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Abstract

Adaptive postfiltering has become a common part of speech coding standards based on the Linear

Prediction Analysis-by-Synthesis algorithm to decrease audible coding noise. However, a con-

ventional adaptive postfilter is based on empirical assumptions of masking phenomena, which

sometimes makes it hard to balance between noise reduction and speech distortion.

This thesis introduces a novel perceptual postfiltering system for low bit rate speech coders.

The proposed postfilter works at the decoder, as is the case for the conventional adaptive postfilter.

Specific human auditory properties are considered in the postfilter design to improve speech qual-

ity. A Gaussian Mixture Model based Minimum Mean Squared Error estimation of the perceptual

postfilter is performed with the received information at thedecoder. Perceptual postfiltering is

then applied to the reconstructed speech to improve speech quality. Test results show that the

proposed system gives better perceptual speech quality over conventional adaptive postfiltering.
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Sommaire

Le post-filtrage adaptatif est devenu monnaie courante pourle codage de la parole basé sur

l’algorithme de prédiction linéaire par analyse/synth`ese afin de diminuer le bruit de codage audi-

ble. Toutefois, un post-filtre adaptatif conventionnel utilise des phénomènes de masquage basés

sur des hypothèses empiriques, ce qui rend parfois difficile le compromis entre la réduction du

bruit et la distorsion de la parole.

Cette thèse propose un nouveau système de post-filtrage perceptuel pour les codeurs à faible

débit binaire. Le post-filtre proposé fonctionne au niveau du décodeur, comme dans le cas du

post-filtre adaptatif conventionnel. Des propriétés sp´ecifiques du système auditif humain sont

considérées dans la conception du post-filtre afin d’améliorer la qualité de la parole. Un modèle

de mixture gaussienne basé sur l’estimation de l’erreur quadratique moyenne minimale est con-

sidéré selon l’information reçue au décodeur. Un post-filtrage perceptuel est ensuite appliqué à la

parole reconstruite pour en améliorer la qualité. Des résultats expérimentaux démontrent que le

système proposé donne une meilleure qualité perceptuelle de la parole par rapport au post-filtrage

adaptatif conventionnel.
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Chapter 1

Introduction

Speech is the most natural form of human communications. Speech coding algorithms have

made the communication and the storage of voice data effective and efficient. Due to increasing

demand for speech communication, speech coding technologyhas received increased interest

from research, standardization, and business communities. Speech coding algorithms have been

employed in many applications including personal wirelesscommunication systems, multimedia

and Internet communication systems.

In speech coding, researchers have studied ways of efficiently representing acoustic speech

waveforms in the digital domain. The ultimate goal in the design of speech codecs is to achieve

the best possible quality at low bit rates, with constraintson complexity and delay. Both sta-

tistical redundancy removal and perceptual irrelevancy removal are considered. First, speech is

produced by people as part of a physical process (air flow and moving muscles), and the corre-

sponding signal has certain properties (such as correlations) which can be exploited to do more

efficient processing. Also, speech is listened to by people and we can take into account the prop-

erties of human hearing system. Our ears are quite good but they are not perfect. In speech and

audio coding, to achieve good coding efficiency, processingmethods usually remove the per-

ceptually irrelevant information and enhance the perceptually sensitive information. Currently,

the psychoacoustic properties of human hearing are considered in both speech coding and audio

coding to reduce the information to be transmitted while maintaining good fidelity.

Adaptive postfiltering has been commonly applied in low bit ratelinear prediction analysis-

by-synthesis(LPAS) speech coders. Lower bit rates are usually associated with poorer speech

quality. Audible noise becomes more noticeable in the reconstructed speech at lower bit rates.
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Postfiltering is used to reduce this noise by exploiting psychoacoustic properties while not sig-

nificantly degrading speech.

1.1 Overview of Speech Coding

One possible way of lowering the bit rate in speech coding is to choose a low sampling frequency.

By far the two most popular choices of speech sampling frequency are 8 and 16 kHz. Codecs

using 8 kHz sampling frequency are referred to as narrowbandcodecs and those using 16 kHz

sampling frequency are called wideband codecs.

Most speech coding systems were designed to support telecommunication applications, with

the frequency contents limited to between 300 and 3400 Hz with 8 kHz sampling frequency. This

kind of speech is usually called narrowband telephone speech or narrowband speech. We will

only consider narrowband speech in our work.

Fig. 1.1 represents the encoder/decoder structure of aspeech coder. A digital speech signal

with 16 bits/sample (i.e. 16 bits× 8 kHz = 128 kbps) is the input to the speech coder. The

encoder attempts to reduce the bit rate. The output of encoder represents the encoded information

about the speech and should have substantially lower bit rate than that of the input. The decoder

takes the encoded bit-stream as its input to generate decoded speech signal, which is a discrete-

time signal having the same rate as the signal to the encoder.Different design approaches of

the encoder/decoder pair provide differing speech qualityand bit rate, as well as implementation

complexity.

Encoder

Input

speech

Encoded

 bit-stream
Output 

speech
Decoder

Fig. 1.1 Block diagram of a speech coder

All speech coders are designed to reduce the reference bit-rate of 128 kbps towards lower

values. Depending on the bit-rate of the encoded bit-stream, it is common to classify the speech

coders according to Table 1.1. Different techniques lead todifferent bit-rates.

According to coding techniques, modern speech coders are classified into following three

types [1, 2]:
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Table 1.1 Classification of speech coders by bit-rate [1]

Category Bit-Rate Range

High bit-rate >15 kbps
Medium bit-rate 5 to 15 kbps
Low bit-rate 2 to 5 kbps
Very low bit-rate <2 kbps

Waveform Coders As the name implies, the goal of waveform coding is to reproduce the orig-

inal waveform as accurately as possible. It is sample-by-sample coding and often not

speech-specific. Waveform coding can deal with non-speech signals without difficulty.

However, the cost of this fidelity is a relatively high bit rate. These coders work best at a

bit rate of 32 kbps and higher. Example coders of this class includepulse code modulation

(PCM),adaptive differential PCM(ADPCM) and subband coders.

Parametric Coders Speech is assumed to be generated from amodel, which is controlled by

someparameters. During encoding, parameters of the model are estimated from the input

speech signal frame-by-frame, and are transmitted after being coded. This type of coders

makes no attempt to preserve the original shape of the waveform. Perceptual quality of

the decoded speech is directly related to the accuracy and sophistication of the underlying

model. Speech quality tends to be synthetic and variable between speakers, although intel-

ligible. This coder is signal specific, having poor performance for nonspeech signals. The

most successful model is based onlinear prediction(LP). This type of coder works well at

low bit rates. Examples of this type areliner prediction coding(LPC) andmixed excitation

linear prediction(MELP) [3, 4].

Hybrid Coders This type combines features from both waveform coders and parametric coders

to provide good-quality, efficient speech coding. Like a parametric coder, it relies on a

speech model. During encoding, parameters of the model are estimated. Additional pa-

rameters of the model are optimized in such a way that the decoded speech is as close as

possible to the original waveform, with the closeness oftenmeasured by a perceptually

weighted error signal. As above in waveform coders, an attempt is made to match the

original signal with the decoded signal in the time domain. By an analysis-by-synthesis

technique, good quality coding is achieved at rates betweenabout 4 kbps and 16 kbps.

Coded-excited linear prediction(CELP) and its variants are the most outstanding represen-
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tatives [5–7].

For speech coding to be useful in public telecommunication applications, it has to be stan-

dardized (i.e. it must conform to the same algorithm and bit format) to ensure universal inter-

operability. Speech coding standards are established by various standards organizations [8], for

example, International Telecommunications Union, Telecommunications Standardization Sector

(ITU-T, formally CCITT), Telecommunications Industry Association (TIA), Research and De-

velopment Centre for Radio Systems (RCR) in Japan, EuropeanTelecommunications Standards

Institute (ETSI), and other government agencies.

Since CELP can achieve relatively high coding quality at thebit-rate range from 4 to 16 kbps,

CELP-based coders have been deployed in a wide range of recent standardizations including

ITU-T Recommendation G.723.1 at rate of 6.3/5.3 kbps and G.729 at rate of 8 kbps.

1.1.1 Speech Production Model

Human speech, which is represented by speech waveforms, is generated by a voluntary move-

ment of anatomical structures. A source-tract modelling iswidely used in speech coding. The

model is inspired by observations of the basic properties ofspeech signals and represents an at-

tempt to mimic the human speech production mechanism. The human vocal tract is an acoustic

tube, which has one end at the glottis and the other end at the lips. The vocal tract changes shape

continuously with time, creating an acoustic filter with a time-varying frequency response. As

air from the lungs travels through the tract, the frequency spectrum is shaped by the frequency

selectivity of the tract. By the action of the glottis constricting the air-flow from the lung period-

ically or not, the source signal is nearly-periodic or noise-like. The resonance frequencies of the

vocal tract tube are calledformant frequenciesor simply formants, which depend on the shape

and dimensions of the vocal tract.

The source-tract model leads to a representation that consists of a description of an excitation

(source) signal that is periodic or aperiodic and a time-varying linear filter that has a transfer func-

tion representing the vocal tract. The property of the excitation givesvoicedor unvoicedspeech.

In the time domain, voiced sound is characterized by strong periodicity present in the signal, with

the fundamental frequency referred to as thepitch frequency, or simplypitch. For adult males,

pitch ranges from 50 to 250 Hz, while for adult females the range usually falls somewhere in

the interval of 120 to 500 Hz [1]. Unvoiced sounds, on the other hand, are essentially random in

nature. The energy distribution of the speech signal in the frequency domain is controlled by the
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time-varying filter in this model. Linear prediction analysis is the most successful technique to

find the coefficients of the time-varying linear filter.

For most speech coders, the signal is processed on a frame-by-frame basis, where a frame

consists of a finite number of samples. The length of the frameis selected in such a way that the

statistics of the signal remain almost constant within the interval.

1.1.2 Speech Perception

A human auditory model is a mathematical model, which describes the behaviour of the human

auditory system. Human auditory models have been widely applied in audio coding to get near

transparent coding quality while saving bits. Also in speech coding, with the knowledge of how

sound is perceived, resources in the coding system can be allocated in the most efficient manner.

Our human ears are the ultimate receiver for sound. The pinnais the surface surrounding

the canal in which sound is funnelled [1]. Sound waves are guided by the canal toward the

eardrum—a membrane that acts as an acoustic-to-mechanic transducer. The sound waves are

then translated into mechanical vibrations that are passedto the cochlea through a series of bones

known as the ossicles. Presence of the ossicles improves sound propagation by reducing the

amount of reflection and is accomplished by the principle of impedance matching.

The cochlea is a rigid snail-shaped organ filled with fluid. Mechanical oscillations impinging

on the ossicle cause an internal membrane, known as thebasilar membrane, to vibrate at various

frequencies. Each point along the basilar membrane has a characteristic frequency to which it

vibrates maximally. A simple modelling technique is to use abank of filters to describe this

behaviour. Displacement of the basilar membrane at different places is sensed by the inner hair

cells and causes neural activities that are transmitted to the brain through the auditory nerve [9].

Along the basilar membrane, different points are affected differently depending on the fre-

quencies of the incoming sound waves. Hair cells located at different positions along the mem-

brane are excited by sounds of different frequencies. The neurons, which contact the hair cells

and transmit the excitation to higher auditory centres, maintain the frequency specificity. This

arrangement makes the human auditory system behave very much like a frequency analyzer. The

auditory system characterization is simpler if done in the frequency domain. The frequency res-

olution1 is greatest at low frequencies.

1The use of spectral components for the extraction of the biological meaning from communication sounds is built
upon the ability of the auditory systems to resolve frequency components of the sounds. The frequency resolution
or frequency selectivity of the human ear is its ability in detecting differences in pitch.
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Theabsolute threshold of hearingof a sound is the minimum detectable level of that sound

in the absence of any other external sounds [1]. It characterizes the amount of energy needed in

a pure tone such that it can be detected by a listener in a noise-free environment. The absolute

threshold of hearing is frequency dependent. The ear’s sensitivity is best for frequencies in the

range of 1 to 4 kHz, while thresholds increase rapidly at veryhigh and very low frequencies. It is

commonly accepted that below 20 Hz and above 20 kHz, the auditory system does not respond.

The absolute threshold of hearing can be applied in speech coding. Any signal with an inten-

sity below the absolute threshold need not be considered, since it does not have any impact on the

final quality of the coder.2 More resources should be allocated for the representation of the signal

within the most sensitive frequency range, since distortion in this range is more perceptible.

Maskingis a phenomenon in sensory perception. It is about a sound being inaudible because

of the presence of a stronger sound, and has received significant attention from researchers in

the field of psychoacoustics [12]. The stronger signal is called masker, while the masked signal

is referred asmaskee. A masking thresholdcorresponds to the increased threshold of audibil-

ity, resulting from a masker. The amount of masking is influenced by various factors including

signal level, frequency and duration. In general, masking capability increases with the relative

intensity of the masker. Masking theory is mainly used in audio coding and objective measures

of perceived audio quality [13]. Masking can also be exploited for speech coding developments.

For example, by analyzing the spectral contents of a signal,it is possible to locate the frequency

regions that are most susceptible to distortion. Perceptual weighting filtering and adaptive postfil-

tering have been widely used in speech coding, which are motivated from masking theory. More

will be discussed in Chapter 2.

1.2 Motivation and Objective of Our Research

Speech coding is a balancing game between quality, bit rate,delay and complexity [14]. The

quality is a function of the bit rate. In order to meet the strong need to have a common means for

communication, many speech coding standards have been created. These standards have been

widely used in speech communications.

2In the case of sound intensity, 0 dB sound pressure level (SPL) is chosen to be the average absolute threshold
of humans for a 1 kHz sinusoid [10]. The SPLs of all frequencies that have the same loudness as 0 dB SPL 1 kHz
sound form the absolute threshold of hearing. When designing signal processing algorithms, it is often not possible
to know beforehand the playback levels of signals. Therefore, a common assumption about the playback level is the
lowest possible signal power of a 1 kHz sound corresponds to approximately 0 dB SPL [11].
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A speech coder derives a set of parameters at the encoder to control a speech production

model at the receiver. The goal of speech coding is either to maximize the perceived quality at

a particular bit rate, or to minimize the bit rate for a particular perceptual quality. At low bit

rates, it is hard to get a good speech quality, so a trade-off is often found to satisfy the necessity

of a given application. With the development of sophisticated signal processing algorithms and

technologies, a lot of research has been done to reduce the number of parameters representing

speech signal at the encoder, while maintaining the coded speech quality. For a given bit rate, the

speech quality can be improved to some extent by employing more complex encoding algorithms.

Although changes in speech encoding are usually used to improve the speech quality, there should

be other means which can improve the coded speech without changing the speech coder structure.

In current LPAS speech coders, the properties of speech production, as well as the human

hearing system properties, are exploited. At low bit rates,there is still audible noise in the coded

speech. Postfiltering is a tool to reduce the coding noise in the decoded speech based on the local

characteristics of the speech spectrum at the decoder. It acts as an add-on component, which

makes it widely used in different types of speech coders withthe same general structure. Adaptive

postfiltering algorithm [15] achieves significant noise reduction without introducing significant

distortion in speech. Since its initial introduction, its variations have been successfully used in

many speech coding standards, such as ITU-T G.729 and G.723.1. However, the conventional

postfilter [15] still has problems comparing with the ideal postfilter3, which the conventional

postfilter is built on.

The conventional postfiltering is empirically designed by general masking phenomena con-

siderations. Although perceptual models have been successfully implemented in audio coding by

exploiting the masking property, specific perceptual models have not been applied in postfiltering

for speech coders. This motivates us to study an improved postfilter exploiting more precisely

perceptual properties. It is possible to design a postprocessor, which improves the coded speech

quality, with the same available information at the decoderas the conventional postfilter. We

believe that a better postprocessing paradigm exploiting the encoding information and the char-

acteristics of human hearing system can give an improved quality to the reconstructed speech.

The goal of our research is to develop a postfilter which incorporates the knowledge of percep-

tual properties. Comparing with the conventional postfilter [15], our postfilter uses some specific

perceptual properties to improve the coded speech quality.By using knowledge of the human

3An ideal postfilter should not alter the formant informationand should attenuate null information in the speech
spectrum in order to achieve reduction and produce better speech quality [16].
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auditory properties, it is expected that perceptual quality of the processed speech may sound bet-

ter than the conventional adaptive postfilter. The perceptual postfilter only uses the information

available at the decoder. The structure of the coding systemshould not be changed.

1.3 Thesis Contribution

In this thesis, we design a novel perceptual postfilter for low bit rate speech coders. The proposed

postfilter is based on the characteristics of the human hearing system. The proposed postfilter

is an add-on part and embedded in the decoder. The encoder is not modified and no extra side

information is sent to the decoder.

The originality of the proposed perceptual postfilter is a combination of the following two

features.

Perceptual Postfiltering

• A perceptual postfilter is derived from clean speech and its coded version based on the

properties of psychoacoustic models. It operates on a frame-by-frame basis. The postfilter

is then applied to the decoded speech to improve the speech quality. However, in practice,

we do not have the information about the perceptual postfilter gains at the decoder, if they

are not sent as side information by the encoder.

Optimal MMSE Estimator Based on GMM

• Without additional side information received, we estimatethe perceptual postfilter with an

optimalMinimum Mean Squared Error(MMSE) estimator with the available information

at the decoder. We use the available information as an “input” vector, and the percep-

tual postfilter gains as a “target” vector. A feature vector is constructed with “input” and

“target” vectors.

• In order to find a MMSE estimate of the “target” vector,a priori information of thejoint

probability density function(joint pdf) of the feature vector is required. AGaussian mixture

model(GMM) is used to model the joint density.



1 Introduction 9

1.4 Thesis Organization

This thesis consists of 6 chapters. Chapter 2 presents a brief review of adaptive postfiltering.

Starting with the fundamentals of LPAS speech coder, Chapter 2 discusses the algorithms of

adaptive postfiltering. It explains how the masking conceptis used in both encoder and decoder

to achieve better quality in low bit rate speech coding. Somemethods of speech quality measure

are also provided.

Chapter 3 introduces three popular psychoacoustic models.One masking model has applica-

tions in speech enhancement and coding noise control of speech and audio. The other two models

are used for objective perceptual quality measurement.

In Chapter 4, we describe our new perceptual postfilter. The idea of utilizing auditory proper-

ties for speech quality improvement is developed. The derivation of a novel perceptual postfilter

is presented.

Chapter 5 details the implementation of the proposed algorithm. A detailed description of the

system implementation is provided. ITU-T G.723.1 speech coder at rate of 5.3 kbps is examined.

The simulation and the comparison with the conventional adaptive postfilter is presented.

Finally, Chapter 6 concludes our work and presents future work directions.
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Chapter 2

Adaptive Postfiltering

In medium and low rate speech coding systems, most coders arebased on an underlying model

of the human speech production mechanism. The properties ofhuman auditory system have also

been considered. However, the perceptual properties are only implemented intuitively in speech

coding. Most speech coders operating below 8 kbps compromise quality. The degradation in

speech quality in low rate speech coders is ascribed to not only the coding method itself, but poor

approximation of the properties of the human hearing mechanism.

Adaptive postfiltering is proposed to perceptually suppress audible coding noise, which is

inevitable at low encoding rates. In speech perception, theformants of speech are perceptually

much more important than spectral valley regions. Conventional adaptive postfiltering algorithm

uses a strategy of sacrificing valley regions and preservingthe formants.

This chapter begins with a description of the popular linearprediction analysis-by-synthesis

(LPAS) speech coding. Perceptually motivated approaches in LPAS coders for lessening audible

coding noise—noise shaping and adaptive postfiltering—arediscussed. We will describe the

conventional adaptive postfilter and some of its variants.

2.1 Linear Prediction Analysis-by-Synthesis Speech Coding

LPAS speech coding utilizes short-term and long-term linear prediction models for speech syn-

thesis, and incorporates an excitation codebook which is searched during encoding to locate the

best excitation sequence. It is among one of the most influential ideas in speech coding. Many

standardized coders are based on LPAS principles.
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2.1.1 Analysis-by-Synthesis Principle

In parametric coders and hybrid coders, a combination of parameters is used to represent the

speech signal. A straightforward method to quantize each parameter is to compare its value to

stored values in a quantization table, and to select the nearest quantized value. The correspond-

ing index of this value is then stored or transmitted, and used to retrieve the quantized parameter

value for synthesis later. This quantization method is calledopen-loopquantization.Analysis-by-

synthesisis also known asclosed-loopquantization [2]. It selects the quantized parameter value

to synthesize a signal which gives the most accurate reconstruction of the original speech signal.

The analysis-by-synthesis procedure is most effective when it is performed simultaneously for a

number of parameters. The principle of an analysis-by-synthesis coder is illustrated in Fig. 2.1.

In the encoder, a decoding structure identical to that used at the decoder is incorporated. For each

of a large number of quantized parameter configurations, an error criterion comparing the origi-

nal and reconstructed signals is computed. This criterion is usually a frequency weightedmean

squared error(MSE) computed on the difference signal between the original and the recon-

structed signals. Based on this criterion, the best configuration of the quantized coder parameters

is selected and its index or indices are transmitted to the receiver. At the receiver, the decoder

uses the same decoding structure as in the encoder to reconstruct the original speech signal.

+Encoder Decoder

Error

Minimization

Input 

speech

Synthesized

speech

Error

Fig. 2.1 Diagram of a simplified analysis-by-synthesis coder

Properties of speech signals constantly change with time. Speech signals are usually pro-

cessed on a frame-by-frame basis. A frame consists of a certain number of samples. Within

this interval, speech properties remain roughly constant.Typically, the frame length is selected

between 10 and 30 ms, or 80 to 240 samples for narrowband speech sampled at 8 kHz.
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2.1.2 Linear Prediction (LP)

LP [17] is based on the high correlation of consecutive speech samples: a speech signal sam-

ple could be approximately predicted by a linear combination of its past values. This is called

short-timespectral analysis. The short-term correlations can be effectively removed from speech

signals with a linear analysis filterA(z)

A(z) = 1 −

p∑

i=1

aiz
−i, (2.1)

whereai, i = 1, 2, . . . , p, are the estimates of thelinear prediction coefficients. The coefficients of

this filter are typically updated frame-by-frame. It also gives an all-pole LP synthesis filter (often

called theLPC filter), 1/A(z). The spectrum of this LPC filter (called theLPC spectrum) is a

short-term estimate of the speech spectral envelope. The all-pole filter uses an orderp between 8

and 16. A prediction order of 10 is in general enough to capture the spectral envelope [2].

The all-pole modelling is usually derived from the autocorrelation sequence of a segment of

speech. The speech signals(n) is usually multiplied by a window functionw(n) with lengthN ,

within which speech is assumed quasi-stationary. The windowed speech segmentsw(n) is

sw(n) = s(n)w(n), 0 ≤ n ≤ N − 1. (2.2)

A window such as a Hamming or Hanning window is often used. Thevalue ofsw(n) is approxi-

mated by a linear combination of past values. Letŝw(n) denote the prediction

ŝw(n) =

p∑

i=1

aisw(n − i). (2.3)

The difference signale(n) is

e(n) = sw(n) − ŝw(n) = sw(n) −

p∑

i=1

aisw(n − i). (2.4)

The goal of LP is to minimize the total MSE of this segment

J =

N−1∑

n=0

e2(n) =

N−1∑

n=0

(
sw(n) −

p∑

i=1

aisw(n − i)
)2

. (2.5)



2 Adaptive Postfiltering 13

By minimizing the difference between the speech samples andthe estimated signal samples,

the linear prediction is formulated. The LP coefficients (LPCs) can be derived from [17]

p∑

i=1

aiR(k − i) = R(k), 1 ≤ k ≤ p, (2.6)

whereR(k) is the autocorrelation function of thesw(n) with R(k) =
∑N−1−k

n=0 sw(n)sw(n + k).

The linear spectral frequencies(LSFs) [18] are a popular parametric representation of the

LPC filter as an alternative to LPCs. The LSFs form the roots ofsymmetric and antisymmet-

ric polynomials constructed from LPCs. There is one-to-onecorrespondence between LPCs and

LSFs [18]. Due to many desirable properties (for instance, guaranteed stability of the resultant

synthesis filter after quantization), the LSFs have received widespread acceptance in speech cod-

ing applications.

The short-term synthesis filter models the short-term correlation (spectral envelope) in speech.

For a segment of a speech signal, its LPC spectrum models the frequency response of the vocal

tract while the fine structure in the Fourier spectrum is a manifestation of the source excitation

or driving function. The predictor filter tracks the time-varying characteristics of the vocal tract.

The effect of prediction in coding is the reduction of signalvariance (the prediction error signal

or residual has a smaller variance than that of the original signal) and whitening of the signal

spectrum (the error signal is largely uncorrelated since most the signal redundancy is represented

by the predictor coefficients). Fig. 2.2 shows a frame of voiced female speech with 180 samples

in the time domain and in the frequency domain. Fig. 2.2.a gives its time-domain waveform. In

Fig. 2.2.b, the corresponding spectrum is given. The LPC spectrum is also shown by the dashed

line. The peaks in the spectral envelope are called formants, and the low parts between adjacent

peaks are called valleys.

Fig. 2.3 shows the relationship between the LP analysis and synthesis filters. If the prediction

error signal is the input to the LP synthesis filter, i.e.u(n) = e(n), the original speechs(n) is

precisely recovered from the synthesized speechŝ(n).

Another type of LP used in speech coding is long-term LP. A long-term predictor targets cor-

relation between samples one pitch period apart. It is also calledpitch predictor.1 A commonly

1For easy description, only one-tap pitch predictor is presented. However, fractional delay pitch predictor and
multiple-tap pitch predictor are often applied in practical speech coders. Both of them are realized with multiple taps
and can achieve a higher prediction gain than one-tap pitch predictor of Eq. (2.7).



2 Adaptive Postfiltering 14

0 4.5 9 13.5 18 22.5
−0.2

−0.1

0

0.1

0.2

0.3

Time (msec)

A
m

pl
itu

de

(a) Time domain speech segment

0 1 2 3 4

−40

−20

0

20

Frequency (kHz)

A
m

pl
itu

de
 (

dB
)

(b) Frequency domain speech segment and its
envelope (dashed line)

Fig. 2.2 A segment of voiced speech in time domain and its spectrum
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Fig. 2.3 Diagram of LP filters

used pitch prediction filter with inputes(n) and outpute(n) is

H(z) = 1 − glz
−T , (2.7)

whereT is the pitch period andgl is the long-term gain. The procedure to determinegl andT

is referred to as long-term LP analysis. A long-term predictor predicts the current signal sample

from a past sample that is a one or more pitch periods apart. Let ês(n) denote the prediction of

es(n) by a long-term predictor

ês(n) = gles(n − T ). (2.8)

Within a given time interval of interest, parametersgl andT are found by minimizing the sum of
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the squared error

J =
∑

n

(
es(n) − ês(n)

)2
=

∑

n

(
es(n) − gles(n − T )

)2
. (2.9)

By differentiating Eq. (2.9) with respect togl and equating to zero to get the optimal long-term

gain, we have

gl =

∑
n es(n)es(n − T )∑

n e2
s(n − T )

. (2.10)

Substituting Eq. (2.10) back into Eq. (2.9) leads to

J =
∑

n

e2
s(n) −

(∑
n es(n)es(n − T )

)2

∑
n e2

s(n − T )
. (2.11)

An exhaustive search procedure can be applied to Eq. (2.11) to find the optimalT within a

possible pitch period range[Tmin, Tmax].

A pitch estimation, which is expressed as an integer multiple of the sampling interval, contains

a time quantization error. This error may lead to audible distortion. Also, for periodic signals, the

current period is not only similar to the previous one but also to periods that occurred multiple

periods ago. Eq. (2.11) of integer pitch period estimation may cause the phenomenon of pitch

multiplication and produce a multiple of the pitch period. Fractional pitch period is introduced

as a means to increase temporal resolution by allowing the pitch period to have a fractional part

plus the integer part [19]. Its introduction reduces both the reverberant distortion related to pitch

multiplication, as well as the roughness of speakers with short pitch period.

2.1.3 Linear Prediction Analysis-by-Synthesis (LPAS) Speech Coder

The excitation signal for the LP synthesis filter in a LPAS speech coder is generated by passing

each candidate excitation signal through the LP synthesis filter and comparing the synthesized

speech with the original speech. In modern speech coders, the excitation is generated from a

codebook or codebooks. The combination of the parameters from the codebook or codebooks

that gives the least MSE is chosen. A common LPAS coder is theCoded-Excited Linear Pre-

diction (CELP) coder. The excitation from CELP is composed of two components: anadaptive

codebookcontribution and afixed codebookcontribution. The adaptive codebook contribution

models the periodicity of the excitation signal which occurs for voiced speech. It approximates
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Fig. 2.4 Diagram of a generic LPAS speech coder

the excitation in the current subframe by a scaled segment ofpreviously constructed excitation.

The adaptive codebook plays the role of thepitch-predictor synthesis filter. The fixed codebook

is used to model the part of the excitation which the adaptivecodebook does not adequately

model. It generates a noise-like sequence which is superimposed on the adaptive prediction to

form a candidate excitation signal. Several successful models have been widely used, such as the

multi-pulse model [5], the regular-pulse model [20] and thealgebraic model [5, 6]. The algebraic

model is the most widely used and the corresponding LP speechcoder is called analgebraic-

CELP(ACELP) coder. Fig. 2.4 shows a generic LPAS speech coder.

Generally, the LPCs are estimated from the windowed original speech signal once per frame,

and then converted to LSFs and quantized. The excitation is determined and quantized over

blocks which are shorter in duration than the frame, and which are referred to as subframes.
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Almost all recent speech coding standards belong to the class of LPAS coders. This class

includes ITU Recommendations G.723.1 [5], G.728 [21] and G.729 [6] and all the current digital

cellular standards, such as EVRC [22] and SMV [7].

2.2 Distortions from LPAS Coders

LPAS speech coders can not give a satisfactory quality at bitrates below 8 kbps [1]. It suffers

from a degradation described as “roughness”. In voiced speech, this distortion is more noticeable

for female speech than for male speech. This can be partly explained by Skoglund and Kleijn

[23]. They studied the pitch-dependent temporal behaviourof masking. Their results show that

the auditory system sensitivity to low-frequency noise is strongest in the valleys between the har-

monics in the spectral domain for high-pitched sounds, while the sensitivity to high-frequency

noise is strongest in the valleys between the pulse peaks in the time domain for low-pitched

sounds. This gives a suggestion for speech coding. For female speakers, it is important to main-

tain the harmonic structure of the short-term Fourier magnitude spectrum at low frequencies but

that low accuracy suffices for the Fourier phase spectrum of the pitch cycle. For male speakers,

more bits should be allocated to the Fourier phase spectrum of the pitch cycle, but a degradation

in the harmonic structure is not audible.

In CELP speech coders, the MMSE criterion is used in the time domain for coding, which

means many bits are essentially spent on the description of the phase of the pitch-cycle waveform

for voiced speech. This makes the male speakers sound relatively good. However, the reconstruc-

tion accuracy of the harmonic structure of the short-term magnitude spectrum is relatively low in

CELP coders. This is a result of inadequate performance by the long-term predictor.

Kroon and Altal pointed out that two major facts cause the CELP coder distortion in [24]. One

fact is the shortcomings of the coding concept itself, and the other is the quantization of the side

information of LP coefficients and excitation parameters. The coder itself can not reproduce high

frequencies well and the rapid changes in the speech signal are not adequately tracked. Limited

size of the codebook and the block-adaptation of the coder parameters may be part of the reason.

In LPAS coders, the quantization errors often lead to a deemphasis of the formant structure of

the speech signal. This is shown in Fig. 2.5. After the quantization of LP coefficients of a voiced

frame by ITU-T G.723.1 at rate of 5.3 kbps, the formants become lower and a bit wider.
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Fig. 2.5 LP Spectra and its quantized version (dashed line)

2.3 Masking

All waveform coders, which use properties of human hearing to keep the perceptual distortion

low, rely on auditory masking. Masking is the property that one signal, themasker, can render

another signal, themaskee, inaudible [2]. In the case of speech and audio coding the masker is

the input signal and the maskee is the error signal or coding/quantization noise, ass(n) ande(n)

shown in Fig. 2.4.a.

Masking phenomena are common in sensory perception. Masking reflects limited frequency

and temporal resolutions of human hearing system. Generally, there are two masking effects:

simultaneous maskingandtemporal masking. Simultaneous masking occurs when two or more

stimuli in different frequencies are presented at the same time. It is the most significant masking

property, since it produces the largest amount of masking. Temporal masking occurs when the

masker and maskee have a temporal offset with respect to eachother. The masker and the maskee

are presented close in time, but not simultaneously. When the maskee is presented prior to the

masker onset, it is calledbackward masking(see [25]), whileforward maskinghappens when

the maskee is present after the masker is turned off. Backward masking is considered far less

important. Forward masking is the more prominent form of temporal masking.

As we discussed in Chapter 1, an isolated stimulus is audibleif it has a sufficiently high level

and a frequency content that falls within the audible range.This is measured by theabsolute

threshold of hearing. In a masking condition, for the stimulus to be audible in thepresence of a
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masker, its level has to be higher than the so-calledmasking threshold. Masking threshold is the

combination effect of both simultaneous masking and temporal masking as well as simultaneous

maskers. An optimal coding scenario is that all coding noiselies below the masking threshold.

However, only the masking concept and the empirical maskingproperties are adopted in speech

coding standards and the “true” masking threshold is never computed.

2.4 Perceptual Properties Applied in LPAS Speech Coders

Speech coding is related to human perception, and thereforea degree of fuzziness exists, in

the sense that no absolute right or wrong can be established for certain situations. Therefore,

solutions are often presented and justified on an empirical basis.

Lowering the bit rate of a codec by employing powerful codingtechniques will result in

higher distortion, but, by exploiting knowledge about the human auditory system, techniques that

mask the distortion can achieve high perceptual quality at lower bit rates. Two perceptually-

based approaches are widely use in LPAS speech coders:noise spectral shapingandadaptive

postfiltering. At low encoding rates, it is impossible to push all of the coding noise under the

masking threshold in both formant and valley regions. Noisespectral shaping is used to make

the coding noise to follow the speech LP spectrum. A perceptual weighting filter is applied in

a speech encoder to shape the coding noise. This is based on the assumption that the original

speech has most of its energy in the spectral formant regions, and more noise is masked in these

regions. Noise spectral shaping alone is not sufficient to make the coding noise inaudible at low

coding rates. Lowering noise components at certain frequencies can only be achieved at the price

of increased noise components at other frequencies [15]. Itis very difficult to force noise below

the masking threshold at all frequencies at a low bit rate. While the coding noise spectral shaping

follows the speech spectrum, most of the perceived coding noise comes from spectral valleys,

including the valleys between pitch harmonic peaks. However, an adaptive postfilter [15] is

introduced to attenuate these noise components at the speech decoder output. A useful postfilter

may attenuate the frequency components between pitch harmonics as well as the components

between formants, while the spectral envelope peaks corresponding to the formants have roughly

the same height as before the postfilter. However, noise spectral shaping in coding only affects

coding noise, while adaptive postfiltering in decoding has to modify both speech and noise.

Fig. 2.6 illustrates the LPAS speech coder that incorporates the perceptually-motivated ap-

proaches:perceptual weighting filterat the encoder andadaptive postfilterat the decoder.
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Fig. 2.6 Diagram of a LPAS speech coder with perceptual approaches

2.4.1 Noise Shaping

Auditory masking theory motivates the use of noise shaping in speech encoding. An unweighted

MMSE criterion for speech signal does not ensure perceptually low distortion. It is important

to consider the relationship between the spectrum of the quantization noise and the spectrum of

the speech signal to achieve perceptually low distortion. Since most of the noise in the formant

regions could be partially or totally masked by the speech, alarge portion of perceived noise

comes from spectral valleys.

Atal and Schroeder [26] proposed noise spectral shaping first in 1979. The basic idea is to

shape the spectrum of the coding noise so that it follows the speech spectrum to some extent.

Due to the masking effect of human auditory system, the spectrally shaped coding noise is less
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audible to human ears. In modern LPAS speech coders, aperceptual weighting filteris widely

used. It has the form of

W (z) =
A(z/γ1)

A(z/γ2)
, (2.12)

where0 < γ2 < γ1 < 1, andA(z) is the LP analysis filter that is defined in Eq. (2.1). The

perceptual weighting filter shapes the coding noise to follow the trend of the spectral peaks and

valleys of the speech spectrum, which gives a no-longer white coding noise and makes the coding

noise less audible to human ears. In ITU-T G.723.1 [5], the perceptual weighting filter has

γ1 = 0.9 andγ2 = 0.5. Fig. 2.7 shows the frequency response of the perceptual weighting filter

with the LP spectrum from Fig. 2.2.

0 0.5 1 1.5 2 2.5 3 3.5 4
−20

−10

0

10

20

30

Frequency (kHz)

A
m

pl
itu

de
 (

dB
)

Fig. 2.7 Perceptual weighting filter response (dashed line) corresponding to the LP
spectrum (solid line)

While properly tuned, the perceptual weighting filter allows more noise in the formant re-

gions, but below the masking threshold, and decrease the amount of quantization noise in the

spectral valleys. The noise components in some valley regions may exceed the masking thresh-

old. This audible noise affects the perceptual quality of the speech.

2.4.2 Adaptive Postfiltering

Postfiltering is used as a postprocessing technique at the decoder to enhance the reconstructed

speech. According to Chen [15], Smith and Allen first proposed a postfilter in 1981 for en-

hancing the output of an adaptive delta modulation. The usage became popular until 1984 when
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Ramamoorthy and Jayant proposed a new postfiltering technique in [27] to move the poles and

zeros of the synthesis filter radially toward the origin by suitably chosen factors. It was further

developed in [28, 29]. Adaptive postfiltering was first combined with noise spectral shaping in a

speech coder in 1986 by Yatsuzuka, Iizuka and Yamazaki [30].They were also the first to pro-

pose explicitly an additional long-term postfilter sectionbased on the pitch periodicity in speech.

However, the postfilters mentioned above had a muffling (low-pass) effect of the speech sound.

Chen proposed a postfilter which significantly reduced the low-pass effect in [31] in 1987. This

postfilter was elaborated in [15]. Since 1987, the use of the postfilter proposed by Chen in CELP-

like coders has become very popular. It has become a common part of speech coding standards

based on LPAS .

An adaptive postfilter is preferred due to the variations of the local characteristics of speech

spectrum. It is usually used on a frame-by-frame basis, and thus is based on the local character-

istics of the speech spectrum. Adaptive postfiltering is based on empirical results for low bit rate

coders [15]: a) the masking threshold follows to some extentthe spectral peaks and valleys of

the speech spectrum; b) the noise shaping by a perceptual weighting filter at the encoder makes

the coding noise fall below the masking threshold around thespectral peaks but appear above the

masking threshold in the spectral valleys. While attenuating audible noise in some valley regions,

the speech components in these regions will also be attenuated. Fortunately, the intensity of the

spectral valleys can be altered as large as 10 dB without any audible effect [32]. Therefore, by

doing so, the postfilter can achieve a substantial noise reduction with only minimal perceptual

distortion of the speech itself. Unlike weighting at the encoder (where the clean speech signal is

available) which shapes the coding noise only, postfiltering at the decoder affects both the speech

and the coding noise. It is a compromise between speech distortion and noise reduction. Other

than the conventional postfilter by Chen, other postfiltering algorithms were also proposed by

researchers in [16, 33, 34].

2.5 Adaptive Postfiltering

We will discuss conventional postfiltering [15] in detail inthis section. Some variations [16, 34]

will also be introduced.



2 Adaptive Postfiltering 23

2.5.1 Conventional Postfilter

According to speech perception, the formants of speech are perceptually much more important

than spectral valley regions. At low coding rates, even though a perceptual weighting filter is

applied, it is impossible to push all the noise components below the masking threshold. The

noise components in some of the valley regions may exceed thethreshold, which makes most

of the perceived coding noise coming from spectral valleys,including the valleys between pitch

harmonic peaks. As mentioned in Section 2.2, in LPAS speech coding, quantization errors often

lead to a deemphasis of the formant structure and a decreasedperiodicity. To have more flexibility

in the shape of the postfilter, the adaptive postfilter proposed in [15] contained elaborate short-

term and long-term postfilter sections which achieved significant noise reduction by emphasizing

the formant structure and increasing the periodicity, respectively. A general postfilter transfer

function is given by

H(z) = GHl(z)Hs(z), (2.13)

whereHl(z) represents a long-term postfilter,Hs(z) represents a short-term postfilter andG is

an overall gain factor. The long-term postfilter emphasizespitch harmonics and attenuates the

spectral valleys between pitch harmonics. It is also calleda pitch postfilter. On the other hand,

the short-term postfilter emphasizes speech formants and attenuates the spectral valleys between

formant. It is also called aformant postfilter.

The general postfilter depends on both the short-term and long-term correlations in the speech

signal. This information usually is transmitted to the decoder in most LPAS coders. However, the

postfilters can derive this information from the decoded speech signal. In some implementations

it was found that, even when the parameters are transmitted,it is better to recompute them,

to take into account the interaction effects with the excitation signal [2]. Moreover, in many

implementations the postfilter is integrated with the decoder synthesis filter and does not just

operate on the reconstructed output signal. For example, long-term postfiltering is usually done

on the excitation signal, so that the LP synthesis filter can smooth out discontinuities, which

appear at frame boundaries where the long-term postfilter isupdated. This is the case in a number

of standard speech coders [5–7].
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Short-Term Postfilter

The frequency response of an ideal short-term postfilter should follow peaks and valleys of the

spectral envelope of speech without giving an overall spectral tilt. Since the LP synthesis filter

spectrum closely follows the spectral envelope of the inputspeech, it is natural to derive the

short-term postfilter from the LPC predictor. Conventionally, a short-term postfilter is given by

[15]

Hs(z) =
A(z/λ1)

A(z/λ2)
(1 − µz−1), (2.14)

where0 < λ1 < λ2 < 1. The optimal values ofλ1 andλ2 depend on the bit rate and the type of

the speech coder used. They generally need to be determined empirically based on subjective lis-

tening tests. The difference betweenλ1 andλ2 introduces a low pass spectral tilt in the spectrum,

which makes the voiced speech muffled. The first-order filter with a transfer function(1−µz−1)

is used to reduce the lowpass effect. It is referred to as the tilt-compensation filter. It is usually

made to be adaptive to better track the spectral tilt ofA(z/λ1)/A(z/λ2). For example, in ITU-T

G.723.1 [5], the short-term postfilter is given by the following equations:

Hs(z) =
A(z/λ1)

A(z/λ2)
(1 − 0.25k1z

−1), (2.15a)

k1 =
3

4
k1old +

1

4
k, (2.15b)

whereλ1 = 0.65, λ2 = 0.75, k is the first reflection coefficient andk1old is the value ofk1 from

the previous subframe.k = R[1]/R[0] is estimated from a subframe of the synthesized speech.

R[0] and R[1] are the autocorrelation values of the corresponding subframe. In Eq. (2.15a), the

tilt factor is made adaptive as a function of the overall spectral slope of the input signal.

Long-Term Postfilter

The function of a long-term postfilter is to attenuate frequency components between pitch har-

monic peaks. Also, no overall spectral tilt should be introduced. Such a long-term postfilter is

typically derived from the pitch predictor. Since zeros in atransfer function can provide more

flexibility and more control of the frequency response, the long-term postfilter with both poles



2 Adaptive Postfiltering 25

and zeros can be represented by the following function

Hl(z) = Gl
1 + α1z

−T

1 − α2z−T
, (2.16)

whereGl is an adaptive scaling factor,T is the pitch period and0 < α1, α2 < 1. The coefficients,

Gl, α1 andα2, are determined by the degree of periodicity in speech. In ITU-T G.723.1 [5], the

long-term postfilter is of the form

Hl(z) = Gl(1 + α1z
−T ), (2.17)

whereGl is an overall gain which is chosen to make the energy of the output signal equal to the

energy of the input signal, andα1, T are derived from the decoded excitation signal.Gl is the

square root of the ratio between the energies of the input signal and the postfiltered signal.T can

only be positive [5, 35].

From Eq. (2.16), the long-term postfilter has its own scalingfactor Gl, but the short-term

postfilter does not have a similar scaling factor. In general, the power gain of the short-term

postfilter would be high for those speech frames where the prediction gain of the LPC predictor

is high, and vice-versa. The gain factorG in Eq. (2.13) is needed to ensure that the energy of the

postfiltered signal is the same as that of the input signal before postfiltering. To avoid possible

discontinuities, the scaling factor is lowpass filtered. For example, in [5], the gain is updated on

a sample by sample basis using

g(n) = ag(n − 1) + (1 − a)gs, (2.18)

wheregs is the square root of the ratio between the energies of the input signal and the short-term

postfiltered signal anda = 15/16. Each sample of the short-term postfiltered output signal is

multiplied with the corresponding value ofg(n).

Fig. 2.8 shows an example of the postfilter frequency response of Eq. (2.13) for a segment of

voiced speech.

The conventional postfiltering technique has been implemented successfully. It has been

widely used in modern speech coders such as ITU-T Recommendation for multimedia commu-

nication G.723.1 [5] and G.729 [6].
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Fig. 2.8 An example of speech spectrum and the corresponding overallpostfilter
frequency response (dashed line)

2.5.2 Adaptive Formant Postfilter Proposed by Mustapha and Yeldener [16]

Conventional postfiltering uses the same constants,λ1 andλ2, for all of the formants and causes

the formants to be weighted in the same way. However, it is difficult to adapt these coefficients

from one frame to another and still produce a postfilter without spectral tilt. Conventional time-

domain postfiltering produces varying spectral tilt from one frame to another affecting speech

quality. The parameters of the high-pass tilt compensationfilter are difficult to control well. The

purpose of the tilt-compensation filter in Eq. (2.14) is to compensate the tilt of the first part of

Eq. (2.14) so as to reduce the lowpass effect. The coefficientµ is made adaptively proportional

to the first reflection coefficientk. For highly correlated voiced frames,k = R[1]/R[0] ≈ 1. For

properλ1 andλ2, the resulting postfilter tends to have less spectral tilt, but preserves the peaks

and valleys. For unvoiced frames, however, the magnitude ofk tends to decrease, andk might

change from positive to negative. This is due to the fact thatcorrelation among adjacent samples

is weakened. Also, the spectra of unvoiced frames tend to develop a high-pass tilt. Therefore, it

is better to either diminish the amount of tilt compensationor even change to lowpass filtering in

order to cancel the high-pass tilt [1]. However, this is not an easy task.

The performance of conventional postfiltering is not optimal without adjusting the postfilter

parametersλ1 andλ2 (see [36]). Mustapha and Yeldener [16, 37] developed a new time-domain

postfiltering technique which eliminates the problem of spectral tilt in speech spectrum and can

be applied to various speech coders. This postfilter uses thepole information in the LPC spectrum
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and finds the relation between poles and formants. The formants, nulls and their bandwidths are

first found to get a desired postfilter response. A modified least squares approach based on the

modified Yule-Walker (MYW) method is used to give a postfilterwith better speech quality than

the conventional technique.
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Fig. 2.9 LP frequency spectrum for the modified Yule-Walker method [16]

The new postfilter is based on the MMSE approach as

E =
L−1∑

k=0

(
d(n) − h(n)

)2
, (2.19)

whered(n) andh(n) are the impulse responses of the desired and estimated postfilters, respec-

tively. The transfer function of the estimated postfilter based on MYW filter is

H(z) =
B(z)

A(z)
=

b0 +
N∑

k=1

bkz
−k

1 +

M∑

k=1

akz
−k

. (2.20)

In the desired postfilter, the aim is to preserve the formant information. Therefore, the post-

filter has a unity gain in the formant regions of spectrum. Outside of the formant regions, the aim

is to have some controllable attenuation factor,τ , that controls the depth of the postfiltering. In

[16], τ is set to 0.6. However,τ is adaptable from one frame to another depending on how much

postfiltering is needed and the type of the speech coder used.For a LPC spectrum as Fig. 2.9, the
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frequency response of the desired postfilter is shown in Fig.2.10.
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Fig. 2.10 Frequency response of postfilters (the modified Yule-Walkermethod [16])

The denominator coefficients of the filterA(z) are computed from the autocorrelation method

for LP. The autocorrelation coefficients are derived from the power spectrum of the desired post-

filter by inverse Fourier transformation. The numerator coefficients of the filterB(z) are com-

puted as in [38]. This postfilter has a flat frequency responsethat overcomes the spectral tilt

and other problems present in conventional postfilter mentioned earlier. Fig. 2.10 also shows the

frequency response of the estimated postfilter and the conventional short-term postfilter with cor-

responding LPC spectrum in Fig 2.9. It is clear that the formant peaks are flat in the frequency

response of the new MYW postfilter, while those of the conventional one are not. The new and

conventional postfilter LPC spectra are shown in Fig 2.11. Itis also clear that the new postfilter

has no spectral tilt at all comparing with the original LPC spectrum, while the conventional one

has a spectral tilt. The new postfilter has the desired property of preserving the formant peaks

and attenuating the nulls. Furthermore, the attenuation ofnulls is more controllable in the new

postfilter than the conventional one.

2.5.3 Adaptive Pitch Postfilter Proposed by Kleijn [34]

In order to emphasis the coded speech spectrum to improve thequality, Kleijn [34] gave an

enhancement algorithm based on constrained optimization to enhance speech fine structure. It can

be considered as a long-term postfilter. The spectral fine structure offers particular large potential

for enhancement because of the large dynamic range of the harmonic structure of voiced speech.
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Fig. 2.11 Postfiltered LPC spectra (for the modified Yule-Walker method [16])

Conventional adaptive postfilters often give a spectral emphasis that is too strong or too weak

within different segments of a signal. [34] also points out that the time synchronization between

the spectral envelope and the spectral fine structure is generally incorrect in current fine-structure

postfilters, because the inherent delay is neglected.

The criterion is to increase the periodicity of the speech signal on a block-by-block basis.

Two constraints are applied. One is to ensure the preservation of the signal power, and the other

is a modification constraint to ensure that the power of the difference signal between the en-

hanced and unenhanced signal is less than a fraction of the power of the unenhanced signal. This

method can increase the periodicity of voiced speech segment, while unvoiced speech segments

are perceptually unaffected due to the modification constraint.

Let sj be a discrete speech segment ofK subsequent speech samples, with time labelj. sj,m

denotes a sample sequence ofK samples, and each sample in this sequence ism pitch cycles

removed from the corresponding sample of the sequencesj = sj,0. sj,m andsj,m+1 can overlap.

Let ŝj be the enhanced segment corresponding tosj. The measure of periodicity of the enhanced

signal is given as

ηJ =
∑

j∈J

∑

m∈I−{0}

αm〈ŝj, ŝj,m〉, (2.21)

with constraints:

‖ŝj‖ = ‖sj‖, (2.22a)

‖sj − ŝj‖
2 ≤ β‖sj‖

2, (2.22b)
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whereαm describes a discrete window function,I is a set of integers that describes the support

of this window (e.g.,I = {−3,−2, · · · , 3}, 〈·, ·〉 is the Euclidean inner product,‖ · ‖ denotes

the Euclidean norm (〈s, s〉 = ‖s‖2), andJ is a set of consecutive-block indices. The window

{αm}m∈I should be defined based on perception andβ ∈ [0, 1]. The criterion in Eq. (2.21) can

be maximized by iteratively maximizing the criteria

ηj =
∑

m∈I−{0}

αm〈ŝj , sj,m〉. (2.23)

In order to simplify the procedure, one iteration for eachηj defined in Eq. (2.23) is maximized

based on the originalsj,m. The constraints are applied to the individual optimizations.

This algorithm has been implemented in iLBC [39] for Internet coding of 8 kHz sampled

speech by Global IP Sound (GIPS). The sequence lengthK = 80, and{αm}m∈I is set to a

Hanning window with seven-sample support. The parameterβ is set to 0.05, corresponding

to a signal to modification power ratio of about 13 dB. The constraints contribute to inherent

robustness by preventing large changes to the signal.

2.6 Speech Quality Assessment

Speech quality assessment is of primary concern in speech coding and speech enhancement.

There are many dimensions in quality perception, andintelligibility andnaturalnessare the most

important. In digital communications speech quality is classified into four general categories

[40]:

• commentary or broadbandquality refers to wide-bandwidth (typically 50–7000 Hz, but

20–20,000 Hz for compact disk) high-quality speech that cangenerally be achieved at

rates, at least 32–64 kbps

• network or toll or wirelinequality describes speech as heard over the switched telephone

network ( approximately the 300–3400 Hz bandwidth range, with a signal-to-noise ratio of

more than 30 dB and with less than 2–3% harmonic distortion).It can be achieved at rate

between 8 kbps and 32 kbps.

• communicationsquality implies somewhat degraded speech quality which is natural and

highly intelligible. Communications speech can be achieved at rates above 4 kbps.
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• syntheticspeech is usually intelligible but can be unnatural and associated with a loss of

speaker recognizability.

To establish a fair means of comparing speech coding or enhancement algorithms, a variety

of quality assessment techniques have been formulated. Generally speaking, tests fall into two

classes:subjective quality measuresandobjective quality measures. Subjective measures are

based on comparisons of original and the processed speech bya listener or group of listeners, who

subjectively rank the quality of speech along a predetermined scale. Objective quality measures

are based on a mathematical comparison of the original and the processed speech signals. Most

objective quality measures quantify quality with a numerical distance measure or a model of how

the auditory system interprets quality.

2.6.1 Subjective Quality Measures

In subjective testing, the individual ratings are gatheredand averaged to yield the final score. The

test is normally done for a wide variety of conditions so as toobtain a general performance appre-

ciation for a particular coder. There are three commonly used procedures to perform subjective

testing [1]

• Absolute Category Rating(ACR): The listeners are required to make a single rating for

each speech passage. Five choices are given in Table 2.1. Theaverage of all votes is

known as themean opinion score(MOS). The MOS is a widely used measure to quantify

coded speech quality. It usually involves 12–24 listeners.

Table 2.1 MOS Five-Point Scale [40]

Rating Speech Quality Level of Distoriton

5 Excellent Imperceptible
4 Good Just perceptible but not annoying
3 Fair Perceptible and slightly annoying
2 Poor Annoying but not objectionable
1 Bad Very annoying and objectionable

• Degradation Category Rating(DCR): In this test, the listeners are presented with the origi-

nal signal as a reference before they listen to the syntheticsignal, and are asked to compare

the two and give a rating according to the amount of degradation perceived. The five
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choices are given in Table 2.2. The average of all votes is known as the degradation mean

opinion score (DMOS).

Table 2.2 DMOS Five-Point Scale [1]

Rating Level of Degradation

5 Not perceived
4 Perceived but not annoying
3 Slightly annoying
2 Annoying
1 Very annoying

• Comparison Category Rating(CCR): In the DCR test, the final score might be biased

because of the order by with the speech materials are presented. A better approach is to

present two samples and ask the listeners to compare and ratethe second with respect to

the first. The order of the original speech and the processed speech can be made arbitrary

or random. The choices are given in Table 2.3.

Table 2.3 CCR Scale [1]

Rating Level of Comparison

3 Much better
2 Better
1 Slightly better
0 About the same
-1 Slightly worse
-2 Worse
-3 Much worse

Pair comparison [8], sometimes called A-B test, is also commonly used for informal speech

quality tests. In the pair comparison test, each test utterance is compared with various other

utterances, and the fraction that the test utterance is judged to be better than the other utterances

is calculated as the preference score.

Since the goal for coding and enhancement is to produce speech that is perceived by the au-

ditory system to be natural and free of degradation, it is understandable that subjective quality

measures are the preferable means for quality assessment. However, it is clear that subjective
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tests are expensive to implement and highly time consuming.Therefore, it is desirable to build

objective evaluation methods producing evaluation results which correspond well with the sub-

jective evaluation results. Current research efforts are being directed toward perceptually-based

objective measures.

2.6.2 Objective Quality Measures

Objective speech quality measures are reliable, repeatable, easy to implement and in some cases

have been shown to be good predictors of subjective quality.

In the time domain, some forms of signal-to-noise ratio are the major types of objective

measures.

• Signal-to-Noise Ratio(SNR) The SNR is the most widely used measure for analog and

waveform coding systems. Given the original speechx(n) and the processed versiony(n),

the SNR is defined by

SNR= 10 log10

(
∑

n

x2(n)

∑

n

(
x(n) − y(n)

)2

)
(2.24)

with the range of the time indexn covering the measurement interval.

• Segmental Signal-to-Noise Ratio(SEGSNR) The SNR is a long-term measure for the ac-

curacy of speech reconstruction. It tends to ignore temporal noise, which could affect the

perceived quality significantly. SEGSNR is a frame-based measure. It is an average of SNR

values obtained from isolated frames, with the frame being ablock of samples (typically

15–25 ms). The definition of SEGSNR is

SEGSNR=
1

N

N∑

m=1

SNRm, (2.25)

where SNRm is the SNR value of themth frame. SEGSNR compensates for the underem-

phasis of the weak-signal performance in conventional SNR measure.

The SNR and SEGSNR are only meaningful for waveform reconstruction. They are ex-

tremely sensitive to waveform misalignments and phase distortion, which are not always per-
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ceptually relevant [1]. However, most low bit rate coders donot preserve the original speech

waveform. For low bit rate coding, LPC spectrum preservation is essential to perceived quality.

Some distortion measures in spectral domain, such asItakura Measure, Log Spectral Distortion

MeasureandWeighted Euclidean Distance Measure[41], have been proposed for low bit rate

coders. These objective measures are based on the comparison of LP spectra of the original

speech and the processed speech.

In speech processing, the root-mean-square (RMS) log spectral measure is used to determine

the error or difference between two spectral models on a log magnitude versus frequency scale

[41]. A similar measure is thespectral distortion(SD) [1], which has become the standard

measure for evaluating the performance of spectrum coding.SD is defined as

SD2 =
1

2π

∫ 2π

0

(
10 log10

S(ejω)

S̃(ejω)

)2

dω, (2.26)

whereS(ejω) andS̃(ejω) are thepower spectral densities(PSDs) of the original and estimated

synthesis autoregressive signals with LP coefficientsai, ãi, i = 1, 2, · · · , p, and input noise vari-

ancesg, g̃, respectively, for a current frame. Thus

S(ejω) =
g

|A(ejω)|2
, (2.27)

S̃(ejω) =
g̃

|Ã(ejω)|2
, (2.28)

A(z) = 1 +

p∑

i=1

aiz
−i, Ã(z) = 1 +

p∑

i=1

ãiz
−i,

wherep is the prediction order.

When the integral in Eq. (2.26) is approximated in practice by aNF -point fast Fourier trans-

form (FFT), the relation in Eq. (2.26) may be rewritten for full-band spectral distortion as

SD2 =
1

NF /2 + 1

NF /2∑

k=0

(
10 log10 S(ejωk) − 10 log10 S̃(ejωk)

)2

. (2.29)
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In practice, it is often written as

SD2 =
1

n1 − n0

n1∑

k=n0

(
10 log10 S(ejωk) − 10 log10 S̃(ejωk)

)2

, (2.30)

where0 ≤ n0 ≤ n1. Typically, if the sampling frequency isfs, for fs = 8 kHz,n0 = 4, n1 = 100,

andNF = 256, so that only the spectrum values between 125 Hz and approximately 3.1 kHz are

taken into account for the computation of SD. Thus only the most perceptually sensitive part of

the spectrum is considered.

The average SD has been used extensively to measure the performance of LP coefficient

quantizers. It is highly desirable to reduce the average SD as well as the number of outlier

frames. However, SD does not account for the frequency-domain or time-domain masking effects

of the human auditory system. Therefore, it might not totally correlate with subjective evaluation

results.

The objective measures mentioned above are only related to anumeric distance, while the

perceptual properties of the human ear are ignored. Ideally, the outcomes of the objective tests

should be highly correlated with the subjective test scores. Since the 1980s, the ITU has been

investigating many proposals for objective quality measurements based on psychoacoustic sound

perception modelling. Objective quality measurements should give a MOS value. The most

well-known one is the ITU-T Recommendation P.861 [42], theperceptual speech quality measure

(PSQM) algorithm, which is correlated well with the subjective quality of coded speech. In 2001,

ITU-T finalized another refined method through recommendation P.862 [43] to replace P.861, and

make it suitable for real systems which include filtering andvariable delay, as well as distortions

due to channel errors. ITU-T P.862 uses thePerceptual Evaluation of Speech Quality(PESQ)

algorithm for cognitive perceptual model. For wide band audio codecs, ITU-R recommended the

PEAQ algorithm implemented in recommendation ITU-R BS.1387 [13].
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Chapter 3

Psychoacoustic Models

Nowadays, audio coding applications often use a psychoacoustic model. Our human ear is a

rather complex system. To model the human auditory system, masking models are usually ap-

plied [13, 44, 45]. A masking model delivers a masking threshold along with the amount of the

allowable distortion in the frequency domain. Signal energy lying below the masking threshold

is inaudible. In audio processing, masking is used for bit allocation and audio enhancement.

Another field of extensive interest of psychoacoustic models is objective measurements of

perceived speech and audio quality. In speech and audio coding, the quality can be determined

either objectively or subjectively. Subjective tests are difficult to reproduce. It is also expensive,

and time consuming. Therefore, objective quality measurement methods are in great demand.

Objective methods map the signals for comparison onto an internal representation which is as

close as possible to the subjective quality domain. Variousperceptual models have been proposed

with different levels of accuracy and complexity. ITU has proposed some recommendations for

speech and audio codecs, such as ITU-T Recommendation P.862(PESQ) for speech, and ITU-R

Recommendation BS.1387 (PEAQ) for audio.

This chapter will present three auditory models. One model,Johnston’s model, is related

to audio coding. The other two models, PAQM and PESQ, are related to objective perceptual

measure of audio quality.

3.1 Critical Bands

The frequency resolution of our human ear is represented bycritical bands, which have nonlinear

mapping to the frequency value (Hz) of the stimulus. The ear integrates signal energy within a
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critical band, which makes it difficult to separate signals within one critical bandwidth for a

human observer. The overall energy of the masker affects perception. Critical bands correspond

to approximately 1.5 mm spacings along the basilar membraneand are scaled byBark. One

Bark spans the width of a critical band. A Bark bandwidth is smaller at low frequencies (in Hz)

and larger at high ones. Schroeder et al. [46] proposed an expression to relate the frequency and

critical band rate

z = 7 arcsinh(f/650). (3.1)

It is almost linear below 500 Hz and exponential above 1 kHz. There are also other expressions

for Hz to Bark transformation, such asequivalent rectangular bandwidth(ERB) [12].

3.2 Johnston’s Masking Model

A masking threshold is derived by weighting an excitation pattern, which is obtained by fre-

quency and time domain spreading. The excitation pattern predicts the physical activity of hair

cells along the basilar membrane in the ear. Johnston [44] proposed a masking model to shape

the quantization noise to below the masking threshold in a transform coder. It operates on 64 ms

frames of 15 kHz audio signals which are sampled at 32 kHz. Thesquare root of a Hanning win-

dow is used for the 1/16th overlapped section of each frame. This model calculates the short-term

spectral masking threshold to determine the noise-shapingfunction for the coder.

Given theNF -point discrete Fourier transform (DFT) coefficients of thewindowed signal

framexw(n) areX(k), the short-term power spectrum isXp(k) = |X(k)|2, k = 0, 1, · · · , NF /2.

First, thecritical band analysisis done by calculating the energy presented in each criticalband.

Xb(i) =

bhi∑

k=bli

Xp(k), (3.2)

wherebli andbhi are the lower and upper boundaries of critical bandi, respectively, andXb(i) is

the energy in critical bandi, wherei = 1 to imax, andimax is dependent on the sampling rate.

For this model there are 26 critical bands in the 15 kHz bandwidth, i.e.,imax = 26.

Each critical band energy is spread across all the critical bands to estimate the masking effects.

The spreading functionS(i), which Johnston used in [44], is proposed in [46]. The proposed

spreading function is the same for each critical band maskerwithout dependency on frequency
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or intensity.SdB(i, j) has the expression of

SdB(i, j) = 10 log10

(
S(i − j)

)

= 15.81 + 7.51
(
(i − j) + 0.474

)
− 17.5

(
1 + ((i − j) + 0.474)2

)1/2
dB,

(3.3)

wherei is the bark frequency of the masked signal, andj is the bark frequency of the masking

signal. An excitation pattern spectrum,Xe(i), is obtained by convolving the bark spectrum with

the spreading function

Xe(i) = S(i) ∗ Xb(i). (3.4)

A noise masking thresholdis derived by subtracting an offset (in decibels) from the excitation

pattern spectrum. Depending on the nature of the masking signal, the offset is different for tonal

maskers and noise maskers. TheSpectral Flatness Measure(SFM) is used to characterize the

tonality of the signal. The SFM is defined as a ratio of thegeometric mean(GM) to thearithmetic

mean(AM) of the power spectrumXp(k)

SFMdB = 10 log10

GM

AM
, (3.5)

whereGM , (
∏NF /2

k=0 Xp(k))−(NF /2+1) and AM ,
∑NF /2

k=0 Xp(k)/(NF /2 + 1). A tonality

coefficientα is generated from the SFM

α = min
( SFMdB

SFMdBmax
, 1

)
, (3.6)

whereSFMdBmax = −60 dB is used to represent an entirely tonelike signal with the tonality

coefficientα = 1. An entirely noiselike signal hasα = 0. For an entirely tonelike signal,

the noise threshold is estimated to be14.5 + i dB below the spreading spectrumXe(i), while

an entirely noiselike signal has a uniform offset of 5.5 dB across the Bark spectrum. With this

tonality coefficientα, the offset in decibels for each critical band is set as

O(i) = α(14.5 + i) + (1 − α)5.5. (3.7)

Thespread thresholdT (i) is obtained by subtracting the offset in decibels from the excitation

pattern spectrum

T (i) = 10(log10 Xe(i))−O(i)/10. (3.8)
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To get the noise masking threshold in the frequency domain, the thresholdT (i) should be decon-

volved. This procedure is very unstable because of the shapeof the spreading function. Johnston

proposed a renormalization of the threshold instead of deconvolution. Since the spreading func-

tion increases the energy estimates in each band, the renormalization multiplies eachT (i) by the

inverse of the energy gain per band, assuming each band has unity energy. This compensates for

the energy increase from spreading convolution of other critical bands. After renormalization,

the threshold is denoted byT ′(i).

At last, the final threshold is derived by comparingT ′(i) with the absolute threshold of hearing

Tq(i). The maximum value betweenT ′(i) andTq(i) is chosen within each band to give the final

masking threshold.

3.3 Psychoacoustic Models for Objective Quality Measurement

Loudness is a fundamental element of sound perception. It belongs to the category of intensity

sensations. The intensity of sound, denoted byI, is defined as the amount of sound energy,P ,

flowing across a unit area surface in a second [47]. Conventionally, a sound is measured insound

pressure level(SPL),

L = 10 log10 |I/I0| = 20 log10 |p/p0|, (3.9)

wherep is the sound pressure, andI0 andp0 are the standard references corresponding to the

hearing threshold value at 1 kHz.L is an objective measurement of sound, which indicates the

relative intensity of a sound with respect to the hearing threshold at 1 kHz. Human sensation is not

flat. Even with the same SPL, tones at different frequencies would sound different. The loudness

level of a sound is the sound pressure level of a 1 kHz tone of a plane and frontal incident wave

that is as loud as the measured sound. Its unit isphon. The subjective measurement of loudness is

calledsone. It is measured by how much louder a sound is heard relative toa standard reference.

This standard reference of one sone is a tone of 1 kHz at an intensity of 40 dB SPL.

Classical objective measures, for example SNR, determine the quality of a speech/audio codec

under test on the basis of differences in the physical signalcharacteristics for a certain set of test

signals. These methods do not use the characteristics of thehuman auditory system. More-

over, classical objective measurements are not meaningfulwhen applied to modern speech/audio

codecs which exploit signal redundancy and the masking properties of the auditory system. Hu-

man auditory models have been developed to study the correlation between the aspects of objec-
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tive measurements and the subjectively perceived quality.

For objective quality measurement, a psychoacoustic modelinvolves two steps. First, it maps

the input and output signals of an audio device, such as an audio coder, onto internal repre-

sentations. Then the quality of the device is calculated based on the difference of the internal

representations. The psychoacoustic model does not need the difference signal, nor does it ex-

plicitly calculate a masking threshold. However, they can also derive a masking pattern as an

intermediate. Here, we are only interested in perceptual models (representations) in the first step,

which we will discuss below.

3.3.1 PAQM Model

Beerends and Stemerdink [45] introduced a psychoacoustic model to measure the objective qual-

ity of audio devices. A model of the human auditory system is used to calculate the internal

representation of the input and output signals of an audio device. The transform from the phys-

ical domain to the psychophysical (internal) domain is performed by way of two operations:

time-frequency spreading and level compression.

The processed signal is transformed in the frequency domainusing overlapping frames, each

consisting ofN samples. Letx(m, n), 0 ≤ m ≤ N − 1, be then-th frame of a windowed

discrete-time signal. The short-term DFT coefficients ofx(m, n) are represented byX(k, n).

The power spectrum isXp(k, n) = |X(k, n)|2, 0 ≤ k ≤ N −1. Analysis is performed in discrete

frequency bands. These bands are analogous tocritical bands(CB), although each CB is now

divided into narrower frequency regions. These frequency regions have the same bandwidth,dz,

in the Bark domain. Assume there areB such frequency bands. Similar to Eq. (3.2), the total

energy per frequency band,Xb(i, n), is calculated from the power spectrum of the signal

Xb(i, n) =

bhi∑

k=bli

Xp(k, n), 0 ≤ i ≤ B − 1, (3.10)

wherebli andbhi are the lower and upper bounds of the frequency bandi, respectively. The outer

to inner ear transformation is performed with this perceptual domain spectrum

Xa(i, n) = a0(i) Xb(i, n), 0 ≤ i ≤ B − 1, (3.11)

wherea0(i) is an outer-to-inner ear transformation function. This pitch representationXa(i, n)
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is then combined with that of a previous frame to perform time-domain masking operation

Xt(i, n) = Xa(i, n)+Tf (i, n−1)Xa(i, n−1) =
n∑

j=n−1

Tf (i, j)Xa(i, j), 0 ≤ i ≤ B−1, (3.12)

whereTf (i, n) = 1 andTf(i, n − 1) is an exponential function given by

Tf(i) = exp(−d/τ(i)), (3.13)

whered is the time distance between adjacent short-time frames, and τ(i) is derived from psy-

choacoustic time-domain masking experiments.

The time-domain smeared pitch representationXt(i, n) is then convolved with a level de-

pendent basilar membrane spreading functionS(i, L(i)) to get the excitation intensity,Xe(i).

The spreading function from thei-th frequency band to thej-th frequency band is a two sided

exponential with slopes as

Sl(i, L(i)) = Sl = 31 dB/Bark j ≤ i,

Su

(
i, L(i)

)
= −22 − min(230/fc(i), 10) + 0.2L(i)

= S0(i) + 0.2L(i) dB/Bark j > i,

(3.14)

whereL(i) is the level in dB SPL of thei-th frequency band withL(i) = 10 log10 Xt(i, n) and

fc(i) is the centre frequency value of thei-th frequency band in Hz. A parametric nonlinear form

is used to model the nonlinear additivity of maskers

Xe(i) =

{
B−1∑

j=i

[
10−Sl(j−i)dz/10Xt(j)

]α/2
+

i−1∑

j=0

[
10S0(j)(i−j)dz/10

(
Xt(j)

)1+0.2(i−j)dz]α/2

}2/α

,

(3.15)

where the parameterα is optimized to produce maximum correlation of the excitation valueXe(i)

with subjective tests. Experiments have shown that simultaneous stimuli result in an excitation

value which is considerably higher than the sum of the contributions. Then the value ofα is set

to be less than 2. In [45], the optimal setting ofα is 0.8.

At last, from this quantity a compressed loudness function is calculated according to the

expression in [47],

Xl(i) = c

[
E0(i)

s

]γ {[
1 − s + s

Xe(i)

E0(i)

]γ

− 1

}
, (3.16)
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wherec and s are experimentally derived parameters,γ is a parameter that is also optimized

for maximum correlation with the subjective test, andE0(i) is the absolute threshold of hear-

ing multiplied by the outer-to-inner ear transformation. The functionXl(i) corresponds to the

psychoacoustic representation of the short-time frame power spectrumXp(k).

3.3.2 PEAQ Model

The Perceptual Evaluation Audio Quality (PEAQ) is used to rate the quality of an audio coder. It

is described in ITU-R Recommendation BS.1387 [13]. The psychoacoustic model used by PEAQ

estimates the masking threshold and loudness among other intermediate model variables. The

PEAQ model consists of two versions: basic version and advanced version. The basic version

only uses an FFT-based perceptual model. This section describes those steps involved in the

computation of the masking threshold and loudness in the basic version.

The PEAQ model operates withfs = 48 kHz sampled input segments of 0.042 second (NF =

2048 samples) with 50% overlap. A short-term FFT is computed following the multiplication

with a Hann window. Assuming the maximum level to be 92 dB SPL,the resulting frequency

domain coefficients are scaled by a factor to get the transformed input signalX(k) for 0 ≤ k ≤

NF − 1.

The combined filtering effect of the outer and middle ear is expressed as

AdB(f) = −0.6 · 3.64(f/1000)−0.8 + 6.5 · e−0.6(f/1000−3.3)2 − 10−3(f/1000)3.6. (3.17)

The outer and middle ear weighted FFT outputs are

Xw(k) = |X(k)| · 10AdB(f(k))/20, (3.18)

wheref(k) = kfs/NF .

The weighted spectrum|Xw(k)|2 are grouped into quarter-bark bands in order to transform

into the perceptual domain. Each perceptual band is characterized by a lower frequency,fl(i),

a centre frequency,fc(i), and an upper frequency,fu(i). In the case that a frequency bin is

across two bands, the energy contributed to each band is obtained by multiplying the frequency

bin energy by the percentage of the frequency bin lying within the frequency group. For theith
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frequency band, the contribution from the energy in DFT bink is [48]

µ(i, k) =
max

[
0, min(fu(i),

2k + 1

2

fs

NF
) − max(fl(i),

2k − 1

2

fs

NF
)
]

fs

NF

(3.19)

The resulting energies of the frequency groupings are denoted byPe(i) with

Pe(i) =

ku(i)∑

k=kl(i)

µ(i, k)|Xw(k)|2, (3.20)

whereµ(i, k) is non-zero over the intervalkl(i) ≤ k ≤ ku(i). The pitch patternsPp(i) are

obtained by adding the frequency dependent internal noise of the inner ear,PThres, to Pe(i)

Pp(i) = Pe(i) + PThres, (3.21)

where the internal noise isPThres = 100.4·3.64·(fc(i)/1000)−0.8

.

The pitch patternsPp(i) are smeared out over frequency using a level dependent spreading

function. The spreading function from thei-th band to thej-th band is a two sided exponential

with slopes as

Sl

(
i, L(i)

)
= Sl = 27 dB/Bark j ≤ i,

Su

(
i, L(i)

)
= −24 − 230/fc(i) + 0.2L(i) dB/Bark j > i,

(3.22)

whereL(i) represents the signal power (in dB SPL) in thei-th perceptual band withL(i) =

10 log10

(
Pp(i)

)
. To model the nonlinear additivity of maskers, a power law isused. Theun-

smeared excitation patternin bandi, E2(i), is the normalized sum of the spread energy contribu-

tions from all bands

E2(i) =
1

NormSP (i)

(B−1∑

j=0

Eline(j, i)
0.4

) 1
0.4

, (3.23)

whereEline(j, i) represents the energy spread of thej-th band to thei-th band,NormSP (i) is the

sum of the spread energies of all bands with unit energy, andB is the total number of frequency
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groups.Eline(j, i) is defined by

Eline(j, i) =






10
L(j)
10 10

−0.25(j−i)Sl(j,L(j))

10

j−1∑

l=0

10
−0.25(j−l)Sl(j,L(j))

10 +
B−1∑

l=j

10
0.25(l−j)Su(j,L(j))

10

if i ≤ j,

10
L(j)
10 10

0.25(i−j)Su(j,L(j))
10

j−1∑

l=0

10
−0.25(j−l)Sl(j,L(j))

10 +

B−1∑

l=j

10
0.25(l−j)Su(j,L(j))

10

if i > j.

(3.24)

NormSP (i) is calculated according to

NormSP (i) =
(B−1∑

j=0

Ẽline(j, i)
0.4

) 1
0.4

(3.25)

with

Ẽline(j, i) =






10
−0.25(j−i)Sl(j,0)

10

j−1∑

l=0

10
−0.25(j−l)Sl(j,0)

10 +
B−1∑

l=j

10
0.25(l−j)Su(j,0)

10

if i ≤ j,

10
0.25(i−j)Su(j,0)

10

j−1∑

l=0

10
−0.25(j−l)Sl(j,0)

10 +

B−1∑

l=j

10
0.25(l−j)Su(j,0)

10

if i > j.

(3.26)

Forward masking is modelled by smearing out the energies in each frequency group over time

by a first order low pass filter. The time constants of the filters are frequency dependent and are

calculated by

τ(i) = τmin +
100

fc(i)
· (τ100 − τmin), (3.27)

whereτ100 = 0.030s, τmin = 0.008s, andfc(i) is the centre frequency value of thei-th band in

Hz. The finalexcitation patterns, E(i, n), of the current segment are calculated by

Ef (i, n) = a(i) · Ef (i, n − 1) +
(
1 − a(i)

)
· E2(i, n), (3.28)

E(i, n) = max
(
Ef (i, n), E2(i, n)

)
, (3.29)
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wheren is the frame index, anda(i) = exp
(
−1/

(
fss · τ(i)

))
andfss is the frame rate given by

fss =
fs

NF/2
. (3.30)

A masking patterns, M(i, n) is determined by applying a weighting function,m(i), to the

excitation patterns,E(i, n).

M(i, n) =
E(i, n)

10m(i)/10
, (3.31)

where

m(i) =

{
3 0.25i ≤ 12,

(0.25)2i 0.25i > 12.
(3.32)

This masking threshold is defined in the perceptual domain. If the masking threshold in the

frequency domain is necessary, the effects of the internal noise, middle and outer ear need to be

removed fromM(i, n) for each frequency group.

The loudness patterns of the signal is derived from the excitation patternsE(i, n) with the

same expression as Eq. (3.15) in [47].
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Chapter 4

Design of a Perceptual Postfilter Based on

GMM Estimation

From Section 2.4, it is clear that human perceptual modelling in speech coding is very empirical.

Noise shaping alone is not enough to make the encoding noise below the masking threshold at low

bit rates. Adaptive postfiltering has been shown to improve the decoded speech quality efficiently.

Conventional postfiltering uses the available decoded information, and is empirically designed

according to human perception. However, only a few improvements (for instance, [16, 34]) have

been made to adaptive postfiltering despite the developmentin our understanding of the human

auditory system.

Also, due to the complexity of speech encoding, the coding noise is correlated to the speech

signal to some extent. This makes conventional speech enhancement methods designed for re-

ducing background acoustic noise inappropriate to deal with coding noise, because most speech

enhancement algorithms are based on the assumption that thespeech signal and the noise signal

are independent and the noise signal is stationary. Furthermore, in speech encoding, the coded

speech always has an average energy smaller than the original speech signal. This is different

from the scenario of speech enhancement where additive noise is assumed [49].

Speech quality can be enhanced if we match speech coders (which are based on voice produc-

tion models) to the human ear with a good auditory model [50].For those speech coders which

have been implemented in practice, it is preferable to improve the speech quality by an embed-

ding part, instead of changing the coding structure. In thischapter, we will introduce a novel

perceptual postfilter to improve the quality of the decoded speech without change in the encoder.
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This postfilter exploits properties of psychoacoustic models, and can be applied directly to the

frequency domain of the decoded signal to suppress perceptible noise. Section 4.2 discusses the

perceptual postfiltering idea. In Section 4.3, we present our perceptual postfilter algorithm by a

Minimum Mean Squared Error(MMSE) estimator based onGaussian mixture model(GMM).

4.1 Postprocessing Model

Our postprocessing model at a receiver is shown in Fig. 4.1. The postprocessor has the same

purpose as the conventional postfilter or its variations to improve the perceptual quality of the

reconstructed speech. However, it exploits properties of psychoacoustics.

)(ˆ ns )(~
ns

Other information (endcoding, etc.)

Received

bit-stream
Decoder Postprocessor

Psychoacoustic 

Model 

Perceptual postfilter

Decoded information 

(pitch, LSFs, etc.)

Fig. 4.1 The proposed perceptual postfiltering model

After decoding a received stream, the decoder gives a decoded speech,̂s(n). The postproces-

sor modifies the decoded speech to produce a enhanced speech,s̃(n), with improved quality. The

modification is done with the knowledge of the decoded information, the decoded speech, the

psychoacoustic model, and other available information (for instance, how the encoder works). A

perceptually-based postfiltering algorithm performs the modification using internal psychoacous-

tic properties, which is described in the following section.

Our postprocessing model is carried out in the frequency domain. Frequency domain tech-

niques have the advantage of modifying different parts of the frequency spectrum independently.

Also, the perceptual properties are well modelled in the frequency domain. Since speech is per-
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ceived by the hearing system, frequency domain approaches are the proper choice to incorporate

the perceptual concepts in our system. We then can enhance the speech with frequency-by-

frequency gain modification.

Clearly, our postfiltering idea is a superset of conventional postfiltering. A conventional post-

filter is controlled by its parameters. For example, the short-term postfilter in Eq. (2.14) is mainly

determined by LPCs, whileλ1, λ2 andµ are used to tune the postfilter shape to some limited

extent. Our postfilter gains in each critical band can be set more freely according to its theoretical

basis.

4.1.1 Proposed System

Our proposed complete system is shown in Fig. 4.2. The top diagram gives the generation of a

training data set and the GMM training. A low bit rate speech codec encodes the corresponding

information of the excitation signal and LSFs for each frameof speech.

A feature vector for each processing block is formed for GMM training. Training vectors are

generated from processing blocks. For each processing block, adecoding feature vectorderivable

from the coded information is obtained. A vector of perceptual postfilter gains is derived from

each processing block. By passing all speech for training through the speech encoder, a data set

composed of feature vectors for GMM training are generated.

Our proposed perceptual postfilter works at the receiver end, as shown in the bottom part of

Fig. 4.2. For each speech frame, a coded stream is sent from the encoder and the decoder decodes

this received stream to generate coded information about the speech. A decoding feature vector is

derived with the same process as generating training vectors. A MMSE estimate of the postfilter

gains given the decoding feature vector for each processingblock is obtained. The postfiltering

is performed on windowed blocks of the decoded speech. A modified decoded speech is then

obtained.

It is clear that the key issues in our system are the perceptual postfilter, GMM training and

MMSE estimation of the perceptual postfilter. We will discuss each of them in this chapter.

4.2 Perceptual Postfilter

In psychoacoustic modelling, a neural excitation called loudness is assumed to directly affect per-

ceived strength. A loudness distribution is predicted fromthe excitation intensity by a nonlinear
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Fig. 4.2 System Diagrams. Top: GMM training at the encoder; Bottom: Perceptual
postfiltering by MMSE estimation at the decoder.

transformation. Masking has been widely used in audio coding. Recent research also considers

loudness in audio coding [49].

If we use masking in postfiltering, it is more complicated since both the masker (the original

speech) and the coding noise are unknown at the decoder. However, both loudness and masking

are directly connected to the excitation pattern with operations independent of the signal level.

The excitation patterns of a sound represent the activity orexcitation evoked by that sound as

a function of characteristic frequency along the basilar membrane. A global masking curve is

calculated by applying frequency dependent offsets (in dB SPL) to the excitation patterns. The

transform from the excitation pattern to the specific loudness pattern is given by a warping func-

tion [47]. The excitation pattern model implies that human hearing can detect distortion, if, in

any critical band, there is more than 1 dB distortion in the excitation pattern [47].

Similar to Wiener filtering in speech enhancement [51], the estimation of a psychoacoustic
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representation of the clean signal can be derived from a modification of such a representation of

the coded signal. A perceptual filter is designed to reduce the audible coding noise by equaliz-

ing the excitation psychoacoustic representation of the original signal and the coded signal. If

the coding stream which is sent by the encoder is received without error, the same perceptual

postfilter is applicable to enhance the decoded speech at thereceiver.

4.2.1 Perceptual Filter Proposed by Lam and Stewart [52]

Lam and Stewart [52] designed a generalized perceptual audio filter in low rate audio coding.

The perceptual filter is based on a human auditory perceptionmodel which attempts to model

the psychoacoustic behaviour of the ear. It tries to perceptually suppress coding noise in the

subjective domain, i.e. the loudness representation of thecoded signal after filtering is set to

the same level of the original signal. The psychoacoustic model used is the loudness patterns

described in Section 3.3.1. The generalized linear perceptual filter is finally realized by restoring

the excitation pattern in the perceptual (critical band) domain of the reconstructed signal.

Conditions for Noise Suppression

Let us denote then-th frame of the original signal ass(m, n), and the coded signal aŝs(m, n).

m is a time counter inside a frame. Let the short-time power spectra of windowed frames of

the original signal and the coded signal beSp(k, n) and Ŝp(k, n), respectively. Also, let their

psychoacoustic loudness representations of Eq. (3.16) in Section 3.3.1 beSl(i, n) and Ŝl(i, n),

representatively. According to [45], the difference between these two representations,Sl(i, n)

andŜl(i, n) is a measure for the coding noise in the perceptual domain. This difference will be

audible by a listener. Therefore, in terms of enhancement, it is proposed to modify the power

spectrum of the coded signal so that the resulting psychoacoustic representation corresponds to

that of the original signal. Let the power spectrum of the modified signal beS̃p(k, n) and its

corresponding psychoacoustic representation beS̃l(k, n). A linear filter H(i, n) is proposed to

modify the coded signal. The gain of this filter is assumed to be constant within the same critical

bandi so that the enhanced signal is given by

S̃p(k, n) = H(i, n) Ŝp(k, n), bli ≤ k ≤ bhi, 0 ≤ i ≤ B − 1. (4.1)
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Then we have the equation of the critical band intensities after critical band energy grouping with

Eq. (3.10)

S̃b(i, n) = H(i, n) Ŝb(i, n), 0 ≤ i ≤ B − 1. (4.2)

A suitable condition for psychoacoustic signal enhancement is setting the psychoacoustic

representation of the modified signalS̃l(i, n) to that of the original signalSl(i, n), which is given

by the following expression

S̃l(i, n) = Sl(i, n), 0 ≤ i ≤ B − 1. (4.3)

From the expression of the psychoacoustic loudness representation in Eq. (3.16), it can be clearly

concluded that the condition for psychoacoustic signal enhancement in Eq. (4.3) is equivalent to

S̃e(i, n) = Se(i, n), 0 ≤ i ≤ B − 1, (4.4)

where S̃e(i, n) is the excitation intensity of the modified signal andSe(i, n) is the excitation

intensity of the original signal. The excitation patterns of the modified signal are then restored to

those of the original signal [53].

Generalized Perceptual Filter

The perceptual filter gains are derived from Eq. (4.4) with the psychoacoustic model in PAQM

[45], which is described in Section 3.3.1. Lam and Stewart ignored level-dependent effects on the

spreading function and proposed a generalized perceptual filter for low bit rate audio coding. In

the derivation of the generalized perceptual filter [52] (see Appendix A), the spreading function

was assumed to be level-independent. This assumption is essential to an analytical expression

of the generalized perceptual filter. The generalized perceptual filter gains are sent to the au-

dio decoder as side information for perceptual suppressionof quantization noise in the decoded

signal.

4.2.2 Proposed Perceptual Postfilter

The above perceptual filter exploits the properties of a psychoacoustic model, and can be directly

applied to the frequency domain of the coded signal to suppress the perceptible noise. It gives us

a new outlook for adaptive postfiltering with a specific psychoacoustic model.
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Actually, the psychoacoustic model used by Lam and Stewart [52] is an invertible auditory

model after their level-independent approximation of the frequency domain spreading function

and the omission of temporal masking. With such an assumption of an invertible auditory model,

we then have the excitation level of a speech frames(m, n)

Sα/2
e (i) =

B−1∑

v=0

S
α/2
b (v)Ci,v, 0 ≤ i ≤ B − 1, (4.5)

whereSb(v) is thev-th critical band intensity defined by Eq. (3.2) andCi,v is the Bark domain

spreading value only related toi, v (see Eq. (A.2))

Ci,v =






[
10−

Sl(v−i)dz

10

]α/2
for i ≤ v,

[
10

S0(v)(i−v)dz

10

]α/2
for i > v,

(4.6)

with Sl andS0 defined in Eq. (3.14) in Section 3.3.1.

From Eq. (4.2) and Eq. (4.5) we have

S̃α/2
e (i) =

B−1∑

v=0

S̃
α/2
b (v)Ci,v

=

B−1∑

v=0

Hα/2(v)Ŝ
α/2
b (v)Ci,v. (4.7)

Combining Eq. (4.4), Eq. (4.5), and Eq. (4.7), we get

B−1∑

v=0

Hα/2(v)Ŝ
α/2
b (v)Ci,v =

B−1∑

v=0

S
α/2
b (v)Ci,v. (4.8)

This is equivalent to

A





Ŝ
α/2
b (0) 0 · · · 0

0 Ŝ
α/2
b (1) · · · 0

...
...

. . .
...

0 0 · · · Ŝ
α/2
b (B − 1)




hα/2 = A





S
α/2
b (0)

S
α/2
b (1)

...

S
α/2
b (B − 1)




, (4.9)
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whereA is a B × B matrix with elementsai,j = Ci−1,j−1, i, j = 1, 2, · · · , B, and h =

[H(0), H(1),· · · , H(B − 1)]t is the perceptual filter vector.

With the optimal value ofα set to be 0.8 in PAQM [45], we can compute with MATLAB that

the determinant ofA is 0.8914 and the 2-norm condition number ofA is 1.4443. That meansA

is a full rank matrix. Then we can obtain the perceptual filterh from Eq. (4.9)

h =





Sb(0)/Ŝb(0)

Sb(1)/Ŝb(1)
...

Sb(B − 1)/Ŝb(B − 1)




. (4.10)

We can see that the conversion from the critical band intensities to the excitation intensities is

unnecessary, although Eq. (4.4) is the enhancement condition. The gains of the perceptual filter

in Eq. (4.10) are just the ratio of the critical band intensities of the original signal to those of the

coded signal.

Actually, since all the psychoacoustic representations are originated from the critical band

intensities, the modified signal will have all the same psychoacoustic representations as those of

the original signal if the critical band intensities of the coded signal are set to the same level as

those of the original signal. Therefore, we get a general perceptual postfilter which equalizes the

energy in perceptual domain

S̃b(i) = Sb(i), 0 ≤ i ≤ B − 1, (4.11)

whereSb(i) andS̃b(i) are the critical band intensity of the original signal and the perceptually

filtered signal. With the grouping method of Eq. (3.2) as in Johnston’s model, the energy in each

critical band ofs(m, n) is summed up to give the critical band spectrumSb(i)

Sb(i) =

bhi∑

k=bli

Sp(k), 0 ≤ i ≤ B − 1. (4.12)

wherebli andbhi are the lower and upper bounds of the critical band i, respectively.

Applying the grouping to Eq. (4.1) and combining with Eq. (4.11), our new perceptual post-

filter has the expression

H(i) = Sb(i)/Ŝb(i), 0 ≤ i ≤ B − 1, (4.13)
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whereŜb(i) is the critical band spectrum of the coded signal. Eq. (4.13)is the same as Eq. (4.10).

These are the postfilter gains given the knowledge of the original and coded critical band spectra.

Tests with speech signals show that this postfilter filters the coded speech and produces a modified

speech signal which is indistinguishable from the originalspeech with the human hear. In the next

section, we propose a method to estimate these gains at the decoder.

4.3 Perceptual Postfilter with MMSE Estimation Based on GMM

The perceptual filter from [52], which is discussed in Section 4.2.1 for low bit-rate audio coding,

motivates us to build a similar postfilter forlinear prediction analysis-by-synthesis(LPAS) speech

coders in Section 4.2.2. The perceptual filter can be derivedfrom each processing frame and

applied to the decoded speech to improve the speech quality.However, from the discussion in

Section 4.2, direct information about the perceptual filteris unavailable to the receiver unless it is

sent as side information while we need a postfilter which works as an add-on part at the receiver

without requiring additional bits. A novel postfiltering method combining perceptual properties

and statistical estimation together has been introduced bythe present author in [54]. AMinimum

Mean Squared Error(MMSE) estimation of the perceptual postfilter based onGaussian mixture

model(GMM) was proposed. The postfilter gains are estimated from aMMSE estimator given

a feature vector which is from the information at the decoder. We call this feature vector the

decoding feature vector. This operation works on a frame-by-frame basis at the receiver. The

output of the MMSE estimator is determined by the estimator parameters and the decoding feature

vector. The parameters of the MMSE estimator are from a trained GMM. That means they are

available at the receiver and do not need to be transmitted asside information by the encoder. For

a LPAS speech coder, the decoded speech and coded information (which is sent to the receiver

by a coding stream) are available at the encoder. Therefore,we can generate the training data at

the encoder. A GMM is used to model the joint pdf of the training vector. Each training vector in

the training data set is obtained from encoding of a speech frame. A training vector is composed

of perceptual filter gains and a decoding feature vector. TheExpectation-Maximization(EM)

algorithm is commonly used for the training of a GMM.

In [54], we only considered the static features for perceptual postfilter estimation. Incorpo-

rating the locally sequential speech property as well as theindividual frame, we also study the

model with joint static and frame-differential feature components.
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4.3.1 GMM Estimation by the EM Algorithm

The GMM is popularly used to approximate aprobability density function(pdf) of a random

vector with relatively small number of parameters. Its ability to represent some general speech

spectral shapes by the Gaussian components makes it popularin speech recognition and speaker

identification [55], as well as in neural information processing [56]. A GMM is also used for

vector quantization of LSFs [57, 58]. The underlying pdf of vectors in a database can be modelled

by a Gaussian mixture(GM) pdf and the parameters of the model can be estimated. Qian and

Kabal [59, 60] used the GMM for bandwidth extension by estimating the missing high band

information from the low band LSFs.

A GM pdf for a d-dimensional random feature vectorx is a mixture ofM joint Gaussian

densities{ω1, · · · , ωM}

px(x) =

M∑

i=1

P (ωi) px(x|ωi), (4.14)

wherepx(x|ωi) is thei-th Gaussian component, andP (ωi) is a priori probability.

For notation convenience, letαi = P (ωi), andN (x|θi) = px(x|ωi), we have

px|Θ(x|Θ) =
M∑

i=1

αi N (x|θi), (4.15)

Θ = {α1, · · · , αM , θ1, · · · , θM}, (4.16)

whereαi is a nonnegative constant and
∑M

i=1 αi = 1. N (x|θi) is an individual Gaussian density

parameterized byθi = {µi,Σi} with mean vectorµi and covariance matrixΣi

N (x|θi) =
1

(2π)d/2|Σi|1/2
exp

(
−

1

2
(x − µi)

TΣ−1
i (x − µi)

)
. (4.17)

Therefore, a GM pdf is defined by the mean vectors, the covariance matrices and the mixture

weights for the Gaussian components, i.e.Θ in Eq. (4.16). With the EM algorithm, we can train

a GMM to approximate the pdf of certain features in speech.

The parameter setΘ can be estimated by themaximum likelihood(ML) method. The EM

algorithm is a widely used approach for ML estimation in cases where a closed-form analytical

expression for the optimal parameters is difficult to derive. EM is an iterative algorithm where

a monotonic increase in the log-likelihood,L, is guaranteed [57], i.e.L(Θ(k+1)) ≥ L(Θ(k)), in



4 Design of a Perceptual Postfilter Based on GMM Estimation 56

each iteration over a given database.Θ(k) is the value of the parameter setΘ at iterationk.

One key issue for applications of mixture modelling is the number of parameters inΘ. The

larger the number of parameters, the greater is the possibility to describe the fine structure of the

underlying data distribution. On the other hand, with a highdegree of freedom in the modelling,

there is a risk for overfit. A rich set of parameters may lead toundue complexity. Thus, the

selection of the number of parameters must be a compromise [57]. Both full and diagonal co-

variance matrices are widely used in the GM density. With a GMM of M Gaussian densities for

a d-dimensional random feature vector, the number of parameters to be estimated during train-

ing isM(d + d(d+1)
2

+ 1) for full covariance Gaussians, andM(2d + 1) for diagonal covariance

Gaussians. A GMM with diagonal covariance Gaussian components is usually preferred, because

of fewer parameters and its potentiality of modelling the underlying pdf just as well if enough

mixtures are used.

Assuming we have a data setX = {xn}, n = 1, · · · , N of N observations of the feature

vectorx, the log-likelihood function can be expressed as

L(Θ) = ln
N∏

n=1

px|Θ(xn|Θ)

=

N∑

n=1

ln px|Θ(xn|Θ)

=
N∑

n=1

ln
M∑

i=1

αi N (xn|θi).

It is not easy to express optimal parameters in a closed form since the function contains a

logarithm of a sum. Given an initial set ofM Gaussian component pdfsN (xn|θ
(k)
i ) andM

mixture weightsα(k)
i , i = 1, · · · , M , k = 0, a GMM with a parameter setΘ is trained by the EM

approach iteratively:

1. E-Step: Compute the likelihoodsN (xn|θ
(k)
i ) and determine the posterior probabilities

ν
(k)
i (n) = p(ωi|xn,Θ(k)) of each mixture component for each training data pointxn as

ν
(k)
i (n) =

α
(k)
i N

(
xn|θ

(k)
i

)

M∑

j=1

α
(k)
j N

(
xn|θ

(k)
i

)
. (4.18)
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2. M-Step: Re-estimate component pdfs and weights, based on data, likelihoods and posterior

probabilities [57]

α
(k+1)
i =

1

N

N∑

n=1

ν
(k)
i (n), (4.19a)

µ
(k+1)
i =

N∑

n=1

ν
(k)
i (n)xn

N∑

n=1

ν
(k)
i (n)

, (4.19b)

Σ
(k+1)
i =

N∑

n=1

ν
(k)
i (n)

(
xn − µ

(k+1)
i

)(
xn − µ

(k+1)
i

)T

N∑

n=1

ν
(k)
i (n)

. (4.19c)

3. Repeat steps 1 and 2 withk = k +1 until L(Θ) of Eq. (4.18) of the entire data set does not

change appreciably, or a limit on the number of iterations isreached.

When we assumeΣi be diagonal, i.e.Σi = diag{λi,1, · · · , λi,d}, the update equation for the

diagonal elementsλi,j corresponding to Eq. (4.19c) becomes

λi,j =

N∑

n=1

ν
(k)
i (n)

(
xn,j − µ

(k+1)
i,j

)2

N∑

n=1

ν
(k)
i (n)

=

∑N
n=1 ν

(k)
i (n) x2

n,j∑N
n=1 ν

(k)
i (n)

− (µ
(k+1)
i,j )2,

(4.20)

wherexn,j andµ
(k+1)
i,j are thej-th vector component ofxn andµi

(k+1), respectively.

4.3.2 Prior Model

Modern speech coders take advantage of the short-term and long-term correlations of speech.

Speech-signal segments are often characterized in terms ofthe properties of their power spectra.
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A relationship exists between the autocorrelation and power-spectral domains: the fine struc-

ture of the power spectrum corresponds to the long-term autocorrelation of the time-domain

signal, and the power-spectral envelope corresponds to theshort-term autocorrelation [2]. We

choose ad1-dimensional postfilter gains,h, and thed2-dimensional speech properties,y, as a

d-dimensional feature vector for each frame withd = d1 +d2. y is also thedecoding feature vec-

tor and composed of a subvector of the short-term property,b, and a subvector of the long-term

property,n. Then thed-dimensional feature vector is denoted bys

s = [h;y], with y = [b;n]. (4.21)

Dynamic features are the local (weighted) time difference of static features. While consider-

ing the dynamic features in our system, we use the simplest dynamic property of the frame-

differential (“delta”) featuress, defined by

∆sn ≡ sn − sn−1, (4.22)

wheren is the frame index.

With static features only, the pdf ofp(sn) is

p(sn) =
M∑

i=1

αi N (sn|µ
s
i ,Σ

s
i ). (4.23)

The joint probability distribution function for both the static, sn, and delta,∆sn, features is

modelled by GMMs assuming the static and dynamic features are uncorrelated with each other.

The pdfp(sn, ∆sn) is given by

p(sn, ∆sn) =

M∑

i=1

αi N (sn|µ
s
i ,Σ

s
i )N (∆sn|µ

∆s
i ,Σ∆s

i ). (4.24)

In Eq. (4.23) and Eq. (4.24), the Gaussian density parameters in the i-th Gaussian densities
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N (sn|µs
i ,Σ

s
i ) andN (∆sn|µ∆s

i ,Σ∆s
i ) can be written in block matrices as follows

µs
i =

[
µh

i

µ
y
i

]
, (4.25a)

Σs
i =

[
Σhh

i Σ
hy
i

Σ
yh
i Σ

yy
i

]
, (4.25b)

µ∆s
i =

[
µ∆h

i

µ
∆y
i

]
, (4.25c)

Σ∆s
i =

[
Σ∆h∆h

i Σ
∆h∆y
i

Σ
∆y∆h
i Σ

∆y∆y
i

]
. (4.25d)

In Eq. (4.25a) and Eq. (4.25c), the vector blocks with superscriptsh and∆h are of lengthd1,

which is the dimension of the postfilter gain vectorh, and the vector blocks with the superscripts

y and∆y are of lengthd2, which is the dimension of the decoding feature vectory. In Eq. (4.25b)

and Eq. (4.25d), the matrix blocks with superscriptshh and∆h∆h ared1 × d1 matrices, those

with superscriptshy and∆h∆y ared1 × d2 matrices, those with superscriptsyh and∆y∆h are

d2 × d1 matrices, and those with superscriptsyy and∆y∆y ared2 × d2 matrices.

The new delta features makes no longer independent of its previous frame, and sos cap-

tures the trajectory information of speech by part of the prior information. The new dynamic

parametersµ∆s
i andΣ∆s

i provides additional information which can not be inferred from the

static parametersµs
i andΣs

i . The dynamic features partly captures the strong, locally defined

trajectory property of speech, while the static features captures only the global, loosely specified

temporal information of speech [61]. It is speculated that this scheme improve the overall quality

of coded speech.

4.3.3 MMSE Estimator

A MMSE estimator̂h of h given the observation vectory is a conditional expectation

ĥ = E{h|y}. (4.26)

The conditional pdf ofh giveny is computed from the joint pdf ofs. Section 4.3.2 gives a GMM

to approximate the joint pdf. The GMM is trained with a training set of speech signals by the EM

algorithm (which is described in Section 4.3.1) with the encoder beforehand. Assuming the same
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environmental condition at the encoder as that of training,the trained GMM parameters are used

at the receiver for postfiltering without additional information from the encoder.

Estimation of the Perceptual Postfilter with Static Features

While using the MMSE estimator Eq. (4.26) with a GMM pdf, we need the conditional pdf of the

“target” postfilter gain vectorh given the “input” vectory. The conditional pdf and any marginal

pdf of jointly Gaussian random variables are still Gaussiandensities [62]. Assuming the Gaussian

densityN (sn|θi) = N (sn|µs
i ,Σ

s
i ), thei-th GM component in Eq. (4.23), is a joint density of the

variates defined in Eq. (4.21), it can be factored into a conditional Gaussian pdfN (h|µh|y
i ,Σ

h|y
i )

of h, giveny, with mean vectorµh|y
i and covariance matrixΣh|y

i , and a marginal Gaussian pdf

N (y|µy
i ,Σyy

i ) of y with mean vectorµy
i and covariance matrixΣyy

i

N (sn|µ
s
i ,Σ

s
i ) = N (h|µh|y

i ,Σ
h|y
i )N (y|µy

i ,Σyy
i ), (4.27)

where

µ
h|y
i = µh

i + Σ
hy
i (Σyy

i )(−1)(y − µ
y
i ), (4.28a)

Σ
h|y
i = Σhh

i − Σ
hy
i (Σyy

i )(−1)Σ
yh
i , (4.28b)

andµh
i , µy

i ,Σyy
i ,Σhy

i ,Σyh
i andΣhh

i are defined in Eq. (4.25).

For the GMM-modelled joint density ofh andy defined by Eq. (4.23), the marginal joint

density function ofy is

p(y) =
M∑

k=1

αk N (y|µy

k ,Σyy

k ). (4.29)
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Therefore, the conditional pdf ofh giveny is expressed in terms of a GMM as

p(h|y) =
p(y,h)

p(y)
=

M∑

i=1

αi N (sn|µ
s
i ,Σ

s
i )

M∑

k=1

αk N (y|µy

k ,Σyy

k )

=

M∑

i=1

αi N (h|µh|y
i ,Σ

h|y
i )N (y|µy

i ,Σyy
i )

M∑

k=1

αk N (y|µy

k ,Σyy

k )

=
M∑

i=1

βi(y)N (h|µh|y
i ,Σ

h|y
i ),

(4.30)

where [62]

βi(y) =
αi N (y|µy

i ,Σyy
i )

M∑

k=1

αk N (y|µy

k ,Σyy

k )

. (4.31)

The MMSE estimate ofh is derived with Eq. (4.26) (4.30) and (4.28a)

ĥ =

M∑

i=1

βi(y)µ
h|y
i . (4.32)

When diagonal covariance matrices are used for the GM densities, the MMSE estimator is re-

duced to

ĥ =

M∑

i=1

βi(y)µh
i . (4.33)

Estimation of the Perceptual Postfilter with Static and Dynamic Features

Now with both static and dynamic features to derive a MMSE estimator, we use the pdf of

Eq. (4.24). Given the estimated postfilter gain feature in the immediately past frame,̂hn−1,

and the corresponding realization of∆yn, the conditional MMSE estimator of the current frame

becomes

ĥn|n−1 ≡ E{hn|yn, ĥn−1, ∆yn}. (4.34)
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As the factorization ofN (sn|µs
i ,Σ

s
i ) in Eq. (4.27),N (∆sn|µ∆s

i ,Σ∆s
i ) in Eq. (4.24) can be

factored into a conditional Gaussian pdfN (∆h|µ∆h|∆y

i ,Σ
∆h|∆y

i ) of ∆h, given∆y, with mean

vectorµ∆h|∆y

i and covariance matrixΣ∆h|∆y

i , and a marginal Gaussian pdfN (∆y|µ∆y
i ,Σ∆y∆y

i )

of ∆y with mean vectorµ∆y
i and covariance matrixΣ∆y∆y

i

N (∆sn|µ
∆s
i ,Σ∆s

i ) = N (∆h|µ∆h|∆y

i ,Σ
∆h|∆y

i )N (∆y|µ∆y
i ,Σ∆y∆y

i ), (4.35)

where

µ
∆h|∆y

i = µ∆h
i + Σ

∆h∆y
i (Σ∆y∆y

i )(−1)(∆y − µ
∆y
i ), (4.36a)

Σ
∆h|∆y

i = Σ∆h∆h
i − Σ

∆h∆y
i (Σ∆y∆y

i )(−1)Σ
∆y∆h
i , (4.36b)

andµ∆h
i , µ∆y

i ,Σ∆y∆y
i ,Σ∆h∆y

i ,Σ∆y∆h
i andΣ∆h∆h

i are defined in Eq. (4.25).

Similar to the derivation of Eq. (4.32), the conditional pdfof h giveny andĥn−1 is

p(hn|yn, ĥn−1, ∆yn) =
p(hn,yn, ∆yn|ĥn−1)

p(yn, ∆yn|ĥn−1)

≈
p(sn, ∆yn|hn−1)

p(yn, ∆yn)
,

(4.37)

where the approximation simplifies the estimator dramatically to avoid dynamic programming,

andp(sn, ∆yn|hn−1) has the form [61]

p(sn, ∆yn|hn−1) =

M∑

i=1

αi N (hn|µ
h|y
i ,Σ

h|y
i )N (yn|µ

y
i ,Σyy

i )

N (∆yn|µ
∆y
i ,Σ∆y∆y

i )N (hn − hn−1|µ
∆h|∆y

i ,Σ
∆h|∆y

i )

=

M∑

i=1

αi N (hn|µ
′
i,Σ

′
i)N (yn|µ

y
i ,Σyy

i )N (∆yn|µ
∆y
i ,Σ∆y∆y

i ). (4.38)

N (hn|µ
′
i,Σ

′
i) is a GM density ofhn with mean vector

µ′
i = (Σ

h|y
i + Σ

∆h|∆y

i )−1Σ
∆h|∆y

i µ
h|y
i + (Σ

h|y
i + Σ

∆h|∆y

i )−1Σ
h|y
i (hn−1 + µ

∆h|∆y

i ) (4.39)

and covariance matrix

Σ′
i = (Σ

h|y
i + Σ

∆h|∆y

i )−1Σ
h|y
i Σ

∆h|∆y

i . (4.40)
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Combining Eq. (4.37) and (4.38) together, we get the conditional pdf

p(hn|yn, ĥn−1, ∆yn) ≈

M∑

i=1

αi N (hn|µ
′
i,Σ

′
i)N (yn|µ

y
i ,Σyy

i )N (∆yn|µ
∆y
i ,Σ∆y∆y

i )

M∑

k=1

αi N (yn|µ
y

k ,Σyy

k )N (∆yn|µ
∆y

k ,Σ∆y∆y

k )

(4.41a)

=

M∑

i=1

βi(yn, ∆yn)N (hn|µ
′
i,Σ

′
i), (4.41b)

where

βi(yn, ∆yn) =
αi N (yn|µ

y
i ,Σyy

i )N (∆yn|µ
∆y
i ,Σ∆y∆y

i )
M∑

k=1

αi N (yn|µ
y

k ,Σyy

k )N (∆yn|µ
∆y

k ,Σ∆y∆y

k )

. (4.42)

The final MMSE estimation ofh is obtained by substituting Eq. (4.41) into Eq. (4.34)

ĥn|n−1 ≈
M∑

i=1

βi(y, ∆yn) µ′
i

≈
M∑

i=1

βi(y, ∆yn) [Ψ1(i)µ
h|y
i + Ψ2(i)(ĥn−1 + µ

∆h|∆y

i )], (4.43)

where

Ψ1(i) = (Σ
h|y
i + Σ

∆h|∆y

i )−1Σ
∆h|∆y

i (4.44a)

Ψ2(i) = (Σ
h|y
i + Σ

∆h|∆y

i )−1Σ
h|y
i (4.44b)

with

Ψ1(i) + Ψ2(i) = I ∀i.

With diagonal covariance matrices for the GM densities, Eq.(4.43) is reduced to

ĥn|n−1 ≈
M∑

i=1

βi(y, ∆yn) [Ψ1(i)µ
h
i + Ψ2(i)(ĥn−1 + µ∆h

i )] (4.45)
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and

Ψ1(i) = (Σhh
i + Σ∆h∆h

i )−1Σ∆h∆h
i (4.46a)

Ψ2(i) = (Σhh
i + Σ∆h∆h

i )−1Σhh
i . (4.46b)

Given the trained GMM parameters in Eq. (4.23) or Eq. (4.24),the postfilter gains can be

easily estimated by the MMSE estimator of Eq. (4.32) or Eq. (4.46) and applied to the decoded

speech at the receiver.
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Chapter 5

Experimental Results

In this chapter, we present the integration of the perceptual postfiltering method into a LPAS

speech coder and the experimental results. The ITU-T Recommendation G.723.1 speech codec

[5] at rate of 5.3 kbps is chosen for the simulation. In Section 5.1, details of algorithm implemen-

tation of the G.723.1 standard are described. Section 5.2 presents the probabilistic dependency

between “input” and “output” features of the MMSE estimatorby information measure. The

experimental results are presented in Section 5.3.

5.1 Algorithm Implementation

We incorporate the perceptual postfilter based on GMM, whichwas introduced in Section 4.3,

into a low bit rate speech codec to improve the decoded speechquality. In the experiment, all

speech is sampled at 8 kHz with 16-bit PCM resolution. Two sets of clean speech signals recorded

under the same condition are used as the test material. One set is for training, and the other one

is for evaluation.

The experiment involves three steps:

1. Generation of the training data set

2. GMM training

3. Implementation of the perceptual postfilter with the trained GMM

The proposed perceptual postfilter has been designed to reduce the perceived level of noise

in low rate speech coders. We did the simulation of the proposed perceptual postfilter with the
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G.723.1 speech codec [5] at rate of 5.3 kbps. The G.723.1 speech codec operates on frames of

240 samples. Each frame is divided into four subframes of 60 samples each. For each subframe,

10th order LP analysis is used on a Hamming windowed block of 180 samples centered on the

subframe. The LP coefficients for the last subframe are converted to LSFs and quantized. For

each subframe, linear interpolation is performed between the quantized LSFs of the current frame

and the quantized LSFs of the previous frame to derive the quantized LSFs for the current sub-

frame. The excitation signal is coded with a pitch period andalgebraic-code-excitationfor each

subframe.

A local speech database was used. The database was composed of speech of 23 speakers

(12 females and 11 males). In considering the limited size ofthe speech database, we choose a

section of the database with 10 female and 9 male speech for GMM training, and the rest of the

database with 2 females and 2 males was used for performance evaluation.

The G.723.1 speech coder encoded the corresponding information about excitation and LSFs.

For each frame, only the information about the first and the third subframes are used in training. A

feature vector was constructed from each processing block of 180 samples (3 coding subframes)

centered on the first or the third subframe of each frame. There was an overlapping of 60 samples

for adjacent processing blocks. First, a decoding feature vectory of dimension 12 was derived

from the coded information of the current subframe. The 10 quantized LSFs were used as a

sub-feature vector representing the speech short-term spectral property,b, while pitch and its

correspondinglong-term prediction(LTP) gain represented the long-term spectral property,n.

The LSFs and pitch were obtained directly from the coded information of the center subframe.

The LTP gain was calculated from the coded speech with the coded pitch and corresponding

subframe. Then a sine-squared window was applied to the first60 and the last 60 samples of the

processing blocks of the original and decoded speech as shown in Fig. 5.1. A 512-point FFT was

used on each windowed block. A 17 bark-scale perceptual postfilter gain vectorh was derived

from Eq. (4.13). Therefore, a realization ofs with dimension 29 in Eq. (4.21) was obtained

with the realizations ofy andh for each processing block. We actually used the dB value of

the perceptual postfilter gains forh. By passing the training speech set through the encoder, a

training set consisting of 338,916 vectors was generated.

Diagonal covariance matrices were used for both the GMM of static features only (Eq. (4.23))

and the GMM of static and dynamic features (Eq. (4.24)). The GMM of static features was

trained with the training set. For training the GMM of staticand dynamic features, the dynamic

features were created with Eq. (4.22). The first static feature in each sentence was set as the
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initial feature for that sentence. Consequently, the static and dynamic features in the rest of

training sentences formed the training data set for the GMM of static and dynamic features. The

EM algorithm is generally satisfactory to train a GMM when the number of parameters to be

estimated is small with respect to the number of training observations. Usually, the size of the

training set should be at least 50 to 100 times of the number ofestimated parameters [63]. For

the GMM of static features with dimension17 + 12 = 29 and the GMM of static and dynamic

features with dimension17+12+12 = 41, the mixture number should be less than 100 for better

modelling.

Frame N Frame N+1

Subframe

Fig. 5.1 Windowing for the training and perceptual postfiltering.

By incorporating the GMM parameters into Eq. (4.33) or (4.45), the perceptual postfilter was

estimated with decoding feature vectors from the received coding information. For every two

subframes of the decoded speech, the postfiltering was performed on windowed blocks of 180

samples, with 60 sample overlaps. The decoded LSFs, pitch and corresponding calculated LTP

gain of the center subframe of the processing block were usedas the decoding feature vector

to derive the perceptual postfilter with Eq. (4.33) or (4.45). The same window in Fig. 5.1 was

used and the windowed processing block was transformed intothe frequency domain with the

same length FFT1 in training data set generation. For those frequency components within a bark

bandi at then-th frame, the same postfilter gain̂H(i, n) was applied to their Fourier magnitudes.

The modified Fourier magnitudes were then transformed back to the time domain with IFFT

combined with the phase of the decoded speech frame. The overlap-add method [64] was used

to combine the processed blocks into the final modified signal. Speech in the evaluation set were

passed through the G.723.1 speech encoder at rate of 5.3 kbps, and then decoded and postfiltered

with the bottom system in Fig. 4.2.

The generation of the training data set has been executed in the C language. The training of

the GMM parameters has been done in Matlab. We have implemented the proposed perceptual

postfilter in C.
1For linear FIR filtering in the frequency domain, the size of the FFT and IFFT must be at leastNF = L+M −1

to avoid the aliasing that results in the time domain [64]. Here,L is the size of the processing block andM is the
size of the estimated perceptual postfilter.
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5.2 Probabilistic Dependency between “Input” and “Output” Features

It would provide us with a better understanding about the possibilities to successfully estimate the

perceptual postfilter gains with the MMSE estimator based onGMM, if we check the dependency

between the “input” features and the “output” features.

For the case of estimation with static features only, we needto find how large the remaining

uncertainty of the perceptual postfilter gains is given the decoding features. This was done by

determining the ratio between the mutual informationI(h,y) of h andy and the entropyH(h)

of h [65]. The joint density function ofh andy was modelled by a GMMp(h,y). We can easily

obtain the marginal densitiesp(h) andp(y) with p(h,y) (See Section 4.3.3). The GMM training

set was generated from Section 5.1. The estimate of the mutual information, Î(h,y), and the

estimate of the differential entropy,ĥ(h), were obtained from [65]

Î(h,y) =
1

N

N∑

n=1

(
log2

( p(hn,yn)

p(hn)p(yn)

))
, (5.1)

ĥ(h) = −
1

N

N∑

n=1

log2(p(hn)), (5.2)

where the sample vector sets{hn}, {yn} and{hn,yn} were generated from the GMM and each

containedN vectors. We usedN = 106.

The relationship between the entropyH(h) and the differential entropy can be express as [65]

H(h) ≈ h(h) − log2(∆
d1), (5.3)

whered1 is the dimension of the vectorh and∆ is the quantization step. Since we applied the

dB value of the perceptual postfilter gains forh, we selected∆ = 1 according to [65]. Then the

entropy is equal to the differential entropy ofh.

For the estimation with both static and dynamic features, the estimate of the mutual informa-

tion, Î(h, ∆h,y, ∆y), and the estimate of the entropy,Ĥ(h), were obtained similarly. Due to

the limited size the the training set, we tested mixture components less than 100. Table 5.1 and

Table 5.2 present the mutual information from GMM pdf withM=8, 16, 32, 64, and 80 mixture

components, the entropies, and the ratios between the mutual information and the entropies.

From Table 5.1 and Table 5.2, we can see that the mutual information is only a small fraction

of the “target” entropy, while the dependency increases slightly with more mixtures. The results
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Table 5.1 Information Results for Static Features.

Gaussian Mixtures Î(h,y) Ĥ(h) Î(h,y)/Ĥ(h)(%)

8 3.85 66.49 5.80
16 3.77 66.28 5.69
32 3.99 65.84 6.06
64 4.26 65.43 6.51
80 4.38 65.42 6.70

Table 5.2 Information Results for Static+Dynamic Features.

Gaussian Mixtures Î(h,∆h,y,∆y) Ĥ(h) Î(h,∆h,y,∆y)/Ĥ(h)(%)

8 4.49 66.50 6.76
16 4.59 66.31 6.93
32 5.70 65.90 8.66
64 5.46 65.67 8.31
80 6.18 65.55 9.44

show GMMs with both static and dynamic features have less uncertainty than those only with

static features. However, mutual information is a statistical tool. Although its value is not high,

the “input” and the “target” may still be perceptually bounded well.

5.3 Results and Discussion

Comparison of Postfilter Gains and Spectrograms

A GMM with M=80 was used for perceptual postfiltering. The ideal perceptual postfilter was

described in Eq. (4.10). We compared the G.723.1 standard formant adaptive postfilter with our

perceptual postfilter based on GMM in postfilter gains and spectragrams.

A female speech was used for comparison. Its waveform is given in Fig. 5.2. Also, Fig. 5.3

shows the postfilter gains of 30 sequential frames. In Fig. 5.2, the corresponding time interval of

those frames is specified between the two lines.

Comparing the postfilter gains in Fig. 5.3, we see that the MMSE estimations generally follow

the ideal postfilter trend to some extent, while the G.723.1 standard formant postfilter has very

little effect on the speech. This is because the G.723.1 standard formant postfilter is mainly

determined by LPCs which change slowly frame by frame, andλ1, λ2 andµ constrain its dynamic

range to be very limited comparing with the ideal postfilter.
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Fig. 5.2 A female speech waveform.

Fig. 5.4 shows the spectrograms of clean speech (First), G.723.1 coded speech with standard

postfiltering (Second), G.723.1 coded speech with the new perceptual postfilter using static fea-

tures only (Third), and G.723.1 coded speech with the new perceptual postfilter using both static

and dynamic features (Fourth), respectively.

Low bit rate LPAS coding emphasizes the high energy parts (generally formants at low fre-

quencies) and loses some naturalness at high frequencies. From Fig. 5.4, it can be seen that the

perceptual postfilters recover some of the high frequency loss from encoding, while the differ-

ence between postfilter estimation with only static features and that with both static and dynamic

features is not obvious.

Subjective Evaluation

Although there are some objective quality measures (See Section 2.6.2) to evaluate the perfor-

mance of our algorithm, we found that our proposed perceptual postfilter has lower scores than

the conventional adaptive postfilter with those measures. The best measure of perceptual quality

of speech is themean opinion score(MOS), which is obtained from a formal subjective listening

test. Since it is difficult to gauge the effectiveness of postfiltering quantitatively by objective mea-

sures [15] and formal MOS tests are not available in our research environment, we evaluated the

perceptual-quality-improving capability of the perceptual postfilter by informal listening tests.

In order to measure the subjective performance of the perceptual and the conventional postfil-

ters, informal tests were used with 6 untrained listeners. 8sentences pairs for 4 speakers (2 male

and 2 female speakers in the evaluation speech set) were processed by the G.723.1 codec at rate

of 5.3 kbps. The decoded speech signals were modified by the proposed perceptual postfilter and
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Fig. 5.3 Postfilter Gains: (a) Ideal Perceptual Postfilter Gains; (b)ITU-T G.723.1
Rate 5.3 kbps Formant Postfilter Gains; (c) Estimated Perceptual Postfilter Gains by
80 GMM with Static Features Only; (d) Estimated Perceptual Postfilter Gains by 80
GMM with Static and Dynamic.
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Fig. 5.4 Spectrograms. First: Original speech; Second: ITU-T G.723.1 coded
speech with the standard postfiltering; Third: ITU-T G.723.1 coded speech with the
perceptual postfiltering estimated with static features only; Fourth: ITU-T G.723.1
coded speech with the perceptual postfiltering estimated with both static and dynamic
features.
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the standard conventional postfilter, respectively. For each sentence, the two postfiltered versions

were compared according to the original clean speech. The listeners were asked to pick one of

the two postfiltered speech which they preferred and give thereason.

The test speech signals were presented over both headphonesand loudspeakers to the lis-

teners. Informal listening tests showed that the proposed perceptual postfilter gives much more

natural sound than the conventional postfilter for most of the tested speech. This is because the

high frequency distortion from coding is lessened by the proposed perceptual postfilter. Postfil-

tered speech with filter estimation based on both static and dynamic features gave a bit smoother

sound than that based only on static features. With static and frame-differential features, the

perceptual postfilter captures some dynamic information ofspeech.

With loudspeakers, the listeners all preferred the perceptual postfiltered speech signals to

the standard postfiltered ones. The improved naturalness with the proposed postfilter delivered

significantly better quality, while the standard postfilterstill sounded thin and a bit muffled (which

is common in low bit rate speech coding). However, a little degradation was audible in some

perceptual postfiltered speech when listened with headphones. The standard postfiltered one

sounded smoother. This may be caused by the fact that the G.723.1 speech coder is a LPAS

coder and not primarily perceptual-based, while the ideal perceptual postfilter is totally perceptual

motivated and could change abruptly from frame to frame. Theconventional postfilter is based

on pitch and LSFs which change slowly. The ideal conventional postfilter itself has a smooth

contour and small dynamic range, and the conventional postfilter is a closer resemblance to it.

However, the nature of the ideal conventional postfilter made it hard to improve the other aspects

of the speech quality (for instance, naturalness and intelligibility) other than some coding noise

reduction. Our proposed perceptual postfilter improves thedecoded speech quality by recovering

some information in the original speech, but introduces some unforeseeable distortion at the

same time as well. In some part of consecutive processing blocks, the estimates of the perceptual

postfilter cannot catch the fast change of the ideal perceptual postfilter. This may be the reason

why the objective measure scores of our perceptual postfiltered speech were worse than those

with the conventional postfilter.
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Chapter 6

Conclusion

Psychoacoustic principles have been widely used in low bit rate speech and audio signal process-

ing. Bit rate reduction can be achieved without coding the perceptually irrelevant information.

Active research has been increasingly concentrated on exploiting human auditory properties in

speech and audio coding in the past decade. The masking phenomena for noise reduction are

the key theory for its practical applications. Quantization noise control, speech enhancement

and objective quality measurements are the major applications. The examples are noise suppres-

sor (speech enhancement) in Enhanced Variable Rate Codec (EVRC) [22], coding noise shaping

with auditory models (quantization noise control) in Moving Pictures Experts Group (MPEG)

standards—MPEG-1 [66], MPEG-2 [67] and MPEG-4 [68], and PEAQ [13] for audio perceptual

quality measure.

The main goal of this thesis has been to improve perceptual quality of low bit rate coded

speech. This work has focused on design and implementation of a perceptual postfiltering tech-

nique based on perceptual models. A novel perceptual postfilter for low bit rate LPAS speech

coders has been introduced in this thesis. The proposed postfilter is perceptually based and is an

add-on part at the receiver just as a conventional adaptive postfilter. It has shown that, with the

proposed postfilter, speech quality is improved with a more natural sound than the conventional

postfiltered speech.

6.1 Summary of Our Work

After a brief introduction about speech coding methods, especially utilization of the masking

concept, Chapter 1 outlined motivation and objective of thework in this thesis. Chapter 2 started
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off by introducing the bases of the modern LPAS speech coders. In order to reduce perceptual

distortion from LPAS coders, noise shaping and adaptive postfiltering (both based on masking

properties) are exploited in the encoder and the decoder, respectively. Emphasis was placed on

methods of adaptive postfiltering. Due to the theory behind LPAS coding and masking properties,

conventional adaptive postfiltering has two parts: long-term postfiltering and short-term postfil-

tering. Various realizations of adaptive postfiltering were included. Speech quality measurements

were also described at the end of Chapter 2.

Chapter 3 concentrated on presenting three psychoacousticmodels. The description of the

models begined with Johnston’s masking model in Section 3.2. This model is used to control the

coding noise in a perceptual transform coder. In Section 3.3, two models from PAQM and PEAQ

were presented. These models are parts of the original objective quality evaluation procedures.

The calculations of these psychoacoustic models are similar, and the difference is in the detailed

operations. Also, the intermediate models, such as the masking model and the excitation model,

are very useful in speech and audio signal processing.

In Chapter 4, a novel postfiltering method combining perceptual properties and statistical

estimation together was proposed. Specific perceptual properties was applied to the postfiltering

other than the masking threshold concept used in the conventional postfilter. First, the proposed

postprocessing structure was given in Section 4.1. A perceptual postprocessor model is easily

applied to current low bit rate narrowband LPAS coders. The proposed system diagram was given

in Section 4.1.1. Section 4.2 developed a perceptual postfilter scheme. The idea was motivated

by a generalized perceptual filter by Lam and Stewart in Section 4.2.1: perceived coding noise is

suppressed by setting internal representation of the modified coded signal to that of the original

signal. Under the assumption that the psychoacoustic modelis an invertible auditory model,

Section 4.2.2 derived a new perceptual postfilter which is based on equalizing the critical band

intensities between the original and the coded signals.

At the decoder, the original signal is unavailable. Section4.3 builded a MMSE estimator of

the perceptual postfilter given information at the decoder with a GMM-modelled pdf. The GMM

was trained at the encoder where the perceptual filter gains are easy to get with the availability

of both the original and the coded signals. The EM algorithm for GMM training was described

in Section 4.3.1. Derivation of the MMSE estimators with given features were presented in

Section 4.3.3. Both static and dynamic features were taken into consideration.

Chapter 5 described how the algorithm was utilized in a real speech coder and the resulting

performance. ITU-T G.723.1 speech codec at rate of 5.3 kbps was examined. The LSFs, pitch
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and LTP gains from the decoder were used to estimate the perceptual postfilter gains with a

MMSE estimator using a GMM. Low bit rate coding emphasizes the high energy parts (generally

formants at low frequencies) and loses some naturalness at high frequencies. The perceptual

postfilter recovered some of the high frequency loss. Informal listening tests have shown an

improved speech quality with a more natural sound.

6.2 Future Research Directions

This section provides possible future research in perceptual postfiltering. The design of the per-

ceptual postfiltering scheme mainly depends on the speech enhancement of speech corrupted with

speech-correlated noise. Furthermore, perceptual postfiltering can be applied in other aspects in

speech coding.

• Better perceptual postfiltering methods

Our perceptual postfilter is derived from the internal representations of a basilar membrane

model. At the same time, the linear error spectra analysis would yield some additional

information about the distortions [25]. Kleijn [34, 69] studied some methods of improving

the speech periodicity to get better perception. While using a FFT-based perceptual model,

it is possible to incorporate the perception of fundamentalfrequency in postfiltering. Also,

our perceptual postfilter is based on a level-independent spreading function. Further re-

search can consider level-dependent spreading functions which is closer to how the human

ear works.

• Enhancement for noisy speech

A speech coder is designed to work with clean speech. Accurate estimation of the coder

parameters is impossible with ambient noise. The performance of a speech coder can be

very bad under noisy environments. A noise suppressor is usually applied before encoding

in a practical speech coder to reduce additive noise, for instance in [22]. This part is

independent of coding. A noise suppressor could be built with the proposed perceptual

postfilter to enhance noisy speech. The GMM parameters will be adjusted according to

SNR estimation and the perceptual filter gains will be estimated with the noisy input and

the GMM parameters.

• Preprocessing for Speech Coders
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LPAS codecs update the pitch information on a block-by-block basis. This pitch distortion

makes the coded speech noisy, especially obvious at low bit rates. Generalized Analysis-

by-Synthesis Coding has been studied [69] and implemented in [7]. It preprocesses speech

before encoding to improve the pitch prediction. [70] removed the perceptually irrelevant

simultaneously masked frequency components of a speech signal by a masking model to

get a more efficient coding than the original signal without significant degradation of the

speech quality. While the perspective of perceptual information implementation is different

from the masking model, a method similar to perceptual postfiltering can be applied to

improve the quality of a speech coder by preprocessing speech with a perceptual model.

• Embedding perceptual postfiltering in the speech encoder

Operating at the decoder end, postfiltering is not considered at the encoder. Its well-known

shortcomings are both speech distortion and noise enhancement. If we can incorporate

perceptual filtering in encoding, the problem of speech distortion will be lessened. Most

low bit rate speech coders work in the time domain. During encoding, the excitation sig-

nal, which gives the least weighted MSE of the speech signal,is chosen by passing each

candidate excitation through the LP synthesis filter. Adding a frequency domain technique

within the time domain analysis-by-synthesis loop is not easy. A possible solution is to get

a time-domain filter from its counterpart in the frequency domain. For example, a time-

domain all-pole filter can be derived from the magnitude spectrum of a perceptual post-

filter. Its power spectral density is approximated with the periodogram which is directly

calculated from the magnitude spectrum of the postfilter [71]. Therefore, the all-pole filter

coefficients is easily obtained with inverse Fourier transformed power spectral density by

the Levinson-Durbin algorithm [71].
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Appendix A

Derivation of the General Perceptual Filter

from PAQM

A general perceptual filter is given in [52] based on Eq. (4.1), Eq. (4.4) and Section 3.3.1. The

perceptual filter is applied to enhance the quality of the coded audio signal.

An assumption1 is used in the calculation of the excitation intensity in Eq.(3.15)

1 + 0.2dz(i − v) ≈ 1. (A.1)

This approximation ignores the level dependency of the upper slope of the frequency spreading

function. Therefore, for the original signal frames(m, n), its excitation level function satisfies

Sα/2
e (i, n) =

B−1∑

v=i

[
10−Sl(v−i)dz/10St(v, n)

]α/2
+

i−1∑

v=0

[
10S0(v)(i−v)dz/10St(v, n)]α/2

=

B−1∑

v=i

S
α/2
t (v, n)

[
10−Sl(v−i)dz/10

]α/2

+

i−1∑

v=0

S
α/2
t (v, n)

[
10S0(v)(i−v)dz/10]α/2

=
B−1∑

v=0

S
α/2
t (v, n)Ci,v, 0 ≤ i ≤ B − 1, (A.2)

1The assumption Lam and Stewart [52] used is1 + 0.02dz(i − v) ≈ 1.
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whereSt(v, n) is the time-domain smeared pitch representation ofs(m, n). The definition and

derivation ofSt(v, n) is given in Section 3.3.1. It is clear thatCi,v is only frequency dependent.

The excitation level values of the original signal are calculated by Eq. (A.2). Similarly, the

excitation function of the coded signalŝ(m, n) is

Ŝα/2
e (i, n) =

B−1∑

v=0

Ŝ
α/2
t (v, n)Ci,v, 0 ≤ i ≤ B − 1. (A.3)

Given Eq. (4.1), the modified signal has an excitation function as

S̃α/2
e (i, n) =

B−1∑

v=0

S̃
α/2
t (v, n)Ci,v

=
B−1∑

v=0

Ci,v

{
n∑

j=n−1

Tf(v, j)S̃a(v, j)

}α/2

=
B−1∑

v=0

Ci,v

{
n∑

j=n−1

Tf(v, j)a0(v)
∑

k∈bv

S̃p(k, j)

}α/2

=

B−1∑

v=0

Ci,v

{
n∑

j=n−1

Tf(v, j)a0(v)
∑

k∈bv

H(v, j)Ŝp(k, j)

}α/2

. (A.4)

The time varying filter is assumed to vary very slowlyH(v, j) = H(v). Combining Eq. (4.4) and

Eq. (A.4), we set the excitation value of the modified signal to that of the original signal

Sα/2
e (i, n) =

B−1∑

v=0

Hα/2(v)Ci,v

{
n∑

j=n−1

Tf (v, j)a0(v)
∑

k∈bv

Ŝp(k, j)

}α/2

=
B−1∑

v=0

Hα/2(v)Ŝ
α/2
t (v, n)Ci,v, 0 ≤ i ≤ B − 1. (A.5)

The perceptual filter coefficientsH(v) are obtained by solving these equations in Eq. (A.5).
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