repeated

in (3.7), it will unflatten the level allocation.

As in the modified bit allocation formula

bi =
btot

d
+ k log2

λi

(
d∏

j=1

λj

) 1
d

. (3.7)

One can notice that the factor k which will be explained to be a factor correcting the low

bit rate benefit of adding a bit to a dimension. It will be shown that k = 0.5 is analogous

to setting the benefit to 6dB per bit. From Max [4], one can read that the benefit is lower

for low bit rates, being actually closer to 5dB per bit. It will be shown in Chapter 4 that

5dB per bit benefit is achieved by setting k = 0.6. Rewriting the above in a more explicit

3 A Greedy Level Allocation Algorithm 37

way, one gets

bi =
btot

d
+ 0.5α log2

λi

(
d∏

j=1

λj

) 1
d

=
btot

d
+ 0.5 log2

λα
i(

d∏
j=1

λα
j

) 1
d

(3.8)

where α = k/0.5.

It is observed that k = 0.6 gives better results for our bit rates of interest and therefore,

the corresponding α is 0.6/0.5 = 1.2. This means that the variances should be raised to

the power 1.2 to yield a benefit of 5dB per bit.

The variances used in the benefit can be raised to different powers. The effect is the same

as changing k in the bit allocation formula (3.7). Figure 3.2 shows the MSE performance

of different values of k on the GMM-based LSF quantizer with 64 Gaussian mixtures.

Although the performance gain is small, it does show that the optimal α is not 1, and

therefore, that the optimal k is not 0.5. This result supports the hypothesis that the

assumptions that the data to be coded is Gaussian distributed and high-rate are not valid.

The power of the flattening is associated to the actual benefit, i.e. reduction on distor-

tion, of adding one bit. One may even overunflatten by powering the variances by an α

which is too big. The result would be the same as with increasing k in the next chapter too

much and therefore there is a point where k becomes too big and performance decreases.

Therefore, there exists an optimal value and for the the GMM-based coder, α = 1.2 or

k = 0.6.

As seen from Figure 3.2, the optimal α is 1.2, which, as will be seen later, corresponds

to having a benefit of 5dB per bit which is around the benefit of adding a bit to a dimension

at low rate.

Overunflattening can be used to counter flattening if one wishes to. Some tests show

that combining the two effects can yield results which are better than when using the proper

benefit and cost. It is however hard to predict the level of flattening caused by ignoring

the cost and therefore, most of the time, one would refrain from using this flattening-

unflattening pair.

3 A Greedy Level Allocation Algorithm 38

25 26 27 28 29 30
3

3.5

4

4.5

5

5.5

6

6.5

7
x 10

−3

bit rate

M
S

E

Fig. 3.2 Performance Using Different Value of α, Solid Line: α = 1, Dotted
Line:α = 1.2, Dashed Line:α = 1.4, Dash-dotted Line:α = 1.6

Table 3.2 Level Allocation with Flattening and Unflattening for 27 Bits

dimension 1 2 3 4 5 6 7 8 9 10
levels for version 1 22 12 10 7 3 4 4 6 5 5
levels for version 2 16 10 9 7 3 4 5 6 6 6
levels for version 3 85 22 17 7 1 2 3 5 4 5
levels for version 4 35 14 13 7 2 3 4 5 5 5

3 A Greedy Level Allocation Algorithm 39

Table 3.2 shows a typical bit allocation pattern for 4 versions of the Greedy Level Al-

location algorithm, varying the definition of the ratio. The first version is the original

definition of benefit and cost; the second one is when only considering benefit, thus flatten-

ing the level allocation; the third one is when squaring the variance in the benefit definition

to unflatten the level allocation; and finally, the fourth one is when squaring the variance

to unflatten the level allocation but not considering cost, giving thus a somewhat balanced

flattening-unflattening pair. One can see that indeed, the second version gives more flat

number of bits throughout the dimensions. The third version gives a very unflattened bit

allocation, where the dimensions with high variances get nearly all the bits. The first and

fourth versions have similar distribution as a result of balanced flattening-unflattening.

These indeed confirm the aforementioned effects.

3.4 Greedy Level Allocation Algorithm

Here is an outline of the Greedy Level Allocation Algorithm (GRLA)

3 A Greedy Level Allocation Algorithm 40

Algorithm 3.4.1: Greedy Level Allocation(bits, variances)

comment: Initialize variables

for each i ∈ 1 to d

do Li = 1

repeat





comment: Initialize variables

for each i ∈ 1 to d

do eligiblei = 1

comment: Prune dimensions

for each i ∈ 1 to d

do Li = Li + 1

if
∏d

i=1 Li > 2bits

then
{

eligiblei = 0

comment: Find dimension with highest benefit-to-cost ratio

for each i ∈ 1 to d

do





tempLi ← Li + 1

costi = log2

∏d
j=1 tempLj − log2

∏d
j=1 Lj

benefiti = (λi/L
2
i)− (λi/tempL2

i)

ratioi = benefiti/costi

tempLi ← tempLi − 1

j = arg maxi ratioi

Lj = Lj + 1;

until no dimensions can take another level

There are a few variants to this algorithm. One variant consists of restricting the

number of levels in each dimension to be an odd number. This restriction comes from the

observation that for random variables that do not satisfy the log-concavity condition [11],

even numbers of levels yield optimal quantizers which are asymmetric that are not feasible

3 A Greedy Level Allocation Algorithm 41

under the current compandor-uniform quantizers. In order to ensure a quantization level

on the mean of the density function, one needs to restrict to odd numbers of levels. This

is easy to do with the GRLA since it is synonymous to increasing the number of levels in

steps of 2 levels rather than 1 level at a time.

3.5 Experimental Results

Since the performance of a bit allocation scheme depends a lot on its assumptions, the vari-

ous bit allocation schemes will be tested on two test cases: the first one is the LSF quantizer

described in [1] on a set of speech files from McGill TSP lab where the resulting mixture

components approach Gaussian distributions as described in Chapter 2. The GRLA will

not be tested on the Lena image as the image coder has both high dimensionality and high

bit rate making the algorithm very computationally expensive and impractical. The GRLA

will be used as a topping off algorithm to complement the allocation algorithms described

in Chapter 4.

3.5.1 Simulations and Results on LSF Quantizer

As was described by the theory, looking at Figure 3.3, when ignoring the cost, the distribu-

tion is flattened, and yielding in the case of this GMM-based coder a worse performance.

Squaring the variance unflattens the levels and in this situation, unflattens too much as

the best exponent was found to be α = 1.2 in Figure 3.2, therefore, performance is also

worse. When combining the flattening and unflattening by not taking the cost into ac-

count and squaring the variance, the two effects cancel out and leave a slightly unflattened

distribution, which happens to be better suited for this particular situation.

It is observed on Figure 3.4 that the GRLA always performs as well or better than the

Greedy bit allocation algorithm. This is only due to the more loose constraint of integer

levels rather than integer bits. It is observed that when using the MSE as a distortion

measure, the GRLA outperforms the Greedy bit algorithm by around 0.6 bit.

From Figure 3.4, one can compare the GRLA with the Greedy bit algorithm. The

GRLA approaches better the optimal ratio of levels between the dimensions. Moreover, it

allocates maximally the available levels to all dimensions, so that the used bits get close to

the given bit rate as could be seen in Table 4.3. The GRLA can attain the average LSD

of 1dB using about 25.8 bits whereas the Greedy Bit algorithm needs around 26.7 bits.

3 A Greedy Level Allocation Algorithm 42

25 26 27 28 29 30
3

3.5

4

4.5

5

5.5

6

6.5

7
x 10

−3

bit rate

M
S

E

(a) MSE performance

25 26 27 28 29 30
0.6

0.7

0.8

0.9

1

1.1

1.2

bit rate

LS
D

(b) LSD performance

Fig. 3.3 Using the Different Flattening-Unflattening Definitions for Cost
and Benefit on GMM-Based Coder; Solid Line: Original Definition, Dotted
Line: No Cost, Dashed Line: Variance Squared, Dash-Dotted Line: Variance
Squared, No Cost

3 A Greedy Level Allocation Algorithm 43

However, the GRLA has very high computational cost: the Greedy bit algorithm simply

allocates bits at a time therefore, the total computation time is proportional to the number

of bits and dimensions. The GRLA allocates levels, therefore, the computational time is

anywhere between that of the Greedy bit algorithm and 2btot , depending on the variances,

e.g. if one dimension has variance dominating the other dimensions, the GRLA will add

one level at a time for 2btot times. Therefore, the GRLA has unpredictable execution time.

For this reason, the GRLA is only used as a filling algorithm, where the bulk of the work

is done through a faster algorithm, such as Segall’s algorithm or the algorithms described

in Chapter 4.

25 26 27 28 29 30
3

3.5

4

4.5

5

5.5

6

6.5

7
x 10

−3

bit rate

M
S

E

(a) MSE performance

25 26 27 28 29 30
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

bit rate

LS
D

(b) LSD performance

Fig. 3.4 The GRLA Versus the Pruning and the Greedy Bit Algorithm on
GMM-Based Coder; Solid Line: GRLA, Dotted Line: Greedy Bit, Dashed
Line: Pruning

3.6 Conclusion

The Greedy Level Allocation algorithm yields good performance under the same assump-

tions as the original bit allocation formula, that is Gaussian distribution, high bit rate,

additive distortions and concave distortion functions. This algorithm has the advantage

3 A Greedy Level Allocation Algorithm 44

that it can get very close to the required bit rate, even when it is fractional, while keeping

a good ratio of between the levels allocated to each dimension. However, for high-rate and

high dimensions, the Greedy Level Allocation algorithm becomes very computationally in-

tensive as its computational complexity increases linearly with the number of dimensions

and exponentially with the bit rate. Therefore, using the Greedy Level Allocation algorithm

for image coding can be very expensive and impractical.

The true usefulness of the Greedy Level Allocation algorithm is its ability to be coupled

with an algorithm that does not approach well the required bit rate such as the TSIBA and

the Generalized TSIBA described in Chapter 4. In such cases, the TSIBA first gets close

to the required bit rate while keeping its ratios and then the GRLA is only used to get

even closer to the required bit rate, thus forming a more solid and less wasteful algorithm

by topping off those dimensions which can take more levels.

The topping off procedure is generally done on high variance dimensions which already

have a lot of levels, therefore that have benefit closer to 6dB. Thus, the α-factor is chosen

to be 1 instead of 1.2 when the GRLA is used for topping dimensions.

45

Chapter 4

Improved Bit Allocation Formula

4.1 Introduction

4.1.1 Traditional Bit Allocation Formula For High-Rate KLT

Huang and Schultheiss [2] derived the bit allocation formula that is now commonly used

in transform coders and seen as the optimal bit allocation formula. The derivation made

assumptions on high-rate and Gaussianity of the data set. They indeed consider the bit

allocation to be at least 3 bits per dimensions [2]. However, Lloyd [3] had previously

worked on the effect of PCM quantization and showed that at lower rate, the distortion

is not simply a function of the step size but of a variable Ai(bi), which could vary from

1 to about 2.72[3]. When assuming high-rate, the derivation assumes a constant value of

Ai(bi) = Kλi where K is a constant.

In nowadays speech and image applications, the bit rate is rarely set to be above 3 bits

per dimension. For instance, in [1], the bit rate of interest is around 2 bits per dimension.

Therefore, the formula needs to be modified to reflect today’s low-rate needs.

As seen in section 3.3.6, by changing the exponent applied to the variance, one could

change the benefit of adding one bit and get bit allocations yielding lower distortions. The

same idea can be applied to the bit allocation formula derived by Huang and Schultheiss

and will be done in section 4.3.

4 Improved Bit Allocation Formula 46

4.2 Non-Negative Bit Allocation

As seen in section 2.4.2, it is seen that the ratio of the number of levels given to each

dimension must be kept constant for optimality to be kept. Now imagine the case where

the total bit rate is reduced by more than a certain limit, thus that some Li would need

to be smaller than 1, and consequently negative bits, in order to preserve the ratio. The

algorithm then would allocate negative bits to dimensions and from there arises the problem

of negative bit allocations.

There are many ways of dealing with negative bit allocations, however, the important

characteristic of any algorithm is to preserve the λi/L
2
i ratio, if not for all dimensions,

then at least for dimensions with a large enough variance so that they should get bits.

Dimensions with small variances are then suitable for an average mean square distortion

around the value of their variances, which is still smaller than the distortion of large variance

dimensions.

Segall [6] described an algorithm which solves the problem of negative bit allocation.

The algorithm sets a threshold θ of variance σ2
i or λi below which a dimension is pruned.

The pruning is done through the following step (see Appendix E for more details):

S(θ) =
∑

j:σ2
j≥θ

h

(
θ

σ2
j

k′(0)

)
(4.1)

where h is the inverse function of k′, where k′ is the derivative of k(bi), and k(bi) is the

decrease of distortion per bit and S(θ) is the total number of bits used, which is not to

exceed the given number of bits. θ can be seen as the threshold of variance below which

no bits are allocated to the dimension.

The two-stage iterative bit allocation (TSIBA) algorithm also takes care of the negative

bit allocation problem by a similar philosophy, yet another algorithm.

The TSIBA, as its name states, is an iterative procedure. The first stage deals with

pruning the unwanted dimensions and the second stage adds fractions of bits to each

dimension in order to get as close to the given number of bits when the number of levels

per dimension is restricted to be an integer.

To prune the dimensions with small variances, one simply distributes bits according to

a standard formula, e.g. (2.15), and looks at the bit allocations. If a dimension is allocated

4 Improved Bit Allocation Formula 47

a negative number of bits, it is pruned. Then the allocation is performed again on the

remaining dimensions until no dimensions get negative bits allocated to them. The bit rate

is then rounded so that the number of levels per dimension is an integer.

Most likely, the number of used bits is smaller than the given number of bits at this

point. Then, the average bit rate is increased by a slight amount and the allocation done

again.

These two iterative loops are done until the number of used bits exceeds the given

number of bits.

The TSIBA is not only about solving the problem of negative bit allocations, it also

deals with the problem of non-Gaussian and low bit rates as will be seen shortly.

4.3 A Study on Low Rate Effect of Level Allocation

As seen in Chapter 2, the variable Ai(bi) is assumed to be Kλi with K being constant,

which will be shown to not be the case. This indeed yields the well-known bit allocation

formula. This assumption is in fact synonymous with the assumption that for a given

number of incremental bits, the distortion of the dimension is decreased by 6dB.

The 6dB per bit rule is true for a scalar quantizer for uniform distribution which is the

uniform scalar quantizer. It is easy to derive the MSE for the uniform optimal quantizer

as the MSE is the following formula

σ2
eb

=
2−2b

12
(4.2)

where b is the number of bits in the uniform scalar quantizer and σ2
eb

is the variance of the

error signal, i.e. the quantization noise power.

From this definition of the MSE distortion, one can derive that for every additional bit

allocated to the quantizer, the error is reduced by 6dB, i.e. the variance of the error is

divided by 4 as seen in the (4.3) and clearly seen from Figure 4.1.

4 Improved Bit Allocation Formula 48

0 2 4 6 8
−10

0

10

20

30

40
M

S
E

 in
 d

B

bits

(a) 6dB per bit

1 1.5 2

25

30

35

M
S

E
 in

 d
B

bits

(b) zoomed-in

Fig. 4.1 MSE of Uniform Quantizer on a Uniform Data Set Using a Lloyd-
Max Quantizer

σ2
eb+1

=
2−2(b+1)

12

σ2
eb+1

=
2−2b2−2

12

σ2
eb+1

=
σ2

eb

22 .

(4.3)

Taking 10 log10 on each side, one gets ≈ 6dB.

The same can be done for a Gaussian distributed variable using a Lloyd-Max optimal

quantizer. The distortion is written as

Di = Ai(bi)2
−2bi (4.4)

which is once again the 6dB per bit rule that can be derived as in (4.3).

The bit allocation formula is in fact also closely related to the 6dB per bit assumption.

4 Improved Bit Allocation Formula 49

Looking at the optimal bit allocation formula

bi =
btot

d
+ 0.5 log2

λi

(
d∏

j=1

λj

)1
d

. (4.5)

If one multiplies λi by 4, i.e. 6dB, the following expression is given

b′i =
btot

d
+ 0.5 log2

4λi

(
d∏

j=1

λj

)1
d

(4.6)

b′i =
btot

d
+ 0.5 log2

λi

(
d∏

j=1

λj

)1
d

+ 0.5 log2 4 (4.7)

b′i =
btot

d
+ 0.5 log2

4λi

(
d∏

j=1

λj

)1
d

+ 1. (4.8)

Therefore, one gets once again the well-known 6dB per bit rule.

However, since most coding is done at low rate, the Gaussian does not reach the 6dB/bit

yet as seen in Max [4], but more around 5dB/bit. Considering changing the 0.5 factor in

front of the log2 term to 0.6

b′i =
btot

d
+ 0.6 log2

4λi

(
d∏

j=1

λj

)1
d

(4.9)

=
btot

d
+ 0.5 log2

λi

(
d∏

j=1

λj

)1
d

+ 1.2 (4.10)

which means that for a 6dB difference, one would need 1.2 bits, or 5 dB/bit.

4 Improved Bit Allocation Formula 50

Since the behaviour of the Gaussian yields less than 6dB per bit at low rate, then

matching the actual benefit per bit may yield a better bit allocation. One can do so by

varying the factor in front of the logarithm term of the bit allocation formula.

4.4 The TSIBA Algorithm

The TSIBA deals with several problems encountered by the traditional bit allocation for-

mula. First, there is no guarantee on getting non-negative bits for all dimensions. The

logarithmic term can, in fact, yield many negative number of bits depending on how some

variances are small compared to others. Second, there is no guarantee that the number

of bits, or at least levels allocated to each dimension is an integer. This problem is easy

to deal with however, it will cause the total bits allocated to be smaller than the desired

bit rate. Third, the bit allocation formula assumes high rate. This assumption, as seen

in the derivation of the bit allocation formula, permits a simplification and yield the for-

mula (2.15). However, in nowadays applications, it is often the case that the high-rate

assumption is violated. In the LSF quantizer described by Subramaniam [1], we indeed

see that the target bit rate is around 2.2 bits per dimensions. The high-rate assumption is

further violated in image coding, where each pixel is now coded with less than 1 bit.

The third part of the TSIBA is in modifying the bit allocation formula (2.8). In fact,

the bit allocation formula is modified into a similar form:

bi = b̄ + k log2

λi

(
d∏

j=1

λj)
(1/d)

(4.11)

where b̄ is the average bit rate per dimension, λi is the variance of dimension i, d is the

number of dimensions and k is a parameter which is used to tune the benefit per bit.

This equation adds a free variable to the bit allocation formula. This variable k indeed

controls the importance of the variance term. By making k larger, one effectively weights

the variance more than the average bits per dimension.

When relating back to the previous subsection, one can also view this new variable k as

placing a line of slope 5dB/bit on the Gaussian benefit versus bit rate curve. This however

changes k globally for all dimensions at the same time, therefore, a dimension which has

many bits and that would normally follow the 6dB per bit rule would still be following a

4 Improved Bit Allocation Formula 51

5dB per bit if it is the optimal k. Figure 4.2 and 4.3 show that for a Gaussian distribution,

even the Lloyd-Max quantizer does not achieve a performance gain of 6dB per bit but more

in the 5dB/bit region.

0 1 2 3 4 5
−25

−20

−15

−10

−5

0

bits

M
S

E
 in

 d
B

(a) 6dB per Bit

1 1.2 1.4 1.6 1.8 2

−10

−9

−8

−7

−6

−5

−4

bits

M
S

E
 in

 d
B

(b) zoomed-in

Fig. 4.2 MSE Calculated by Max for Lloyd-Max Quantizer on Gaussian
Data

Here is a brief outline of the algorithm:

4 Improved Bit Allocation Formula 52

0 2 4 6
4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

bits

be
ne

fit
 in

 d
B

/b
it

Fig. 4.3 Benefit per Bit for Lloyd-Max Quantizer on Gaussian Distribution

Algorithm 4.4.1: TSIBA-Inner Loop(bitsgiven, variances)

b̄ = btot/d

repeat



Calculate the bit allocations using a bit allocation formula

for each i ∈ 1 → d

do





if bi < 0{
σi = 1.

Tag the i-th dimension as pruned.

d = number of untagged dimensions.

b̄ = btot/d

Update the geometric mean of coefficient variances.

until bi > 0,∀i ∈ 1 → d

repeat



Increment desired bit rate by a step.

Calculate the bi’s using (2.16) only for untagged coefficients.

Li = b(2bi)c
bitsused = log2

∏d
i=1 Li

until bitsused > bitsgiven

backtrack 1 step

Li = b(2bi)c

4 Improved Bit Allocation Formula 53

There are three parts to the Two-Stage Iterative Bit Allocation Algorithm (TSIBA),

one which looks for an optimal k, another that prunes insignificant levels before allocating

bits, and the last part, that allocates the maximum integer number of levels without going

over the desired bit rate.

The outer loop which finds the optimal k simply iterates through all the values of k

that have to be considered (depending on the precision we want on the optimal k), using

each value of k in the bit allocation formula (2.16).

The procedure that takes the most computational effort is finding the optimal k because

the optimal k may lie anywhere, typically from 0.5 to 1, and that choosing k is a post-

processing decision, the algorithm simply iterates through the values of k and picks the one

resulting in smallest distortion. The computational complexity would be the time taken to

code all test data times the number of values of k that one desires to consider. Thus, the

computational complexity depends mostly on the precision to which one wants to the best

value of k.

The Armijo [8] algorithm can be used to make the search faster. The Armijo increases

the value of k geometrically until there is no longer improvement, the value of k is then

decreased geometrically again to fine tune k. This method indeed can get to a more precise

solution much faster than using regular step sizes. The only drawback of this method of

finding k is that it can easily get trapped in a local optimum. For smooth convex functions,

it is not a problem. Figure 4.4 shows the curve of the PSNR versus the value of k, it is

observed that the resulting curve is not smooth. Any disturbance in the k curve would

cause the Armijo algorithm to get stuck in a local optimum.

There are many possible fixes for this problem, such as changing search direction only

when one is sure the function is changing direction, i.e. the function has steadily been

decreasing for a few values of k.

4.4.1 Finding the Low Rate Bit Allocation More Optimal Formula

The bit allocation formula can be modified to yield more optimal bit allocations for low

rate.

Note that (2.16) should theoretically yield a better allocation for low bit rates for non-

uniformly distributed data.

Let us start by treating the Gaussian case. Max [4] had previously shown an optimal

4 Improved Bit Allocation Formula 54

0 0.5 1 1.5
22

24

26

28

30

32

34

value of k

P
S

N
R

Fig. 4.4 PSNR for Different k for Lena Image

vector quantizer for a normally distributed random variable. His results gave the following

table:

Table 4.1 Gaussian: Optimum MSE of Quantization Noise for Various Val-
ues of Li

Li MSE L2
i MSE

2 0.36 1.45
4 0.12 1.88
8 3.46× 10−2 2.21
16 9.50× 10−3 2.43
...
∞ 0 2.72

Although these numbers were computed for a vector quantizer (unequal cell-size), these

numbers should be lower than when using a scalar quantizer, since MSE would be larger

than for a vector quantizer.

These numbers have been recomputed for a scalar quantizer. There are two cases of

interest: uniform distribution and Gaussian distribution.

Most distribution can be modelled by a mixture of Gaussian variables, therefore, com-

4 Improved Bit Allocation Formula 55

puting the value of Ki(bi) for Gaussian distribution will prove fruitful.

One should use the two yielded Ki(bi) according to the expected distribution of the test

set.

From the values of Ki(bi) trained as shown in the next section, it is simply a question of

using it in the bit allocation procedure yielded by (2.16). The final bit allocation is simply

found by computing bi, updating Ki(bi), recomputing bi and so on until bi does not change

much anymore.

This method can easily be combined with any other method using the original bit

allocation formula and yield a better performance. Since this method is a generalization of

the TSIBA, it will so be called and can be used in the original TSIBA to replace the bit

allocation formula.

4.5 Training the Generalized TSIBA

The Generalized TSIBA requires a set of Ki(bi). This parameter can be approximated

to the set of Ki(bi) associated with the Gaussian distribution, however, the performance

yielded by such an approximation does not reach the performance of the simple TSIBA.

The parameter Ki(bi) is in fact distribution dependent, and bit dependent, just like the

Ki(bi) found by Lloyd [3], but it will be trained for each dimension in order to match the

distribution of the dimension rather than assuming Gaussianity. In fact, for the case of

the decorrelated Lena image, it is observed as shown in Figure 4.5 that the dimension with

largest variance has distribution that is far from being Gaussian, hence the huge gain that

the TSIBA yields. The same goes for the decorrelated LSF coefficients that are to be coded

in Subramaniam’s coder [1], the effect however being less dramatic because of the usage of

the GMM.

For the transform coder used for images, the training of Ki(bi) is not complicated. The

image is decorrelated as usual and the resulting data reorganized into a matrix. Then, for

each dimension, a D(R) curve is computed. From the D(R) curve, one gets the Ki(bi) by

using the equation

Ki(bi) =
D(R) · L2

i

λi

. (4.12)

For the Subramaniam coder [1], there is an additional problem: one needs to first

classify the vectors into the proper cluster before computing the D(R) of each dimension,

4 Improved Bit Allocation Formula 56

0 500 1000 1500 2000
0

20

40

60

80

100

value

P
M

F

Fig. 4.5 Distribution of data for the dimension associated with the largest
variance for the decorrelated Lena image

this is the purpose of having a GMM in the first place. Note that the training of Ki(bi) can

and should be done offline since it may require a lot of time. The training data set is sent

through the coder described by Subramaniam [1] with a certain bit rate, where vectors are

classified with their respective clusters. Then, in each cluster is computed the D(R) curves

for each decorrelated dimension using the MSE as the distortion measure. Note that the

LSD cannot be used since the distortion is computed on the resulting frequency spectrum

from the LSF, and therefore the simple MSE is used. Each dimension for each cluster get

a D(R) curve and therefore a Ki(bi) curve.

The computed Ki(bi) can now be used in the bit allocation formula (2.16).

The Ki(bi) curves do not show a very smooth relationship as seen in Figure 4.6. The

Ki(bi) curves need to be smoothen in order to give a reasonable convergence. To see this

problem, let us imagine this hypothetical situation, two variances are fairly close together,

one gets an initial number of levels of 5 allocated to it, the other gets 4, but the value of

Ki(bi) rather than being smooth goes down at that special point, say 4 and 5 as shown in

Table 4.2. The next iteration would yield a level allocation of 4 and 5. The level allocation

would follow this infinite loop.

As one can see from this simple example of the possible infinite loop, a condition for

success of the Generalized TSIBA is smoothness of the Ki(bi) curves. This can be done

4 Improved Bit Allocation Formula 57

Table 4.2 Level Allocation Infinite Loop

L(t = i) K(t = i) L(t = i) K(t = i) L(t = i) K(t = i) · · ·

dimension 1 4 5 5 4 4 5 · · ·
dimension 2 5 4 4 5 5 4 · · ·

using several methods as long as the curves become smooth and the general form is kept

intact. The median filter or a low-pass filter is used to smoothen the curves. The resulting

curves look like Figure 4.6.

0 10 20 30
0.5

1

1.5

2

2.5

3

3.5

levels

K
(L

i)

(a) Unsmoothened Ki(bi) Curve

0 10 20 30
1.8

2

2.2

2.4

2.6

2.8

3

3.2

levels

K
(L

i)

(b) Smoothened Ki(bi) Curve

Fig. 4.6 Smoothening the Ki(bi) Curve

4.6 Simulations and Results

Our interest here is speech coding and image coding. Therefore, simulations will compare

the Greedy bit allocation algorithm, the pruning algorithm used by Subramaniam [1] and

the TSIBA on a speech LSF vector database and a few standard images.

4 Improved Bit Allocation Formula 58

4.6.1 TSIBA on LSF quantizer

MSE as a Distortion Measure

Since these bit allocation formulas were derived for minimizing the MSE, it makes sense

to start by testing the TSIBA using the MSE. The test bench is the Subramaniam speech

coder [1] described in chapter 2, using 4 different bit allocation schemes: the TSIBA,

the pruning algorithm used by Subramaniam, the algorithm designed by Segall and the

Greedy bit allocation algorithm. Note that the pruning algorithm used by Subramaniam

does indeed use the original bit allocation formula and thus, it can be optimized for best k

search, yielding a better performance.

Figure 4.9a) clearly shows that the Greedy bit allocation algorithm yields a performance

which is much poorer than the three other methods, with the TSIBA performing best.

LSD as a Distortion Measure

The second part of the tests are the same as the first ones but the LSD is used as a distortion

measure, which is more meaningful for measuring performance of an LSF quantizer.

When tested on 64 Gaussians, it is shown in Figure 4.9b) that the TSIBA consistently

yields the best performance out of the 4 algorithms (Greedy bit allocation, Segall,TSIBA

and pruning), that with or without best k search.

Figure 4.7 shows the D(R) curves for different values of k. It is seen from the plot

that the optimal k is not 0.5 as seen in the bit allocation formula derived by Huang and

Schultheiss, it is instead 0.6, which is the same as with the GRLA varying α in section 3.3.6.

Figure 4.8 shows the D(R) curve for different values of k in the bit allocation formula

used by the pruning algorithm. The optimal value of k is once again 0.6.

On all tests, the TSIBA and the GTSIBA do best, followed by the pruning Algorithm

Subramaniam used, the Segall’s algorithm, and the worst performance is the Greedy bit

allocation algorithm. This may be only due to the Greedy bit allocation algorithm allocat-

ing bits rather than levels, which constrains the bit allocation furthermore and thus yields

the worst performance.

In fact, the only advantage the Greedy bit algorithm has is that the exact desired bit

rate is used rather than a number close to it. This only matters when the approximation

yields a large error, i.e. at very low bit rates, but even at those rates, the D(R) curves

show that the difference is very thin. And in those cases of very low bit rates, the GRLA

4 Improved Bit Allocation Formula 59

26 27 28 29 30

3.5

4

4.5

5

5.5

6

x 10
−3

bit rate

M
S

E

(a) MSE Performance

25 26 27 28 29 30
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

bit rate

LS
D

(b) LSD Performance

Fig. 4.7 Using the TSIBA with Different Values of k for the GMM LSF
Quantizer; Solid Line: k = 0.5, Dotted Line: k = 0.6, Dashed Line: k = 0.7,
Dash-Dotted Line: k = 0.8

performs slightly better than the Greedy bit allocation algorithm (see chapter 3 for the

GRLA). The GRLA yields performance very close to that of the TSIBA.

Another point to observe is how close the algorithm gets to the required bit rate. This

measures how wasteful the algorithm is. The TSIBA by itself is among the more wasteful

algorithms.

Referring to Table 4.3, when compared to the pruning algorithm used by Subrama-

niam [1], we see clearly that the TSIBA wastes about 0.1 bit more. This shows that the

algorithm can get an even better performance if it gets closer to the required bit rate.

When topping off the bit allocations of the TSIBA using the GRLA, both algorithms use a

number of bits close to the required bit rate both when using one mixture and when using

64 mixtures. This is in contrast with the Greedy bit allocation algorithm which used all bits

when using one mixture, but wasted a lot more bits when using 64 mixtures, as the number

of bits allocated to each cluster (or mixture) was a fractional number. When doing so, the

TSIBA reaches very reasonable bit usage. Since the Greedy Level Allocation algorithm is

only adding levels to each dimension, the average distortion of the coder results in a lower

4 Improved Bit Allocation Formula 60

26 27 28 29

3.5

4

4.5

5

5.5

6

6.5
x 10

−3

bit rate

M
S

E

(a) MSE Performance

25 26 27 28 29
0.75

0.8

0.85

0.9

0.95

1

1.05

bit rate

LS
D

(b) LSD Performance

Fig. 4.8 Using the Pruning Algorithm with Different Values of k for the
GMM LSF Quantizer; Solid Line: k = 0.5, Dotted Line: k = 0.6, Dashed
Line: k = 0.7, Dash-Dotted Line: k = 0.8

Table 4.3 Table of Used Bits for Pruning and TSIBA with k = 0.5

Required bit rate Pruning TSIBA TSIBA + Greedy Level

1 Gaussian Mixture

25 24.9350 24.8355 24.9875

27 26.9730 26.8355 26.9509

29 28.9501 28.8090 28.9769

64 Gaussian Mixtures

25 24.9297 24.8189 24.9588

27 26.9378 26.8582 26.9525

29 28.9479 28.8645 28.9663

4 Improved Bit Allocation Formula 61

distortion.

4.6.2 GTSIBA on LSF quantizer

The GTSIBA finds the weighting functions Ki(bi) before using them to compress the data.

It will give similar results to the TSIBA algorithm as they both treat the problem of

different benefit per bit at low rate.

25 26 27 28 29 30
3

3.5

4

4.5

5

5.5

6

6.5

7
x 10

−3

bit rate

M
S

E

(a) MSE Performance

25 26 27 28 29 30
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

bit rate

LS
D

(b) LSD Performance

Fig. 4.9 Using the Different Algorithms for the GMM LSF Quantizer; Solid
Line: GTSIBA, Dotted Line: Greedy Bit, Dashed Line: TSIBA Optimal k,
Dash-Dotted Line: Segall’s Algorithm, Solid with Circle: Pruning Optimal k

Table 4.4 shows the compiled results from Figure 4.9.

A good performance gain is also observed on the coder designed by Subramaniam [1] in

Figure 4.4. The Generalized TSIBA algorithm clearly outperforms all the other algorithms.

The GTSIBA uses 1 bit less than the Greedy algorithm, 0.8 bit less than the pruning

algorithm used by Subramaniam and 0.7 bit less than the Segall algorithm. The additional

advantage of using the Generalized TSIBA is its ability to compute the Ki(bi) curves

offline at training time. Therefore, provided that the Ki(bi) curves have been properly

smoothened, the algorithm will find the optimal level allocations within a reasonable though

4 Improved Bit Allocation Formula 62

Table 4.4 Table of Bit Rates for an LSD of 1dB

Bit allocation algorithm bits for average LSD 1dB

GTSIBA 25.5

TSIBA 25.7

Pruning 26.3

Segall 26.2

Greedy 26.5

unpredictable time period as this depends on the smoothness of the Ki(bi) curves and the

precision to which one wishes to get the allocations close to the formula.

Computationally, the Generalized TSIBA usually performs in the same amount of time

as the TSIBA, however, as dimensionality increases, it is harder to iteratively refine the

levels and thus, it will require more time to converge to an acceptable solution. However,

setting the wanted precision to reasonable bounds will prevent the Generalized TSIBA to

take too much time to estimate the proper level allocations. The Generalized TSIBA is

more suited for the Subramaniam LSF quantizer [1] than the image coder in the sense that

it deals with lower bit rate and dimensionality.

Table 4.5 Table of Used Bits for Pruning and Generalized TSIBA

Required bit rate Pruning Generalized TSIBA Generalized TSIBA + Greedy Level

64 Gaussian Mixtures

25 24.9297 24.8189 24.9588

27 26.9378 26.8582 26.9525

29 28.9479 28.8645 28.9663

Looking at Table 4.5, it is observed that the same problem as the TSIBA is encountered

here, that is the wasting of bits. And therefore, a version of the GRLA algorithm is again

used to get closer to the required bit rate.

4 Improved Bit Allocation Formula 63

4.7 Simulations and Results on Image Coder

It makes sense that the TSIBA and Generalized TSIBA will yield a better performances

when tested on an image coder as the data is much less Gaussian, at least when using the

MSE or PSNR as the distortion measure.

Test on Lena image

The trainings of the GTSIBA and the KLT matrix were performed on the “gold hill” image

and the tests were conducted on the Lena image in order to separate the training set from

the test set.

0 50 100 150
22

24

26

28

30

32

34

36

38

bit rate

P
S

N
R

(a) Test on Lena Image

110 120 130 140

34.5

35

35.5

36

bit rate

P
S

N
R

(b) Zoom-In Region of Interest

Fig. 4.10 Test of KLT Image Coder on Lena Image; Solid Line: GTSIBA,
Dotted Line: Segall’s Method, Dashed Line: TSIBA with k = 0.9, Dash-
Dotted Line: TSIBA with k = 0.5, Solid with Circles: Greedy Bit Algorithm

For the tests on the Lena image, the Generalized TSIBA and TSIBA perform very well.

A gain of nearly 28% bits is met over the Greedy bit allocation algorithm assuming 6dB

per bit benefit for a PSNR of 35dB as seen in Figure 4.10.

4 Improved Bit Allocation Formula 64

Table 4.6 Table of Bit Rates for a PSNR of +35dB on Lena Image

Bit allocation algorithm bits for PSNR 35dB

GTSIBA 108

TSIBA k = 0.5 133

TSIBA k = 0.9 108

Segall 142

Greedy 150

4.8 Conclusion

The TSIBA takes advantage of the non-gaussian distribution of the test data set. It does

so by emphasizing the high variances with respect to the lower variance terms by powering

the variance terms (λk
i), effectively changing the benefit of adding a bit. This indeed yields

a generally optimal k for all dimensions. The TSIBA is very computationally intensive as

it recodes the data set for as many values of k as there is and picks the best afterwards.

This a-posteriori algorithm is useful in the sense that for a certain type of data set, a new

optimal value of k does not need to be computed and can be assumed to be a certain

precomputed value.

The Generalized TSIBA takes the idea to another level. Since it was observed that the

value of k for the simple TSIBA changes for different bit rates and for different distributions,

it makes sense to use different values of k for each dimension since different dimensions are

likely to have different numbers of levels allocated to them and each dimension has a

different distribution function. The values of k were trained offline and used in the new bit

allocation formula (2.16) with iterative refinement to attain very good performance.

Both these algorithms could not get very close to the required bit rate, and therefore,

the Greedy Level Allocation algorithm (Chapter 3) is used to distribute a maximal amount

of levels to each dimension. The performance, however, only gains a small amount from

this topping off procedure.

65

Chapter 5

Conclusion

This thesis is focused on the design of bit allocation schemes for GMM-based coders tested

on speech LSF and for a simple transform coder tested on a small image set.

5.1 Summary of Work

5.1.1 Greedy Level Allocation Algorithm

Based on the philosophy of the Greedy bit allocation algorithm, where a single bit is

distributed at a time, choosing the dimension which yields the largest decrease in distortion.

The Greedy level allocation algorithm (GRLA) distributes a single level at a time, choosing

the dimension which yields the largest benefit-to-cost ratio. The benefit is defined in terms

of the decrease in MSE distortion of the dimension in question and the cost is defined as

the difference in the number of bits before and after the allocation because giving a level

does not correspond to giving a constant number of bits.

The given algorithm agrees with the procedure derived by Fox [7], which was also used

to derive the Greedy bit allocation algorithm.

The GRLA has the advantage over the Greedy bit allocation algorithm because it can

distribute levels in a ratio matching the optimal ratio of levels distributed to dimensions

corresponding to the ratio of standard deviations. The Greedy bit allocation algorithm was

constrained to giving full bits at a time, making the number of levels for each dimension a

power of two. By having such a constraint, it is hard to get to the proper ratio of levels.

Because the GRLA distributes levels rather than bits, it also has some disadvantages

5 Conclusion 66

over the Greedy bit allocation algorithm. First, by distributing levels rather than bits,

one is nearly certain to not use all the given bits. The GRLA typically uses a number

of bits that is very close to the given bit rate but still wastes a small fraction. Using

levels rather than bits has its own intrinsic disadvantages: one now needs to send data

as a vector and thus cannot code the dimensions independently. The third problem is

computational complexity: since for every level, one needs to check which dimension yields

the best benefit-to-cost ratio, all those ratios need to be computed at every iteration. There

are many more levels than there are bits, and furthermore, since the KLT is used, a few

dimensions usually dominate making the number of levels very large for those dimensions,

and thus, the number of ratios to be computed increases.

The computational complexity is not as big a problem as it sounds because one can first

allocate levels using an analytic algorithm such as the TSIBA or the GTSIBA and then

use the GRLA to fill up the dimensions until no more bits are available.

5.1.2 Two-Stage Iterative Bit Allocation Algorithm

The TSIBA algorithm is a bit allocation algorithm solving the problem of negative bit

allocations and non-integer number of levels for dimensions. It uses a modified version of

the optimal bit allocation formula derived by Huang and Schultheiss [2] where the benefit

of adding one bit can be varied. The algorithm simply allocates bits using a bit allocation

formula, then every dimension which were allocated a negative number of bits are pruned.

The formula is then computed again with only the remaining dimensions, until all dimen-

sions have a non-negative number of bits allocated to them. Then, the number of levels is

rounded down to be an integer. This rounding process may cause the bit rate to be much

under the given rate, and thus, an offset is added to all dimensions. This whole process is

repeated until the number of used bits is close enough to the given bit rate.

The benefit of adding one bit to a dimension depends on the number of bits already

allocated and the distribution function of the dimension. Max [4] calculated that at lower

bit rates, even Gaussian distribution functions do not yield 6dB per bit, but more around

the 5dB per bit. Therefore, the bit allocation formula is modified to make the benefit per

bit a variable that can be set when coding.

Finding the optimal benefit which minimizes the overall distortion can be very com-

putationally expensive since one needs to recode with each value of benefit and see which

5 Conclusion 67

gives the lowest overall distortion. The optimal value can be assumed to be a certain value

however, then the formula does not have a high computational cost.

5.1.3 Generalized Two-Stage Iterative Bit Allocation Algorithm

Since the benefit of adding one bit to a dimension depends on the number of bits already

allocated and the distribution function of the dimension, the previously explained concept

can be generalized to have a different coefficient for each dimension. By again modifying

the formula, one can add a weighting factor to each dimension variance which depends on

the current number of levels and the distribution function of the dimension.

The GTSIBA is an iterative algorithm, it will use the formula for allocating bits with

the weighting factors, then compute the new weighting factors according to the current

number of bits. The iterative procedure goes on until convergence and therefore, the need

for a nice weighting factor function is crucial.

The weighting factors are trained prior to coding. This permits an a-priori estimation

which is done offline and therefore does not add to the computational cost of the bit

allocation algorithm.

5.1.4 Comparison Between the Methods

Overall, the GTSIBA usually performs best. This is to be expected as the GTSIBA takes

into account the benefit depending on the current number of bits allocated and distribution

function of each dimension separately. The TSIBA usually performs well too, though it

finds an overall benefit for all dimensions.

The GRLA is applied on top of both algorithms and adds a number of levels to each

dimension, making the bit wasting very small.

Both the TSIBA and GTSIBA with GRLA can gain around one bit over the Greedy bit

allocation algorithm when used on the GMM-based coder. The gain is even more impressive

when the bit allocation algorithms are used on the image coder. A gain of 28% is achieved

when using the GTSIBA and 28% when using the TSIBA with the optimal k over the

Greedy bit allocation algorithm.

5 Conclusion 68

5.2 Future Work

5.2.1 Generalizing the TSIBA by Powering the Variance of Each Dimension

The generalization of the TSIBA to the GTSIBA did not emphasize the benefit of each

dimension, but simply weighted the variance of the dimension in order to bring the given bit

rate to the required level. One can in fact purely extend the concept of the TSIBA towards

powering the variance, where the powering is different for each dimension depending on the

distribution and the number of bits that has been allocated.

The generalization would work even better if the benefit was calculated in the GRLA.

The GRLA allocates one level at a time, and for each new level allocated, the decrease in

distortion is different. Therefore, using the proper benefit would yield the best possible

allocation.

5.2.2 An Analytic GTSIBA

Another direction to study is to make the GTSIBA analytic rather than iterative since

an iterative algorithm does not guarantee an ending time. The algorithm would then be

similar to Segall’s algorithm.

5.2.3 The Sensitivity Matrix

Since the quality of an LSF quantizer is measured using the LSD , it is obvious that one

should find a method of alloating bits which is weighted towards components which affect

the LSD more rather than optimized for the MSE .

The use of the sensitivity matrix can be introduced into the bit allocation algorithms

so that the bit allocation depends on LSD .

69

References

[1] A. D. Subramaniam and B. D. Rao, “PDF optimized parametric vector quantization of
speech line spectral frequencies,” IEEE Transactions on Speech and Audio Processing,
vol. 11, no. 2, pp. 130–142, March 2003.

[2] J. Huang and P. Schultheiss, “Block quantization of correlated Gaussian random vari-
ables,” IEEE Transactions on Communications, vol. 11, no. 3, pp. 289–296, September
1963.

[3] S. Lloyd, “Least squares quantization in PCM,” IEEE Transactions on Information
Theory, vol. 28, no. 2, pp. 129–137 , March 1982.

[4] J. Max, “Quantizing for minimum distortion,” IEEE Transactions on Information
Theory, vol. 6, no. 1, pp. 7–12 , March 1960.

[5] K. Sayood, Introduction to data compression, 2nd edition, Morgan Kaufmann, 2000.

[6] A. Segall, “Bit allocation and encoding for vector sources,” IEEE Transactions on
Information Theory, vol. 22, no. 2, pp. 162–169, March 1976.

[7] B. Fox, “Discrete optimization via marginal analysis,” Management Science, vol. 13,
no. 3, pp. 210–216, November 1966.

[8] L. Armijo, “Minimization of functions having Lipschitz continuous first partial deriva-
tives,” Pacific Journal of Mathematics, vol. 16, no. 1, pp. 1–3, 1966.

[9] A. Gersho and R. M. Gray, Vector quantization and signal compression, Kluwer Aca-
demic Publishers, 1992.

[10] K. K. Paliwal and B. S. Atal, “Efficient vector quantization of LPC parameters at
24 bits/frame,” IEEE Transactions on Signal and Audio Processing, vol. 1, no. 1, pp.
3–14, January 1993.

[11] P. Kabal, “Quantizers for the gamma distribution and other symmetrical distribu-
tions,” IEEE Transactions on Acoustic, Speech and Signal Processing, vol. 32, no. 4,
pp. 836–841, August 1984.

References 70

[12] D. O’Shaughnessy, Speech communications : human and machine, Wiley-IEEE Press,
2nd edition, November 1999.

[13] P. F. Panter and W. Dite, “Quantization distortion in pulse count modulation with
nonuniform spacing of levels,” Proc. IRE, vol. 39, no. 1, pp. 44, January 1951.

[14] J. A. Bilmes, “A gentle tutorial of the EM algorithm and its application to param-
eter estimation for Gaussian mixture and hidden Markov models” Computer Science
Division, University of California Berkeley, April 1998.

[15] F. Itakura, “Line spectrum representation of linear predictive coefficients of speech
signals,” Journal of Acoustic Society of America, vol. 57, no. 1, pp. 535, April 1975.

[16] F. K. Soong and B.-H. Juang, “Line spectral pair (LSP) and speech data compression”
IEEE International Conference on ICASSP ’84, vol. 9, no. 1, pp. 37–40, May 1984.

[17] P. Hedelin and J. Skoglund, “Vector quantization based on Gaussian mixture models”
IEEE Transactions on Speech and Audio Processing, vol. 8, no. 4, pp. 385–401, July
2000.

[18] T. D. Lookabaugh and R. M. Gray, “High-resolution quantization theory and the
vector quantizer advantage,” IEEE Transactions on Information Theory, vol. 35, no.
5, pp. 1020-1033, September 1989.

71

Appendix A

Linear Predictive Coefficients

A.1 Linear Combination

The LPC coefficients are the coefficients aj in X̂i = −∑p
j=1 ajXi−j which would minimize

the mean squared error (MSE)

E[E2
i] = E[(Xi − X̂i)

2] (A.1)

= E[(Xi +

p∑
j=1

ajXi−j)
2] (A.2)

= E[(aT Xi:i−j)
2] (A.3)

= aT E[Xi:i−pXi:i−p
T]a (A.4)

= aT Ra (A.5)

where aT = [1, a1, ..., ap], R is the covariance matrix Xi:i−pXi:i−p
T and XT

i:i−p = [Xi, ..., Xi−p].

Now minimizing the average error under the constraint that a0 = 1, i.e. that for b =

[1, 0, ..., 0]T , bT a = 1, differentiating the following cost function and setting the derivative

to zero, one gets

∂ν

∂a
=

∂

∂a

[
aT Ra− λbT a

]

0 = Ra− λb

Ra = [λ,0]T .

(A.6)

A Linear Predictive Coefficients 72

When looking at the frequency contents of a speech signal, one can observe many

interesting properties, the most important one is the presence of peaks called formants.

These peaks in the frequency-domain are modelled by the LPC in the time-domain. Two

poles are needed to modelled each formant and, typically, an additional 2-4 poles for the

zeros and general spectral shaping [12]. Higher-order LPC would give an even better

representation of the spectral envelope, and when the order tends to infinity, the estimated

spectral envelope tends to the actual spectral envelope.

A.2 Line Spectral Frequencies

One can pass from LPC to LSF by the following relation [16]

A(z) = 1/2[P (z) + Q(z)] (A.7)

P (z) = A(z)

[
1 + z−(m+1)A(z−1)

A(z)

]
(A.8)

Q(z) = A(z)

[
1− z−(m+1)A(z−1)

A(z)

]
. (A.9)

The LSF have three important properties:

1. all zeros of P(z) and Q(z) are on the unit circle

2. zeros of P(z) and Q(z) are interlaced with each other

3. the minimum phase property of A(z) is easily preserved after quantization of the zeros

of P(z) and Q(z).

LSFs are thus more robust and can replace LPC as data to be sent.

73

Appendix B

Karhunen-Loève Transform

B.1 KLT as a Transform

The Karhunen-Loève Transform (KLT) is the eigenvector matrix of the covariance matrix of

a dataset. It fulfills the requirements of a good transform: it is invertible since the inverse

is simply its transpose, and it conserves distortion since all unitary transforms conserve

the mean-square distortion and the KLT is unitary. For simplicity, X is assumed to be a

zero-mean random variable.

MSE = ||UX||22 = (UX)T (UX) = XT UUT X = XT X = ||X||22 (B.1)

where U is the KLT matrix, i.e. eigenvectors matrix.

B.2 Optimality of the KLT

The KLT is an optimal orthogonal block transform for Gaussians because of 3 aspects.

First, the KLT provides maximal energy compaction, it minimizes the number of co-

efficients required to get an accurate representation of the data. Defining the measure of

flatness as

log(
k−1∏
i=0

σ2
Yi

) =
k−1∑
i=0

log(σ2
Yi

) (B.2)

where σyi
is the standard deviation of variable yi.

To make this measure maximally flat, i.e. maximize (B.2), one would need all σYi

B Karhunen-Loève Transform 74

to be equal. Thus, minimizing it, i.e. making it minimally flat, would optimize energy

compaction.

Second, the KLT maximizes the coding gain G(A) =
σ2

x(A)(
d∏

k=1

σ2
k(A)

)1/d . Since the nu-

merator stays constant with unitary transformations, this can be seen as a result of the

maximal energy compaction which minimizes the denominator.

Third, the KLT decorrelates the random variables, and assuming Gaussian distribution,

decorrelation also means independence. Say Y = UT X, then the covariance matrix RY Y

is given by

E[Y Y T] = E[UT XXT U] (B.3)

= UT E[XXT]U (B.4)

= UT RXXU (B.5)

= diagλi (B.6)

where X is a set of dependent Gaussian variables and U and λi are respectively the eigen-

vectors and eigenvalues of its autocorrelation, or, since X is zero-mean, covariance matrix

RXX [9].

The KLT can also be seen as a rotation which aligns the axis and the distribution

function as seen in Figure B.1 which shows a two-dimensional case in which the KLT

rotates the data by using an orthogonal transform.

Training the KLT comes directly from the definition of it: one simply computes the

eigenvectors of the covariance matrix E[XXT]−E[X]2, where, usually, E[X] is assumed

to be 0.

B Karhunen-Loève Transform 75

1
x

2
x

(a) Data Distribution Before Decorrelation

1
x

2
x

(b) Data Distribution After KLT Decorrelation

Fig. B.1 Effect of KLT

76

Appendix C

Expectation-Maximization Algorithm

The expectation-maximization (EM) algorithm is a general training algorithm mostly used

for estimating parameters of a Hidden Markov Model (HMM) and Gaussian Mixture Model

(GMM) described in section 2.1. The EM algorithm is an iterative algorithm which refines

the parameter set so that at each iteration, the likelihood of the parameter set generating

the training data does not decrease.

GMMs have the following probability density function:

pl(xi|µl, Σl) =
1

(2π)d/2|Σl|1/2
e
(−1

2
(xi−µl)

T Σ−1
l (xi−µl))

. (C.1)

Let us denote Φ as the parameter set for the GMM containing the mixture weights αl,

and the means µl and covariance matrices Σl denoted as φl and Φ′ as the parameter set of

the previous iteration. Here is a derivation of the GMM update equations from [14]

First, start by defining the log likelihood function.

P (x, y|Φ) =
N∑

i=1

log(P (xi|yi))P (Y) =
N∑

i=1

log(αyi
pyi

(xi|φyi
)) (C.2)

where xi is the observation at time i, yi is the unobserved data at time i, i.e. the Gaussian

mixture generating xi and αyi
is the mixture yi prior probability.

C Expectation-Maximization Algorithm 77

Then, denoting yi by l, one defines the Q-function as

Q(Φ, Φ′) =
M∑

l=1

N∑
i=1

log(αlpl(xi|φl))p(l|xi, Φ
′) (C.3)

=
M∑

l=1

N∑
i=1

log(αl)p(l|xi, Φ
′) +

M∑

l=1

N∑
i=1

log(pl(xi|φl))p(l|xi, Φ
′) (C.4)

which gives one part only dependent on αl and the another term on φl. Then, one differ-

entiates the Q-function with respect to the variables to be optimized.

Starting with the weights of the mixtures under the constraint that
∑M

l=1 αl = 1, one

gets

∂Q(Φ, Φ′)
∂αl

=
∂

∂αl

[
M∑

l=1

N∑
i=1

log(αl)p(l|xi, Φ
′) + λ(

M∑

l=1

αl − 1)] (C.5)

0 =
N∑

i=1

1

αl

p(l|xi, Φ
′) + λ. (C.6)

(C.7)

Solving for the constraint gives λ = −N , the resulting equation is

αl =
1

N

N∑
i=1

p(l|xi, Φ
′). (C.8)

For the other two parameters of the GMM, the mean and the covariance matrix, we

need to expand the definition of the Q-function by expanding the p(xi|φ) for mixture l to

pl(xi|µl, Σl) =
1

(2π)d/2|Σl|1/2
e
(−1

2
(xi−µl)

T Σ−1
l (xi−µl))

(C.9)

and

Q(Φ, Φ′) =
M∑

l=1

N∑
i=1

log

(
1

(2π)d/2|Σl|1/2
e
(−1

2
(xi−µl)

T Σ−1
l (xi−µl))

)
p(l|xi, Φ

′). (C.10)

C Expectation-Maximization Algorithm 78

Now, differentiate with respect to the means of the mixtures.

∂Q(Φ, Φ′)
∂µl

=
∂

∂µl

[
M∑

l=1

N∑
i=1

(
−1

2
log(|Σl|)− 1

2
(xi − µl)

T Σ−1
l (xi − µl)

)
p(l|xi, Φ

′)](C.11)

0 =
N∑

i=1

Σ−1
l (xi − µl)p(l|xi, Φ

′). (C.12)

Setting the above to 0 and solving for µl, we obtain

µl =

N∑
i=1

xip(l|xi, Φ
′)

N∑
i=1

p(l|xi, Φ
′)

. (C.13)

Now, we need to rewrite the Q-function again and deriving with respect to Σ−1
l

Q(Φ, Φ′) =

[
M∑

l=1

[
1

2
log(|Σ−1

l |)
N∑

i=1

p(l|xi, Φ
′)− 1

2

N∑
i

p(l|xi, Φ
′)tr(Σ−1

l Nl,i)

]]
(C.14)

∂Q(Φ, Φ′)
∂Σ−1

l

=
1

2

N∑
i=1

p(l|xi, Φ
′)(2Σl − diag(Σl))− 1

2

N∑
i=1

p(l|xi, Φ
′)(2Nl,i − diag(Nl,i))(C.15)

=
1

2

N∑
i=1

p(l|xi, Φ
′)(2Ml,i − diag(Ml,i)) (C.16)

= 2S − diag(S) (C.17)

where Nl,i = (xi − µl)(xi − µl)
T , Ml,i = Σl −Nl,i and S = 1

2
∑N

i=1 p(l|xi, Φ
′)Ml,i

Setting the derivative to zero, we obtain that S = 0 and solving for Σl, we get

0 =
N∑

i=1

p(l|xi, Φ
′)(Σl −Nl,i) (C.18)

C Expectation-Maximization Algorithm 79

or

Σl =

N∑
i=1

p(l|xi, Φ
′)(xi − µl)(xi − µl)

T

N∑
i=1

p(l|xi, Φ
′)

. (C.19)

The EM algorithm directly comes from the previous 3 update equations. Here is the

algorithm for the estimation of GMM parameters

Algorithm C.0.1: EM(x, Φ′)

repeat



comment: Expectation step (E-Step):

for each j ∈ 1 to N

do





p(xj|Φ) =
∑M

l=1 αlpl(xj|φl)

for each l ∈ 1 to M

do





p(l|xj, φl) =
αlpl(xj|φl)

M∑

k=1

αkpk(xj|φk)

comment: Maximization step (M-Step):

for each l ∈ 1 to M

do





αl = 1
N

∑N
j=1 p(l|xj, φl)

µl =

N∑
j=1

xjp(l|xj, φl)

N∑
j=1

p(l|xj, φl)

Σl =

N∑
j=1

p(l|xj, φl)(xj − µl)(xj − µl)
T

N∑
j=1

p(l|xj, φl)

until log (L(Φ|X, Y)) > THRESHOLD

where M is the number of mixtures, N is the number of training vectors, αl is the prior

C Expectation-Maximization Algorithm 80

probability of cluster l, xj is vector j of the training set, φl is the set of parameters µl and

Σl of cluster l, µl is the mean vector of cluster l, Σl is the covariance matrix of cluster l

and (L(Φ|X, Y)) is the likelihood of the parameters with the observed data.

81

Appendix D

VQ vs SQ advantages

A vector quantizer has three advantages over a uniform scalar quantizer.

The first advantage is space-filling advantage shown in Figure D.1. With hypercubes,

filling the plane results in larger average distortion than with hexagons. The best shape

(distortion wise) would be hyperspheres, but they are not realizable for obvious reasons.

1
x

2
x

(a) Space-Filling Using a Uniform Scalar Quan-
tizer(Hypercubes)

1
x

2
x

(b) Space-Filling Using a Vector Quan-
tizer(Hexagonal Shape)

Fig. D.1 Space-Filling Advantage

The second advantage is the shape advantage as illustrated on Figure D.2. For non-

D VQ vs SQ advantages 82

uniform distribution functions, the SQ yields suboptimal quantization cells when applied

to many dimensions on certain non-uniform PDF such as the Gaussian distribution. As

one can see, the region of importance has less quantization points than in the VQ case and

the less important region has more, which yields a worse average distortion.

(a) Uniform Scalar Quantizer(Hypercubes) (b) Vector Quantizer

Fig. D.2 Shape Advantage

The third advantage is the memory advantage. It is best illustrated in the situation

where there is correlation between the dimensions as shown on Figure D.3 in a two-

dimensional Gaussian variable. As one can see, when using hypercubes, many codepoints

are wasted because hardly any data points would map to these codepoints. The vector

quantizer effectively distributes codepoints where they are useful.

D VQ vs SQ advantages 83

1
x

2
x

(a) Uniform Scalar Quantizer(Hypercubes)

1
x

2
x

x

x

x

x

x

x

x

x

x
 x

x

x

x
x

x

x

x

x

x

x

x
x

x

x

x

x

x

x
 x

x

x

x

(b) Vector Quantizer

Fig. D.3 Memory Advantage

84

Appendix E

Other Bit Allocation Algorithms

E.1 Pruning Used by Subramaniam

Subramaniam used another method in [1] to allocate levels. The algorithm in question

is a pruning algorithm which is not optimal but is low-complexity. The idea is to over-

allocate levels to dimensions and then remove some. Here is the algorithm taken from [1]
Algorithm E.1.1: Pruning(bits)

Li,j ←
⌈
2bi,j

⌉

k ← d

while k ≥ 1

do





Pi =
∏d

j=1 Li,j

Ni,k =
⌊
Li,k(1− 2bi/Pi)

⌋

if k = 1

then Ni,k ← Ni,k + 1

Li,k ← Li,k −Ni,k

k ← k − 1

where Li,k are the number of levels allocated to cluster i for dimension k.

As will be seen later, this algorithm does use very effectively the given bits but does

not reach the performance of the presented algorithms.

E Other Bit Allocation Algorithms 85

E.2 Segall’s Bit Allocation

Segall’s algorithm [6] is an analytic algorithm which goal is to solve for the optimal bit

allocations using the different benefits of adding 1 bit at different number of bits.

It moreover has a routine to constrain the total number of bits to the desired number

of bits, and guarantees non-negative bit allocations.

The algorithm will minimize

D =
m∑

j=1

σ2
j k(Bj) (E.1)

subject to
m∑

j=1

Bj = C (E.2)

and

Bj ≥ 0, j = 1, 2, ..., m. (E.3)

Optimizing for minimum distortion, one obtains

Bj =





B∗
j = h

(
θ∗

σ2
j

k′(0)

)
if 0 ≤ θ∗ < σ2

j

0, if θ∗ ≥ σ2
j





(E.4)

where θ∗ is the unique root of the equation

S(θ) =
∑

j:σ2
j≥θ

h

(
θ

σ2
j

k′(0)

)
(E.5)

where h is the inverse function of k′.

