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Abstract

Adaptive postfiltering has become a common part of speedngathndards based on the Linear
Prediction Analysis-by-Synthesis algorithm to decreassitde coding noise. However, a con-
ventional adaptive postfilter is based on empirical assiomgtof masking phenomena, which
sometimes makes it hard to balance between noise reducttbspeeech distortion.

This thesis introduces a novel perceptual postfilteringesydor low bit rate speech coders.
The proposed postfilter works at the decoder, as is the caieefoonventional adaptive postfilter.
Specific human auditory properties are considered in thiijbessdesign to improve speech qual-
ity. A Gaussian Mixture Model based Minimum Mean Square@Egstimation of the perceptual
postfilter is performed with the received information at texzoder. Perceptual postfiltering is
then applied to the reconstructed speech to improve spagityg Test results show that the
proposed system gives better perceptual speech qualitycougentional adaptive postfiltering.



Sommaire

Le post-filtrage adaptatif est devenu monnaie courante [@oodage de la parole basé sur
I'algorithme de prédiction linéaire par analyse/syag afin de diminuer le bruit de codage audi-
ble. Toutefois, un post-filtre adaptatif conventionnelisgi des phénomenes de masquage basés
sur des hypotheses empiriques, ce qui rend parfois diffieicompromis entre la réduction du
bruit et la distorsion de la parole.

Cette these propose un nouveau systeme de post-filtrageppeel pour les codeurs a faible
débit binaire. Le post-filtre proposé fonctionne au nivela décodeur, comme dans le cas du
post-filtre adaptatif conventionnel. Des propriétésdfiques du systeme auditif humain sont
considérées dans la conception du post-filtre afin d’erezlla qualité de la parole. Un modele
de mixture gaussienne basé sur I'estimation de I'erreadoptique moyenne minimale est con-
sidéré selon I'information recue au décodeur. Un pgitisgge perceptuel est ensuite appliqué a la
parole reconstruite pour en améliorer la qualité. Dsslltats expérimentaux démontrent que le
systeme proposé donne une meilleure qualité percéptiela parole par rapport au post-filtrage
adaptatif conventionnel.
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Chapter 1
Introduction

Speech is the most natural form of human communications.e@®peoding algorithms have
made the communication and the storage of voice data eféeatid efficient. Due to increasing
demand for speech communication, speech coding techndlagyeceived increased interest
from research, standardization, and business commun8f=ech coding algorithms have been
employed in many applications including personal wire@ssmunication systems, multimedia
and Internet communication systems.

In speech coding, researchers have studied ways of efficieEresenting acoustic speech
waveforms in the digital domain. The ultimate goal in theige®f speech codecs is to achieve
the best possible quality at low bit rates, with constraoriscomplexity and delay. Both sta-
tistical redundancy removal and perceptual irrelevanoyonal are considered. First, speech is
produced by people as part of a physical process (air flow amdng muscles), and the corre-
sponding signal has certain properties (such as corragtiwhich can be exploited to do more
efficient processing. Also, speech is listened to by peapiievée can take into account the prop-
erties of human hearing system. Our ears are quite good &ytite not perfect. In speech and
audio coding, to achieve good coding efficiency, processiethods usually remove the per-
ceptually irrelevant information and enhance the peradjtisensitive information. Currently,
the psychoacoustic properties of human hearing are caeside both speech coding and audio
coding to reduce the information to be transmitted whilenteaning good fidelity.

Adaptive postfiltering has been commonly applied in low atetinear prediction analysis-
by-synthesigLPAS) speech coders. Lower bit rates are usually assaociaith poorer speech
guality. Audible noise becomes more noticeable in the rstanted speech at lower bit rates.
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Postfiltering is used to reduce this noise by exploiting pswacoustic properties while not sig-
nificantly degrading speech.

1.1 Overview of Speech Coding

One possible way of lowering the bit rate in speech coding chbose a low sampling frequency.
By far the two most popular choices of speech sampling frequare 8 and 16 kHz. Codecs
using 8 kHz sampling frequency are referred to as narrowlcadécs and those using 16 kHz
sampling frequency are called wideband codecs.

Most speech coding systems were designed to support tefeanivation applications, with
the frequency contents limited to between 300 and 3400 Hz8tiHz sampling frequency. This
kind of speech is usually called narrowband telephone $peeoarrowband speech. We will
only consider narrowband speech in our work.

Fig. 1.1 represents the encoder/decoder structurespeach coderA digital speech signal
with 16 bits/sample (i.e. 16 bits 8 kHz = 128 kbps) is the input to the speech coder. The
encoder attempts to reduce the bit rate. The output of encedeesents the encoded information
about the speech and should have substantially lower kithan that of the input. The decoder
takes the encoded bit-stream as its input to generate deéspaech signal, which is a discrete-
time signal having the same rate as the signal to the enc@l&erent design approaches of
the encoder/decoder pair provide differing speech quaiitybit rate, as well as implementation
complexity.

Input Encoded Output
speech bit-stream speech
— Encoder > Decoder —————»

Fig. 1.1 Block diagram of a speech coder

All speech coders are designed to reduce the referencatbibf 128 kbps towards lower
values. Depending on the bit-rate of the encoded bit-strégascommon to classify the speech
coders according to Table 1.1. Different techniques leatifterent bit-rates.

According to coding techniques, modern speech coders assified into following three
types [1, 2]:
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Table 1.1 Classification of speech coders by bit-rate [1]

Category Bit-Rate Range

High bit-rate >15 kbps
Medium bit-rate 5 to 15 kbps
Low bit-rate 2 to 5 kbps
Very low bit-rate <2 kbps

Waveform Coders As the name implies, the goal of waveform coding is to repoedihe orig-
inal waveform as accurately as possible. It is sample-lnypda coding and often not
speech-specific. Waveform coding can deal with non-speggtals without difficulty.
However, the cost of this fidelity is a relatively high biteatfThese coders work best at a
bit rate of 32 kbps and higher. Example coders of this cladsidtepulse code modulation
(PCM), adaptive differential PCMADPCM) and subband coders.

Parametric Coders Speech is assumed to be generated fromoae| which is controlled by
someparameters During encoding, parameters of the model are estimated fh@ input
speech signal frame-by-frame, and are transmitted afiaglm®ded. This type of coders
makes no attempt to preserve the original shape of the wamef®erceptual quality of
the decoded speech is directly related to the accuracy gidssication of the underlying
model. Speech quality tends to be synthetic and variabledsst speakers, although intel-
ligible. This coder is signal specific, having poor perfonro@ for nonspeech signals. The
most successful model is basedlmear prediction(LP). This type of coder works well at
low bit rates. Examples of this type dreer prediction codingLPC) andmixed excitation
linear prediction(MELP) [3, 4].

Hybrid Coders This type combines features from both waveform coders arahpetric coders
to provide good-quality, efficient speech coding. Like agpaetric coder, it relies on a
speech model. During encoding, parameters of the modelstireated. Additional pa-
rameters of the model are optimized in such a way that thed#etepeech is as close as
possible to the original waveform, with the closeness oftexasured by a perceptually
weighted error signal. As above in waveform coders, an gitesmamade to match the
original signal with the decoded signal in the time domairy. & analysis-by-synthesis
technique, good quality coding is achieved at rates betvadeut 4 kbps and 16 kbps.
Coded-excited linear predictiqf€CELP) and its variants are the most outstanding represen-
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tatives [5—7].

For speech coding to be useful in public telecommunicatigplieations, it has to be stan-
dardized (i.e. it must conform to the same algorithm and dntnfat) to ensure universal inter-
operability. Speech coding standards are establishedrixyugastandards organizations [8], for
example, International Telecommunications Union, Teteemnications Standardization Sector
(ITU-T, formally CCITT), Telecommunications Industry Assation (TIA), Research and De-
velopment Centre for Radio Systems (RCR) in Japan, Europel@asommunications Standards
Institute (ETSI), and other government agencies.

Since CELP can achieve relatively high coding quality attiteate range from 4 to 16 kbps,
CELP-based coders have been deployed in a wide range oft retagardizations including
ITU-T Recommendation G.723.1 at rate of 6.3/5.3 kbps an@%af rate of 8 kbps.

1.1.1 Speech Production Model

Human speech, which is represented by speech waveformsneajed by a voluntary move-
ment of anatomical structures. A source-tract modellingigely used in speech coding. The
model is inspired by observations of the basic propertiegpeech signals and represents an at-
tempt to mimic the human speech production mechanism. Th®huwocal tract is an acoustic
tube, which has one end at the glottis and the other end apthellhe vocal tract changes shape
continuously with time, creating an acoustic filter with mé-varying frequency response. As
air from the lungs travels through the tract, the frequerpscsum is shaped by the frequency
selectivity of the tract. By the action of the glottis comging the air-flow from the lung period-
ically or not, the source signal is nearly-periodic or ndike. The resonance frequencies of the
vocal tract tube are calleidrmant frequenciesr simply formants which depend on the shape
and dimensions of the vocal tract.

The source-tract model leads to a representation thatstemdia description of an excitation
(source) signal that is periodic or aperiodic and a timgavarlinear filter that has a transfer func-
tion representing the vocal tract. The property of the exich givesvoicedor unvoicedspeech.

In the time domain, voiced sound is characterized by stremggicity present in the signal, with
the fundamental frequency referred to as piteh frequencyor simply pitch. For adult males,

pitch ranges from 50 to 250 Hz, while for adult females thegeansually falls somewhere in
the interval of 120 to 500 Hz [1]. Unvoiced sounds, on the ohfand, are essentially random in
nature. The energy distribution of the speech signal inttbguency domain is controlled by the
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time-varying filter in this model. Linear prediction analyss the most successful technique to
find the coefficients of the time-varying linear filter.

For most speech coders, the signal is processed on a frasfrarbg basis, where a frame
consists of a finite number of samples. The length of the frsnselected in such a way that the
statistics of the signal remain almost constant within ttierval.

1.1.2 Speech Perception

A human auditory model is a mathematical model, which dbssrthe behaviour of the human
auditory system. Human auditory models have been widelliegpm audio coding to get near
transparent coding quality while saving bits. Also in sgeeading, with the knowledge of how
sound is perceived, resources in the coding system candmagdtl in the most efficient manner.

Our human ears are the ultimate receiver for sound. The psitige surface surrounding
the canal in which sound is funnelled [1]. Sound waves arelefliiby the canal toward the
eardrum—a membrane that acts as an acoustic-to-mechangadtrcer. The sound waves are
then translated into mechanical vibrations that are passte cochlea through a series of bones
known as the ossicles. Presence of the ossicles improvesl gpopagation by reducing the
amount of reflection and is accomplished by the principlengdedance matching.

The cochlea is a rigid snail-shaped organ filled with fluid.cll@nical oscillations impinging
on the ossicle cause an internal membrane, known dsatsiar membrangto vibrate at various
frequencies. Each point along the basilar membrane hasraatbastic frequency to which it
vibrates maximally. A simple modelling technique is to usbamk of filters to describe this
behaviour. Displacement of the basilar membrane at diftgptaces is sensed by the inner hair
cells and causes neural activities that are transmitteaketotain through the auditory nerve [9].

Along the basilar membrane, different points are affectfféreéntly depending on the fre-
guencies of the incoming sound waves. Hair cells locatedffereint positions along the mem-
brane are excited by sounds of different frequencies. Theoms, which contact the hair cells
and transmit the excitation to higher auditory centres,nta@n the frequency specificity. This
arrangement makes the human auditory system behave vetylikei@a frequency analyzer. The
auditory system characterization is simpler if done in tlegjiency domain. The frequency res-
olution' is greatest at low frequencies.

1The use of spectral components for the extraction of thegioal meaning from communication sounds is built
upon the ability of the auditory systems to resolve freqyermmponents of the sounds. The frequency resolution
or frequency selectivity of the human ear is its ability inestging differences in pitch.
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The absolute threshold of hearingf a sound is the minimum detectable level of that sound
in the absence of any other external sounds [1]. It chaliaegethe amount of energy needed in
a pure tone such that it can be detected by a listener in a-fres@nvironment. The absolute
threshold of hearing is frequency dependent. The ear’'staatysis best for frequencies in the
range of 1 to 4 kHz, while thresholds increase rapidly at Vg and very low frequencies. It is
commonly accepted that below 20 Hz and above 20 kHz, theaydiyystem does not respond.

The absolute threshold of hearing can be applied in speathgAny signal with an inten-
sity below the absolute threshold need not be consideneck #idoes not have any impact on the
final quality of the codef.More resources should be allocated for the representatite signal
within the most sensitive frequency range, since distoritathis range is more perceptible.

Maskingis a phenomenon in sensory perception. It is about a sound beudible because
of the presence of a stronger sound, and has received sagifittention from researchers in
the field of psychoacoustics [12]. The stronger signal ikedahasker while the masked signal
is referred asnaskee A masking thresholadorresponds to the increased threshold of audibil-
ity, resulting from a masker. The amount of masking is infaexhby various factors including
signal level, frequency and duration. In general, maskeggability increases with the relative
intensity of the masker. Masking theory is mainly used iniawdding and objective measures
of perceived audio quality [13]. Masking can also be explbitor speech coding developments.
For example, by analyzing the spectral contents of a sigirialpossible to locate the frequency
regions that are most susceptible to distortion. Percépteighting filtering and adaptive postfil-
tering have been widely used in speech coding, which arevateti from masking theory. More
will be discussed in Chapter 2.

1.2 Motivation and Objective of Our Research

Speech coding is a balancing game between quality, bit daley and complexity [14]. The
quality is a function of the bit rate. In order to meet the sgymeed to have a common means for
communication, many speech coding standards have bededrebhese standards have been
widely used in speech communications.

2In the case of sound intensity, 0 dB sound pressure level (8Rthosen to be the average absolute threshold
of humans for a 1 kHz sinusoid [10]. The SPLs of all frequesitimt have the same loudness as 0 dB SPL 1 kHz
sound form the absolute threshold of hearing. When degigsignal processing algorithms, it is often not possible
to know beforehand the playback levels of signals. Theegfacommon assumption about the playback level is the
lowest possible signal power of a 1 kHz sound correspondgpicoaimately 0 dB SPL [11].
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A speech coder derives a set of parameters at the encodentimica speech production
model at the receiver. The goal of speech coding is eitheraxinmze the perceived quality at
a particular bit rate, or to minimize the bit rate for a partér perceptual quality. At low bit
rates, it is hard to get a good speech quality, so a trades-offtén found to satisfy the necessity
of a given application. With the development of sophisgdasignal processing algorithms and
technologies, a lot of research has been done to reduce thkeemwof parameters representing
speech signal at the encoder, while maintaining the codegicspguality. For a given bit rate, the
speech quality can be improved to some extent by employirrg smmplex encoding algorithms.
Although changes in speech encoding are usually used t@imapie speech quality, there should
be other means which can improve the coded speech withongjstgathe speech coder structure.

In current LPAS speech coders, the properties of speechugtiod, as well as the human
hearing system properties, are exploited. At low bit ratesre is still audible noise in the coded
speech. Postfiltering is a tool to reduce the coding noidearecoded speech based on the local
characteristics of the speech spectrum at the decodertsltagcan add-on component, which
makes it widely used in different types of speech codersthiglsame general structure. Adaptive
postfiltering algorithm [15] achieves significant noiseuetibn without introducing significant
distortion in speech. Since its initial introduction, itariations have been successfully used in
many speech coding standards, such as ITU-T G.729 and G.7B8wever, the conventional
postfilter [15] still has problems comparing with the idealstfilte, which the conventional
postfilter is built on.

The conventional postfiltering is empirically designed lengral masking phenomena con-
siderations. Although perceptual models have been suatlgssiplemented in audio coding by
exploiting the masking property, specific perceptual metialve not been applied in postfiltering
for speech coders. This motivates us to study an improvetilpgrsexploiting more precisely
perceptual properties. It is possible to design a postgsmewhich improves the coded speech
guality, with the same available information at the decaatethe conventional postfilter. We
believe that a better postprocessing paradigm exploitiegehcoding information and the char-
acteristics of human hearing system can give an improvelitgjt@the reconstructed speech.

The goal of our research is to develop a postfilter which ipoates the knowledge of percep-
tual properties. Comparing with the conventional postf{li®], our postfilter uses some specific
perceptual properties to improve the coded speech qudigyusing knowledge of the human

3An ideal postfilter should not alter the formant informatemd should attenuate null information in the speech
spectrum in order to achieve reduction and produce betescspquality [16].
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auditory properties, it is expected that perceptual qualfithe processed speech may sound bet-
ter than the conventional adaptive postfilter. The peradpiastfilter only uses the information
available at the decoder. The structure of the coding systerald not be changed.

1.3 Thesis Contribution

In this thesis, we design a novel perceptual postfilter farbhd rate speech coders. The proposed
postfilter is based on the characteristics of the human igagstem. The proposed postfilter
is an add-on part and embedded in the decoder. The encodetr nsadlified and no extra side
information is sent to the decoder.

The originality of the proposed perceptual postfilter is embmation of the following two
features.

Perceptual Postfiltering

e A perceptual postfilter is derived from clean speech andatied version based on the
properties of psychoacoustic models. It operates on a ftay¥feame basis. The postfilter
is then applied to the decoded speech to improve the speadityqtiowever, in practice,
we do not have the information about the perceptual postiliens at the decoder, if they
are not sent as side information by the encoder.

Optimal MMSE Estimator Based on GMM

e Without additional side information received, we estimae perceptual postfilter with an
optimalMinimum Mean Squared ErrdiMMSE) estimator with the available information
at the decoder. We use the available information as an “ingadtor, and the percep-
tual postfilter gains as a “target” vector. A feature vecsocaonstructed with “input” and
“‘target” vectors.

e In order to find a MMSE estimate of the “target” vectarpriori information of thejoint
probability density functiofjoint pdf) of the feature vector is required.@aussian mixture
model(GMM) is used to model the joint density.
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1.4 Thesis Organization

This thesis consists of 6 chapters. Chapter 2 presents farbview of adaptive postfiltering.
Starting with the fundamentals of LPAS speech coder, Chapiiscusses the algorithms of
adaptive postfiltering. It explains how the masking conégpised in both encoder and decoder
to achieve better quality in low bit rate speech coding. Sameéhods of speech quality measure
are also provided.

Chapter 3 introduces three popular psychoacoustic mo@eks.masking model has applica-
tions in speech enhancement and coding noise control ofs@eel audio. The other two models
are used for objective perceptual quality measurement.

In Chapter 4, we describe our new perceptual postfilter. @ea of utilizing auditory proper-
ties for speech quality improvement is developed. The déadu of a novel perceptual postfilter
is presented.

Chapter 5 details the implementation of the proposed dlguariA detailed description of the
system implementation is provided. ITU-T G.723.1 speedecat rate of 5.3 kbps is examined.
The simulation and the comparison with the conventionapaida postfilter is presented.

Finally, Chapter 6 concludes our work and presents futund wiections.
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Chapter 2
Adaptive Postfiltering

In medium and low rate speech coding systems, most codetsaesl on an underlying model
of the human speech production mechanism. The propertiesmén auditory system have also
been considered. However, the perceptual properties &emplemented intuitively in speech
coding. Most speech coders operating below 8 kbps compeoquality. The degradation in
speech quality in low rate speech coders is ascribed to mptloecoding method itself, but poor
approximation of the properties of the human hearing mashan

Adaptive postfiltering is proposed to perceptually supprasdible coding noise, which is
inevitable at low encoding rates. In speech perceptionfdimeants of speech are perceptually
much more important than spectral valley regions. Coneeatiadaptive postfiltering algorithm
uses a strategy of sacrificing valley regions and presemiadormants.

This chapter begins with a description of the popular lingadiction analysis-by-synthesis
(LPAS) speech coding. Perceptually motivated approacheBAS coders for lessening audible
coding noise—noise shaping and adaptive postfiltering—deeussed. We will describe the
conventional adaptive postfilter and some of its variants.

2.1 Linear Prediction Analysis-by-Synthesis Speech Codin

LPAS speech coding utilizes short-term and long-term lipeadiction models for speech syn-
thesis, and incorporates an excitation codebook whichascked during encoding to locate the
best excitation sequence. It is among one of the most infaledeas in speech coding. Many
standardized coders are based on LPAS principles.
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2.1.1 Analysis-by-Synthesis Principle

In parametric coders and hybrid coders, a combination cdrpaters is used to represent the
speech signal. A straightforward method to quantize eachnpeter is to compare its value to
stored values in a quantization table, and to select theesequantized value. The correspond-
ing index of this value is then stored or transmitted, andluseetrieve the quantized parameter
value for synthesis later. This quantization method isecalpen-loopguantization Analysis-by-
synthesiss also known aslosed-loopquantization [2]. It selects the quantized parameter value
to synthesize a signal which gives the most accurate rezmtisin of the original speech signal.
The analysis-by-synthesis procedure is most effectivewmitis performed simultaneously for a
number of parameters. The principle of an analysis-byFsgis coder is illustrated in Fig. 2.1.
In the encoder, a decoding structure identical to that usétebalecoder is incorporated. For each
of a large number of quantized parameter configurationsyran eriterion comparing the origi-
nal and reconstructed signals is computed. This critesarsually a frequency weightedean
squared error(MSE) computed on the difference signal between the origand the recon-
structed signals. Based on this criterion, the best cordtgur of the quantized coder parameters
is selected and its index or indices are transmitted to tbeiver. At the receiver, the decoder
uses the same decoding structure as in the encoder to regzrike original speech signal.

Input Synthesized
speech speech _

Encoder Decoder

Error
Minimization

Fig. 2.1 Diagram of a simplified analysis-by-synthesis coder

Properties of speech signals constantly change with tinpee&h signals are usually pro-
cessed on a frame-by-frame basis. A frame consists of aicentenber of samples. Within
this interval, speech properties remain roughly constégmpically, the frame length is selected
between 10 and 30 ms, or 80 to 240 samples for narrowbandtspaspled at 8 kHz.
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2.1.2 Linear Prediction (LP)

LP [17] is based on the high correlation of consecutive dpeaenples: a speech signal sam-
ple could be approximately predicted by a linear combimatibits past values. This is called
short-timespectral analysis. The short-term correlations can betefédy removed from speech
signals with a linear analysis filtet(z)

A(z) =1- Z%’Z—Z, (2.1)

wherea;,i = 1,2, ..., p, are the estimates of thieaear prediction coefficientsThe coefficients of
this filter are typically updated frame-by-frame. It alseas an all-pole LP synthesis filter (often
called theLPC filter), 1/A(z). The spectrum of this LPC filter (called thé>C spectruis a
short-term estimate of the speech spectral envelope. Tpelalfilter uses an orderbetween 8
and 16. A prediction order of 10 is in general enough to captive spectral envelope [2].

The all-pole modelling is usually derived from the autoetation sequence of a segment of
speech. The speech signéh) is usually multiplied by a window functiom(n) with lengthV,
within which speech is assumed quasi-stationary. The wiedcspeech segmest(n) is

sw(n) = s(n)w(n), 0<n<N-1 (2.2)

A window such as a Hamming or Hanning window is often used. Vidiee ofs,, (n) is approxi-
mated by a linear combination of past values. &gtn) denote the prediction

Su(n) = Z a;Suw(n —1). (2.3)
The difference signal(n) is
e(”) = Sw(”) - =§w(n) = Sw(”) - Zaisw(n - 7’) (24)

The goal of LP is to minimize the total MSE of this segment

J = e(n) = (5w(n) — Zaisw(n - z))z (2.5)
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By minimizing the difference between the speech samplegtandstimated signal samples,
the linear prediction is formulated. The LP coefficients QdP can be derived from [17]

> aR(k—i)=R(k), 1<k<p, (2.6)
=1

whereR(k) is the autocorrelation function of the,(n) with R(k) = SN """ s, (n)s,(n + k).

The linear spectral frequencie.SFs) [18] are a popular parametric representation of the
LPC filter as an alternative to LPCs. The LSFs form the rootsyoimetric and antisymmet-
ric polynomials constructed from LPCs. There is one-to-cmeespondence between LPCs and
LSFs [18]. Due to many desirable properties (for instancergnteed stability of the resultant
synthesis filter after quantization), the LSFs have reckwielespread acceptance in speech cod-
ing applications.

The short-term synthesis filter models the short-term ¢atioan (spectral envelope) in speech.
For a segment of a speech signal, its LPC spectrum modelsatpaeincy response of the vocal
tract while the fine structure in the Fourier spectrum is aifeatation of the source excitation
or driving function. The predictor filter tracks the timeryag characteristics of the vocal tract.
The effect of prediction in coding is the reduction of sigmatiance (the prediction error signal
or residual has a smaller variance than that of the origigglat) and whitening of the signal
spectrum (the error signal is largely uncorrelated sincstrie signal redundancy is represented
by the predictor coefficients). Fig. 2.2 shows a frame of @ditemale speech with 180 samples
in the time domain and in the frequency domain. Fig. 2.2.agits time-domain waveform. In
Fig. 2.2.b, the corresponding spectrum is given. The LPCtsjpm is also shown by the dashed
line. The peaks in the spectral envelope are called formantsthe low parts between adjacent
peaks are called valleys.

Fig. 2.3 shows the relationship between the LP analysis amthasis filters. If the prediction
error signal is the input to the LP synthesis filter, iu€n) = e(n), the original speech(n) is
precisely recovered from the synthesized speéah.

Another type of LP used in speech coding is long-term LP. Ayteerm predictor targets cor-
relation between samples one pitch period apart. It is @fledypitch predictor! A commonly

IFor easy description, only one-tap pitch predictor is pness However, fractional delay pitch predictor and
multiple-tap pitch predictor are often applied in pradt&@eech coders. Both of them are realized with multiple taps
and can achieve a higher prediction gain than one-tap prtiigtor of Eq. (2.7).
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Fig. 2.2 A segment of voiced speech in time domain and its spectrum

Input Prediction Excitation A(z) Synthesized
speech error signal speech
() LP Analysis Filter (b) LP Synthesis Filter
Fig. 2.3 Diagram of LP filters
used pitch prediction filter with input;(n) and output(n) is
H(z)=1—-gz", (2.7)

whereT' is the pitch period ang, is the long-term gain. The procedure to deternjnandT
is referred to as long-term LP analysis. A long-term preipredicts the current signal sample
from a past sample that is a one or more pitch periods apatt [»¢) denote the prediction of
es(n) by a long-term predictor

és(n) = giey(n—T). (2.8)

Within a given time interval of interest, parametersnd7 are found by minimizing the sum of
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the squared error

T =3 (es(n) = &u(m)”* = > (es(n) — gres(n = T))". (2.9)
By differentiating Eq. (2.9) with respect p and equating to zero to get the optimal long-term
gain, we have

Zn es(n)es(n —T) .

D ST (2:10)
Substituting Eq. (2.10) back into Eqg. (2.9) leads to
B (Zn es(n)es(n — T))2
J = Zn: e(n) — S 2 -T) : (2.11)

An exhaustive search procedure can be applied to Eq. (20olfihd the optimall” within a
possible pitch period rang@,in, 7imax)-

A pitch estimation, which is expressed as an integer meltpthe sampling interval, contains
a time quantization error. This error may lead to audibléodi®n. Also, for periodic signals, the
current period is not only similar to the previous one bubdts periods that occurred multiple
periods ago. Eq. (2.11) of integer pitch period estimatia@y roause the phenomenon of pitch
multiplication and produce a multiple of the pitch periodaétional pitch period is introduced
as a means to increase temporal resolution by allowing tich period to have a fractional part
plus the integer part [19]. Its introduction reduces bothrigverberant distortion related to pitch
multiplication, as well as the roughness of speakers withitgsitch period.

2.1.3 Linear Prediction Analysis-by-Synthesis (LPAS) Spech Coder

The excitation signal for the LP synthesis filter in a LPASesgrecoder is generated by passing
each candidate excitation signal through the LP synthdtes éind comparing the synthesized
speech with the original speech. In modern speech codersextitation is generated from a
codebook or codebooks. The combination of the parametens fine codebook or codebooks
that gives the least MSE is chosen. A common LPAS coder i<thaed-Excited Linear Pre-
diction (CELP) coder. The excitation from CELP is composed of two ponents: armdaptive
codebookcontribution and dixed codebookontribution. The adaptive codebook contribution
models the periodicity of the excitation signal which occtor voiced speech. It approximates
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Fig. 2.4 Diagram of a generic LPAS speech coder

the excitation in the current subframe by a scaled segmeprteviously constructed excitation.
The adaptive codebook plays the role of giteh-predictor synthesis filtefThe fixed codebook
is used to model the part of the excitation which the adapto@ebook does not adequately
model. It generates a noise-like sequence which is supesatpon the adaptive prediction to
form a candidate excitation signal. Several successfulaisdthve been widely used, such as the
multi-pulse model [5], the regular-pulse model [20] anddlgebraic model [5, 6]. The algebraic
model is the most widely used and the corresponding LP spesiér is called amlgebraic-
CELP (ACELP) coder. Fig. 2.4 shows a generic LPAS speech coder.

Generally, the LPCs are estimated from the windowed origipeech signal once per frame,
and then converted to LSFs and quantized. The excitatioetsrihined and quantized over
blocks which are shorter in duration than the frame, and vare referred to as subframes.
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Almost all recent speech coding standards belong to the cdbkPAS coders. This class
includes ITU Recommendations G.723.1 [5], G.728 [21] and28 [6] and all the current digital
cellular standards, such as EVRC [22] and SMV [7].

2.2 Distortions from LPAS Coders

LPAS speech coders can not give a satisfactory quality abates below 8 kbps [1]. It suffers
from a degradation described as “roughness”. In voicedcpeleis distortion is more noticeable
for female speech than for male speech. This can be parthaierd by Skoglund and Kleijn
[23]. They studied the pitch-dependent temporal behawwbdunasking. Their results show that
the auditory system sensitivity to low-frequency noisdilisrggest in the valleys between the har-
monics in the spectral domain for high-pitched sounds, evtiie sensitivity to high-frequency
noise is strongest in the valleys between the pulse peakseinirhe domain for low-pitched
sounds. This gives a suggestion for speech coding. For éspalakers, it is important to main-
tain the harmonic structure of the short-term Fourier magia spectrum at low frequencies but
that low accuracy suffices for the Fourier phase spectrurheopitch cycle. For male speakers,
more bits should be allocated to the Fourier phase spectfuine @itch cycle, but a degradation
in the harmonic structure is not audible.

In CELP speech coders, the MMSE criterion is used in the tioraaln for coding, which
means many bits are essentially spent on the descriptidreqittase of the pitch-cycle waveform
for voiced speech. This makes the male speakers soundedyaipod. However, the reconstruc-
tion accuracy of the harmonic structure of the short-terrgmitade spectrum is relatively low in
CELP coders. This is a result of inadequate performancediotig-term predictor.

Kroon and Altal pointed out that two major facts cause the BEEader distortion in [24]. One
fact is the shortcomings of the coding concept itself, amdather is the quantization of the side
information of LP coefficients and excitation parameteitse Toder itself can not reproduce high
frequencies well and the rapid changes in the speech signaloh adequately tracked. Limited
size of the codebook and the block-adaptation of the codanpeters may be part of the reason.

In LPAS coders, the quantization errors often lead to a déasip of the formant structure of
the speech signal. This is shown in Fig. 2.5. After the quatitn of LP coefficients of a voiced
frame by ITU-T G.723.1 at rate of 5.3 kbps, the formants beztower and a bit wider.
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Fig. 2.5 LP Spectra and its quantized version (dashed line)

2.3 Masking

All waveform coders, which use properties of human hearingetep the perceptual distortion
low, rely on auditory masking. Masking is the property thae®ignal, thenaskey can render
another signal, thenaskeginaudible [2]. In the case of speech and audio coding thekenas
the input signal and the maskee is the error signal or cogiiragtization noise, agn) ande(n)
shown in Fig. 2.4.a.

Masking phenomena are common in sensory perception. Maséitects limited frequency
and temporal resolutions of human hearing system. Geggethéire are two masking effects:
simultaneous maskingndtemporal maskingSimultaneous masking occurs when two or more
stimuli in different frequencies are presented at the same. tit is the most significant masking
property, since it produces the largest amount of maskimgnpbral masking occurs when the
masker and maskee have a temporal offset with respect tm#aeh The masker and the maskee
are presented close in time, but not simultaneously. Whemthskee is presented prior to the
masker onset, it is calleldackward maskingsee [25]), whileforward maskinghappens when
the maskee is present after the masker is turned off. Backmasking is considered far less
important. Forward masking is the more prominent form ofgieral masking.

As we discussed in Chapter 1, an isolated stimulus is audiibleas a sufficiently high level
and a frequency content that falls within the audible rangeis is measured by thabsolute
threshold of hearingln a masking condition, for the stimulus to be audible inphesence of a
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masker, its level has to be higher than the so-catb@dking thresholdViasking threshold is the
combination effect of both simultaneous masking and temdpuasking as well as simultaneous
maskers. An optimal coding scenario is that all coding nbesebelow the masking threshold.
However, only the masking concept and the empirical masgrogerties are adopted in speech
coding standards and the “true” masking threshold is newepaited.

2.4 Perceptual Properties Applied in LPAS Speech Coders

Speech coding is related to human perception, and therefalegree of fuzziness exists, in
the sense that no absolute right or wrong can be establiginezkftain situations. Therefore,
solutions are often presented and justified on an empirasikb

Lowering the bit rate of a codec by employing powerful codteghniques will result in
higher distortion, but, by exploiting knowledge about thrtan auditory system, techniques that
mask the distortion can achieve high perceptual qualityaet bit rates. Two perceptually-
based approaches are widely use in LPAS speech codeise spectral shapingndadaptive
postfiltering At low encoding rates, it is impossible to push all of the iogdnoise under the
masking threshold in both formant and valley regions. Ngisectral shaping is used to make
the coding noise to follow the speech LP spectrum. A per@pteighting filter is applied in
a speech encoder to shape the coding noise. This is base@& asgtmption that the original
speech has most of its energy in the spectral formant regamusmore noise is masked in these
regions. Noise spectral shaping alone is not sufficient tkentlae coding noise inaudible at low
coding rates. Lowering noise components at certain fregjgscan only be achieved at the price
of increased noise components at other frequencies [1B]véry difficult to force noise below
the masking threshold at all frequencies at a low bit rateil®the coding noise spectral shaping
follows the speech spectrum, most of the perceived codimgermmes from spectral valleys,
including the valleys between pitch harmonic peaks. Howeae adaptive postfilter [15] is
introduced to attenuate these noise components at thelsgeeoader output. A useful postfilter
may attenuate the frequency components between pitch hasas well as the components
between formants, while the spectral envelope peaks qumnelng to the formants have roughly
the same height as before the postfilter. However, noisdrsppebaping in coding only affects
coding noise, while adaptive postfiltering in decoding fashbodify both speech and noise.

Fig. 2.6 illustrates the LPAS speech coder that incorpertite perceptually-motivated ap-
proachesperceptual weighting filteat the encoder analdaptive postfilteat the decoder.



2 Adaptive Postfiltering 20

s(n)
Input
speech
» LP Analysis
t :
Excitation u(n) LP Synthesis s(n)_ T
Generator Filter
e(n)
iiiiii Error By ew (1) Perceptual |
Minimization | Weighting Filter
Output bit-stream
(a) Encoder
Received R ~
bit-stream Excitation unm) | pp Synthesis S(m) Postfil s (n)
> > . > ostfilter |—————
Generator Filter Synthesized Postfiltered
] speech speech

(b) Decoder

Fig. 2.6 Diagram of a LPAS speech coder with perceptual approaches

2.4.1 Noise Shaping

Auditory masking theory motivates the use of noise shapirgpeech encoding. An unweighted
MMSE criterion for speech signal does not ensure percdgtieat/ distortion. It is important
to consider the relationship between the spectrum of thatqadion noise and the spectrum of
the speech signal to achieve perceptually low distortiancésmost of the noise in the formant
regions could be patrtially or totally masked by the speeclarge portion of perceived noise
comes from spectral valleys.
Atal and Schroeder [26] proposed noise spectral shapingrirs979. The basic idea is to

shape the spectrum of the coding noise so that it follows pleech spectrum to some extent.
Due to the masking effect of human auditory system, the sgigcshaped coding noise is less
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audible to human ears. In modern LPAS speech codgusra@eptual weighting filters widely
used. It has the form of

W(z) = %, (2.12)

where0 < v, < 7 < 1, and A(z) is the LP analysis filter that is defined in Eqg. (2.1). The
perceptual weighting filter shapes the coding noise to oliwe trend of the spectral peaks and
valleys of the speech spectrum, which gives a no-longerendaiting noise and makes the coding
noise less audible to human ears. In ITU-T G.723.1 [5], theeguual weighting filter has
v = 0.9 and~, = 0.5. Fig. 2.7 shows the frequency response of the perceptughtweq filter
with the LP spectrum from Fig. 2.2.
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Fig. 2.7 Perceptual weighting filter response (dashed line) cooredipg to the LP

spectrum (solid line)

While properly tuned, the perceptual weighting filter allomore noise in the formant re-
gions, but below the masking threshold, and decrease theranod quantization noise in the
spectral valleys. The noise components in some valley nsgiway exceed the masking thresh-
old. This audible noise affects the perceptual quality efsheech.

2.4.2 Adaptive Postfiltering

Postfiltering is used as a postprocessing technique at twldeto enhance the reconstructed
speech. According to Chen [15], Smith and Allen first proglbaepostfilter in 1981 for en-
hancing the output of an adaptive delta modulation. Theaibagame popular until 1984 when
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Ramamoorthy and Jayant proposed a new postfiltering tegénig[27] to move the poles and
zeros of the synthesis filter radially toward the origin bytaly chosen factors. It was further
developed in [28, 29]. Adaptive postfiltering was first comda with noise spectral shaping in a
speech coder in 1986 by Yatsuzuka, lizuka and Yamazaki [BOgy were also the first to pro-
pose explicitly an additional long-term postfilter sectimsed on the pitch periodicity in speech.
However, the postfilters mentioned above had a muffling (@ass) effect of the speech sound.
Chen proposed a postfilter which significantly reduced tiepass effect in [31] in 1987. This
postfilter was elaborated in [15]. Since 1987, the use of tstfitter proposed by Chen in CELP-
like coders has become very popular. It has become a comnmbofgpeech coding standards
based on LPAS .

An adaptive postfilter is preferred due to the variationsheflocal characteristics of speech
spectrum. It is usually used on a frame-by-frame basis, lanslis based on the local character-
istics of the speech spectrum. Adaptive postfiltering iedas empirical results for low bit rate
coders [15]: a) the masking threshold follows to some extiemtspectral peaks and valleys of
the speech spectrum; b) the noise shaping by a perceptugthtivej filter at the encoder makes
the coding noise fall below the masking threshold arounggeetral peaks but appear above the
masking threshold in the spectral valleys. While attemgpaiudible noise in some valley regions,
the speech components in these regions will also be ateshuBbrtunately, the intensity of the
spectral valleys can be altered as large as 10 dB without adiple effect [32]. Therefore, by
doing so, the postfilter can achieve a substantial noisectiestuwith only minimal perceptual
distortion of the speech itself. Unlike weighting at the @ther (where the clean speech signal is
available) which shapes the coding noise only, postfilteainthe decoder affects both the speech
and the coding noise. It is a compromise between speechtistand noise reduction. Other
than the conventional postfilter by Chen, other postfilgggorithms were also proposed by
researchers in [16, 33, 34].

2.5 Adaptive Postfiltering

We will discuss conventional postfiltering [15] in detailtims section. Some variations [16, 34]
will also be introduced.
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2.5.1 Conventional Postfilter

According to speech perception, the formants of speecheneeptually much more important
than spectral valley regions. At low coding rates, even gfoa perceptual weighting filter is
applied, it is impossible to push all the noise componentsvib¢he masking threshold. The
noise components in some of the valley regions may exceethtbshold, which makes most
of the perceived coding noise coming from spectral valleyduding the valleys between pitch
harmonic peaks. As mentioned in Section 2.2, in LPAS speeding, quantization errors often
lead to a deemphasis of the formant structure and a decrpasgedicity. To have more flexibility
in the shape of the postfilter, the adaptive postfilter predaa [15] contained elaborate short-
term and long-term postfilter sections which achieved §icamt noise reduction by emphasizing
the formant structure and increasing the periodicity, eetipely. A general postfilter transfer
function is given by
H(z) = GH(2)H,(2), (2.13)

where H,(z) represents a long-term postfiltéf, (=) represents a short-term postfilter a@ds
an overall gain factor. The long-term postfilter emphasjaésh harmonics and attenuates the
spectral valleys between pitch harmonics. It is also calpdch postfilter On the other hand,
the short-term postfilter emphasizes speech formants &wbates the spectral valleys between
formant. It is also called Bormant postfilter

The general postfilter depends on both the short-term armgdtlerm correlations in the speech
signal. This information usually is transmitted to the d#moin most LPAS coders. However, the
postfilters can derive this information from the decodedespesignal. In some implementations
it was found that, even when the parameters are transmittésl better to recompute them,
to take into account the interaction effects with the exidtasignal [2]. Moreover, in many
implementations the postfilter is integrated with the decagl/nthesis filter and does not just
operate on the reconstructed output signal. For exampig;term postfiltering is usually done
on the excitation signal, so that the LP synthesis filter canath out discontinuities, which
appear at frame boundaries where the long-term postfiltgrdated. This is the case in a number
of standard speech coders [5-7].
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Short-Term Postfilter

The frequency response of an ideal short-term postfiltenlshiollow peaks and valleys of the
spectral envelope of speech without giving an overall spkttt. Since the LP synthesis filter
spectrum closely follows the spectral envelope of the irgnéech, it is natural to derive the
short-term postfilter from the LPC predictor. Conventidyya short-term postfilter is given by

[15]
_ AN

- Alz/ )
where0 < \; < Ay < 1. The optimal values ok, and A\, depend on the bit rate and the type of
the speech coder used. They generally need to be deternmm@dally based on subjective lis-
tening tests. The difference betwegnand\, introduces a low pass spectral tilt in the spectrum,
which makes the voiced speech muffled. The first-order filigr avtransfer functioril — p2~1)

is used to reduce the lowpass effect. It is referred to aslthreompensation filter. It is usually
made to be adaptive to better track the spectral tilt0f/\;)/ A(z/\;). For example, in ITU-T
G.723.1[5], the short-term postfilter is given by the follogrequations:

Hy(z) (1-pz), (2.14)

_ AN
A(z/%)

3 1
ky = kad + Zk’ (2.15b)

H,(2) (1 —0.25k271), (2.15a)

where\; = 0.65, Ay = 0.75, k is the first reflection coefficient and,,4 is the value ofc; from

the previous subframe: = R[1]/R[0] is estimated from a subframe of the synthesized speech.
R[0] and R[1] are the autocorrelation values of the correspansiibframe. In Eq. (2.15a), the
tilt factor is made adaptive as a function of the overall sféslope of the input signal.

Long-Term Postfilter

The function of a long-term postfilter is to attenuate fraggyecomponents between pitch har-
monic peaks. Also, no overall spectral tilt should be introeldl. Such a long-term postfilter is
typically derived from the pitch predictor. Since zeros itransfer function can provide more
flexibility and more control of the frequency response, thregtterm postfilter with both poles
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and zeros can be represented by the following function

1+ ozlz_T
T

Hi(z) =G (2.16)

- 9z
whereG; is an adaptive scaling factdf, is the pitch period and < a4, as < 1. The coefficients,
G, o anday, are determined by the degree of periodicity in speech. WWTTG.723.1 [5], the
long-term postfilter is of the form

Hi(2) = Gi(1+ a2 7)), (2.17)

whereG, is an overall gain which is chosen to make the energy of theutgignal equal to the
energy of the input signal, ang,, 7" are derived from the decoded excitation signal.is the
square root of the ratio between the energies of the inpoasand the postfiltered signal. can
only be positive [5, 35].

From Eq. (2.16), the long-term postfilter has its own scafangor (G;, but the short-term
postfilter does not have a similar scaling factor. In gendba power gain of the short-term
postfilter would be high for those speech frames where thaigiren gain of the LPC predictor
is high, and vice-versa. The gain fact@din Eq. (2.13) is needed to ensure that the energy of the
postfiltered signal is the same as that of the input signarbgbostfiltering. To avoid possible
discontinuities, the scaling factor is lowpass filteredr &mmple, in [5], the gain is updated on
a sample by sample basis using

g(n) =ag(n—1)+ (1 —a)gs, (2.18)

whereg;, is the square root of the ratio between the energies of the signal and the short-term
postfiltered signal and = 15/16. Each sample of the short-term postfiltered output signal is
multiplied with the corresponding value gfn).

Fig. 2.8 shows an example of the postfilter frequency respohkq. (2.13) for a segment of
voiced speech.

The conventional postfiltering technique has been impleetesuccessfully. It has been
widely used in modern speech coders such as ITU-T Recomriendar multimedia commu-
nication G.723.1 [5] and G.729 [6].
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Fig. 2.8 An example of speech spectrum and the corresponding oysifilter
frequency response (dashed line)

2.5.2 Adaptive Formant Postfilter Proposed by Mustapha and ¥ldener [16]

Conventional postfiltering uses the same constantand \,, for all of the formants and causes
the formants to be weighted in the same way. However, it ficdif to adapt these coefficients
from one frame to another and still produce a postfilter withgpectral tilt. Conventional time-
domain postfiltering produces varying spectral tilt fromedrame to another affecting speech
quality. The parameters of the high-pass tilt compensdiiten are difficult to control well. The
purpose of the tilt-compensation filter in Eq. (2.14) is tang@nsate the tilt of the first part of
Eq. (2.14) so as to reduce the lowpass effect. The coefficienimade adaptively proportional
to the first reflection coefficierit. For highly correlated voiced framels = R[1]/R[0] ~ 1. For
proper\; and\,, the resulting postfilter tends to have less spectral tiit,dseserves the peaks
and valleys. For unvoiced frames, however, the magnitudetefnds to decrease, aidmight
change from positive to negative. This is due to the fact¢batelation among adjacent samples
is weakened. Also, the spectra of unvoiced frames tend teldewa high-pass tilt. Therefore, it
is better to either diminish the amount of tilt compensaboeven change to lowpass filtering in
order to cancel the high-pass tilt [1]. However, this is nokasy task.

The performance of conventional postfiltering is not optim@hout adjusting the postfilter
parameters\; and )\, (see [36]). Mustapha and Yeldener [16, 37] developed a nee-tiomain
postfiltering technique which eliminates the problem ofcéga tilt in speech spectrum and can
be applied to various speech coders. This postfilter usgmieenformation in the LPC spectrum
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and finds the relation between poles and formants. The faspaulls and their bandwidths are
first found to get a desired postfilter response. A modifiedtleguares approach based on the
modified Yule-Walker (MYW) method is used to give a postfilath better speech quality than
the conventional technique.

Magnitude of LPC spectrum
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Fig. 2.9 LP frequency spectrum for the modified Yule-Walker methag] [1

The new postfilter is based on the MMSE approach as
E =Y (d(n)—h(n))", (2.19)

whered(n) andh(n) are the impulse responses of the desired and estimatedtpostiiespec-
tively. The transfer function of the estimated postfiltesé@don MYW filter is

N
b() + Z ka_k
k=1

H(z) = ig; = . (2.20)
1+ Z CLkZ_k
k=1

In the desired postfilter, the aim is to preserve the formafiormation. Therefore, the post-
filter has a unity gain in the formant regions of spectrum.si¢t of the formant regions, the aim
is to have some controllable attenuation factorthat controls the depth of the postfiltering. In
[16], T is set to 0.6. However, is adaptable from one frame to another depending on how much
postfiltering is needed and the type of the speech coder &se@d LPC spectrum as Fig. 2.9, the
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frequency response of the desired postfilter is shown inZif).

Linear Magnitude Response of MYW Filter
1.3 T T T

T T
MYW Post—filter
1.2+ T e Desired Post—filter 7

/ \ —.—.—. Conventional Post—filter

. . . .
"o 0.1 0.2 0.3 0.4 . .6
frequency normalized by pi

Fig. 2.10 Frequency response of postfilters (the modified Yule-Watkethod [16])

The denominator coefficients of the filtdf ») are computed from the autocorrelation method
for LP. The autocorrelation coefficients are derived fromplower spectrum of the desired post-
filter by inverse Fourier transformation. The numeratorfiidents of the filterB(z) are com-
puted as in [38]. This postfilter has a flat frequency respahaeovercomes the spectral tilt
and other problems present in conventional postfilter roaetl earlier. Fig. 2.10 also shows the
frequency response of the estimated postfilter and the atioval short-term postfilter with cor-
responding LPC spectrum in Fig 2.9. It is clear that the forhpeeaks are flat in the frequency
response of the new MYW postfilter, while those of the conegratl one are not. The new and
conventional postfilter LPC spectra are shown in Fig 2.1is #iso clear that the new postfilter
has no spectral tilt at all comparing with the original LP@sfpum, while the conventional one
has a spectral tilt. The new postfilter has the desired ptppémpreserving the formant peaks
and attenuating the nulls. Furthermore, the attenuatiorutté is more controllable in the new
postfilter than the conventional one.

2.5.3 Adaptive Pitch Postfilter Proposed by Kleijn [34]

In order to emphasis the coded speech spectrum to improvgudigy, Kleijn [34] gave an
enhancement algorithm based on constrained optimizatienttance speech fine structure. It can
be considered as a long-term postfilter. The spectral finetstre offers particular large potential
for enhancement because of the large dynamic range of thehar structure of voiced speech.
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Log magnitude response of original and postfiltered LPC
40 T T T T

T T
LPC Spectrum

30L —.—.— New postfiltered spectrum

Conventional postfiltered spectrum

—30

. . . . . . . . .
(o] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
frequency normalized by pi

Fig. 2.11 Postfiltered LPC spectra (for the modified Yule-Walker metfi®])

Conventional adaptive postfilters often give a spectraltgam(s that is too strong or too weak
within different segments of a signal. [34] also points duattthe time synchronization between
the spectral envelope and the spectral fine structure igggnmcorrect in current fine-structure
postfilters, because the inherent delay is neglected.

The criterion is to increase the periodicity of the speegmai on a block-by-block basis.
Two constraints are applied. One is to ensure the presenvatithe signal power, and the other
is a modification constraint to ensure that the power of tlferdince signal between the en-
hanced and unenhanced signal is less than a fraction of therpd the unenhanced signal. This
method can increase the periodicity of voiced speech segmvaile unvoiced speech segments
are perceptually unaffected due to the modification coimgtra

Lets, be a discrete speech segmenfiotubsequent speech samples, with time lgbe} ,,
denotes a sample sequencefofsamples, and each sample in this sequenee stch cycles
removed from the corresponding sample of the sequepees; . s, ,, ands;,,.; can overlap.
Lets,; be the enhanced segment correspondirg.tdhe measure of periodicity of the enhanced
signal is given as

= D om(8i8im), (2.21)
Jj€J meI—{0}

with constraints:

18511 = lls;ll, (2.22a)
Is; = 811 < Bls;lI%, (2.22b)
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whereq,,, describes a discrete window functidhjs a set of integers that describes the support
of this window (e.g.Z = {—3,—-2,---,3}, (-,-) is the Euclidean inner produd},- | denotes
the Euclidean norm(¢,s) = |s||?), andJ is a set of consecutive-block indices. The window
{am }mer should be defined based on perception and [0, 1]. The criterion in Eg. (2.21) can
be maximized by iteratively maximizing the criteria

ni= > a8 Sim) (2.23)

meZ—{0}

In order to simplify the procedure, one iteration for eg¢ldefined in Eq. (2.23) is maximized
based on the original; ,,,. The constraints are applied to the individual optimizasio

This algorithm has been implemented in iLBC [39] for Intdroeding of 8 kHz sampled
speech by Global IP Sound (GIPS). The sequence leAgth 80, and{«,,}n.c7 iS set to a
Hanning window with seven-sample support. The parameétex set to 0.05, corresponding
to a signal to modification power ratio of about 13 dB. The ¢@sts contribute to inherent
robustness by preventing large changes to the signal.

2.6 Speech Quality Assessment

Speech quality assessment is of primary concern in speatingcand speech enhancement.
There are many dimensions in quality perception, iatelligibility andnaturalnessre the most
important. In digital communications speech quality isselfied into four general categories
[40]:

e commentary or broadbanduality refers to wide-bandwidth (typically 50—7000 Hz,tbu
20-20,000 Hz for compact disk) high-quality speech that ganerally be achieved at
rates, at least 32—64 kbps

e network or toll or wirelinequality describes speech as heard over the switched telepho
network ( approximately the 300-3400 Hz bandwidth rang#&) wisignal-to-noise ratio of
more than 30 dB and with less than 2—3% harmonic distortitirgan be achieved at rate
between 8 kbps and 32 kbps.

e communicationgjuality implies somewhat degraded speech quality whichatsnal and
highly intelligible. Communications speech can be achdeaterates above 4 kbps.
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e syntheticspeech is usually intelligible but can be unnatural and@ated with a loss of
speaker recognizability.

To establish a fair means of comparing speech coding or eehant algorithms, a variety
of quality assessment techniques have been formulateder@bnspeaking, tests fall into two
classes:subjective quality measuremd objective quality measuresSubjective measures are
based on comparisons of original and the processed speedisbgner or group of listeners, who
subjectively rank the quality of speech along a predetegthstale. Objective quality measures
are based on a mathematical comparison of the original andrtitessed speech signals. Most
objective quality measures quantify quality with a numaraistance measure or a model of how
the auditory system interprets quality.

2.6.1 Subjective Quality Measures

In subjective testing, the individual ratings are gathened averaged to yield the final score. The
testis normally done for a wide variety of conditions so aslitain a general performance appre-
ciation for a particular coder. There are three commonlylysecedures to perform subjective
testing [1]

e Absolute Category RatinfACR): The listeners are required to make a single rating for
each speech passage. Five choices are given in Table 2.1avEhage of all votes is
known as themean opinion scoréMOS). The MOS is a widely used measure to quantify
coded speech quality. It usually involves 12—24 listeners.

Table 2.1 MOS Five-Point Scale [40]

Rating Speech Quality Level of Distoriton

5 Excellent Imperceptible

4 Good Just perceptible but not annoying
3 Fair Perceptible and slightly annoying
2 Poor Annoying but not objectionable

1 Bad Very annoying and objectionable

e Degradation Category Ratin@CR): In this test, the listeners are presented with thgi-ori
nal signal as a reference before they listen to the synthigin@al, and are asked to compare
the two and give a rating according to the amount of degradgtierceived. The five
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choices are given in Table 2.2. The average of all votes isvkras the degradation mean

opinion score (DMOS).

Table 2.2 DMOS Five-Point Scale [1]

Rating Level of Degradation

5

N WA

Not perceived

Perceived but not annoying
Slightly annoying

Annoying

Very annoying

e Comparison Category RatinlCCR): In the DCR test, the final score might be biased
because of the order by with the speech materials are pegseAtbetter approach is to
present two samples and ask the listeners to compare antheasecond with respect to
the first. The order of the original speech and the procegseech can be made arbitrary
or random. The choices are given in Table 2.3.

Table 2.3 CCR Scale [1]

Rating Level of Comparison

Much better
Better

Slightly better
About the same
Slightly worse
Worse

Much worse

Pair comparison [8], sometimes called A-B test, is also comgnused for informal speech
guality tests. In the pair comparison test, each test utteras compared with various other
utterances, and the fraction that the test utterance igpittybe better than the other utterances
is calculated as the preference score.

Since the goal for coding and enhancement is to produce Ispleatis perceived by the au-
ditory system to be natural and free of degradation, it iseustdndable that subjective quality
measures are the preferable means for quality assessmeweVer, it is clear that subjective
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tests are expensive to implement and highly time consumiihgrefore, it is desirable to build
objective evaluation methods producing evaluation resuhich correspond well with the sub-
jective evaluation results. Current research efforts aredodirected toward perceptually-based
objective measures.

2.6.2 Objective Quality Measures

Objective speech quality measures are reliable, repeata#dy to implement and in some cases
have been shown to be good predictors of subjective quality.

In the time domain, some forms of signal-to-noise ratio & rajor types of objective
measures.

¢ Signal-to-Noise RatigSNR) The SNR is the most widely used measure for analog and
waveform coding systems. Given the original spee@h) and the processed versigm),
the SNR is defined by

> a*(n)
> (2(n) — y(n)®

n

SNR= 10 logm( ) (2.24)

with the range of the time index covering the measurement interval.

e Segmental Signal-to-Noise Raf®EGSNR) The SNR is a long-term measure for the ac-
curacy of speech reconstruction. It tends to ignore tenipaiae, which could affect the
perceived quality significantly. SEGSNR is a frame-basedsuee. Itis an average of SNR
values obtained from isolated frames, with the frame beib@pek of samples (typically
15-25 ms). The definition of SEGSNR is

N
1
SEGSNR= N;SNRW, (2.25)

where SNR, is the SNR value of the:th frame. SEGSNR compensates for the underem-
phasis of the weak-signal performance in conventional SBsure.

The SNR and SEGSNR are only meaningful for waveform recaostm. They are ex-
tremely sensitive to waveform misalignments and phasewigh, which are not always per-
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ceptually relevant [1]. However, most low bit rate codersna preserve the original speech
waveform. For low bit rate coding, LPC spectrum preservaisoessential to perceived quality.
Some distortion measures in spectral domain, sudtaksra Measure, Log Spectral Distortion
Measureand Weighted Euclidean Distance MeasU#], have been proposed for low bit rate
coders. These objective measures are based on the commpafit® spectra of the original
speech and the processed speech.

In speech processing, the root-mean-square (RMS) lograpewtasure is used to determine
the error or difference between two spectral models on a lagnitude versus frequency scale
[41]. A similar measure is thepectral distortion(SD) [1], which has become the standard
measure for evaluating the performance of spectrum codibgs defined as

Ly S(e)\?
SO = %/0 (10 logm@) dw, (2.26)

whereS(e/*) and S(e/*) are thepower spectral densitig®SDs) of the original and estimated
synthesis autoregressive signals with LP coefficients;, i = 1,2, - - - , p, and input noise vari-
anceg, g, respectively, for a current frame. Thus

S(ed®) = W, (2.27)
S(e) = 7\21(20)”2’ (2.28)

p p
AR) =14 az, AR) =14 a2,
=1 i=1

wherep is the prediction order.
When the integral in Eq. (2.26) is approximated in practiga v --pointfast Fourier trans-
form (FFT), the relation in Eq. (2.26) may be rewritten for fulisid spectral distortion as

Np/2 )
1 , .
- — Joky _ jwk
sor Nrp/2+1 Z (10 logyo S(e*) =10 logyq S(e )) : (2.29)

k=0
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In practice, it is often written as

ni 2
S > (10 log, S(e?*) — 10 1og10§(em)) : (2.30)

n, — Ny k=m0

where0 < ng < ny. Typically, if the sampling frequency i§, for f, = 8 kHz,ny = 4, n; = 100,
and Ny = 256, so that only the spectrum values between 125 Hz and appatedy3.1 kHz are
taken into account for the computation of SD. Thus only thetperceptually sensitive part of
the spectrum is considered.

The average SD has been used extensively to measure thenpenfie of LP coefficient
guantizers. It is highly desirable to reduce the average SWell as the number of outlier
frames. However, SD does not account for the frequency-tdoondaime-domain masking effects
of the human auditory system. Therefore, it might not tgtedirrelate with subjective evaluation
results.

The objective measures mentioned above are only relatechtoneric distance, while the
perceptual properties of the human ear are ignored. Idehtyoutcomes of the objective tests
should be highly correlated with the subjective test sco&iace the 1980s, the ITU has been
investigating many proposals for objective quality measwnts based on psychoacoustic sound
perception modelling. Objective quality measurementaukhgive a MOS value. The most
well-known one is the ITU-T Recommendation P.861 [42],gkeceptual speech quality measure
(PSQM) algorithm, which is correlated well with the subjeeiquality of coded speech. In 2001,
ITU-T finalized another refined method through recommendd® 862 [43] to replace P.861, and
make it suitable for real systems which include filtering &adable delay, as well as distortions
due to channel errors. ITU-T P.862 uses Begceptual Evaluation of Speech Quali§ESQ)
algorithm for cognitive perceptual model. For wide bandiawddecs, ITU-R recommended the
PEAQ algorithm implemented in recommendation ITU-R BS7ZLR8].
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Chapter 3
Psychoacoustic Models

Nowadays, audio coding applications often use a psychadicomodel. Our human ear is a
rather complex system. To model the human auditory systesskimg models are usually ap-
plied [13, 44, 45]. A masking model delivers a masking thaddtalong with the amount of the
allowable distortion in the frequency domain. Signal egdying below the masking threshold
is inaudible. In audio processing, masking is used for latcaltion and audio enhancement.

Another field of extensive interest of psychoacoustic medelobjective measurements of
perceived speech and audio quality. In speech and audiogittie quality can be determined
either objectively or subjectively. Subjective tests afadlt to reproduce. It is also expensive,
and time consuming. Therefore, objective quality measergmmethods are in great demand.
Objective methods map the signals for comparison onto amriat representation which is as
close as possible to the subjective quality domain. Vanmsseptual models have been proposed
with different levels of accuracy and complexity. ITU hagposed some recommendations for
speech and audio codecs, such as ITU-T Recommendation(PB&R) for speech, and ITU-R
Recommendation BS.1387 (PEAQ) for audio.

This chapter will present three auditory models. One madl@hnston’s model, is related
to audio coding. The other two models, PAQM and PESQ, ard¢ectl® objective perceptual
measure of audio quality.

3.1 Critical Bands

The frequency resolution of our human ear is representeditigal bands which have nonlinear
mapping to the frequency value (Hz) of the stimulus. The e#grates signal energy within a
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critical band, which makes it difficult to separate signalghim one critical bandwidth for a
human observer. The overall energy of the masker affectepgon. Critical bands correspond
to approximately 1.5 mm spacings along the basilar membaadeare scaled bBark. One
Bark spans the width of a critical band. A Bark bandwidth isaler at low frequencies (in Hz)
and larger at high ones. Schroeder et al. [46] proposed aessipn to relate the frequency and
critical band rate

z = Tarcsinh(f/650). (3.1)

It is almost linear below 500 Hz and exponential above 1 kHzer€ are also other expressions
for Hz to Bark transformation, such aguivalent rectangular bandwid{lERB) [12].

3.2 Johnston’s Masking Model

A masking threshold is derived by weighting an excitatiottgra, which is obtained by fre-
guency and time domain spreading. The excitation pattexdigts the physical activity of hair
cells along the basilar membrane in the ear. Johnston [4fgsed a masking model to shape
the quantization noise to below the masking threshold iamsfiorm coder. It operates on 64 ms
frames of 15 kHz audio signals which are sampled at 32 kHz.sGare root of a Hanning win-
dow is used for the 1/16th overlapped section of each frarhis.Model calculates the short-term
spectral masking threshold to determine the noise-shdpimagion for the coder.

Given the Np-point discrete Fourier transform (DFT) coefficients of thiemdowed signal
framex,,(n) are X (k), the short-term power spectrumis, (k) = | X (k)|*, k = 0,1,--- , Np/2.
First, thecritical band analysiss done by calculating the energy presented in each crhad.

bhi

Xo(i) = Y X,(k), (3.2)

k=by;

whereb;; andby,; are the lower and upper boundaries of critical baméspectively, and(, () is
the energy in critical band wherei = 1 t0 i,,,., andi,,., IS dependent on the sampling rate.
For this model there are 26 critical bands in the 15 kHz badtwi.e. i,,,. = 26.

Each critical band energy is spread across all the critimadlb to estimate the masking effects.
The spreading functiort (i), which Johnston used in [44], is proposed in [46]. The pregos
spreading function is the same for each critical band maskéout dependency on frequency
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or intensity.Sgg (7, j) has the expression of

Sas(i,j) = 10 log,o(S(i — j))

(3.3)
=15.81+ 7.51((i — j) + 0.474) — 17.5(1 + ((i — j) + 0.474)?)

1/2 dB
wheres is the bark frequency of the masked signal, gns the bark frequency of the masking
signal. An excitation pattern spectruti, (i), is obtained by convolving the bark spectrum with
the spreading function

X, (i) = S(i) * X(i). (3.4)

A noise masking threshold derived by subtracting an offset (in decibels) from theitetion
pattern spectrum. Depending on the nature of the maskimgisithe offset is different for tonal
maskers and noise maskers. Thgectral Flathess Measu(&FM) is used to characterize the
tonality of the signal. The SFM is defined as a ratio ofgeemetric meaf(= M) to thearithmetic
mean(AM) of the power spectrunX, (k)

GM

whereGM 2 ([TN52 X, (k))~Wr/2t) and AM 2 SN2 X (k) /(Np/2 + 1). A tonality
coefficienta is generated from the SFM

) SFMgp
= — 1 3.6
“ mln(SFMdBmax7 )’ ( )
whereSFMggmax = —60 dB is used to represent an entirely tonelike signal with threlity

coefficienta = 1. An entirely noiselike signal has = 0. For an entirely tonelike signal,
the noise threshold is estimated to be5 + i dB below the spreading spectrui.(i), while
an entirely noiselike signal has a uniform offset of 5.5 dBoas the Bark spectrum. With this
tonality coefficientx, the offset in decibels for each critical band is set as

O(t) = a(14.5+ 1) + (1 — a)5.5. (3.7)

Thespread threshold’(7) is obtained by subtracting the offset in decibels from thetakion
pattern spectrum
T() = 100810 Xe(9)=0(9)/10 (3.8)
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To get the noise masking threshold in the frequency domlagnthreshold’(7) should be decon-
volved. This procedure is very unstable because of the sbfahe spreading function. Johnston
proposed a renormalization of the threshold instead ofmextation. Since the spreading func-
tion increases the energy estimates in each band, the raflipation multiplies eacfi’(i) by the
inverse of the energy gain per band, assuming each band ha&nergy. This compensates for
the energy increase from spreading convolution of othéicatibands. After renormalization,
the threshold is denoted [y ().

At last, the final threshold is derived by comparifigi) with the absolute threshold of hearing
T,(7). The maximum value betweéfi (i) and7,(:) is chosen within each band to give the final
masking threshold.

3.3 Psychoacoustic Models for Objective Quality Measurenmd

Loudness is a fundamental element of sound perception.ldhbs to the category of intensity
sensations. The intensity of sound, denoted pbig defined as the amount of sound eneiy,
flowing across a unit area surface in a second [47]. Conveaitig a sound is measuredsound
pressure leve{SPL),

L =10 logyg |1/To| = 20 logy, [p/pol. (3.9)

wherep is the sound pressure, atiglandp, are the standard references corresponding to the
hearing threshold value at 1 kHZ. is an objective measurement of sound, which indicates the
relative intensity of a sound with respect to the hearingghold at 1 kHz. Human sensation is not
flat. Even with the same SPL, tones at different frequencmddvsound different. The loudness
level of a sound is the sound pressure level of a 1 kHz tone tdreepand frontal incident wave
that is as loud as the measured sound. Its upihen The subjective measurement of loudness is
calledsone It is measured by how much louder a sound is heard relatigestandard reference.
This standard reference of one sone is a tone of 1 kHz at amsiiyeof 40 dB SPL.

Classical objective measures, for example SNR, deterhanguality of a speech/audio codec
under test on the basis of differences in the physical sigmalacteristics for a certain set of test
signals. These methods do not use the characteristics dfuitman auditory system. More-
over, classical objective measurements are not meaningjieth applied to modern speech/audio
codecs which exploit signal redundancy and the maskingeptigs of the auditory system. Hu-
man auditory models have been developed to study the ctiorelzetween the aspects of objec-
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tive measurements and the subjectively perceived quality.

For objective quality measurement, a psychoacoustic modelves two steps. First, it maps
the input and output signals of an audio device, such as aio @ader, onto internal repre-
sentations. Then the quality of the device is calculatecdthas the difference of the internal
representations. The psychoacoustic model does not nedadiftbrence signal, nor does it ex-
plicitly calculate a masking threshold. However, they ctso @erive a masking pattern as an
intermediate. Here, we are only interested in perceptuatsqrepresentations) in the first step,
which we will discuss below.

3.3.1 PAQM Model

Beerends and Stemerdink [45] introduced a psychoacoustiehto measure the objective qual-
ity of audio devices. A model of the human auditory systemssduto calculate the internal
representation of the input and output signals of an audiacde The transform from the phys-
ical domain to the psychophysical (internal) domain is @enfed by way of two operations:
time-frequency spreading and level compression.

The processed signal is transformed in the frequency dousay overlapping frames, each
consisting of V samples. Let:(m,n), 0 < m < N — 1, be then-th frame of a windowed
discrete-time signal. The short-term DFT coefficientsc0fi, n) are represented by (k, n).
The power spectrum i&,(k,n) = | X (k,n)|?,0 < k < N —1. Analysis is performed in discrete
frequency bands. These bands are analogogstioal bands(CB), although each CB is how
divided into narrower frequency regions. These frequergjons have the same bandwidih,
in the Bark domain. Assume there aiBesuch frequency bands. Similar to Eq. (3.2), the total
energy per frequency band, (i, n), is calculated from the power spectrum of the signal

bhi
Xy(i,n) = Y Xp(k,n), 0<i<B-1, (3.10)

k=by;

whereb;; andby,; are the lower and upper bounds of the frequency barespectively. The outer
to inner ear transformation is performed with this percaptiomain spectrum

Xa(i,n) = ao(i) Xy(i,n), 0<i<B—1, (3.11)

whereaqy(i) is an outer-to-inner ear transformation function. ThiglpitepresentatioX, (i, n)
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is then combined with that of a previous frame to perform toheenain masking operation

Xy(i,n) = Xo(i,n)+Tp(i,n—1)Xo(i,n—1) = Y Tp(i,§)Xa(i,j), 0<i< B-1, (3.12)

j=n—1

whereTy(i,n) = 1 andT(i,n — 1) is an exponential function given by
Ty (i) = exp(—d/7(i)), (3.13)

whered is the time distance between adjacent short-time framebs7@n is derived from psy-
choacoustic time-domain masking experiments.

The time-domain smeared pitch representati&p(i, n) is then convolved with a level de-
pendent basilar membrane spreading functign L(i)) to get the excitation intensityX. (7).
The spreading function from theth frequency band to thgth frequency band is a two sided
exponential with slopes as

Si(i, L(i)) = S, = 31 dB/Bark j<i,
Su(i, L(i)) = —22 — min(230/ (i), 10) 4+ 0.2L(3) (3.14)
= So(i) + 0.2L(7) dB/Bark J >,

whereL(i) is the level in dB SPL of the-th frequency band witlL.(i) = 10 log,, X(¢,n) and
fe(7) is the centre frequency value of th¢h frequency band in Hz. A parametric nonlinear form
is used to model the nonlinear additivity of maskers

B-1 i—1 2/
Xe('i) _ {Z [10 Si(j— z)dz/lOX a/2 + Z OSO j)(i—5)dz/10 (Xt(j))1+0.2(i—j)d2]a/2} ’
7=0

H (3.15)
where the parameteris optimized to produce maximum correlation of the exadtatralueX. (7)
with subjective tests. Experiments have shown that simatias stimuli result in an excitation
value which is considerably higher than the sum of the cbations. Then the value af is set
to be less than 2. In [45], the optimal settingoois 0.8.
At last, from this quantity a compressed loudness funct®nalculated according to the

expression in [47], )T PRt
Xl(i):c{ OS } {[1—3+8E08(2,)} —1}, (3.16)
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wherec and s are experimentally derived parametefsis a parameter that is also optimized
for maximum correlation with the subjective test, afigli) is the absolute threshold of hear-
ing multiplied by the outer-to-inner ear transformatiorheTfunction.X;(i) corresponds to the
psychoacoustic representation of the short-time frameepsypectrumX,, (k).

3.3.2 PEAQ Model

The Perceptual Evaluation Audio Quality (PEAQ) is used te the quality of an audio coder. It
is described in ITU-R Recommendation BS.1387 [13]. The psgicoustic model used by PEAQ
estimates the masking threshold and loudness among otieemidiate model variables. The
PEAQ model consists of two versions: basic version and amb@rersion. The basic version
only uses an FFT-based perceptual model. This sectionidesahose steps involved in the
computation of the masking threshold and loudness in thie bassion.

The PEAQ model operates wifhh = 48 kHz sampled input segments of 0.042 secalid &
2048 samples) with 50% overlap. A short-term FFT is computedfeihg the multiplication
with a Hann window. Assuming the maximum level to be 92 dB SRk, resulting frequency
domain coefficients are scaled by a factor to get the tramsfdrinput signalX (k) for 0 < k <
Np — 1.

The combined filtering effect of the outer and middle ear [gregsed as

Agp(f) = —0.6 - 3.64(f/1000) 08 4 6.5 - ¢~0-6U/1000=3:3)% _ 10=3(£/1000)>C.  (3.17)
The outer and middle ear weighted FFT outputs are
Xo(k) = |X (k)| - 104asT)/20, (3.18)

wheref (k) = kfs/Np.

The weighted spectruiiX,,(k)|* are grouped into quarter-bark bands in order to transform
into the perceptual domain. Each perceptual band is cleizet by a lower frequency;(i),
a centre frequencyf.(i), and an upper frequency,(:). In the case that a frequency bin is
across two bands, the energy contributed to each band imebfitay multiplying the frequency
bin energy by the percentage of the frequency bin lying withie frequency group. For thith
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frequency band, the contribution from the energy in DFT /bia [48]

. L 2k+1 f L 2k—1 f
max[O, min( f,(7), ) — max(fi(4), )]
i, k) = o 2 N (3.19)
Np

The resulting energies of the frequency groupings are eéerot P.(:) with

k(i)

P(i) = > pli, k)X (k) (3.20)

k=k;(3)

where u(i, k) is non-zero over the interval,(i) < k& < k,(i). The pitch patternsP,(i) are
obtained by adding the frequency dependent internal ndieanner earPry,;es, 0 P.(7)

PP(7’> = Pe<7'> + PThrcs; (321)

where the internal Noise By, = 100-4:3:64-(f¢(i)/1000)~**

The pitch patterng’,(:) are smeared out over frequency using a level dependeradipge
function. The spreading function from tli¢h band to thej-th band is a two sided exponential
with slopes as

Si(i, L(i)) = S, = 27 dB/Bark j<i,
Su(i, L(i)) = —24 — 230/ fo(i) + 0.2L(i) dB/Bark  j > 4,

(3.22)

where L(i) represents the signal power (in dB SPL) in thih perceptual band witli.(i) =

10 logyo(P,(7)). To model the nonlinear additivity of maskers, a power lawssd. Theun-
smeared excitation pattein bandi, (i), is the normalized sum of the spread energy contribu-
tions from all bands

Ey(i) = Normsp (ZEM i 04)“, (3.23)

whereE,.(7,7) represents the energy spread of fkté band to the-th band,Normgp (i) is the
sum of the spread energies of all bands with unit energy,/aigthe total number of frequency
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groups.Eiine (7, 1) is defined by
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Normgp(7) is calculated according to
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Forward masking is modelled by smearing out the energiesah equency group over time
by a first order low pass filter. The time constants of the fleme frequency dependent and are

calculated by
. 100
7(i) = Tonin + f—(z) * (7100 = Timin), (3.27)

whererqo = 0.030s, Tin = 0.008s, andf,(7) is the centre frequency value of tixth band in
Hz. The finalexcitation patternsE (i, n), of the current segment are calculated by

E¢(i,n) =a(i) - E¢(i,n — 1) + (1 — a(i)) - Es(i,n), (3.28)
E(i,n) = max(E;(i,n), By (i,n)), (3.29)
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wheren is the frame index, and(:) = exp(—l/(fSS : T(i))) and f,, is the frame rate given by

fs

fss = NF/2

(3.30)

A masking patternsM (i, n) is determined by applying a weighting function,i), to the

excitation patternsk (i, n).
E(i,n)

where
, 3 0.250 < 12,
(i) = ). . (3.32)
(0.25)%  0.25i > 12.

This masking threshold is defined in the perceptual domaiirthel masking threshold in the
frequency domain is necessary, the effects of the intetrmiabnmiddle and outer ear need to be
removed from)M (i, n) for each frequency group.

The loudness patterns of the signal is derived from the a&bait patterngZ (i, n) with the
same expression as Eq. (3.15) in [47].
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Chapter 4

Design of a Perceptual Postfilter Based on
GMM Estimation

From Section 2.4, it is clear that human perceptual modgitrspeech coding is very empirical.
Noise shaping alone is not enough to make the encoding nelise the masking threshold at low
bit rates. Adaptive postfiltering has been shown to imprbeeadecoded speech quality efficiently.
Conventional postfiltering uses the available decodednmétion, and is empirically designed
according to human perception. However, only a few improsmetis (for instance, [16, 34]) have
been made to adaptive postfiltering despite the developmentr understanding of the human
auditory system.

Also, due to the complexity of speech encoding, the codirigenis correlated to the speech
signal to some extent. This makes conventional speech eatremt methods designed for re-
ducing background acoustic noise inappropriate to dedl eatling noise, because most speech
enhancement algorithms are based on the assumption theddbeh signal and the noise signal
are independent and the noise signal is stationary. Funtirer, in speech encoding, the coded
speech always has an average energy smaller than the bsgeech signal. This is different
from the scenario of speech enhancement where additive isogssumed [49].

Speech quality can be enhanced if we match speech coderh(arei based on voice produc-
tion models) to the human ear with a good auditory model [5@}. those speech coders which
have been implemented in practice, it is preferable to imptbe speech quality by an embed-
ding part, instead of changing the coding structure. In ¢higpter, we will introduce a novel
perceptual postfilter to improve the quality of the decodeeksh without change in the encoder.
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This postfilter exploits properties of psychoacoustic niedand can be applied directly to the
frequency domain of the decoded signal to suppress pebbepitise. Section 4.2 discusses the
perceptual postfiltering idea. In Section 4.3, we presenpetceptual postfilter algorithm by a
Minimum Mean Squared ErrdMMSE) estimator based c@aussian mixture modéGMM).

4.1 Postprocessing Model

Our postprocessing model at a receiver is shown in Fig. 4He gostprocessor has the same
purpose as the conventional postfilter or its variationsriprove the perceptual quality of the
reconstructed speech. However, it exploits propertiespéipoacoustics.

Perceptual postfilter
Received
bit-stream s(n) S(n
— > Decoder » Postprocessor () >
A
. | Psychoacoustic
Model

Decoded information i
(pitch, LSFs, etc.)

A

Other information (endcoding, etc.)

Fig. 4.1 The proposed perceptual postfiltering model

After decoding a received stream, the decoder gives a ddagiechg(n). The postproces-
sor modifies the decoded speech to produce a enhanced spegckith improved quality. The
modification is done with the knowledge of the decoded infation, the decoded speech, the
psychoacoustic model, and other available informationiffstance, how the encoder works). A
perceptually-based postfiltering algorithm performs thoelification using internal psychoacous-
tic properties, which is described in the following section

Our postprocessing model is carried out in the frequencyailomFrequency domain tech-
niques have the advantage of modifying different parts efftaquency spectrum independently.
Also, the perceptual properties are well modelled in thgdency domain. Since speech is per-
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ceived by the hearing system, frequency domain approacbebeproper choice to incorporate
the perceptual concepts in our system. We then can enhaacgpéech with frequency-by-
frequency gain modification.

Clearly, our postfiltering idea is a superset of conventipoatfiltering. A conventional post-
filter is controlled by its parameters. For example, the steom postfilter in Eq. (2.14) is mainly
determined by LPCs, while,, A, and ;; are used to tune the postfilter shape to some limited
extent. Our postfilter gains in each critical band can be seérfreely according to its theoretical
basis.

4.1.1 Proposed System

Our proposed complete system is shown in Fig. 4.2. The tagraia gives the generation of a
training data set and the GMM training. A low bit rate speestier encodes the corresponding
information of the excitation signal and LSFs for each fravhspeech.

A feature vector for each processing block is formed for GMa&rting. Training vectors are
generated from processing blocks. For each processing,l@decoding feature vectaterivable
from the coded information is obtained. A vector of percaeppostfilter gains is derived from
each processing block. By passing all speech for trainirgutih the speech encoder, a data set
composed of feature vectors for GMM training are generated.

Our proposed perceptual postfilter works at the receiver @anghown in the bottom part of
Fig. 4.2. For each speech frame, a coded stream is sent feoemtioder and the decoder decodes
this received stream to generate coded information abewdgbech. A decoding feature vector is
derived with the same process as generating training \&ecfoMMSE estimate of the postfilter
gains given the decoding feature vector for each procesdouk is obtained. The postfiltering
is performed on windowed blocks of the decoded speech. A fieddiecoded speech is then
obtained.

It is clear that the key issues in our system are the perceptsfilter, GMM training and
MMSE estimation of the perceptual postfilter. We will diss@sch of them in this chapter.

4.2 Perceptual Postfilter

In psychoacoustic modelling, a neural excitation calledlioess is assumed to directly affect per-
ceived strength. A loudness distribution is predicted ftbmexcitation intensity by a nonlinear
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Output bit-stream

-

Some coding information

s(m) Feature Vector Training Data
» Speech Encoder . > .
Input Realization Set Generation
speech Coded Y
$(m)
speech | V
. : GMM
Perceptual Filter H(i,n) .
™ Gains Calculati Estimation by
ains Calculation EM Approach
Received
bit-stream §(m) 5 (m)
» Speech Decoder I;)ercef:‘pltual >
osttriter Postfiltered speech
Some coding Decoded speech 1
information
MMSE Estimator H(i,n)
»  for Perceptual
Postfilter

Fig. 4.2 System Diagrams. Top: GMM training at the encoder; BottosrcEptual
postfiltering by MMSE estimation at the decoder.

transformation. Masking has been widely used in audio gpdiecent research also considers
loudness in audio coding [49].

If we use masking in postfiltering, it is more complicatedcsitvoth the masker (the original
speech) and the coding noise are unknown at the decoder.vdgveth loudness and masking
are directly connected to the excitation pattern with opena independent of the signal level.
The excitation patterns of a sound represent the activitgxoitation evoked by that sound as
a function of characteristic frequency along the basilamimene. A global masking curve is
calculated by applying frequency dependent offsets (in BB)3o the excitation patterns. The
transform from the excitation pattern to the specific lowsdngattern is given by a warping func-
tion [47]. The excitation pattern model implies that humaafing can detect distortion, if, in
any critical band, there is more than 1 dB distortion in theitexion pattern [47].

Similar to Wiener filtering in speech enhancement [51], thigngation of a psychoacoustic
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representation of the clean signal can be derived from afiation of such a representation of
the coded signal. A perceptual filter is designed to redueeattdible coding noise by equaliz-
ing the excitation psychoacoustic representation of thgiral signal and the coded signal. If
the coding stream which is sent by the encoder is receivedbwiterror, the same perceptual
postfilter is applicable to enhance the decoded speech e¢dbier.

4.2.1 Perceptual Filter Proposed by Lam and Stewart [52]

Lam and Stewart [52] designed a generalized perceptuab diligir in low rate audio coding.
The perceptual filter is based on a human auditory perceptiotel which attempts to model
the psychoacoustic behaviour of the ear. It tries to peuadiyt suppress coding noise in the
subjective domain, i.e. the loudness representation otdlded signal after filtering is set to
the same level of the original signal. The psychoacoustidehased is the loudness patterns
described in Section 3.3.1. The generalized linear pene¢fptter is finally realized by restoring
the excitation pattern in the perceptual (critical bandphdm of the reconstructed signal.

Conditions for Noise Suppression

Let us denote the-th frame of the original signal agm, n), and the coded signal @ém, n).
m IS a time counter inside a frame. Let the short-time powectspeof windowed frames of
the original signal and the coded signal 8¢k, n) and S’p(k,n), respectively. Also, let their
psychoacoustic loudness representations of Eq. (3.162dtidh 3.3.1 beS;(i, n) and.S;(i,n),
representatively. According to [45], the difference betwehese two representatiorts(i, n)
and S, (i, n) is a measure for the coding noise in the perceptual domaiis. ditierence will be
audible by a listener. Therefore, in terms of enhancemeig,groposed to modify the power
spectrum of the coded signal so that the resulting psychusdicarepresentation corresponds to
that of the original signal. Let the power spectrum of the hed signal beS‘p(k:,n) and its
corresponding psychoacoustic representatio;filble, n). A linear filter H(i,n) is proposed to
modify the coded signal. The gain of this filter is assumedetcdnstant within the same critical
band: so that the enhanced signal is given by

Sy(k,n) = H(i,n) Sy(k,n), by <k<by, 0<i<B-1. (4.1)
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Then we have the equation of the critical band intensitiess afitical band energy grouping with
Eqg. (3.10)
Sy(i,n) = H(i,n) Sp(i,n), 0<i<B—1. (4.2)

A suitable condition for psychoacoustic signal enhancengesetting the psychoacoustic
representation of the modified sigrféli, n) to that of the original signa$; (i, n), which is given

by the following expression

From the expression of the psychoacoustic loudness regetse in Eq. (3.16), it can be clearly
concluded that the condition for psychoacoustic signabhanbment in Eq. (4.3) is equivalent to

S.(i,n) = Se(i,n), 0<i<B-1, (4.4)

where S, (i, n) is the excitation intensity of the modified signal afi{i, n) is the excitation
intensity of the original signal. The excitation patterfish® modified signal are then restored to
those of the original signal [53].

Generalized Perceptual Filter

The perceptual filter gains are derived from Eq. (4.4) with plsychoacoustic model in PAQM
[45], which is described in Section 3.3.1. Lam and Stewanbigd level-dependent effects on the
spreading function and proposed a generalized percepitealffir low bit rate audio coding. In
the derivation of the generalized perceptual filter [52k(8@pendix A), the spreading function
was assumed to be level-independent. This assumptionestedso an analytical expression
of the generalized perceptual filter. The generalized péuee filter gains are sent to the au-
dio decoder as side information for perceptual suppressiguantization noise in the decoded
signal.

4.2.2 Proposed Perceptual Postfilter

The above perceptual filter exploits the properties of alpsgicoustic model, and can be directly
applied to the frequency domain of the coded signal to sigsittes perceptible noise. It gives us
a new outlook for adaptive postfiltering with a specific psyatoustic model.
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Actually, the psychoacoustic model used by Lam and Ste\&itig an invertible auditory
model after their level-independent approximation of ttegflency domain spreading function
and the omission of temporal masking. With such an assumpfian invertible auditory model,
we then have the excitation level of a speech fraime, n)

B—1
Seri) =3 Sy (0)Cir 0<i< B -1, (4.5)
v=0

where S,(v) is thewv-th critical band intensity defined by Eq. (3.2) a@d, is the Bark domain
spreading value only related tpv (see Eqg. (A.2))

[10- %71 fori <,
Civ = So()(i—v)dz 1 /2 (4.6)
[10°552%)* fori > v,
with S; and .S, defined in Eqg. (3.14) in Section 3.3.1.
From Eq. (4.2) and Eq. (4.5) we have
~ B_l ~
Se(i) = 5 (0)Cia
v=0
B-1 )
=N " HR )5 (0) . (4.7)
v=0
Combining Eq. (4.4), Eq. (4.5), and Eq. (4.7), we get
B-1 ) B-1
> HPW)S ()0 =Y 5 (0)Ci. (4.8)
v=0 v=0
This is equivalent to
S0) 0 .- 0 5272(0)
0 S Se2(1
_ b.() b A b.() | (4.9)

0 0 - SM*(B-1) SM*(B —1)
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where A is a B x B matrix with elementsy;; = C;_1,-1, ¢,7 = 1,2,---,B, andh =
[H(0),H(1), -, H(B —1)]" is the perceptual filter vector.

With the optimal value of set to be 0.8 in PAQM [45], we can compute with MATLAB that
the determinant oA is 0.8914 and the 2-norm condition numberffs 1.4443. That meanA
is a full rank matrix. Then we can obtain the perceptual filtdrom Eq. (4.9)

h= | ( . (4.10)
Sy(B—1)/S,(B—1)

We can see that the conversion from the critical band intiesgb the excitation intensities is
unnecessary, although Eq. (4.4) is the enhancement comdi¥he gains of the perceptual filter
in Eqg. (4.10) are just the ratio of the critical band intelesif the original signal to those of the
coded signal.

Actually, since all the psychoacoustic representatioesogiginated from the critical band
intensities, the modified signal will have all the same psadoustic representations as those of
the original signal if the critical band intensities of theded signal are set to the same level as
those of the original signal. Therefore, we get a generalgmual postfilter which equalizes the
energy in perceptual domain

Sp(i) = Sy(i), 0<i<DB-—1, (4.11)

where S, (i) and S, (i) are the critical band intensity of the original signal and frerceptually
filtered signal. With the grouping method of Eq. (3.2) as ihnkion’s model, the energy in each
critical band ofs(m, n) is summed up to give the critical band spectrtif)

bh;
Sy(i) =Y Sp(k), 0<i<B-1. (4.12)

k=bl;

wherebl; andbh; are the lower and upper bounds of the critical band i, regpgt
Applying the grouping to Eq. (4.1) and combining with Eq.1(#), our new perceptual post-
filter has the expression
H(i) = S,(i)/Sy(i), 0<i<B-—1, (4.13)
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WhereSb(z') is the critical band spectrum of the coded signal. Eq. (4id8)e same as Eg. (4.10).
These are the postfilter gains given the knowledge of ther@iignd coded critical band spectra.
Tests with speech signals show that this postfilter filtezstided speech and produces a modified
speech signal which is indistinguishable from the origgpdech with the human hear. In the next
section, we propose a method to estimate these gains at¢bdeate

4.3 Perceptual Postfilter with MMSE Estimation Based on GMM

The perceptual filter from [52], which is discussed in Setdd.1 for low bit-rate audio coding,
motivates us to build a similar postfilter flanear prediction analysis-by-syntheglsPAS) speech
coders in Section 4.2.2. The perceptual filter can be deifine@d each processing frame and
applied to the decoded speech to improve the speech quidiityever, from the discussion in
Section 4.2, direct information about the perceptual fikemavailable to the receiver unlessiitis
sent as side information while we need a postfilter which waan add-on part at the receiver
without requiring additional bits. A novel postfiltering thed combining perceptual properties
and statistical estimation together has been introduceddgresent author in [54]. Minimum
Mean Squared ErrofMMSE) estimation of the perceptual postfilter baseds@ussian mixture
model(GMM) was proposed. The postfilter gains are estimated fraviMESE estimator given
a feature vector which is from the information at the decodde call this feature vector the
decoding feature vectorThis operation works on a frame-by-frame basis at the veceiThe
output of the MMSE estimator is determined by the estimaaoameters and the decoding feature
vector. The parameters of the MMSE estimator are from agath®@MM. That means they are
available at the receiver and do not need to be transmittedl@snformation by the encoder. For
a LPAS speech coder, the decoded speech and coded infonnfatiach is sent to the receiver
by a coding stream) are available at the encoder. Theref@ean generate the training data at
the encoder. A GMM is used to model the joint pdf of the tragmector. Each training vector in
the training data set is obtained from encoding of a spe@chdr A training vector is composed
of perceptual filter gains and a decoding feature vector. Bxgectation-MaximizatioEM)
algorithm is commonly used for the training of a GMM.

In [54], we only considered the static features for percalppostfilter estimation. Incorpo-
rating the locally sequential speech property as well asrttiwidual frame, we also study the
model with joint static and frame-differential feature qoonents.
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4.3.1 GMM Estimation by the EM Algorithm

The GMM is popularly used to approximatepeobability density functior{pdf) of a random
vector with relatively small number of parameters. Its idptio represent some general speech
spectral shapes by the Gaussian components makes it papsfsech recognition and speaker
identification [55], as well as in neural information prosieg [56]. A GMM is also used for
vector quantization of LSFs [57, 58]. The underlying pdf e€tors in a database can be modelled
by a Gaussian mixturédGM) pdf and the parameters of the model can be estimatech §id
Kabal [59, 60] used the GMM for bandwidth extension by estingathe missing high band
information from the low band LSFs.

A GM pdf for a d-dimensional random feature vectaris a mixture of M joint Gaussian
densities{wy, -+ ,wpr}

- Z P(w;) p(x|w;), (4.14)

wherep, (x|w;) is thei-th Gaussian component, aftw;) is a priori probability.
For notation convenience, let = P(w;), andN (x|0;) = px(x|w;), we have

Puio(X|©) = Zaz (x6,), (4.15)
:{alv"'vaMaela"'ael\/f}v (416)

whereq, is a nonnegative constant apd” | o; = 1. NV'(x|8,) is an individual Gaussian density
parameterized bg; = {u,;, ¥;} with mean vectop, and covariance matrix;

N (x[0;) = W exp(—%(x — ) S (x = ). (4.17)

Therefore, a GM pdf is defined by the mean vectors, the cavegianatrices and the mixture
weights for the Gaussian components, ®ein Eq. (4.16). With the EM algorithm, we can train
a GMM to approximate the pdf of certain features in speech.

The parameter séd can be estimated by theaximum likelihoodML) method. The EM
algorithm is a widely used approach for ML estimation in castaere a closed-form analytical
expression for the optimal parameters is difficult to deriz® is an iterative algorithm where
a monotonic increase in the log-likelihooH, is guaranteed [57], i.e.(@* V) > L(©®), in
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each iteration over a given databa&:® is the value of the parameter $®tat iterationk.

One key issue for applications of mixture modelling is thenber of parameters i®. The
larger the number of parameters, the greater is the passibildescribe the fine structure of the
underlying data distribution. On the other hand, with a ldglgree of freedom in the modelling,
there is a risk for overfit. A rich set of parameters may leadridue complexity. Thus, the
selection of the number of parameters must be a compromde Eoth full and diagonal co-
variance matrices are widely used in the GM density. With aNGM )/ Gaussian densities for
a d-dimensional random feature vector, the number of parasmébebe estimated during train-
ing is M (d + d(d“) + 1) for full covariance Gaussians, aiid(2d + 1) for diagonal covariance
Gaussians. A GMM with diagonal covariance Gaussian commsneusually preferred, because
of fewer parameters and its potentiality of modelling thelenying pdf just as well if enough
mixtures are used.

Assuming we have a data skt = {x,},n = 1,---, N of N observations of the feature
vectorx, the log-likelihood function can be expressed as

L(©) =In ] pue(*.©)

n=1

N
Z N Pye(X,|O)

M
Z N(x,]0;).

It is not easy to express optimal parameters in a closed faroe $he function contains a
logarithm of a sum. Given an initial set dff Gaussian component pdfs’(xnwgk)) and M
mixture weights%("”), i=1,---, M, k=0,aGMM with a parameter s@ is trained by the EM
approach iteratively:

uMzﬁ

1. E-Step: Compute the Iikelihoods\/(xn|0§k)) and determine the posterior probabilities
v (n) = p(w;|x,, ©*)) of each mixture component for each training data prijnas

0y = N (al6)

Za xn|0(k )

(4.18)
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2. M-Step: Re-estimate component pdfs and weights, based on datédikds and posterior
probabilities [57]

N
1
alf ) = 5 S P m), (4.19a)
n=1
N
> v (n)x,
pt == (4.19b)

(D) . (4.19¢)

3. Repeat steps 1 and 2 with= k& + 1 until L(®) of Eq. (4.18) of the entire data set does not
change appreciably, or a limit on the number of iterationsached.

When we assum&,; be diagonal, i.eX; = diag{\;1,---,\iq}, the update equation for the
diagonal elements; ; corresponding to Eq. (4.19c) becomes

N
> v (n) (4.20)

wherexz,, ; and,uEZH) are thej-th vector component af,, andp,*+1), respectively.

4.3.2 Prior Model

Modern speech coders take advantage of the short-term agetdom correlations of speech.
Speech-signal segments are often characterized in terthe pfoperties of their power spectra.



4 Design of a Perceptual Postfilter Based on GMM Estimation 58

A relationship exists between the autocorrelation and pepectral domains: the fine struc-
ture of the power spectrum corresponds to the long-termcautelation of the time-domain
signal, and the power-spectral envelope corresponds tehbe-term autocorrelation [2]. We
choose al;-dimensional postfilter gain$i, and thed,-dimensional speech propertigs, as a
d-dimensional feature vector for each frame with- d; + d.. y is also thedecoding feature vec-
tor and composed of a subvector of the short-term propbrtsgnd a subvector of the long-term
property,n. Then thel-dimensional feature vector is denotedsoy

s =[h;y], with y = [b;n]. (4.21)

Dynamic features are the local (weighted) time differentstatic features. While consider-
ing the dynamic features in our system, we use the simplastrdic property of the frame-
differential (“delta”) features, defined by

ASs, =S, — S,_1, (4.22)
wheren is the frame index.

With static features only, the pdf ofs,,) is

M

plsn) =D i N (su|pss, 55). (4.23)

i=1

The joint probability distribution function for both theadic, s,,, and delta,As,,, features is
modelled by GMMs assuming the static and dynamic featuresiacorrelated with each other.
The pdfp(s,, As,) is given by

M
p(sn, As,) = Z a; N (sp| s, B5) N (As,, | uls, B29). (4.24)
i=1

In Eqg. (4.23) and Eqg. (4.24), the Gaussian density paramatethei-th Gaussian densities
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N (s,|ps, %) and N (As, |2, $2%) can be written in block matrices as follows

2

p; = Z: : (4.25a)
37 = gﬁ i: : (4.25h)
s = Ziz , (4.25¢)
s _ - ii}y‘ii ;:ﬁi ] (4.25d)

In Eqg. (4.25a) and Eq. (4.25c), the vector blocks with sup@rts h and Ah are of lengthd;,
which is the dimension of the postfilter gain vecklgrand the vector blocks with the superscripts
y andAy are of lengthil,, which is the dimension of the decoding feature vegtdn Eq. (4.25b)
and Eq. (4.25d), the matrix blocks with superscriptsand AhAh ared; x d; matrices, those
with superscripthy andAhAy ared; x d, matrices, those with superscrigth andAyAh are
d, x d; matrices, and those with superscripigsand Ay Ay ared, x d, matrices.

The new delta features makeno longer independent of its previous frame, and s@ap-
tures the trajectory information of speech by part of th@mpmformation. The new dynamic
parameterg2s and X% provides additional information which can not be inferrednf the
static parameterg? andX?. The dynamic features partly captures the strong, locafindd
trajectory property of speech, while the static featurggur@s only the global, loosely specified
temporal information of speech [61]. It is speculated thet scheme improve the overall quality
of coded speech.

4.3.3 MMSE Estimator
A MMSE estimatoth of h given the observation vectgris a conditional expectation
h = E{h|y}. (4.26)

The conditional pdf oh giveny is computed from the joint pdf ¢f. Section 4.3.2 gives a GMM
to approximate the joint pdf. The GMM is trained with a traigiset of speech signals by the EM
algorithm (which is described in Section 4.3.1) with the@der beforehand. Assuming the same
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environmental condition at the encoder as that of trairtimg frained GMM parameters are used
at the receiver for postfiltering without additional infaatiron from the encoder.

Estimation of the Perceptual Postfilter with Static Feasure

While using the MMSE estimator Eq. (4.26) with a GMM pdf, weedehe conditional pdf of the

“target” postfilter gain vectoh given the “input” vectory. The conditional pdf and any marginal

pdf of jointly Gaussian random variables are still Gausdamsities [62]. Assuming the Gaussian

densityN (s, |0;) = N (s, |us, 3%), thei-th GM component in Eq. (4.23), is a joint density of the

variates defined in Eq. (4.21), it can be factored into a conditionai&san pdf\/(h|p™Y, =)

of h, giveny, with mean vecto;uth and covariance matnXJh‘y and a marginal Gaussian pdf
N(y|p!, XY) of y with mean vectop! and covariance matrix;”

N (s,|pf, 23) = N (b, SI) N (y| el , 27, (4.27)

where
pi? =l =Y ()N (y - ), (4.28a)
i = whh s (2 s, (4.28b)

andul, iy, 3 B 3" and Pkt are defined in Eq. (4.25).
For the GMM-modelled joint density di andy defined by Eq. (4.23), the marginal joint
density function ofy is

M
=3 Nyl =), (4.29)
k=1
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Therefore, the conditional pdf &f giveny is expressed in terms of a GMM as

M
i=1

plbly) = V1)
p(y)
Zak‘/\/ Y|My Eyy)
k=1
Z% N (h|p™ SN (y |, 57 (4.30)

Zak‘/\/ ylpd, =)

k=1
M

=" Bily) N(h|p™, =),

i=1

where [62]

Bi(y) = MaiN(Y|“i’2i ) (4.31)

S an Nyl =)

The MMSE estimate ol is derived with Eq. (4.26) (4.30) and (4.28a)

M
Z ply (4.32)

When diagonal covariance matrices are used for the GM desisihe MMSE estimator is re-
duced to

M
h = Bi(y)up (4.33)
i=1

Estimation of the Perceptual Postfilter with Static and DyrmaFeatures

Now with both static and dynamic features to derive a MMSHEnesor, we use the pdf of
Eq. (4.24). Given the estimated postfilter gain feature i ithmediately past framey,_,
and the corresponding realizationAjy,,, the conditional MMSE estimator of the current frame
becomes

lAln\n—l = E{hn‘ym ﬁn—b Ayn} (434)
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As the factorization of\/ (s, |u$, X$) in Eq. (4.27)N (As,|u2s, £8%) in Eq. (4.24) can be
factored into a conditional Gaussian pblT(AhmAh'Ay EAh'Ay) of Ah, given Ay, with mean
vectorp."'*Y and covariance matrix~"4Y, and a marginal Gaussian ptif( Ay |p2Y, S2YAY)
of Ay with mean vectop;Y and covariance matrixs =Y

(ASTL‘MAS EAS) _ N(Ah“l'zAh'Ay? ZiAh‘AY> N(Ay|[LZAy, ZiAyAy>7 (435)

where
pABAY _ Ah S ARAY (SAYAY (D) (Ay Y, (4.36a)
EZAh|Ay RARAL _ g ARAY (5AYAY)(-1) 33 Ay Al (4.36b)

andph, pty AV sahdy si8yah gndyAhAh gre defined in Eq. (4.25).
Similar to the derivation of Eq. (4.32), the conditional pdth giveny andh,,_; is

p(hy, ¥, Aynlh,_1)

P(Yns Aynlhy 1) (4.37)
p(sn, Aynlh,_1)

p(Yn, Ayn)

where the approximation simplifies the estimator drambyi¢a avoid dynamic programming,
andp(s,, Ay,|h,_1) has the form [61]

p(hy |y, h,_1, Ay,) =

p(sn,Aynmn_l):Eai b ™, 2 ) N (yal ), 2

<Aynwy SN (B — b [ SE)
= Z ;N (b |}, SN (yal i), ) N (A s, B072). (4.38)
N (h,|u;, 3) is a GM density oh,, with mean vector
= (S 4 SPRAY) I ARAY Bl (sl sNAY) I (g AY) (4.39)

and covariance matrix
3 = (B 4 Pty ighi s ahisy, (4.40)
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Combining Eq. (4.37) and (4.38) together, we get the cookili pdf

M
Z%N(hn\ué, SN (yulpl, XTY) (Aynmfy,EiAyAy)
p(hylyn, 1, Ay,) & ——— (4.41a)
D @i Ny, SN Ayl 207 5)

=D Biyn, Aya) N (|, ), (4.41b)

i=1

where
N (yal b, Z )N (Ay, g, S5

Z i N (yu e, Z )N (Ay, Y, S 2Y)

The final MMSE estimation di is obtained by substituting Eq. (4.41) into Eq. (4.34)

M
B Z (v, Aya) B
i
~ 7 By, Aya) [T ()Y + Wiy (B + ), (4.43)
=1
where
Ty (i) = (S)Y 4 mphiay)-impriay (4.442)
(i) = (5 + 37 I (4.44)
with

() + (i) =1 Vi

With diagonal covariance matrices for the GM densities,(Bgt3) is reduced to

iy, Aya) [P (D) s + W2 (i) (hy + p™)] (4.45)

uM:
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and

Wy (7)
Wy (i)

(ZPh 4 pphah)Ipahah (4.46a)
(Zph 4 Zphar) Tk, (4.46b)

Given the trained GMM parameters in Eq. (4.23) or Eq. (4.248, postfilter gains can be
easily estimated by the MMSE estimator of Eq. (4.32) or Egql@¥and applied to the decoded
speech at the receiver.
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Chapter 5
Experimental Results

In this chapter, we present the integration of the percépostfiltering method into a LPAS
speech coder and the experimental results. The ITU-T Re@ndation G.723.1 speech codec
[5] at rate of 5.3 kbps is chosen for the simulation. In Secld., details of algorithm implemen-
tation of the G.723.1 standard are described. Section 8septs the probabilistic dependency
between “input” and “output” features of the MMSE estimabygr information measure. The
experimental results are presented in Section 5.3.

5.1 Algorithm Implementation

We incorporate the perceptual postfilter based on GMM, whiak introduced in Section 4.3,
into a low bit rate speech codec to improve the decoded spepeality. In the experiment, all
speech is sampled at 8 kHz with 16-bit PCM resolution. Twe sétlean speech signals recorded
under the same condition are used as the test material. ®rsefgetraining, and the other one
is for evaluation.

The experiment involves three steps:

1. Generation of the training data set
2. GMM training
3. Implementation of the perceptual postfilter with therteai GMM

The proposed perceptual postfilter has been designed toedle perceived level of noise
in low rate speech coders. We did the simulation of the preggeerceptual postfilter with the
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G.723.1 speech codec [5] at rate of 5.3 kbps. The G.723.kpmelec operates on frames of
240 samples. Each frame is divided into four subframes ob@&fdes each. For each subframe,
10th order LP analysis is used on a Hamming windowed block86fdamples centered on the
subframe. The LP coefficients for the last subframe are stewv¢o LSFs and quantized. For
each subframe, linear interpolation is performed betwkemtiantized LSFs of the current frame
and the quantized LSFs of the previous frame to derive thatqeal LSFs for the current sub-
frame. The excitation signal is coded with a pitch period alygbraic-code-excitatiofor each
subframe.

A local speech database was used. The database was compegeetch of 23 speakers
(12 females and 11 males). In considering the limited sizn@fspeech database, we choose a
section of the database with 10 female and 9 male speech fod @&ning, and the rest of the
database with 2 females and 2 males was used for performaalceagon.

The G.723.1 speech coder encoded the corresponding infomadout excitation and LSFs.
For each frame, only the information about the first and tivd Bubframes are used in training. A
feature vector was constructed from each processing bliot&®samples (3 coding subframes)
centered on the first or the third subframe of each frame.élWwas an overlapping of 60 samples
for adjacent processing blocks. First, a decoding feataotovy of dimension 12 was derived
from the coded information of the current subframe. The la@ngued LSFs were used as a
sub-feature vector representing the speech short-terotrapperoperty,b, while pitch and its
correspondindong-term predictionLTP) gain represented the long-term spectral property,
The LSFs and pitch were obtained directly from the codedrimé&dion of the center subframe.
The LTP gain was calculated from the coded speech with theccpitch and corresponding
subframe. Then a sine-squared window was applied to théfirahd the last 60 samples of the
processing blocks of the original and decoded speech asnsihdwig. 5.1. A 512-point FFT was
used on each windowed block. A 17 bark-scale perceptuafifp@sgain vectorh was derived
from Eq. (4.13). Therefore, a realization ©fwith dimension 29 in Eq. (4.21) was obtained
with the realizations ofy andh for each processing block. We actually used the dB value of
the perceptual postfilter gains far By passing the training speech set through the encoder, a
training set consisting of 338,916 vectors was generated.

Diagonal covariance matrices were used for both the GMMaticsteatures only (Eq. (4.23))
and the GMM of static and dynamic features (Eq. (4.24)). Tih&MGof static features was
trained with the training set. For training the GMM of staditd dynamic features, the dynamic
features were created with Eq. (4.22). The first static featon each sentence was set as the
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initial feature for that sentence. Consequently, the statid dynamic features in the rest of
training sentences formed the training data set for the GMBtaiic and dynamic features. The
EM algorithm is generally satisfactory to train a GMM wher thumber of parameters to be
estimated is small with respect to the number of trainingeoletions. Usually, the size of the
training set should be at least 50 to 100 times of the numbestifnated parameters [63]. For
the GMM of static features with dimensidi7 + 12 = 29 and the GMM of static and dynamic
features with dimension7+ 12+ 12 = 41, the mixture number should be less than 100 for better

modelling.
¥Subframe ><
| | |

L A P R A AN I I I BN

Frame N Frame N+1

Fig. 5.1 Windowing for the training and perceptual postfiltering.

By incorporating the GMM parameters into Eg. (4.33) or (4,48 perceptual postfilter was
estimated with decoding feature vectors from the receiagting information. For every two
subframes of the decoded speech, the postfiltering wasrpertbon windowed blocks of 180
samples, with 60 sample overlaps. The decoded LSFs, pittic@mesponding calculated LTP
gain of the center subframe of the processing block were asdtie decoding feature vector
to derive the perceptual postfilter with Eq. (4.33) or (4.4%he same window in Fig. 5.1 was
used and the windowed processing block was transformedhetérequency domain with the
same length FFTin training data set generation. For those frequency commsrwithin a bark
band: at then-th frame, the same postfilter gafﬁ(z', n) was applied to their Fourier magnitudes.
The modified Fourier magnitudes were then transformed badkd time domain with IFFT
combined with the phase of the decoded speech frame. Thiypratd method [64] was used
to combine the processed blocks into the final modified sigha¢ech in the evaluation set were
passed through the G.723.1 speech encoder at rate of 5.3dkiapthen decoded and postfiltered
with the bottom system in Fig. 4.2.

The generation of the training data set has been executée i@ tanguage. The training of
the GMM parameters has been done in Matlab. We have impletd¢né proposed perceptual
postfilter in C.

For linear FIR filtering in the frequency domain, the sizehaf EFT and IFFT must be at lea$y = L+ M — 1
to avoid the aliasing that results in the time domain [64]rd{& is the size of the processing block anflis the
size of the estimated perceptual postfilter.
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5.2 Probabilistic Dependency between “Input” and “Output” Features

It would provide us with a better understanding about thejbdgies to successfully estimate the
perceptual postfilter gains with the MMSE estimator base@biM, if we check the dependency
between the “input” features and the “output” features.

For the case of estimation with static features only, we riedohd how large the remaining
uncertainty of the perceptual postfilter gains is given theadling features. This was done by
determining the ratio between the mutual informatidh, y) of h andy and the entropy7 (h)
of h [65]. The joint density function oh andy was modelled by a GMM(h, y). We can easily
obtain the marginal densitiegh) andp(y) with p(h,y) (See Section 4.3.3). The GMM training
set was generated from Section 5.1. The estimate of the inuafoamation, f(h, y), and the
estimate of the differential entropl}(h), were obtained from [65]

Ty) = 53 o ]f(’iln’;’ ")), 5.
h) = -+ > oty (5.2)

where the sample vector sdts,,}, {y,.} and{h,,,y,} were generated from the GMM and each
containedV vectors. We used/ = 10°.
The relationship between the entrofiyh) and the differential entropy can be express as [65]

H(h) = h(h) — log,(A®), (5.3)

whered; is the dimension of the vectdr and A is the quantization step. Since we applied the
dB value of the perceptual postfilter gains fgrwe selected\ = 1 according to [65]. Then the
entropy is equal to the differential entropylof

For the estimation with both static and dynamic features ggtimate of the mutual informa-
tion, f(h, Ah,y, Ay), and the estimate of the entrop‘},(h), were obtained similarly. Due to
the limited size the the training set, we tested mixture coments less than 100. Table 5.1 and
Table 5.2 present the mutual information from GMM pdf with=8, 16, 32, 64, and 80 mixture
components, the entropies, and the ratios between the hinfioranation and the entropies.

From Table 5.1 and Table 5.2, we can see that the mutual iafitwmis only a small fraction
of the “target” entropy, while the dependency increasegh8ly with more mixtures. The results
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Table 5.1 Information Results for Static Features.

Gaussian Mixtures I(h,y) H(h) I(h,y)/Hh)(%)

8 3.85 66.49 5.80
16 3.77 66.28 5.69
32 3.99 65.84 6.06
64 426  65.43 6.51
80 438 65.42 6.70

Table 5.2 Information Results for Static+Dynamic Features.

Gaussian Mixtures I(h, Ah,y,Ay) H(h) I(h,Ah,y,Ay)/H(h)(%)

8 4.49 66.50 6.76
16 4.59 66.31 6.93
32 5.70 65.90 8.66
64 5.46 65.67 8.31
80 6.18 65.55 9.44

show GMMs with both static and dynamic features have lesgmminty than those only with
static features. However, mutual information is a stat#tiool. Although its value is not high,
the “input” and the “target” may still be perceptually bowadwell.

5.3 Results and Discussion

Comparison of Postfilter Gains and Spectrograms

A GMM with M=80 was used for perceptual postfiltering. The ideal peuzpiostfilter was
described in EqQ. (4.10). We compared the G.723.1 standamtbftt adaptive postfilter with our
perceptual postfilter based on GMM in postfilter gains ana@spgrams.

A female speech was used for comparison. Its waveform isgiv&ig. 5.2. Also, Fig. 5.3
shows the postfilter gains of 30 sequential frames. In FR).the corresponding time interval of
those frames is specified between the two lines.

Comparing the postfilter gains in Fig. 5.3, we see that the MMS&imations generally follow
the ideal postfilter trend to some extent, while the G.728hdard formant postfilter has very
little effect on the speech. This is because the G.723.1datdnformant postfilter is mainly
determined by LPCs which change slowly frame by frame,Jand; and; constrain its dynamic
range to be very limited comparing with the ideal postfilter.
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Fig. 5.2 A female speech waveform.

Fig. 5.4 shows the spectrograms of clean speEuht}, G.723.1 coded speech with standard
postfiltering Second, G.723.1 coded speech with the new perceptual postfiliagsatic fea-
tures only Third), and G.723.1 coded speech with the new perceptual pastfdieg both static
and dynamic featuresgurth), respectively.

Low bit rate LPAS coding emphasizes the high energy partsgigdly formants at low fre-
guencies) and loses some naturalness at high frequenc@s. Fig. 5.4, it can be seen that the
perceptual postfilters recover some of the high frequensy foom encoding, while the differ-
ence between postfilter estimation with only static featanmed that with both static and dynamic
features is not obvious.

Subjective Evaluation

Although there are some objective quality measures (Seto8e2.6.2) to evaluate the perfor-
mance of our algorithm, we found that our proposed percépustfilter has lower scores than
the conventional adaptive postfilter with those measurbhs.best measure of perceptual quality
of speech is thenean opinion scor@dMOS), which is obtained from a formal subjective listening
test. Since itis difficult to gauge the effectiveness of fibsting quantitatively by objective mea-
sures [15] and formal MOS tests are not available in our rekeanvironment, we evaluated the
perceptual-quality-improving capability of the percegitpostfilter by informal listening tests.

In order to measure the subjective performance of the paraband the conventional postfil-
ters, informal tests were used with 6 untrained listeneseriences pairs for 4 speakers (2 male
and 2 female speakers in the evaluation speech set) weregsext by the G.723.1 codec at rate
of 5.3 kbps. The decoded speech signals were modified by tip@ged perceptual postfilter and



5 Experimental Results

71

Magnitude (dB)

20

10

Magnitude (dB)

-10.

30

Frames

Frequency (Hz)

Magnitude (dB)

Magnitude (dB)

20

10

-10

30

‘2000 3000 2000
5 1000

Frequency (Hz)

(b)

10
Frames

3000 4000

2000
0 Frequency (Hz)

(d)

Fig. 5.3 Postfilter Gains: (a) Ideal Perceptual Postfilter GainsjTh)-T G.723.1
Rate 5.3 kbps Formant Postfilter Gains; (c) Estimated Parabpostfilter Gains by
80 GMM with Static Features Only; (d) Estimated Perceptwatflter Gains by 80

GMM with Static and Dynamic.
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Fig. 5.4 Spectrograms. First: Original speech; Second: ITU-T GI2®ded
speech with the standard postfiltering; Third: ITU-T G.71280ded speech with the
perceptual postfiltering estimated with static featurely;drourth: ITU-T G.723.1
coded speech with the perceptual postfiltering estimatédheith static and dynamic
features.
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the standard conventional postfilter, respectively. Fohegntence, the two postfiltered versions
were compared according to the original clean speech. Btenkrs were asked to pick one of
the two postfiltered speech which they preferred and givegason.

The test speech signals were presented over both headpaioddsudspeakers to the lis-
teners. Informal listening tests showed that the proposedeptual postfilter gives much more
natural sound than the conventional postfilter for most eftdsted speech. This is because the
high frequency distortion from coding is lessened by theppsed perceptual postfilter. Postfil-
tered speech with filter estimation based on both static gndrdic features gave a bit smoother
sound than that based only on static features. With staticfeame-differential features, the
perceptual postfilter captures some dynamic informaticspetch.

With loudspeakers, the listeners all preferred the peusgpiostfiltered speech signals to
the standard postfiltered ones. The improved naturalnebstiné proposed postfilter delivered
significantly better quality, while the standard postfigkgil sounded thin and a bit muffled (which
is common in low bit rate speech coding). However, a littlgrdelation was audible in some
perceptual postfiltered speech when listened with headgghoifhe standard postfiltered one
sounded smoother. This may be caused by the fact that the8G.gReech coder is a LPAS
coder and not primarily perceptual-based, while the ideedgptual postfilter is totally perceptual
motivated and could change abruptly from frame to frame. ddreventional postfilter is based
on pitch and LSFs which change slowly. The ideal conventipnatfilter itself has a smooth
contour and small dynamic range, and the conventional fiest§ a closer resemblance to it.
However, the nature of the ideal conventional postfilter enatiard to improve the other aspects
of the speech quality (for instance, naturalness and igiteility) other than some coding noise
reduction. Our proposed perceptual postfilter improvesidomded speech quality by recovering
some information in the original speech, but introduces esamforeseeable distortion at the
same time as well. In some part of consecutive processirakb|the estimates of the perceptual
postfilter cannot catch the fast change of the ideal pereépustfilter. This may be the reason
why the objective measure scores of our perceptual postfiltspeech were worse than those
with the conventional postfilter.
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Chapter 6
Conclusion

Psychoacoustic principles have been widely used in lonalét speech and audio signal process-
ing. Bit rate reduction can be achieved without coding the@gtually irrelevant information.
Active research has been increasingly concentrated omiérgl human auditory properties in
speech and audio coding in the past decade. The masking mpkeador noise reduction are
the key theory for its practical applications. Quantizatimise control, speech enhancement
and objective quality measurements are the major appitsittiThe examples are noise suppres-
sor (speech enhancement) in Enhanced Variable Rate Cod&JH?22], coding noise shaping
with auditory models (quantization noise control) in MayiRictures Experts Group (MPEG)
standards—MPEG-1 [66], MPEG-2 [67] and MPEG-4 [68], and REA3] for audio perceptual
guality measure.

The main goal of this thesis has been to improve perceptualtgwf low bit rate coded
speech. This work has focused on design and implementati@mperceptual postfiltering tech-
nique based on perceptual models. A novel perceptual pestir low bit rate LPAS speech
coders has been introduced in this thesis. The proposefiljeoss perceptually based and is an
add-on part at the receiver just as a conventional adaptistilper. 1t has shown that, with the
proposed postfilter, speech quality is improved with a mateiral sound than the conventional
postfiltered speech.

6.1 Summary of Our Work

After a brief introduction about speech coding methodseeisly utilization of the masking
concept, Chapter 1 outlined motivation and objective ofwioek in this thesis. Chapter 2 started
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off by introducing the bases of the modern LPAS speech codererder to reduce perceptual
distortion from LPAS coders, noise shaping and adaptivéfiiesng (both based on masking
properties) are exploited in the encoder and the decodsecotively. Emphasis was placed on
methods of adaptive postfiltering. Due to the theory behiRd & coding and masking properties,
conventional adaptive postfiltering has two parts: longatpostfiltering and short-term postfil-
tering. Various realizations of adaptive postfiltering egrcluded. Speech quality measurements
were also described at the end of Chapter 2.

Chapter 3 concentrated on presenting three psychoacwonstlels. The description of the
models begined with Johnston’s masking model in SectionThs model is used to control the
coding noise in a perceptual transform coder. In Sectiont@@models from PAQM and PEAQ
were presented. These models are parts of the originaltolgequality evaluation procedures.
The calculations of these psychoacoustic models are sjraitd the difference is in the detailed
operations. Also, the intermediate models, such as theingaskodel and the excitation model,
are very useful in speech and audio signal processing.

In Chapter 4, a novel postfiltering method combining pergapproperties and statistical
estimation together was proposed. Specific perceptuakptiep was applied to the postfiltering
other than the masking threshold concept used in the caovahpostfilter. First, the proposed
postprocessing structure was given in Section 4.1. A péueépostprocessor model is easily
applied to current low bit rate narrowband LPAS coders. Tioppsed system diagram was given
in Section 4.1.1. Section 4.2 developed a perceptual gestfitheme. The idea was motivated
by a generalized perceptual filter by Lam and Stewart in 8eeti2.1: perceived coding noise is
suppressed by setting internal representation of the neddifadded signal to that of the original
signal. Under the assumption that the psychoacoustic medet invertible auditory model,
Section 4.2.2 derived a new perceptual postfilter which geldan equalizing the critical band
intensities between the original and the coded signals.

At the decoder, the original signal is unavailable. Sectidhbuilded a MMSE estimator of
the perceptual postfilter given information at the decodén v GMM-modelled pdf. The GMM
was trained at the encoder where the perceptual filter gagneasy to get with the availability
of both the original and the coded signals. The EM algoritom@MM training was described
in Section 4.3.1. Derivation of the MMSE estimators with enivfeatures were presented in
Section 4.3.3. Both static and dynamic features were takerconsideration.

Chapter 5 described how the algorithm was utilized in a rpaksh coder and the resulting
performance. ITU-T G.723.1 speech codec at rate of 5.3 klgzssexamined. The LSFs, pitch
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and LTP gains from the decoder were used to estimate the giaadgoostfilter gains with a

MMSE estimator using a GMM. Low bit rate coding emphasizestigh energy parts (generally
formants at low frequencies) and loses some naturalnesgtatfiequencies. The perceptual
postfilter recovered some of the high frequency loss. In&briistening tests have shown an
improved speech quality with a more natural sound.

6.2 Future Research Directions

This section provides possible future research in peregpistfiltering. The design of the per-

ceptual postfiltering scheme mainly depends on the speé@neament of speech corrupted with
speech-correlated noise. Furthermore, perceptual pestfg can be applied in other aspects in
speech coding.

e Better perceptual postfiltering methods

Our perceptual postfilter is derived from the internal repreations of a basilar membrane
model. At the same time, the linear error spectra analysisldvgield some additional
information about the distortions [25]. Kleijn [34, 69] gied some methods of improving
the speech periodicity to get better perception. Whilegisikr FT-based perceptual model,
it is possible to incorporate the perception of fundameinégjuency in postfiltering. Also,
our perceptual postfilter is based on a level-independaetgmng function. Further re-
search can consider level-dependent spreading functibithvs closer to how the human
ear works.

e Enhancement for noisy speech

A speech coder is designed to work with clean speech. Acewsttmation of the coder
parameters is impossible with ambient noise. The perfoc@ah a speech coder can be
very bad under noisy environments. A noise suppressor alysapplied before encoding
in a practical speech coder to reduce additive noise, fdamte in [22]. This part is
independent of coding. A noise suppressor could be buil thie proposed perceptual
postfilter to enhance noisy speech. The GMM parameters wikdjusted according to
SNR estimation and the perceptual filter gains will be editavith the noisy input and
the GMM parameters.

e Preprocessing for Speech Coders
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LPAS codecs update the pitch information on a block-by-blagsis. This pitch distortion
makes the coded speech noisy, especially obvious at lovatieis r Generalized Analysis-
by-Synthesis Coding has been studied [69] and implementgd.ilt preprocesses speech
before encoding to improve the pitch prediction. [70] reethe perceptually irrelevant
simultaneously masked frequency components of a speeghl iy a masking model to
get a more efficient coding than the original signal withagh#gicant degradation of the
speech quality. While the perspective of perceptual infdrom implementation is different
from the masking model, a method similar to perceptual gtesifig can be applied to
improve the quality of a speech coder by preprocessing bpeiie a perceptual model.

e Embedding perceptual postfiltering in the speech encoder

Operating at the decoder end, postfiltering is not consttlaréhe encoder. Its well-known
shortcomings are both speech distortion and noise enhamteni we can incorporate

perceptual filtering in encoding, the problem of speechodign will be lessened. Most

low bit rate speech coders work in the time domain. Duringoeim, the excitation sig-

nal, which gives the least weighted MSE of the speech signahosen by passing each
candidate excitation through the LP synthesis filter. Addirfrequency domain technique
within the time domain analysis-by-synthesis loop is nalyed possible solution is to get
a time-domain filter from its counterpart in the frequencyndin. For example, a time-

domain all-pole filter can be derived from the magnitude spec of a perceptual post-

filter. Its power spectral density is approximated with tleeigdogram which is directly

calculated from the magnitude spectrum of the postfilte}.[Therefore, the all-pole filter

coefficients is easily obtained with inverse Fourier transfed power spectral density by
the Levinson-Durbin algorithm [71].
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Appendix A

Derivation of the General Perceptual Filter
from PAQM

A general perceptual filter is given in [52] based on Eq. (4ED. (4.4) and Section 3.3.1. The
perceptual filter is applied to enhance the quality of theecoaudio signal.
An assumptiohis used in the calculation of the excitation intensity in B315)

140.2dz(i —v) = 1. (A.1)
This approximation ignores the level dependency of the uplope of the frequency spreading
function. Therefore, for the original signal frarsen, n), its excitation level function satisfies
B— i—1

53/2 (717 n) _ [10—Sl(v—i)dz/105t(v7 n):| a/2 + Z [105()(v)(i—v)dz/105t<v7 n)]a/Z

= v=0

[y

_ Sta/2(U’ n) [10—Sl(v—i)dz/10} a/2

i—1
+ Z S;X/Q(U’ n) [1030(’0)(2'—1))6[2/10]04/2
v=0

B-1
=N " 5%, n)C;,, 0<i<B-—1, (A.2)

V=

[en]

1The assumption Lam and Stewart [52] used is 0.02dz (i — v) ~ 1.
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where S, (v, n) is the time-domain smeared pitch representation(of, n). The definition and

derivation ofS,(v, n) is given in Section 3.3.1. It is clear th&t , is only frequency dependent.
The excitation level values of the original signal are cldtad by Eqg. (A.2). Similarly, the

excitation function of the coded signglmn, n) is

B-1
Sel2(i,n) = 3 S (0, n)Crpy 0<i<B-1. (A-3)
0

v=

Given Eq. (4.1), the modified signal has an excitation fuorcts

s}

-1

S (in) =Y S (v, n)Cy,

<
o

s}
_

(]

n /2
Ci,v{ Z Tf(U,j)Sa(U,j)}

v=0 ji=n—1

B-1 j n /2
:Zci’”{Zvajao ZS k;j}

v=0 j=n—1 keb,

s}
_

n /2
Ciﬂ,{ Z Tr(v, j)ag(v ZH v, 7)S,(k, j)} : (A.4)
=0 j:n 1 k‘Ebv

<

The time varying filter is assumed to vary very slowlyv, j) = H(v). Combining Eq. (4.4) and
Eq. (A.4), we set the excitation value of the modified signahiat of the original signal

o

n a/2
Se2 (i) = Ha”(v)ci,v{ S Ty, fao(v) S Sylk, g }

j=n—1 keby

<
o

o

HP ()8 (v,n)Ci,, 0<i<B-—1. (A.5)

v=0

The perceptual filter coefficienf$(v) are obtained by solving these equations in Eq. (A.5).
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