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Abstract

This thesis addresses the general problem of maintaining robust automatic speech recogni-

tion (ASR) performance under diverse speaker populations, channel conditions, and acous-

tic environments. To this end, the thesis analyzes the interactions between environment

compensation techniques, frequency warping based speaker normalization, and discrimi-

nant feature-space transformation (DFT). These interactions were quantified by perform-

ing experiments on the connected digit utterances comprising the Aurora 2 database, using

continuous density hidden Markov models (HMM) representing individual digits.

Firstly, given that the performance of speaker normalization techniques degrades in

the presence of noise, it is shown that reducing the effects of noise through environmen-

tal compensation, prior to speaker normalization, leads to substantial improvements in

ASR performance. The speaker normalization techniques considered here were vocal tract

length normalization (VTLN) and the augmented state-space acoustic decoder (MATE).

Secondly, given that discriminant feature-space transformation (DFT) are known to in-

crease class separation, it is shown that performing speaker normalization using VTLN in

a discriminant feature-space leads to improvements in the performance of this technique.

Classes, in our experiments, corresponded to HMM states. Thirdly, an effort was made

to achieve higher class discrimination by normalizing the speech data used to estimate the

discriminant feature-space transform. Normalization, in our experiments, corresponded

to reducing the variability within each class through the use of environment compensa-

tion and speaker normalization. Significant ASR performance improvements were obtained

when normalization was performed using environment compensation, while our results were

inconclusive for the case where normalization consisted of speaker normalization. Finally,

aimed at increasing its noise robustness, a simple modification of MATE is presented.

This modification consisted of using, during recognition, knowledge of the distribution of

warping factors selected by MATE during training.
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Sommaire

Cette thèse adresse le problème général de maintenir l’exécution robuste de reconnais-

sance automatique de la parole (ASR) pour divers populations de locuteur, états de canal,

et environnements acoustiques. À cet effet, la thèse analyse les interactions entre les tech-

niques de compensation d’environnement, les techniques de la normalisation de locuteur

basé sur la déformation de la fréquence, ainsi que la transformation discriminante de l’es-

pace des attributs (DFT.) Ces interactions ont été mesurées en effectuant des expériences

sur des émissions de paroles de chiffres relies compris dans la base de données d’ Aurora 2,

en utilisant des modèles de Markov cachées a densité continue (HMM). Premièrement, étant

donné que l’exécution des techniques de normalisation de locuteur dégrade en présence du

bruit, il est démontré que la réduction des effets du bruit par la compensation environ-

nementale, avant la normalisation de locuteur, mène aux améliorations substantielles de

l’exécution d’ASR. Les techniques de normalisation de locuteur considérées ici étaient la

normalisation de la longueur de tractus aérien (VTLN) ainsi que le décodeur acoustique

de l’espace d’état augmenté (MATE.) Deuxièmement, étant donné que la transformation

discriminante de l’espace des attributs (DFT) est connue pour augmenter la séparation de

classes, il est démontré que la normalisation de locuteur employant le VTLN dans un espace

des attributs discriminant mène aux améliorations de l’exécution de cette technique. Dans

nos expériences, les classes correspondaient aux états d’HMM. Troisièmement, dans le but

de réaliser une discrimination de classe plus élevée, les données de la parole employées pour

estimer la transformation discriminante de l’espace des attributs ont été normalisées. Dans

nos expériences, la normalisation a été effectuée par une réduction de la variabilité dans

chaque classe à l’aide de la compensation d’environnement et la normalisation du locuteur.

Des améliorations significatives d’exécution d’ASR ont été obtenues quand la normalisa-

tion a été effectuée en utilisant la compensation d’environnement, alors que les résultats

obtenus avec la normalisation du locuteur ont été peu concluants. En conclusion, une mo-

dification simple de MATE est présentée afin d’augmenter la robustesse contre le bruit.

Cette modification, lors de la phase d’identification consistait à employer la connaissance

de la distribution des facteurs de déformation choisis par MATE pendant la formation.
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Chapter 1

Introduction

The field of Automatic Speech Recognition (ASR) has undergone substantial advances

during recent years. Today’s ASR systems are able to perform with considerable accuracy.

As a result, the technology is finding more and more applications: ASR is now used in

systems such as automated call centers, cellular telephones, automobiles, and personal

computers. Nevertheless, the performance of such systems is far from perfect.

There are various issues concerning the operation of modern ASR systems, which lead

to reductions in their efficiency and accuracy. Among these issues is the existence of

various forms of variability in speech. These include variations in acoustic environment,

communications channel, and speaker characteristics. Hence, much effort has been devoted

to finding ways of dealing with these issues. Furthermore, the notion of class discrimination

plays an important part in determining the performance of ASR systems. In the following

subsections, we will first describe these sources of variability as well as the notion of class

discrimination, and then, present the main goals of this thesis as well as its outline.

1.1 Variations in Acoustic Environment and Communications

Channel

A major factor that leads to degradations in the performance of ASR systems is the presence

of noise in the environment. Such degradations in performance can be explained in terms

of the mismatch between the conditions in which the systems are trained and the ones in

which they are operated. For example, Lockwood and Boudy reported a 70% degradation in

2007/01/15
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the accuracy of a conventional word recognizer when it was trained in clean conditions and

tested in a car travelling at 90km/h [1]. Also, as another example, Das et al. reported an

error rate of 50% from the IBM Tanagora speech recognition system when the system was

trained with isolated words under clean conditions and tested in a cafeteria environment,

while the same system had yielded a mere 1% error rate under clean conditions [2].

The approaches designed to battle the mismatch between training and operating en-

vironment can be classified into three categories [1]. The first category is concerned with

the feature analysis stage of ASR, the function of which is to obtain information from the

speech waveform that is relevant to the pattern classification task, discarding any redun-

dant information. The approaches in the first category are aimed at extracting features

from the speech signal which are insensitive to noise. For example, Xu and Wei proposed

a scheme which assumes the statistics of the noise signal to be stationary over successive

speech frames. Therefore, by extracting features based on the difference of short-time

power spectrum of the speech signal, the effects of additive noise are effectively cancelled

[3]. Other examples include feature extraction algorithms based on the human auditory

system, such as the one presented by Kim et al. [4].

The second category of methods is also concerned with the feature analysis stage, and

consists of techniques which attempt to remove the effects of noise from the speech sig-

nal. These techniques often utilize a priori information about the properties of speech and

noise to recover clean speech from noisy speech. For example, the model-based Wiener filter

(MBW) method combines spectral subtraction, Wiener filtering, and minimum mean square

error estimation, based on a Gaussian mixture model representing pre-trained knowledge

of speech, to reduce the effects of noise [5]. Another example is the European Telecom-

munications Standards Institute advanced front-end (ETSI-AFE) [6] which combines blind

equalization, a two-stage Wiener filter design and SNR-dependent waveform processing

(SWP) [7] to perform this task. The ETSI-AFE is the method of choice for environment

compensation in this thesis and is further described in Chapter 2.

The methods in the third category, instead of compensating the noisy speech signal,

attempt to adapt the acoustic model, originally trained under clean conditions, to the

noisy environment. Parallel model combination (PMC) [8] is one such approach which is

applied to hidden Markov model (HMM)-based systems [9]. The technique models noise

as separate HMMs which are combined with the clean condition acoustic HMMs to yield

the compensated models.
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While the three categories of methods mentioned above focus on the effects of the

acoustic environment, other methods are required to deal with the characteristics of the

communications channel as a major source of ASR performance degradation. For example,

in the case of packet-based mobile and IP networks, codec distortion and packet loss are two

major problems to contend with. When the ASR system is located on a server connected

through a network to the terminal device where the speech input occurs, a distributed

speech recognition (DSR) architecture can be used to avoid codec distortion. This is done

by moving the feature extraction stage of ASR to the terminal device. Also, to battle packet

loss, techniques have been used such as the maximum a-posteriori (MAP) estimation of

lost packets using the statistics of the packet stream [10].

1.2 Variations in Speaker Characteristics

Another major source of performance degradation in ASR is the variability caused by phys-

iological and dialectical differences among different speakers. Evidence of this can be found

by comparing the performance of speaker dependent (SD) and speaker independent (SI)

ASR systems. A speaker dependent system is trained using data from a single speaker, and

is intended for use by that same speaker. On the other hand, a speaker independent system

is trained using data from a large population of different speakers for use by speakers that

are not necessarily in the training population. To illustrate the difference in performance,

Huang and Lee performed a comparison of SI and SD systems on the DARPA Resource

Management Task. They reported a word error rate of 4.3% using a SI system, while, using

a SD system on the same task, the error rate was only 1.4% [11].

As the performance degradation stated above is typical of many SI systems where

training and testing are performed using utterances from many differing speakers, it is

clear that there is a need for techniques that make ASR systems more robust against

differences among speaker characteristics. These techniques can be divided into two main

categories: speaker adaptation and speaker normalization.

Speaker adaptation techniques require the existence of a model which has already been

trained for one or many speaker. The goal of such techniques is to tune the parameters of

this model to a new speaker. To this end, a set of speech samples from the new speaker are

used as adaptation data. Depending on how the adaptation is performed, these techniques

differ in the amount of data they need. For example, the speaker adaptation algorithm pro-
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posed in [12] utilizes maximum posteriori (MAP) estimation to perform speaker adaptation

of HMM-based speech recognizers. The approach requires a large amount of adaptation

data since it only updates those models for which there are examples in the data [13].

Another technique for adapting HMM-based systems is the maximum likelihood linear re-

gression (MLLR) approach [13] which requires a relatively small amount of adaptation

data. This data is used to compute a number of linear transformations which are applied

to the distribution means contained in the model.

Speaker normalization techniques, on the other hand, instead of compensating the

model, perform transformations on the speech signal to compensate for speaker variabilities.

Due to the significant variations in the vocal tract length of different speakers, the positions

of the formants produced by different speakers can vary as much as 25% [14]. Therefore,

a major category of recent speaker normalization techniques are focused on normalizing

the effective vocal tract length across different speakers. Vocal tract length normalization

(VTLN) [14] and augmented state-space acoustic decoder (MATE) [15] perform this by

applying a linear warping to the frequency axis of the utterance, normalizing the position

of spectral peaks or formants of speech. These methods are further described in Chapter

2.

1.3 Class Discrimination in Statistical Pattern Recognition

The function of the feature extraction stage of ASR is to reduce the high amount of in-

formation contained in a speech signal and produce features that are most relevant to the

ASR task, discarding any redundancy. One of the most common feature analysis techniques

in ASR involves concatenating a set of static and dynamic feature vectors for each given

speech frame. The static features are often computed using cepstral analysis [16] which is

based on the magnitude of the short-time spectral envelope of the signal. Dynamic features,

on the other hand, are computed to capture a measure of the time evolution of the spectral

content of the signal [17]. Such information has been shown to play an important role

in human speech perception [18] and also to increase ASR performance [17]. For a given

frame, these dynamic features are computed based on the derivatives of the trajectories of

the spectral parameters of the current frame [17].

Although the above technique has been widely used in the literature, the fact remains

that the simple concatenation of dynamic features to the static features is not necessarily
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the best way to capture the time evolution of speech frames. Therefore, efforts have been

made to perform this task in a more mathematically sound framework. The underlying

assumption of such developments is the consideration of ASR as a type of classification

problem. Although, as it is not clear what the best definition of classes should be, various

choices such as words and phones have been considered in the literature [19]. Regardless of

this choice, the fundamental problem in ASR is to discriminate between such classes, and

hence, ASR can be viewed as a special type of classification problem in statistical pattern

recognition.

Considering the classification problem inherent in ASR, recent techniques have ap-

proached the problem of capturing the time evolution of speech frames in a new light. In

such approaches, instead of performing the simple concatenation of static and dynamic

features discussed above, the extracted features for a given frame are concatenated with

features from a number of surrounding frames. Then, a discriminant feature-space transfor-

mation (DFT) technique is used to reduce the dimensionality of the resulting vector while

maximizing class discrimination. Linear discriminant analysis (LDA) [20] is a standard

method for dimensionality reduction with the constraint of maximizing class discrimina-

tion [21, 22]. In the transformed space, the feature vectors, while containing information

about the time evolution of the spectral content of the signal in the current frame, are

optimal in the sense that they allow for maximum class discrimination.

Despite the popularity of LDA, the method has shown gains for small vocabulary tasks,

while yielding mixed results for large vocabulary tasks [21, 22]. One reason for this short-

coming is that, while the underlying ASR models are often trained with the assumption

that the data has diagonal covariance, LDA produces a projected space whose dimensions

might be highly correlated. Therefore, maximum likelihood feature-space transformations

(MLLT) have been used to diagonalize the resulting space [19]. Another shortcoming of

LDA is the fact that it assumes the data assigned to each class to have the same covariance.

Therefore, subsequent work was concerned with the generalization of LDA to heteroscedas-

tic discriminant analysis (HDA) which does not require such an assumption [23]. These two

discriminant feature-space transformation (DFT) method are further described in Chapter

2.
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1.4 Thesis Statement

The purpose of this thesis is to perform an experimental study concerned with the notion of

robustness against sources of variability in automatic speech recognition (ASR). We believe

that by combining environment compensation, speaker normalization, and discriminant

feature-space transformation (DFT), we can improve the robustness of ASR systems, and

therefore improve their performance. The specific claims that were investigated in this

respect are stated below. The research performed as part of this thesis was aimed at

motivating and investigating the validity of these claims through experiments.

1.4.1 Claims

The first claim considered in this thesis states that the performance of speaker normalization

should improve through the use of environment compensation. We will motivate this claim

by considering the effects of noise on the processes comprising the speaker normalization

techniques, and subsequently, examining the effects of environment compensation on these

processes.

To state the second claim, we note that, in the sense outlined in Section 1.3, class

discrimination has a direct impact upon the performance of speech recognition. Further-

more, it can be expected that class discrimination also affects the performance of speaker

normalization algorithms. Therefore, we argue that when discriminative algorithms, such

as LDA and HDA, are used to increase class discrimination, the performance of speaker

normalization techniques, such as MATE and VTLN, should improve. This comprises the

second claim of this thesis.

On the other hand, class discrimination is reduced as a result of the increase in within-

class variance caused by variabilities in environment, channel and speaker characteristics.

As a result, since environment compensation and speaker normalization techniques essen-

tially reduce within-class variance due to such sources of variability, we claim that these

techniques should improve the performance of algorithms aimed at increasing class discrim-

ination, which should in turn lead to improvements in ASR performance.

This constitutes the final claim of this thesis and is evaluated based on the following

scheme. First, we use environment compensation to remove variabilities in each class due

to channel and environment effects. Then, we use speaker normalization techniques such

as VTLN and MATE to reduce inter-speaker variabilities in each class. As a result, the
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variance of the “normalized” data in each class should now have been minimized. Finally,

we apply discriminant feature-space transformation techniques, such as LDA and HDA to

project the normalized data into a space where classes are maximally separated. In this new

space, we expect the performance of ASR to improve. Here, it is important to recognize

a duality embedded in the above claims. On the one hand, we claim that increasing class

discrimination leads to improved speaker normalization, while on the other hand, we claim

that reducing speaker variability leads to better class discrimination.

1.5 Thesis Outline

This thesis starts by presenting the required technical background information in Chapter

2. In this chapter, we will first describe the Mel-frequency cepstral coefficients (MFCC)

used as the underlying feature analysis algorithm in our experiments. Second, we will

provide an overview of continuous density hidden Markov model (HMM)-based speech

recognition. Third, we will describe the standard noise-robust feature analysis algorithm

we used for environment compensation. Fourth, we will look at speaker normalization

techniques, including two specific techniques used in our experiments, namely vocal tract

length normalization (VTLN) and augmented state-space acoustic decoder (MATE.) Fi-

nally, the chapter will present an overview of discriminant feature-space transformation

(DFT) techniques, including linear discriminant analysis (LDA) and heteroscedastic dis-

criminant analysis (HDA.)

Chapter 3 presents the specifics of the experimental setup used for the purpose of our

experiments. The chapter includes details regarding the speech corpus as well as the base-

line speech recognition system our experiments were based on. Furthermore, the chapter

describes specifically how environmental compensation, speaker normalization and discrim-

inant feature-space transformation were combined to assess the validity of our claims.

Chapter 4 focuses on presenting the actual experiments performed to motivate and

assess the three claims of this thesis, as stated in Section 1.4. In evaluating the claims of

this thesis, we noted certain shortcomings of the MATE speaker normalization technique

in noise, and correspondingly devised a simple modification to this technique to increase

its robustness. This new technique is also presented as part of Chapter 4.

Finally, Chapter 5 will summarize the work done for the purpose of this thesis. Major

conclusions are highlighted, and potential areas for future work are stated.
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Chapter 2

Background

The overall focus of this thesis is robustness against sources of variability in ASR systems.

To this end, experiments are performed to investigate the interaction between techniques

that reduce the effects of speaker and environment variability, as well as techniques that

increase class separability in ASR. The purpose of this chapter is to briefly introduce the

various techniques and algorithms employed for the purpose of our experiments. First, we

will describe the Mel-frequency cepstral coefficients (MFCC) used as the underlying feature

analysis algorithm in our experiments. Second, we will provide an overview of continuous

density hidden Markov model (HMM)-based speech recognition, which our experiments

are based on. Third, we will describe the standard noise-robust feature analysis algorithm

we used for environment compensation. Fourth, we will look at speaker normalization

techniques. This will include vocal tract length normalization (VTLN), which is aimed at

removing global utterance-level variability, as well as the augmented state-space acoustic

decoder (MATE), which attempts to remove localized frame-level variability. Finally, the

chapter will present an overview of discriminant feature-space transformation (DFT) tech-

niques. The two approaches considered, namely linear discriminant analysis (LDA) and

heteroscedastic discriminant analysis (HDA), differ in their assumptions concerning the

class-specific distribution of data.

2.1 Feature Analysis

The feature analysis component of an ASR system plays a crucial role in the overall perfor-

mance of the system. As in any pattern classification problem, the goal of feature analysis

2007/01/15
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is to obtain information from the speech waveform that is relevant to the pattern classi-

fication task, and discard information which is redundant or does not contribute to class

separability. In ASR, as the definition of what constitutes relevant information depends on

the design of the classifier and on assumptions made about speech, many feature extraction

techniques have been developed. The most widely used methods are based on smoothed

estimates of the short-time stationary spectral magnitude of speech. These include lin-

ear predictive cepstral coefficients (LPCC), perceptual linear predictive coefficients (PLP)

and Mel-frequency cepstral coefficients (MFCC) [24]. The MFCC was the feature analysis

algorithm of choice for our experiments

2.1.1 Overview of Mel-Frequency Cepstral Coefficients

The Mel-frequency cepstral coefficients (MFCC) feature extraction technique is currently

one of the most widely used in ASR systems. The procedure starts by breaking up the

signal into short (e.g. 25ms) frames, windowing them and calculating the magnitude of the

short-time Fourier transform of each. Then, each frame goes through a filterbank consisting

of a set of triangular weighting functions in the spectral magnitude domain. The center

and cut-off frequencies of the filters are uniformly spaced according to a non-linear scale.

The non-linear frequency scale used here is an approximation to the Mel-frequency scale

which is approximately linear for frequencies below 1kHz and logarithmic for frequencies

above 1kHz [16]. This is motivated by the fact that the human auditory system becomes

less frequency-selective as frequency increases above 1kHz [24].

The MFCC features correspond to the cepstrum of the log filterbank energies. To

calculate them, the log energy is first computed from the filterbank outputs as

St[m] = ln

(
N−1∑
n=0

|Xt[n]|2Hm[n]

)
0 ≤ m < M, (2.1)

where Xt[n] is the discrete Fourier transform of the tth input speech frame, Hm[n] is the

frequency response of mth filter in the filterbank, N is the window size of the transform

and M is the total number of filters. Then, the discrete cosine transform (DCT) of the log

energies is computed as

~ct[m] =
M−1∑
n=0

St[n] cos

(
πm

(
n− 0.5

M

))
0 ≤ m < M. (2.2)
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Since the human auditory system is sensitive to time evolution of the spectral content

of the signal, an effort is often made to include the extraction of this information as part

of feature analysis. As such, in order to capture the changes in the coefficients over time,

first and second difference coefficients are computed as

∆~ct = ~ct+2 − ~ct−2 (2.3)

∆∆~ct = ∆~ct+1 −∆~ct−1 (2.4)

respectively. These dynamic coefficients are then concatenated with the static coefficients

~ck according to

~xt = [~ct ∆~ct ∆∆~ct]
T , (2.5)

making up the final output of feature analysis representing the tth speech frame.

2.2 Hidden Markov Model-Based Speech Recognition

Hidden Markov model (HMM) [9] is a statistical modelling tool which finds widespread

use in speech recognition systems. It is defined as a discrete first order Markov chain

where the output of each state is a continuous or discrete-valued random variable with

a corresponding probability density function. Continuous density hidden Markov models

(CDHMMs) were used in this thesis.

As part of the acoustic model of a given ASR system, an HMM is trained for each rec-

ognizable phonetic or word unit. Then, based on the specific ASR application, a network or

a similar structure consisting of HMMs is created which determines the allowable sequence

of the phonetic or word units. Such a network comprises the language model of the ASR

system. In order to perform recognition, the Viterbi algorithm is used to find the path

though this network which is most likely for the observed speech. To perform training of

individual HMMs, the Baum-Welch or the segmental K-means algorithm is used. These

algorithms are discussed in more detail below.

2.2.1 Algorithm Description

Consider a hidden Markov model defined by the triplet λ = (π,A,B), consisting of states

described by state indices {qj}Sj=1, where S is the number of states. In this definition,
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π = [π1, π2, . . . , πS] is the vector of initial state probabilities, A = [ai,j] is an S × S state

transition matrix, where ai,j is the transition probability from state qi to state qj, and

B = {bi}Si=1 is the set of observation probability density functions associated with the

HMM states. Also, note that
∑S

j=1 ai,j = 1 for i = 1, . . . , S and
∑S

j=1 πj = 1. The sequence

of observation vectors X = (~x1, ~x2, . . . , ~xT ) generated by feature analysis is considered a

manifestation of a hidden state sequence Γ = (s1, s2, . . . , sT ), where st ∈ {q1, q2, . . . , qS}
[25].

The Viterbi Algorithm

The Viterbi algorithm is a dynamic programming procedure that is used here to find the

most likely HMM state sequence, given the model λ and the observation sequence X.

The algorithm is implemented by finding the most likely path in a two dimensional trellis

consisting of observation vectors along one dimension and HMM states along the other.

This is performed according to an inductive approach given by the equation

φj(t) = max
i
{φi(t− 1)ai,j} bj(~xt), (2.6)

where φj(t) is the probability of the most likely state sequence, which has generated the

observation sequence (~x1, ~x2, . . . , ~xt), terminating in HMM state qj at time t, and bj(~xt) is

the probability of the observation xt in state qj. The best path for the entire observation

sequence X is the one corresponding to the highest likelihood max
j
φj(T ) [24].

The Baum-Welch and the Segmental K-Means Algorithms

Given a model λ, the probability of generating an observation sequence X is given by

f(X|λ) =
∑

Γ

πs1bs1(~x1)
T∏
t=2

ast−1,stbst(~xt), (2.7)

where the summation is over all possible state sequences Γ. Now, the goal of maximum

likelihood estimation is to maximize f(X|λ) over all parameters λ for a given observation

sequence X. This can be done using an efficient iterative approach referred to as the

Baum-Welch algorithm, which guarantees a monotonic increase in the likelihood function

[25].
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One drawback of the using Equation 2.7 as the optimization criterion is that it requires

considering all state transition paths in the likelihood calculation. In addition, given that

the state dependent observation probabilities bi vary over a very large dynamic range,

evaluation of the likelihood over every possible path will inevitably run into numerical

difficulties [25]. Therefore, the segmental K-means algorithm has been devised, which is

based on a different likelihood function, given by

max
Γ

f(X,Γ|λ) = max
Γ

πs1bs1(~x1)
T∏
t=2

ast−1,stbst(~xt), (2.8)

which only focuses on the most likely state sequence. The approach consists of the iteration

of two steps: the segmentation step and the optimization step [25].

In the segmentation step, given the current model and the observation sequence, the

most likely state sequence is found. This can be done using the Viterbi algorithm. In the

optimization step, a new set of model parameters are estimated to maximize the likelihood

function given in Equation 2.8. These steps are then repeated until the likelihood converges

within a certain threshold [25].

2.2.2 General Considerations

For the purpose of this thesis, left-ro-right HMMs are used, which means that

ai,j = 0 if (j < i ∨ j > i+ 1). (2.9)

In other words, a transition can only take place from a state to itself or to the immediately

following state. This topology serves to capture the existence of quasi-stationary segments

in the non-stationary speech signal [24]. Furthermore, observation densities are mixtures

of multivariate Gaussians defined as [24]

bj(~xt) =
G∑
k=1

wjkN(~xt, ~µjk, ~Σjk) (2.10)

where N(~xt, ~µjk, ~Σjk) denotes a single multivariate Gaussian density function for state qj

with mean ~µjk and covariance matrix ~Σjk, G denotes the number of mixtures, and wjk is

the weight for the kth mixture component in state qj satisfying
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G∑
k=1

wjk = 1. (2.11)

In order to greatly reduce the computational complexity and to reduce the amount of

data required in training, the covariance matrices ~Σjk are assumed to be diagonal. This is

referred to as the diagonal modelling assumption.

2.3 Environment Compensation

As stated previously, speech variabilities caused by acoustic environment and communi-

cations channels present a major source of ASR performance degradation. In Section 1.1

we presented an overview of the major techniques used for environment compensation. In

particular, the second category of the techniques we mentioned included procedures aimed

at reducing the effects of noise in the feature-space [5, 6]. In our experiments, we used

one such technique, namely the WI008 European Telecommunications Standards Institute

advanced front-end (ETSI-AFE) [6].

The following techniques are employed by the ETSI-AFE to increase noise-robustness

[15]:

1. Noise reduction: Wiener filters are often used in speech applications to perform noise

reduction. In this implementation, a two-stage Wiener filter design is used, where

the output of the first stage is used as input for the second stage. Since the inputs

to the second stage have higher SNR than the first, we gain more flexibility in filter

design by making different decisions based on the SNR at each stage. This non-linear

behavior is difficult to obtain in a single-stage design [26].

2. SNR-dependent waveform processing (SWP): This technique takes advantage of the

quasi periodicity observed in voiced speech resulting from glottal excitation [7]. Since,

by contrast, the noise energy is relatively constant in an interval corresponding to the

fundamental pitch, the SNR is variable. Therefore, SWP increases the effective SNR

by emphasizing the amplitude of the high SNR portions of the waveform while de-

emphasizing the low SNR portions [26].

3. Blind equalization: This technique relies on an adaptive filter to reduce the convo-

lutional distortion resulting from the mismatch between the acoustic environments
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where training and testing are performed. The Least Mean Square (LMS) algorithm

is used to minimize the mean square error between the current cepstrum and the

cepstrum of a flat spectrum [26]. It is worth mentioning that this same result can

also be achieved through cepstral mean normalization (CMN).

In this front end, using the Wiener filter scheme described above, noise reduction is first

performed on the speech signal. Next, SNR-dependent waveform processing is applied to

the de-noised signal. Cepstrum coefficients are then extracted from the resulting signal in

the same manner as for the standard MFCCs (see Section 2.1.1.) Finally, blind equalization

is performed on the resulting cepstral features [26]. This procedure has been shown to

produce substantial improvements over the standard MFCC procedure. For example, in

[26], experiments performed on a telephone-based connected digit database show a 52%

improvement averaged over various noise conditions.

2.4 Speaker Normalization

Physiological and dialectical differences among different speakers are a major source of

performance degradation in ASR systems. Evidence of this can be found by comparing

the performance of speaker dependent (SD) systems, which are trained and evaluated on

data from a single speaker, and speaker independent (SI) ASR systems, which are trained

and evaluated on data from a large population of different speakers. For example, on the

DARPA Resource Management Task, Huang and Lee reported a word error rate of 4.3%

using a SI system, while, using a SD system on the same task, the error rate was only

1.4% [11]. As this is typical of many SI systems where training and testing are performed

using utterances from many differing speakers, it is clear that there is a need for techniques

that make ASR systems more robust against differences among speaker characteristics

[27]. As mentioned in Section 1.2, these techniques are referred to as speaker normalization

and speaker adaptation procedures. In order to experiment with the effects of robustness

against speaker variabilities, this thesis focuses on speaker normalization techniques.

The effectiveness of many speaker normalization techniques can be attributed to the fact

that they attempt to model some physiological variability in the human speech production

apparatus [14]. To this end, the length of the vocal tract has been identified as one such

source of variability. While the actual shape of the vocal tract is a crucial source of
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phonetic information, the length does not carry any such information. However, when

identical sounds are uttered by different speakers, inter-speaker variations in vocal tract

length result in discrepancies among the positions of the formants produced by different

speakers. In fact, it can be shown that the length of the vocal tract is inversely proportional

to the position of the formant peaks [14]. Hence, given that the vocal tract length in human

population can range from 13cm for females to 18cm for males, the formant frequencies

can differ by up to 25%. [14]

Since ASR features are based on the spectral envelope of short-time segments of speech,

discrepancies among the positions of formants produced by different speakers used for

training cause an increase in the variance within each of the phonetic classes. This in

turn causes overlap in the acoustic models trained for each phonetic class, as well as the

occurrence of speakers who are statistical outliers. This phenomenon occurs when a given

test speaker is not well represented by the acoustic models that have been trained from the

population of speakers in the training data.

Various speaker normalization techniques have been developed which are based on per-

forming a linear scaling of the frequency axis of speech utterances. The underlying theory

maintains that if we could normalize the vocal tract of all speakers to have the same length,

formant position variations due to vocal tract length differences would be reduced. As a

result, the variance within each phonetic class is decreased, reducing the problems asso-

ciated with class overlap and statistical outliers. Two such techniques were employed for

the purpose of our experiments: vocal tract length normalization (VTLN) and augmented

state-space acoustic decoder (MATE). The following will describe each of these techniques

in more detail.

2.4.1 Vocal Tract Length Normalization (VTLN)

Vocal tract length normalization [14] is a speaker normalization technique which compen-

sates for long-term average mismatch between an utterance from a test speaker and the

acoustic model used for ASR. This is done by applying a warping function to the frequency

axis of the test utterance. In the implementation described in [14], the warping function

takes the form of a linear warping factor α, which is used to scale the frequency axis of the

utterance.

To describe the procedure for estimating α, we define the following notation. Let
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St(ω) represent the frequency domain representation of the tth speech frame. Let ~xt be

the corresponding MFCC feature vector as described in Section 2.1.1, and let the entire

utterance be represented by X = {~xt}Tt=1. Finally, if Sαt (ω) = St (αω) is the frequency

domain representation of the tth speech frame of the warped utterance, then ~xαt is the

corresponding warped feature vector and Xα = {~xαt }Tt=1.

As illustrated in Figure 2.1, the procedure starts by performing a first recognition pass

to obtain a preliminary word transcription Wpre for the unwarped utterance X using a

reference model λ. This model is obtained by performing Baum-Welch training [24] on the

unwarped training data. The optimum warping factor α̂ is then obtained according to

α̂ = arg max
α

Pr(Xα|λ,W ). (2.12)

In other words, the optimum warping factor α̂ is the one that, given the reference model λ

and preliminary transcription Wpre, maximizes the likelihood of the warped utterance Xα.

Since it is difficult to obtain a closed-form solution for the above equation, VTLN evaluates

the above likelihood for an ensemble of N warping factors over a range corresponding to

12% compression and 12% expansion of the frequency axis, and chooses the warping factor

yielding the maximum likelihood. Having obtained the optimum warping factor, a second

recognition pass is then performed to obtain the final transcription Wfinal.

An iterative approach can be used to further train the reference model using warped

utterances. To this end, for each utterance in the training set, a warping factor is selected

using the procedure outlined above, the utterance is warped accordingly and the current

model is retrained using the warped utterance. In [14], convergence properties of iterating

this process are studied. Its is shown that, on a telephone-based connected digit database,

while the average likelihood of the training data increases with each iteration, the word

error rate for the test data does not increase beyond the first iteration. As depicted in

Figure 2.1, while the reference model λ is used in the first recognition pass, the retrained

model λ′ is used in the warping factor estimation process, as well as the second recognition

pass.

It is worth noting that, in the implementation depicted in Figure 2.1, the actual warping

of the frequency axis is performed as part of the feature analysis. This is achieved by

varying the spacing and width of the component filters of the filterbank front-end [14].

This procedure is encapsulated in the box marked Feature Analysis (Freq. Warp) in Figure
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Figure 2.1 ASR using speaker normalization

2.1.

The performance of this procedure was evaluated on a telephone-based connected digit

recognition task [14]. It was found that performing VTLN reduced the Word Error Rate

(WER) from 3.4% for the baseline system to 2.7% using VTLN. This corresponds to a

WER reduction of approximately 20%.

2.4.2 Augmented State-Space Acoustic Decoder (MATE)

Whereas VTLN tries to remove average variability throughout a whole utterance, MATE

attempts to capture and remove frame-level variability. This is achieved by using a mod-

ified search algorithm that estimates an optimum linear warping factor for each analysis

frame [15]. This search algorithm is implemented using a modified Viterbi decoder in an

augmented state-space. The original Viterbi algorithm was described in Section 2.2.1.

MATE augments the search-space of the Viterbi algorithm such that the state-space

is expanded to include the discrete ensemble of warping functions {αn}Nn=1. The modified

trellis consists of warped observation vectors {xαn
t }

T,N
t=1,n=1 and states

{
qnj
}S,N
j=1,n=1

. Each

state qnj in the augmented state-space corresponds to the HMM state index j and the
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frequency warping index n. Hence, given a reference model λ, the optimum sequence of

states is identified using a modified version of Equation 2.6 according to

φj,n(t) = max
i,m

{
φj,m(t− 1)am,ni,j

}
bj(x

αn
t ), (2.13)

where φj,n(t) is the likelihood of the optimum path terminating at state qnj at time t and

am,ni,j is the transition probability from the combined HMM/warping state qmi to qnj [15].

Note that in Equation 2.13, the observation probability density function bj(x
αn
t ) is not

dependent on the warping factor αn. This is because in the current implementation of the

MATE decoder, the observation densities are tied so that the parameters for bj(x
αn
t ) are

shared for all warping factors αn.

By setting a subset of the transition probabilities to zero, we can limit the search-space

of the algorithm in order to reduce its complexity. For example, by imposing the condition

am,ni,j = 0, if |m− n| > 1, (2.14)

we can ensure that the degree of frequency warping applied to adjacent frames does not

differ significantly. This is a physiologically motivated constraint, which is applied in all

of the MATE implementations described in this thesis. Note that the above constraint is

applied in addition to the left-to-right state transition constraint given in Equation 2.9.

Similar to VTLN, the MATE decoder can be used to further train the reference model λ.

To this end, using frame-specific warping factors selected by the MATE decoder according

the Equation 2.13, the frequency axis of each training utterance is warped. Following the

frequency warping of each training utterance, the reference model is retrained using the

warped utterance.

It is important to note here that the strength of MATE lies in its ability to perform

warping and recognition in a single pass over the utterance. By contrast, VTLN in general

requires that the warping factor estimation be performed in a first recognition pass, and

recognition on the warped utterance be performed in the second pass. However, any such

technique that requires multiple passes over an utterance results in response latencies that

may be unacceptable for many human-machine applications.

The performance of this procedure was evaluated on a telephone-based connected digit

recognition task [15]. It was found that performing MATE reduced the WER from 0.90%
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for the baseline system to 0.78% using MATE. This corresponds to a WER reduction of

approximately 13%. However, using VTLN in the same setup yielded a WER of 0.85%

which corresponds to a 6% improvement over the baseline. Therefore, for this particular

ASR task, the improvement obtained using MATE was greater than VTLN by a factor of

two.

2.5 Discriminant Feature-Space Transformation

In statistical pattern recognition, one approach for tackling the issues of high dimensionality

is to use a linear transformation to lower the dimensionality of the data. Classically,

these approaches are divided into two categories: principal component analysis (PCA) and

techniques based on Fisher’s linear discriminant. While PCA aims at finding the projection

that best represents the data in a least-squares sense, the techniques based on Fisher’s linear

discriminant are aimed at finding the projection that maximizes the separability of the data

[20]. As a result, these latter techniques have been widely used in the feature analysis stage

of ASR systems.

As discussed in Section 1.3, a common procedure used in the feature analysis component

of ASR systems includes concatenating static features and dynamic features. Static features

are extracted using cepstral analysis [16], while dynamic features are computed based on

derivatives of the trajectories of the cepstral parameters of the current frame. We also

discussed how it is not clear if capturing the time evolution of speech frames in this manner

is actually optimal for ASR.

In recent years, techniques such as linear discriminant analysis (LDA) and heteroscedas-

tic discriminant analysis (HDA) have been used as alternatives to the standard procedure

discussed above [19, 22]. To this end, for each frame, a super vector consisting of feature

vectors associated with the current as well as several preceding and succeeding frames is

first created. Either HDA or LDA is then used to lower the dimensionality of this high-

dimensional vector while maximizing the separability between predefined classes of feature

vectors. These classes may be defined as phones, HMM states, or some other arbitrarily

specified notion of class [22]. Consequently, not only have we used a proper mathematical

basis for extracting information about the time evolution of speech frames, but also we

can expect higher performance in a new space where classes, however defined, have been

maximally separated.
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Having motivated the use of discriminant analysis as a preprocessing step for ASR, we

will now proceed with more details regarding two of the most widely used techniques: LDA

and HDA. A comparison between the two techniques will follow.

2.5.1 Algorithm Description

Consider the set X = {~x1, ~x2, ..., ~xn} of vectors in <P , each of which belongs to one-and-

only-one class c ∈ {c1, c2, ..., cm}, where m is the number of classes. We refer to this set

X along with the corresponding class labels as our training data. We are interested in a

classification problem where, using our training data, we would like to be able to determine

the class label of any given vector ~x ∈ <P . The goal of discriminant analysis is to estimate

the parameters of an M × P matrix A, with M ≤ P to transform vectors from a P

dimensional space into an M dimensional space where class discrimination is maximized.

The transformation is performed according to

~yi = A~xi, (2.15)

where x is an arbitrary vector in the source space and y is the transformed version of x.

Now assume that each class contains Nj elements and is characterized by its mean

vector ~µj and covariance matrix Σj with j = 1, ...,m. We define the following [19]:

• within-class scatter:

SW =
1

N

m∑
j=1

NjΣj (2.16)

• between-class scatter:

SB =
1

N

m∑
j=1

Nj~µj~µ
T
j − µ̄µ̄T (2.17)

where N =
m∑
j=1

Nj and µ̄ =
n∑
i=1

~xi. We can see that the within-class scatter is a measure of

the average variance of the data within each class, while the between-class scatter represents

the average distance between the means of the data in each class and the global mean.
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LDA

Given a transformation matrix A, LDA defines the following measure of class separability

[20]:

JL(A) =

∣∣ASBAT ∣∣
|ASWAT |

(2.18)

where we have, in the transformed space, normalized a measure of the average distance

between the centroids of each class, by a measure of the average within-class variance.

Therefore, the highest separability is attained where this ratio is maximized.

Fortunately, finding the transformation ALDA that maximizes JL(A) has a closed-form

solution. The columns of the matrix are given by the generalized eigenvectors corresponding

to the largest eigenvalues in the equation [20]:

SBA
i
LDA = λiSWA

i
LDA (2.19)

where the AiLDA are the columns of the matrix ALDA. It can be shown that the value of

the LDA measure of separability is proportional to the sum of the magnitude of the largest

M eigenvalues of S−1
W SB [28].

HDA

Given a transformation matrix A, taking into account the individual contribution of each

class, HDA uses a different objective function to maximize separability [19]:

m∏
j=1

(∣∣ASBAT ∣∣
|AΣjAT |

)Nj

=

∣∣ASBAT ∣∣N∏m
j=1 |AΣjAT |Nj

(2.20)

Taking the logarithm and rearranging terms we get [19]:

JH(A) =
m∑
j=1

−Nj log
∣∣AΣjA

T
∣∣+N log

∣∣ASBAT ∣∣ (2.21)

Now, the objective is to maximize the above function. Unfortunately, it is not possible

to find a closed-form solution for matrix AHDA that maximizes JH(A), and a numerical

approach is used instead.
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Discussion

Brown was one of the first to apply LDA as a preprocessing step in ASR [29]. In his

work, an augmented feature vector was used to take into account context information from

neighboring frames (as discussed earlier in this section.) In the following years, performance

gains where reported from utilizing LDA in small-vocabulary tasks, while mixed results

where reported for large-vocabulary tasks [22, 23].

The major drawback of LDA is that it assumes that all classes have identical variance. In

the case of the vectors generated by the feature analysis component of an ASR system, this

assumption is generally not true. Therefore, HDA was proposed which does not make such

an assumption [21]. The example depicted in Figure 2.2 illustrates this idea qualitatively.

Part (a) of the figure shows two-dimensional data belonging to two classes whose covariance

matrices are significantly different. We are interested in transforming the two-dimensional

data into scalar data. Therefore, the transformation is equivalent to projecting the data

points onto a straight line. The direction of the projections computed using both LDA and

HDA are also shown in part (a) of the figure. Part (b) and (c) show the distribution of

transformed data generated by LDA and HDA respectively. Since the area which is below

the curve for both classes corresponds to a measure of classification error, we can see that

HDA performs a better job in separating the data.
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Figure 2.2 LDA/HDA comparison when covariance of classes are signifi-
cantly different

Another drawback of LDA and HDA is the fact that they may produce a space where

projected vectors have full covariance. Indeed, this is in contrast to the diagonal modelling
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assumptions used in most ASR systems (see Section 2.2.1.) Therefore, a maximum likeli-

hood linear transform (MLLT) can be calculated which finds an M×M transform ψ̂, which

minimizes the loss in likelihood between full and diagonal covariance models [23, 30]:

AMLLT = arg max
ψ∈<M×M

m∑
j=1

−Nj

2

(
log |diag(ψΣ̂jψ

T)| − log |ψΣ̂jψ
T|
)

(2.22)

where Σ̂j = AΣjA
T , with A denoting ALDA or AHDA depending on whether LDA or HDA

is being performed. The resulting matrix is used to perform an additional transformation

following HDA. We should note here that the reason why we can use MLLT directly af-

ter HDA is the fact that the value of the HDA objective function is invariant to linear

transformations in the original space [19].

2.6 Summary

The purpose of this chapter was to present the technical background necessary for the ex-

periments contained in this thesis. In Section 2.1, we described the function of the feature

analysis stage of ASR system, and presented an overview of the Mel-frequency cepstral

coefficients (MFCC) feature extraction technique, which was used in our experiments. In

Section 2.2, we presented an overview of the continuous density hidden Markov model

(CDHMM)-based speech recognition, which our experiments were based on. Our presen-

tation included a discussion of the various algorithms used for training and recognition

in such systems. In Section 2.3, we described the MFCC-based European Telecommunica-

tions Standards Institute advanced front-end (ETSI-AFE), which was used for environment

compensation in our experiments. In Section 2.4, we presented a discussion of speaker nor-

malization techniques, describing the vocal tract length normalization (VTLN) technique

and the augmented state-space decoder (MATE) in detail. Finally, in Section 2.5, we pre-

sented a description of the discriminant feature-space transformation (DFT) techniques,

which are aimed at increasing the class discrimination in statistical pattern classification.

In particular, we considered the linear discriminant analysis (LDA) and the heteroscedastic

discriminant analysis (HDA), as well as a maximum likelihood linear transform (MLLT)

aimed at diagonalizing the covariance of the feature-space.



24

Chapter 3

Experimental Setup

This thesis is an experimental study concerning the relationship between the techniques of

environment compensation, speaker normalization and discriminant feature-space transfor-

mation. Our experiments were performed in the context of a connected digit recognition

task and a continuous density hidden Markov model (CDHMM)-based ASR system. The

purpose of this chapter is to describe the speech corpus that is used to define this task,

and to describe the configuration of the baseline ASR system, as well as to describe how

the techniques of Chapter 2 where incorporated in this system.

The chapter is organized as follows. In the first two sections we will describe the speech

corpus and the underlying baseline ASR systems used in our experiments. We claimed in

Section 1.4.1 that the techniques of speaker normalization and discriminant feature-space

transformation (DFT) have the potential to complement one another. Hence, the last

section of this chapter presents the specifics of how these techniques were combined to

investigate this conjecture.

3.1 Speech Corpus

The speech corpus used in our experiments was a subset of the European Telecommuni-

cations Standards Institute (ETSI) Aurora 2 database. The database has been created by

adding simulated noise samples to connected digit utterances from the TIDigits database.

Eight different noise environments are simulated in Aurora 2: subway, speech babble, au-

tomobile, exhibition hall, restaurant, street, airport, and train station. Each utterance was

created by adding noise from one of these categories to a corresponding clean utterance

2007/01/15
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from TIDigits. The addition of noise was done under seven signal-to-noise ratio (SNR)

assumptions, namely -5dB, 0dB, +5dB, +10dB, +15dB and +20dB [31].

Aurora 2 provides two standard training sets, each containing a total of 8440 utterances

from 55 males and 55 females. The clean training set consists of utterances recorded in a

quiet acoustic environment. A model trained with this set yields the highest performance

when testing with clean speech. However, when testing with noisy speech, the mismatch

between the model and the noisy speech causes a decrease in the recognition performance.

In order to reduce this mismatch, the multi-condition training set can be used. This

set consists of 20 subsets where each subset corresponds to utterances distorted by one

of the first four noise types mentioned above (i.e. subway, speech babble, automobile,

exhibition hall) under one of the first five noise SNR assumptions mention above (i.e. clean

conditions, +20dB, +15dB, +10dB and +5dB.) When trained from this set, the models

capture information about the noise as well as the speech. Therefore, when testing in

noisy conditions, there is less mismatch between the model and the noisy test utterances.

Therefore, a higher performance can be obtained.

The subset “A” of the Aurora 2 database was used for our experiments. It consists of

seven test sets corresponding to the seven SNR conditions mentioned above. Within each

test set there are 1001 utterances for each of the same four noise types used for multi-

condition training (i.e. subway, speech babble, automobile, exhibition hall), for a total of

4004 utterances (13159 words) per test set. These utterances were recorded from 52 males

and 52 females. For the purpose of our experiments, out of the seven available test sets, we

used the four test sets corresponding to the clean, +20dB, +15dB and +10dB SNR levels.

One of the issues concerned with the use of this speech corpus is the fact there are

limitations on how well speech in a noisy environment can be simulated by adding noise

samples to clean speech. For example, referred to as the Lombard effect, speakers usually

attempt to speak more effectively and therefore differently (in terms of loudness, speed,

emphasis, etc.), in noisy environments [32]. As all the utterances in Aurora 2 were recorded

in a quiet environment, such effects are absent from this corpus. This poses some limitations

on how realistic the obtained test results are.

Despite the mentioned limitations, the existence of various types and levels of noise

have made the Aurora 2 database suitable for experiments concerned with noise-robustness

in ASR. In addition, the standardized nature of this database makes it an effective tool

for performing comparisons among different algorithms and techniques. For example, the
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performance of various techniques incorporated in the front-end of ASR systems have been

evaluated and compared on this database (see for example [7, 33].) Furthermore, these same

properties make the database also suitable for evaluating distributed speech recognition

(DSR) systems (see for example [26].)

3.2 ASR Platform

The ASR system used for the purpose of this thesis was based on continuous density

hidden Markov models (CDHMM) with mixtures of Gaussians for the state observation

probability density functions (see Section 2.2 for details.) There were a total of 11 word

models, corresponding to digits “one” to “nine”, as well as “oh” and “zero”. These models

contained 16 states with 3 Gaussians per state. The model representing silence at the

beginning and end of an utterance consisted of 3 states, while a 1-state model was used to

represent inter-word silence. The silence models contained 6 Gaussian mixtures per state.

As discussed in Section 2.1.1, the feature analysis stage of the baseline ASR platform

was based on Mel-frequency cepstral coefficients (MFCCs). Feature analysis was performed

with a window size of 25ms and a 10ms update interval. A vector of thirteen cepstral

coefficients was extracted for each frame. For the baseline system, this vector was then

augmented with first and second difference coefficients as discussed in Section 2.1.1 for a

total of 39 features.

In order to perform environment compensation, the ETSI advanced front-end (ETSI-

AFE) was used in place of the baseline front-end discussed above. As discussed in Section

2.3, this front-end is also based on MFCCs. In our system, the front-end was configured

with the same window size and update interval as above, and the same procedure was used

to extract 39-component feature vectors consisting of 13 cepstral features augmented with

first and second difference cepstrums.

The baseline models were generated by performing 20 iterations of the maximum like-

lihood segmental K-means algorithm, as discussed in Section 2.2.1. The models used for

performing recognition with VTLN were generated by performing an additional iteration of

training on the baseline models. Prior to this iteration, the frequency axis of each utterance

in the training set was warped using a maximum likelihood warping factor, as discussed

in Section 2.4.1. Likewise, an additional training iteration was performed on the baseline

models to generate the models used for performing recognition based on the MATE de-
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coder. Prior to this iteration, the frequency axis of each training utterance was warped

using frame-specific warping factors selected by the MATE decoder, as discussed in Section

2.4.2.

The VTLN procedure was configured with an ensemble of 11 warping factors equally

spaced along a range from a minimum of 12 percent compression and a maximum of 12

percent expansion of the frequency axis. MATE on the other hand was configured with an

ensemble of 5 equally-spaced warping factors covering the same range. This configuration

matches the one used in [15] and [28].

3.3 Combining Discriminant Feature-Space Transformation with

Speaker Normalization

The techniques of discriminant feature-space transformation (DFT) and speaker normal-

ization were described individually in Sections 2.5 and 2.4 respectively. Regarding these

techniques, we stated two claims in Section 1.4.1 which were inversely related. On the

one hand, increasing class discrimination through DFT should improve the performance

of speaker normalization techniques. On the other hand, reducing within-class variance of

the data through speaker normalization should improve the degree of class discrimination

gained though DFT. In this section we will describe how the two techniques were combined

for the purpose of evaluating these claims experimentally.

In our system, heteroscedastic discriminant analysis (HDA) was used to compute a

transform aimed at maximizing class separability. Then, a maximum likelihood linear

transformation (MLLT) was computed to minimize the loss in likelihood between full and

diagonal covariance models. In Section 3.3.1 below, we will describe how these transfor-

mations were estimated from the training data. Applying these transforms in a system

incorporating speaker normalization will allow us to evaluate the effects of DFT on speaker

normalization. In Section 3.3.2, we will describe how the transformations were applied in

such a system.

Conversely, in order to evaluate the effects of speaker normalization on DFT, we need

to estimate the HDA transformation from speaker normalized training data. To this end,

speaker normalization is performed on the training data prior to estimating the transform

parameters. Section 3.3.3 describes this procedure. The procedure used for applying the

transforms is the same as when the transforms are estimated from unnormalized data,
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which is given in Section 3.3.2.

3.3.1 Estimating the Transforms

Figure 3.1 shows an overall view of the transform estimation process. First, feature anal-

ysis generates 13-dimensional observation vectors ~xt consisting of cepstral coefficients as

discussed in Section 2.1.1. We refer to the feature-space defined by these vectors as the

Original Space. Then, HDA is performed to compute a matrix, AHDA, to transform these

observation vectors into 39-dimensional vectors, ~xHDAt . These vectors are in the HDA Space,

where classes are, according to the criterion given in Equation 2.21, maximally separated.

Next, a MLLT, AMLLT , is computed which transforms the ~xHDAt into another set of 39-

dimensional vectors, ~x
HDA/MLLT
t . These are in the HDA/MLLT Space, where in addition

to maximal class separation, the resulting vectors are distributed according to a diagonal

Gaussian distribution. Below, we will provide more details on this procedure.
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Figure 3.1 Overview of the DFT process

Defining Classes

In order to perform HDA, it is necessary to assign the observation vectors ~xt to a number

of classes to be maximally separated. In our experiments, we have adopted the use of

individual states of HMMs as classes [28]. That is, for a sequence of observation vectors
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X = (~x0, ~x1, . . . , ~xT ), given the model λ, the most likely state sequence s = (s0, s1, . . . , sT )

determines the state assignment, and therefore, the class assignment of each observation

vector in this sequence. The Viterbi algorithm, as described in Section 2.2, is used to find

this most likely state sequence.

In Figure 3.1, the procedures necessary for generating the state assignment of the ob-

servation data are marked as State Assignment. The model λ is trained from observation

vectors ~xt augmented by first and second difference coefficients (as discussed in Section

2.1.1.) Given this model, the Viterbi algorithm is then used to generate the state indices

st corresponding to observation vectors ~xt.

Performing Heteroscedastic Discriminant Analysis (HDA)

To further explain the DFT estimation process, Figure 3.2 illustrates an expanded view

of the HDA Process box of Figure 3.1. In this process, each observation vector is first

concatenated with four preceding and four succeeding vectors to form a 117-dimensional

“super vector”. This is further illustrated in Figure 3.3. These “super vectors” are then

classified according to the state assignments generated by the Viterbi algorithm as discussed

above. Given that, as stated in Section 3.2, there are eleven 16-state models, one 3-state

model and one 1-state model, there are a total of 180 HMM states, and therefore 180

classes.

Having classified the 117-dimensional vectors computed from the training data into

180 classes, a 117 by 39 matrix is estimated which maximizes the HDA measure of class

separability as given in Equation 2.21. This matrix is then used to transform the data back

to a 39-dimensional space.

Note that the target dimension 39 was selected for convenience, since implementation

issues, such as dealing with the wide dynamic range of computed likelihoods, had already

been addressed in the baseline system for a 39-dimensional space. In general, the di-

mensionality of the discriminant transformation is determined by the rank of the target

feature-space. For LDA, this rank may be determined by observing the magnitude of the

eigenvalues given in Equation 2.19. It is more typical to determine the rank empirically on

a development test set. This is a potential topic for future work.
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Performing Maximum Likelihood Linear Transformation (MLLT)

The MLLT computation stage is very much similar to the HDA stage. This is shown

in Figure 3.4 as an expanded view of the MLLT Process box of Figure 3.1. Given the

39-dimensional vectors transformed using HDA, a 39 by 39 maximum likelihood linear

transform (MLLT) is computed according to Equation 2.22. This matrix is then used to

transform the data into a new space where the likelihood of the data with respect to the

class-specific diagonal Gaussian covariance models is maximized.

Incorporating Environment Compensation

In Section 1.4.1 we argued that reducing the within-class variance using environment com-

pensation should improve the performance of DFT. In order to evaluate this claim, we need

to be able to perform DFT both with and without environment compensation. Therefore,

in Figure 3.1, when environment compensation is used, the Feature Analysis box repre-

sents the noise robust ETSI advanced front-end (ETSI-AFE) (described in Section 2.3);

otherwise, it refers to the baseline MFCC-based front-end (described in Section 2.1.1)



3 Experimental Setup 32

3.3.2 Applying the Transforms

In order to perform speaker normalization in conjunction with DFT, we simply perform

warping inside the feature analysis component prior to applying the transformation. Section

2.4.1 describes how the actual frequency warping is performed as part of feature analysis.

Figure 3.5(a) shows how a given speech waveform can be warped using a given warping

factor, and subsequently transformed. On the other hand, when speaker normalization is

not used, the HDA matrix and the MLLT are simply applied to the observation vectors

generated by the feature analysis component. This process is depicted in Figure 3.5(b).
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Figure 3.5 Applying the discriminant feature-space transforms

Going back to Figure 2.1 in Chapter 2, we can see that VTLN consists of three stages:

recognition pass one, warping factor estimation and recognition pass two. Figure 3.6 illus-

trates how each of these was modified to include matrix transformations. Here, the DFT

box corresponds to the process outlined in Figure 3.5(b), while the DFT (Freq. Warp)

box corresponds to Figure 3.5(a). Also, trained in the transformed space, λHDA/MLLT and

λHDA/MLLT ′ correspond to the baseline model λ and retrained model λ′ in Figure 2.1.

Much like the warping factor estimation process in VTLN shown in Figure 3.6, our

implementation of MATE consists of performing frequency warping and transformations

for an ensemble of warping factors and storing the results. At each stage of the modified
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Figure 3.6 Combining speaker normalization with DFT

Viterbi algorithm, the MATE decoder then obtains the frames with the required degree of

warping from this stored ensemble of warped and transformed vectors.

3.3.3 Estimating the Transforms from Speaker Normalized Data

Figure 3.7 shows an overall view of the process of estimating the HDA matrix from speaker-

normalized data. As stated in Section 1.4.1, we expect speaker normalization to reduce the

variability due to differences in speaker characteristics within each of the classes used to

estimate the HDA matrix. This will in turn allow HDA to yield higher class discrimination.

As depicted in Figure 3.7(a), when using VTLN to normalize the data, each training

utterance is warped to maximize its likelihood given the model λ. In the case of MATE, as

depicted in Figure 3.7(b), the modified Viterbi decoder described in Section 2.4.2 is used

to select maximum likelihood warping factors for individual frames, as well as determining

the corresponding state assignments st.

Using the warped utterances, concatenation and classification are performed in the

exact same manner as described in Section 3.3.1. Given the warped classes, the procedure

used for computing the HDA matrix as well as the MLLT is also the same as previously
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described. The only difference is that classes now contain warped data, as well as the fact

that, in the case of performing speaker normalization using MATE, the state assignment

of the observation data is determined by the modified Viterbi algorithm.

3.4 Summary

This chapter described the experimental setup used for investigating the claims of this the-

sis, as stated in Section 1.4.1. In Section 3.1, we described the ETSI Aurora 2 connected

digit speech corpus used in our experiments, while in Section 3.2, we described our base-

line continuous density hidden Markov model (CDHMM)-based ASR system. Finally, in

Section 3.3, we described how the speaker normalization techniques of VTLN and MATE

where employed in a discriminant feature-space. To this end, we showed how heteroscedas-

tic discriminant analysis (HDA) was used to estimate a transform aimed at increasing class

discrimination, where classes corresponded to HMM states. We also showed how a maxi-

mum likelihood linear transform (MLLT) was estimated to diagonalize the covariance of the

feature vectors generated by HDA. Subsequently, we showed how these transforms could

be applied in conjunction with the speaker normalization techniques of VTLN and MATE.

Our description also included how the parameters of the discriminant feature-space trans-

form could be estimated from data which was normalized using environment compensation

as well as the VTLN and MATE speaker normalization techniques.
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Chapter 4

Experimental Analysis

This chapter presents the experimental study that was performed to investigate the inter-

action between techniques that reduce the effects of speaker and environment variability

and techniques that increase class discrimination in ASR. In Section 1.4.1, we stated the

specific claims that were to be investigated as part of this thesis. In this chapter, we will

explain how each claim was motivated, present the corresponding experiments, and analyze

the obtained results.

We will start this chapter by discussing some general considerations regarding the eval-

uation of our experimental results, including a note on statistical significance. Then, we

will look at the effects of environment compensation on the performance of speaker normal-

ization techniques, namely vocal tract length normalization (VTLN) and the augmented

state-space acoustic decoder (MATE). Next, we will look at how discriminant feature-space

transformation (DFT) techniques can effect the performance of speaker normalization tech-

niques. More specifically, we will look at the performance of VTLN and MATE in a discrim-

inant feature-space generated by heteroscedastic discriminant analysis (HDA). Then, we

will consider how the techniques of environment compensation and speaker normalization

can improve DFT by estimating the DFT parameters from data that has been normalized

using these techniques.

In evaluating the claims of this thesis, our experimental results revealed that the MATE

speaker normalization technique does not perform well in noisy conditions. Hence, we

devised a modification to the original decoding algorithm used by MATE. This modification

was based on utilizing, during recognition, knowledge about the distribution of warping

2007/01/15
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factors selected by MATE during training. The final section of this chapter defines and

presents the results obtain by this new algorithm.

4.1 Evaluation Metrics

In Section 3.1, two sets of training data were described: clean and multi-condition. For

the models trained from each training set, four test sets were evaluated corresponding to

the clean, 20dB, 15dB and 10dB signal-to-noise ratio (SNR) conditions. For each test

set, recognition was performed in three speaker normalization modes: baseline (no speaker

normalization), VTLN, and MATE. Section 3.2 describes how the models used in each

of these modes were trained, while Section 3.1 contains more information regarding the

training and testing data.

The measure of recognition performance used in our experiments was the word error

rate (WER), define as

%WER =
nI + nS + nD

nT
× 100, (4.1)

where nT is the total number of words in the reference transcriptions, and nI , nS, and nD

are the total number of insertions, substitutions, and deletions respectively. For a given

test utterance, the number of insertions, substitutions and deletions are obtained using a

dynamic programming algorithm to produce the best alignment between the recognized

transcription and the correct transcription.

Our analysis of experimental results involved comparing the WER results obtained

from different system configurations. In order to determine how well the obtained WER

improvements could be generalized, we had to quantify the statistical significance of these

improvements. Suppose we are interested in showing that method B has a performance

that is significantly different from method A. Also, suppose performing n independent trials,

where the outcome of each trial is either an error or a success, method A yields an error

rate of pA while method B yields pB. Given that the number of trials, n, is large enough,

we can assume the number of errors to be a random variable with a Gaussian distribution,

P , with mean µ = npA and variance σ2 = npA(1 − pA). To state that method B is in

fact significantly different than method A within a level of confidence c, the area under the

curve P bounded by the interval (2npA − npB, npB) should be larger than or equal to c.
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This is referred to as the Normal test of significance [24].

To use the Normal test in our experiments, we regarded the recognition of individual

words as independent trials. As stated in Section 3.1, each test set consisted of 13159 words,

and therefore n = 13159 independent trials. In the following presentation of our experi-

mental results, all comparisons between WER results are considered taking into account

the minimum relative WER reduction required at a 95% confidence level.

4.2 Improving Speaker Normalization Using Environment

Compensation

Table 4.1 displays the results obtained from a system trained from MFCC features without

environment compensation. The three rows of data presented correspond to the speaker

normalization mode used. The numbers in square brackets next to the baseline results in-

dicate the minimum relative WER reduction required for the improvement to be significant

at a 95% confidence level. The numbers in the parentheses next to the results obtained

from VTLN and MATE indicate the actual relative WER reduction.

Table 4.1 Recognition results in MFCC space (% WER)

Clean Training Multi-condition Training
Clean 20dB 15dB 10dB Clean 20dB 15dB 10dB

Baseline 0.90[18]1 3.83[9] 11.41[5] 28.54[3] 1.49[14] 2.09[12] 2.47[11] 4.56[8]
VTLN 0.89(2)2 3.47(10) 10.90(5) 27.94(2) 1.27(15) 1.88(10) 2.39(3) 4.49(1)
MATE 0.78(13) 3.66(5) 12.08(-6) 29.77(-4) 1.09(27) 1.78(15) 2.27(8) 4.57(0)
1Minimum relative reduction in WER required at a 95% confidence level
2Actual relative reduction in WER compared to baseline

The table shows that, in the case of clean training, MATE is not able to yield signif-

icant improvements over the baseline system (it even degrades performance at low SNR

conditions), while VTLN only yields significant improvements in 15dB and 10dB SNR test

conditions. Although these improvements are more significant in the case of multi-condition

training, a common trend under both cases is that as the test SNR conditions decrease the

degree of improvements obtained by speaker normalization is reduced.

The above results indicate that the presence of noise interferes with the performance of

speaker normalization techniques. Therefore, in Section 4.2.3, we will present the results
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obtained when environment compensation is used in conjunction with speaker normaliza-

tion to counter these effects. But first, we will perform an experimental study regarding

how the presence of noise effects the processes by which VTLN and MATE perform speaker

normalization. More specifically, the effects of noise on the warping factor estimation pro-

cess of both techniques (as described in Section 2.4) is considered in Section 4.2.1, while

the effects of noise on the first recognition pass of VTLN (as described in Section 2.4.1.) is

considered in Section 4.2.2.

4.2.1 The Effect on Warping Factor Estimation

As stated in Section 2.4, both VTLN and MATE use a maximum likelihood framework to

select warping factors. This involves using an HMM-based model to calculate the proba-

bility of observation vectors generated by feature analysis. Therefore, if these observation

vectors are corrupted by noise, the resulting probabilities are also affected.

In the case of VTLN, in order to choose the optimal warping factor for a given utterance,

the likelihood of the utterance for an ensemble of warping factors is computed and the one

yielding the highest likelihood is selected. Consequently, if these likelihoods are obtained

from observation probabilities computed from corrupt data, it is possible for a suboptimal

warping factor to yield the highest likelihood, and therefore be selected.

In the case of MATE, the modified Viterbi algorithm propagates paths into a three

dimensional trellis, which has an ensemble of warping factors along one axis, and selects

the path with the highest likelihood. As in the case of VTLN, if the likelihoods are obtained

from observation probabilities computed from corrupt data, it is possible for a suboptimal

path containing suboptimal warping factors to be selected.

To further illustrate the effects of noise on the warping factor estimation process, we

extracted the warping factors estimated by VTLN during recognition on the clean and 10dB

SNR test sets. The models used in this experiment were trained from the clean training

set. Figure 4.1 illustrates the distribution of these warping factors for both the clean and

noisy cases.

Noting the comparison made in Figure 4.1, it is clear that the distribution of warping

factors selected in clean conditions has a much wider spread than the distribution of warp-

ing factors selected in noisy conditions. It is apparent that noise causes VTLN to favor

performing no or little warping of the utterance. Since VTLN selects the warping factor
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Figure 4.1 Distribution of warping factors selected by VTLN during recog-
nition (clean training)

yielding the highest likelihood, P (Xα|W,λ), we have plotted these likelihoods in Figure 4.2

for a sample utterance at 12 discrete values of α ranging from 0.88 to 1.12 under a range of

different SNR levels. The models used for generating these likelihoods were trained from

the clean data.
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Figure 4.2 Warping factor likelihoods for various noise levels (clean train-
ing)

It can be seen that, as the level of noise increases, the likelihood of the warped utterance

decreases for all warping factors. However, this decrease in likelihood is more pronounced
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in the case of warping factors which correspond to applying a higher degree of compres-

sion/expansion to the frequency axis of the utterance. Therefore, in accordance with what

we observed from Figure 4.2, as the level of noise increases, VTLN chooses no or little

warping for this utterance. For instance, in the above figure, the peaks of the graphs,

corresponding to the maximum likelihood warping factors for the clean, 20dB and 15dB

cases, are close to 0.95, while the peak for the 10dB case is close to unity. The reasons

behind this phenomenon can be traced back to the disproportionate mismatch between the

warped data in noise with respect to the acoustic model.

4.2.2 The Effect on the First Recognition Pass of VTLN

As shown in Figure 2.1, VTLN performs a first recognition pass to obtain a preliminary word

transcription for each unwarped utterance. This transcription, Wpre is subsequently used

to calculate the likelihood, P (Xαi|λ,Wpre), for each member of the ensemble of warping

factors, selecting the warping factor yielding the highest likelihood. In noisy conditions, it

is only natural to expect a degradation in the accuracy of this preliminary transcription. As

a result, it is likely that, based on this error-prone preliminary transcription, a non-optimal

warping factor is selected. This will in turn affect the performance of ASR.

In order to illustrate this issue, we trained a model using MFCC features without

environment compensation from the multi-condition training set. Then, using VTLN, we

performed recognition on the clean, as well as the 15dB SNR test sets. The first column

of Table 4.2 shows the Word Error Rate (WER) of the first recognition pass of VTLN. We

can see that the WER is much higher in the case of noisy data.

Table 4.2 Recognition results on clean vs. noisy speech using VTLN (%
WER)

Condition Pass 1 Pass 2 Pass 2
(actual transcriptions)

Clean 1.11 0.99 0.97
15dB SNR 1.54 1.35 1.26

The second column of Table 4.2 illustrates the WER of the second recognition pass

of VTLN. In order to gauge how inaccuracies in the results of the first recognition pass

can effect the performance of the second pass, we performed an experiment where, instead
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of using the results of the first pass, we supplied the actual correct transcriptions to the

second pass. The results are given in the third column of Table 4.2. Comparing the two

columns we can see that the performance of VTLN in 15dB SNR conditions would improve

by 6.7% if the first recognition pass yielded completely correct results.

4.2.3 Applying Environment Compensation

Table 4.1 displays the results obtained from a system trained from the environment com-

pensated features generated by the ETSI advanced front-end (described in Section 2.3.)

We will refer to these as the environment compensated MFCC features. The three rows

of data presented correspond to the speaker normalization mode used. The numbers in

square brackets next to the baseline results indicate the minimum relative WER reduction

required for the improvement to be significant at a 95% confidence level. The numbers in

the parentheses next to the results obtained from VTLN and MATE indicate the actual

relative WER reduction.

Table 4.3 Recognition results in environment compensated MFCC space (%
WER)

Clean Training Multi-condition Training
Clean 20dB 15dB 10dB Clean 20dB 15dB 10dB

Baseline 0.96[17]1 1.95[12] 3.18[9] 7.04[6] 1.11[16] 1.54[14] 2.11[12] 3.69[9]
VTLN 0.87(10)2 1.76(10) 2.84(11) 6.51(8) 1.00(10) 1.35(12) 1.90(10) 3.44(7)
MATE 0.81(15) 1.47(25) 2.63(17) 6.06(14) 0.92(17) 1.28(16) 1.82(13) 3.55(4)
1Minimum relative reduction in WER required at a 95% confidence level
2Actual relative reduction in WER compared to baseline

Comparing the results in Table 4.3 with Table 4.1 we can see that the improvements

obtained by MATE and VTLN are more significant when environment compensation is

used. Table 4.4 illustrates this further by comparing the results from Table 4.1 and Table

4.3 for the case with clean training and 10dB SNR testing. For example, we can see in this

table that MATE yields a 14% WER reduction when using environment compensation,

while it actually increased the WER by 4% when environment compensation was not used.

Indeed, the above developments lead us to concluded that environment compensation

does in fact improve the performance of speaker normalization techniques. To substantiate

this result further, we will now examine how environment compensation alleviates the
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Table 4.4 Speaker normalization improvements due to environment com-
pensation (% WER)

10dB SNR 10dB SNR
(environment compensation)

Baseline 28.54[3]1 7.04[6]
VTLN 27.94(2)2 6.51(8)
MATE 29.77(-4) 6.06(14)
1Minimum relative reduction in WER required at a 95% confidence level
2Actual relative reduction in WER compared to baseline

effects of noise on the processes mentioned above, namely the warping factor estimation

process (Section 4.2.1) and the first recognition pass of VTLN (Section 4.2.2.)

The Effect on Warping Factor Estimation

In accordance with our analysis from Section 4.2.1, where we examined the distribution

of the warping factors selected by VTLN, we now consider the same distribution in the

presence of environmental compensation. Figure 4.1 compared the distribution of warping

factors resulting from clean test conditions against that of 10dB SNR conditions. Now,

in Figure 4.3, we examine, for the 10dB SNR conditions, how this distribution changes

when environmental compensation is used. The figure suggests that when environmental

compensation is used, the spread of the warping factors selected by VTLN widens. This

means that the tendency of VTLN to choose no or little warping in the presence of noise, as

discussed in Section 4.2.1, has been diminished. This serves as an indication of how envi-

ronmental compensation can improve the performance of frequency warping-based speaker

normalization techniques such as VTLN and MATE.

The Effect on the First Recognition Pass of VTLN

The above result is also confirmed by considering the performance of the first recognition

pass of VTLN (as we did in Section 4.2.2.) Our experiments showed that, under multi-

condition training and 15dB test conditions, when using environmental compensation, the

WER obtained from the first recognition pass of VTLN was 2.1%. This shows an improve-

ment of 15% compared with the 1.54% WER obtained when environmental compensation

is not used (see Table 4.2).
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(a) 10dB SNR test set
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Figure 4.3 Distribution of warping factors selected by VTLN during recog-
nition when environment compensation is used

4.3 Combining Discriminant Feature-Space Transformation and

Speaker Normalization

Section 3.3 introduced the idea of performing speaker normalization in a discriminant

feature-space. The underlying theory maintained that when classes are maximally sepa-

rated, speaker normalization can yield a higher performance. The details of our proposed

setup for combining the two techniques were also presented. In turn, we dedicate this

section to presenting the results obtained from experiments performed based on this setup.

In order to gauge the performance of our proposed scheme, as described in Section

3.3.1, we estimated the HDA transform and the MLLT based on environment compensated

MFCC features. Then, in the resulting environment compensated HDA/MLLT space, we

trained models based on both the clean and the multi-condition training sets. We then

performed recognition using both VTLN and MATE in this space, as described in Section

3.3.2. The corresponding WER results are given in Tables 4.5 and 4.6 for VTLN and MATE

respectively.

In Table 4.5, we compare the WER results obtained by performing VTLN recognition

in the environment compensated HDA/MLLT space as described above, against the WER

results obtained in the environment compensated MFCC space, as described in Section
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4.2.3. The idea is to see how the performance of VTLN improves when it is used in a

discriminant feature-space. Hence, the first row of Table 4.5 lists the results obtained in

the environment compensated MFCC space (which were also given in Table 4.3), with

the numbers in brackets indicating the minimum relative WER reduction required for any

improvements to be significant at a 95% confidence level, while the second row contains the

results obtained in the environment compensated HDA/MLLT space, with the numbers

in parentheses indicating the actual WER reductions. In the case of MATE, the same

comparison is performed in Table 4.6.

Table 4.5 Comparing recognition results using VTLN in environment com-
pensated MFCC space vs. environment compensated HDA/MLLT space (%
WER)

Clean Training Multi-condition Training
Clean 20dB 15dB 10dB Clean 20dB 15dB 10dB

MFCC 0.87[18]1 1.76[13] 2.84[10] 6.51[6] 1.00[17] 1.35[15] 1.90[12] 3.44[9]
HDA/MLLT 0.55(36)2 1.33(24) 2.36(17) 5.66(13) 0.90(9) 1.14(16) 1.63(14) 3.25(6)
1Minimum relative reduction in WER required at a 95% confidence level
2Actual relative reduction in WER compared to environment compensated MFCC space

Analyzing VTLN

Our results for VTLN indicate significant improvements for both the clean and the multi-

condition training cases. Although these improvement are less significant in the case of

multi-condition training, the results lead us to conclude that increasing class discrimination

through HDA improves the performance of speaker normalization using VTLN. This can

also be examined by considering the distribution of warping factors selected by VTLN in

the environment compensated HDA/MLLT space.

In Figure 4.4(a) and Figure 4.4(b) we have plotted the distribution of warping factors for

a 10dB SNR test set in the environment compensated MFCC space and the environment

compensated HDA/MLLT space respectively. In Section 4.2.1, using a similar plot we

pointed out that in the presence of noise VTLN tends to perform no or little warping.

Subsequently, in Section 4.2.3 we showed how the use of environment compensation can

mitigates this problem. In turn, we can see in Figure 4.4 that this tendency is further

diminished in the environment compensated HDA/MLLT space.
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(a) 10dB SNR test set in environment com-
pensated MFCC space
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Figure 4.4 Distribution of warping factors selected by VTLN during recog-
nition comparing MFCC and HDA/MLLT space

The Effects of Noise

In Table 4.6, we can see that results obtained for MATE are generally less promising than

VTLN. Nevertheless, a common trend seen for both VTLN and MATE is that smaller

improvements are obtained for lower SNR conditions. This observation is in line with the

fact that the presence of noise increases the within-class variance, which in turn reduces

the class discrimination achieved by HDA, degrading the overall performance of ASR. The

effects of noise on class discrimination will be considered further in Section 4.4.1.

Analyzing MATE

Given that Table 4.6 shows how MATE generally did not produce significant improvements

in the environment compensated HDA/MLLT space for low SNR conditions, we analyzed

the partitioning of the resulting WER into insertions, deletions and substations. Through

this analysis we realized that, compared to when MATE is performed in MFCC space, the

resulting insertion rate increases significantly, while the deletion and substitution rates are

reduced. This is illustrated in Table 4.7, which compares the resulting insertion rates for

the environment compensated MFCC and HDA/MLLT cases.

Although, as shown in Table 4.6, performing MATE on clean test data seems to improve
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Table 4.6 Comparing recognition results using MATE in environment com-
pensated MFCC space vs. environment compensated HDA/MLLT space

Clean Training Multi-condition Training
Clean 20dB 15dB 10dB Clean 20dB 15dB 10dB

MFCC 0.81[19]1 1.47[14] 2.63[10] 6.06[7] 0.92[18] 1.28[15] 1.82[13] 3.55[9]
HDA/MLLT 0.55(33)2 1.30(11) 2.61(1) 5.95(2) 0.82(11) 1.30(-1) 1.79(2) 3.44(3)
1Minimum relative reduction in WER required at a 95% confidence level
2Actual relative reduction in WER compared to environment compensated MFCC space

Table 4.7 Comparing insertion rates obtained from recognition using MATE
in environment compensated MFCC space vs. environment compensated
HDA/MLLT space

Clean Training Multi-condition Training
Clean 20dB 15dB 10dB Clean 20dB 15dB 10dB

MFCC 0.02[121]1 0.11[51] 0.17[41] 0.53[23] 0.08[60] 0.14[46] 0.20[38] 0.52[24]
HDA/MLLT 0.05(-133)2 0.18(-60) 0.40(-130) 1.16(-117) 0.08(-10) 0.24(-68) 0.34(-73) 0.67(-29)
1Minimum relative reduction in insertions required at a 95% confidence level
2Actual relative reduction in insertions compared to baseline

in the HDA/MLLT space, we are not able to verify the claim that increasing class discrimi-

nation through HDA improves the performance of speaker normalization using MATE. This

is because, as a result of an increase in the resulting insertion rate, the overall performance

of MATE does not seem to improve in the presence of noise in the HDA/MLLT space.

4.4 Estimating Discriminant Feature-Space Transformations

from Normalized Data

Section 1.4.1 introduced the idea of normalizing speech data prior to performing discrim-

inant feature-space transformation (DFT). Indeed, performing environment compensation

and speaker normalization on speech data should reduce the variance in each class due to

variabilities in environment, channel, and speaker characteristics. This should enable, het-

eroscedastic discriminant analysis (HDA) to achieve a higher degree of class discrimination

as determined by the separability criterion given in Equation 2.21. Figure 4.5 illustrates

visually how a reduction in class variance can lead to better class discrimination. The figure
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shows a hypothetical situation where we have three classes of 2-dimensional Gaussian data.

(a) Gaussian data with unit variance (b) Gaussian data with variance 0.7

Figure 4.5 A visual demonstration of the effects of a reduction in within-
class variance on separability of data

Our analysis of the effects of normalization on the performance of DFT is divided into

two parts, based on how the actual normalization is performed. In Section 4.4.1, we will

look at environment compensation as the normalizing agent, while in Section 4.4.2, we will

look at speaker normalization.

4.4.1 Environment Compensation

In order to investigate the effects of normalization using environment compensation on

DFT, Table 4.8 compares the baseline ASR results for two different system configurations.

To obtain the results in the first row, as described in Section 3.3.1, we estimated the HDA

transform and the MLLT based on MFCC features. Then, in the resulting HDA/MLLT

space, we trained models based on both the clean and the multi-condition training sets,

and performed recognition using the baseline system. To obtain the results in the second

row, the same procedure was used, with the exception that, in this case, environment

compensated MFCC features were used to estimate the HDA matrix. In this manner,

performing environment compensation on the MFCC features used to estimate the HDA

matrix, constitutes normalization of the data prior to DFT computation.
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Table 4.8 Baseline system in HDA/MLLT space: effects of estimating DFT
parameters from data normalized using environment compensation (% WER)

Clean Training Multi-condition Training
Normalization Clean 20dB 15dB 10dB Clean 20dB 15dB 10dB

Off 0.68[21] 3.11[10] 10.99[5] 30.44[3] 1.13[16] 1.95[12] 2.68[10] 4.67[8]
On 0.62(9) 1.55(50) 2.65(76) 5.90(81) 0.96(15) 1.25(36) 1.83(32) 3.48(26)
1Minimum relative reduction in WER required at a 95% confidence level
2Actual relative reduction in WER compared to unnormalized case

One interesting aspect of Table 4.8 is that, for the clean training case, we obtain larger

WER reductions as the SNR decreases. This can be explained by noting the mismatch that

arises when we transform the noisy test data using an HDA matrix which was estimated

from the clean training data. Since normalizing the data using environment compensa-

tion reduces this mismatch by making noisy test data “resemble” clean data more closely,

the lower the SNR the more mismatch is being removed, and therefore, compared to the

unnormalized case, the more improvement we obtain. The same trend is not seen in the

multi-condition case, since the HDA matrix is estimated from a number of different condi-

tions, and therefore “normal” does not constitute clean.

The results in Table 4.8 lead us to conclude that normalizing the speech data using en-

vironment compensation prior to estimating the DFT parameters does in fact improve ASR

performance. As stated in Section 4.4, we believe that these improvements are obtained

because normalization causes an increase in class separability by reducing the variance of

the data in each class. Having stated in Section 2.5.1 that the LDA measure of separa-

bility is proportional to the sum of the magnitude of the largest eigenvalues of the LDA

matrix, we can examine this increase in class separability by considering these eigenvalue

magnitudes.

To this end, according to the LDA measure of class separability given in Equation 2.18,

we computed LDA matrices for the multi-condition training data, once with environment

compensation and once without. In Figure 4.6 we have plotted the magnitude of the 30

largest eigenvalues for both cases. Comparing the two plots, it is evident that normaliz-

ing the data using environment compensation results in eigenvalues considerable larger in

magnitude, and therefore higher class separation.
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Figure 4.6 The effects of environment compensation on eigenvalues of the
LDA matrix

4.4.2 Speaker Normalization

In Section 3.3.3 we presented the procedures used for estimating the HDA matrix from

speaker normalized data, where speaker normalization was either performed using VTLN

or MATE. Table 4.9 contains the corresponding recognition results obtained when speaker

normalization is performed using VTLN. To obtain the results in the first row (which were

also presented in Table 4.5), we estimated the HDA transform and the MLLT based on en-

vironment compensated MFCC features. Then, in the resulting environment compensated

HDA/MLLT space, we trained models based on both the clean and the multi-condition

training sets, and performed recognition using VTLN. To obtain the results in the second

row, the same procedure was used, except that we normalized the environment compen-

sated MFCC features which were used for estimating the HDA matrix. The normalization

was performed using VTLN, according to the procedure given in Section 3.3.3. The results

obtained when recognition and normalization are performed using MATE are presented in

Table 4.10.

The results given Tables 4.9 and 4.10 indicate that we were not able to obtain significant

improvements from removing speaker variabilities prior to estimating the HDA transform.

As stated in Section 4.4, any improvements should be a result of an increase in class

separability. Therefore, we can analyze our results further by obtaining a measure of the
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Table 4.9 VTLN in HDA/MLLT space: effects of estimating DFT param-
eters from speaker normalized data (% WER)

Clean Training Multi-condition Training
Normalization Clean 20dB 15dB 10dB Clean 20dB 15dB 10dB

Off 0.55[23]1 1.33[15] 2.36[11] 5.66[7] 0.90[18] 1.14[16] 1.63[13] 3.25[9]
On 0.61(-10)2 1.39(-5) 2.58(-9) 5.66(0) 0.78(13) 1.19(-5) 1.73(-6) 3.07(6)
1Minimum relative reduction in WER required at a 95% confidence level
2Actual relative reduction in WER compared to unnormalized case

Table 4.10 MATE in HDA/MLLT space: effects of estimating DFT param-
eters from speaker normalized data (% WER)

Clean Training Multi-condition Training
Normalization Clean 20dB 15dB 10dB Clean 20dB 15dB 10dB

Off 0.55[23]1 1.30[15] 2.61[10] 5.95[7] 0.82[19] 1.30[15] 1.79[13] 3.44[9]
On 0.59(-7)2 1.28(2) 2.42(7) 5.65(5) 0.91(-11) 1.21(7) 1.90(-6) 3.53(-3)
1Minimum relative reduction in WER required at a 95% confidence level
2Actual relative reduction in WER compared to unnormalized case

change in class separability caused by removing speaker variabilities.

Having stated in Section 2.5.1 that the LDA measure of separability is proportional to

the sum of the magnitude of the largest eigenvalues of the LDA matrix, we can determine

a measure of class separability by examining these eigenvalues. To this end, according to

the LDA measure of class separability given in Equation 2.18, we computed LDA matrices

for the multi-condition training data under four different settings. In the first case, we

computed the LDA matrix from unnormalized MFCC features, while in the second case

we performed environment compensation on the data before estimating the LDA matrix.

In the third and fourth case, in addition to performing environment compensation prior

to estimating the LDA matrix, we removed speaker variability through VTLN and MATE

respectively. Table 4.11 lists the mean of the magnitude of the 30 largest eigenvalues of the

LDA matrix determined in each of these cases.

Table 4.11 shows that, when environment compensation is performed, the mean of the

magnitude of the eigenvalues has a threefold increase from 0.199 to 0.622. This translates

to a considerable increase in class separability, and hence, as shown in Section 4.4.1, a

significant improvement in ASR performance. However, when speaker normalization is
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Table 4.11 Comparing the mean of the magnitude of the largest 30 LDA
eigenvalues for different normalization modes

Normalization Mode Eigenvalue Magnitude Mean
– 0.199
Environment compensation 0.622
Environment compensation and VTLN 0.633
Environment compensation and MATE 0.649

performed in addition to environment compensation, the additional increase in the mean

of the magnitude of the eigenvalues, as shown in Table 4.11, is only about 2% in the case of

VTLN, and 4% in the case of MATE. Therefore, the additional separability gained through

performing speaker normalization using VTLN and MATE is relatively quite small. Hence,

correspondingly, we can only expect relatively small improvements in ASR performance.

Therefore, we believe that, the size of the test set used for generating the results in Table

4.9 and 4.10 was not large enough to resolve such small improvements in ASR performance,

and experiments with larger test sets are required.

4.5 Utilizing Gender-Specific Warping Factor Priors in MATE

As stated at the beginning of this chapter, our experiments with the MATE speaker nor-

malization technique revealed that this technique does not perform well in noisy conditions.

For instance, when considering the recognition results obtained in the environment com-

pensated MFCC space in Table 4.3, we can see that, as the testing SNR decreases, MATE

yields smaller improvements over the baseline system. Given our analysis of the effects

of noise on the distribution of warping factors selected by VTLN in Section 4.2.1, we can

expect noisy environments to have similar effects on the warping factor selection process

of MATE, leading to the limitations on its performance. Therefore, in order to increase

its robustness against such effects, we devised a simple modification to the original MATE

design.

In Section 2.4.2, we described how an additional iteration of training is performed using

utterances warped using the MATE decoder. Essentially, this is done in an effort to utilize,

during recognition, knowledge gained through the use of frequency warping on the training

data. While HMM retraining attempts to capture this knowledge by modifying all of the
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parameters of the acoustic model, obtaining prior information about the distribution of

state-dependent warping factors selected by MATE is another means of capturing this

knowledge. This approach was taken to incorporate gender-specific prior knowledge into

the MATE decoder.

By observing the warping factors αn that are decoded for each state qj on the training

utterances, it is possible to obtain an empirical estimate of the conditional probability

p(αn|qj) for each of S HMM states. Given this conditional probability, it is possible to

replace the observation probabilities bj(~xt) = p(~xt|qj) in Equation 2.13, which represents

the original MATE decoding algorithm, with the joint probability

p(~xt, αn|qj) = p(~x|qj)p(αn|qj), (4.2)

under the assumption that ~xt and αn are independent given qj. The new decoding algorithm

is given by

φj,n(t) = max
i,m

{
φj,m(t− 1)am,ni,j

}
bj(x

αn
t )gj(αn), (4.3)

where we modelled the probabilities gj(αn) = p(αn|qj) as simple univariate Gaussians,

with the means µj and variances σ2
j estimated from the training data. In other words, in

selecting a given warping factor αn for state qj during recognition, we used prior knowledge

about the distribution of warping factors selected for state qj during training.

Given that female speakers usually have a shorter vocal tract length and therefore,

their utterances contain higher formant frequencies, frequency warping tends to compress

the frequency axis for these speakers [27]. On the other hand, frequency expansion is usually

occurs for male speakers. As a result, in our current implementation of this approach we

trained separate warping factor distributions for male and female speakers, and assumed

knowledge of the gender of speakers during recognition. In a more realistic implementation,

where the gender information is not available during recognition, decoding can be performed

once for each gender assumption, and the transcription corresponding to the gender-specific

warping factor distribution with higher likelihood would be selected.

Another aspect of this algorithm is related to the fact that MATE does not perform

warping of the frames corresponding to silence states. Hence, as it is not possible to obtain

estimates of the gi() for silence states, an empirically derived threshold was used in its

place. In this manner, silence states are penalized to compensate for the absence of the
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additional warping factor probability term in Equation 4.3.

4.5.1 Evaluation

Table 4.12 compares the results obtained by our proposed scheme against the results ob-

tained by the original MATE. The models used in these experiments were trained using

the environment compensated MFCC features. The first row of the table shows recognition

result obtained using the original MATE algorithm, while the second row of the table shows

the results obtained using the modified MATE.

Note that, the results reported here for the original MATE are slightly different from

the ones reported previously in Table 4.3. As stated in Section 3.2, in our experiments,

MATE was configured with an ensemble of 5 warping factors covering a range from 12%

compression to 12% expansion of the frequency axis. However, in the modified MATE, in

order to be able to have a higher resolution in estimating the distribution of warping factors,

we configured the modified MATE with an ensemble of 12 warping factors covering the same

range. This difference in corresponding configurations is the cause for the differences in

WER results reported in Table 4.3 and Table 4.12.

Table 4.12 Comparing the recognition performance of modified MATE with
the original MATE in environment compensated MFCC space (% WER)

Clean Training Multi-condition Training
Clean 20dB 15dB 10dB Clean 20dB 15dB 10dB

MATE 0.78[19]1 1.50[14] 2.56[11] 6.15[7] 0.97[17] 1.17[16] 1.79[13] 3.40[9]
Modified MATE 0.67(14)2 1.31(13) 2.33(9) 5.49(11) 0.97(1) 1.20(-3) 1.72(4) 3.31(3)
1Minimum relative reduction in WER required at a 95% confidence level
2Actual relative reduction in WER compared to MATE

The comparison in Table 4.12 shows that, for the clean training case, consistent improve-

ments are obtained for all test cases. However, no significant improvements are obtained for

the multi-condition training case. One possible explanation for this can be stated by noting

that, as stated in Section 3.1, the multi-condition training set consists of utterances with

a range of SNR conditions. Therefore, when using this training set, as with the acoustic

model, the warping factor distributions are trained from utterances with a variety of differ-

ent SNR conditions. Hence, it is conceivable that each one of these noise conditions results
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in a different warping factor distribution, and therefore, using one Gaussian to model all

of them would be inadequate.

4.6 Summary

In this chapter, we presented a number of experiments aimed at investigating the claims of

this thesis as stated in Section 1.4.1. In Section 4.2, we showed that the use of environment

compensation improved the performance of the VTLN and MATE speaker normalization

techniques. As part of our analysis, we also examined the effects of noise on the warping

factor estimation process and the first recognition pass of VTLN, subsequently showing

how these effects were ameliorated through the use of environment compensation.

In Section 4.3, we considered the performance of speaker normalization techniques in

a discriminant feature-space. We concluded from our results that the use of VTLN in a

discriminant feature-space improves its performance, while the same cannot be said about

MATE. Our analysis showed that the shortcomings of MATE were due to an increase in

the insertion rate obtained by this technique during recognition.

Section 4.4 was concerned with the effects of estimating the discriminant feature-space

transform (DFT) parameters from data which had been normalized using environment

compensation and speaker normalization. In our analysis, using the magnitude of the

eigenvalues of the LDA matrix as a measure of class discrimination, we determined that

normalizing the data through environment compensation resulted in a much larger increase

in class discrimination compared to when normalizing the data through speaker normaliza-

tion. Correspondingly, quite significant WER reductions were obtained when normalizing

with environment compensation, while a larger test set was required to resolve any im-

provements gained through the use of speaker normalization.

Finally, in Section 4.5 we presented a simple modification to the original MATE aimed

at increasing its noise robustness. In the modified MATE, we employed, during recogni-

tion, gender-specific knowledge of the distribution of the warping factors selected during

training. Evaluating this technique, when training from clean data, we obtained signifi-

cant improvements compared to the original MATE, while no significant improvement were

obtained for the case of multi-condition training.
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Chapter 5

Summary and Conclusions

This thesis was concerned with the notion of robustness against sources of variability in

automatic speech recognition (ASR) systems. To this end, we performed an experimental

study concerning the interrelationship between three separate techniques: environment

compensation techniques, which remove speech variabilities due to environment and channel

characteristics, speaker normalization techniques, which remove variabilities due to speaker

characteristics, and discriminant feature space-transformation techniques (DFT), which are

aimed at increasing the class discrimination of the speech data.

This chapter provides a brief summary of our work, and is divided into three sections.

First, we will provide a brief description of the speech corpus and the baseline ASR system,

as well as the specific techniques employed in our experiments. Second, we will restate the

claims that were investigated in this thesis, and will summarize the results and conclusions

corresponding to each claim. Finally, we will explore some of the potential avenues for

further research related to our work.

5.1 Experimental Context

Our experiments were based on a continuous density hidden Markov model (CDHMM)-

based ASR system. In our system, Mel-frequency cepstral coefficients (MFCC) were ex-

tracted in the feature analysis stage, and environment compensation was performed ac-

cording to the European telecommunications standard institute advanced front-end (ETSI-

AFE).

The two speaker normalization algorithms used in our thesis were vocal tract length

2007/01/15
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normalization (VTLN) and the augmented state-space acoustic decoder (MATE). These

techniques were based on normalizing the effective vocal tract length of different speakers

by applying a linear warping to the frequency axis of speech utterances. More specifically,

VTLN used a maximum likelihood framework to choose a single warping factor for each

utterance, while MATE used a special maximum likelihood decoding algorithm to choose

different warping factors for individual speech frames.

In order to increase class discrimination, the extracted features for a given frame were

concatenated with features from a number of surrounding frames, and heteroscedastic dis-

criminant analysis (HDA) was performed to reduce the dimensionality of the resulting

vector while maximizing class discrimination. This was followed by a maximum likelihood

linear transformation (MLLT) to diagonalize the covariance of the resulting feature-space.

Our experiments were performed using ETSI Aurora 2 speech corpus, which consists of

connected digit utterances under a variety of noise types and noise levels. This standardized

corpus provided us with a clean training set, a multi-condition training set and a number

of test sets corresponding to a range of signal-to-noise ratio (SNR) assumptions.

5.2 Claims

Our first claim was concerned with improving the performance of speaker normalization

techniques through the use of environment compensation. In Section 4.2, evaluating the

performance of VTLN and MATE under a range of SNR assumptions, we showed that

the performance of these techniques is degraded under noisy conditions. Subsequently,

incorporating environment compensation in our system, we reevaluated VTLN and MATE,

obtaining significant improvements in their performance. For example, under 10dB SNR

testing and clean training conditions, without environment compensation, VTLN obtained

a 2% reduction in WER compared to the baseline system, whereas, when environment

compensation was used, this WER reduction grew to more than 8%. Furthermore, as part

of our analysis, we examined the adverse effects of noise on the distribution of warping

factors selected by VTLN, as well as the performance of the first recognition pass of this

technique. Subsequently, we demonstrated how these effects were ameliorated through the

use of environment compensation.

Our second claim stated that the performance of speaker normalization techniques

should improve when applied in discriminant feature-space transformation (DFT). To in-



5 Summary and Conclusions 58

vestigate this, we performed HDA on environment compensated MFCC features to increase

the class discrimination, where classes corresponded to HMM states, followed by MLLT as

stated above. We then performed ASR training and recognition using VTLN and MATE

in the resulting environment compensated HDA/MLLT space. These results indicated that

VTLN performs significantly better in this space compared to the environment compen-

sated MFCC space. For example, under 10dB SNR testing and clean training conditions,

the WER obtained by VTLN was 13% lower in the environment compensated HDA/MLLT

space. In the case of MATE, due to an increase in the insertion rate, no significant WER

reductions were obtained.

Our final claim suggested that using environment compensation and speaker normal-

ization to normalize the data prior to estimating the DFT parameters should increase the

final class discrimination achieved by DFT, reducing the overall WER. Using the magni-

tude of the eigenvalues of the LDA matrix as a measure of class separability, we showed

that normalizing the data through speaker normalization increased the class discrimination

significantly. Correspondingly, our baseline recognition results showed significant WER re-

duction when the HDA matrix was estimated from environment compensated features. For

example, under 10dB SNR testing and clean training, an 81% WER reduction was obtained.

In the case of speaker normalization, considering the LDA matrix eigenvalues showed a very

relatively small increase in class discrimination. Likewise, the baseline recognition results

obtained when the HDA matrix was estimated from environment compensated and speaker

normalized features did not show significant improvements. Considering the small increase

in class discrimination, we believe that a larger test set is required ro resolve the corre-

sponding small improvements in WER.

In addition, having realized during our experiments that MATE did not perform well

in noisy conditions, we presented a modified algorithm to increase its robustness. The

modification was based on using gender-specific distribution of the warping factors se-

lected by MATE during training as prior knowledge when selecting warping factors during

recognition. In order to evaluate this technique, we performed testing and training in the

environment compensated MFCC space. The corresponding results indicated significant

WER reductions when using the clean training data, while no significant improvements

were obtained for the case of multi-condition training. For example, under 10db SNR test-

ing and clean training, the WER obtained by the modified MATE was 11% lower than that

of the original MATE.
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5.3 Future Work

As stated in Section 3.1, the fact that the Aurora 2 corpus which was used in our experi-

ments contained simulated noise posed some limitations on the reliability of our obtained

results. Therefore, one obvious avenue for future work is repeating our experiments on

a speech corpus which has actually been recorded in a noisy environment. Furthermore,

we obtained very small improvements in class discrimination by estimating the DFT from

speaker normalized data, and therefore, realized that a bigger test set was required to

actually show the corresponding small reductions in WER. Hence, this issue can also be

investigated by using a different speech corpus. In addition, we mentioned in Section 3.3.1

that the target dimension of the discriminant feature-space transformations (DFT) we esti-

mated for our experiments was selected based on convenience, whereas the best dimension

is usually selected empirically based on the rank of the feature-space. Therefore, in future

experimenters the target dimension of the DFT can be selected based on this empirically

determined feature-space rank.

Another major possibility for future work is improving the performance of the MATE

speaker normalization algorithm. As stated in Section 4.5, our modified version of MATE

did not produce significant improvements under multi-condition training. Subsequently, we

explained this by noting the fact that different distributions of warping factors are expected

from each of the different SNR conditions comprising the multi-condition training set.

Therefore, using a simple Gaussian distribution did not seem to be adequate for representing

the combined distribution of warping factors for each noise condition. Hence, the use of

other more complex distributions, such as a mixture of Gaussians, can be investigated.

Furthermore, we indicated in Section 4.5, that the current implementation of our mod-

ification to MATE assumed knowledge of the speaker genders during recognition. One

possible area for future investigation is to remove this assumption by performing recogni-

tion for both gender assumptions and selecting the transcription corresponding to the one

yielding the higher likelihood.
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