
Quantifying and Exploiting Speech Memory
for the Improvement of Narrowband Speech

Bandwidth Extension

Amr H. Nour-Eldin

Department of Electrical & Computer Engineering
McGill University

Montreal, Canada

November 2013

A thesis submitted to McGill University in partial fulfillment of the requirements for the
degree of Doctor of Philosophy.

© 2013 Amr H. Nour-Eldin





to Dina, Hana, and the hometown of Euclid



ii



iii

Abstract

Since its standardization in the 1960s, the bandwidth of traditional telephony speech has

been limited to the 0.3–3.4 kHz range. Such narrowband speech exhibits not only a quality

that is noticeably inferior to its wideband counterpart, but also reduced intelligibility espe-

cially for consonant sounds. Wideband speech reconstruction through artificial bandwidth

extension (BWE) attempts to regenerate the highband frequency content above 3.4 kHz in

the receiving end, thereby providing backward compatibility with existing networks. Al-

though BWE has been the subject of considerable research, BWE schemes have primarily

relied on memoryless mapping to capture the correlation between narrowband and high-

band spectra. In this thesis, we investigate exploiting speech memory—in reference to the

long-term information in segments longer than the conventional 10–30ms frames—for the

purpose of improving the cross-band correlation central to BWE.

With speech durations of up to 600ms modelled through delta features, we first quantify

the correlation between long-term parameterizations of the narrow and high frequency

bands using information-theoretic measures in combination with statistical modelling based

on Gaussian mixture models (GMMs) and vector quantization. In addition to showing that

the inclusion of memory can indeed increase certainty about highband spectral content in

joint-band GMMs by over 100%, our information-theoretic investigation also demonstrates

that the gains achievable by such acoustic-only memory inclusion saturate at, roughly, the

syllabic duration of 200ms—thereby coinciding with similar findings to the same effect in

earlier works studying the long-term information content of speech.

To translate the highband certainty gains achievable by memory inclusion into tan-

gible BWE performance improvements, we subsequently propose two distinct and novel

approaches for memory-inclusive GMM-based BWE where highband spectra are recon-

structed given narrowband input by minimum mean-square error estimation. In the first

approach, we incorporate delta features into the feature vector representations whose un-

derlying cross-band correlations are to be modelled by joint-band GMMs. Due to their

non-invertibility, however, the inclusion of delta features into the parameterization fron-

tend in lieu of some of the conventional static features imposes a time-frequency infor-

mation tradeoff. Accordingly, we propose an empirical optimization process to determine

the optimal allocation of available dimensionalities among static and delta features such

that the certainty about static highband content is maximized. Requiring only minimal
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modifications to our memoryless BWE baseline system, integrating frontend-based memory

inclusion optimized as such results in performance improvements that, while modest, in-

volve no increases in extension-stage computational cost nor in training data requirements,

thereby providing an easy and convenient means for exploiting speech dynamics to improve

BWE performance.

In our second approach, we focus on modelling the high-dimensional distributions under-

lying sequences of joint-band feature vectors as an alternative to the frontend dimensionality-

reducing transform used in our first approach above. To that end, we extend the GMM

framework by presenting a novel training approach where sequences of past frames are pro-

gressively used to estimate the parameters of high-dimensional temporally-extended GMMs

in a tree-like time-frequency-localized fashion. By breaking down the infeasible task of

modelling high-dimensional distributions into a series of localized modelling operations

with considerably lower complexity and fewer degrees of freedom, our proposed tree-like

extension algorithm circumvents the complexities associated with the problem of GMM pa-

rameter estimation in high-dimensional settings. Incorporating novel algorithms for fuzzy

GMM-based clustering and weighted Expectation-Maximization, we also attempt to present

our proposed temporal-based GMM extension approach in a manner that emphasizes its

wide applicability to the general contexts of source-target conversion and high-dimensional

modelling. By integrating temporally-extended GMMs into our memoryless BWE baseline

system, we show that our model-based memory-inclusive BWE technique can outperform

not only our first frontend-based approach, but also other comparable and oft-cited model-

based techniques in the literature. Although this superior BWE performance is achieved

at a significant increase in extension-stage computational costs, we nevertheless show these

costs to be within the typical capabilities of modern communication devices such as tablets

and smart phones.
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Sommaire

Depuis sa normalisation dans les années 1960, la bande passante traditionnelle de la

téléphonie de la parole a été limitée à la gamme de 0,3 à 3,4 kHz. Cette téléphonie de

la parole à bande étroite présente non seulement une qualité évidemment inférieure à sa

contrepartie large bande, mais aussi une intelligibilité réduite, en particulier pour les sons

consonnes. La reconstruction de la parole à large bande à travers l’extension artificielle de

la bande passante (EBP) essaye de régénérer la bande passante à haute fréquence au-dessus

de 3,4 kHz au niveau du récepteur, ce qui permet la rétrocompatibilité avec les réseaux

existants. Bien que l’EBP a fait l’objet de nombreuses recherches, les travaux proposés ont

principalement utilisé une cartographie sans mémoire pour modéliser la corrélation entre

les spectres à bande étroite et ceux à haute fréquence. Dans cette thèse, nous étudions

l’exploitation de la mémoire vocale en référence à l’information à long terme dans des seg-

ments plus longs que les cadres conventionnels de 10–30ms; ceci est dans le but d’améliorer

la corrélation inter-bande capitale pour l’EBP.

Focalisant sur des durées de parole modélisées jusqu’à 600ms par des coefficients delta,

nous quantifions d’abord la corrélation entre les paramétrisations à long terme des bandes

à bases et hautes fréquences en utilisant la théorie de l’information et la modélisation

statistique basée sur des modèles de mélanges Gaussiens (GMMs) ainsi que la quantification

vectorielle. En plus de montrer que l’inclusion de la mémoire peut en effet augmenter la

certitude sur le contenu spectral de la haute bande dans des GMMs de bandes jointes

de plus de 100%, notre étude démontre également que les gains réalisables par une telle

inclusion sature, à peu près, à la durée syllabique de 200ms—ce qui cöıncide avec des

résultats similaires réalisés avec des travaux précédentes concernant l’information à long

terme de la parole.

Afin de transformer ces gains théoriques de certitude sur la bande haute à des améliora-

tions tangibles en performance de l’EBP, nous proposons ensuite deux nouvelles approches

pour l’EBP avec mémoire qui sont basées sur des GMMs et où les spectres à haute bande

sont reconstruits, sachant ceux de la bande étroite, par l’estimation de l’erreur quadra-

tique moyenne. Dans la première approche, nous incorporons des coefficients delta dans

les représentations vectorielles dont les corrélations inter-bandes sont modélisées par des

GMMs de bandes jointes. En raison de la non-inversibilité des coefficients delta, cepen-

dant, remplaçant les paramètres statiques classiques par de tels coefficients delta impose
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un compromis d’information temps-fréquence. En conséquence, nous proposons un proces-

sus d’optimisation empirique pour déterminer l’allocation optimale des dimensionnalités

disponibles parmi les paramètres statiques et coefficients delta de sorte que la certitude sur

le contenu statique de la haute bande est maximisée. Ne nécessitant que des modifications

minimes à notre système de base d’EBP sans mémoire, l’intégration de la mémoire opti-

misé de cette manière dans la paramétrisation entrâıne des améliorations de performances

qui, bien que modestes, n’impliquent aucune augmentation du coût de calcul associé à

l’étape d’extension, ni des besoins de données de formation, offrant ainsi un moyen facile

et pratique pour exploiter les caractéristiques dynamiques de la parole afin d’améliorer les

performances d’EBP.

Dans notre deuxième approche, nous nous concentrons sur la modélisation des distribu-

tions de dimensionnalités élevées qui sous-tendent des séquences de vecteurs de paramètres

de bandes conjointes, plutôt que d’utiliser une transformation pour la réduction de la di-

mensionnalité de paramétrisation comme suivie dans notre première approche. À cette fin,

nous étendons le cadre de GMMs en présentant une nouvelle approche d’apprentissage où les

séquences des cadres passés sont progressivement utilisées afin d’estimer les paramètres des

GMMs de dimensionnalités élevées qui sont temporellement étendus d’une manière arbores-

cente et localisée en temps-fréquence. En décomposant la tâche irréalisable de modélisation

des distributions de dimensionnalités élevées en une série d’opérations de modélisation lo-

calisée qui exigent une complexité considérablement plus faible avec des degrés de liberté

moindre, notre algorithme d’extension arborescente contourne les complexités liées aux

problèmes de l’estimation des paramètres des GMMs de dimensionnalités élevées. En plus

d’incorporer des nouveaux algorithmes pour le regroupement floue basé sur des GMMs et

le Espérance-Maximisation pondéré, nous tentons également de présenter notre approche

d’extension temporelle des GMMs en soulignant sa large applicabilité aux contextes géné-

raux de la transformation source-cible et de la modélisation en dimensionnalités élevées.

En intégrant des GMMs temporellement étendus dans notre système de base d’EBP sans

mémoire, nous montrons que cette technique d’EBP avec mémoire modelisée peut surpasser

non seulement notre première approche basée sur les coefficients delta, mais aussi d’autres

techniques souvent citées dans la littérature. Bien que cette performance supérieure est

réalisée au coût d’une augmentation significative des calculs associés à l’étape d’exten-

sion, nous démontrons néanmoins que ces coûts sont conformes aux capacités typiques des

appareils de communication modernes tels que les tablettes et les téléphones intelligents.
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Chapter 1

Introduction

The thesis presented herein concerns the artificial extension of traditional telephony speech

bandwidth for the purpose of improving quality and intelligibility.1 In particular, we focus

on quantifying and exploiting speech memory to improve bandwidth extension performance.

Speech memory comprises the well-known dynamic spectral and temporal properties of

speech. Such properties account for a significant portion of the information content of

speech. To some extent, speech memory has been successfully exploited to improve perfor-

mance in fields such as speech coding and automatic speech recognition using short-term

speech memory (few tens of milliseconds). For the most part, however, bandwidth extension

of telephony speech has continued to rely on the conventional memoryless static represen-

tation of speech. A few exceptions show improved extension performance but, nevertheless,

only make use of short-term speech memory. In this work, we quantify and demonstrate the

importance of long-term speech memory for bandwidth extension, and propose techniques

to translate the benefits of memory into tangible performance improvements.

This introductory chapter lays the background necessary for our work. We first de-

scribe the effects of the bandwidth limitations of traditional telephony on speech quality

and intelligibility by studying the spectral characteristics of speech sounds and their role in

speech perception. We then review the extent and the nature of the spectral and temporal

dynamics of speech. Such an understanding of the dynamic nature of speech is central

to our work. Indeed, it is that dynamic nature that we attempt to quantify and exploit

through modelling speech memory. In our experience, previous bandwidth extension work

1Speech quality refers to the quality of a reproduced speech signal with respect to the amount of audible
distortions, while speech intelligibility refers to the probability of correctly identifying meaningful speech
sounds.
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lacks a review of the relationships between speech phonetics and their acoustic realiza-

tions, despite the fact that bandwidth extension attempts to improve speech perception

(the interpretation of phonetic speech qualities) through enhancing speech acoustically (re-

constructing spectral content). Similarly, descriptions of the dynamic characteristics of

speech and their significance for perception are typically inadequate or omitted in band-

width extension works. As such, the reviews presented in this chapter can themselves be

viewed as a contribution. Finally, we conclude the chapter by introducing the concept of

bandwidth extension as an alternative to wideband speech coding, and describe the scope,

contributions, and organization of this thesis.

1.1 The Motivation for Bandwidth Extension

The telephone system can easily be regarded as one of man’s most successful inventions. It

provided the spark from which our twenty-first century intricate and vast communication

networks evolved. This resounding success lies in the ability to communicate speech—the

most natural and convenient means of human communication—over great distances with

little to no delay. As a speech communication system, the performance of telephony over the

public switched telephone network (PSTN2) is subjectively measured in terms of perceived

speech quality and intelligibility. While the relations of quality and intelligibility to the

various physical properties of a speech communication system are complex and still not

fully known, acoustic frequency response and bandwidth are considered the most important

among a system’s physical variables [1, 2].

1.1.1 Bandwidth of traditional telephony

Since its inception in 1876 by Alexander Graham Bell [3], the telephone system has under-

gone many technological advances. The first telephones had no network but were in private

use, connected together in pairs. Each user needed as many telephone sets as the number

of different people to be connected to. Soon, however, telephones took advantage of the ex-

change principle already employed in telegraph networks. Each telephone was connected to

2While the term “PSTN” technically refers to the whole telephone network which has evolved to include
many technologies with different bandwidths, “PSTN” and “POTS” (plain old telephone service) have been
interchangeably used in the literature to refer to the traditional analog/copper technology. In the sequel,
we exclusively use “PSTN” to refer to traditional 300–3400Hz telephony.
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a local telephone exchange, and the exchanges were connected together with trunks. Net-

works were connected together in a hierarchical manner until they spanned cities, countries,

continents and oceans. Notable advances include the introduction of pulse dialing, followed

by more sophisticated address signaling including multi-frequency signalling—later evolv-

ing to the modern dual-tone multi-frequency signalling (or Touch-Tone)—as well as the use

of time-division multiplexing to increase the capacity of communication links. The most

important improvement to the PSTN, however, was the digitization of telephony speech

using pulse code modulation (PCM) [4].

Despite these advances, the acoustic frequency characteristics of the PSTN have re-

mained, interestingly enough, virtually unchanged. While most automated telephone ex-

changes and trunks now use digital rather than analog switching, analog two-wire circuits

are still used to connect the last mile from the exchange to the end-user’s telephone (also

called the local loop). The analog audio signal from a calling party is digitized at the

exchange at a sampling rate of 8 kHz using 8-bit µ- or A-law PCM, routed and transmitted

over the network to the called party after passing through a digital-to-analog converter at

the destination’s exchange.

In designing the frequency response characteristics of the nascent analog telephone net-

work, telephone companies needed to balance the requirements of perceived quality and

intelligibility (as understood in the early twentieth century) with the economic viability

associated with building and expanding the network to cover large areas and as many

subscribers as possible.3 In the early days of the telephone network, limitations of analog

circuitry and channel multiplexing techniques were the chief reasons for limiting the tele-

phone bandwidth to as low as 2.5 kHz (or 2500 cycles, by that era’s nomenclature). At the

lower end of the spectrum, the problems of crosstalk due to AC coupling of telephone wires

as well as interference from AC mains frequency were the main concerns.4 Thus, a cutoff

frequency in the lower end of the spectrum was required while ensuring a minimum level

of naturalness and intelligibility.

It was concluded in 1930 [5] that, “based on tests showing the effect upon

articulation of varying the upper and lower cutoff frequencies”, there was “lit-

3As put by Martin in 1930 [5, page 483]; “In setting up the requirements for the various transmission
characteristics of telephone message circuits, the aim is to arrive at the combination of requirements which
will give the most economic telephone system for furnishing the desired grade of transmission service.”

4It was already understood by 1925 that speech contains frequencies as low as 60 cycles [6, page 547].
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tle effect on articulation of cutoffs below 400cycles”. At the higher end of the

spectrum, it was concluded that, “while there is some articulation advantage

in going further than 2750cycles, observations of the number of repetitions oc-

curring in conversations over circuits having different cutoff frequencies have

indicated but little reduction in repetitions by going beyond about 2750 cycles

with commercial types of terminal sets”. Furthermore, “the extension necessary

to effect a material improvement in naturalness—largely as the result of better

reproduction of the fricative consonants and some of the incidental sounds which

accompany speech—is a matter of a thousand cycles or more, rather than hun-

dreds of cycles”. Consequently, “it has been considered that such an extension

for message circuits is not now justified”, especially when bearing in mind that

“an extension of the transmission range will in general increase the amount of

noise on the circuit and magnify the crosstalk problem”, while also “increasing

the difficulties of securing proper impedance balances and of equalizing ampli-

tude and phase distortion”. Ultimately, the conclusion in [5] was that “new

designs of telephone message circuits for the Bell System should have an effec-

tive transmission band width of at least 2500 cycles, extending from about 250

to 2750 cycles”. With advances in circuitry and multi-channel carrier systems,

it was concluded a few years later in 1938 that “a 3000-cycle band properly used

gives good transmission both in articulation and naturalness” [7, page 373].

The bandwidth of the PSTN was eventually standardized in the 1960s by the CCITT5

to the 300–3400Hz range. The most recent ITU-T standards specifying frequency char-

acteristics of the telephone channel are G.232 [8] (giving equipment design objectives for

analog 12-channel terminal equipment), and G.712 [9] (giving equipment design objectives

for digital PCM channelizing equipment). Figure 1.1, reproduced from [8], illustrates the

recommended range of power level attenuation across frequency. Such illustrations, are

often referred to as frequency masks.

5The Comité Consultatif International Téléphonique et Télégraphique (CCITT) is one of the three
sectors of the International Telecommunication Union (ITU). CCITT was renamed in 1992 to ITU-T (ITU
Telecommunication Standardization Sector).
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Fig. 1.1: Allowable limits for the variation, as a function of frequency, of the relative power
level at the output of the sending or receiving equipment of any channel of a 12-channel (analog)
terminal. Figure 2/G.232 [8]

1.1.2 Speech production

The frequency characteristics of speech sounds are a direct consequence of the physical

properties of the speech production organs of the vocal tract6. Sounds can be acoustically

classified according to two main physical aspects of sound production: (a) vibration of the

vocal folds, and (b) manner and place of airflow constriction (articulation) in the vocal

tract. Vibration of the vocal folds, or voicing, results in periodic signals with energy

concentrated at harmonics of the fundamental frequency of vibration, F0, while unvoiced

sounds are aperiodic. Constriction of the airflow at any of the vocal tract articulators results

in consonants, while airflow is relatively unimpeded for vowels. The shape of the vocal

tract (manner of articulation) and the place of airflow constriction, along with periodicity,

determine the frequency characteristics of sounds. In general, sounds have energy peaks at

formants—the resonant frequencies of the vocal tract—with the first three formants—F1,

F2 and F3—generally ranging from 250–3300Hz [10, Section 3.4]. Secondly, the degree of

airflow constriction determines whether the consonant’s spectrum is predominantly that

of noise (as in unvoiced fricatives, plosives, and affricates), or similar to vowels (as in

diphthongs, glides, liquids, and nasals), or a mixture of both (voiced fricatives, plosives,

and affricates). Table 1.1 lists the properties of the English phonemes.

6Namely the lungs, vocal folds (or cords), tongue, lips, teeth, velum, and, indirectly, the jaw.
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Table 1.1: English phonemes (using IPA—international phonetic alphabet—symbols) and cor-
responding features [10, Table 3.1].

Manner of Place of Example
articulation

Phoneme
articulation

Voicing
word

i high front tense yes beat
I high front lax yes bit
e mid front tense yes bait
E mid front lax yes bet
æ low front tense yes bat
A low back tense yes cot

Vowels O mid back lax rounded yes caught
o mid back tense rounded yes coat
Ú high back lax rounded yes book
u high back tense rounded yes boot
2 mid back lax yes but
Ç mid tense (retroflex) yes curt
@ mid lax (schwa) yes about

Aj (AI) low back → high front yes bite
Diphthongs Oj (OI) mid back → high front yes boy

Aw (AÚ) low back → high back yes bout

j front unrounded yes you
Glides

w back unrounded yes wow

l alveolar yes lull
Liquids

r retroflex yes roar

m labial yes maim
Nasals n alveolar yes none

ï velar yes bang

f labiodental no f luff
v labiodental yes valve
θ dental no thin
δ dental yes then

Fricatives s alveolar sibilant no sass
z alveolar sibilant yes zoos
S palatal sibilant no shoe
Z palatal sibilant yes measure
h glottal no how

p labial no pop
b labial yes bib
t alveolar no tot

Plosives
d alveolar yes did
k velar no kick
g velar yes gig

tS alveopalatal no church
Affricates

dZ alveopalatal yes judge
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More importantly for telephone communications, the distribution of sound energy across

frequency generally depends on the excitation source generating the sound. For sonorants,

voiced sounds where the vocal folds excite the full length of the vocal tract, energy is

concentrated at the lower frequencies. Vowel energy, in particular, is primarily concentrated

below 1kHz near the low formant. Unvoiced sounds, on the other hand, are characterized

by a major vocal tract constriction acting as the excitation to the shorter anterior portion

of the vocal tract, thus concentrating energy at the higher frequencies. Energy in unvoiced

fricatives, for example, is concentrated above 2.5 kHz. Voiced fricatives have a double

acoustic source, resulting in a mixed energy distribution with features of both voiced and

unvoiced sounds.

1.1.3 Effect of the telephone bandwidth on perceived quality and intelligibility

Although the long-term average speech spectrum shows speech energy to be mainly con-

centrated in vowels below 1kHz [11], the full spectrum of speech sounds plays a crucial

role in quality (naturalness) and intelligibility. Speech frequencies range from as low as

60Hz (frequency of vocal fold vibration for a large man) to over 15kHz. Consequently,

narrowband speech—speech limited to the 300–3400Hz PSTN band—lacks many of the

distinctive frequency characteristics of some sounds.

1.1.3.1 Spectral characteristics of speech sounds

Consonants, the sounds most important for intelligibility,7 are also the sounds most nega-

tively impacted by the bandwidth limitations of telephony. Energy for fricatives is primarily

concentrated above 2.5 kHz. Labial and dental fricatives—/f/, /v/, /θ/ and /δ/ (also re-

ferred to as nonsibilants8)—have relatively low energy compared to the sibilant alveolar

and palatal fricatives—/s/, /z/, /S/ and /Z/—due to a very small front cavity [13]. Sibi-

lants are characterized by relatively steep high-frequency spectral peaks, while nonsibilants

are characterized by relatively flat and wider band spectra. Alveolar sibilants, /s/ and

7The importance of consonants for intelligibility was measured as early as 1917. Crandall concluded
in [12, page 75] that: “The interesting thing, in the energy distribution in speech, is that the vowels are the
determining factors of this distribution, whereas the consonants are the determining factors in the matter
of importance to articulation. The importance of the consonant frequencies in speech is thus utterly out of
proportion to the amount of energy associated with them.”

8The alveolars /s/ and /z/, and the palatals /S/ and /Z/, are called sibilants due to their hissing or
shushing quality.
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/z/, lack significant energy below 3.2kHz [10, Section 3.4.6], and are distinguished from

the palatal sibilants, /S/ and /Z/, by the location of their lowest spectral peak which is

around 4kHz for the alveolars and 2.5 kHz for the palatals for a typical male speaker [13].

The PSTN bandwidth, thus, removes all spectral distinction between alveolar sibilants and

nonsibilant fricatives, resulting in the well-known difficulty of distinguishing such fricatives

in telephony speech (particularly the /s/ and /f/ pair). Figure 1.2 clearly illustrates this

problem by comparing the spectrograms of the two words sailing and failing, showing the

effect of the 300–3400Hz PSTN bandwidth limitation in virtually removing the distinctive

spectral features of /s/ and /f/—represented mostly by the higher energy above 3.4 kHz

for the fricative /s/—in the 20–200ms interval.
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Fig. 1.2: Spectrograms of the two words sailing and failing showing the effect of the PSTN
bandwidth limitation on the /s/ and /f/ fricatives in the 20–200ms interval. The boundaries of
the telephone channel are marked by the two lines at 300 and 3400Hz.
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At the lower end of the spectrum, voiced fricatives are often differentiated from unvoiced

ones, at least for syllable-initial fricatives, by the presence of energy at the fundamental and

low harmonics (a voice bar on spectrograms) due to vocal cord vibration [10, Section 5.5.3].

Average F0 values for males and females, however, are 132Hz and 223Hz, respectively [14],

i.e., below the lower 300Hz cutoff frequency, leading to some ambiguity in perceiving voicing

in fricative pairs: /s/ and /z/, /f/ and /v/, /θ/ and /δ/, and /S/ and /Z/.

Plosives (or stops) are the second class of consonants adversely affected by the 300–

3400Hz bandwidth limitation. Plosives consist of a complete occlusion of the vocal tract

followed by a brief (a few ms) burst of noise then longer frication at the opening con-

striction [10, Section 3.4.7]. For voiced stops, a voice bar of energy confined to the first

few harmonics of the fundamental frequency may be present during the closure portion.

As described above, since the average fundamental frequencies are below the lower 300Hz

cutoff, such voice bars separating voiced stops from unvoiced ones are usually removed or

attenuated. The initial noise burst following release of the vocal tract occlusion primarily

excites frequencies of fricatives having the same place of articulation. Hence, the burst

release energy of alveolar stops, /t/ and /d/, usually peaks near 3.9 kHz (coinciding with

the spectral peak at 4kHz for the alveolar fricatives, /s/ and /z/). Labial stops, /p/ and

/b/, also have similar burst release properties but—in a manner similar to the difference

between labial/dental fricatives and alveolar ones—are distinguished from alveolar bursts

by being considerably less intense (about 12dB weaker). The loss of such plosive charac-

teristics due to the bandwidth limitation of the PSTN, leads to significantly diminished

intelligibility and naturalness for stops. The acoustics of affricates resemble those of the

constituent stop+fricative sequences.

Similarly, the intelligibility of nasals is adversely affected by the lower 300Hz cutoff

frequency of the telephone bandwidth as the spectra of nasals are dominated by the first

formant (the nasal murmur) occurring near 250Hz.

In contrast, vowel intelligibility is largely unaffected by the higher 3400Hz frequency

cutoff as vowel energy is primarily concentrated below 1kHz. Furthermore, the first three

formants—crucial for vowel intelligibility—fall mostly within the telephone bandwidth [14].

However, while almost irrelevant for intelligibility when compared to higher frequencies,

frequency content below 300Hz is important for naturalness [10, Section 4.3.2]. As such,

the lack of frequency information below 300Hz for vowels in particular, and all sounds in

general, is an important limitation distinctive of the toll quality of telephony speech.
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1.1.3.2 Effect of bandwidth on speech intelligibility

Since the early days of the Bell Telephone Laboratories, significant efforts have been made

to understand and quantify the effects of the telephone channel—particularly its bandwidth

limitations—on speech intelligibility. Between 1910 and 1918, Campbell [15] and Crandall

[12] were the first to use articulation tests and proposed the idea that speech intelligibility

is based on the sum of the contributions from individual frequency bands. Building on this

work, Fletcher extended the analysis in 1921 to account for the effects of filtering speech

into 20 bands extending to 7kHz [16, 17]. In particular, Fletcher first derived relations for

articulation—the probability of correctly identifying nonsense speech sounds spoken with

syllables [18]—as a function of speech frequency and SNR, then later extended the relations

to include the intelligibility of words and sentences [11, 19]. Fletcher showed that while no

detectable loss in articulation results until the lower cutoff is raised to 250 cycles, or until

the upper one is lowered to 7000 cycles [20], limiting telephony speech bandwidth to the

300–3400Hz range causes syllable articulation to drop from 98–99% to 89–92%,9 although

whole-sentence intelligibility only drops negligibly from 99.9% to 99.3% [19].10 More re-

cently, however, it has been shown that the effect of obstruent consonants—as described

above, these are the sounds with energy concentrated mostly at the high frequencies near

or above the 3400Hz cutoff, i.e., fricatives, plosives, and affricates—on word and sentence

intelligibility is quite higher than suggested by Fletcher’s sentence intelligibility scores. In

[22], for example, replacing obstruents in fluent speech by white noise results in 87% in-

telligibility for words and only 60% for sentences. The figures drop to 82% and 50% for

words and sentences, respectively, when using periodic noise (sinusoids with frequencies

ranging from 200 to 4000Hz) as replacement. French’s method [11] for the calculation

of articulation—a simpler version of Fletcher’s [19] that later became known as the Ar-

ticulation Index theory—was standardized by the ANSI11 in 1969 [23], then updated and

renamed in 1997 to the Speech Intelligibility Index (or SII) [24].

9Using Table XII in [19] which lists values for the articulation index, Af , as a function of the frequency

importance function, D, the articulation index for the 300–3400Hz band is determined as Af = ∫
3400
0 Ddf −

∫
300
0 Ddf ≊ ∫

3390
310 Ddf = 0.74. Table III is then used to arrive at the corresponding articulation values for

sounds, syllables, and simple sentences.
10Since Fletcher’s sentence intelligibility scores were based on binary right-or-wrong answers to inter-

rogative or imperative sentences—rather than scoring sentences based on whether all words were correctly
recognized—[16], the reliability of Fletcher’s sentence intelligibility figures has been questioned, as in [21],
for example.

11American National Standards Institute.



1.1 The Motivation for Bandwidth Extension 11

1.1.3.3 Effect of bandwidth on speech quality

With the advent of PCM in 1949 [4] based on Shannon’s proof of the Sampling Theo-

rem [25],12 speech digitization proliferated all means of speech communication, particularly

that of telephony. Digital speech transmission generally involves loss of information due

to quantization and channel noise, resulting in the degradation of output speech. While

quality degradation due to channel noise can be overcome by error detection and correction

techniques, such techniques typically require bit protection overhead, and hence, lead to an

overall bit rate increase. As more efficient transmission requires lower bit rates, understand-

ing the importance of the different frequency bands for perceived quality is, thus, of crucial

importance for speech coder design in general, and particularly for the PSTN bandwidth

of 300–3400Hz. Such an understanding allows more efficient transmission either through

frequency-dependent bit allocation in frequency-domain coding, or through compromising

between bandwidth (through the sampling rate) and bit protection in time-domain coding.

The subjective experiments of Voran in [27] provide an important investigation into

the effects of coding bandwidth on perceived quality. In the absence of coding distortions,

the perceptual quality of several passbands of varying bandwidths is compared to the 300–

3400Hz passband of narrowband speech. Most notably, the wideband G.722 ITU-T stan-

dard passband of 50–7000Hz [28]—the largest bandwidth in the study—is shown to be per-

ceptually superior to the traditional 300–3400 narrow band by 36%, relatively (1.42 points

on a custom 7-point subjective scoring scale).13 The study also shows that, while keeping

bandwidth fixed, shifting passbands downwards by extending them below 300Hz at the ex-

pense of higher frequencies results in improved quality, but only up to a certain limit that

varies depending on bandwidth. In other words, up to a point that varies with bandwidth,

the perception gained by additional low frequency content seems to outweigh the percep-

tion loss due to removed high frequency content. Thus, while the results of [27] confirm the

importance of frequencies below the PSTN’s lower 300Hz frequency cutoff for perceptual

quality, they also indirectly demonstrate the importance of different frequency subbands

outside the narrowband range relative to each other. For example, the 0.8bark subband

12The origins of the Sampling Theorem can be traced back to Borel as far back as 1897. Several authors
have independently published essentially the same ideas between Borel in 1897 and Shannon’s 1949 proof;
including, Ogura, Nyquist, Whittaker, Raable, Someya, Kotelnikov, and Weston [26].

13In [27], listeners score a test recording against a narrowband reference by selecting one of the seven
options: The second version sounds much better than (3), better than (2), slightly better than (1), the same
as (0), slightly worse than (−1), worse than (−2), much worse than (−3), the first version.
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of 3400–3889Hz is about 5% more perceptually important than the 0.8bark subband of

50–131Hz, and 7% more important for quality than the 0.8bark range of 4691–5362Hz.14

Finally, an interesting result of [27] is that extending the upper limit from 3400Hz to

7000Hz appears to be effective perceptually only when the lower 300Hz limit is extended

downwards as well, suggesting a complex nonlinear inter-band relationship between sub-

bands and perceived quality—in contrast to the additive nature of the relationship between

subbands and the articulation index. In particular, extending the upper 3400Hz limit alone

results in a maximum 4% perceptual improvement,15 but the same highband extension,

however, results in 12% improvement when applied to speech where the lower limit has

already been extended down to 50Hz.

Other works investigating the effects of coding bandwidths on perceived quality agree

that wider bandwidths outperform the traditional PSTN bandwidth in terms of perceived

quality, although with varying results as to the extent of differences in quality. In [29], for

example, MOS16 values for 10 and 7kHz speech are 4 and 3.6, respectively, compared to

only 2.5 for 3.6 kHz speech. In [31], the DMOS17 values—using 15kHz reference speech—for

10 and 7kHz speech are 4.2 and 3.4, respectively, compared to only 1.9 for 3.6 kHz speech.

The works described above clearly demonstrate the perceptual superiority of wideband

speech over narrowband telephony speech in terms of both quality and intelligibility. To

conclude this section, we note, however, that intelligibility—although adversely affected by

the PSTN bandwidth limitations—is still reasonable for all but the lowest-bit-rate coders

[10, Section 7.4]. Moreover, while intelligibility only assesses the recognizability of speech

sounds, quality is a multi-dimensional measure that encompasses many perceptual prop-

erties of sounds that are typically difficult to quantify, e.g., loudness, clarity, fullness, spa-

ciousness, brightness, softness, nearness, and fidelity [1], but which constitute the perceived

quality of speech. Thus, speech quality—rather than intelligibility—has been the criterion

14See Section 4.2.1 for more details on the perceptual Bark scale for frequency.
15Interestingly, while it is shown in [27] that extending the upper 3400Hz limit to 5083Hz results in 4%

improvement in perceived quality, extension to 7000Hz results in no discernable improvement.
16Mean opinion score (MOS) is the absolute average score obtained from absolute category rating (ACR)

tests where listeners judge a test speech signal on a scale from 5 (best—imperceptible impairment) to 1
(very annoying) without referring to an original reference signal [10, Section 7.4]. MOS is the most prevalent
among subjective quality measures. Guidelines for ACR testing methodology are specified in the ITU-T
P.800 standard [30].

17A variant of MOS, degradation mean opinion score (DMOS) is obtained through degradation category
rating (DCR) tests used for relative judgements where test speech is compared to a superior reference on
a scale from 5 (inaudible differences) to 1 (very annoying); see [10, Section 7.4; 30].



1.2 Dynamic and Temporal Properties of Speech and their Importance 13

typically used to assess speech coder performance [32]. Similarly, it has also been the cri-

terion overwhelmingly used for the evaluation of artificial Bandwidth Extension (BWE)

techniques, and is, thus, also the measure used in our work presented herein.

1.2 Dynamic and Temporal Properties of Speech and their

Importance

The spectral characteristics of speech, described in Section 1.1.3.1 above, are relatively

fixed or quasi-stationary only over short periods of time (few tens of milliseconds) as one

sound is produced, whereas the signal varies substantially over intervals greater than the

duration of a distinct sound (syllable duration is typically 200ms, with stressed vowels av-

eraging 130ms and other phones about 70ms in total). Typical phonetic events last more

than 50ms on average, but some, like stop bursts, are shorter [10, Section 6.10.1]; rapid

spectral changes occur in stop onsets and releases and in phone boundaries involving a

change in manner of articulation18. Hence, windows no more than 10–30ms wide are typi-

cally used for speech analysis and processing, including BWE, such that quasi-stationarity

is preserved as much as possible to allow coding and parameterization of speech. This

conventional short-term analysis, however, ignores the considerable longer-term informa-

tion integral to speech perception. Such information varies from the relatively short subtle

temporal cues extending across and in between phonemes, such as phonemic duration and

voice onset time (VOT), to the more obvious long-term effects of coarticulation19 and the

inherent inter- and intra-speaker variability on the spectral properties of speech. Coar-

ticulation, in particular, effectively results in diffusing perceptually-important phonemic

information across time, often across syllable and syntactic boundaries, at the expense of

phonemic spectral distinctiveness. An even longer-term form of information underlying

speech segments is that of prosody, referring to the suprasegmental and syntactic informa-

18See Table 1.1; manner of articulation refers to the classification of sounds depending on the general
shape of the vocal tract and degree of airflow constriction into vowels, glides, liquids, diphthongs, fricatives,
stops, and affricates, while place of articulation refers to the finer discrimination of sounds into phonemes
depending on the point of narrowest vocal tract constriction.

19Coarticulation is attributed to the tendency to communicate speech with least effort; it requires less
muscle effort to move an articulator gradually in anticipation toward a target over several phones than to
force its motion into a short time span between phonemes; similarly, letting an articulator gradually return
to a neutral position over several phones is easier than using a quick motion immediately after the phone
that needed the articulator.
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tion that extends beyond phone boundaries into syllables, words, phrases, and sentences.

Since prosody mostly follows from language-specific rhythm, intonation, syntax, and se-

mantics, however, the effects of such information on the acoustics of speech are much more

subtle and less relevant to the acoustic-only BWE processing of speech than those of the

temporal cues and coarticulation noted above.

To illustrate their importance as cues complementing—and often integral to—speech

perception, we discuss these dynamic properties of speech in more detail in Appendix A. We

note here, however, an important result of the analyses of such properties; as observed in [10,

Section 5.4.2], the mapping from phones (with their varied acoustic correlates) to individual

phonemes is likely accomplished by analyzing dynamic acoustic patterns—both spectral

and temporal—over sections of speech corresponding roughly to syllables. Accordingly, a

BWE system exploiting such long-term information—extending up to syllabic durations—

as a means for better identification of the frequency content to be reconstructed will, thus,

inherently improve perception of the extended speech.

1.3 Extending the Bandwidth of Telephony Speech

1.3.1 Wideband speech coding

Section 1.1 clearly illustrated the inferiority of narrowband telephony speech—in both qual-

ity and intelligibility—as a result of the detrimental effects of the bandwidth limitations

of legacy telephone networks. Several new codecs have thus been introduced to achieve

superior wideband speech communications. Such wideband codecs extend speech commu-

nication bandwidth to 50Hz at the lower end and up to 7kHz at the higher end of the

spectrum. Super-wideband coders extend bandwidth to an even higher 10 and 15kHz

[29, 31], and further yet to 19.2 kHz [33]. Most notable among wideband codecs are G.722

[28] and G.722.2—otherwise known as Adaptive Multi-Rate Wideband (AMR-WB) [34]. As

noted in [28, Section I.2], applications of the wideband G.722 codec, standardized in 1988,

include: commentary quality channels for broadcasting purposes and high quality speech

for audio and video conferencing applications. Indeed, the G.722 standard has become

widely used in Voice over Internet Protocol (VoIP) telephony applications. More recent,

the AMR-WB codec was introduced in 2000 and adopted by the ITU-T20 as G.722.2 [34].

20See Footnote 5.
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AMR-WB is increasingly pervading mobile phone devices and networks.

While such wideband codecs provide superior quality and intelligibility, their use in

telephony is, nonetheless, limited by the traditional narrowband limitations ubiquitous in

the PSTN. True wideband communication can only be possible if the call remains on an

entirely wideband-capable network; the entire route must support digital wideband trans-

mission, in addition to both transmitting and receiving parties. All benefits of wideband

telephony are lost when routed through the PSTN. The growth of true wideband telephony

thus requires modifying current networks. Hence, for clear economic reasons, existing tele-

phony networks will continue to suffer—at least partially—the narrowband limitations for

the foreseeable future, particularly when considering the prohibitive cost of replacing analog

two-wire local loop connections still in use today. For a long transitional period, telephone

networks will continue to be mixed with both narrowband and wideband capabilities.

1.3.2 Artificial bandwidth extension

Through reconstructing wideband speech rather than explicitly coding it, artificial band-

width extension (BWE) of narrowband speech at the receiving end provides a network-

independent alternative to wideband speech coding. Using only the narrowband input

available at the receiver, BWE attempts to reconstruct wideband speech by estimating

missing frequency content through modelling the correlation between narrowband speech

and its highband counterpart. Alternatively, by modelling the correlation between narrow-

band speech and its original wideband—rather than highband—counterpart, the wideband

signal can be estimated as a whole.

By using only narrowband speech, BWE provides backward compatibility with existing

networks. Figure 1.3 illustrates how BWE can be easily integrated into the peripherals

of the traditional PSTN. Natural speech, a super-wideband signal (denoted by sswb) with

frequencies extending up to 22kHz (as shown, for example, in the spectrograms of Fig-

ure 1.2), is recorded at the transmitter, bandpass filtered, coded and transmitted across

the telephone network. Typically, a sampling frequency of Fs = 8kHz is used. At the

receiving end, a wideband estimate, ŝwb, extending up to 7 or 8kHz, is obtained through

BWE having only narrowband speech, snb, as input.

In the work presented herein, we focus on improving BWE based on modelling the

correlation between narrowband and highband frequency content. As described below and
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sswb snb ŝwb
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Fig. 1.3: Overall system diagram for telephone communication with bandwidth extension inte-
grated at the receiver.

further detailed in Chapter 4, such cross-band correlation from the perspective of BWE

can be quantified as the certainty about the high band given only the narrow band. As

such, we use both terms—cross-band correlation and highband certainty—in the sequel

synonymously.

1.4 Scope and Contributions of the Thesis

As described in Section 1.2, a significant portion of the information content in speech is

carried by the dynamic spectral and temporal properties manifesting in long-term seg-

ments of speech. Indeed, exploiting these properties—instead of, or in addition to, the

conventional static 10–30ms parameterization of speech—has been shown to considerably

improve performance in many speech processing fields, e.g., speech coding and automatic

speech recognition (ASR). Examples of coding techniques exploiting speech memory include

differential coding21, e.g., [35], target matching22 [36], and memory vector quantization23.

Similarly, the use of hidden Markov models (HMMs) in ASR to model the temporal order

of events in speech has become a de facto standard [10, Section 10.7.1].

In contrast, BWE schemes have, for the most part, primarily used memoryless mapping

to model the correlation between narrowband and highband spectra. Exceptions to the

pervasiveness of memoryless mapping in BWE are based mainly on the implementation

21Rather than code each frame or sample independently, differential coding makes used of short-term
memory by coding only interframe differences.

22Target matching jointly smoothes both the residual signal and the frame-to-frame variation of linear
prediction coefficients (LPCs) by matching the output of a formant predictor to a target signal constructed
using smoothed pitch pulses.

23Memory vector quantization (VQ) incorporates knowledge of previously quantized data in the quan-
tization process. As such, memory quantizers exploit memory between the vectors in the input process
(intervector dependencies), and therefore, perform better than conventional VQ of the same dimension
[37]. A common application of memory quantization methods is the quantization of spectrum parameters
in linear prediction coding, e.g., [37, 38].
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of highband spectrum envelope estimation using HMMs, e.g., [39], such that the dynamic

properties of speech are embedded into spectrum estimation. HMM-based techniques,

however, are generally marked by higher complexity and training data requirements, which

increase with the number of HMM states. To mitigate the potential complexity and data

insufficiency problems, first-order Markov models are assumed almost universally. This

limits such HMM-based techniques to modelling the dependencies between consecutive

signal frames only, effectively restricting the ability of the model to capture only 20–40ms of

memory. As described in Section 1.2, however, the information carried by speech temporally

extends well beyond such 20–40ms intra- and inter-phoneme durations. In particular, we

noted that the identification of phonemes is likely accomplished by analyzing patterns with

roughly syllabic durations, i.e., around 200ms. While increasing the number of states

partially alleviates the memory limitations of first-order HMMs (by modelling more longer-

duration sequences of individual frames and the corresponding single-frame transitions), the

inability to capture unsegmented long-term information in contiguous patterns remains.

Thus, current memory-inclusive BWE techniques exploit only a fraction of the memory

available in speech. Furthermore, despite the established importance of memory in speech,

there have been no attempts, to the best of our knowledge, to explicitly quantify the gain

of exploiting memory to improve the cross-band correlation assumption underlying the

bandwidth extension of narrowband speech.

The goal of this thesis is to advance current BWE paradigms in regards to exploiting

speech memory by addressing the aforementioned deficiencies. As shown in Sections 2.2

and 2.3, BWE implementations vary widely in all aspects—the properties of speech cho-

sen for modelling in the different bands, dimensionalities and types of parameterizations

used, nature of the joint-band correlation modelling employed, complexity and amounts

of training data required, et cetera. As such, we strive to quantify and demonstrate the

benefits of exploiting long-term speech memory in BWE conceptually and in a universal

manner to imbue our theses with as much generality as possible, such that our findings can

be adapted and implemented in other BWE techniques. Therefore, we focus our attention

on studying the role of memory theoretically as well as the means and effects of its inclu-

sion in practical BWE systems, rather than studying the effects of improving the various

BWE implementation-specific details mentioned above. Similarly, although BWE refers,

per se, to the reconstruction of lowband frequencies (< 300Hz) as well as highband ones

(> 3400Hz), we focus on the latter in the context of studying the role of speech memory
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since highband reconstruction is that which is of primary concern in bandwidth exten-

sion. Indeed, the vast majority of BWE techniques exclusively address the reconstruction

of highband content, with very few works additionally addressing lowband reconstruction.

Works dedicated to reconstructing only the low band are quite rare.

The contributions of our work can be summarized as follows (listed in descending order

of impact in our view):

Modelling speech memory and quantifying its effects on cross-band correlation

Using parameterization-independent delta features, we model speech memory by ex-

plicitly parameterizing it for durations extending up to 600ms—far greater than the

indirect modelling of memory through cumulative HMM state transition probabilities

of previous memory-inclusive BWE techniques. By exploiting information-theoretic

measures to represent the correlation between narrow- and high-band speech memory

thus modelled, we achieve our goal of quantifying the role of memory in increasing cer-

tainty about the high band. Highband certainty—the ratio of mutual information be-

tween the narrow and high bands to the discrete entropy of the high band—represents

cross-band correlation normalized to the [0,1] range. By estimating highband cer-

tainty for parameterizations incorporating delta features, we are, in fact, estimating

upper bounds on achievable BWE performance when memory is included in BWE.

This follows from the fact that highband certainty estimation is not affected by the

several components of an actual BWE system which inevitably introduce errors in

reconstructing the missing high frequency content. This bounding property is demon-

strated analytically by making use of a previously-derived lower bound on a common

spectral distortion measure, shown to be a function of information-theoretic mea-

sures. Through highband certainty estimates, one can then determine the optimality,

or lack thereof, of any BWE system incorporating memory. The ideal BWE system is

that which can translate the estimated highband certainty gains into matching BWE

performance improvements. Our method of modelling and quantifying memory shows

that, regardless of the parameterization used, exploiting long-term memory through

delta features at least doubles the cross-band correlation central to BWE, and hence,

can potentially result in considerable BWE gains if efficiently made use of.

Formulation of a memory-based extension to the GMM framework

As delta features are non-invertible, they can not be directly used to reconstruct high-
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band frequency content. Thus, using delta features in BWE with fixed dimensionali-

ties results in the loss of some spectral detail as fewer invertible static parameters are

available for speech reconstruction. This time-frequency information tradeoff provides

the motivation to embed speech memory directly into the Gaussian mixture model

(GMM) structure used for statistical joint-band modelling in current state-of-the-art

BWE techniques. To that end, we extend the GMM formulation to take memory into

account, presenting a novel tree-like training approach to estimate the parameters of

temporally-extended GMMs. In particular, sequences of past frames are progressively

used to grow high-dimensional GMMs in a tree-like fashion, effectively transforming

the parameter estimation problem of such high-dimensional GMMs into a state space

modelling task where the states correspond to time-frequency-localized regions in the

full high-dimensional space underlying the modelled feature vector sequences. By

breaking down the infeasible task of modelling high-dimensional distributions as such

into a series of localized modelling operations with considerably lower complexity and

fewer degrees of freedom, our tree-like memory-based extension of the GMM frame-

work thus circumvents the complexities associated with the parameter estimation of

GMMs in high-dimensional settings. In developing this temporal-based extension to

the GMM framework, we also introduce a novel fuzzy GMM-based clustering algo-

rithm, as well as a weighted implementation of the Expectation-Maximization (EM)

algorithm used for GMM parameter estimation. These latter algorithms are pro-

posed in order to maximize the information content of the aforementioned temporally-

extended GMMs while ensuring that the effects of class overlap in high-dimensional

spaces are reliably accounted for in our time-frequency localization approach. To em-

phasize their wide applicability to contexts other than that of BWE, these proposed

algorithms are developed, derived, and evaluated, with the focus being on generality

as feasibly possible.

Novel BWE techniques with frontend- and model-based memory inclusion

To translate the highband certainty gains achievable by the inclusion of speech tem-

poral information into practical BWE performance improvements, we implement two

GMM-based BWE techniques. The first technique employs frontend-based memory

inclusion through delta features, thereby requiring minimal changes to the baseline

memoryless BWE reference. As described in Section 2.3.3.4, GMMs are known for
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their superior modelling of the continuous nonlinear acoustic feature space of speech

compared to other techniques, albeit with increased complexity and higher compu-

tational cost that further increases with higher dimensionality. When delta features

are used to replace part of the conventional static features such that overall GMM

dimensionalities are unchanged, no increase in GMM complexity is involved, thereby

requiring no increase in training data amounts nor in extension-stage computational

resources. On the other hand, the inclusion of delta features into the parameteriza-

tion frontend imposes a run-time algorithmic delay that limits our ability to exploit

the full potential of memory inclusion to improve BWE performance. In addition, an

empirical optimization procedure is required during training to achieve optimal allo-

cation of the available overall dimensionalities among static and delta features. This

procedure thus involves additional computations during the offline training stage.

The second technique employs model-based memory inclusion implemented using

the memory-based extension of the GMM framework described above. It addresses

the drawbacks of the frontend-based system and improves on the BWE performance

gains at the cost of higher complexity. Both techniques are compared to relevant tech-

niques in the literature, with the latter shown to particularly outperform comparable

model-based approaches, in some cases significantly. Furthermore, both proposed

techniques are designed with generality in mind such that the underlying memory

inclusion methodology can be adapted to other BWE implementations.

Novel MFCC-based BWE

While BWE schemes have traditionally used LP-based parameterizations, our work

on quantifying cross-band correlation shows that mel-frequency cepstral coefficient

(MFCC) parametrization results in higher certainty about the highband. We show

that the superior MFCC cross-band correlation advantage extends as well to pa-

rameterizations with memory inclusion. The difficulty, however, of synthesizing

speech from MFCCs—due to the non-invertibility of several steps employed in MFCC

generation—has restricted their use to fields that do not require inverting MFCC

vectors back into time-domain speech signals. By employing previous work on the

high-resolution inverse discrete cosine transform (IDCT) of MFCCs, we achieve high-

quality highband power spectra through the inversion of highband MFCCs obtained

from narrowband ones by statistical estimation. Our MFCC-based highband power
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spectra are comparable to conventional LP-based ones from which the time-domain

speech signal can be reconstructed. Implementing this scheme for BWE thus allows

capitalizing on the higher correlation advantage of MFCCs to increase the potential

for memory-inclusive BWE performance improvements.

Detailed analysis of the effect of GMM covariance type on BWE performance

In order to reduce the computational complexity associated with GMM-based statis-

tical modelling, spectral transformation techniques—including those of BWE—have,

in general, relied on diagonal approximations to GMM Gaussian covariances. Indeed,

employing diagonal Gaussian covariances, rather than full, reduces the computational

costs associated with both the training and extension stages of a BWE GMM-based

system—with the cost reduction especially significant during training. Such diagonal

covariance approximations have been motivated by the argument that, since Gaus-

sians in a GMM act in unison to model the overall probability density function of

the spectral transformation in question, the effect of using a GMM with a particular

number of full-covariance Gaussians can be equally obtained by a GMM with a larger

set of diagonal-covariance Gaussians [40]. For BWE techniques where the computa-

tional cost of the offline maximum likelihood (ML) training stage is of increasingly

less importance (particularly with the continuous advances in offline computational

power), the diagonal covariance approximation has not been adequately evaluated

in the literature. As GMMs are central to our work presented herein, we carefully

investigate the effect of GMM covariance type on BWE performance. In particu-

lar, we compare diagonal- and full-covariance GMMs in terms of BWE performance

as a function of the exact computational and memory costs associated with both

covariance types during the extension stage. Emphasizing the fact that our investiga-

tion focuses on the complexities involved with only the extension stage, our analysis

leads us to conclude that, to achieve similar BWE performance, using full-covariance

GMMs is, in fact, more efficient than using GMMs with diagonal covariances.

1.5 Outline of the Thesis

The thesis is organized as follows. In Chapter 2, we review BWE techniques and underlying

principles. We describe spectral envelope reconstruction techniques in some detail, with
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particular emphasis on statistical modelling—central to our work.

In Chapter 3, we describe the details of our dual-mode BWE implementation used

throughout the thesis for both memoryless and memory-based extension. As our BWE

system coincides with current state-of-the-art techniques in employing GMMs for the sta-

tistical modelling of speech frequency bands, a review of the mathematical principle un-

derlying GMM-based BWE is first presented, namely the minimum mean-square error

(MMSE) estimation of highband spectra using joint-density GMMs. The details of our

memoryless BWE implementation are then presented, providing the reference baseline for

memory inclusion evaluation throughout the thesis. As part of the development of our

baseline, we study the effects of varying the number of components in the BWE Gaussian

mixtures, as well as the effects of using diagonal and full covariance matrices. This analysis

represents one of the contributions of this thesis. Finally, we describe the measures used

for BWE performance evaluation throughout our work and the motivations behind their

choice. These measures are the log-spectral distortion; two variants of the Itakura-Saito dis-

tortion, the gain-optimized Itakura distortion and the gain-sensitive symmetrized COSH

measure; and the PESQ measure. We conclude the chapter by evaluating these measures

for the memoryless BWE baseline.

Chapters 4 and 5 represent our main contributions described in Section 1.4 above. In

particular, Chapter 4 presents our work on modelling speech memory in the narrow and

high frequency bands, and quantifying its effects on correlation between both bands. Two

types of parameterizations are chosen for this analysis, line spectral frequencies (LSFs) as

well as MFCCs. The justification for the choice of both types of parameters for BWE in

general, and for the evaluation of the role of memory inclusion in particular, is provided.

The most notable result of this chapter is the finding through quantifiable information-

theoretic measures that speech memory can improve certainty about the high band by

over 100%—quite a large figure, even for an upper bound. Another notable finding is

that the effects of speech memory saturate at durations corresponding roughly to those of

syllables, coinciding with similar hypotheses and measurements made in previous works in

the context of speech perception and coding. Finally, our analysis shows the superiority of

MFCCs over conventional LSFs in capturing the temporal information in speech, providing

the motivation for MFCC-based BWE.

Chapter 5 builds on the theoretical results of Chapter 4 by first describing our imple-

mentation of speech reconstruction fromMFCCs, then by integrating memory inclusion into
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our GMM-based baseline BWE system. Through substituting part of the static features

with delta ones, we show that BWE performance improvements can be attained through

frontend-based memory inclusion. Although a computationally-demanding optimization

procedure is required during model training in order to attain the best achievable improve-

ments, such frontend-based memory inclusion involves no additional computational cost

during extension relative to the memoryless baseline BWE system.

Using the aforementioned information-theoretic measures, we find, however, that the

BWE performance improvements attained by frontend-based memory inclusion represent

only a fraction of those theoretically achievable by memory inclusion in general. Further-

more, the inclusion of memory through the non-causal delta features imposes a run-time

algorithmic delay that requires favourable network and computational latencies in order

to achieve maximum BWE performance improvements while ensuring acceptable interac-

tive real-time speech communication. As such, we continue Chapter 5 by addressing the

drawbacks of frontend-based memory inclusion in BWE through transferring the task of

modelling speech memory from the frontend to the modelling space. We derive an exten-

sion to the GMM formulation whereby we explicitly exploit speech memory to construct

temporally-extended GMMs. Then, by integrating these temporally-extended GMMs into

our MFCC-based dual-model BWE system, we show this novel technique to outperform

not only our frontend-based approach, but also other comparable model-based memory-

inclusive techniques, thereby demonstrating its superiority in regards to the efficiency of

transferring the highband certainty gains associated with memory inclusion into tangible

BWE performance improvements.

Concluding the thesis, Chapter 6 provides an extended summary of all research and

work presented herein, discusses possible avenues for improving our proposed techniques,

and finally, addresses the potential and applicability of our work to BWE and other related

fields. The extended summary effectively encapsulates the entire thesis into a few pages

for the purposes of a quick but comprehensive review.

1.6 Notation

As there is no consensus in the literature on mathematical notations, particularly for vec-

tors, matrices, and probabilities, we herein define the notation used in this thesis. Unless

otherwise indicated for exceptions, clarifications, or disambiguations, we represent:
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• the probability of an event by P (⋅) and the probability density function (pdf ) of a

random variable X by pX(x).24 Subscripts are dropped when clear from the context.

• scalars by italic letters, e.g., Fs for the sampling frequency, ai for the coefficients

of a prediction filter, and µ for the mean of a Gaussian density. Scalar random

variables are represented by uppercase letters, e.g.,X for arbitrary narrowband speech

representation, and their realizations in the target space25 by lowercase letters, e.g.,

x. For example, the probability distribution function of a scalar discrete random

variable is defined as

FX(x) ≜ P (X ≤ x) = ∑
ξ∈ (−∞,x ]

pX(ξ). (1.1)

• vectors by bold upright letters, e.g., a = [1, a1, . . . , ap]T for a prediction error filter.

Unless otherwise stated, we always assume vectors to be column vectors. Random

vectors are represented by uppercase letters, e.g., X for narrowband speech random

feature vectors, and their realizations by lowercase letters, e.g., x. For example,

the probability distribution function of a vector random variable composed of the

variables X1, . . . ,Xn is defined as

FX(x) ≜ P (X1 ≤ x1, . . . ,Xn ≤ xn). (1.2)

An exception are vectors represented by Greek letters which we represent by their

bold italic version for aesthetics of typography, e.g., µ rather than µ for the mean of

a multivariate Gaussian density.

• matrices by uppercase bold upright letters, e.g., C orΣ for covariances of multivariate

Gaussian densities,

• sets by uppercase upright or calligraphic letters, e.g., A = {αi}i∈I and Λ = {λj}j∈J .
24In the literature, pdf s are commonly denoted by f , e.g., fY (y), to differentiate them from probability

mass functions of discrete random variables denoted by, for example, pY (y). However, since the over-
whelming majority of random variables in our work are continuous, we prefer and use the latter form for
pdf s . Exceptions where random variables are discrete are explicitly stated as such.

25Formally, a random variable X ∶Ω → Ψ, is a function that maps the events F with probabilities P

from a sample space Ω, i.e., the probability space (Ω,F, P ), into a set of corresponding measurable sets E

with the same probabilities P in the target measurable space Ψ, i.e., the probability space (Ψ,E, P ).
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Chapter 2

BWE Principles and Techniques

2.1 Introduction

As described in Section 1.1.1, traditional telephone networks limit speech bandwidth to the

narrowband 300–3400Hz range. As a result, narrowband speech has sound quality infe-

rior to its wideband counterpart, and shows reduced intelligibility especially for consonant

sounds. Such adverse effects of bandwidth limitation have been detailed in Section 1.1.3.

Wideband speech reconstruction through bandwidth extension (BWE) attempts to regen-

erate as much as possible of the low- (< 300Hz) and high-band (> 3.4kHz) signals lost

during the filtering processes employed in traditional networks.

Such reconstruction is based on two assumptions. The first is that narrowband speech

correlates closely with the highband signals, and thus, given some a priori information about

the nature of this correlation, the higher frequency speech content can be estimated. The

second assumption is that even if the reconstructed highband signal does not exactly match

the missing original one, it significantly enhances the perceived quality of telephony speech.

Indeed, a variety of listening tests confirm this latter property of bandwidth extension [41].

The greatest advantage of BWE is that it generates enhanced wideband speech without

any additional transmitted information, thereby providing backward compatibility with

existing networks. It is worth noting that such blind BWE (i.e., where no side information

is transmitted) has been applied to a very limited extent in some speech and audio coders.

In AMR-WB coding [34], for example, blind BWE is used to reconstruct only the 6.4–7kHz

band (except at the highest 23.85kbit/s mode where excitation gain information is encoded

into the bitstream as side-information). This implies the daunting nature of the task of
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extending speech bandwidth from 3.4kHz up to 7 or 8kHz.

BWE schemes have primarily used the source-filter model of speech, where narrowband

and highband linear prediction (LP)-based envelopes are jointly modelled. As such, LP

coefficients (LPCs26) of highband envelopes—estimated from the corresponding narrowband

ones—can, then, be combined with a highband residual error (excitation) signal in an

LP synthesis filter to regenerate the missing highband signal. This signal is, in turn,

added to the available narrowband signal to generate wideband speech. Alternatively, full

wideband—rather than only highband—envelopes and excitation signals can be estimated

based on the narrowband input, with the advantage that lowband content is also generated

in addition to that of the high band. Wideband speech generated as such is typically

bandstop filtered to preserve only the lowband (< 300Hz) and highband (> 3400Hz) content,

which can then be added to the available narrowband signal thereby avoiding introducing

any distortions to the base narrowband signal. However, as argued in Section 3.3.2, this

alternate approach is less efficient in modelling the cross-correlation between the available

narrowband content and that which is of primary interest—the highband content.

In contrast, early BWE approaches do not make use of any particular model of speech

generation neither do they make use of any a priori knowledge about speech properties.

Such historical non-model-based techniques are much simpler, but typically inferior, com-

pared to model-based methods.

Since many of the basic ideas underlying non-model-based BWE techniques are shared

with model-based excitation generation methods, we present a brief overview of non-model-

based techniques in the following to serve as an introduction of those ideas. We then

review model-based BWE techniques in more detail due to their relevance to our work,

with particular emphasis on spectral envelope generation techniques employing statistical

modelling. An illustrative example comparing the properties and performance of several

spectral envelope reconstruction techniques is presented.27

26The acronym LPC has been interchangeably used in the literature to refer to linear prediction cod-
ing/coefficient. When clear from the context, we will use the acronym to denote either, otherwise writing
it out if disambiguation is needed.

27Detailed comparisons of the various techniques described below—in terms of their effect when used
in our BWE implementation—is outside the scope of this thesis. As noted in Section 1.4, it is the role of
speech memory—which manifests more clearly in measurable spectral envelope changes—that represents
the focus of the work presented here, rather than comparing the various BWE implementation-specific
techniques (particularly for excitation generation since, as discussed in Section 2.3.5, spectral envelopes
are far more important for perception than excitation).
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2.2 Non-model-based BWE

2.2.1 Spectral folding

Through insertion of zeros between adjacent samples (thereby increasing sampling rate), the

narrowband spectrum is simply folded, or aliased, at half the original sampling frequency

resulting in a mirrored highband spectrum. Examples of such a straightforward aliasing

technique include the BWE schemes of [42] and [43]. While simple, this method has several

problems when applied to telephony speech. First, it is unlikely that the new high frequency

harmonics will reside at integer multiples of the voiced speech’s fundamental frequency,

F0. Secondly, as the pitch of the narrowband moves higher or lower in frequency, the

corresponding high-frequency harmonics of the new wideband signal move in the opposite

direction, causing speech to be somewhat garbled, especially in intervals with rapid F0

variations. Finally, the resulting wideband speech exhibits a band gap in the middle of the

spectrum when half the narrowband sampling frequency (typically, Fs = 8kHz) is higher

than the telephone bandlimiting cutoff frequency, i.e., a gap corresponding to the eliminated

frequency content in the 3.4–4kHz range. While spectral folding works surprisingly well for

extending the bandwidth of signals bandlimited to 8kHz, for example, this BWE technique

performs poorly for telephony speech [44, Section 5.4.1].

2.2.2 Spectral shifting

Rather than fold the narrowband spectrum into the high band, spectral shifting addresses

the problems of spectral folding by shifting a weighted copy of part of the short-term nar-

rowband spectrum in different manners into the extension regions [44, Section 5.4.2]. As

such, both low (< 300Hz) and high (> 3.4kHz) frequency content can be generated in

contrast to spectral folding which can only generate the latter. The high band is initially

generated by zero-extending the narrowband signal’s analysis FFT, fast Fourier transform,

at π. The length of FFT zero padding depends on the desired new sampling frequency (e.g.,

padding an N -length FFT with N zeroes effectively doubles the sample rate). Fixed spec-

tral shifting uses fixed values for the edge frequencies of the narrowband spectral subband

to be copied into the high band. The copied subband is then weighted to mimic the aver-

age spectral decay associated with higher frequencies in speech, followed by inverse FFT to

reconstruct the wideband signal. While such spectral shifting using fixed edge frequency
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values eliminates the second and third problems associated with spectral folding, i.e., the

problems of garbling and mid-frequency gap, it still usually results in misaligned high-

frequency harmonics—and the corresponding artifacts—for voiced speech. Pitch-adaptive

spectral shifting improves on the fixed scheme by incorporating pitch detection and esti-

mation to adapt the edge frequencies of the narrow subband such that pitch structure is

maintained even at the transition regions from the telephone bandpass to the extension

regions.

2.2.3 Nonlinear processing

Nonlinear processing of the time-domain narrowband signal provides another means of

bandwidth extension [44, Sections 5.4.3 and 5.5.1.2]. The application of nonlinear charac-

teristics—e.g., quadratic, cubic, half- and full-wave rectification—generally broadens the

band of the signal. Full-wave rectification, in particular, has been more common, e.g.,

[45]. When applied to a periodic signal, e.g., voiced speech, harmonics are preserved in the

narrowband and are extended throughout the resulting broad band in a seamless continuous

manner. Nonlinear processing thus provides the advantages of generating low frequency

content (as well as high content), in addition to the benefits of pitch-adaptive spectral

shifting while precluding the need for pitch detection. This latter property is quite desirable

since the accuracy of pitch estimates heavily affects the performance of pitch-adaptive

techniques. Furthermore, by virtue of broadening the signal—rather than flipping it, for

example—no spectral gaps occur within the higher frequency extensions.

On the other hand, nonlinear processing may—depending on the effective bandwidth,

the sampling rate and the kind of characteristic—require additional processing to avoid

aliasing in the nonlinearly processed signal. Similarly, nonlinear processing generates strong

undesired components around 0Hz, which, in turn, have to be removed. The application of

nonlinear characteristics may also result in undesired spectrum coloration (concentration

of energy in one or more subbands), further requiring the use of whitening filters. Another

disadvantage of nonlinear processing is that it reproduces the harmonics of any periodic

noise that may be present in the narrowband signal. Furthermore, power normalization is

required in the case of signals processed using quadratic and cubic characteristics due to

the resulting wide dynamic range.
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2.3 Model-based BWE

2.3.1 The source-filter model

The parametric source-filter speech production model, as described by Fant in [46], is by

far the model most commonly used in BWE, followed by the sinusoidal model described

in Section 2.3.6. The source-filter model assumes that the vocal cords are the source

of a spectrally flat excitation signal, and that the vocal tract acts as a spectral shaping

filter that shapes the spectra of various speech sounds. While an approximation, this

model is widely used in speech analysis and coding in the form of LPC—linear prediction

coding.28 Its popularity derives from its compact yet precise representation of speech

spectral properties as well as the relatively simple computation associated with LPC. As

described in Section 1.1.2, phonemes can be distinguished by their excitation (source) and

spectral shape (filter). Voiced sounds, e.g, vowels, have an excitation signal that is periodic

and can be viewed as a uniform impulse train having a line spectrum with regularly-spaced

uniform-area harmonics. Unvoiced sounds, e.g., unvoiced fricatives29, have an excitation

signal that resembles white noise. Mixed sounds, e.g., voiced fricatives, have an excitation

signal consisting of harmonic and noisy components. Figure 2.1 illustrates how the source-

filter model represents such excitation signals, e(n), through a time-varying continuous

measure of periodicity versus noisiness, g(n) where 0 ≤ g(n) ≤ 1, making use of the pitch

frequency, F0, as well as the overall excitation signal gain, σ(n).

F0

g(n)

1 − g(n)

σ(n)

s(n)e(n)

Impulse
Generator

Noise
Generator

Vocal Tract
Transfer Function

Fig. 2.1: The source-filter speech production model.

28See [47, Chapter 12] for a detailed analysis of LPC.
29See Table 1.1.
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The vocal tract transfer function is predominantly assumed to be an all-pole model

with fixed parameters for short segments of time (frames). In other words, speech is

assumed to be an autoregressive (AR) random process with the spectrally flat excitation

its corresponding innovations process. Thus, the vocal tract transfer function can be written

as H(z) = 1/A(z), where, for p poles,

A(z) = 1 − p

∑
k=1

akz
−k, (2.1)

and the speech signal, S(z) = E(z)H(z) where E(z) is the z-transform of e(n), can then

be written as

S(z) = σ

1 −
p

∑
k=1

akz
−k

. (2.2)

When applied to the speech signal, s(n), the all-zero inverse filter, A(z), acts as a pre-

diction error filter. As such, the parameters {ak}k∈{1,...,p} are obtained through the MMSE

solution to the normal equations of the pth-order predictor. Since s(n) is assumed to be an

AR process, the normal equations also correspond to the Yule-Walker equations, and are

commonly referred to as thus in the context of LPC. Similarly, the gain parameter, σ, rep-

resents the square root of the power density of the spectrally-white excitation innovations,

and is computed as the square root of the power density of the predictor error filter output

(i.e., the root-mean-square forward prediction error). Due to its AR property, the autocor-

relation matrix of s(n) is Töeplitz and positive definite. These two properties are exploited

by the Levinson-Durbin and Schür algorithms, respectively, to solve the normal equations

in a recursive manner.30 As described in Section 1.2, speech has a quasi-stationary char-

acter only for short periods of time, and hence, an LPC model’s parameters need to be

estimated periodically roughly every 10ms.

First applied for the task of BWE in 1994 by Yoshida [49], and independently by Carl

[50], the source-filter model of speech, thus, reduces the problem of reconstructing highband

(or wideband) speech given only the narrow band, into two tasks:

• generating a highband (or wideband) excitation signal, e(n), containing the voiced

and unvoiced excitation characteristics described above, and

30In addition to the well-known Levinson-Durbin and Schür algorithms, there are also other fast algo-
rithms for solving the Yule-Walker equations—namely the Euclidean and the Berlekamp-Massey algorithms.
See [48] for a comparison of these algorithms.
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• generating an estimate of the highband (or wideband) spectral envelope, H(z).
The excitation and spectral envelope estimates can then be combined in a synthesis filter31

to reconstruct s(n). It should be noted that since most of the signal in the higher bands of

wideband speech is not harmonically structured, the spectral envelope is usually deemed

sufficient for highband reconstruction, i.e., phase estimation is commonly bypassed.

2.3.2 Generation of the highband (or wideband) excitation signal

The first methods for the generation of highband excitation signals derived from the so-

called baseband coders [51].32 In baseband coders, only a low-frequency portion of the

excitation (the residual at the output of the analysis filter in the transmitter), known

as the baseband, is transmitted and used at the receiver to regenerate the high-frequency

portion of the excitation.33 The wideband LPCs are transmitted separately. The sum of the

transmitted baseband excitation and the regenerated high-frequency excitation constitute

the wideband excitation to the synthesis filter at the receiver. This technique is sometimes

referred to in the literature as HFR, high-frequency regeneration, and was used in early

RELP speech coders.34

BWE excitation generation techniques can generally be classified as follows.

2.3.2.1 Nonlinear processing

The high-frequency excitation generation techniques applied in baseband coders were mostly

based on nonlinear processing of the baseband excitation through waveform rectification.

To avoid aliasing potentially introduced by the nonlinearities, the baseband excitation is

first interpolated. The nonlinearly processed signal is then spectrally flattened before it is

31The filters A(z) and H(z) are typically referred to as the analysis and synthesis filters, respectively.
32Baseband coders (also known as voice-excited coders) were originally proposed as a compromise be-

tween waveform coders—the simplest speech coders—and the relatively more complex pitch-excited coders
(also known as vocoders). Vocoders, e.g., LPC, employ a speech production model, usually the source-
filter model, and hence, operate on blocks of quasi-stationary speech. Waveform coders, on the other hand,
analyze, code, and reconstruct speech sample-by-sample.

33Baseband excitation is extracted through a lowpass or bandpass filter of width B, usually determined
such that the full bandwidth, W , is an integer multiple of B.

34Originally proposed in the 1970s, residual-excited linear prediction (RELP) coding [52] is a prede-
cessor of code-excited linear prediction (CELP) coding [53]. However, unlike CELP where a limited set
of excitation signal parameters are transmitted and used at the decoder to generate the excitation signal
through an adaptive and a fixed codebook, RELP directly transmits the residual signal. To achieve lower
rates, that residual signal is usually lowpass filtered and downsampled; e.g. Fs = 1.6kHz in [52].
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used as excitation to the synthesizer. In the context of BWE of telephony speech where the

narrowband signal corresponds to the baseband signal of baseband coders, nonlinear pro-

cessing can be applied to all or portion of either the narrowband signal itself, e.g., [54, 55],

or its residual, e.g., [56]. As shown in Section 3.2.4, highband excitation generation in

our BWE system employs nonlinear processing in the form of full-wave rectification of the

equalized 3–4kHz subband of the narrowband signal followed by spectral flattening through

white noise modulation.

2.3.2.2 Spectral folding

Spectral folding, similar to the technique described in Section 2.2.1, can also be applied

only to the narrowband/baseband excitation signal. Introduced in [51], baseband excitation

spectral folding eliminates the need for the spectral flattening associated with nonlinear

processing, since the baseband excitation that is mirrored into the high-frequency region is

already spectrally flat. It suffers, however, from the drawbacks described earlier—namely

the potential for spectral gaps and the problems associated with irregular pitch harmonics.

The problem of spectral gaps is often mitigated by downsampling and upsampling the

available bandpass residual, as in the BWE method of [57]. Despite its disadvantages

compared to other techniques, spectral folding is frequently used primarily for its simplicity,

e.g., [50, 58–60].

2.3.2.3 Modulation techniques

Similar in concept to the spectral shifting technique discussed in Section 2.2.2, modulation

techniques—more common in recent BWE works—effectively shift the residual extracted

by the LPC analysis of narrowband speech into the high band. Modulation is performed

through the time-domain multiplication

em(n) = ẽnb(n)2 cos(ωmn), (2.3)

where ẽnb(n) is the interpolated version of the narrowband excitation enb(n), i.e., upsam-

pled to a sampling frequency that is sufficient to represent the extended wideband speech

signal, e.g. Fs = 16kHz, and lowpass filtered. The narrowband excitation is the residual ob-

tained by LP analysis of the narrowband telephone signal at the receiver. The modulation
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frequency is ωm = 2πFm/Fs, and em(n) is the resulting modulated excitation which now

extends above Fm. Spectrally, this multiplication generates generates two shifted copies of

Enb(ω), the narrowband excitation spectrum:

Em(ω) = Ẽnb(ω + ωm) + Ẽnb(ω − ωm). (2.4)

To prevent potential spectral overlap of the shifted spectra depending on the choice of

ωm, the upsampled narrowband excitation is lowpass filtered prior to modulation (part of

the interpolation process), while the modulated excitation is highpass filtered to preserve

only the desired highband components, ehb(n). The wideband excitation signal, ewb(n),
can then be formed by adding the two signals. In BWE techniques where high-frequency

speech content is first reconstructed then added to the available narrowband content (in

contrast to techniques which model and reconstruct wideband speech as a whole from

the narrowband input), only the corresponding highband components of the excitation

are technically needed. However, the computationally-trivial addition of narrowband and

highband excitation signals eliminates any potential spectral gaps due to misalignments

between the bandwidth edge frequencies of the highband excitation and the highband

spectral envelope estimated separately.35

In BWE, the modulation frequency, Fm, is typically chosen around the 3.4 kHz narrow-

band higher cutoff frequency to ensure a seamless continuation of the excitation spectrally,

thereby avoiding any spectral gaps, e.g., [39, 61]. Furthermore, pitch structure can be

preserved across the wide band by incorporating pitch detection to adaptively modify Fm

through floor and ceiling functions such that

Fm = ⌊3.4
F̂0
⌋ F̂0 or Fm = ⌈3.4

F̂0
⌉ F̂0 [kHz], (2.5)

as implemented in [61], for example. Pitch estimation must be reliable, however, since

pitch-adaptive modulation reacts quite sensitively to small errors in F̂0 estimates (errors

35As seen in Chapter 3, our BWE technique, for example, uses midband equalization to reconstruct
content in the 3.4–4kHz range, and statistical modelling to reconstruct highband spectral envelopes above
4kHz. Thus, only the excitation content above 4kHz is technically needed. Nonetheless, had we been
using such an excitation signal obtained by modulation, any minor changes to the frequency ranges of
midband equalization or highband statistical modelling would necessitate corresponding changes in the
system components generating the highband excitation signal.
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are magnified by the factor 3.4/F̂0) [39]. Figure 2.2 depicts wideband excitation generation

through pitch-adaptive modulation.

enb(n)
ẽnb(n)

F0

2cos(ωmn)

em(n) ehb(n)
ewb(n)↑ 2 LPF

Pitch
Detection

Cosine
Generator

z−δ

HPF

Fig. 2.2: Wideband excitation generation through pitch-adaptive modulation. The δ delay
applied to ẽnb(n) compensates for the HPF delay.

2.3.2.4 Harmonic modelling

An attractive technique proposed in [62] generates highband excitation by parameterizing

the harmonicity of speech such that the correlation between narrowband and wideband

harmonicity can be modelled in the training stage, in a manner similar to the modelling

of spectral envelopes. This approach performs such modelling using a harmonic-plus-noise

model (HNM) where the degree of voicing (harmonicity) in 32 separate bands (with each

band centered on a harmonic multiple of F0) is quantified by measuring the squared distance

in the spectral domain between the actual wideband excitation signal in each band and a

Gaussian-shaped window scaled such that its peak has the same amplitude of the harmonic

of that band; the smaller the distance the higher the degree of voicing is in that band.

Subbands above 32-band range are assumed to be entirely unvoiced.

A codebook is trained on such harmonicity feature vectors such that, in the extension

stage, harmonicity of the wideband excitation signal, as a whole, can be estimated from

narrowband harmonicity. The obtained per-band harmonicity values are then used during

reconstruction to appropriately weight the Gaussian-shaped voiced components (Gaus-

sian windows in the frequency domain centered on multiples of F0) as well as Rayleigh-

distributed random unvoiced components. All excitation components, voiced and unvoiced,

are then summed. Excitation amplitudes in each subband at the harmonics are assumed

to be unity with the usual assumption that the LP model whitens the excitation. The

gain of the frame is extracted as an LP gain value for which another codebook is trained
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in conjunction with a narrowband-to-wideband spectral envelope codebook. Finally, the

excitation thus reconstructed is multiplied by the wideband LP spectrum and a phase

component to form the speech spectrum in each frame.

The use of the harmonicity model for reconstruction of the excitation signal is com-

pared in [62] to the nonlinear bandpass-modulated Gaussian noise (BP-MGN) method

of [54]. This latter method is an earlier implementation of the more superior technique

used in our BWE system—equalized BP-MGN (EBP-MGN) [55].36 Results show that the

harmonicity-based technique outperforms the BP-MGN method particularly for highband

content with more harmonically structured patterns, i.e., voiced components. However, as

stated in [62], the harmonicity technique requires pitch detection whose accuracy is crucial

for estimating reliable harmonicity levels. Moreover, the performance difference between

the two approaches is more pronounced for voiced, rather than unvoiced, highband content.

As discussed in Section 1.1.3, it is rather the noisy unvoiced content—mostly associated

with fricatives, stops, and affricates, with energy concentrated in higher frequencies—that

is more adversely affected by narrowband telephony bandwidth limitations.

2.3.3 Generation of the highband (or wideband) spectral envelope

BWE hinges on the assumption that narrowband speech correlates closely with the high-

band signal such that high-frequency content can be estimated given only the narrowband

signal and learning a priori the nature of the cross-band correlation. However, due to the

dynamic nature and the inherent variability of speech described in Section 1.2, such cross-

band correlation is significantly more complex than to allow an ideal closed form solution

for the narrowband-to-highband mapping problem, notwithstanding whether it is even suf-

ficient to guarantee uniqueness of the solution. In fact, uniqueness of the solution is quite

unlikely; there is likely no underlying one-to-one mapping between narrowband and high-

band features over any arbitrary duration. Thus, BWE techniques rather attempt to model

cross-band correlation, as described below, in order to allow mapping that is as accurate

as possible, with performance varying greatly with choice of model. In particular, it will

be shown that modelling techniques allowing many-to-many mapping between narrowband

and highband (or wideband) acoustic subspaces provide better BWE performance.

36See Section 3.2.4 for more details regarding the superior performance of the EBP-MGN method over
the BP-MGN one for the generation of the highband excitation signal.
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2.3.3.1 Linear mapping

In the simplest terms, narrowband-to-highband spectral envelope mapping can be modelled

as a single-matrix linear transformation where a highband feature vector, y, is obtained

from that of the narrowband input, x, through the mapping

y =Wx, (2.6)

with the transformation matrix W determined using least squares over all narrowband and

highband feature vectors, X and Y, respectively, from a large training database, as [63]

W = (XTX)−1XTY. (2.7)

Although quite simple, such single-matrix linear mapping is, however, an unrealistic over-

simplification of the highly nonlinear narrowband-to-highband space mapping problem.

Hence, several variations have been proposed to improve mapping capability either by re-

fining linear mapping itself, or by introducing some nonlinearity into the basic algorithm.

These improvements involve the use of multiple matrices, rather than a single matrix, with

each matrix optimized for a particular subspace of either the narrowband or highband (or

wideband) spaces. The BWE technique of [58], for example, refines linear mapping by opti-

mizing multiple-input single-output linear filters where each filter generates an estimate for

one of the wideband features as a linear combination of all input narrowband features within

a window of 100ms. More common, however, are the piecewise-linear mapping techniques

which use some form of clustering—a nonlinear operation—to partition the narrowband

space into disjoint subspaces. The subspaces are defined either by the codewords of a VQ

codebook (described below), as in [63], or by the regions delimited by thresholds of one or

more parameters, as in [60]. In the extension stage, each input narrowband feature vector

is classified in a preprocessing step prior to being linearly mapped. The desired highband

(or wideband) feature vector is then obtained through the particular transformation matrix

optimized for the class assigned to the input narrowband vector. Alternatively, a linear

combination of the transformation matrices corresponding to the K nearest codewords can

be used, as in [56], resulting in superior smoothed highband (or wideband) vectors.

As shown by the results of [63], for example, single-matrix linear mapping is inferior to

most—if not all—other techniques because of its over-simplification of the BWE mapping
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problem. While the refinements and piecewise-linear approaches perform somewhat better,

they are still nevertheless inferior to the more common codebook approaches.

2.3.3.2 Codebook mapping

Introduced independently for BWE by both Yoshida [49] and Carl [50], codebook mapping

is the first and most common model-based approach to reconstruct highband (or wideband)

spectral envelopes. Codebook mapping is based on the vector quantization (VQ) of one or

more spaces parameterized into feature vectors. VQ partitions a continuous feature vector

space into disjoint polytope partitions, or Voronoi, represented by their centre codevectors,

such that a particular distortion measure calculated over all training vectors is minimized

[64, Sections 10.1 and 10.2]. Codebook VQ training is typically performed using the Linde-

Buzo-Gray (LBG) iterative algorithm [65].

In the context of BWE, simpler codebook mapping approaches quantize only the wide-

band space and, hence, require only one codebook. Optimization in the training stage is

performed on the entire wideband envelopes, e.g., [50, initial approach; 66]. In the ex-

tension stage, by calculating distortion over only the narrowband portion, the wideband

codevector closest to the input narrowband vector is selected. Alternatively, more advanced

approaches quantize only the narrowband space to generate a narrowband codebook, which

is then shadowed by another highband (or wideband) codebook where codevectors are ob-

tained by averaging the highband (or wideband) vectors corresponding to the narrowband

training vectors falling in each Voronoi of the narrowband codebook, e.g., [50, 59, 63, 67].

In the extension stage, the high (or wideband) codevector with the same codebook index

as that of the narrowband codevector closest to the narrowband input, is selected. This

more common approach to codebook mapping is illustrated in Figure 2.3.

Since codebook mapping involves quantization of the continuous feature vector space

into a limited number of codewords, discontinuities occasionally result in perceptually-

annoying artifacts in the extended signal—namely highband power overestimation and

overly rapid spectral envelope changes. While increasing codebook size—thereby decreas-

ing overall VQ distortion—alleviates some of these artifacts at a higher computational cost,

simpler and more effective techniques have been proposed for this purpose. Similar to the

interpolation method described above for piecewise-linear techniques, codebook mapping

with interpolation selects the K narrowband envelopes closest to that of the input nar-
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Fig. 2.3: Highband spectral envelope generation using codebook mapping.

rowband signal, combining their mapped highband codevectors. The combined envelopes

can be simply averaged, as in [63], for example, or—in a manner similar to that used in

[56] for piecewise-linear mapping—can be weighted depending on the proximity of each

selected codevector to the input narrowband vector, e.g., [68]. Hence, codebook mapping

with interpolation is also referred to as codebook mapping with fuzzy or soft VQ. As shown

in [63], codebook mapping with interpolation generally outperforms conventional mapping

due to its ability to predict envelope shapes not contained in the highband codebook. Other

variations of the same concept involve envelope-domain smoothing, as in [59], where the

wideband envelope is produced as the weighted sum of the last three chosen codewords.

Even better codebook mapping performance can be obtained by making use of measur-

able signal properties to directly improve the VQ partitioning of the feature space itself.

Using voicing, for example, to split the feature space into voiced and unvoiced partitions

allows building two separate smaller—but overall more accurate—codebooks, e.g., as in

[63]. This particularly helps minimize artifacts due to highband overestimation. An alter-

nate technique in [59] identifies codevectors in the trained codebook that are dangerous for
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voiced sounds. If a marked codebook vector is chosen during a voiced sound, the power of

the generated highband speech is lowered by 10dB. Yet another attractive technique ex-

ploits voicing periodicity to partition the narrowband space into three separate codebooks

representing voiced, unvoiced, and mixed sounds [69]. All these techniques report improved

highband signal reconstruction compared to conventional mapping. They require, however,

additional voicing detection.

2.3.3.3 Neural networks

Artificial neural networks are known for their superior ability to learn complex nonlinear

relationships, and thus, have been widely used in pattern recognition applications including

automatic speech recognition (ASR). In the context of BWE, however, neural networks have

not received as much adoption as other techniques despite having been introduced in [70]

for the purpose of BWE around the same time as codebook mapping. This follows mainly

from the difficulty of analyzing the nonlinear processing in the hidden layers of a neural

network, making system development mostly an empirical exercise.

Neural networks are generally composed of neurons organized in a regular structure.

The type of neural network most often applied to the BWE mapping problem is the multi-

layer perceptron (MLP) network with feed-forward operation.37 Illustrated in Figure 2.4,

perceptrons perform mapping as given by

y = ϕ(τ + N

∑
i=1

wixi) (2.8)

for N inputs, xi, where the bias, τ , and weights, wi, are parameters to be trained, and ϕ

is a nonlinear activation function, typically a sigmoid function.

In an MLP network, layers of perceptrons are arranged in cascade as shown in Figure 2.5.

The output layer, generating the desired highband (or wideband) features, is preceded by

one or more hidden layers, referred to as such as their outputs are inaccessible externally.

As shown in Figure 2.5, a single hidden layer is typically used due to its capability to

model any nonlinear continuous function. The input layer is only a pass-through layer

distributing input narrowband features to the perceptrons of the hidden layer. Training is

achieved in a supervised manner typically using the back-propagation algorithm [73], which

37See [71, Chapter 6; 72, Chapter 4] for detailed description and analysis of multi-layer perceptrons.
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Fig. 2.4: The perceptron of a neural network.
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Fig. 2.5: Multi-layer perceptron neural network.

Despite the nonlinear expressive power of multi-layer neural networks [71, Section 6.2.2],

works comparing their BWE performance to that of codebook and linear mapping report

mixed results. In [56], for example, spectral envelopes generated using neural networks show

less distortion than both codebook and linearly mapped envelopes in speaker-dependent

training and testing conditions. In speaker-independent and noisy testing conditions, how-
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ever, neural networks lag in performance, indicating that neural networks lack robustness

against training-testing mismatches. Similarly, it is shown in [41] that while neural network

BWE performance outperforms that of codebook mapping using four different objective

measures, subjective evaluations lead to the opposite result. In particular, when compared

to narrowband speech, codebook mapping is found to be approximately 1 point better than

neural networks in terms of MOS. When choosing which approach produces better results,

around 80% of listeners voted for the codebook-based scheme.

Because of their ability to learn complex tasks using comparatively few layers and

neurons, neural networks nevertheless represent an attractive approach since they provide

the potential for superior modelling of the complex nonlinear cross-band correlations in

speech. Moreover, since neural networks do not require evaluating a distance measure in

the extension stage, they require lower computational cost than codebook-based methods

for the same input and output dimensionalities. Although not pursued in this thesis, we find

these advantages particularly attractive for BWE with short-term memory inclusion where

supervectors composed of current and few surrounding frames can be directly used as inputs

without prohibitively increasing complexity and training data requirements, as would be

the case with codebook-based BWE as well as the GMM-based BWE described in the next

section. Indeed, similar ideas of modelling temporal information have been successfully

applied in dynamic and recurrent neural networks for system identification and time-series

prediction problems.38 Their application to memory-inclusive BWE, however, has not been

investigated to the best of our knowledge.

2.3.3.4 Statistical modelling

Despite the success of linear mapping and—to a larger extent—codebook mapping in

achieving reasonable BWE performance with relatively little computational complexity,

both techniques suffer a fundamental limitation in their ability to model the complex non-

linear continuous acoustic distributions of speech. As described in Section 2.3.3.1, linear

mapping effectively reduces the N -dimensional distribution of the acoustic space modelled

by N features, into a linear hyperplane (or multiple hyperplanes in the case of piecewise-

linear mapping). Similarly, codebook mapping partitions the continuous N -dimensional

acoustic space into polytopes where the continuous acoustic distribution within a poly-

38See [72, Chapters 13 and 15] for details on temporal processing using feed-forward and dynamically-
driven recurrent networks.
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tope partition is quantized into a single codevector. As mentioned in Section 2.3.3.2, this

typically results in speech discontinuities in addition to imposing one-to-one mapping on

narrowband and highband (or wideband) vectors. While codebook mapping with interpola-

tion replaces such hard-classification quantization into a local continuous approximation of

the distribution in the subspace around a polytope match, such interpolation is still a sub-

optimal smooth fit that is based on only a few quantized points in space, thereby ignoring

the true distribution within these local subspaces. These deficiencies of linear and codebook

mapping are exposed through an illustrative example in the next section—Section 2.3.3.5.

Given their gross approximations, the reasonable BWE performance of linear and codebook

mapping techniques can, therefore, be attributed to the aforementioned second assumption

underlying BWE; that even if the reconstructed highband signal does not exactly match the

missing original one, it significantly enhances the perceived quality of telephony speech.

In contrast to the deterministic and quantizing nature of linear and codebook mapping,

respectively, statistical modelling techniques employ a probabilistic framework to produce a

continuous approximation of the complex nonlinear many-to-many acoustic space. During

training, cross-band correlation is learned by statistically modelling the joint pdf, pXY(x,y),
of the narrowband and highband (or wideband) spectral envelopes (with features for both

shape and gain) represented by the continuous vector variables, X and Y, respectively.

This probabilistic approach thus allows a better continuous many-to-many model of the

underlying mapping. In the extension stage, highband (or wideband) spectral envelopes

can then be obtained from input narrowband envelopes as a function of the conditional pdf,

pY∣X(y∣x), derived from the joint pdf.

I. Statistical recovery based on autoregressive Gaussian sources model39

Statistical modelling was first applied for spectral envelope reconstruction by Cheng [74].

In particular, the K-sample narrowband and highband speech frames—represented by X

and Y, respectively—are assumed to be generated by a combination of N and M random

sources, Λ = {λi}i∈{1,...,N} and Θ = {θj}j∈{1,...,M}, respectively, which, in turn, are assumed

to be correlated by a many-to-many mapping given by A = {αij} = {P (θj ∣λi)}40. Highband
speech is synthesized by assigning different weights to the corresponding sources, with the

39Although not a spectral envelope reconstruction technique per se, the statistical recovery function
technique of [74] is described here in the context of statistical modelling.

40p(θ∣λ) is a probability mass function.
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weights estimated based on the available narrowband speech. By modelling the sources Λ

and Θ as autoregressive Gaussian sources,41 a statistical recovery function can be derived to

estimateY as a function of the narrowband input, X, and model parameters, Ξ = {A,Λ,Θ};
i.e.,

Y = f(X,Ξ). (2.10)

By further restricting Y and X to dependence only upon their respective sources, Θ and Λ,

the cross-correlation between highband and narrowband speech can be reduced into only

the probabilities {P (θj ∣λi)}, such that the joint pdf, p(yt,xt, λi, θj), at time t, is given by

p(yt,xt, λi, θj) = p(yt∣θj)P (θj ∣λi)p(xt∣λi)P (λi)
= p(yt∣θj)αijp(xt∣λi)P (λi). (2.11)

Thus, the statistical mapping model can be fully represented by the autoregressive Gaus-

sian densities {p(xt∣λi)} and {p(yt∣θj)},42 the prior probabilities {αij} and {P (λi)}, in

addition to a gain parameter for each output source, βθj , estimated as a function of the

ratio of highband to narrowband signal energies weighted by the posterior pdf, p(θj ∣xt,yt),
of the relevant source, θj . Using the popular Expectation-Maximization (EM) algorithm

[76] to maximize the likelihood p(X ,Y ∣Ξ) for the training sequences X = {xt}t∈{1,...,T} and
Y = {yt}t∈{1,...,T}, the parameters needed for the extension stage—namely, {a(i)k }, {a(j)k },{αij}, {P (λi)}, and {βθj}, for all i ∈ {1, . . . ,N}, j ∈ {1, . . . ,M} and k ∈ {1, . . . , p}—can

be iteratively estimated. In the extension stage, the MMSE solution, Ŷ, is derived as a

function of the quantities in Eq. (2.11) and makes use of the autoregressive model of the

output sources, such that Eq. (2.10) giving the output signal is shown to be, at frame t,

Ŷt(z) = M

∑
j=1

ft,j
U(z)
Aj(z) , where ft,j =

√E(xt)βθj

N

∑
i=1

αijp(xt∣λi)P (λi), (2.12)

41For the p-order autoregressive signal x(n) = ∑p
i=1 aix(n − i) + e(n) with zero-mean and σ2-variance

Gaussian innovations e(n), the conditional pdf of the K-sample vector x = [x(1), . . . , x(K)]T given the
parameter vector p = [σ2, a1, . . . , ap]T can be shown to be, for K ≫ p [75],

p(x∣p) = (2πσ2)−K/2 exp(− K

2σ2
[aTRxa]), (2.9)

where a = [a1, . . . , ap]T and Rx is the autocorrelation matrix of x.
42By using unit-variance Gaussian sources, the pdf s {p(xt∣λi)}i∈{1,...,N} and {p(yt∣θj)}j∈{1,...,M}, defined

as described in Footnote 41, are effectively reduced to requiring only the estimation of the predictor

coefficients of the input and output sources, i.e., {a(i)
k
}
∀i,k

and {a(j)
k
}
∀j,k

, respectively, during training.
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where U(z) is a zero-mean unit-variance Gaussian source, E(xt) is the energy of the input

in frame t, and p(xt∣λi) is given by Eq. (2.9) with σ2 = 1 and estimated for each frame xt.

Figure 2.6 illustrates this BWE technique.
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Fig. 2.6: BWE with statistical recovery using autoregressive Gaussian sources.

The performance of this initial attempt to statistically achieve BWE was not appropri-

ately measured. By merely comparing narrowband and reconstructed wideband spectro-

grams to those of the original wideband signal, it is reported in [74] that wideband speech

reconstructed through this technique is better than narrowband speech. The authors es-

pecially note the inaccurate reconstruction of the fricatives /f/ and /s/. No comparison

of performance relative to other techniques, however, is reported. Furthermore, as can

be deduced from the discussion above, the computational cost of this technique is quite

high, even when only considering the extension stage. Indeed, as reported in [74], values of

N = 64 and M = 16, for example, are required for reasonable performance. It is likely that

such high computational requirements are behind the lack of its adoption in the literature,

particularly when compared to the less computationally-expensive yet highly-performing

GMM-based techniques described next.
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II. Gaussian mixture models

Gaussian mixture models (GMMs) have been widely and successfully used to statistically

model speech signals in a variety of fields, most notably ASR [77], speaker identification

[40], and speaker—or voice—conversion [78, 79]. First proposed and detailed in [80] as an

approximation to arbitrary densities, a GMM G(x;M,A,Λ)43 approximates the distribution

of an n-dimensional random vector X∶Ω→ R
n by a mixture of M n-variate Gaussians

defined by the set of 2-tuples Λ = {λi ∶= (µi,Ci)}i∈{1,...,M} and weighted by the priors A ={αi ∶= P (λi)}i∈{1,...,M}, i.e.,44
x ∼ GX ∶= G(x;M,A,Λ) ≜ M

∑
i=1

αiN (x;µi,Ci)
=

M

∑
i=1

αi(2π)n/2∣Ci∣1/2 exp [−
1

2
(x −µi)TC−1i (x −µi)].

(2.13)

The ability of GMMs to model the complex realizations of speech is most aptly de-

scribed in [40]—quoted below—which was mainly concerned with speaker identification,

but whose arguments nevertheless equally apply to speaker-independent speech in general

(our generalizations and notes in parenthesis).

The first motivation (for using Gaussian mixture densities as a represen-

tation of speaker identity and speech in general) is the intuitive notion that

the individual component densities of a multi-modal density, like the GMM,

may model some underlying set of acoustic classes. It is reasonable to assume

the acoustic space corresponding to a speaker’s voice (and speaker-independent

speech in general) can be characterized by a set of acoustic classes representing

some broad phonetic events, such as vowels, nasals, or fricatives. The spectral

shape of the ith acoustic class can in turn be represented by the mean µi of

the ith component density, and variations of the average spectral shape can be

represented by the covariance matrix Ci. Because all training or testing speech

is (usually) unlabeled, the acoustic classes are hidden in that the class of an

observation is unknown. Assuming independent feature vectors, the observa-

43Unless needed for clarity, we will often drop the variables from a distribution’s notation in order to
simplify expressions.

44The symbol ∼ denotes is drawn from the distribution.
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tion density of feature vectors drawn from these hidden acoustic classes is a

Gaussian mixture.

The second motivation is the empirical observation that a linear combination

of Gaussian basis functions is capable of representing a large class of sample

distributions. One of the powerful attributes of the GMM is its ability to form

smooth approximations to arbitrarily-shaped densities.

Indeed, it was shown in [80] that any continuous pdf can be approximated arbitrar-

ily closely by a Gaussian mixture. This important property is primarily the reason that

GMMs generally outperform other mapping techniques in regards to speech modelling. We

illustrate this property next in Section 2.3.3.5.

We further add a third motivation for specifically using Gaussian mixtures to model

speech, as opposed to other multi-modal densities. By considering that each of the differ-

ent phonetic events of speech is, in fact, a sum of the acoustic manifestations of several

independent physiological variables with specific means and variances tied to that phonetic

event, e.g., glottal excitation, tongue position, lip rounding, etc., then, by the Central Limit

theorem45, the sum of these random variables for each acoustic class is asymptotically a

normal distribution, and the overall multi-class distribution is asymptotically a Gaussian

mixture.

In the context of BWE, GMMs were first proposed for highband and lowband spectral

envelope reconstruction by Park [82]. For spectral transformation in general, a single GMM

is used to model the joint density, pXY(x,y), of narrowband random features vectors, X,

and the target random feature vectors, Y. The target feature space is either that of

wideband speech including lowband as well as highband frequencies, as in [82], or of only

highband speech, as in [54, 55]. The advantages of the two approaches are compared

in Section 3.3.2. Parameters of the GMM are optimized in a training stage using the

EM algorithm for maximum likelihood (ML) estimation. As derived by Kain in [78],46 an

MMSE highband (or wideband) spectral envelope estimate, ŷ, is generated in the extension

45The Central Limit Theorem (with Lindeberg’s condition) states that the normalized sum of a large
number of mutually independent random variables with zero means and finite variances tends to the normal
distribution provided that the individual variances are sufficiently small. See [81, Chapters 1 and 2] for a
history of the development of the theorem.

46Kain’s paper—[78]—was, in fact, concerned with speaker conversion rather than bandwidth extension.
In the speaker conversion problem, the source speaker’s speech is represented by the random feature vectors
X, and the target speaker’s by Y.
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stage as a function of the input vector, X = x, and quantities derived from the joint pdf,

and is given by

ŷ =
M

∑
i=1

P (λi∣x)E[Y∣x, λi]. (2.14)

The derivation of this MMSE estimation is given in Section 3.3.1, and will be integral to

our work in Chapter 5 on extending the GMM framework to exploit speech memory for

BWE performance improvement.

Computationally, GMMs are more expensive in the training stage than the popular

codebook mapping techniques since: (a) the EM algorithm is more expensive than the LBG

algorithm, and (b) clustering during codebook training for BWE is typically performed

only on the narrowband feature vectors, X, whereas joint density parameter estimation is

performed on the longer supervectors, Z = [X
Y
], thereby requiring more complex models, i.e.,

models with more parameters to model the additional degrees of freedom, and, in turn,

higher training data and computational requirements. The earlier GMM-based speaker

conversion technique of [79] is akin to codebook mapping in that it considers only the

narrow band during GMM training, and hence, is computationally less expensive than

joint density modelling.47 In the context of BWE, however, this earlier technique discards

the superior ability of GMMs to capture the cross-band correlations central to BWE since

it only models narrowband—rather than wideband—speech. Generally, concerns regarding

training computational requirements should not be overstated. With the ongoing increase

in computational power of signal processing hardware and and the fact that model training

is almost always performed offline, the computational cost associated with offline training is

increasingly becoming a secondary concern much less important than modelling capability

and BWE performance.

Confirming the validity of the motivations described above, the performance of GMM-

based BWE techniques has been shown to be superior to that of codebook-based ones, sub-

jectively as well as objectively. In [82], for example, wideband speech reconstructed through

GMMs as described above, is judged preferable to codebook-based wideband speech 65% of

the time, in both speaker-independent and -dependent implementations. Objectively, the

spectral distortion—calculated over the full wideband, i.e., including distortions in both

47The target data in [79] is obtained from source data using a piecewise-linear mapping function of
quantities derived from the source data GMM. Parameters of the mapping are computed by solving normal
equations for a least squares problem, based on the correspondence between the source and target data.
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lowband and highband frequencies—of GMM-based extended wideband speech relative to

the original wideband reference is 0.56dB and 0.42dB lower than the distortion in wide-

band speech extended using codebook mapping, in the speaker-independent and -dependent

implementations, respectively. An even higher spectral distortion reduction of 0.96dB is

reported in [54], although calculated only for the highband frequencies.

III. Hidden Markov models

Ubiquitous in ASR [10, 77], hidden Markov models (HMMs) can be viewed as an extension

to the statistical modelling achieved by GMMs.48 Rather than using a single GMM to

model the whole acoustic space as described above, HMMs employ multiple GMMs by

dedicating a GMM to each individual HMM state. These states—the characteristic feature

of HMMs distinguishing them from single GMMs—exploit interframe dependencies as an

integral factor in the statistical modelling of speech (by generating a probabilistic model

of state transitions). Thus, HMMs can be thought of as providing a finer resolution of the

acoustic space along a temporal axis in addition to the spectral axes of GMMs. Due to

the additional complexity associated with such a temporal axis, however, they are limited

to first-order modelling (where the probability of being in a particular state depends only

on the immediately preceding state) in the vast majority of implementations, in ASR and

elsewhere.

There have been two distinct approaches to using HMMs for BWE statistical mod-

elling. The first approach, proposed in [84], employs conventional first-order left-to-right

HMMs typical in ASR, where models correspond to phonemes. HMM states with diagonal-

covariance GMMs model wideband speech represented by the concatenation of subband fea-

ture vectors, i.e., GMMs model the joint narrowband-highband feature vector pdf, pXY(x,y),
thereby learning cross-band correlations. Conventional HMM training to estimate tran-

sition probabilities and GMM parameters is performed using the Baum-Welch algorithm

[85].49 By simply splitting the mean and covariance diagonals, the trained wideband HMMs,{Ξ}, are split into separate subband HMMs, {Ξx} and {Ξy} for the narrowband and high-

band subband HMMs, respectively. These subband HMMs share the same HMM structure

48The basic theory of HMMs was published in a series of classic papers by Baum and his colleagues
in the late 1960’s and early 1970’s, and was implemented for speech processing applications by Baker at
CMU and by Jelinek and his colleagues at IBM in the late 1970’s. See [83, Section 2.2].

49The Baum-Welch algorithm is an example of a forward-backward algorithm, and is a special case of
the EM algorithm.
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and transition probabilities but differ in GMM parameters. In the reconstruction phase, ob-

servation sequences of narrowband feature vectors are decoded by the Viterbi algorithm [86]

using {Ξx}; for each observation sequence X(m) = [x(1), . . . ,x(m)], the overall state se-

quence S(m)—stretching across narrowband phoneme models—maximizing the likelihood

P (X(m)∣{Ξx}) is found. Since {Ξx} and {Ξy} models share the same state sequences and

transition probabilities, the highband models corresponding to the sequence of phonemes

obtained by Viterbi decoding are simply connected. This narrowband-to-highband state

sequence mirroring is illustrated in Figure 2.7. Finally, the optimal sequence of highband

envelope feature vectors is calculated through the highband models and state sequence as

that which maximizes the likelihood p(Y(m)∣S(m),{Ξy}). This technique has the advan-

tage of jointly modelling narrowband and highband content through GMMs. However, it

requires large amounts of labelled training data such that phoneme HMMs can be ade-

quately trained. Despite the potential of this HMM-based BWE approach, its performance

has not been compared to that of others, statistical or otherwise, and has not received

much adoption beyond [84], likely due to its high complexity and training data require-

ments. Furthermore, no objective or subjective performance evaluations, other than visual

spectrogram comparisons, are reported in [84].

Narrowband Models {Ξx}

Highband Models {Ξy}

Viterbi
Decoding S

S1

S1

S2

S2

a11

a11

a22

a22

a12

a12

Fig. 2.7: Narrowband-to-highband state sequence mirroring in BWE using subband HMMs.

The second approach, proposed in [39] and, with a slight variation, in [87], uses a single
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HMM where the left-to-right transitional constraint is relaxed, i.e., in addition to self-

transitions, transitions are allowed back and forth between all Ns states of the model. In

contrast to the first approach described above, only narrowband spectral envelopes are mod-

elled by the state-specific GMMs. Thus, cross-band correlations are not modelled through

joint-density Gaussian mixture modelling as in the first approach. Rather, cross-band corre-

lations are learned indirectly by associating a VQ codebook of highband spectral envelopes

with the HMM states modelling the corresponding narrowband envelopes. In [39], the high-

band codebook is trained first in a preprocessing step. Each of the highband codewords is

then assigned to a particular HMM state. HMM parameters—namely GMM parameters

and state prior and transition probabilities—can then be easily estimated given the true

highband feature vector sequences and their narrowband counterparts in the training data

set. Alternatively, as shown in [87], the HMM can be trained using the Baum-Welch algo-

rithm on the narrowband training data independently of the highband data. The highband

codebook can then be built in a postprocessing step by associating each of the HMM states

to a particular codebook centre codevector based on the available correspondence between

narrowband and highband training data.

In the extension stage, a continuous MMSE estimate of the highband spectral envelope

at framem, ŷ(m), is derived and estimated as a function of the highband codebook centres,{cyi }i∈{1,...,Ns}
, and the posterior probabilities {P [Si(m)∣X(m)]}i∈{1,...,Ns}

—the probabilities

of being in each of the states {Si}i∈{1,...,Ns}
at frame m given the narrowband observation

sequence up to frame m, X(m) = [x(1), . . . ,x(m)]. The MMSE estimate is given by

ŷ(m) = Ns

∑
i=1

c
y

i P [Si(m)∣X(m)], (2.15)

where the probabilities {P [Si(m)∣X(m)]}i∈{1,...,Ns}
are estimated through a recursive tech-

nique similar to the forward pass of the forward-backward algorithm, making use of the

first-order Markov assumption as well as Bayes’ rule to estimate {P [Si(m)∣X(m)]} as a

function of the state GMM pdf s, {p[x(m)∣Si(m)]}.
The BWE performance gains achieved by this second HMM-based approach increase

with the number of states/codevectors as well as the number of components in state GMMs.

Performance in both [39] and [87] seems to saturate at Ns = 64. No performance compar-

ison relative to other techniques (even those using a single large GMM as in [55, 82]) is

reported in [39]. In [87], performance was compared only to the piecewise-linear mapping
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approach of [60] (where narrowband space is clustered using thresholds of reflection coeffi-

cients), rather than GMMs, showing an average PESQ50 improvement of roughly 0.28 (from

3.72 for piecewise-linear mapping per [60] to 4.0 using an HMM with Ns = 64), a modest

figure considering that the reference is that of piecewise-linear mapping. Computationally,

however, this single-HMM approach is much less expensive than the first approach of [84],

particularly in training (since neither labelled data nor Baum-Welch training are required)

and to a lesser extent in extension, although more expensive than single-GMM approaches

nonetheless.

2.3.3.5 Comparing mapping performance: An illustrative example

To illustrate the performance of the spectral envelope mapping methods described above in

regards to their ability to model the true narrowband-to-highband mapping, we use a sim-

ple one-to-one 1-dimensional mapping problem as follows. Let X ∶Ω → R
1 and Y ∶Ω→ R

1

represent continuous random variables on the input and and output sample spaces, re-

spectively. We assume that the input features, x, have an underlying 4-component GMM

distribution with equal weights, unit variances and means drawn randomly from the uni-

form distribution U(1,9);51 i.e.,

x ∼
Mx

∑
i=1

αiN (x;µi, σ
2
i ) = Mx

∑
i=1

αi

1√
2πσi

exp(−1
2
[x − µi

σi

]2), (2.17)

with

Mx = 4, and ∀i ∈ {1, . . . ,Mx} ∶ αi =
1

Mx
, σi = 1, µi ∼ U(1,9). (2.18)

We also assume that the output target space, ΩY ⊆ R
1, is a nonlinear one-to-one mapping

of the input target space, ΩX ⊆ R
1, given by the Gaussian transformation:

Y = T(X) ≜ bMy

∑
j=1

αjN (x;µj , σ
2
j ), (2.19)

50The PESQ—perceptual evaluation of speech quality—measure was developed to model subjective
tests commonly used in telecommunications, particularly MOS. See Section 3.4 for details.

51The distribution U(a, b) denotes the uniform pdf of a random variable X ∶Ω→ R
1; i.e.,

U(a, b) ∶= pX(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

b − a
, for a < x < b,

0, elsewhere.
(2.16)
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where

My = 100, b = 100, and

∀j ∈ {1, . . . ,My} ∶ αj =
∣wj ∣

∑My

k=1 ∣wk∣
, wj ∼ N (5,1), σj ∼ U (14 , 12) , µj ∼ U(0,10). (2.20)

Using this true model of the ΩXY ⊆ R
2 space with a fixed realization of the parameters µi,

wj, σj , and µj in Eqs. (2.18) and (2.20), we generate 105 2-dimensional data points for the

training of the various mapping techniques to be compared. Figure 2.8 illustrates the true

ΩX → ΩY mapping as well as the mapping modelled by each of the following techniques:

Figure 2.8(a) Linear mapping The ΩX → ΩY mapping is modelled as y = a1x+a0 where

the slope, a1, and scale, a0, are obtained using a least-squares fit of the training data.

Figure 2.8(b) Codebook mapping A 4-codevector52 input space codebook, Cx, is trained

using VQ of the input features, x, of the training data. A shadow output space code-

book, Cy, is then generated with the y codevectors, {cyi }i∈[1,4], obtained by averaging

the y features corresponding to the x features classified into each of the Cx Voronoi.

Figure 2.8(c) Piecewise-linear mapping Similar to the piecewise-linear technique of

[63], the Cx codebook trained above is used to cluster the training (x, y) pairs into 4

separate clusters for each of which a linear model is estimated.

Figure 2.8(d) Codebook mapping with interpolation The shadow codebook output

described above is smoothed using weighted interpolation of theK-nearest cy codevec-

tors in a manner similar to that of [68], where K = 3 and the weights are determined

based on the squared Euclidean distance between the input features x and the cx

codevectors. Interpolation at the outer halves of edge cells increases distortion, and

hence, is omitted in these regions. Thus, output feature estimates, ŷ, are given by

ŷ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

K

∑
k=1

wkc
y
k where wk =

∥x − cxk∥−2
∑K

i=1 ∥x − cxi ∥−2 , for min
i

cxi ≤ x ≤ max
i

cxi ,

c
y
i where i = arg min

i
cxi , for x <min

i
cxi ,

c
y
i where i = arg max

i
cxi , for x >max

i
cxi .

(2.21)

52Since we are using scalar features in this example, referring to codebook centres as codevectors is
technically a misnomer. To avoid confusion, however, we continue to refer to codebook centres as such in
conformity with convention.
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Figure 2.8(e) Statistical modelling using diagonal-covariance GMMs A GMMwith

4 diagonal-covariance component densities is trained on the 105 training (x, y) pairs
using the EM algorithm. Output feature estimates, ŷ, are obtained using MMSE

estimation as described in Section 3.3.1. Figure 2.8(e) shows the ŷ estimates corre-

sponding to the training x features.

Figure 2.8(f) Statistical modelling using full-covariance GMMs As above but using

full-covariance component densities.

Figure 2.8 clearly illustrates the continuity properties (or lack thereof) of these mapping

techniques as well as their ability to model a nonlinear mapping relationship. Table 2.1

further compares the MSE performance and the complexity of these techniques in terms

of the number of model parameters requiring estimation. It is clear that, at comparable

or slightly higher model complexity, statistical modelling through GMMs outperforms all

other techniques in its ability to closely model nonlinear relationships. As described in

Section 2.3.3.4, GMMs are characterized, however, by higher computational cost in the

offline training stage compared to other techniques. Nonetheless, GMMs are increasingly

becoming the method of choice for BWE spectral envelope mapping due to their supe-

rior modelling ability, particularly with the computational concerns associated with offline

training further becoming a distant second to that of BWE performance. Indeed, as de-

scribed in Section 3.3.3, it is the superior modelling ability of GMMs with full covariances

(where cross-band correlations can be explicitly captured in cross-band covariance terms)

that make them the best tool to study the role of cross-band correlation on BWE perfor-

mance in general, and the role of speech memory in increasing such cross-band correlations

in particular.

Table 2.1: MSE performance and model complexity of the mapping methods used in Figure 2.8.

Mapping Number of

method
MSE

model parameters

Linear mapping [Figure 2.8(a)] 6.56 2

Codebook mapping [Figure 2.8(b)] 3.13 8

Piecewise-linear mapping [Figure 2.8(c)] 2.29 12

Codebook mapping with interpolation [Figure 2.8(d)] 2.55 9

Diagonal-covariance GMM statistical modelling [Figure 2.8(e)] 1.77 12

Full-covariance GMM statistical modelling [Figure 2.8(f)] 1.40 20
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(a) Linear mapping
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(b) Codebook mapping
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(c) Piecewise-linear mapping
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(d) Codebook mapping with interpolation
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(e) Diagonal-covariance GMM statistical modelling
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(f) Full-covariance GMM statistical modelling

Fig. 2.8: Comparing the performance of spectral envelope mapping techniques using a simple
one-to-one 1-dimensional ΩX → ΩY mapping problem. See Table 2.1 for a comparison of MSE
performance and model complexity.
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2.3.4 Highband energy estimation

As highband (and, optionally, lowband) content generated by BWE is combined with the

original narrowband signal to generate wideband speech, it is important that highband

energy is adjusted to suitable levels relative to narrowband signal energy. Highband energy

overestimation introduces audible artifacts in the extended region that can make the ex-

tended wideband signal often sound more annoying than the original narrowband signal. In

contrast, underestimation of highband energy undermines the value of bandwidth extension

itself, particularly for sounds with high-frequency energies, e.g., fricatives.

For BWE techniques where the entire wideband spectrum is reconstructed then band-

stop filtered before being added to the narrowband signal, wideband energy adjustments

can easily be performed by scaling the reconstructed signal prior to bandstop filtering such

that the reconstructed and original input signals have the same energy in the narrowband

region, e.g., [61]. Alternatively, appropriate highband energies can be estimated based

on the narrowband input, in a manner similar to the mapping or statistical estimation

of highband spectral envelopes. This latter approach is, in fact, required for BWE tech-

niques where highband content is directly estimated or mapped from the narrowband input.

During training, such techniques typically model the cross-correlation between the usual

narrowband feature vectors and an energy ratio σ2
rel (which is more robust than modelling

absolute energy values). The ratio is either that of highband to narrowband energy cal-

culated from the wideband training data, or, the ratio of the original highband energies

of the training data to those of the corresponding highband signals reconstructed during

training specifically for that purpose. In the extension phase, the energy ratio is estimated

given the available narrowband input then multiplied by narrowband energy (or the energy

of the reconstructed highband signal), thereby generating adequate scaling values for the

highband extension.

Thus, any of the aforementioned spectral envelope mapping techniques can be used for

energy-ratio modelling. Codebook mapping is used in [82], for example, whereas a dedi-

cated GMM is used in [55]. In [84], a dedicated energy-ratio subband HMM is extracted

from the wideband HMM, and is used to estimate highband energy in a manner identical

to that used for highband feature vector estimation as described in Section 2.3.3.4 and

illustrated in Figure 2.7; i.e., energy-ratio HMMs are connected according to the optimal

narrowband HMM state sequence obtained by Viterbi decoding. An elaborate scheme is
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further proposed in [57] for the purpose of reducing highband energy overestimations in

particular. An asymmetric cost function is introduced such that highband energy overesti-

mations are penalized more than underestimations during MMSE energy-ratio estimation

via a highband-to-narrowband energy-ratio GMM. As shown in [57], such an asymmetric

cost function results in MMSE energy-ratio estimates as functions of the GMM posterior

distributions, {p(σ2
rel∣λi)}i∈{1,...,M},53 such that broad distributions are penalized more than

narrow distributions. This results in energy-ratio estimates that take into account the con-

fidence of the estimate (the narrower the posterior probability of the GMM, the higher the

confidence in the derived energy-ratio estimate), where frames with unreliable highband

energy-ratio estimates are attenuated. Listening tests of GMM-based extended speech em-

ploying this technique in [57] show a significant reduction of severe and moderate highband

artifacts.

2.3.5 Relative importance of accuracies in spectral envelope and excitation

generation

Many BWE works have observed and reported that accuracy and quality in highband

spectral envelope reconstruction is far more important for the subjective quality of extended

speech, than in excitation signal generation. For example, informal listening tests in [39]—

where modulation is used for highband excitation signal generation—show that, assuming

that BWE of the spectral envelope works well, the human ear is amazingly insensitive to

distortions of the excitation signal at frequencies above 3.4 kHz. Spectral gaps of moderate

width resulting from choosing a modulation frequency above 3.4 kHz are almost inaudible.

Furthermore, misalignments of the harmonic structure of speech at high frequencies does

not significantly degrade the subjective quality of the extended speech signal. Similarly,

in [58] where spectral folding is used, the authors conclude that as long as the spectral

envelope shape is similar to the original, the excitation used made almost no difference

for the recovery of high frequencies. A similar conclusion is also noted in [88] where the

effect of replacing an original wideband excitation signal by another reconstructed using

full-wave rectification is very small.

Thus, for the focus of this thesis—studying the effect of speech memory inclusion on

BWE performance—we only consider speech memory in spectral envelopes.

53See GMM definition in Section 2.3.3.4.
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2.3.6 Sinusoidal modelling

BWE techniques synthesizing highband speech through sinusoidal modelling are a less

common class of BWE techniques that do not employ LP synthesis but, nevertheless,

employ the source-filter model. These techniques make use of the sinusoidal transform

coding (STC) [89] and multi-band excitation (MBE) [90] models of speech. Both models

make use of the fact that high-quality speech can generally be synthesized as a sum of

sinusoids with appropriate frequencies, amplitudes and phases. Rather than estimate a

highband excitation signal to excite an LP-synthesis filter defined by the highband LP-

based spectral envelopes estimated separately, sinusoidal-based BWE generates highband

speech by using the estimated highband spectral envelopes themselves to determine the

amplitudes of sinusoids representing the voiced components of speech as well as the spectral

shape of white noise representing unvoiced components. Other sinusoid parameters, i.e.,

frequency and phase, as well as the degree of mixing voiced and unvoiced components, are

determined from the narrowband signal. Both components are then added to generate the

highband signal. Unlike conventional source-filter model-based BWE, spectral flatness of

the excitation is, thus, not an issue in sinusoidal-based BWE since sinusoid amplitudes are

determined directly by the spectral envelope. However, pitch estimation is required.

In the context of BWE, highband speech synthesis through STC—proposed in [91]—

makes use of the mixed excitation of the source-filter model—as described in Section 2.3.1—

where the weights of the periodic (voiced) and random (unvoiced) components are deter-

mined based on degree of voicing over the entire speech bandwidth. The periodic component

is synthesized using the STC model as harmonically-spaced sinusoids. The narrowband sig-

nal is analyzed to estimate the model’s parameters of phase, pitch and degree of voicing,

while the highband spectral envelope is used to determine sinusoid amplitudes. The random

component is generated as a highband random sequence spectrally shaped by the estimated

highband spectral envelope and scaled according to the estimated degree of voicing.

In the MBE model, on the other hand, the speech spectrum is divided into a number

of bands centered on the pitch harmonics where each band can be individually declared as

voiced or unvoiced. The MBE model parameters consist of a set of band magnitudes and

phases, a set of binary voiced/unvoiced (V/UV) decisions, and a pitch frequency. Proposed

by [66], MBE-based BWE is implemented by applying various codebooks to narrowband

speech in order to estimate the required per-band high-frequency V/UV decisions as well as
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magnitudes for the voiced and unvoiced bands. The highband voiced signal is then obtained

in the time domain by applying the estimated parameters to harmonic oscillators. To ensure

signal continuity across frames, band magnitudes are linearly interpolated between frames.

Unvoiced speech is synthesized in the frequency domain by shaping a unity-variance white

noise spectrum with the estimated highband unvoiced spectrum.

While mean opinion scores and informal listening tests reported in [66] and [91], re-

spectively, indicate clear preference for the sinusoidally-extended speech over narrowband

speech, it is difficult to quantify the performance of sinusoidal-based BWE since very lim-

ited comparisons were made with conventional source-filter model-based techniques. More-

over, the additional complexity associated with estimating the parameters required for

sinusoidal-based BWE (namely, pitch, phases, and degree of voicing), compared to conven-

tional techniques, has most likely hindered wider adoption and improvements.

2.4 Summary

BWE relies on the assumption that highband speech closely correlates with its narrowband

counterpart. Thus, by learning the cross-band relationships a priori, highband frequency

content can be reconstructed given only narrowband input. By using the source-filter

model, the BWE problem is reduced to two separate tasks—generating a highband excita-

tion signal and a highband spectral envelope. Several works have shown the latter to be of

more importance for the subjective quality of extended speech. Extensive work has been

dedicated to investigating and proposing techniques by which to learn the spectral enve-

lope cross-band correlations. Through our analysis of speech and its dynamics presented

in Chapter 1, we have shown these cross-band correlations to be rather complex and non-

linear. As such, the ability of the surveyed techniques to model such complex correlations

varies greatly depending on their continuity and nonlinearity properties, or lack thereof.

We find GMMs, in particular, the tool most suited to our purpose—investigating the role

of speech memory in improving BWE performance through apt modelling of cross-band

correlations. They outperform codebook-based techniques—the most common of spectral

envelope mapping techniques—at comparable or slightly higher model complexity. With

offline training concerns being secondary to those of BWE performance, GMMs become

especially attractive. Finally, we note that while HMMs provide the additional advantage

of exploiting interframe dependencies, their use of speech memory is rather limited.
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Chapter 3

Memoryless Dual-Mode GMM-Based

Bandwidth Extension

3.1 Introduction

In this chapter, we describe the details of our BWE implementation that will be used as

the basis for all developments and evaluations thenceforth in the thesis. We employ a

dual-mode BWE system based on that of Qian and Kabal in [55]. Per our comparative

analysis of model-based BWE techniques in Section 5.4.3.3, the dual-mode technique of

[55] is shown to outperform nearly all comparable techniques, in some cases by a rather

wide margin. Furthermore, in addition to using GMM-based statistical modelling—the

approach we concluded in Section 2.3.3.5 to be the most suited for our purpose of studying

the role of memory in improving the cross-bad correlations central to BWE—for the recon-

struction of highband spectral envelopes as well as highband energy ratios, the dual-mode

technique exploits equalization to extend the apparent bandwidth of narrowband speech

to 100Hz at the low end and to near 4kHz at the high end. The dual-mode designation

thus refers to the use of both equalization and statistical modelling. The complementary

highband spectrum up to 8kHz is statistically estimated using a GMM given parameters

of the narrowband signal enhanced by midband equalization in the 3.4–4kHz range. In

parallel, the midband-equalized narrowband signal is also processed to generate an en-

hanced excitation signal—the equalized bandpass-modulated Gaussian noise (EBP-MGN).

Following [55], our baseline BWE system uses line spectral frequencies (LSFs) to param-

eterize both narrowband and highband spectral envelopes. The motivation for choosing

LSFs—briefly mentioned in [55]—is provided in more detail in this chapter. The estimated
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highband LSF features, converted to LPCs, are then used together with the estimated

excitation signal to reconstruct highband speech through LP synthesis, followed by level

adjustment using the statistically estimated energy ratios. Particular details of our BWE

implementation—namely parameterization, dimensionality, training and test data, and fil-

ter response characteristics—are described.

Since all our BWE systems—memoryless as well as memory-inclusive—presented in

this thesis employ GMMs for statistical modelling, the derivation of the MMSE estimation

of target features using joint-density GMMs is presented in detail. We also discuss the

choice of jointly modelling highband—rather than wideband—spectra with their narrow-

band counterparts. We then introduce the measures used for BWE performance evaluation

throughout our work and discuss the motivations for their choice. Finally, we evaluate

BWE performance in memoryless conditions, i.e., without making use of the information

in speech dynamics, studying in the process the effects of varying the number of compo-

nents in the Gaussian mixture, as well as the effects of using diagonal and full covariance

matrices. Based on these results, we conclude by establishing the memoryless performance

baseline for the future MFCC- and memory-inclusive BWE evaluations in Chapter 5.

3.2 Dual-Mode Bandwidth Extension

3.2.1 System block diagram and input preprocessing

Figure 3.1 shows the overall system block diagram. As shown in Figure 3.1(a), the input

narrowband signal sampled at Fs = 8kHz is preprocessed by first upsampling to Fs = 16kHz.

All subsequent processing is performed at Fs = 16kHz. A lowpass interpolation filter is

then used for anti-aliasing, with its frequency response shown in Figure 3.2(a).54 All filters

described in this chapter are equiripple linear-phase finite impulse response (FIR) filters

designed using the filter design tool of Kabal [92].55

54To better illustrate response in transition regions, some of the filter frequency responses illustrated in
this chapter are shown only for part of the full 0–8kHz frequency range of the filter.

55Filters are specified in terms of the desired response in multiple passbands and stopbands. Band
specifications include desired value, relative weighting and limits on the allowed response values in the band.
The resulting filters are weighted minimax approximations (with constraints) to the given specifications.
Filter coefficients have an even symmetry around the middle of the filter. See [92] for more details on the
design procedure and constraint definitions.
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Fig. 3.1: The dual-mode bandwidth extension system.

3.2.2 LSF parameterization

Originally developed by Itakura in [93] as an alternative representation of LPCs, LSFs

have become ubiquitous in speech processing for their quantization error resilience and

perceptual significance properties. It is well known that LPCs are not suited for speech

coding and quantization due to their large dynamic range and, more importantly, due to
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Fig. 3.2: Dual-model BWE system filter responses.
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the potential instability of synthesis filters based on quantized and/or interpolated LPCs.

In contrast, LSFs are quite robust to estimation and quantization errors, and furthermore,

easily guarantee synthesis filter stability—by ensuring appropriate LSF ordering.

LSFs are an artificial mathematical representation generated from LPCs by finding the

roots of the two z-polynomials, P (z) and Q(z), corresponding to the p-order LP analysis

filter, A(z) = 1−∑p
k=1 akz

−k, with additional reflection coefficients of 1 and −1, respectively.
In other words, P (z) corresponds to the vocal tract represented by A(z) but with the

glottis completely closed while Q(z) corresponds to that with an open glottis; i.e.,

P (z) = A(z) + z−(p+1)A(z−1),
Q(z) = A(z) − z−(p+1)A(z−1), (3.1)

and

A(z) = P (z) +Q(z)
2

. (3.2)

Due to the symmetry and anti-symmetry properties of P (z) and Q(z), respectively, it can
be shown that their roots exist in conjugate pairs, representing interlaced zeroes existing

only on the unit circle. The phases of these zeroes in the z-plane represent frequencies, and

hence, are referred to as line spectral frequencies. Since the zeroes occur in conjugate pairs,

only those within the open (0, π) range are needed to fully represent the original LPCs.

Furthermore, the interlaced order of LSFs allows the minimum-phase property of A(z) to
be easily preserved with LSF quantization, thus ensuring stability of the corresponding LP

synthesis filters. These properties have been proven by Soong and Juang [94] for LSFs in

particular, and independently proven earlier by Schüssler [95] in the more general context

of the stability of discrete systems. In [96], Bäckström provides rigourous and up-to-date

proofs and extensions of the properties of line spectrum pair polynomials in general.

By representing the vocal tract transfer function H(z) = 1/A(z) in terms of P (z) and
Q(z) as in Eq. (3.2), LSFs are shown to demonstrate a direct correspondence to the shape

of the spectral envelope. The closed [0, π] range corresponds to the whole frequency range

of the spectrum. Dense distributions of LSFs represent high magnitude regions of the

spectrum, while scattered distributions represent low magnitude ones. Hence, in contrast

to LPCs, local errors in LSF values only tend to cause local spectral distortions.

Figure 3.3 illustrates these properties for two 20ms windows from the sailing waveform

of Figure 1.2(a), after it has been lowpass filtered and downsampled to Fs = 16kHz. The
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interlaced ordering of LSFs is clear. Figure 3.3(a), corresponding to the fricative /s/, shows

a dense distribution of LSFs for phases greater than π/2, i.e., frequencies above 4kHz,

indicating mostly highband energy. In contrast, Figure 3.3(b), corresponding to the vowel

/e/, shows the opposite scenario. These observations agree with the energy distributions

for the same intervals in the spectrogram of Figure 1.2(a).
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Fig. 3.3: Illustrating the properties of LPCs and LSFs in the z-plane; roots of the 6-order LP
analysis filter A(z) are represented by  , while roots of the symmetric P (z) and anti-symmetric
Q(z) LSF polynomials are represented by # and 2, respectively. Subfigure (a) represents the
zeroes of the fricative /s/ in the 100–120ms window of Figure 1.2(a) (after the waveform was
lowpass filtered and downsampled to Fs = 16kHz), whereas Subfigure (b) represents the zeroes of
the vowel /e/ in the 240–260ms window of the same waveform.

These properties make LSFs especially attractive for BWE, and as such, have been

used to varying extents for BWE spectral envelope parameterization in [55, 59, 60, 66, 87],

among others. In particular:

• any linear combination of LSF vectors (as in the case of GMM-based highband MMSE

estimates) will always preserve the interlaced ordering property, thus guaranteeing the

minimum-phase and LP synthesis filter stability properties,

• unlike LPCs, the perceptual significance of LSFs (where the properties of formants
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and valleys can be related to LSF pairs) improves the ability of GMMs to capture

perceptually significant characteristics of the acoustic space of speech,

• by virtue of their correspondence to the spectral envelope, BWE using LSFs is more

robust to estimation errors as individual errors do not degrade the whole envelope.

Conversion of LSFs back to LPCs is rather straightforward; the symmetric P (z) and
anti-symmetric Q(z) polynomials of Eq. (3.1) are generated using the interlaced LSFs as

the phases of the polynomial unit-circle roots, followed by averaging per Eq. (3.2) to obtain

the analysis filter, A(z).
In this work, we denote LSF feature vectors by ω, where an n-LSF vector ω is interpreted

as a realization of the continuous LSF random vector Ω ∈ {ω ∈ R∶0 < ω < π}n. Thus, ωx

and ωy in Figure 3.1 denote narrowband and highband LSF feature vectors, respectively.

3.2.3 Equalization

In reality, typical telephone channel attenuation in the 100–300 and 3400–4000Hz bands is

not abrupt; rather, it is somewhat smooth. Thus, provided filtering response characteristics

are known, the speech signal in those ranges can be reconstructed by equalization more

accurately than by estimation algorithms. Indeed, the ITU-T G.712 Recommendation [9]

provides attenuation/frequency requirements for both ranges in the form of frequency masks

similar to that of Figure 1.1, e.g., [9, Figure 3/G.712] for channels between two-wire analog

ports, in addition to an out-of-band attenuation filter characteristic for f > 3400Hz [9,

Figure 10/G.712]. Using these specifications, telephony speech signals can be characterized

as follows [55]:

• The channel filter attenuates the speech signal by 0–18dB in the 3400–4000Hz range,

and by 0–10dB from 300 to 100Hz. Figure 3.2(b) shows our implementation of the

G.712 channel based on these characteristics. Given the relatively low attenuation

in these two bands, speech content therein can be accurately recovered by equaliza-

tion. The value of equalization over estimation for these ranges becomes even greater

when considering their perceptual importance.56 As discussed in Section 1.1.3.3, the

0.8bark subband of 3400–3889Hz was found in [27] to be particularly important.

Similarly, it was concluded that highband extension is most effective perceptually

56Due to the particular perceptual importance of the low and mid bands, exploiting GMM-based statis-
tical estimation as a corrective post-equalization step to further improve the reconstruction in these bands
is discussed in Section 6.2 as potential future work.
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when accompanied by lowband extension. Indeed, we showed in Section 1.1.3.1 that

the content below 300Hz provides important cues that help distinguish nasals as well

as distinguish between voiced and unvoiced fricatives, stops, and affricates.

• Frequency content above 4000Hz is missing due to the 8kHz sampling rate. These

lost components can only be reconstructed using any of the spectral envelope re-

construction methods described in Section 2.3.3. Our method of choice is that of

statistical GMM estimation.

• To suppress AC coupling interference, current telephone networks provide at least

22dB attenuation in the 50–60Hz band using a highpass filter at the transmission

side. Hence, these components can not be recovered by equalization. Furthermore,

since average fundamental frequencies—whose first few harmonics are important for

naturalness—are above 100Hz, and the finding in [27] that the 0.8bark 50–131Hz

subband is the least important perceptually below 300Hz, we do not attempt to

reconstruct signals below 100Hz by statistical estimation.

After [55], two equalizers are designed to recover the attenuated components. The first,

shown in Figure 3.2(c), provides a gain of 10dB at 100Hz, while the second, shown in

Figure 3.2(d), provides a similar gain of 10dB in the 3800–4000Hz range. The frequency

response of the equalized channel is, thus, almost flat from 100 to 3850Hz. Although the

equalized signal extends only to 4kHz, it was observed in [55] that its quality is noticeably

better than that of narrowband speech, thus confirming the aforementioned perceptual im-

portance of the equalized ranges.57 The narrowband signal enhanced by midband equaliza-

tion is used for the generation of the enhanced excitation signal—in the next-to-lowermost

path of Figure 3.1(b)—as well as the spectrum envelope and the excitation gain for content

above 4kHz (in the two upper paths of Figure 3.1(b)).

3.2.4 EBP-MGN excitation generation

The basis for the generation of a wideband excitation in [54] and later in [55], is the appli-

cation of a nonlinearity—full-wave rectification—to a subband of the narrowband signal.

As argued in [88], the absolute value function is a good candidate since, unlike the square

57Worthy of note is also the confirmation in [55] that equalization, in both the lowband and midband
regions, does not unduly emphasize quantization noise for PCM encoded speech, thus allaying the authors’
early concern about the potential negative impact of equalizing quantized speech in regions where the signal
has been already attenuated prior to quantization—i.e., regions with low signal-to-quantization-noise ratio.
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value, it does not require energy normalization. A wideband excitation generated in this

fashion will be phase-coherent with the original narrowband signal and further preserves

the harmonic structure without any spectrum discontinuities.

As discussed in Section 1.1.3, the average long-term speech energy is mainly concen-

trated below 1kHz [11], falling off with a long-term average of 6dB/octave [10].58,59 Indeed,

as confirmed by the observations in [54], the LP residual of voiced phonemes contains weak

pitch harmonics over 4kHz (in addition to noise-like components in the case of voiced

fricatives, stops and affricates) compared to strong harmonics below 3.5kHz. The unvoiced

residuals are noisy in the high band as well as in the low band. As such, the narrowband

speech signal in the 2–3kHz range was initially chosen in [54] as the basis for highband ex-

citation generation. This frequency range, however, is inappropriate since many phonemes,

including voiced ones, have weak responses in that region. As described in Section 1.1.3.1,

unvoiced fricatives, e.g., /s/ and /f/, have almost no energy below 2.5kHz. More im-

portantly, however, the nasal /n/ exhibits a spectral null in the 1450–2200Hz region [10,

Section 3.4.5], and the liquid /l/ in English is also often characterized by a deep anti-

resonance near 2kHz [10, Section 3.4.4]. In comparison, the 3–4kHz band is superior; it

contains distinctive spectral cues for many fricatives, stops, and affricates, while still con-

taining enough harmonic structure to reproduce high-quality voiced sounds. Hence, since

content in this region has already been enhanced by midband equalization, the 2–3kHz

bandpass filter of [54] was replaced by a 3–4kHz bandpass filter in [55]. Figure 3.2(e)

shows the frequency response of this filter.

The midband-equalized bandpass (EBP) signal is then spectrally broadened through

straightforward full-wave rectification. The spectrum of the resulting wideband signal ex-

hibits pitch harmonics (for vowel-like voiced sounds), noise (for unvoiced sounds), or both

(for mixed sounds), without the discontinuities often associated with the spectral folding

and modulation techniques of Section 2.3.2. Finally, the EBP-MGN excitation is obtained

by using the bandpass-envelope signal to modulate white Gaussian noise. For voiced sounds,

this corresponds in the frequency domain to superimposing the fine harmonic structure of

58While the 6dB/octave rolloff applies only to vowel-like voiced phonemes, unvoiced phonemes—which
tend to have a flat spectrum at high frequencies—are typically weaker than voiced ones (compare, for
example, spectrogram peak energies in Figure 1.2 for the leading fricatives, /s/ and /f/, versus those of
the ensuing vowel /e/).

59Pre-emphasis is typically applied to compensate for the 6dB/octave roll off such that high frequency
content is emphasized.
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the wideband bandpass-envelope signal on the flat spectrum of the Gaussian noise; see,

for example, Figure 3 in [54]. The next-to-lowermost path of the main processing block in

Figure 3.1(b) illustrates the generation of the EBP-MGN excitation signal.

3.2.5 Reconstruction of highband spectral envelopes and excitation gain

As described in Section 1.1.3.1, band energies are an important perceptual cue, particularly

for manner of articulation. Thus, in addition to the midband-equalized narrowband LSF

feature vectors, ωx, we explicitly include midband-equalized narrowband frame log-energy,

log εx, in the narrowband random feature vector representation X; i.e., X ≜ [ΩT
x , log Ex]T .

Similarly, in addition to the highband ωy LSF feature vectors, we use a highband excitation

gain, g, representing the gain required to scale the reconstructed highband signal such

that the energy of the reconstructed highband components is equal to the energy of the

corresponding frequency band in wideband speech. The excitation gain is calculated as the

square root of the energy ratio of the original highband signal, y(n), to the reconstructed

one, ŷ(n), in each frame; i.e.,

g =

¿ÁÁÀ∥y(n)∥2∥ŷ(n)∥2 . (3.3)

The true values of the excitation gain g are determined during training by artificially syn-

thesizing the highband signal using: (a) the EBP-MGN excitation generated as described

above, and (b) the true highband LPCs.

To model cross-band spectral envelope shape and gain correlations, the dual-model

BWE scheme uses two GMMs:

1. GXΩy
∶= G(x,ωy;M

xωy ,Axωy ,Λxωy), to statistically model the joint density of midband-

equalized narrowband feature vectors, {x}, and highband LSF feature vectors {ωy};
and

2. GXG ∶= G(x, g;Mxg,Axg,Λxg), to statistically model the joint density of narrowband

feature vectors, {x}, and the excitation gains, {g}.
To simplify notation in the sequel, we will often drop the subscript y in GMM and parameter

notation when clear from the context; e.g., GXΩ ∶= GXΩy
, as well as denote a dual-mode

BWE system’s (GXΩ,GXG) GMM tuple by GG; i.e., GG ∶= (GXΩ,GXG). Details of the training

procedure are discussed in Section 3.2.6 below. In the extension stage, MMSE estimation

of ωy and g—illustrated in Figure 3.1(c)—is performed are described in Section 3.3.1
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3.2.6 System training

Starting with wideband speech sampled at Fs = 16kHz, the training stage proceeds in a

speaker-independent manner as follows:

1. Wideband speech is first filtered by the G.712 channel bandpass filter of Figure 3.2(b)

and the highpass filter of Figure 3.2(f), resulting in narrowband and highband signals

in the 0.3–3.4 and 4–8kHz ranges, respectively.

2. Mimicking extension stage processing, the narrowband signal is then equalized in the

3.4–4kHz range using the midband equalization filter of Figure 3.2(d).

3. The midband-equalized narrowband signal and that of the high band are LP-analyzed

to obtain LPCs representing narrowband and highband spectra.

4. The midband-equalized narrowband signal is bandpass filtered in the 3–4kHz range

using the EBP-MGN filter of Figure 3.2(e). The resulting bandpass signal is then

full-wave rectified and used to modulate unit-variance Gaussian noise, providing the

EBP-MGN excitation signal.

5. Excitation gain data is calculated per Eq. (3.3), using the true highband signal and

its artificial counterpart obtained by LP-synthesis with the EBP-MGN excitation and

the true highband LPCs obtained in Steps 4 and 3, respectively.

6. Midband-equalized narrowband and highband LPCs are then converted to LSFs.

7. Midband-equalized narrowband log-energies are calculated and appended to narrow-

band LSFs.

8. Finally, the two GMMs, GXΩ and GXG, are trained using the EM algorithm [76], for

which we calculate initial estimates through Lloyd’s K-means clustering algorithm

[97].60

3.2.7 Dimensionality

The choice for the dimensionality of a spectral representation is a compromise between spec-

tral accuracy, complexity/computation cost, and bandwidth. For an LP-based representa-

tion, as in the dual-mode BWE system, poles are needed to represent all formants—two

poles per resonance—in the signal bandwidth plus an additional 2–4 poles to approximate

60EM training is iteratively performed until a stopping criterion—typically the change in the log-
likelihood of the training data given the estimated model parameters—is reached. Similarly, we perform
K-means clustering iterations until the relative changes of either: (a) the total squared-error over the
training data, or (b) cluster centres, fall below particular thresholds.
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possible zeroes in the spectrum and general spectral shaping (e.g., 8 kHz sampled speech is

typically represented by 10 poles) [10, Section 6.5.5]. In our implementation of the mem-

oryless dual-model BWE system, we represent midband-equalized narrowband content in

the 0.3–4kHz range by 9 LSFs61,62 in addition to frame log-energy as mentioned in Sec-

tion 3.2.5 above, resulting in a total dimensionality of Dim(X) = p = 10 for the narrowband

random feature vector X∶Ω→ R
p.

Since the highband 4–8kHz frequency range is generally dominated by unvoiced sounds

with flat spectra in addition to the fact that high-frequency formants of voiced speech

often have wide bandwidths, e.g., in nasals, and low energy compared to unvoiced speech,

fewer poles can be used for the high band in comparison to the narrow band. Due to

the dominance of unvoiced sounds in the high band, however, the accurate modelling of

highband energy becomes particularly important, especially since the usual all-pole auto-

regressive (AR) LP model results in higher prediction errors for unvoiced sounds relative to

voiced ones [10, Section 6.5.5]. As such, we represent highband content by 6-LSF feature

vectors Ω in GXΩ, as well as separately modelling its energy in GXG.63 Thus, the total

dimensionalities for GXΩ and GXG are Dim([X
Ω
]) = 16 and, Dim([X

G
]) = 11, respectively.

3.2.8 Windowing

We process wideband training data as well as narrowband test data in the time-domain

using 20ms frames with 50% overlap. For windowing, we employ the modified Hann window

as defined in [98];

w[n] = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2
− 1

2
cos(π(2n + 1)

N
) , for 0 ≤ n ≤ N − 1,

0, elsewhere.
(3.4)

This N -sample window is the sampled version of the continuous-time Hann window of

length W where the N samples are uniformly spaced between the end points given by—

assuming the continuous-time window is symmetric about zero, i.e., defined over the interval

61As described in Section 3.2.2, a set of m poles is fully represented by the m LSFs in the (0, π) range.
62Our experiments on the effect of narrowband LP order—for a fixed highband LP order—showed that

BWE performance nearly saturates above 8 poles.
63As in Footnote 62, our experiments on the effect of highband LP order show negligible performance

improvements above 6 poles. Using 12 poles, for example, results in log-spectral distortion improvement
of < 0.01dB; see Section 3.4 for details on performance evaluation.
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[−W
2 ,

W
2 ]—t1 = −t0 = W

2 −∆t
2 with ∆t = W

N
. As shown by Kabal in [98], this modified sampling

pattern gives the smallest value for the sampling interval ∆t for particular values of W and

N while still covering the continuous-time window symmetrically. Small values of the

sampling interval generally reduce aliasing due to sampling of the continuous-time window.

The study presented in [98] provides a further important motivation for choosing a

Hann window for time-domain windowing, particularly for the dual-model BWE system

using LSF parameterization; the smoothness of the LSF tracks resulting directly from

the fact that the Hann window is, in fact, a raised-cosine window with no rectangular

pedestal, i.e., where the cosine is raised (and weighted) such that its range extends from

zero to the peak with no discontinuities at the edges. In contrast, the cosine in the more

common Hamming window is raised such that it effectively sits on a rectangular pedestal

(with a relative height of 0.08), thereby resulting in discontinuities at the edges. These

discontinuities can cause substantial changes in the estimated LP parameters even when

the window moves ahead by a single sample. The result is that LSF tracks will often exhibit

spurious variations, potentially leading to undesirable LSF outliers when such tracks are

sub-sampled at the actual frame rate. The simple expedient of using a window with no

pedestal removes the spurious variations in LSF tracks and ensures smooth LSF evolution.

3.2.9 Formant bandwidth expansion

A well-known problem with LP-based spectral envelope modelling is that LP envelopes

often exhibit unnaturally sharp peaks [99]. For high-pitched voiced speech in particular,

LP envelope estimation often fails to separate the vocal tract’s transfer function effect (the

envelope) from the glottal excitation source (the pitch). The result is, due to bias towards

pitch harmonics, LP spectra overestimate and overemphasize spectral powers at formants,

providing a sharper contour compared to the original vocal tract response. Contrary to

good design methodology, increasing the LP model order does not necessarily lead to bet-

ter results and often exacerbates the problem. Instead, formant bandwidth expansion is

employed whereby the bandwidths of peaks in LP spectra are broadened. Such expansion

can be implemented through one or more of the following approaches:

• before LP analysis using time-domain windowing and/or lag windowing of the auto-

correlation sequences [100, 101];

• after LP analysis through scaling the radii of the poles of the AR model [102];
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• during LP analysis itself through regularization smoothing where a penalty measure

representing the peakiness of the spectral envelope is included into the estimation of

the AR model parameters [103]. Such regularization introduces a trade-off between

the fit to data (i.e., the conventional minimum prediction error variance) and the

smoothness of the envelope.

Since time-domain windowing of the input signal prior to estimating the correlation

values corresponds in the frequency domain to convolution of the window’s frequency re-

sponse with that of the input signal, such time-domain windowing of the training and

testing data constitutes, in itself, a form of implicit formant bandwidth expansion since the

window response has a non-zero main lobe width [104, 105]. For the modified Hann window

of Eq. (3.4), the 6dB main lobe bandwidth—the double-sided bandwidth measured at the

half-amplitude point—is 4π
N

(where N is the window length in samples) [98, Table 1]. Thus,

for 20ms windows at Fs = 16kHz (after the 8 to 16kHz sample rate conversion applied dur-

ing preprocessing as described in Section 3.2.1), N = 320 and the 6dB main lobe bandwidth

is 100Hz (resulting in expanding peak bandwidths by 100Hz at the half-amplitude point).

For explicit formant bandwidth expansion, we apply lag windowing using a Gaussian-

shaped window as well as through radial scaling, both as developed in [104] and previously

implemented in the dual-mode BWE system of [55]. Since the autocorrelation sequence has

as its Fourier transform the power spectrum, lag windowing of the correlation corresponds

to a periodic convolution of the frequency response of the window with the power spectrum

of the signal. For the continuous-time Gaussian window

w(t) = exp(−1
2
[at]2) , (3.5)

the frequency response also has a Gaussian shape;

W (Ω) = √2π
a

exp(−1
2
[Ω
a
]2) , (3.6)

i.e., having a single lobe, with a two-sided 1-σ bandwidth—the bandwidth measured be-

tween the 1 standard deviation points—of ωσ = 2a radians, and a two-sided 3dB bandwidth

of ω3dB =
√
8 log(2)a radians. The discrete-time window is

w[k] = exp(−1
2
[ak
Fs

]2) , (3.7)
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where Fs is the sampling rate. The parameter a can be expressed in terms of Fσ or F3dB as

a = π
Fσ

Fs

=
π√

2 log(2)
F3dB

Fs

. (3.8)

In our implementation, we use Fσ = 120Hz, resulting in a 3dB bandwidth expansion of

F3dB ≊ 141Hz (also the double-sided expansion value at the 6dB half-amplitude point).

Finally, we apply formant bandwidth expansion after LP analysis using radial scaling,

where LPCs are windowed using an exponential sequence. Radial scaling involves moving

the poles of the AR model inwards in the z-domain through replacing z by z/α [102].

Choosing α < 1 has the effect of expanding resonance bandwidths. For a causal filter H(z),
the effect of replacing z with z/α is such that the impulse response of the filter is modified

to become

h
′[n] = αnh[n], (3.9)

i.e., the impulse response coefficients are multiplied by an exponential (infinite length) time

window. In the frequency domain, the frequency response of the filter is convolved with the

frequency response of the window. As shown in [104, 105], the expanded 3dB bandwidth

obtained through this frequency-domain convolution can be well approximated by the first

two terms of the corresponding Taylor series such that, for a given 3dB bandwidth, α can

be estimated by

α = 2 −√1 + 2πF3dB/Fs. (3.10)

For the AR LP model, since H(z) = 1/A(z), then H(z/α) = 1/A(z/α). In other words,

the radial scaling of the all-pole H(z) can be implemented by multiplying the LPCs by the

exponential time window. In our implementation of radial scaling in the dual-model BWE

system, we use α = 0.994 corresponding to F3dB ≊ 31Hz.

3.2.10 Training and testing data

We use the popular TIMIT speech corpus [106] to supply the wideband speech used for

system training as well as for testing throughout our work. Training and testing are both

performed in a speaker-independent manner. TIMIT contains phonetically diverse speech

sampled at Fs = 16kHz from a total of 630 male and female speakers from 8 major dialect

regions of the United States. As described in the database distribution, the texts and
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speakers in TIMIT have been subdivided into suggested training and test sets such that:

1. No speaker appears in both the training and testing portions.

2. All dialect regions are represented in both subsets, with at least 1 male and 1 female

speaker from each dialect.

3. Text material in the two subsets do not overlap, i.e., no sentence text appears in both

the training and test material.

4. All phonemes occur at least once in the test material.

For BWE system training, we use all 3696 waveforms from the TIMIT training set

as suggested by the distribution and determined per the criteria above. Extracting 20ms

frames with 50% overlap from all 3696 training files results in ≈ 1.125×106 training frames.

For testing, we use the core test set also suggested by the distribution. The set consists

of 24 speakers, 2 male and 1 female from each dialect region, with 8 distinct sentences per

speaker for a total of 192 unique test sentences, corresponding to ≈ 58 × 103 test frames.

Wideband test data is filtered using the G.712 filter of Figure 3.2(b) to simulate the band-

width limiting effects of the telephone channel. The narrowband versions of the test data

obtained as such are used as inputs to our dual-model BWE system implementation, de-

picted in Figure 3.1, while the original wideband material is used as the reference for

performance evaluation as described in Section 3.4.

3.3 Gaussian Mixture Modelling

3.3.1 Joint density MMSE estimation

The minimum mean square error estimation of a target random variable (or vector) given

another dependent source random variable (or vector) with their joint pdf modelled by

a GMM is a special case of MMSE estimation based on an arbitrary multi-modal joint

density whose set of parameters represent a third random variable (or vector) evaluated

independently in a training stage.

For simplicity, let X ∶Ω→ R
1 and Y ∶Ω → R

1 be the continuous source and target random

variables. The function ŷ = f(x) that minimizes the mean square error ε = E [∥y − f(x)∥2],
is the Expectation E[Y ∣X = x] = ∫Ωy

y p(y∣x)dy. We introduce a third random variable

Λ taking the discrete values {λi}i∈{1,...,M}, which in turn represent the parameters of the

M-modal joint pdf p(y, x), i.e.,
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p(y, x) = M

∑
i=1

p(y, x,λi). (3.11)

Given a source realization X = x and the known parameter set Λ evaluated in the train-

ing stage, the objective is now to represent E[Y ∣x] as a function of both x and Λ, i.e.,

E[Y ∣x] = f(x,Λ). Thus, we rewrite E[Y ∣x] as
E [Y ∣x] = ∫

Ωy

y p(y∣x)dy
= ∫

Ωy

y
p(y, x)
P (x) dy

= ∫
Ωy

y

M

∑
i=1

p(y, x,λi)
∫
Ωy

M

∑
j=1

p(y, x,λj)dy
dy

= ∫
Ωy

y

M

∑
i=1

p(y∣x,λi)P (x∣λi)P (λi)
M

∑
j=1

∫
Ωy

p(y, x∣λj)P (λj)dy
dy

=
M

∑
i=1

P (λi)P (x∣λi)∫
Ωy

y p(y∣x,λi)dy
M

∑
j=1

P (λj)P (x∣λj)
=

M

∑
i=1

P (λi∣x)E [Y ∣x,λi] , (3.12)

where, by Bayes’ rule,

P (λi∣x) = P (λi)P (x∣λi)
M

∑
j=1

P (λj)P (x∣λj)
. (3.13)

In other words, the expectation E [Y ∣x,λi] is weighted by the posterior probability of the

mode Λ = λi given X = x.

The application of the MMSE estimation rule to GMMs, e.g., the GXΩy
and GXG GMMs

described above for the dual-model BWE system, easily follows by substituting the terms



76 Memoryless Dual-Mode GMM-Based Bandwidth Extension

in the last equality of Eq. (3.12) by their GMM counterparts. Let GXY represent a GMM

jointly modelling feature vectors X and Y, then, we have from Eq. (2.13) (rewriting joint

vectors as supervectors for notational purposes)

z = [ xy ] ∼ GZ ∶= G(z;Mz,Az,Λz) = Mz

∑
i=1

αz
iN (z;µz

i ,C
z

i ), (3.14)

with

α
z

i = α
x

i = α
y

i , µ
z

i =

⎡⎢⎢⎢⎢⎣
µ

x

i

µ
y

i

⎤⎥⎥⎥⎥⎦ , and Cz

i =

⎡⎢⎢⎢⎢⎣
Cxx

i Cxy

i

Cyx

i Cyy

i

⎤⎥⎥⎥⎥⎦ . (3.15)

Then, by the properties of multivariate normal distributions64

P (λi∣x) = αx
i N (x;µx

i ,C
xx
i )

M

∑
j=1

αx
j N (x;µx

j ,C
xx

j )
, (3.16)

and

E [Y∣x, λi] = µy

i +Cyx

i Cxx−1

i [x −µ
x

i ]. (3.17)

3.3.2 Wideband versus highband spectral envelope modelling

As mentioned in Section 2.3.3.4, the target feature vectors Y can represent the spectra

of either the high band, as in our dual-mode BWE system (where, for the GMMs GXΩ

and GXG, Y = Ω and Y = G represent highband envelope shape and gain, respectively),

or the full wide band, as in the GMM-based scheme of [82]. Modelling the full wide

band as the target space provides the advantage that MMSE-estimated extensions contain

lowband content (< 300Hz) in addition to that of the high band. Thus, the need for

further processing in order to estimate lowband content is eliminated, in contrast to the

first approach where the target space is exclusively that of the high band. However, as

described in Section 3.2.3, knowledge of the general attenuation characteristics of the G.712

channel allows reconstruction of the lowband frequencies more accurately than can be

obtained by GMM-based estimation. Moreover, by focusing only on the narrower highband

frequency range as the target space, the superior ability of the GMM to learn complex cross-

64If the random vector Z = [X
Y
] has a multivariate normal distribution, then the marginal p(x) and

conditional p(y∣x) distributions are also normal. See [71, Section A.5.2] for a proof in the simpler bivariate
case, and [107, Section 1.2.1] for the proof in the more general multivariate case.
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correlations—as illustrated in the example of Section 2.3.3.5—is fully dedicated to those

correlations between the non-overlapping frequency ranges of the narrow band and that

in which we are primarily concerned, i.e., the high band, rather than the full wide band.

A further motivation is that of reconstructed highband signal quality for similar model

complexity; assuming fixed dimensionalities for Y, devoting the target parameters fully to

modelling highband spectral envelopes results in better spectral fidelity in the high band,

as opposed to spreading out envelope modelling capability across the wide band only to

discard the narrowband portions later through bandstop filtering.

3.3.3 Diagonal versus full covariances

The question of whether to use diagonal or full covariance GMM matrices in spectral trans-

formation techniques, in general, depends on compromising between two factors: (a) com-

putational complexity in both training and transformation stages, and (b) the ability of

the model to provide a better fit for the underlying distribution. For GMM-based BWE,

however, the computational cost associated with offline ML training is of increasingly sec-

ondary concern (as described in Section 2.3.3.4). As such, we focus only on the complexity

associated with the extension stage as performed through MMSE estimation.

By reviewing Eqs. (3.16) and (3.17), it can be seen that MMSE estimation using

diagonal-covariance GMMs should, indeed, be much simpler than that using similarly-

sized (i.e., with the same number of Gaussian components) full-covariance GMMs since:

(a) the cross-covariance terms {Cyx

i }i∈{1,...,M} in Eq. (3.17) are zero for diagonal covari-

ances, and hence, the second term can be discarded altogether (thereby reducing computa-

tions), and (b) full matrix inversion is not required for the estimation of the probabilities{N (x;µx

i ,C
xx

i )}i∈{1,...,M} in Eq. (3.16). Moreover, a GMM with diagonal covariances in-

volves significantly fewer parameters compared to a similarly-sized full-covariance GMM.

However, while diagonal-covariance GMMs are clearly less costly computationally com-

pared to full-covariance ones when the number of Gaussian components is comparable in

both types of the GMM, they are essentially an approximation the extent of which de-

pends on the statistical dependence between the two feature vector spaces being jointly

modelled. Using diagonal covariances thus, generally, requires an increase in the number

of components in the Gaussian mixture in order to achieve the same performance obtained

with full covariances. Nevertheless, it has typically been assumed that the additional com-
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putational cost incurred by such an increase is quite low compared to the cost savings

associated with using diagonal covariances. Indeed, it has been argued in [40] that “be-

cause the component Gaussians are acting together to model the overall pdf, full covariance

matrices are not necessary even if the features are not statistically independent. The lin-

ear combination of diagonal-covariance Gaussians is capable of modelling the correlations

between feature vector elements. The effect of using a set of M full-covariance Gaussians

can be equally obtained by using a larger set of diagonal-covariance Gaussians”. While

the diagonal covariance cost-saving assumption underlying this statement is true when the

computational complexities of ML training with full covariances are taken into account, it

requires re-evaluation if such offline training costs become secondary to spectral transfor-

mation performance as in the case of BWE.

For LSF parameterization with practical dimensionalities, we show in Section 3.5.1 that

using a GMM with a larger set of diagonal-covariance Gaussian components does not, in

fact, lead to the same effect as that of a GMM with fewer full-covariance Gaussians unless

the number of Gaussians is increased to the extent that diagonal covariances no longer

correspond to lower computational costs. In particular, we compare BWE performance of

full-covariance GMM tuples, {GGfull}, with varying number of Gaussian components, M full,

to that of diagonal-covariance GMM tuples, {GGdiag}, withMdiag Gaussians, in two scenarios

where memory and computational cost during the extension stage are taken into account:

• In the first scenario, we compare BWE performance with Mdiag set to a sufficiently

large value; Mdiag >M full, calculated such that the total number of GMM parameters

is the same for a particular GGdiag-GGfull pair. We find that BWE performance of GGdiag

is still inferior to that of the corresponding GGfull with M full <Mdiag.

• In the second scenario, we compare the performance of GGfull-GGdiag pairs where the

values of Mdiag and M full are calculated such that the total number of operations, or

FLOPs (floating-point operations), needed to perform highband MMSE estimation

per Eq. (3.12), is identical for both covariance types. Again, we find that BWE

performance of GGdiag is inferior to that of the corresponding GGfull.

In other words, even when the number of Gaussians in the diagonal-covariance GMM is

increased such that both memory and computational cost are identical to those of the full-

covariance GMM being compared to, performance remains inferior. In order to achieve

similar performance, Mdiag has to be increased by more than an order of magnitude com-

pared to M full, resulting in an overall increase in the number of GMM parameters to be
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estimated during training as well as in the number of operations required during extension,

compared to a full-covariance GMM. Thus, we conclude that diagonal-covariance GMMs

are, in fact, more computationally expensive compared to full-covariance GMMs if equiva-

lent BWE performance is desired.

To better understand these findings, we examine the MMSE estimation of Eq. (3.12)

more closely. While the source-target feature vector correlations (or cross-band correlations

in the case of BWE) are indirectly captured by the various GMM parameters—A and Λ, i.e.,

the sets of Gaussian component priors and their means and covariances65—during training

on joint vectors (as suggested in [40]), the inter-band cross-covariance terms, {Cyx

i }i∈{1,...,M},
directly reflect these correlations. As the second term in Eq. (3.17) shows, the influence

of the difference terms, {x −µx
i }i∈{1,...,M}, on the MMSE estimate, ŷ, is greater for higher

inter-band to intra-band cross-covariance ratios, {Cyx

i Cxx−1

i }
i∈{1,...,M}.66 By eliminating

such cross-covariances, diagonal covariances effectively result in discarding an important

parameter of the cross-band correlations underlying BWE. We confirm this observation

in Section 3.5.1 by evaluating the average matrix Frobenius and p-, or, Lp-norms (for

p = 1,2,∞) of the multiplicative {Cωx

i Cxx−1

i }
i∈{1,...,M} factors for full-covariance GXΩ GMMs

with increasing number of components, M .67 We find that these norms—representing the

weight of the multiplicative term otherwise discarded by diagonal covariances—are almost

consistently increasing for higher M . In other words, model accuracy and, consequently,

BWE performance, directly correlate with higher ratios of inter-band to intra-band cross-

covariances. In fact, as discussed in Section 5.4.2.1 in the context of high-dimensional

GMM-based modelling, these multiplicative Cyx

i Cxx−1

i factors—representing the weights

on the contributions of the source data to the MMSE estimates of the target—will result

in oversmoothed target data, and hence, an unclear low-quality highband speech signal,

when their norms are too low. In essence, these ratios partially represent a joint-band

GMM’s ability to model information mutual to the disjoint frequency bands rather than

band-specific information.

65See Eq. (2.13).
66While the quantity CyxCxx−1 is, strictly speaking, not a ratio, but rather the product of the matrix

Cyx and the inverse matrix Cxx
−1

, conceptually this product is equivalent to a ratio of Cyx to Cxx.
67Matrix norms represent measures of distance or weight in the space of matrices [108]. For a matrix A ∈

R
m×n, the Frobenius norm is given by ∥A∥F =

¿ÁÁÀm∑
i=1

n∑
j=1

∣aij ∣2. The Lp-norms are given by ∥A∥1 =max
1≤j≤n

m∑
i=1

∣aij ∣,
∥A∥∞ = max

1≤i≤m

n∑
j=1

∣aij ∣, and ∥A∥2 =√λmax(ATA), where λmax(ATA) is the largest eigenvalue of ATA.
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3.3.4 On the number of Gaussian components

As described in Section 2.3.3.4, a GMM—as a multi-modal density—is intuitively a good

means for the modelling of a multi-class distribution. Given sufficient training data and a

training procedure optimized to maximize their likelihood given the model parameters, it

can be reasonably assumed that individual Gaussian component densities of the GMM will

correspond to the individual classes underlying the distribution being modelled. With that

perspective, the choice for the number M of Gaussians in a GMM ultimately depends on

two factors: (a) the nature of the distribution being modelled as determined by the choice

of its feature vector representation, and (b) the amount of data available for training.

The first factor relates to the true number of underlying classes and the complexity

of their distributions. An overall distribution of C well-decorrelated normally-distributed

classes, for example, requires roughly the same number of Gaussians if reliable modelling is

to be achieved, i.e., M ≊ C. On the other hand, a complex distribution comprising highly-

overlapping non-normally-distributed classes will require a larger number of Gaussians, i.e.,

M > C. The nature of the feature vector space also determines the number of underlying

classes. The acoustic space corresponding to a scalar parameter representing the degree

of voicing, for example, rather consists of only a few underlying classes—a voiced class,

an unvoiced one, and one or few more classes representing sounds with mixed voicing. In

contrast, the acoustic space to be modelled by GMMs, in the case of BWE, is much more

complex. It spans a large number of overlapping and non-linearly related acoustic prop-

erties. The realizations of these acoustic properties—parameterized into spectral envelope

feature vectors—exhibit several levels of prominent trends of joint behaviour, comprising

the acoustic classes to be modelled by the multi-modal GMM. In other words, there is

no single true number of underlying acoustic classes. Rather, there are several levels of

acoustic resolution where the number of underlying classes increases with higher resolution,

thereby guiding the choice for the number of Gaussians:

• At the lowest level of resolution, a memoryless spectral envelope space consists of

roughly 8 classes corresponding to manners of articulation as listed in Table 1.1.

• As spectral and modelling resolutions increase, finer classification tends towards den-

sities corresponding to places of articulation.

• A resolution of approximately 40 classes corresponds roughly to the spectral charac-

teristics of the phonemes of Table 1.1 for English.
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• With increasing resolution, more classes will correspond to finer phonemic spectral de-

tail, e.g., separate classes for the onset, steady-state, and trailing portions of phoneme

spectra. With yet further resolution, the acoustic space consists of finer underly-

ing classes representing spectral characteristics of the > 100 allophonic variations of

phonemes (resulting from coarticulation; see Section A.2).

• Whereas the number of classes in a memoryless acoustic space saturates for C in

the order of 100–200 (corresponding to the total number of allophonic variations),

a dynamic space where spectral envelopes can be further classified along a temporal

axis potentially introduces several more levels of finer resolution depending on the

extent and representation of temporal information.

• As shown in Chapter 5, extending spectral envelope representations temporally con-

siderably increases the number of underlying classes, requiring a proportional increase

in the number of Gaussian components. Results show that the number of classes sat-

urates at values roughly corresponding to 100–200ms of temporal information.

We note that the number of classes and their covariances in this increasingly-fine catego-

rization further increase as a result of inter-speaker as well as intra-speaker variability.

While increasing the number of Gaussian components in a GMM generally trans-

lates into a better fit to an underlying distribution with finer spectral—and optionally,

temporal—resolution, and hence, improved BWE performance, such increases are con-

strained by the amount of training data (frames) available. For a full-covariance GMM

with M components modelling a D-dimensional distribution, the relation between M and

the amount Nf of available training data points can be written as

M full =

⎢⎢⎢⎢⎢⎣
Nf

Nf/p(1 +D + D(D+1)
2 )

⎥⎥⎥⎥⎥⎦ , (3.18)

where Nf/p represents the number of data points (frames) required per GMM parameter

such that the parameter is reliably estimated. For a diagonal GMM, the relation is

Mdiag = ⌊ Nf

Nf/p(1 + 2D)⌋ . (3.19)

In [109], it was empirically found that Nf/p ≊ 100. However, through our GMM experiments

described in Section 3.5.2, we show that Nf/p can be as low as 10 with negligible loss in
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BWE performance (∼ 0.1% relative degradation in log-spectral distortion, for example).

3.4 Performance Evaluation

As discussed in Section 1.1.3.3, the intelligibility of telephony speech, although adversely

affected by the PSTN bandwidth limitations, is nevertheless still reasonable for all but the

lowest-bit-rate coders. Moreover, since intelligibility only assesses the recognizability of

speech while quality encompasses many more perceptual properties of sounds, quality has

been the criterion typically used for the evaluation of BWE performance. Generally, the

perceived quality, or naturalness, of speech, is comprised of several factors that are difficult

to quantify, e.g., loudness, clarity, fullness, spaciousness, brightness, softness, nearness,

and fidelity [1]. As such, the optimal means by which to evaluate BWE performance—in

reference to the perceived quality of extended speech—is that of subjective listening tests.

Formal listening tests are known, however, for being time-consuming, labour-intensive, and

potentially expensive. They also suffer from inherent variability caused by any changes in

testing conditions or listener pool. This variability is typically addressed by diversifying

and increasing test data and listener pool as much as possible, thus further adding to the

difficulty associated with formal subjective testing. Informal listening tests, on the other

hand, are ill-equipped for finely quantifying distortions over multiple simulations or for

evaluating the quality of isolated speech aspects such as envelopes or excitation.

In contrast, objective quality measures attempt to analytically measure physical char-

acteristics of the speech signal that closely correlate with quality. They thus provide a

considerable advantage over subjective evaluations by being cheaper and easier to imple-

ment. Such objective measures are, however, clearly suboptimal to subjective ones since:

• Different objective measures tend to focus on different types of distortions. Thus,

in contrast to subjective measures which inherently encompass several perceptual

aspects of speech, no single objective measure can completely replace subjective eval-

uations.

• Objective measures vary considerably in terms of making use of the knowledge about

the human auditory system and speech perception. Among the well known properties

of speech perception, for example, is that sensitivity to smaller differences in time,

amplitude and frequency of sounds generally increases as the frequency of the sound

decreases; i.e., difference limens, or just-noticeable differences, increase with frequency
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[10, Section 4.3.3]. Another important property quantified by the so-called hearing

threshold is that sounds outside the 1–5kHz frequency range require significantly

more energy to be heard than those inside this range [10, Section 4.3.2]. Objective

measures that weight distortions in a manner that takes account of such perceptual

properties provide a better measure of quality than those treating distortions equally

over the wideband frequency range.

In the context of our work on the evaluation of the effects of speech memory—in ref-

erence to speech dynamics—on BWE performance, we study incorporating such memory

with various durations and by different means. Considering the numerous combinations

by which such memory inclusion is investigated in Chapter 5, the difficulties of performing

subjective listening tests become quite apparent. Instead, we evaluate BWE performance

in this work by quantifying distortions in spectral envelopes using a few objective measures

chosen such that the two following requirements are satisfied by the ensemble of measures

as a whole:

Popularity Log-spectral distance/distortion (LSD), or some variant thereof, is the

most common objective measure used in the BWE literature for performance evalua-

tion, e.g., [39, 41, 55, 56, 62, 63, 67, 68, 82]. For the benefit of allowing performance

comparisons, we conform with these works in using LSD.

Perceptual relevance Despite their relatively higher correlation with subjective mea-

sures compared to LSD, the Itakura-Saito distortion and related measures have sel-

dom been used for BWE performance evaluation. In our work, we use two variants

of such measures. Furthermore, we use the superior PESQ—perceptual evaluation

of speech quality—measure, which has been specifically designed using a psychoa-

coustic model to map objective scores to subjective MOS—mean opinion scores. In

contrast to the LSD and Itakura-based measures where distortions are evaluated be-

tween smoothed LP-derived versions of spectral envelopes, no such LP smoothing is

performed by the PESQ model.

These distance measures are described in detail below. Finally, we note that, by using dis-

tance relative to the optimal original wideband signal as the measure of BWE performance,

objective measures do not reflect the aforementioned observation whereby an extended sig-

nal may sound natural despite having mismatches relative to the true wideband signal.
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3.4.1 Log-spectral distortion

Since its formulation in the mid 1970s, log-spectral distortion [110] has been the de facto

measure for the evaluation of LP-based speech coders and quantization techniques. LSD

is a measure of the distance between smooth test LP-based or quantized spectra and their

original reference counterparts. Since the objective of BWE is the reconstruction of spectra

foremost in the missing highband frequency range, LSD is a natural and popular choice

for BWE performance evaluation. For a particular frame, LSD, expressed in decibels, is

generally given by

d2
LSD
=

π

∫
−π

(20 log10 σ∣A(ejω)∣ − 20 log10
σ̂∣Â(ejω)∣)

2
dω

2π
, (3.20)

where ω is the normalized frequency, σ and A(ejω) are the LP gain and inverse filter of

the reference signal frame’s auto-regressive (AR) model, respectively, while σ̂ and Â(ejω)
are those of the test signal frame’s. Since our focus is evaluating highband reconstruction

only in the 4–8kHz range without the effects of other system processing, e.g., lowband

and midband equalization, we isolate this range by limiting the range of the integration in

Eq. (3.20) to the 4–8kHz band. Thus, for the dual-model BWE system, Eq. (3.20) can be

rewritten using the true and MMSE estimates of the highband signal excitation gain, g,68

and the spectral envelope inverse filter, Ay(ejω), obtained through the GMMs GXG and GXΩ

(as defined in Section 3.2.5), respectively, i.e.,

d2
LSD
= 2

ωh

∫
ωl

(20 log10 g∣Ay(ejω)∣ − 20 log10
ĝ∣Ây(ejω)∣)

2
dω

2π
, (3.21)

where ωl and ωh correspond to 4 and 8kHz, respectively.

Performance over a set of N test frames is evaluated either as the mean-root-square

(MRS) average of the set of {d2LSDn
}
n∈{1,...,N}; i.e.,

68As described in Section 3.2.4, the EBP-MGN excitation signal e(n) is a spectrally white signal whose
variance depends on the energy in the equalized 3–4kHz range, i.e., e(n) ≊ βu(n). Since β is the same
for both true and reconstructed highband signals, the LP prediction gains, σ and σ̂, of the true and
reconstructed highband signals, respectively, are related to the true and estimated excitation signal gains,
g and ĝ, respectively, by the same multiplicative constant, i.e., σ ≊ βg and σ̂ ≊ βĝ. Then, by the logarithm
subtraction in Eq. (3.20), the common factor β can be omitted.
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dLSD(MRS) =
1

N

N

∑
n=1

[d2
LSDn
] 12 [dB], (3.22)

or as the root-mean-square (RMS) average,

dLSD(RMS) = [ 1
N

N

∑
n=1

d2
LSDn
]

1
2 [dB]. (3.23)

Generally, the MRS average is lower than the corresponding RMS one, and has typically

been more popular [111]. As such, it is the average used primarily in our work, for BWE

performance evaluation as well as for discrete highband entropy estimation—in Chapters 4

and 5—for the purpose of quantifying certainty about the high band given the narrow band.

In Sections 4.3.5 and 4.4.3.2, we also use an RMS-LSD lower bound to demonstrate the

effects of memory inclusion in improving potential BWE performance. Thus, we will also

report relevant BWE dLSD(RMS) results when needed in the context of determining a BWE

system’s optimality. In the sequel, unless otherwise indicated, we refer to the typical LP-

based MRS average LSD simply as average LSD, denoting it by dLSD. In contrast, reported

RMS averages are explicitly denoted by dLSD(RMS).

Although LSD does not make use of any perceptually-related knowledge in measuring

distances between spectra, it correlates reasonably well with subjective speech quality. A

correlation of 0.63 with the diagnostic acceptability measure (DAM) [112], for example,

was measured in [113]. In the early perceptual studies of Flanagan in [114] on difference

limens, varying intensity alone resulted in a barely perceptible difference of about 1.5dB

for vowels and 0.4dB for synthesized unvoiced sounds with entirely flat spectra. These

intensity figures were related to similar LSD numbers in [110].

Through informal subjective testing on LPC quantization in [115], Paliwal and Atal

later found the following three conditions to jointly represent the threshold for spectral

transparency in the 0–3kHz band (i.e., the threshold below which quantization errors are

inaudible): (a) an average LSD of 1dB, (b) no outlier frames with LSD greater than 4dB,

and (c) less than 2% of frames with LSD in the 2–4dB range. As noted in [109], however,

since level discrimination decreases for higher frequencies (i.e., higher difference limens),

the average LSD threshold for spectral transparency for frequencies above 3kHz is, in fact,

higher than 1dB. Nevertheless, the 1dB average LSD threshold can still be applied to the

highband frequency range but as a rather conservative estimate. Similarly, the LSD values
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for the spectral transparency conditions on outlier frames are rather higher for frequencies

above 3kHz than those of [115].

3.4.2 Itakura-Saito distortion variants

While LSD is widely used for evaluating spectral envelope degradation due to its tractability

and historic value, it does not take into account the differences in perceptual importance of

some aspects of the AR LP speech spectrum representation. For example, errors in spectral

peaks and valleys are weighted equally. While some attempts have been made to improve

the perceptual relevance of LSD resulting in variants that show higher correlation with

subjective measures, BWE performance evaluations have, for the most part, continued to

use the conventional form of Eq. (3.20). An example of such perceptually-weighted LSD

variants is the frequency-weighted LSD [113].

In contrast, the Itakura-Saito distortion measure [116] has some perceptual relevance.

Arising from the formulation of LP as an approximate maximum likelihood estimation, the

Itakura-Saito distortion is an asymmetric gain-sensitive measure that weights spectral den-

sity underestimation more heavily than overestimation (specifically, positive log spectral

differences similar to the integrand of Eq. (3.20) are weighted more heavily than nega-

tive errors) [110]. Since underestimation in LP spectra typically occurs at spectral peaks

corresponding to formants while overestimation occurs at spectral valleys, the Itakura-

Saito distortion has been argued to be a subjectively meaningful distortion measure for

the spectral shape of speech [117]. This follows from the fact that—as described in Sec-

tion 1.1.3.1—the amplitudes and frequency locations of high-energy regions of spectra play

a central role in the perception of sounds. Due to its sensitivity to LP gain, however, a

gain-optimized variant—the Itakura distance or log-likelihood ratio distance—was derived

in [75] by finding the AR model gains that minimize the Itakura-Saito distortion, rendering

it gain-independent. This variant was shown in [113] to have a correlation of 0.73 with the

subjective DAM (versus 0.63 for LSD), reaching up to a correlation of 0.89 with MOS for

an enhanced version that exploits auditory masking properties [118].

Despite the higher correlation of the Itakura-Saito distortion variants with subjective

measures compared to LSD, they have rarely been used in BWE. A notable use is the early

work in [50] using codebook mapping where codebook search is performed using the gain-

normalized Itakura-Saito distortion—also referred to as the likelihood ratio distortion. This



3.4 Performance Evaluation 87

measure is similar to the log-likelihood ratio distortion but without the logarithm operation.

With the same definitions used in Eq. (3.21) where the original and reconstructed

highband spectral envelopes (in the 4–8kHz band) are represented by the AR LP models
g

∣Ay(ejω)∣ and
ĝ

∣Ây(ejω)∣ , respectively, the Itakura-Saito distortion can be written as (dropping

the arguments in Ay(ejω) and Ây(ejω) to simplify notation)

dIS ( g

∣Ay ∣ ,
ĝ

∣Ây ∣) = 2
ωh

∫
ωl

⎡⎢⎢⎢⎢⎣
g2/∣Ay∣2
ĝ2/∣Ây∣2 − log

g2/∣Ay∣2
ĝ2/∣Ây∣2 − 1

⎤⎥⎥⎥⎥⎦
dω

2π
[dB], (3.24)

where the notation dIS(R,T ) indicates R is the reference spectrum, and T is the test

spectrum under evaluation.

The Itakura-Saito distortion, dIS, does not fulfill the symmetry condition for distance

metrics [110]; i.e., dIS(R,T ) ≠ dIS(T,R). A symmetrized version of it, however, can be

constructed by the arithmetic mean;

d
∗
IS ( g

∣Ay ∣ ,
ĝ

∣Ây ∣) = 12 [dIS ( g

∣Y ∣ ,
ĝ

∣Ŷ ∣) + dIS ( ĝ

∣Ŷ ∣ ,
g

∣Y ∣)] [dB], (3.25)

which, by substitutions from Eq. (3.24), can be written as

d
∗
IS ( g

∣Ay ∣ ,
ĝ

∣Ây ∣) = 2
ωh

∫
ωl

⎧⎪⎪⎨⎪⎪⎩cosh
⎡⎢⎢⎢⎢⎣
g2/∣Ay∣2
ĝ2/∣Ây∣2

⎤⎥⎥⎥⎥⎦ − 1

⎫⎪⎪⎬⎪⎪⎭
dω

2π
, (3.26)

and is, hence, called the COSH measure [110]. The effect of symmetrizing dIS is to weight

large differences in log spectra (regardless of error sign, i.e., regardless of whether the error

is due to under- or over-estimation) more heavily than the LSD measure [110]. Since larger

deviations generally correspond to the regions of changing formant frequencies, d
∗
IS can

be viewed as a symmetric distance measure that emphasizes more perceptually-important

errors in spectra.

Similarly, the gain-optimized Itakura distortion is also asymmetric; it is given by

dI ( g

∣Ay ∣ ,
ĝ

∣Ây ∣) ≜min
ĝ>0

dIS ( g

∣Ay ∣ ,
ĝ

∣Ây ∣)
= log( âT

y Ryây

g2
), (3.27)
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where âT
y is the reconstructed LP coefficient vector and Ry is the Töeplitz autocorrelation

matrix of the original signal LP model. In the same manner described above for the

asymmetric dIS, we symmetrize dI by the arithmetic mean; i.e.,

d
∗
I =

1

2
[dI ( g

∣Ay ∣ ,
ĝ

∣Ây ∣) + dI ( ĝ

∣Ây ∣ ,
g

∣Ay ∣)] [dB]. (3.28)

As described for LSD, we evaluate performance over a test set of N frames by the simple

averages d∗
IS
= 1

N ∑N
n=1 d

∗
ISn

and d∗
I
= 1

N ∑N
n=1 d

∗
In
. By employing both d∗

IS
and d∗

I
to evaluate the

effect of memory inclusion on BWE performance, not only do we obtain relatively higher

subjectively-correlated measures of performance improvement, but more importantly, we

also obtain an implicit breakdown of that improvement into separate gain-related and

spectral shape-related improvements (by exploiting the gain-sensitivity of d∗
IS
and the lack

of it for d∗
I
).

3.4.3 Perceptual evaluation of speech quality

As described in the Section 3.4 preamble, it is our view that in order for an objective evalu-

ation to provide a complete picture of BWE performance, such an evaluation should make

use of an ensemble of measures to collectively ensure that results: (a) can be compared to

those of other BWE techniques in the literature where objective measures are commonly

employed, and (b) are perceptually relevant in the sense that such objective results corre-

late with subjective ones as much as possible. In our work, we satisfy the first requirement

by employing the most popular objective evaluation measure, LSD. While Itakura-based

distortion variants provide a more subjectively-correlated measure of BWE performance,

their value lies rather in the finer detail they provide about the quality of reconstructed

highband spectra in terms of their shapes and gains. To satisfy the perceptual-relevance

requirement, we make use of the superior PESQ—perceptual evaluation of speech quality—

ITU-T P.862.2 standard [119] for the objective assessment of the perceived quality of wide-

band telephony speech—a wideband extension to the earlier PESQ ITU-T P.862 standard

[120] intended for narrowband telephony speech.

Starting in the early 1990s, researchers have been attempting to improve the objec-

tive assessment of perceived telephony speech quality. The motivation for this research

arose from the increase in the number of transmission and coding technologies for digi-

tal telephony services, thereby introducing new types of spectral and temporal distortions
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affecting the subjective quality of telephony speech (e.g., packet loss, variable delay, fron-

tend clipping, etc.) for which classical quality measurement techniques—using concepts

like signal to noise ratio, frequency response functions, etc.—have become grossly inac-

curate [121]. To account for the perceptual effects of such distortions, perception-based

approaches rather attempt to quantify these distortions in time and frequency with weight-

ing derived from psychoacoustic models such that distortions are effectively translated into

subjectively-correlated scores. During a training stage, the system’s parameters for the

detection and quantification of the distortions under consideration are optimized under

various testing conditions such that final objective scores are maximally correlated with

a particular subjective measure, typically MOS scores from an ACR (absolute category

rating) evaluation.69

Several perception-based assessment techniques have been proposed and evaluated by

the ITU-T in a series of benchmark tests, culminating in the adoption of the PESQ tech-

nique in ITU-T Recommendation P.862.70 For a variety of 22 benchmark ITU experiments

covering mobile, fixed and VoIP telephony network and codec conditions, PESQ achieves

objective scores with an average correlation of 0.935 with subjective MOS scores [120, 121].

Consistency of the PESQ measure was further confirmed by achieving a similar correla-

tion of 0.935 on a set of 8 independent experiments—unknown during the development of

PESQ—used in ITU-T’s final validation [120, 121]. Such a superior subjective correlation

with MOS scores over a wide range of telephony distortions makes the PESQ measure quite

attractive for our purposes of evaluating BWE performance, especially when considering the

aforementioned difficulties associated with performing a large number of subjective listen-

ing tests for the numerous combinations by which we investigate speech memory inclusion.

Compared to the LSD and Itakura-based measures where distortions can be easily repre-

sented mathematically on a per-frame basis independently of surrounding frames, PESQ,

however, is rather a quite complex measure whose calculation involves many time- and

frequency-domain processing steps over the length of a test speech signal. As such, we

detail the construction and optimization of the PESQ algorithm separately in Appendix B.

In our context of BWE performance evaluation, the PESQ algorithm’s reference signal is

the original wideband test speech while the test signal is that extended through BWE. For

69See Footnote 16.
70The PESQ P.862 standard, in fact, replaced the earlier perceptual speech quality measure (PSQM)

and measuring normalizing blocks (MNB) approaches standardized in Recommendations P.861 and P.861.1,
respectively.
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a test material of M speech files, we evaluate the perceived quality of the extended speech

using the simple average of the per-file PESQ scores, i.e, Q
PESQ
= 1

M ∑M
m=1QPESQm

, where

the MOS-like QPESQ score typically ranges from 1.0 (bad) to 4.5 (no distortion) [120–122].

Finally, we note that, unlike LSD and the Itakura-based measures where we limit dis-

tortion calculation to the 4–8kHz range (by limiting the integrations in Eqs. (3.21) and

(3.24)), the PESQ algorithm compares and, in fact, requires the original and extended sig-

nals over the wideband 50–7000Hz range.71 As such, PESQ scores reported in the sequel

not only assess highband GMM-based extension in the smaller 4–7kHz range, but they

also take into account the distortions associated with imperfect lowband (< 300Hz) and

midband (3400–4000Hz) equalization-based extensions. However, since in all experiments:

(a) we compare speech with highband extensions obtained using some means of memory

inclusion to speech with extensions obtained by the conventional static GMM-based

approach, and

(b) the content below 4kHz is identical for any particular test file regardless of the

method used for highband extension (since the lowband and midband equalization-

based extensions are independent of extension above 4kHz),

any improvements obtained in Q
PESQ

will directly correspond to improved highband exten-

sion above 4kHz.

3.5 Memoryless BWE Baseline

In order to arrive at a well-performing memoryless baseline given the amount of training

data described in Section 3.2.10 and our parameterization and dimensionality choices de-

scribed in Section 3.2.7, we study the role of the remaining variables on BWE performance.

Specifically, we investigate the effects of the number and covariance type of the Gaussian

kernels in the model’s GXΩ and GXG GMMs, as well as the effect of the amount of data

available for training.

3.5.1 Effect of number and covariance type of Gaussian components

To compare BWE performances using full- and diagonal-covariance GMMs while simul-

taneously investigating the effect of the number of Gaussian components, we train two

71Level alignment, for example, for both reference and test signals is performed based on the narrowband
content in the 300–3000Hz range [121].
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separate sets of (GXΩ,GXG) GMM tuples. For the full- and diagonal-covariance tuples given

by

GGfull ∶= (Gfull
XΩ ∶= G(x,ω;M full, ⋅),Gfull

XG ∶= G(x, g;M full, ⋅)) , (3.29)

and

GGdiag ∶= (Gdiag
XΩ ∶= G(x,ω;Mdiag, ⋅),Gdiag

XG ∶= G(x, g;Mdiag, ⋅)) , (3.30)

respectively, the two sets are {GGfull
i } and {GGdiag

j }, where i, j ∈ {1, . . . ,8}, M full
i = 2i, and

M
diag
j = 2j.

Figure 3.4 illustrates LSD performance for GGfull and GGdiag as a function of M . As

expected, performance consistently improves with higher M values regardless of covariance

type. Secondly, at a particular M = Mdiag = M full, i.e., i = j, GGdiag has fewer parameters

compared to GGfull, translating into fewer degrees of freedom for acoustic space modelling

and, hence, expectedly poorer BWE performance.
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Fig. 3.4: BWE dLSD performance as a function of the number of Gaussian components, M , for
the GMM tuples GGfull and GGdiag, defined in Eqs. (3.29) and (3.30), respectively. Data labels
represent the numbers of GMM parameters, Np.

While Figure 3.4 illustrates the performance gap between Gdiag and Gfull GMMs for a

fixed number of Gaussians, it is rather the performance as a function of both:
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1. the total degrees of freedom available for modelling, represented by the total number

of GMM parameters, Np, in a GGfull or GGdiag tuple; and

2. the computational complexity of performing extension through MMSE estimation per

Eq. (3.12), represented by the total number of operations per input frame, NFLOPs/f;

that can determine the superiority of one type of covariances over the other.

Given that Dim([X
Ω
]) = 16 and Dim([X

G
]) = 11, the total number of GMM parameters

available in the tuple (Gfull
XΩ ∶= G(x,ω;M full, ⋅),Gfull

XG ∶= G(x, g;M full, ⋅)) for the modelling of

the [X
Ω
] and [X

G
] spaces is given by

N full
p =M full[(1 + 16 + 0.5(16 ⋅ 17)) + (1 + 11 + 0.5(11 ⋅ 12))] =M full[231], (3.31)

while that for (Gdiag
XΩ ∶= G(x,ω;Mdiag, ⋅),Gdiag

XG ∶= G(x, g;Mdiag, ⋅)) is
Ndiag

p =Mdiag[(1 + 16 + 16) + (1 + 11 + 11)] =Mdiag[56]. (3.32)

Using Eqs. (3.31) and (3.32) to calculate the LSD performance obtained in Figure 3.4 as

a function of Np results in Figure 3.5(a). In effect, we are comparing the performance

of {GGdiag} to that of {GGfull} at those particular values of Mdiag = kM full where k > 1 is

determined such that the number of GMM parameters is the same for both GGdiag and

GGfull, i.e., N
diag
p = N

full
p . It is clear from Figure 3.5(a) that even when the number of

Gaussians in the diagonal-covariance GMM tuple is increased such that the overall number

of parameters is the same as that of the full-covariance GMM tuple being compared to,

performance remains inferior. In order to achieve similar performance, Mdiag has to be

increased by more than an order of magnitude compared to M full (e.g., dLSD performance is

roughly the same at M full = 4 and Mdiag = 64), resulting in an overall increase—rather than

a decrease—in the number of GMM parameters to be estimated during training compared

to a full-covariance GMM (N
diag
p = 3,584 compared to N

full
p = 924 for Mdiag = 64 and

M full = 4).

To perform a similar analysis of BWE performance as a function of per-frame extension-

stage computational complexity, NFLOPs/f , we examine MMSE estimation more closely. It is

clear from Eqs. (3.16) and (3.17) that the computational cost associated with MMSE esti-

mation is dominated by the matrix inversion and determinant operations—the most expen-

sive in those formulae; evaluating {E [Y∣x, λi]}i∈{1,...,M} requires calculating {Cxx−1

i }
i∈{1,...,M}
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(a) BWE dLSD performance as a function of the number of GMM parameters, Np.

102 103 104 105 106
5.0

5.2

5.4

5.6

5.8

6.0

6.2

6.4

6.6

2

2

4

4

8

8

16

16

32

32

64

64

128

128

256

256

d
L
S
D
[d
B
]

NFLOPs/f

(b) BWE dLSD performance as a function of the number of extension-stage computations per frame, NFLOPs/f .

Fig. 3.5: BWE dLSD performance as a function of memory (represented by Np, the number of
GMM parameters) and computational complexity (represented by NFLOPs/f , the number of per-
frame computations) required during extension for the GGfull and GGdiag GMM tuples defined in
Eqs. (3.29) and (3.30), respectively. Data labels representM , the number of Gaussian components.
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while evaluating {N (x;µx
i ,C

xx

i )}i∈{1,...,M} requires calculating both {Cxx−1

i }
i∈{1,...,M} and{∣Cxx

i ∣}i∈{1,...,M}. Representing narrowband and highband dimensionalities in the two joint

GMMs (GXΩ and GXG), by p and q, respectively, we have: (a) p ∶= Dim(X) = 10 and

q ∶= Dim(Ω) = 6 for GXΩ, and (b) p ∶= Dim(X) = 10 and q ∶= Dim(G) = 1 for GXG. Thus,

the Cxx
i matrix inversion and determinant operations result in an overall extension-stage

complexity of O(p3) for MMSE estimation using full-covariance GMMs, compared to only

O(p) when using diagonal covariances.72 While these orders of complexity favour diagonal-

covariance GMMs over those with full covariances, they do not, however, account for two

important factors:

1. As described in Section 3.3.3, a higher number of components in the Gaussian mixture

is required when using diagonal covariances compared to using full covariances since

such diagonal covariances are essentially an approximation.

2. In practice, the rather costly operations in Eqs. (3.16) and (3.17) associated with

the full Cxx

i and Cyx

i matrices—namely, matrix multiplication, inversion, and the

determinant—can be eliminated from online MMSE estimation altogether. This fol-

lows from the fact that these matrices—determined during the training stage—are

already known and fixed beforehand.

By performing the following matrix operations offline for all i ∈ {1, . . . ,M} prior to exten-

sion: (a) −1
2C

xx−1

i , (b) Cyx

i Cxx−1

i , and (c) αi

(2π)p/2∣Cxx
i
∣1/2 , the total number of FLOPs required

to perform MMSE estimation per Eq. (3.12) for each input narrowband frame reduces to:73

N
diag
FLOPs/f =M

diag(4p + q + 21) + q − 1, for Gdiag, (3.33)

and

N
full
FLOPs/f =M

full(2p2 + 2pq + 2p + q + 21) + q − 1, for Gfull. (3.34)

For Dim([X
Ω
]) = [10

6
] and Dim([X

G
]) = [10

1
], Eq. (3.33) gives Ndiag

FLOPs/f =M
diag[129]+ 5 for the

diagonal-covariance GMM tuple GGdiag, while Eq. (3.34) gives N
full
FLOPs/f = M

full[629] + 5 for

GGfull. Using these relations, we obtain the LSD performance illustrated in Figure 3.5(b)

as a function of NFLOPs/f complexity, for both GGdiag and GGfull. Similar to the findings of

72Most algorithms for matrix inverse or determinant calculation involve O(n3) complexity. Among those
algorithms, Gaussian elimination [108, Section 3.2] is the most common. It requires ≈ 2n3/3 operations.

73Following [123], we assume that the exponential operation requires 20FLOPs for x86 (32-bit) archi-
tectures.
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Figure 3.5(a), we find that, even with Mdiag increased relative to M full such that overall

extension-stage computational cost is identical in both GMM implementations, diagonal-

covariance GMMs remain inferior to those with full covariances. Thus, we conclude that

diagonal-covariance GMMs are, in fact, more computationally expensive compared to full-

covariance GMMs if equivalent BWE performance is desired.

The lower LSD performance of diagonal-covariance GMMs compared to those with full

covariances, even at equivalent complexity as measured in both scenarios above, indicates

an inferior ability of diagonal-covariance GMMs to model the cross-band correlations fun-

damental to bandwidth extension. Indeed, by using diagonal covariances, cross-covariance

terms—which explicitly capture cross-band correlations—are eliminated. Instead, it is as-

sumed that such cross-band information will indirectly be captured by other parameters

of the model, i.e., component priors, means, and variances, through the joint modelling

action of the Gaussian components, provided that the number of components is sufficiently

increased. We empirically showed above that this assumption is invalid; simply substitut-

ing cross-covariance terms by an equal number of additional diagonal-covariance Gaussian

parameters is insufficient. The cross-band information modelled by cross-covariance terms

requires, in fact, an exponentially higher number of such diagonal-covariance Gaussian

parameters.

As Eq. (3.17) demonstrates, cross-covariance terms explicitly influence MMSE estima-

tion through the inter-band to intra-band cross-covariance ratios, {Cyx

i Cxx−1

i }i∈{1,...,M}. A

joint-band GMM’s ability to model information mutual to the disjoint frequency bands,

rather than band-specific information, is explicitly represented by these ratios, in contrast

to the indirect and equally shared modelling through other model parameters. The higher

these ratios are—on average—for a GMM, the more superior this full-covariance GMM is

for BWE through MMSE, and the more difficult it is to achieve comparable performance

through a diagonal-covariance GMM. Figure 3.6 illustrates, for example, the average Frobe-

nius and Lp-norms74 (for p = 1,2,∞) for {Cωx

i Cxx−1

i }
i∈{1,...,M} as a function of M . Com-

paring Figure 3.6 to Figure 3.4 confirms the strong correlation between LSD performance

and a full-covariance GMM’s efficiency in modelling cross-band correlations represented

by inter-band to intra-band cross-covariance ratios. The increased inefficiency of diagonal-

covariance GMMs compared to full-covariance ones with higher average norms for the

Cyx

i Cxx−1

i ratios is indirectly illustrated in Figure 3.4; while using a diagonal-covariance

74See Footnote 67.
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GMM (with Mdiag = 64) requires a relative increase of 389% in model parameters relative

to a full-covariance GMM (with M full = 4) to achieve an dLSD ≊ 5.4dB, the relative increase

required to achieve a similar dLSD ≊ 5.3dB is 776% (at Mdiag = 256 and M full = 8).
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Fig. 3.6: Average norms of inter-band to intra-band Gaussian component cross-covariance ratios,

{∥Cωx
i Cxx−1

i ∥
porF
}
i∈{1,...,M}, for {GfullXΩj

∶= G(x,ω;M full
j , ⋅)}j∈{1,...,8} where M full

j = 2j .

As a result of these findings, we only use full-covariance GMMs for our memoryless

BWE baseline, as well as elsewhere in the sequel.

3.5.2 Effect of amount of training data

As discussed in Section 3.3.4 and showed by the results in Figure 3.4, increasing the number

of Gaussian components, M , in a GMM translates into a better fit to the underlying

distribution with the ability to capture finer details of the modelled space, and consequently,

improved BWE performance. Such increases are generally constrained, however, by the

amount of training data available. To assess the reliability of the EM-trained GMMs

used in our work given the training data available through TIMIT, we perform a series of

experiments where BWE performance is evaluated for varying amounts of GMM training

data. Representing the relation between training data amount and GMM complexity by
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the average number of data points (frames) per GMM parameter, i.e., Nf/p = Nf/Np, allows

our results to be independent of GMM dimensionalities.

Using full-covariance GMM tuples, {(Gfull
XΩ ,Gfull

XG )}, with M full = 16 and N
full
p given by

Eq. (3.31), we obtain the BWE performance—evaluated on the TIMIT test data described

in Section 3.2.10—illustrated in Figure 3.7 as a function of Nf/p. Figure 3.7 shows that

BWE performance is virtually unaffected, i.e., the estimated GMM parameters are reliable,

for Nf/p ≥ 10. Compared to Nf/p = 100, the value suggested in [109] for reliable GMM

parameter estimation, degradation in BWE performance with Nf/p = 10 is quite negligible

(relative degradations in dLSD and Q
PESQ

are ≈ 0.13% and ≈ 0.05%, respectively). Thus,

for the maximum dimensionality of D = Dim ([X
Ω
]) = 16, Nf/p = 10 frames/parameter, and

Nf ≊ 1.125 × 106 frames75, Eq. (3.18) gives Mmax = 735 for the maximum reliable number of

Gaussian components in Gfull
XΩ , thereby confirming the reliability of the results in Figure 3.4.
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Fig. 3.7: Average BWE dLSD and QPESQ performance as a function of the amount of train-

ing data represented by Nf/p using full-covariance GMM tuples, {(GfullXΩ ,GfullXG
)}, with M full = 16.

Performance shown is the average over 10 GMM tuple training instances at each Nf/p value.

3.5.3 Baseline performance

Based on the results presented above, we select the full-covariance GMM tuple (Gfull
XΩ ,Gfull

XG
)

with M full = 128 for our memoryless BWE baseline. Table 3.1 lists the baseline BWE

performance—evaluated for the TIMIT core test set with Nf ≊ 58×103 frames76—using the

75See Section 3.2.10.
76See Section 3.2.10.
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measures detailed in Section 3.4.77

Table 3.1: Speaker-independent memoryless BWE baseline performance using full-covariance

GMMs with M = 128, and LSF parameterization with Dim ([X
Ωy
]) = 16 and Dim ([X

G
]) = 11.

dLSD [dB] dLSD(RMS) [dB] Q
PESQ

d∗
IS
[dB] d∗

I
[dB]

5.11 5.82 3.06 10.53 0.5835

3.6 Summary

A thorough description of the dual-mode system used as the basis for BWE throughout

our work was presented. Most relevant to our later investigations of the effect of memory

inclusion on BWE performance is the GMM-based statistical modelling employed in order

to reconstruct highband spectra in the 4–8kHz range. As such, particular attention was

given to the GMM framework. A general derivation was presented for joint density MMSE

estimation using multi-modal densities, which was then applied to the GMM special case. In

addition, the role of the number and covariance type of Gaussian components as well as the

relation between the amount of training data available and GMM complexity were carefully

examined. This analysis, quite important to establish and confirm the reliability of GMM-

based BWE in general, is especially lacking in the literature. Based on our findings, we

concluded that full-covariance GMMs are, in fact, more computationally efficient compared

to diagonal-covariance GMMs with equivalent performance, and hence, are used as the

means for statistical modelling in our work.

For BWE performance evaluation, an ensemble of objective measures was selected such

that results obtained in our work are: (a) comparable to those of previous works (LSD),

(b) quite highly correlated with subjective measures (PESQ), and (c) sufficiently detailed

to allow separately studying gain-related and spectral shape-related BWE performance

improvements (symmetrized Itakura-Saito and Itakura distortion measures).

Finally, based on the analysis described above, a well-performing memoryless BWE

baseline for the work to follow was selected and its performance presented using the chosen

ensemble of objective measures.

77Since GMM training is sensitive to initialization conditions, all GMM-derived results listed here and
in the sequel, including BWE performance figures such as those of Table 3.1, are based on averages of at
least 4 realizations with random initializations.
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Chapter 4

Modelling Speech Memory and Quantifying

its Effect

4.1 Introduction

In contrast to the considerable research published on BWE techniques, only a few re-

searchers have actually investigated the correlation assumption between narrowband and

highband spectral envelopes. In [124], an approximate lower bound on the mutual infor-

mation (MI) between narrow- and high-frequency bands was derived. This initial attempt

was extended in [109] to quantify the certainty about the high band given the narrow band

by determining the ratio of the MI between the two bands to the discrete entropy of the

high band. The authors show that this ratio (representing the dependence between the

two bands) is quite low. The relation of this ratio to BWE performance was further con-

firmed in [125] by deriving an upper bound on achievable BWE performance—represented

by log-spectral distortion (LSD)—given a certain amount of MI and highband entropy.

Despite the low dependence, BWE schemes have, for the most part, continued to use

memoryless mapping between spectra of both bands. It was thus concluded in [109] that

these schemes “perform reasonably, not because they accurately predict the true high band,

but rather by extending the narrow band such that the overall wideband signal sounds pleas-

ant”. Accordingly, BWE methods should make use of perceptually-relevant properties to

improve the subjective quality of extended speech. This implies that, for the vast majority

of BWE schemes employing linear prediction for the representation of spectral envelopes,

characteristics of the excitation of input speech, e.g., gain or voicing, should be included in

the feature vector mapping in addition to the well-tried spectral envelope parameters [126].



100 Modelling Speech Memory and Quantifying its Effect

As described in Sections 1.4 and 2.3.3.4, a few works, based primarily on hidden Markov

models (HMMs), have been proposed for the purpose of exploiting the benefits of speech

memory to improve BWE performance, most notably [39, 84, 87]. Due to their high

complexity and training data requirements, however, these HMM-based approaches are

limited to first-order Markov modelling—effectively restricting the memory modelled to

only 20–40ms. It has been shown, however, that speech temporal information extends up

to 1000ms [127], with energies of modulation spectra (spectra of the temporal envelopes of

the signal) peaking around 4–5Hz—corresponding to 200–250ms [128]. This latter finding

coincides with the aforementioned conclusion in [10, Section 5.4.2] that the perception of

phonemes utilizes dynamic acoustic patterns over sections of speech corresponding roughly

to syllables.

In addition to these HMM-based approaches, a handful of other works have also been

proposed to make use of speech dynamics to improve BWE performance. However, these

works, discussed in Sections 5.3.1 and 5.4.1, are also characterized either by their limitations

on the extent of memory used, e.g., [129–132], by their excessive computational require-

ments, e.g., [133], and/or by using a speech production model other than the source-filter

model (thereby making performance comparisons to source-filter model-based techniques

nearly impossible without subjective evaluations), e.g., [132].

While all approaches exploiting memory are reported to show superior performance

compared to memoryless ones, it is notable that none has explicitly quantified the gain of

exploiting the considerable information in the dynamic temporal and spectral patterns of

speech. In our work presented in this chapter, first introduced in [134] and continued in

[135], we explicitly account for speech memory through delta features [136]—widely used

in speech recognition. Delta features incorporate the considerable temporal correlation

properties in long-term speech, otherwise neglected by conventional static parametrization.

They can be applied to almost any form of parametrization, thus partially transferring

the task of capturing temporal information from the modelling space (through GMMs or

HMMs) to the frontend (i.e., parameterization). By substituting higher-order static feature

vectors by dynamic vectors comprising lower-order static parameters as well as their delta

features, speech dynamics are modelled while overall feature vector dimensionalities can

be preserved, thereby requiring no increase in statistical modelling complexity or training

data requirements. More importantly for our work, delta features are obtained through

linearly weighted differences between neighbouring static feature vectors. Thus, they also
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provide a significant advantage over first-order Markov chains; the extent of embedded

temporal information for a signal frame is controlled by varying the span of neighbouring

static feature vectors involved in the calculation of the delta features for that specific frame.

This property eliminates the need for complex HMM structures (with high-order Markov

chains), and hence, also eliminates the associated increases in computational resources and

data required for statistical training. Through this frontend-based memory inclusion, we

study the effects of including up to 600ms of memory (300ms on each side of a signal

frame) in speech parametrization.

To examine the effect of memory inclusion on highband certainty, we consider mel-

frequency cepstral coefficients (MFCCs) [137] as well as line spectral frequencies (LSFs)

[93] for the parameterization of the same signals representing the two speech frequency

bands as described in Chapter 3, i.e., the midband-equalized narrowband (0.3–4kHz) and

highband (4–8kHz) signals. MFCCs were shown in [126] to have the highest class separa-

bility and second highest MI content among several speech parameterizations, while LSFs

are widely used in speech coding for their quantization error resilience and perceptual sig-

nificance properties. Similar to [109] and [125], we estimate MI using the numerical method

of stochastic integration, where the marginal and joint distributions of the narrow and high

band parameterizations are modelled by Gaussian mixture models (GMMs) for both static

and dynamic (static+delta) acoustic spaces. Rather than estimate the discrete highband

entropy indirectly from the differential one through scalar quantization (SQ) of the high-

band space as in [109] (where stochastic integration is also used to estimate differential

entropy), we estimate discrete entropy directly by vector quantizing (VQ) the highband

space such that the average LSD corresponding to all quantized highband feature vectors is

equal to 1dB; the first spectral transparency threshold of [115].78 Our VQ approach results

in more realistic and accurate discrete entropy estimates than those of [109] and, more

importantly, allows entropy estimation for LSFs as well as MFCCs (unlike the indirect SQ

approach of [109] applicable only to MFCCs).

By varying the number of static feature vectors involved in the estimation of the delta

features, we show that frontend-based memory inclusion can increase certainty about the

highband by over 100% for both LSFs and MFCCs. Expressed alternatively, the rela-

tive decrease in uncertainty about the highband—corresponding to a potential decrease

in BWE distortion—is shown to be, approximately, 20% and 38%, for LSFs and MFCCs,

78See Section 3.4.1.
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respectively. Furthermore, our results show that certainty gains due to memory inclusion

saturate at durations corresponding roughly to inter-phoneme (or syllabic) temporal infor-

mation. This latter result coincides with earlier findings about the contribution of memory

to phoneme identification. Phonemes with mostly highband energy, e.g., fricatives, stand

to have the most benefit of such short-term syllabic memory inclusion. Since BWE schemes

generally perform poorly when reconstructing such phonemes, we expect BWE performance

to be generally improved by memory inclusion.

4.2 Speech Parameterization

4.2.1 On the perceptual properties of speech

As described in Section 3.2.2, LP-derived LSFs have the desirable properties of synthesis fil-

ter stability, error resilience and localization, and correspondence to properties of formants

and valleys. Since the vast majority of BWE techniques employ the source-filter model of

Section 2.3.1, these properties make LSFs particularly attractive for such LP-based BWE

schemes, especially so for those employing GMM-based statistical estimation. LSFs, how-

ever, do not incorporate some of the most important aspects of speech perception—the

nonlinear relation between a sound’s perceived pitch and the sound’s frequency [138], and

the critical-band nature of perception [139]. The first aspect relates to the psychoacoustic

property whereby the perceived pitch is essentially linear with frequency up to 1kHz and

logarithmic at higher frequencies, resulting in the perceptual mel scale for pitch [138].79

The mel scale, thus, gives higher resolution to lower frequencies. The most popular linear-

to-mel-scale frequency mapping is that of [10, Section 4.3.6];

fmel = 2595 log10 (1 + fHz

700
) . (4.1)

The second aspect relates to another important psychoacoustic property whereby the per-

ception of sound stimuli is defined by ranges of sound frequencies known as critical bands

[139]. The loudness of a band of noise at constant sound pressure remains constant as the

79The mel scale is a perceptual scale of the pitch of pure tones where tone frequencies in Hz are mapped
to subjective pitch values in mels as judged by listeners. As a reference point, the pitch of of a 1 kHz tone,
40dB above the perceptual hearing threshold, is defined as 1000mels. Other subjective pitch values in
mels are obtained by adjusting the frequency of a stimulus tone such that its perceived pitch is half or
twice that of a reference tone.
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noise bandwidth increases up to the width of the critical band, beyond which increased

loudness is perceived. Similarly, a sub-critical bandwidth multi-tone sound of constant

intensity is perceived as loud as an equally intense pure tone at the centre frequency of

the band, regardless of the overall frequency separation of the multiple tones. When the

separation exceeds the critical bandwidth, the complex multi-tone sound is perceived as

becoming louder. Below 500Hz, critical bandwidth is roughly constant at ≈ 100Hz, increas-

ing roughly logarithmically with higher frequencies above 1kHz [10, Section 4.3.6]. Closely

related to the mel scale, the Bark scale—proposed in [140]—relates acoustical frequency to

perceptual frequency resolution where one Bark covers one critical bandwidth.

The subjective importance of these two perceptual properties is demonstrated by the

superior subjective correlation of PESQ scores with MOS relative to other distortion mea-

sures (as described in Section 3.4.3, the PESQ perceptual model explicitly employs bin-

ning of FFT coefficients on a modified Bark scale). Given their importance, the lack

of accounting for these properties in LSF parameterization motivates us to seek a more

perceptually-inspired parameterization to be used—in addition to LSFs—for the investiga-

tion of cross-band correlations described in this chapter. As described below, the properties

of mel-frequency cepstral coefficients (MFCCs) make them a means of parameterization well

suited for the task. While such a parameterization may not be as amenable to actual high-

band speech reconstruction as LSFs are, our focus in this chapter is to rather quantify the

role of memory in improving cross-band correlations, represented by certainty about the

highband. As such, using the more subjectively-correlated MFCCs, in addition to LSFs as

reference, makes our findings more relevant perceptually.

4.2.2 MFCCs

In contrast to the conventional cepstrum defined as the Fourier transform of the loga-

rithm of the signal spectrum, MFCCs—attributed to Mermelstein [137]—parameterize a

short-time spectrum perceptually through filterbank analysis—simulating critical bands—

on the mel scale, thereby modelling the two perceptual properties described above. In ad-

dition, MFCC parameterization employs the discrete cosine transform (DCT) rather than

the Fourier transform. We apply MFCC parametrization—MFCCs are denoted below by{cn}n∈{0,...,K−1} for K mel-scale filters—of the midband-equalized narrowband (0.3–4kHz)

and highband (4–8kHz) signals as follows:
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1. No pre-emphasis: Typically, a high-pass filter with a single pole (at z = −0.97, for
example) is used to compensate for the long-term average speech energy roll-off of

6dB/octave and to generally emphasize high-frequency content. For our implemen-

tation, however, we do not apply such pre-emphasis.80

2. Windowing: The modified Hann window described in Section 3.2.8 is used to mit-

igate the edge effect of discontinuities due to framing. As in Section 3.2.8, we use

20ms frames with 50% overlap.

3. Power spectrum: FFT (Fast Fourier transform) is applied followed by a magnitude

and squaring operation (thereby discarding phase).

4. Mel-scale filterbank binning: Mel-scale triangular filters (based on the conversion

formula of Eq. (4.1)) are applied to the power spectrum in each of the two frequency

bands such that the squared absolute values of FFT coefficients within each filter are

summed resulting in mel-scale filterbank energies. Corresponding to the perceptual

measurements of Zwicker in [139] where approximately 21–22 critical bands span the

0–8kHz frequency range, we use 15 filters for the 0–4kHz narrow band and 7 for the

4–8kHz high band with the filters being equally-spaced within each band. Similar

to [109], we ensure there is no overlap between the two sets of filters in order to

avoid introducing artificial dependencies between the two disjoint frequency bands.

Figure 4.1 illustrates the two filter banks.

5. Log operation: Filterbank log-energies are obtained.

6. DCT: The binned mel-scale log spectrum is converted to the cepstral domain through

80As described in Section 4.3.3, Euclidean distances between MFCC vectors directly correspond to a
perceptually-weighted LSD measure provided that MFCCs are not liftered—i.e., filtered in the cepstral
domain—and c0 is scaled appropriately to ensure unitary DCT. Pre-emphasizing speech through time-
domain filtering corresponds to additive liftering in the cepstral domain that would unevenly bias the LSD
measure towards higher frequencies, and hence, requires undoing the liftering by subtracting the MFCC
vector corresponding to the pre-emphasis filter from MFCC feature vectors prior to LSD calculation.
Applying pre-emphasis, however, resulted in no tangible gains in our MFCC-based certainty evaluations

described in this chapter, as well as in the BWE performance evaluations described in Chapter 5. As
such, we concluded that the additional computational costs associated with pre-emphasis filtering and
unliftering—albeit minor—were unjustified.
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Fig. 4.1: Mel-scale equally-spaced filter bank used for MFCC parameterization. Frequency scale
conversion is based on Eq. (4.1).

a discrete cosine transform (DCT) [141]. In particular, we use Type-II DCT per

cn = a
K−1

∑
k=0

(loge εk) cos (n(k + 1

2
) π
K
) , where a =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

1
K
, for n = 0,√

2
K
, for n = 1, . . . ,K − 1,

(4.2)

cn is the nth MFCC, K is the number of mel-scale filters of the pertaining fre-

quency band, and εk is the kth mel-scale filter energy. Using K = 7 filters for the

high band results in 6 MFCCs, {cn}n∈{1,...,6}, representing highband spectral envelope

shape (thereby corresponding exactly to the 6 highband LSFs used in our memoryless

baseline BWE system) and 1 coefficient, c0, representing highband energy.

A well-known property of MFCCs is that the terms {cn} are well-decorrelated; this

follows directly from the decorrelating effect of the DCT. The magnitudes of the off-diagonal

covariance terms for an arbitrary set of MFCC vectors are considerably lower than those

of the diagonal terms. As such, the DCT can be viewed as a unitary rotation of principal

axes which, in effect, orthogonalizes and reduces the scatter of data points around their

K-dimensional mean. Assuming that feature vectors follow an underlying distribution of
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overlapping classes, the decorrelating/orthogonalizing rotation performed by the DCT thus

improves class separability. Separability is a measure of the quality of a particular feature set

in terms of classification [71, Section 3.8.3]. For a set of classes defined over a feature vector

space, the separability of feature vectors is given by the ratio of between-class scatter to

within-class scatter. Consequently, and as shown in [126], MFCCs exhibit the highest class

separability among the common parameterizations of LPCs, LSFs, ACF (auto-correlation

function) features, and conventional as well as LP-based cepstral coefficients (where cepstral

coefficients are calculated from smooth LP-based spectra rather than the signal spectra).

The improved class separability associated with a particular parameterization translates

into acoustic-space modelling that is more discriminative of these classes, with a better

rate-distortion curve compared to other parameterizations with lower separability; i.e.,

fewer bits are required to achieve the same classification performance of a different feature

set with lower separability. As described below in Section 4.3.2, this implies lower entropy

for the quantization of MFCCs compared to LSFs for the same LSD performance. Given

sufficient MI between MFCC-parameterized narrowband and highband spectral envelopes,

the lower MFCC highband entropy results in higher cross-band correlation as quantified

by highband certainty.

To conclude this motivation and analysis of our use of MFCCs, it is worth noting that

the superior decorrelation properties described above are frequency band-specific, i.e., they

do not extend across the wideband space underlying joint-band feature vectors. In fact,

it is this very property that leads to the superior multiplicative Cyx
i Cxx−1

i factors—which,

as discussed in Section 3.3.3, represent the weights on the contributions of the source data

to the MMSE estimates of the target—for MFCCs, relative to LSFs. By being frequency

band-specific, the DCT decorrelation effects reduce the norms of the within-band Cxx−1

i

covariances, but not those of the cross-band Cyx

i terms, thereby resulting in higher overall

weights for the MMSE multiplicative Cyx
i Cxx−1

i factors.

4.3 Highband Certainty Estimation

To verify and quantify the cross-band correlation assumption underlying BWE in both

memoryless and memory-inclusive conditions, we exploit the information-theoretic measure

of highband certainty—the ratio of mutual information (MI) between the narrow and high

frequency band representations to the discrete entropy of the highband representation—
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proposed in [109]. The motivation for using MI arises from the fact that it measures

all statistical dependence between two random variables, linear as well as non-linear. In

contrast, the common correlation coefficient, often used as a measure of dependence between

random variables, only measures linear dependence or second order statistics between the

variables. We have shown in Chapter 1 that the relationship between the narrow and high

frequency bands is a complex and nonlinear one. Accordingly, the cross-band dependencies

of interest can only be measured through MI.

MI—denoted by I(X;Y)—quantifies the information mutual to the particular parame-

terizations of both bands; i.e., it measures the information available in narrowband feature

vectors, X, about those of the highband, Y. For the purpose of highband reconstruction,

however, it is not the quantity of such shared information that matters per se, but rather,

it is the relevance of that quantity in relation to the total information in the highband

representation—i.e., highband entropy, H(Y). Thus, in the context of BWE, MI alone is

not sufficient; a more relevant measure of cross-band dependence is rather the ratio of MI to

highband entropy, I(X;Y)
H(Y) . This ratio, quantifying certainty about the highband parameter-

ization given the narrowband’s, is, in fact, a normalized measure of cross-band dependence;

the minimum highband certainty value of 0 indicates statistical independence between the

two bands, while a maximum certainty of 1 indicates complete knowledge about highband

content given that of the narrow band. Given this interpretation, we denote highband

certainty, given the narrow band, by the more representative

C(Y∣X) ∶= I(X;Y)
H(Y) , (4.3)

with the uncertainty remaining in the high band given by 1−C(Y∣X). Similar normaliza-

tions have previously been proposed in other contexts; e.g., the relative information trans-

mitted of [142]—given by I(X;Y)
min[H(X),H(Y)]—normalizes MI relative to the maximum amount

of information that can be shared, regardless of whether that information corresponds to

the source or target.

4.3.1 Mutual information

Given the narrow and high frequency bands represented by the continuous vector variables

X and Y, respectively, with the marginal and joint pdf s: pX(x), pY(y), and pXY(x,y),
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the mutual information I(X;Y) between the two bands is equal to the Kullback-Leibler

divergence; i.e., it can be written in terms of the marginal and joint pdf s as [64, Section 8.5]

I(X;Y) = ∫
Ωy

∫
Ωx

pXY(x,y) log2 ( pXY(x,y)
pX(x)pY(y)) dxdy [bits]. (4.4)

Rewriting Eq. (4.4) as

I(X;Y) = E [log2 ( pXY(x,y)
pX(x)pY(y))] , (4.5)

and replacing the expectation operator by the sample mean yields (by the law of large

numbers with the number of samples, N , sufficiently large)

I(X;Y) ≊ 1

N

N

∑
n=1

log2 ( PXY(xn,yn)
PX(xn)PY(yn)) . (4.6)

As discussed in Section 2.3.3.4, GMMs provide a superior means for the modelling of

arbitrary densities in general, and of speech-derived ones in particular. Thus, similar to

[109] and [125], we approximate the marginal and joint densities of Eq. (4.6) using GMMs81,

thereby allowing the estimation of MI (in bits) using numerical integration per82

Î(X;Y) = 1

N

N

∑
n=1

log2 ( GXY(xn,yn)
GX(xn)GY(yn)) . (4.7)

4.3.2 Discrete highband entropy

Given the continuous nature of the acoustic space, either the differential entropy or the

discrete entropy—obtained through quantization of the continuous acoustic space—of the

highband feature vector space, Y, can be used to quantify highband self-information. The

differential entropy of the highband feature vector space, given by,

h(Y) = −∫
Ωy

pY(y) log2 pY(y) dy [bits], (4.8)

81See Eq. (2.13).
82As noted in [109], the technique of replacing an integration with a sample mean average has been

successfully used in [111] to obtain rate-distortion curves in the context of high-rate vector quantization.
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can be estimated via stochastic integration in the same manner used to estimate mutual

information;83 i.e.,

ĥ(Y) = − 1

N

N

∑
n=1

log2 GY(yn). (4.9)

However, since h(Y)—and differential entropy in general—is susceptible to any scaling of

Y [64, Theorem 8.6.4], the discrete entropy provides a more consistent estimate of highband

self-information. Representing highband self-information by discrete entropy implies quan-

tization of the continuous random feature vectors Y into discrete vectors represented by the

mapping Q(Y). For q ∶= Dim(Y), a straightforward method to estimate H(Q(Y)) from
h(Y) is by entropy-constrained q-dimensional scalar quantization of the continuous feature

vectors Y—provided that pY(y) log2 pY(y) is Riemann integrable [64, Theorem 8.3.1]—

resulting in the approximation (dropping the hat in ĥ(Y) and the mapping in H(Q(Y))
to simplify notation)

H(Y) ≊ h(Y) − log2(∆q), (4.10)

where ∆ is the quantization step-size.84 The MSE distortion resulting from such scalar

quantization (SQ) is given by

D = q
∆2

12
. (4.11)

As described in Section 4.3.3 below, Euclidean distances between MFCC vectors correspond

directly to a more perceptually-relevant form of LSD. Thus, by using MFCCs as highband

feature vectors Y, the SQ distortion of Eq. (4.11) will, in fact, be equal to square LSD. This,

in turn, allows estimating the discrete entropy H(Y) corresponding to a particular LSD,

e.g., the 1dB spectral transparency threshold of [115], using Eq. (4.10) and a differential

entropy estimate h(Y) obtained via the GMM-based numerical approximation of Eq. (4.9).

Estimating discrete entropy through SQ per the approach above was proposed in [109],

and applied for memoryless highband certainty estimation for the different sound classes

83Estimating entropy through modelling the underlying probability density or mass function is often
referred to as plug-in estimation. These methods include histogram and mixture modelling (with the latter
being the method employed here). A different class of entropy estimators uses data directly for entropy
estimation without density estimation. See [143] for an overview of entropy estimators.

84For entropy-constrained quantization, distortion is minimized under the constraint that the aver-
age codeword length is fixed. This results in a fixed centroid density, i.e., fixed quantization step-size.
Resolution-constrained quantization, on the other hand, minimizes distortion under the constraint that all
codewords have a fixed length, resulting in variable centroid density and quantization step-size. See [144,
Chapter 7] for details.
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of Table 1.1, i.e., vowels, fricatives, et cetera. This approach, however, is an approximation

that is only valid under the high-rate assumption, i.e., if the quantization step-size ∆ is small

enough such that the q-dimensional pdf of Y can be considered flat along each dimension

in each quantization bin [145]. Furthermore, since entropy-constrained SQ partitions the

multi-dimensional feature vector space into hypercubes; i.e., using the same step-size ∆ for

all dimensions of Y, marginal densities along all dimensions are assumed to have similar

variances. This assumption is invalid for many speech parameterizations. As a result of the

energy-packing characteristics of the DCT, for example, MFCCs exhibit a large dynamic

range; numerical MFCC values decrease as the order of the cepstral coefficient increases,

leading to a non-uniform distribution of MFCC variances. The uniform variance assumption

of SQ thus results in further distortion due to the inefficient equal allocation of available

bits to dimensions with differing variances. Finally, we note that the distortion resulting

from inefficiently partitioning the highband feature space Y into hypercubes increases with

the dimensionality q = Dim(Y).
Rather than estimate discrete highband entropy, H(Y), indirectly via GMM-based

pdf estimation to first obtain the differential entropy—via Eq. (4.9)—followed by entropy-

constrained SQ—via Eqs. (4.10) and (4.11)—as described above, we estimateH(Y) directly
by performing resolution-constrained VQ of the highband space such that the average quan-

tization distortion corresponds to an average LSD of 1dB—the first spectral transparency

threshold of [115]. In particular, we perform VQ using the generalized Lloyd algorithm

[97] in steps of increasing resolution. At each step, quantization distortion is calculated as

the average LSD of all training feature vectors given their quantized VQ codevectors. The

VQ codebook size is increased until average LSD falls below the 1dB spectral transparency

threshold. As noted in Section 3.4.1, the 1dB spectral transparency threshold of [115]

was determined empirically for the 0–3kHz band. Since level discrimination decreases for

higher frequencies (i.e., higher difference limens), the average LSD threshold for spectral

transparency for frequencies above 3kHz is, in fact, higher than 1dB. Nevertheless, the

1dB average LSD threshold can still be applied to the highband frequency range but as a

rather conservative estimate. Calculating average LSD for LSF and MFCC quantized data

is described in Section 4.3.3.

VQ applied as such effectively results in a q-dimensional histogram-based estimator of

the pdf of Y, pY(y), with pY(y) approximated by the probability mass function of Q(Y),
pQ(Y)(Q(y)), estimated directly from a training data set. In other words, we apply a
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mapping, Q, of the q-dimensional feature vector Euclidean space R
q, onto a countable set

of codevectors, C = {ci}i∈I , where I is a countable set of indices; i.e.,

Q ∶ Rq → C, where Y ⊆ Rq and Q(Y) = C. (4.12)

Thus, for ∣I∣ Voronoi with the ith Voronoi defined by

Vi = {y ∈ Rq ∶ Q(y) = ci}, (4.13)

the discrete highband entropy can be estimated by

H(Y) ≡H(Q(Y)) = −∑
i∈I

PQ(Y)(ci) log2PQ(Y)(ci), (4.14)

where, for a data set V = {yn}n∈{1,...,∣V ∣} with the total number ∣V∣ of VQ training frames,

PQ(Y)(ci) ≊ P ({yn∶Q(yn) = ci}) = P ({yn∶yn ∈ Vi})
=
∣{yn∶Q(yn) = ci}∣∣V∣ =

∣{yn∶yn ∈ Vi}∣∣V∣ .
(4.15)

With the codebook cardinality constrained to powers of 2; i.e., ∣I∣ = 2n where n ∈ Z, we

perform VQ in steps of increasing resolution until dLSD(n)—LSD expressed as a function

of n—falls below 1dB. The discrete entropy corresponding to an average LSD of 1dB can

then be obtained using Eqs. (4.14) and (4.15) together with linear interpolation as follows.

Let H(Y)∣
n1

and H(Y)∣
n2

be the discrete entropy values at the stopping resolution and

the immediately preceding resolution, respectively; i.e.,

H(Y)∣
n1
≜H(Y) at n1 = min

n∈Z
(∣I∣) s.t. dLSD(n) ≤ 1dB, ∣I∣ = 2n, (4.16)

and

H(Y)∣
n2
≜ H(Y) at n2 =max

n∈Z
(∣I∣) s.t. dLSD(n) > 1dB, ∣I∣ = 2n. (4.17)

Then, H(Y)∣
dLSD=1dB

can be estimated as

H(Y)∣
dLSD=1dB

≊
1 − b

a
, (4.18)
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where

a =
dLSD(n1) − dLSD(n2)
H(Y)∣

n1
−H(Y)∣

n2

and b = dLSD(n1) − aH(Y)∣
n1
= dLSD(n2) − aH(Y)∣

n2
. (4.19)

By employing VQ as such, we exploit its advantages over SQ—namely those of space

filling, shape, and memory [146]. Our approach consequently results in discrete entropy

estimates more realistic85 and superior to those of [109]. Quantization error is higher

with SQ than for VQ for the same bit rate, resulting in SQ-based entropy estimates for

highband feature vectors that are inaccurately higher than their true values. This, in

turn, results in highband certainty estimates that are lower than their true values. More

importantly, in contrast to the indirect approach of [109] where the estimation of the

discrete highband entropy from differential entropy through SQ requires a direct equivalence

between quantization mean-square error and LSD (making this approach only applicable

to cepstral parameters), our approach for estimating discrete entropies directly from the

quantized highband space makes no assumptions about the relation between the two types

of distances. As long as LSD can be calculated for quantized features vectors, our VQ

approach can be applied to any form of parameterization.

4.3.3 Calculating the average quantization log-spectral distortion

For an ∣I∣-sized codebook and a distortion measure d(yn,Q(yn)), the generalized Lloyd

algorithm partitions a data set V = {yn} into the sets {Vi}i∈I such that

Vi = ⎧⎪⎪⎨⎪⎪⎩yn ∈ V ∶ d(yn,ci) ≤ d(yn,cm), ∀m, i ∈ I ,m < i,
d(yn,ci) < d(yn,cm), ∀m, i ∈ I ,m > i

⎫⎪⎪⎬⎪⎪⎭ , (4.20)

with a total quantization distortion given by

D =∑
i∈I

∑
yn∈Vi

d(yn,ci). (4.21)

Typically, the squared Euclidean distance is the distortion measure used, resulting in op-

timal codevectors {ci} estimated simply as the means of the sets {Vi}. Codebook training

is carried out in iterations until a stopping criterion is satisfied, e.g., a threshold for the

85Scalar quantization is rarely used in speech coding.
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absolute and/or relative change in total distortion. We apply VQ of the highband feature

vectors, Y, using this algorithm with squared Euclidean distance as the distortion measure

and with a stopping threshold of 1 × 10−3 for the relative change in total distortion.

Given a highband feature vector VQ codebook trained as above, we calculate quantiza-

tion distortion in terms of average (MRS) LSD via

dLSD =
1∣V∣∑i∈I ∑

yn∈Vi

dLSD(yn,ci). (4.22)

For LSF-parameterized highband feature vectors, dLSD(yn,ci) is calculated using Eq. (3.21).

As described in Section 4.3.4 below, we add highband frame log-energy to highband LSF

feature vectors—i.e., Y = [ Ωy

logEy
]—in order to include cross-band spectral envelope gain

correlations in our highband certainty estimates (while also ensuring consistency with the

highband parameterization used in our baseline BWE system, where both the shape and

gain of highband spectral envelopes are jointly modelled with the narrow band via GXΩ

and GXG, respectively). With the addition of the highband log-energy parameter, applying

Eqs. (4.22) and (3.21) for LSF-based highband feature vectors becomes rather straightfor-

ward. LSFs are converted back to LPCs to obtain the analysis A(z) filters as described in

Section 3.2.2. The prediction gains necessary to complete the estimation of dLSD(yn,ci) per
Eq. (3.21)86 can then be calculated as the scale factors required such the total energy of

each frame’s LP-based spectrum corresponds exactly to the frame’s log-energy parameter

[99, Section II.B.3]. The use of frame log-energy in our LSF parameterization—rather than

LP gain or dual-mode BWE excitation gain—is motivated in Section 4.3.4 below.

To calculate average quantization LSD for MFCC highband parameterization, we exploit

the equivalence of Euclidean distances between MFCC feature vectors and their quantized

counterparts to LSD. Since the Type-II DCT of Eq. (4.2) is unitary, it only results in a

rotation of the space over which the log mel-scale filter energy vectors—consisting of the

elements {loge εk}k∈{0,...,K−1} with K the number of mel-scale filters—are defined. As such,

Euclidean distances between MFCC feature vectors are the same as those between the

corresponding log mel-scale filter energy vectors; i.e., for an MFCC vector y and its VQ

86See Footnote 68 for the equivalence between prediction gains and the dual-mode BWE system exci-
tation signal gains used in Eq. (3.21).
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estimate ŷ ∶= Q(y),
d2

MFCC
(y, ŷ) ≜ ∥y − ŷ∥2 = K−1

∑
k=0

∣loge εk − loge ε̂k∣2. (4.23)

By comparing Eq. (4.23) to the LSD between a short-time FFT power spectrum, P (ω),
and its estimate, P̂ (ω) (rather than the smoothed all-pole model-based LSD of Eq. (3.20)),

d2
LSD
=

π

∫
−π

∣10 log10P (ω) − 10 log10 P̂ (ω)∣2 dω2π , (4.24)

where dLSD is expressed in decibels, it can be seen that dMFCC is, in fact, a frequency-warped

LSD that further takes the critical band structure of speech into account. By considering

only the highband frequency range of fHzl
= 4 to fHzh

= 8kHz with K mel-scale filters as

shown in Figure 4.1, the exact relation between dLSD and dMFCC can be derived as

d2
LSD
= ( 10

loge 10
)2 (fmelh

− fmell

K + 1
) 1

fmelh

d2
MFCC

, (4.25)

thereby allowing the estimation of the average quantization LSD—per Eq. (4.22)—for

MFCC-parameterized highband feature vectors directly from the Euclidean distances be-

tween training vectors (including the 0th cepstral coefficient representing frame log-energy)

and their vector-quantized counterparts.

4.3.4 Memoryless highband certainty baselines

In establishing the highband certainty memoryless baseline corresponding to our LSF-

based dual-mode BWE system of Chapter 3, we should ensure consistency in terms of

the resolution—i.e., dimensionality—used for spectral envelope shape and gain parameter-

izations in both contexts, i.e., in dual-mode BWE and highband certainty estimation. We

showed in Section 1.1.3.1 that band energies play a central role in the identification of many

sounds. The importance of this characteristic for BWE was discussed in Section 2.3.4, and

was the basis for incorporating frame log-energy into the narrowband feature vectors of

our memoryless BWE system, as well as for modelling highband excitation gains through

a dedicated GXG GMM. Thus, in contrast to highband envelopes where the shape and

gain are modelled in the dual-mode BWE system via separate GXΩy
and GXG GMMs (with
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Dim(Ωy) = 6 and Dim(log Ey) = 1), respectively, the LSF-based narrowband feature vector

space of both GXΩy
and GXG represents both the shape and gain of narrowband envelopes

conjointly (with X = [ Ωx

logEx
] and Dim([ Ωx

logEx
]) = 9 + 1 = 10). Accordingly, reusing the

same narrowband vectors for LSF-based highband certainty estimation—specifically in the

GMM training and numerical evaluation of Eq. (4.7)—ensures consistency with the dual-

mode BWE system’s narrowband parameterization. To be able to apply MI and discrete

highband entropy estimation—via Eqs. (4.7), (4.14), and (4.18)—using a single highband

feature vector Y while also preserving consistency with the high band’s representation in

dual-mode BWE, we append highband frame log-energy, log Ey, to the highband LSF fea-

ture vector, Ωy—i.e., for highband certainty estimation, we represent highband envelopes

by Y = [ Ωy

logEy
] with Dim ([ Ωy

log Ey
]) = 6 + 1 = 7.

In a similar manner, we model the band-specific spectral envelope shapes and gains for

MFCCs using each band’s [c1, . . . , cL]T and c0 parameters, respectively, with L = 9 and 6

for the narrow and high bands, respectively.

In addition to allowing the calculation of average quantization distortion in terms of

LSD (thereby allowing the estimation of discrete highband entropies via VQ as described

in Sections 4.3.2 and 4.3.3), these parameters, i.e., band log-energies for LSF vectors and c0

for MFCCs, are more suitable for highband certainty estimation compared to LP and EBP-

MGN excitation gains since: (a) LP gains depend on the energy as well as the predictability

of the speech signal, rather than on only its energy; and (b) EBP-MGN excitation gains are

derived from the 3–4kHz midband-equalized signal and, thus, involve the inherent error

associated with equalization in the 3.4–4kHz range.

We note that our narrowband dimensionality of 10 coincides with that used in [125] for

the evaluation of an LSD lower bound given MI, highband dimensionality, and differential

highband entropy. While our overall joint-space dimensionality, Dim([X
Y
]) = 17, is slightly

lower than that used in [109],87 we employ full-covariance GMMs for MI estimation in

Eq. (4.7) as opposed to the diagonal-covariance GMMs of [109]—thereby allowing us to

use lower feature vector dimensionalities to obtain MI measurements that are equally or

more reliable compared to those obtained using diagonal GMMs at higher dimensionali-

ties. By using full-covariance GMMs for MI estimation, we further ensure correspondence

between the highband certainty results of our reference Dim(X,Y) = (10,7) space and our

87In [109], 14 MFCCs (not including c0) were used to model the narrow band while 4 MFCCs and a
highband-to-narrowband log-energy ratio were used as the components of highband feature vectors.
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memoryless BWE results of Section 3.5.3.

Table 4.1 shows the memoryless cross-band correlation baseline using highband certainty

for both Dim(X,Y) = (10,7) LSF and MFCC parameterizations, with the H(Y)∣
dLSD=1dB

discrete highband entropies obtained as illustrated in Figure 4.2. The GMMs of Eq. (4.7)

and the highband VQ codebook of Eq. (4.12) are trained using the TIMIT training set

described in Section 3.2.10, while the estimation of highband certainty—via Eqs. (4.7),

(4.14), (4.18), (4.22), (3.21), and (4.25)—is performed using the TIMIT core test set.

Table 4.1: Memoryless baseline—information-theoretic measures (in bits) and highband certainty
results for the reference Dim(X,Y) = (10,7) LSF and MFCC static spaces.

Dim(X,Y) I(X;Y) H(Y)∣
dLSD=1dB

C(Y∣X)
LSFs (10,7) 2.24 14.11 15.9%

MFCCs (10,7) 1.78 8.64 20.5%

2 LSFs # MFCCs
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Fig. 4.2: Estimating memoryless discrete highband entropy, H(Y), through VQ, for the mem-
oryless reference dimensionality of Dim(Y) = 7 (including a highband energy term). Through
Eqs. (4.14), (4.18), (4.22), (3.21), and (4.25), quantization error—expressed in dLSD—is used to
find the discrete entropy values corresponding to the 1dB spectral transparency threshold of [115]
for both LSFs and MFCCs.
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As Figure 4.2 shows, the improved class separability of the MFCC-parameterized acous-

tic space—compared to the LSF-parameterized space—consistently results in lower uncer-

tainty about highband spectral envelopes at any particular spectral distortion level, even at

identical LSF and MFCC spectral resolutions, i.e., same dimensionality used for envelope

shapes and gains in both types of parameterizations. In other words, MFCC-based high-

band entropy is always lower than that based on LSFs for the same spectral quality. In fact,

Table 4.1 shows that the decrease in H(Y)∣
dLSD=1dB

highband entropy is sufficiently large,

≈ 39%, to result in an overall increase of ≈ 29% in certainty about the highband given

the narrowband, C(Y∣X), despite the relatively lower cross-band mutual information of

MFCC-parameterized spectral envelopes compared to LSF-parameterized ones.

In Section 4.4 below, we investigate the role of speech dynamics in increasing cross-band

correlation by explicitly incorporating memory, in the form of delta features, into frequency

bands’ feature vector representations. As shown in Section 4.4 and further detailed in

Chapter 5, while such delta features increase cross-band correlation by exploiting mutual

information on a temporal axis, they represent a dimensionality reduction transform, and,

as such, can not be used for the reconstruction of static highband spectral envelopes.

Accordingly, the value of frontend-based memory inclusion through delta features varies

in relation to the highband dimensionalities of the reference memoryless baseline against

which memory inclusion is compared. In particular, dynamic feature vectors, comprising

both static and delta features, can be viewed as being the result of either:

(a) appending delta features to the existing vectors of static parameters of either or both

frequency bands, thereby increasing feature vector dimensionalities, and consequently,

increasing the complexities of associated GMMs and/or VQ used for statistical mod-

elling; or

(b) substituting a higher-order subset of the static parameters of existing feature vectors

by the delta features of the remaining low-order static parameters, thus preserving

feature vector dimensionalities as well as associated GMM and/or VQ complexities.

While appending delta features per Context (a) increases dimensionalities and complexi-

ties, the static spectral resolution of the resulting dynamic feature vectors is not adversely

affected compared to reference static vectors (since the number of static parameters that

can be used for spectral envelope reconstruction is the same with or without memory inclu-

sion). Thus, cross-band correlation can only improve in this context as a result of memory

inclusion. In contrast, the substitution of spectral information (consisting in static param-
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eters) by temporal information (consisting in delta features) per Context (b) represents a

time-frequency information tradeoff. This tradeoff and its effect on BWE is investigated in

Chapter 5. For properly assessing the value of frontend-based memory inclusion on high-

band certainty, however, we establish here two additional memoryless highband certainty

baselines with Dim(X,Y) = (10,4) and (5,4). The three memoryless baselines—including

that established in Table 4.1 with Dim(X,Y) = (10,7)—will be used as references to in-

vestigate memory inclusion in Section 4.4 in the two contexts listed above.

In parameterizing highband envelopes for the (10,4) and (5,4) spaces, we follow the

same process used for the (10,7) space. For LSF-based parameters, we use 3 LSFs (rather

than 6) for the 4–8kHz band with one log-energy parameter. For MFCCs, we use K = 4

mel-scale filters (rather than 7) resulting in 3 MFCCs representing envelope shape (rather

than 6) and one MFCC representing envelope log-energy. Highband spectral envelope

shapes are, thus, represented in the (10,4) and (5,4) reference spaces by half the number

of parameters used for the (10,7) space. I(X,Y) and H(Y)∣
dLSD=1dB

are estimated as

described previously. In Section 4.4, the C(Y∣X) certainty estimates obtained as such for

the (5,4) space will represent the references for memory inclusion per Context (a), while

those of the (10,7) and (10,4) spaces the references per Context (b).

Since highband envelopes are parameterized using different resolutions in the (⋅,4) base-
lines relative to the (10,7) baseline, the dLSD measures—calculated using Eqs. (3.21), (4.23)

and (4.25)—used to estimate H(Y)∣
dLSD=1dB

for the (⋅,4) baselines are not comparable with

that of the (10,7) baseline. Estimates for the (⋅,4) spaces do not account for the lower

spectral resolution relative to the (10,7) space. Accordingly, the corresponding C(Y∣X)
estimates can not also be directly compared. To account for this difference in spectral

resolution when comparing cross-band correlations using different highband dimensional-

ities (and their potential effect on highband envelopes reconstructed through BWE), we

define Yref, representing the reference unquantized highband feature vectors used in the

calculation of dLSD for highband VQ codebooks, as follows:

LSFs Using the Dim(Y) = 4 LSF-based highband feature vectors obtained from the TIMIT

training set, the highband VQ codebook needed for estimating H(Y)∣
dLSD=1dB

is

trained in iterations of increasing codebook cardinality as previously described in

Section 4.3.3. To calculate the average quantization LSD via Eq. (3.21) at the end

of each iteration, however, we use a parallel set of Dim(Y) = 7 LSF-based highband
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feature vectors, Yref , as the reference unquantized vectors, obtained from the TIMIT

core test set. Each of these Yref shadow vectors is the higher-dimensionality parame-

terization of the test frame represented by the lower-dimensionality Y vector. Finally,

we use lower-dimensionality Q(Y ) VQ codevectors as the quantized test vectors to be

used in Eq. (3.21). As such, we effectively use the low-dimensionality Dim(Y) = 4 VQ

codebook to estimate dLSD (and H(Y)∣
dLSD=1dB

, in turn) for the higher-dimensionality

Dim(Yref) = 7 reference LSF-based highband feature vectors.

MFCCs In a manner similar to that of LSFs, the MFCC-parameterized highband VQ

codebook is trained using the Dim(Y) = 4 training MFCC highband feature vectors.

Rather than use K = 4 mel-scale filters as described previously for the (⋅,4) MFCC

spaces, we use K = 7. In effect, this translates into a truncated MFCC highband

representation where the truncated higher-order coefficients are assumed to be zero.

To estimate dLSD at each VQ training iteration, we perform inverse DCT on: (a) the

shadow Dim(Yref) = 7 MFCC vectors (i.e., with no truncation) corresponding to the

lower-dimensionality Voronoi; and (b) the truncated Dim(Y) = 4 VQ codevectors;

resulting in mel-scale filter log-energy vectors to be used as the unquantized refer-

ence and quantized test vectors, respectively. Since Type-II DCT, as well as its in-

verse, are unitary transforms, dLSD can be equally calculated through Eq. (4.25) using

the squared Euclidean distances between mel-scale log-energies rather than between

MFCCs, as shown in Eq. (4.23).

Extending the reference baseline representation as Dim(X,Y,Yref), Table 4.2 lists, in

the top three rows for each parameterization type, the information-theoretic measures

estimated for the three memoryless baseline (10,7,7), (10,4,4), and (5,4,4) spaces used

in the sequel. The (10,4,7), and (5,4,7) spaces, used exclusively in this section for the

purpose of allowing comparisons at identical spectral resolution, are in the rows below.

Similar to the observations concluded from the results of Table 4.1, Table 4.2 shows

that MFCCs outperform LSFs in terms of the relevant information shared between the

midband-equalized narrow band and the high band. The cross-band correlation of MFCC-

parameterized envelopes is consistently higher than that of LSF-parameterized envelopes,

with the relative difference ranging from ≈ 29% for Dim(X,Y,Yref) = (10,7,7), to ≈ 89%
for the (5,4,4) baseline. Finally, we also note that increasing the dimensionality of the

parameterizations of either or both bands, consistently results in higher mutual information,
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Table 4.2: Memoryless highband certainty baselines and RMS-LSD lower bounds—defined in
Section 4.3.5 below—at varying Dim(X,Y,Yref) dimensionalities. I(⋅; ⋅) and H(⋅) are in bits,
while ↓ dLSD(RMS) is in dB.

Dim(X,Y,Yref) I(X;Y) H(Y)∣
dLSD=1dB

C(Y∣X) ↓ dLSD(RMS)

(10,7,7) 2.24 14.11 15.9% —

(10,4,4) 1.68 10.60 15.9% —

LSFs (5,4,4) 1.55 10.60 14.6% —

(10,4,7) 1.68 18.69 9.0% —

(5,4,7) 1.55 18.69 8.3% —

(10,7,7) 1.78 8.64 20.5% 4.62

(10,4,4) 1.73 5.89 29.3% 4.88

MFCCs (5,4,4) 1.62 5.89 27.6% 5.01

(10,4,7) 1.76 9.07 19.4% 4.68

(5,4,7) 1.69 9.07 18.7% 4.73

thereby indicating that higher spectral resolutions translate into higher shared information.

4.3.5 Highband certainty as an upper bound on achievable BWE performance

By quantifying cross-band correlation through C(Y∣X), highband certainty given the nar-

row band at an average highband quantization LSD of 1dB, we are, in fact, estimating up-

per bounds on achievable BWE performance. The memoryless Dim(X,Y,Yref) = (10,7,7)
MFCC highband certainty value of C(Y∣X) = 20.5%, for example, suggests that an aver-

age BWE performance of dLSD = 1dB can theoretically be achieved for approximately one

fifth of the highband spectra reconstructed through BWE (assuming high-quality highband

spectra can be reconstructed from MFCC vectors). This theoretical BWE performance is,

however, only an upper bound since:

(a) highband certainty estimation does not account for the spectral envelope distortions

inevitably introduced by components in an actual BWE system other than GMMs,

e.g., imperfect midband equalization in the 3.4–4kHz range and the subsequent errors

in highband excitation signal generation, and,

(b) the remaining uncertainty about the highband implies an average error of dLSD > 1dB

for 1 −C(Y∣X) of the reconstructed highband envelopes.

This bounding relation between information-theoretic measures and achievable BWE per-

formance was confirmed in [125]. In particular, given estimates of mutual information and
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differential highband entropy, a memoryless lower bound is derived for the dLSD(RMS) distor-

tion of highband spectra that can be reconstructed by BWE, using conventional cepstral

parameterization for the high band. By exploiting the correspondence we have shown in

Section 4.3.3 between LSD and MFCC distances, we can easily adapt the lower bound

of [125] to the case where MFCCs are used to parameterize highband spectral envelopes.

This provides us with the means to map highband certainty estimates into concrete BWE

performance bounds, and, more importantly, allows us to determine the potential BWE

performance value of any highband certainty gains achieved as a result of memory inclu-

sion. To provide the necessary context for our MFCC modification, we describe below the

relevant outlines of the dLSD(RMS) lower bound derivation of [125].

The complex cepstrum of a signal is defined as the Fourier transform of the natu-

ral logarithm of the signal spectrum. For a power spectrum (magnitude-squared Fourier

transform) P (ω), which is symmetric around ω = 0 and periodic for a sampled data se-

quence, the Fourier series representation of logeP (ω) is given by logeP (ω) =∑∞i=−∞ cie−jωi,

where ci = c−i are real and referred to as the cepstral coefficients of P (ω). Thus, for a pair

of spectra, P (ω) and its estimate P̂ (ω), Parseval’s theorem allows us to rewrite d2
LSD

of

Eq. (4.24) using cepstral distances;88 i.e.,

d2
LSD
= ( 10

loge 10
)2 ∞

∑
i=−∞

(ci − ĉi)2. (4.26)

With the per-frame LSD given by Eq. (4.26), the root-mean-square (RMS) LSD average

for a set of speech frames can then be written as

dLSD(RMS) =
10
√
2

loge 10

¿ÁÁÀE [1
2
(c0 − ĉ0)2 + ∞∑

i=1

(ci − ĉi)2]. (4.27)

88Alternatively to this development based on [147, Section 4.5.2], the correspondence represented by
Eq. (4.26) between LSD and cepstral distances can also be derived using the complex cepstrum of the
signal’s LP spectrum—i.e., H(ejω)—as shown in [148] and referenced by [125]. This provides a recursive
formula by which cepstral coefficients can be calculated from a set of LPCs, and is used in [125] to
parameterize highband envelopes for the evaluation of the derived dLSD(RMS) lower bound for test data.
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Then, by using q cepstral coefficients—noting the infinite number of coefficients—to repre-

sent highband spectral envelopes; i.e.,

yi =

⎧⎪⎪⎨⎪⎪⎩
1√
2
ci, for i = 0,

ci, for i = 1, . . . , q − 1,
(4.28)

and writing the BWE system’s estimates of highband feature vectors given those of the

narrow band as ŷ = f(x), with the estimation error n = y − ŷ, Eq. (4.27) can be rewritten

as

dLSD(RMS) ≥
10
√
2

loge 10

√
E [∣n∣2]. (4.29)

Using properties of mutual information and differential entropies, the authors in [125]

then proceed to show that

E [∣n∣2] ≥ q

2πe
exp [2

q
(h(Y) − I(X;Y))] ; (4.30)

a lower bound that is independent of the type of parameterizations used forX andY, as well

as independent of the BWE method used to achieve the mapping ŷ = f(x). Substituting

Eq. (4.30) into Eq. (4.29) results in the memoryless lower bound

dLSD(RMS) ≥
10

loge 10

√
q

πe
exp [1

q
(h(Y) − I(X;Y))] . (4.31)

To rewrite this lower bound based on MFCC Euclidean distances rather than con-

ventional cepstral coefficient distances, we substitute d2
LSD

of Eq. (4.26) above by that of

Eq. (4.25) from Section 4.3.3, where d2
LSD

is written in terms of d2
MFCC

given by Eq. (4.23).

Repeating the derivation above with this modification results in

dLSD(RMS) ≥
10

loge 10

¿ÁÁÀ q (fmelh
− fmell

)
πe(K + 1)fmelh

exp [h(Y) −H(Y)C(Y∣X)
q

]
=

10

loge 10

¿ÁÁÁÀDim(Yref) (fmelh
− fmell

)
πe(Dim(Yref) + 1)fmelh

exp [h(Yref) −H(Yref)C(Y∣X)
Dim(Yref) ] , (4.32)

where we have rewritten Y and K = q = Dim(Y) as the more explicit Yref and Dim(Yref),
respectively, as well as reorganized the exponential’s arguments in Eq. (4.31)—dropping
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the evaluation-point qualifier in H(Yref)∣dLSD=1dB
to simplify notation—such that the lower

bound is an explicit function of highband certainty rather than mutual information. By

aligning notations as such with our earlier Dim(X,Y,Yref) acoustic space notation, these

modifications facilitate evaluation of the lower bound for the reference MFCC memoryless

spaces of Table 4.2 as well as for the memory-inclusive spaces discussed in Section 4.4.3.2

below, particularly for cases where Dim(Y) ≠ Dim(Yref). For these cases, the effect of

using lower spectral resolutions for highband envelopes on the certainty estimated for the

high band, is thus accounted for by using the reference Yref as the argument for h(⋅),
H(⋅), and Dim(⋅), while continuing to use the lower-dimensionality Y in C(Y∣X) since it

already takes the higher reference dimensionality into account. It is also worth noting that

the MFCC-based lower bound of Eq. (4.32) is, in fact, tighter than that of Eq. (4.31); in

contrast to Eq. (4.29) where the inequality results from the truncation of the non-negative

highband cepstral coefficients to q, Eq. (4.23) involves no MFCC truncation, and hence,

the equality holds (without the
√
2 term).

Table 4.2 shows our estimates of the lower bound of Eq. (4.32), denoted by ↓ dLSD(RMS),

obtained for the dimensionalities and the estimates of the information-theoretic measures

for the memoryless MFCC-based spaces of Table 4.2, and using h(Yref) estimates obtained

by stochastic integration per Eq. (4.8). Despite identical dimensionalities, the ↓ dLSD(RMS) es-

timate for the MFCC (10,7,7) baseline, in particular, is not comparable to the LSF-based

dual-mode BWE dLSD(RMS) result of Table 3.1 due to the difference in parameterization.

Nevertheless, it indicates that we can not reduce GMM-based BWE distortion to less than

dLSD(RMS) = 4.62dB when using MFCCs with Dim(X,Y) = (10,7). More importantly, the

↓ dLSD(RMS) estimates for the MFCC (10,7,7) and (5,5,4) baselines, provide the memo-

ryless references to the memory-inclusive bounds in Section 4.4.3.2 below, allowing us to

gain important insights into the potential effect of memory inclusion on practical BWE

performance.

To conclude, we note that since any highband certainty gains achieved through memory

inclusion correspond to upper bounds on BWE performance gains, an ideal BWE system

is that which can translate the measured certainty gains into matching BWE performance

improvements—i.e., where reductions in measured dLSD(RMS) performance are equivalent to

the decreases in ↓ dLSD(RMS). Thus, highband certainty estimates provide the reference point

against which the optimality (or lack of it) of any BWE system can be determined, as well

as provide the theoretically ideal frame of reference for performance using which competing
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BWE systems can be compared against each other. Indeed, in this chapter as well as in

Chapter 5, we use highband certainty estimates as the basis for evaluating the role of

memory inclusion in BWE, in general, as well as for comparing different BWE systems

where the extent to which memory is incorporated is varied.

4.4 Memory Inclusion through Delta Features

Despite the well-known dynamic and temporal properties of speech discussed in Section 1.2,

and referred to herein simply as speech memory, investigating the theoretical basis under-

lying the assumption that exploiting speech memory will automatically improve BWE per-

formance has received little, if any, attention. Indeed, to our knowledge, all works showing

the superiority of BWE with such memory inclusion make no attempt to determine how

competent these memory-inclusive techniques actually are in making use of the temporal

information available in the narrow band to improve highband reconstruction. Our ob-

jective in this section is, thus, to quantify the role of memory in improving cross-band

correlations as represented by C(Y∣X), certainty about the high band given the narrow

band. To achieve this objective, one can follow either of two approaches:

(a) Assume temporal statistical dependence between the conventional static feature vec-

tors representing each of the two frequency bands, consequently modelling cross-band

correlations through the joint pdf s of sequences of narrowband and highband feature

vectors. Highband certainty can then be derived accordingly. Since this approach

applies no dimensionality reduction, it would fully preserve all spectral information

present in the sequences of static frames. The resulting increase in complexity, how-

ever, would, in fact, be prohibitive for practical purposes. To demonstrate, the mutual

information for only first-order sequences would be given by:

I(Xt,Xt−1;Yt,Yt−1) =
∫

Ωyt−1

∫
Ωyt

∫
Ωxt−1

∫
Ωxt

pXtXt−1YtYt−1
(xt,xt−1,yt,yt−1) ⋅

log2 ( pXtXt−1YtYt−1
(xt,xt−1,yt,yt−1)

pXtXt−1
(xt,xt−1)pYtYt−1

(yt,yt−1)) dxt dxt−1 yt dyt−1, (4.33)

which shows that, to estimate MI merely for the first-order case, we need to double

the dimensionalities of our GMMs (noting our reference memoryless dimensionality
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of Dim([X
Y
]) = 17), which in turn requires a multiple-fold increase in training data

and complexity. To model higher-order dependence, dimensionality and complexity

will further multiply, making this technique impractical.

(b) Transform sequences of conventional static feature vectors into dynamic lower-dimens-

ionality vectors in which speech dynamics are directly embedded in addition to

the static envelope parameters. Through such dimensionality-reducing transforms,

the new memory-inclusive vectors can be assumed to be statistically independent

across time, thereby allowing highband certainty estimation in the manner described

above—in Section 4.3—for conventional static features, while also allowing the inclu-

sion of temporal information from sequences of varying lengths. As described below,

delta features represent a linear form of such dimensionality-reducing transforms.

As the second approach is clearly better in terms of both efficiency and the extent of

memory that can be modelled, we select it for our memory-inclusive highband certainty

estimation.

4.4.1 Delta features

Rather than indirectly capture speech temporal information through first-order HMM state

transition probabilities or increasing the amount of overlap of speech frames, we include

memory directly in spectral envelope parametrization in the form of delta coefficients ap-

pended to the static LSF/MFCC feature vectors. Initially formulated by Furui [136] in

the context of speaker verification, delta coefficients (or features) are obtained from static

vectors by a first-order regression (time-derivative) implemented through linearly weighted

differences between neighbouring static vectors. A consequence of the time derivative is

that the differences weights used in delta coefficient calculations increase in proportion to

the distance (in frames) between the two static vectors whose difference is being evaluated.

This translates acoustically into emphasizing long-term spectral transitions over fine short-

term differences. Indeed, since immediately successive frames show only minor differences

between their static features, the underlying long-term trajectory of parameter variation

with time can be more accurately and easily identified as the time separation between the
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static frames involved increases.89 Delta coefficients are calculated via:

δt =

L

∑
l=1

l ⋅ (st+l − st−l)
2

L

∑
l=1

l2
, (4.34)

where δt is the delta coefficient vector corresponding to the signal frame at time t computed

in terms of the corresponding static feature vectors {st+l}l∈[−L,L], with L specifying the num-

ber of neighbouring static frames (on each side of the tth frame) to consider. Eq. (4.34)

shows that the delta coefficient transfer function is a non-causal linear time-invariant func-

tion, with the impulse response illustrated in Figure 4.3 for L = 5, for example. As men-

tioned in Section 4.3.4 above and described in more detail below, the calculated delta

coefficients can either replace part of the static LSF/MFCC coefficients, or be appended to

them, to produce the dynamic (static+delta) spaces.

−0.05

0.05

−1−2−3−4−5−6

0

0 1 2 3 4 5 6

hδ(t)

t

Fig. 4.3: Impulse response of delta coefficient transfer function for L = 5. See Eq. (4.34).

4.4.2 Comparing delta features to other dimensionality reduction transforms

Since they employ a many-to-one transform on sequences of time-indexed frames, delta

features are a lossy form of compression that effectively compacts memory into a rela-

tively small number of features. As such, delta features can be viewed as a special case of

89In his experiments in [136] on the effects of the speech segment length used in delta coefficient cal-
culation on speaker verification error rates, Furui found that the minimum error rate was achieved at a
length of 170ms.
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dimensionality-reducing transforms where the higher-dimensional source supervectors are

simply an extension—along the temporal axis—of low-dimensional information in a space of

memoryless spectrally-derived axes (where the axes are not necessarily orthonormal). When

applied to sequences of time-indexed static narrowband—and optionally highband—feature

vectors, other dimensionality-reducing transforms can similarly be viewed as memory in-

clusion transforms. Most notable of such transforms are linear discriminant analysis (LDA)

[71, Chapter 5] and the Karhunen-Loève transform (KLT)—also referred to as principal

component analysis (PCA) [71, Section 3.8]. LDA attempts to obtain a feature vector

with maximal compactness by reducing the dimensionality of the source supervectors while

retaining their discriminating power as much as possible. Such a reduction is performed by

means of a linear transformation optimized during offline training by maximizing the class

separability—the ratio of between-class to within-class scatter—of the target vectors (pro-

jections of the source supervectors unto a lower-dimensional hyperplane). The KLT, on the

other hand, reduces source supervectors to a set of uncorrelated features. Worthy of note

in this context is the work of [149], where several transforms, including differential trans-

forms (delta and higher-order delta), LDA, and the KLT, were compared in the context

of memory inclusion—by viewing such transforms as the application of a temporal matrix

transform on a matrix comprised of stacked time-indexed cepstral vectors—for improving

speech recognition performance. Results in [149] show that recognition performance is gen-

erally improved by memory inclusion. In particular, while the best performance is achieved

using the KLT, the most notable among the results of [149] is that representing cepstra by

delta features alone gives 13.5% higher digit recognition accuracy than achieved by static

cepstra, thus confirming the ability of delta features to capture relevant information in

speech memory.

As described in Sections 3.3.3 and 3.5.1, cross-band covariances play an important role

for BWE since it is that cross-band correlation information that ultimately enables BWE.

Thus, the superior class discrimination of LDA should intuitively improve the ability of

GMM statistical modelling to discriminate non-overlapping frequency content based on

temporal information. In other words, since BWE assumes that narrowband and highband

content share the same underlying classes, performing LDA on temporal-based supervec-

tors of either band (or both) would improve discrimination among such classes using the

information in speech memory mutual to the two frequency bands. The KLT, on the other

hand, would only diagonalize within-band covariances, i.e., it does not necessarily improve
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cross-band covariances. However, as described in Section 4.2.2 and confirmed by the mem-

oryless results of Section 4.3.4 for MFCCs, decorrelation through DCT generally results

in improved highband certainty. Since the KLT completely decorrelates source features, it

can be expected to result in cross-band correlation increases equal to or greater than those

of MFCCs.90

By virtue of being dimensionality reduction transforms, however, LDA and the KLT

are similar to delta features in that they can not be used for the reconstruction of highband

spectral envelopes. Since any BWE system requires a conventional static representation

of highband spectra, frontend-based memory inclusion through non-invertible transforms,

in general, imposes a time-frequency information tradeoff for fixed overall narrowband

and highband dimensionalities. This tradeoff, briefly described for delta features in Sec-

tion 4.3.4, is investigated later in the thesis in more detail. We conclude that this tradeoff

requires optimizing the allocation of available dimensionalities among memoryless spectral

features and temporal ones, such that estimated highband certainties are maximized—

taking into account the effect of static parameter dimensionality when estimating highband

entropies as demonstrated for the memoryless Dim(X,Y) = (⋅,4) baselines in Section 4.3.4.

This optimization and the application of delta features for incorporating memory into BWE

are the subject of Section 5.3. We note here, however, that LDA and the KLT suffer the

same information tradeoff imposed by delta features. Moreover, since the estimation of

transform matrices for both LDA and the KLT—involving eigen-value decomposition—is

computationally more complex than the rather simple calculation of delta features, we

focus on the latter for our investigation of frontend-based memory inclusion.

4.4.3 Effect of memory inclusion on highband certainty

Corresponding to the random narrowband and highband static feature vectors represented

by X and Y, respectively, let ∆X and ∆Y represent their random delta coefficient vector

counterparts, with
△

X ≜ [ X

∆X
] and △

Y ≜ [ Y

∆Y
] further representing their joint—or dynamic,

i.e., static+delta—versions.

90In the context of the similarities between the KLT and the DCT, it is worth noting that, as shown
in [149], the KLT basis functions are, in fact, almost identical to those of the DCT when estimated for
feature vectors consisting of sequences of the same cepstral coefficient.
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4.4.3.1 The Contexts and Scenarios of incorporating delta features

As described in Section 4.3.4, incorporating delta features into existing static feature vectors

can be performed in one of two contexts;

Context A appending delta features to the existing vectors of static parameters of either

or both frequency bands, or,

Context S substituting a higher-order subset of the static parameters of existing feature

vectors by the delta features of the remaining low-order static parameters, preceded

by recalculating the low-order static parameters if needed (e.g., when using lower-

order LSFs).

Simultaneously with, but independently of these two contexts, memory inclusion through

delta features can also be performed in either of the two following scenarios:

Scenario 1 Incorporating memory into the representation of one of the two bands only.

We consider narrowband-only memory inclusion, with the reasonable assumption

that—since both bands share the same underlying acoustic classes, and hence, also

share their dynamic properties—the effects of single-band memory inclusion on cross-

band correlation are independent of the particular band into which memory is incor-

porated. With narrowband-only memory inclusion, the change in certainty about the

high band is given by

∆C1
≜ C(Y∣ △X) −C(Y∣X)
=

1

H(Y)∣
dLSD=1dB

[I( △X;Y) − I(X;Y)]
=

1

H(Y)∣
dLSD=1dB

[I(X,∆X;Y) − I(X;Y)]
=

1

H(Y)∣
dLSD=1dB

∆I1
; (4.35)

i.e., ∆C1
depends only on ∆I1

—the change in MI—as the static highband represen-

tation, and consequently its entropy, are unchanged. Assuming static narrowband

dimensionality is preserved with memory inclusion (Context A above), the relations

between the information content of the X, Y and ∆X feature vector spaces can be
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easily visualized through the Venn-like diagram of Figure 4.4,91 using which, ∆I1
can

be written as

∆I1
≡ (R1 ∪R2 ∪R4) − (R1 ∪R2) =R4, (4.36)

representing the additional gain in MI between the two bands as a result of exploiting

narrowband temporal information.

H(X) H(Y)

H(∆X)

H(X∣Y,∆X) H(Y∣X,∆X)

H(∆X∣X,Y)

R1

R2R3 R4

Fig. 4.4: Venn-like diagram representing the relations between the information content of
the X, Y and ∆X spaces.

Scenario 2 Incorporating memory into the representation of both bands, with the result

that the entropy of the now-dynamic highband representation is changed. In this

scenario, the change in certainty about the high band is given by

∆C2
≜ C( △Y∣ △X)−C(Y∣X)
=

I( △X;
△

Y)
H( △Y)∣

dLSD=1dB

− I(X;Y)
H(Y)∣

dLSD=1dB

. (4.37)

Thus, in contrast to Scenario 1, the change in highband certainty, i.e., ∆C2
, is now

more complex as it does not depend only on the change in mutual information be-

tween representations of both bands, but also on the change in the entropy of the

high band itself. Without further information about the interactions between the

91Although Figures 4.4 and 5.3 illustrate relationships in a manner resembling that of Venn diagrams,
the relationships illustrated are those between information-theoretic quantities, rather than between sets as
is the case with formal Venn diagrams. Hence, in contrast to the conventional Venn diagram nomenclature
used in [64, Figure 2.2], for example, we refer to our illustrations of Figures 4.4 and 5.3 as Venn-like.
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△

X and
△

Y spaces, a general visualization similar to that of Figure 4.4 is, thus, more

complex.92 As described below, this change in highband entropy is closely tied to the

aforementioned time-frequency information tradeoff.

Combining these contexts and scenarios results in four possible cases for memory inclu-

sion where delta features:

Case A-1 are appended to existing static features in only one band—the narrow band,

Case A-2 are appended to existing static features in the two bands,

Case S-1 substitute higher-order static features in one band—the narrow band, or,

Case S-2 substitute higher-order static features in the two bands.

Extending our earlier Dim(X,Y,Yref) representation of acoustic spaces introduced in Sec-

tion 4.3.4 to Dim(X,∆X,Y,∆Y,Yref)—with the three memoryless baseline spaces now

represented by (10,0,7,0,7), (10,0,4,0,4), and (5,0,4,0,4)—and representing the process

of memory inclusion by
∆
Ð→, we investigate the effect of memory inclusion on highband

certainty in these four cases as outlined in Table 4.3 below.

Table 4.3: Breakdown of approaches to memory inclusion through delta features by context
(incorporating memory by appending to, or substituting, existing static features) and scenario (in-
corporating memory into one or two bands), using Dim(X,∆X,Y,∆Y,Yref) to represent acoustic
space dimensionalities.

Context A Context S

Scenario 1 A-1: (5,0,4,0,4) ∆
Ð→ (5,5,4,0,4) S-1: (10,0,4,0,4) ∆

Ð→ (5,5,4,0,4)
Scenario 2 A-2: (5,0,4,0,4) ∆

Ð→ (5,5,4,4,4) S-2: (10,0,7,0,7) ∆
Ð→ (5,5,4,4,7)

We note that, due their importance, we always include log-energy parameters in both

bands’ static and delta representations for all spaces represented in Table 4.3. For example,

the narrowband feature vectors
△

X = [ X

∆X
] of the (5,5,4,4,4) LSF space consist of the static

features X = [ Ωx

log Ex
] with Dim([ Ωx

logEx
]) = [4

1
], as well as the delta features ∆X = [ δ(Ωx)

δ(log Ex)],
similarly with Dim([ δ(Ωx)

δ(log Ex)]) = [41], resulting in an overall dimensionality of 10 for the

dynamic narrowband representation—the same dimensionality of the static representation.

As such, in substituting static feature vectors by dynamic ones under Context S, only the

92Based on the findings that follow in this section in addition to certain assumptions discussed in
Section 5.3.3, a simplified Venn-like diagram for Scenario 2 is presented in Figure 5.3.
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resolution of the static spectral envelope shape representation is affected by substitution—

resulting in the time-frequency information tradeoff.93

4.4.3.2 Implementation, results, and analysis

To estimate the information mutual to the representations of both bands in the two sce-

narios of memory inclusion; i.e., I( △X;Y) and I( △X;
△

Y), we follow the numerical integration

approach described in Section 4.3.1, adapting Eq. (4.7) to the now-dynamic narrowband

features vectors
△

X = [ X

∆X
]—as well as to the dynamic highband vectors

△

Y = [ Y

∆Y
] in the case

of Scenario 2—by replacing the static GMMs of Eq. (4.7) with their dynamic counterparts

(e.g., replacing GXY, GX, and GY, by G▵X▵Y, G▵X, and G▵Y, respectively, in Scenario 2).

Similarly, in order to estimate H( △Y)∣
dLSD=1dB

, the self-information in the dynamic
△

Y

highband representation at the dLSD = 1dB threshold of average quantization distortion, we

adapt our VQ-based estimation of discrete highband entropy—described in Sections 4.3.2

and 4.3.3—by: (a) performing VQ on the now-dynamic representation of the high band,
△

Y, while (b) estimating average dLSD quantization error after each cardinality iteration of

VQ codebook training using—for all cases of Table 4.3 except Case S-2—only the static

Y subvectors of the unquantized [ Y

∆Y
] testing data as the reference vectors, with the cor-

responding static Q(Y) subvectors of the quantized Q( △Y) ≜ Q([ Y

∆Y
]) codevectors as the

LSD test vectors. In the case of memory inclusion per Context S and Scenario 2, i.e., case

S-2: (10,0,7,0,7) ∆
Ð→ (5,5,4,4,7), we account for the decrease in reference static highband

dimensionality when calculating dLSD in the manner described in Section 4.3.4 for both

LSFs and MFCCs. In particular, we calculate dLSD using higher-dimensionality shadow

LSF and MFCC Yref vectors—with Dim(Yref) = 7—as LSD reference vectors, rather than

the Y subvectors of
△

Y, where Dim(Y) = 4.
Estimating mutual information and highband certainty as such allows us to quantify

the effect of memory inclusion using delta features on highband certainty, as a function

93As discussed in detail in Section 5.3 in the context of BWE with frontend-based memory inclusion, we
impose a fixed-dimensionality constraint in reference to the maximum joint-band dimensionality modelled
by the dual-mode BWE system’s GMMs. As such, while the total joint-band dimensionality for Case S-2
in Table 4.3 above increases from 17 for the static (10,0,7,0,7) space to 18 for the dynamic (5,5,4,4,7)
space, the maximum joint-band dimensionality of the corresponding dual-mode BWE feature vectors is,
in fact, fixed at 16 when considering only the parameters corresponding to the dual-mode BWE system’s
GMM with maximum dimensionality—i.e., GXΩy

for the LSF-based dual-mode BWE system, for example,

where Dim ([XΩy
]) = [10

6
].
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of the amount of speech memory incorporated into the dynamic frequency band represen-

tations. Figures 4.5 and 4.6 illustrate this effect, with the inclusion of memory applied

per Contexts A and S of Table 4.3, respectively.94 Highband certainty is measured as a

function of L, the number of neighbouring static frames—on each side of a static signal

frame—used to calculate the delta features.95 Given our 20ms frame length and 10ms

frame advance described in Section 3.2.8, the amount of the non-causal—i.e., two-sided—

memory represented by delta features is given by T = 10 ⋅ 2 ⋅Lms. As the effect of memory

inclusion on cross-band correlation is measured in Case S-2 relative to our memoryless

Dim(X,Y) = (10,7) baseline, which, in turn, corresponds to our dual-mode BWE baseline

of Chapter 3, the information-theoretic results of such inclusion are particularly relevant

to the implementation of memory-inclusive BWE in the following chapter. Thus, the ef-

fect of memory inclusion per Case S-2 on mutual information, I( △X;
△

Y), and highband

entropy, H( △Y)∣
dLSD=1dB

, are examined in more detail through Figure 4.7. From the results

of Figures 4.5, 4.6, and 4.7, we observe the following:

A. Narrowband spectral dynamics provide minimal additional information

about the static properties of highband spectra

Memory inclusion per Scenario 1 can only result in modest highband certainty gains—

given by ∆C1
of Eq. (4.35). As shown for Case A-1 in Figure 4.5(a), extending static nar-

rowband features, X, by appending their ∆X delta counterparts—thereby preserving the

existing information mutual to the static representations of both bands—results, at best,

in a mere
∆C1

C(Y∣X) ≃ 2.3% relative increase in static highband certainty when using MFCCs

(at T = 320ms), and ∼ 5.0% when using LSFs (at T = 440ms). In other words, narrow-

band spectral dynamics and temporal information provide minimal additional information

about the static properties of highband spectra, Y. For fixed-dimensionality constraints,

Figure 4.6(a), depicting Case S-1, shows that, exploiting the available narrowband dimen-

sionality to improve the spectral representation of static narrowband spectra—rather than

to include long-term narrowband information—provides, in fact, more information about

the high band; i.e., narrowband delta features contain less information about the static

high band than do the higher-order narrowband static features they replace.

Since knowledge about speech properties suggests that the correlation between the static

94See Footnote 77 regarding GMM-derived results.
95See Eq. (4.34).
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(a) Case A-1: (5,0,4,0,4) ∆
Ð→ (5,5,4,0,4)

0
0

5
100

10
200

15
300

20
400

25
500

30
600

10

15

20

25

30

35

40

45

50

55

60

L [frames]
T [ms]

C
(△ Y
∣△ X
)[%

]

(b) Case A-2: (5,0,4,0,4) ∆
Ð→ (5,5,4,4,4)

Fig. 4.5: Effect of memory inclusion per Context A where LSF- and MFCC-based static features
vectors are extended by appending delta features. Highband certainty is illustrated as a function
of L, the number of neighbouring static frames—on each side of a static signal frame—used to
calculate the delta features, per Eq. (4.34), with T representing the total two-sided memory.
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(a) Case S-1: (10,0,4,0,4) ∆
Ð→ (5,5,4,0,4)
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(b) Case S-2: (10,0,7,0,7) ∆
Ð→ (5,5,4,4,7)

Fig. 4.6: Effect of memory inclusion per Context S where a high-order subset of the LSFs and
MFCCs of the static vectors are replaced by the delta features of the remaining lower-order static
features. The lower-order static features of the dynamic vectors are recalculated only in the case of
LSFs (lower-order static MFCCs are obtained by simply truncating the high-order static vectors).
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Fig. 4.7: Effect of memory inclusion using delta features per Context S and Scenario 2—i.e.,
Case S-2: (10,0,7,0,7) ∆

Ð→ (5,5,4,4,7)—on mutual information and discrete highband entropy.
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properties of one band and the dynamic properties of the other should be higher than that

shown above, these findings are revisited in Section 5.3.3 in the context of BWE.

B. Spectral dynamics in both bands are highly correlated

In contrast to Scenario 1, including memory in both narrowband and highband spectral

envelope representations can result in significant highband certainty gains—given by ∆C2

of Eq. (4.37)—as shown by the results of Figures 4.5(b) and 4.6(b) pertaining to Sce-

nario 2. In particular, comparing Figure 4.5(b) to Figure 4.5(a), depicting Cases A-2 and

A-1, respectively, shows that, while the narrowband dynamics represented by ∆X contain

minimal additional information about static highband spectra Y, the spectral dynamics

in both bands are highly correlated, translating into considerable gains in certainty about

the dynamic
△

Y = [ Y

∆Y
] representation of the high band given a similarly dynamic

△

X nar-

rowband representation. At the cost of increased dimensionality and complexity (but same

static spectral fidelity), Figure 4.5(b), depicting Case A-2, shows relative certainty gains—
∆C2

C(Y∣X)—reaching 99% for MFCCs (at T = 180ms), and 115% for LSFs (at T = 600ms),

indicating that the information shared by the ∆X and ∆Y delta representations can be

equal to or higher than that shared by the static X and Y representations. These certainty

gains correspond to ∼ 20% and ∼ 38% relative decreases in the uncertainty remaining in

the high band for LSFs and MFCCs, respectively.

C. Effects of time-frequency information tradeoff

More relevant to our memoryless BWE baseline, the effect of the aforementioned time-

frequency information tradeoff for the high band manifests in the lower certainty results for

Case S-2 relative to those of Case A-2, depicted in Figures 4.6(b) and 4.5(b), respectively,

and is further detailed in Figure 4.7. In contrast to memory inclusion via Context A—

represented by Figure 4.5(b)—where static feature dimensionality is preserved, replacing

higher-order static highband features by delta ones per Context S—represented by Fig-

ure 4.6(b)—adversely affects highband certainty. This follows as a result of using fewer

features to represent static highband spectra, thereby increasing the average quantization

LSD associated with VQ when using the original high-order static feature vectors as the

reference unquantized spectra. The accompanying increase in highband entropy—much

smaller with MFCCs than with LSFs as described below—is illustrated in Figure 4.7(b).

While reducing the number of features used to represent static highband spectra also results
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in lower information about these spectra, this decrease in information is compensated by

the inclusion of temporal information instead via delta features. In fact, as Figure 4.7(a)

shows, this time-frequency information substitution results in significant relative mutual

information gains, reaching 92% for MFCCs in particular. Based on the results of Case S-

2 in Figure 4.6(b), the net effect of the time-frequency information tradeoff on highband

certainty is a maximum increase of
∆C2

C(Y∣X) ≃ 78% for MFCCs (at T = 200ms), but only

a modest ∼ 10% for LSFs (at T = 600ms), relative to the Dim(X,Y,Yref) = (10,7,7)
memoryless baseline. These certainty gains correspond to a ∼ 20% relative decrease in the

uncertainty remaining in the high band for MFCCs, but only a mere ∼ 2% for LSFs.

D. Effects of memory inclusion on the MFCC-based RMS-LSD lower bound

To assess the significance of the highband certainty gains shown above for Scenario 2 in

terms of potential improvements in BWE performance, we make use of the MFCC-based

RMS-LSD lower bound, ↓ dLSD(RMS), of Eq. (4.32). For memory inclusion per Scenario 2,

we use static MFCC vectors with Dim(Yref) = 4 and 7 for Cases A-2 and S-2, respectively,

as the reference highband representation against which dLSD(RMS) is calculated. Simultane-

ously, however, we use the dynamic
△

Y = [ Y

∆Y
] MFCC vectors—with Dim(Y,∆Y) = (4,4)—

to represent the high band for the purpose of cross-band correlation modelling. From

the findings discussed above, it is clear that, for both Cases A-2 and S-2, the certainty

C( △Y∣ △X) about the dynamic highband MFCC vectors is considerably higher than the cer-

tainty C(Yref ∣ △X) about the reference static vectors given the same dynamic narrowband

representation. To elaborate, let Xref represent the reference static narrowband MFCC rep-

resentation such that Dim(Xref ,Yref) = (5,4) and (10,7) for Contexts A and S, respectively.

Then, for Context S where Dim(X,∆X,Xref ,Y,∆Y,Yref) = (5,5,10,4,4,7), the findings of
memory inclusion per Case S-2 in Figure 4.6(b) showed that C( △Y∣ △X) ≫ C(Yref ∣Xref).
In addition, Case S-1 in Figure 4.6(a) also showed that, for the same dimensionalities,

C(Y∣Xref) ≥ C(Y∣ △X), and hence, C(Yref ∣Xref) ≥ C(Yref ∣ △X). Thus, by combining the in-

equalities from both cases, C( △Y∣ △X) ≫ C(Yref ∣ △X). In a similar manner, Cases A-2 and

A-1 of Figure 4.5 show that C( △Y∣ △X)≫ C(Yref ∣Xref) and C(Yref ∣Xref) ≊ C(Yref ∣ △X), respec-
tively, and hence, C( △Y∣ △X) ≫ C(Yref ∣ △X). These observations show that a BWE system

that estimates highband content in the dynamic
△

Y form—given a dynamic
△

X narrowband

representation—is considered optimal if it fully translates the certainty C( △Y∣ △X) about the
dynamic high band into certainty C(Yref ∣ △X) about the reference static representation. Ac-
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cordingly, for memory inclusion per Scenario 2, the ↓ dLSD(RMS) lower bound of Eq. (4.32)

can then be rewritten in terms of C( △Y∣ △X) rather than C(Y∣X), while preserving other

variables as functions of Yref; i.e.,

dLSD(RMS) ≥
10

loge 10

¿ÁÁÁÀDim(Yref) (fmelh
− fmell

)
πe(Dim(Yref) + 1)fmelh

exp

⎡⎢⎢⎢⎢⎣
h(Yref) −H(Yref)C( △Y∣ △X)

Dim(Yref)
⎤⎥⎥⎥⎥⎦ . (4.38)

Figure 4.8 illustrates the effect of memory inclusion per Scenario 2 on potential BWE

performance as represented by ↓ dLSD(RMS). For Case A-2, the higher highband certainty

reduces ↓ dLSD(RMS) by up to 1.66dB (at T = 160ms), while for Case S-2, the decrease reaches

0.82dB (at T = 200ms). As expected, potential dLSD(RMS) performance improvements are

greater when memory inclusion does not involve a reduction in static feature dimensionality.

To put these potential BWE performance gains into perspective, we compare them to

the measured BWE performance gains reported in two earlier works representative of the

effects of improved cross-band correlation modelling. Noting that reductions in the RMS

average of LSD are, in general, only slightly higher than the corresponding MRS average

reductions, the earlier version of the dual-mode BWE system in [54] achieves an aver-

age highband MRS-LSD reduction of 0.96dB in the 3.5–7kHz by employing GMM-based

statistical mapping rather than VQ codebook mapping as in [69].96 In the more com-

plex speaker-independent HMM-based approach of [39], an average RMS-LSD reduction of

∼ 1.1dB is achieved in the 3.4–7kHz range by using 64 HMM states—with 16 Gaussian

components in the narrowband GMM of each state—rather than 2 states.97 By perform-

ing HMM-based BWE in a speaker-dependent manner rather than speaker-independently,

an additional average RMS-LSD advantage of ∼ 1dB is shown in [39]. From these exam-

ples, we can conclude that, with reference highband dimensionality being preserved (as in

Case A-2), the potential benefit of exploiting cross-band dynamic information on BWE per-

96The dual-model BWE system of [54] uses 14 LSFs and a pitch gain parameter to represent narrowband
envelopes while using 10 LSFs to represent those of the high band.

97The HMM-based BWE system of [39] uses 15-dimensional composite narrowband feature vectors
(composed of 10 auto-correlation coefficients, zero-crossing rate, a time-smoothed estimate of frame en-
ergy, gradient index, local kurtosis, and spectral centroid) and 9-dimensional highband cepstral coefficient
vectors. As described in Section 2.3.3.4, this approach divides highband vectors into several speech classes
using VQ, with each class mapped to a dedicated HMM state consisting of a GMM trained on the corre-
sponding narrowband vectors. Each HMM state has an associated probability and a first-order transition
probability that are estimated from training wideband sequences.
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formance is greater than that resulting from any of those individual cross-band correlation

modelling improvements discussed above. With the time-frequency information tradeoff as-

sociated with reducing static highband dimensionality in favour of incorporating dynamic

information (as in Case S-2), the potential gains of exploiting memory become lower but,

nevertheless, remain comparable to those improvements of the techniques discussed above.

To conclude, we note that, in addition to the fact the BWE highband frequency range

in the works cited above (⊆ 3.4–7kHz) is, in fact, smaller than that used in our modelling

of the high band (4–8kHz), the performance gains shown in our investigation (as well as all

certainty figures discussed in this chapter) are quite dependent on the dimensionalities we

chose for the static and dynamic representations. For a particular total dimensionality con-

straint, it is unknown whether the apportionments we chose for the allocation of available

dimensionality among static and delta features are optimal; i.e., the optimal allocation for

maximum certainty about the high band may very well be different than those discussed

in this chapter. This is, partly, the subject of Chapter 5.

E. Certainty gains due to memory inclusion saturate at the syllabic rate

By examining the certainty results of Figures 4.5(b) and 4.6(b) (depicting Cases A-2 and

S-2, respectively), as well as those of the dLSD(RMS) lower bound in Figure 4.8, as a func-

tion of the temporal span used for memory inclusion, we observe that highband certainty

reaches saturation for windows of, roughly, 200ms. Incorporating spans of memory be-

yond this range has little (in the case of LSFs) or no effect (in the case of MFCCs) on

certainty. Based on the duration properties of various sound units discussed in Section 1.2,

we can conclude that this duration corresponds to multi-phones (phonemes with left and

right contexts). Thus, the effect of memory inclusion is greatest when inter- or multi-phone

(syllabic) temporal information is employed to better identify individual phonemes (by ex-

ploiting intra-syllable inter-phoneme dependencies). Indeed, as noted earlier in Section 1.2,

the mapping from phones to individual phonemes is likely accomplished by analyzing dy-

namic acoustic patterns—both spectral and temporal—over sections of speech correspond-

ing roughly to syllables [10, Section 5.4.2]. Acoustic-only memory inclusion provides no

further information about inter-syllable dependencies. This is expected since such depen-

dencies are determined by language-specific prosody and semantic construction rather than

by phonetic speech signal characteristics. These conclusions coincide with the findings of

[128] in which modulation spectra show that the acoustic information content of speech is
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Fig. 4.8: Effect of memory inclusion using delta features per Scenario 2—i.e., per both
Cases A-2: (5,0,4,0,4) ∆

Ð→ (5,5,4,4,4), and S-2: (10,0,7,0,7) ∆
Ð→ (5,5,4,4,7)—on the MFCC-

based BWE RMS-LSD lower bound, ↓ dLSD(RMS), with the assumption that the certainty C(△Y∣ △X)
about the dynamic highband MFCC vectors with Dim(Y,∆Y) = (4,4) can be fully translated

into certainty C(Yref ∣ △X) about static vectors with Dim(Yref) = 4 and 7, for Cases A-2 and S-2,
respectively.

highest at the syllabic rate of 4–5Hz, corresponding to 200–250ms of memory.

F. The superiority of MFCCs over LSFs

Comparing the certainty results using MFCCs to those of LSFs—for the static baselines

of Table 4.2 as well as for the dynamic spaces of Figures 4.5 and 4.6—shows that MFCCs

consistently outperform LSFs in capturing cross-band information relevant to the high

band. The superiority of MFCCs for memory inclusion per Scenario 2 and Context S,

in particular, is most relevant to the implementation of memory-inclusive BWE in the

sequel. While Figure 4.7(a) shows that the mutual information between dynamic MFCC-

based representations of both bands is slightly superior to that of dynamic LSF-based

representations only up to ∼ 300ms of memory inclusion, Figure 4.7(b) shows a consistent

difference between dynamic MFCC- and LSF-based highband entropies. The considerably
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lower MFCC-based entropy—resulting in the overall superior MFCC-based certainty per-

formance of Figure 4.6(b)—is attributed to: (a) the improved class separability associated

with using MFCCs, described in Section 4.2.2, and (b) the lower spectral error associated

with vector-quantizing truncated MFCC vectors where Dim(Y,Yref) = (4,7), compared to

that associated with vector-quantizing lower-order LSF vectors. In particular, performing

IDCT on a truncated highband MFCC vector with Dim(Y) = 4 but based on K = 7 mel-

scale filters still generates a highband spectral representation with higher resolution—albeit

with error due to the truncation—than a spectrum estimated from a highband LSF vector

with Dim(Y) = 4. This observation is confirmed by comparing the increases in highband

entropy estimates for the Dim(X,Y,Yref) = (⋅,4,7) baselines in Table 4.2 relative to the

estimates for the (10,7,7) baseline, for both LSFs and MFCCs; while the relative increase

in highband entropy is ≈ 32% for LSFs, it is only ≈ 5% for MFCCs. This advantage for

MFCCs makes them less susceptible than LSFs to the adverse effects associated with the

time-frequency information tradeoff; while potential relative certainty gains decrease from
∆C2

C(Y∣X) ≃ 115% to ∼ 10% for LSFs when including delta features per Case S-2 rather than

A-2, corresponding gains for MFCCs decrease from ∼ 99% to only ∼ 78%.

For convenience of reference, Table 4.4 summarizes the highband certainty and BWE

performance upper bound figures mentioned above for Scenario 2.

Table 4.4: Effect of memory inclusion per Scenario 2—where delta features are incorporated
into the parameterizations of both bands—on highband certainty and RMS-LSD lower bound.
Representing acoustic space dimensionalities by Dim(X,∆X,Y,∆Y ,Yref), Cases A-2 and S-2 of
Scenario 2 are given by A-2: (5,0,4,0,4) ∆

Ð→ (5,5,4,4,4) and S-2: (10,0,7,0,7) ∆
Ð→ (5,5,4,4,7).

Case max [C(△Y∣ △X)] max [ ∆C2

C(Y∣X) ] min [↓ dLSD(RMS)] max [∆↓ dLSD(RMS)
]

A-2 31.3% 114.7% — —
LSFs

S-2 17.5% 9.8% — —

A-2 54.9% 99.2% 3.35dB 1.66dB
MFCCs

S-2 36.5% 77.5% 3.79dB 0.82dB

4.5 Summary and Conclusions

Although the spectral dynamics and temporal properties of speech—referred to herein as

speech memory—account for a significant portion of its information content, these prop-
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erties have mostly been discarded by BWE schemes employing memoryless mapping. A

few approaches exploiting speech memory have, however, been proposed to improve BWE

performance. Nonetheless, the effect of memory on cross-band correlation—the basis un-

derlying BWE—has not been adequately quantified in the context of BWE.

In this chapter, we presented a detailed investigation of the effect of memory inclusion on

cross-band correlation, quantifying such correlation using information-theoretic measures

combined with conventional GMM-based statistical modelling and vector quantization,

with speech dynamics modelled through delta features. Simple yet efficient, delta features

provided a means with which to represent memory extending up to 600ms. The results of

our investigation, while providing upper bounds on achievable BWE performance with the

inclusion of memory, also led to several observations, most notable of which are that:

(a) the spectral dynamics of both bands are highly correlated, to the extent that—as

summarized in Table 4.4—dynamic representations based on MFCCs can increase

certainty about the high band given the narrow band up to 55% at the cost of doubling

feature vector dimensionalities, and up to 37% with no increase in dimensionality,

potentially reducing BWE RMS-LSD distortion by 1.66 and 0.82dB, respectively;

(b) the effects of acoustic-only memory inclusion in increasing cross-band correlation

saturate at, roughly, the syllabic rate of 5Hz, and;

(c) MFCC parameters outperform LSFs in retaining mutual cross-band information con-

tent relevant to the reconstruction of the high band.

An optimal memory-inclusive BWE system is that which can translate these highband cer-

tainty and performance upper bound figures into matching improvements in reconstructed

signal quality. In practice, highband content is reconstructed on a frame-by-frame basis.

Thus, we can conclude from the observations above that, in order for a BWE system to

efficiently make use of the considerable cross-band correlation between dynamic represen-

tations, such a system must be able to convert—partially at least—information about spec-

tral envelope dynamics extending up to 200ms into higher-quality static highband envelope

extensions. Secondly, notwithstanding the advantages of LSFs over MFCCs, namely quan-

tization noise robustness and straightforward speech reconstruction, we also conclude that

MFCC-based BWE is potentially superior, particularly under constraints of fixed dimen-

sionality where memory inclusion may require replacing high-order static feature vectors
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by dynamic vectors consisting of delta features in addition to lower-order static features; a

substitution resulting in a time-frequency information tradeoff.
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Chapter 5

BWE with Memory Inclusion

5.1 Introduction

We showed in Chapter 4 that, for similar dimensionalities, parameterizing spectral en-

velopes using MFCCs results in consistently higher certainties about the high band than

those obtained using LSFs. As shown in Tables 4.2 and 4.4, these higher MFCC-based

certainties can, in fact, reach more than twice those based on LSFs, in both memoryless

and memory-inclusive conditions. Thus, we concluded that, notwithstanding the LSF ad-

vantage of straightforward speech reconstruction, MFCC-based BWE is inherently better.

Accordingly, we begin this chapter by presenting our work—introduced in [150]—to

exploit the superiority of MFCCs over LSFs in terms of cross-band correlation by using

MFCCs to represent both narrowband and highband spectral envelopes for BWE. To re-

construct highband speech from MFCCs (obtained by GMM statistical estimation from

input narrowband MFCCs), we employ high-resolution inverse DCT (IDCT) similar to

that of [151] resulting in fine mel-scale log-energies, from which the linear power spectra

can be recreated. The high-resolution IDCT effectively uses cosine functions to interpolate

between mel-scale filterbank log-energies to reconstruct the spectrum with finer detail (oth-

erwise lost due to the mel-scale filterbank binning). As in [152], we use a source-filter model

to reconstruct speech from the estimated power spectra through inverse Fourier transform

to obtain auto-correlation coefficients, to which the Levinson-Durbin recursion can then be

applied. The LPCs thus obtained represent the synthesis filter parameters which, when

combined with the enhanced EBP-MGN excitation signal of Section 3.2.4, can then be used

to reconstruct highband speech through a modified MFCC-based dual-mode BWE system.
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This MFCC inversion scheme thus eliminates the requirements of pitch estimation and

voicing decisions of the more complex sinusoidal model-based techniques (employed in the

field of distributed speech recognition) as in, e.g., [151, 153]. Using the BWE performance

measures described in Section 3.4, we show that our proposed MFCC-based dual-mode

technique achieves high-quality highband speech reconstruction equivalent to that of the

LSF-based dual-mode system, thereby allowing us to potentially exploit the superior cer-

tainty advantages of memory inclusion associated with MFCCs in comparison to LSFs—the

certainty advantages summarized in Table 4.4.

With our dual-mode MFCC-based BWE system in place, we then turn our focus to

translating the considerable highband certainty gains obtained and quantified in Chapter 4

into practical and measurable BWE performance improvements. Achieved by account-

ing for the cross-band correlation advantages of speech memory—i.e., the temporal and

dynamic spectral properties in long-term speech—through explicit delta feature inclusion

into the parameterization of the narrow and high bands, we present two distinct approaches

to empirically realize these theoretical certainty gains.

In the first approach, we attempt to replicate the information-theoretic effects of in-

corporating memory exclusively into the parameterization frontend, by integrating delta

features directly into our dual-model MFCC-based BWE system. Notwithstanding the

algorithmic delay entailed by the run-time calculation of non-causal delta features, the pri-

mary advantage of such frontend-based memory inclusion is the minimal modifications it

requires for integration into the memoryless BWE baseline system. By re-examining the

information-theoretic findings of Section 4.4.3 in the context of practical real-time BWE op-

erating on frame-by-frame basis, we gain a better understanding of the mutual information

relationships among the static and delta feature vector spaces of both bands—with X and

Y representing the static narrowband and highband feature vectors spaces, respectively,

and ∆X and ∆Y representing their delta counterparts. This, in turn, leads us to investigate

the effect of exploiting the information in∆Y jointly with that inX, Y, and∆X, in improv-

ing our GMM-based modelling of the underlying time-frequency classes shared between the

two bands. Indeed, despite the fact that, in practice, only the static Y features can be

used for the LP-based reconstruction of highband spectral envelopes since delta features

are non-invertible, results show a slightly improved performance for the static highband

certainty, C(Y∣ △X), when ∆Y features are included in joint-band GMM training.

By imposing a fixed-dimensionality constraint on the dual-mode system’s joint-band
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GMM with maximum dimensionality in order to guarantee the fairness as well as the prac-

ticality of any BWE performance improvements achieved, the inclusion of delta features in

lieu of static features results in the time-frequency information tradeoff discussed in Chap-

ter 4. Consequently, we perform empirical optimization over the frontend-based memory

inclusion’s dimensionalities in order to determine the optimal allocation of available di-

mensions among the static and delta features in both bands, such that static highband

certainty is maximized. Using the optimal joint-band dimensionalities obtained as such,

we then proceed to integrate frontend-based memory into our MFCC-based BWE system,

followed by performance evaluations using the objective measures described in Section 3.4.

Results show that the BWE performance improvements achieved as a result of frontend-

based memory inclusion generally coincide with the information-theoretic certainty results.

This, however, includes the modest nature of the attained performance improvements—

ranging from 2.1% relative Q
PESQ

improvement to 15.9% for d∗
IS
—since only a portion of

the considerable gains previously shown in Section 4.4.3.2 for the dynamic highband cer-

tainty, C( △Y∣ △X), was achieved for C(Y∣ △X) using the GMM modelling improvement and

optimization technique described above. Nevertheless, we also show that, in fact, these

BWE performance improvements involve no additional run-time computational cost. In

addition to the minimal modifications needed to the memoryless BWE baseline system and

that fact that our fixed-dimensionality constraint precludes increases in requirements on

training data amounts, this makes our proposed technique for frontend-based memory in-

clusion an easy and convenient means for translating the cross-band correlation advantages

of speech memory into tangible BWE performance improvements, albeit only partially.

In analyzing the performance of our first approach described above, we conclude that

such delta feature-based memory inclusion succeeds in achieving only modest improve-

ments primarily as a result of the lossiness and non-invertibility discussed in Section 4.4.2

for dimensionality-reducing transforms in general. As such, rather than incorporate long-

term spectral information through reducing dimensionalities, we focus instead in our second

approach on the problem of modelling the high-dimensional distributions underlying long-

term sequences of static joint-band feature vectors. With the problem of high-dimensional

modelling in general having been the subject of much research in the fields of machine

learning and speaker conversion, e.g., [154–158] and [159–161], respectively, we take inspi-

ration from solutions proposed in these fields in order to devise an algorithm suited to our

GMM-based approach to joint-band modelling. In particular, we use prior knowledge about
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the properties of GMM speech models as well as the predictability in speech in order to

constrain, or regularize, the degrees of freedom associated with our modelling problem in a

localized manner, effectively transforming the high-dimensional GMM-based pdf modelling

problem into a time-frequency state space modelling task. Using prior knowledge as such

allows us to break down the infeasible task of estimating high-dimensional pdf s into a series

of incremental tree-like time-frequency-localized pdf estimation operations with consider-

ably lower complexity and fewer degrees of freedom. Global temporally-extended GMMs

can then be obtained by consolidating such time-frequency-localized pdf s.

To maximize the information content of the temporally-extended GMMs obtained as

such while ensuring their robustness to the potential oversmoothing and overfitting risks

associated with the aforementioned localization, we propose a novel fuzzy GMM-based clus-

tering technique as well as a weighted implementation of the conventional Expectation-

Maximization (EM) algorithm used for GMM parameter estimation. The fuzzy clustering

technique accounts for the effects of class overlap in high-dimensional spaces, while the

second incorporates the soft weights associated to time-frequency-localized training data

by fuzzy clustering into the maximum-likelihood estimation of GMM parameters.

To emphasize the wide applicability of our tree-like GMM training algorithm to the

general problem of high-dimensional GMM-based modelling rather than focusing only on

our BWE context, the various operations and novel techniques comprising our proposed

algorithm are detailed, illustrated, and derived in as a general BWE-independent manner

as possible. This is followed by an evaluation of the reliability of the obtained temporally-

extended GMMs in the BWE context in terms of robustness to both oversmoothing and

overfitting, with novel proposed measures that are equally applicable to other source-target

conversion contexts.

Through a detailed analysis, we then conclude this chapter by showing that our pro-

posed temporally-extended GMM-based dual-mode BWE technique outperforms not only

our first frontend-based technique discussed above, but also other comparable BWE tech-

niques incorporating model-based memory inclusion—most notably the oft-cited HMM-

based techniques discussed in Section 2.3.3.4. In addition to achieving performance im-

provements of up to 9.1% and 56.1% in terms of Q
PESQ

and d∗
IS
, respectively, relative to our

memoryless MFCC-based dual-mode baseline, our model-based memory inclusion approach

to BWE also precludes the run-time algorithmic delay associated with our non-causal delta

feature-based technique, as well as requires no increases in training data requirements.
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These advantages of performance and real-time practicality are achieved, however, at a

run-time computational cost increase of nearly four orders of magnitude in terms of num-

ber of operations per input speech frame, relative to the memoryless baseline as well as to

the computationally equally-inexpensive frontend-based approach. Nevertheless, we show

that such computational costs are within the typical capabilities of modern communication

devices, such as tablets and smart phones.

5.2 MFCC-Based Dual-Mode Bandwidth Extension

5.2.1 Background

Despite MFCCs’ advantages in terms of speech class separability over LSFs and LP-based

parameters in general, the difficulty of synthesizing speech from MFCCs has restricted

their use to fields that do not require inverting MFCC vectors back into the original speech

spectra or time-domain signals, e.g., automatic speech recognition, speaker verification,

and speaker identification. This difficulty arises from the non-invertibility of several steps

employed in MFCC generation—namely, using the magnitude of the complex spectrum, the

mel-scale filterbank binning, and the possible higher-order cepstral coefficient truncation,

in Steps 3, 4 and 6 of Section 4.2.2, respectively. Consequently, the vast majority of

BWE techniques encountered in the literature are based on LP representations of the

highband signals from which the highband frequency content is reconstructed and added

to the narrowband signal.

The availability of the narrowband signal, however, has allowed researchers to investi-

gate the effect of several types of narrowband parameterizations on increasing the corre-

lation between narrowband feature vectors and LP-based highband (or wideband) feature

vectors. Examples include [39] whose narrowband feature vectors consist of a mixture

of auto-correlation coefficients, zero-crossing rate, normalized frame-energy, gradient in-

dex, local kurtosis, and the spectral centroid. A rare use of MFCCs in BWE is that of

[59] which employs a VQ codebook to map MFCC-parameterized narrowband signals to

LSF wideband signals. Informal listening tests in [59] show clear preference for wideband

speech reconstructed using the narrowband MFCC representation compared to that of the

conventional LP-based representation, despite the reported increase in LSD.

Despite the BWE performance improvements resulting from such alternative narrow-
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band parameterizations, these improvements are limited by the highband (or wideband)

LP-based representation. This limitation arises from the lower correlation between the al-

ternative narrowband features and the LP-based highband ones; narrowband MFCCs, for

example, correlate less with highband LSFs than with highband MFCCs.

There have been a few attempts, however, to achieve speech reconstruction fromMFCCs.

These attempts arose from the desire to generate speech for playback at the backend

of distributed speech recognition (DSR) systems, where frontend processing—i.e., MFCC

generation—takes place on the mobile device while recognition itself takes place at a cen-

tral server. As fewer bits are needed to transmit MFCCs compared to the coded speech

of conventional low bit-rate speech codecs employed in mobile devices, DSR thus reduces

the information to be transmitted over the usually bandwidth-limited client-server channel.

These attempts primarily use a sinusoidal model for speech generation, and require a pitch

estimate for each speech frame to be sent as side-information in addition to the MFCC

vectors. Frequencies of the sinusoids are determined from the pitch estimate, while sinu-

soid amplitudes are obtained from smoothed spectral envelopes inferred by applying inverse

DCT and exponentiation to MFCC vectors. Sinusoid phases are also typically generated

through voicing-based phase models. The works of [151] and [153] represent two notable

examples employing this technique. In essence, this sinusoidal model-based technique is

similar to that described in Section 2.3.6 and used in [63] and [91] for BWE, except that

sinusoid amplitudes are obtained from LP-based LSFs and log envelope samples in [63] and

[91], respectively, rather than MFCCs.

To overcome the aforementioned limitation of using LP-based representations for high-

band envelopes in BWE while also allowing us to potentially exploit the superior highband

certainties associated with MFCC-based memory inclusion, we use MFCCs to parameterize

both narrowband and highband envelopes—rather than limiting their use to the narrow

band only as in [59]—in a manner similar to that we used for estimating MFCC-based high-

band certainties in Chapter 4. Using GMM-based statistical estimation as in the LSF-based

dual-mode BWE system of Chapter 3, we obtain MFCCs representing highband envelope

shapes given narrowband MFCC-parameterized envelopes. Then, rather than employ a

sinusoidal model-based reconstruction scheme as described above which requires pitch es-

timation, we convert highband MFCCs into approximate LPCs through interpolation of

the filterbank log-energies on the mel frequency scale through a high-resolution inverse

DCT [151], followed by exponentiation, mel-to-linear frequency conversion, inverse Fourier
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transform, and Levinson-Durbin recursion. Details of our proposed MFCC-based BWE

technique follow below.

5.2.2 System block diagram

Figure 5.1 illustrates our MFCC-based modification to the dual-mode BWE system previ-

ously detailed in Section 3.2 and shown in Figure 3.1. While signal preprocessing, midband

and lowband equalization, and EBP-MGN excitation signal generation, are unchanged, the

parameterization of the midband-equalized narrowband signal, the subsequent GMM-based

MMSE estimation, and the conversion of the estimated highband parameters to LPCs, have

now been adapted to the MFCC case. We describe these modified components next.

5.2.3 Parameterization and GMMs

By performing MFCC parameterization as described in Section 4.2.2, and in Section 4.3.4

for the MFCC-based Dim(X,Y) = (10,7) baseline, we ensure consistency with our LSF-

based dual-mode BWE system in terms of the feature vector dimensionalities used to repre-

sent both envelopes shapes and gains. In particular, we parameterize the midband-equalized

narrowband signal in the 0–4kHz range using the 9 MFCCs, [cx1
, . . . , cx9

]T , and the 0th

coefficient, cx0
, representing narrowband envelope shape and gain, respectively.98 As such,

the MFCC-based narrowband random vector representation, X ∶= Cx, where the feature

vector realizations corresponding to signal frames are given by x ∶= cx ≜ [cx1
, . . . , cx9

, cx0
]T ,

coincides exactly with our LSF-based narrowband representation, X ≜ [ Ωx

log Ex
], with the

dimensionality Dim([ Ωx

log Ex
]) = 9 + 1 = 10, as detailed in Sections 3.2.5 and 3.2.7 in the con-

text of the dual-mode BWE system, as well as in Section 4.3.4 in the context of highband

certainty estimation.

As described in Sections 3.2.5 and 3.2.7, highband envelope shapes in the 4–8kHz range

were represented by 6-LSF feature vectors, ωy, while envelope gains were modelled indi-

rectly through the excitation gain, g, estimated such that the energy of the reconstructed

highband components is equal to that of the corresponding frequency band in wideband

speech. The correlation of these representations of highband envelope shapes and gains

98In defining narrowband feature vectors as consisting of the MFCCs cxn
, where n is the order of the

coefficient, the subscript x was used for clarity. To simplify notation, however, we will often drop the
subscripts x and y from a cepstral coefficient’s symbol, e.g., cn, when clear from the context. In contrast,
we always use the subscripts in denoting MFCC feature vectors, e.g., cx.
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with those of the narrow band were modelled separately through the full-covariance GMM

tuple, GG = (GXΩy
,GXG), where Dim([XΩy

]) = [10
6
] and Dim([X

G
]) = [10

1
]. Consequently, to

also ensure consistency of our MFCC-based highband parameterization with that of our

LSF-based dual-mode BWE system, we use the higher-order 6 MFCCs, cy ≜ [cy1 , . . . , cy6]T ,
and the excitation gain, g, to represent highband envelope shapes and gains, respectively.

Given our MFCC-based parameterizations, the GMM tuple—which we now rewrite asGG = (GXCy
,GXG) with Dim([XCy

]) = [10
6
] and Dim([X

G
]) = [10

1
]—jointly modelling the feature

vector spaces of both bands, is trained in the manner described in Section 3.2.6. We note,

however, that the training values of the excitation gain g—used to train the GXG GMM—are

calculated differently. In our LSF-based BWE system, the true values of g were determined

during training by artificially synthesizing the highband signal using: (a) the EBP-MGN

excitation signal described in Section 3.2.4, and (b) the true highband LPCs. With the

MFCC-based highband representation, we calculate the true values of g during GXG train-

ing using the LPCs obtained, rather, through the inversion—described below—of the true

highband MFCC feature vectors, cy.

5.2.4 High-resolution inverse DCT

As mentioned above, two of the six MFCC parameterization steps of Section 4.2.2 involve

non-invertible loss of information. Phase information is discarded in Step 3 as a result of

retaining only the magnitude of the spectrum. More important, however, is the partial loss

of information about spectral envelopes due to the many-to-one mapping of the mel-scale

filterbank binning in Step 4. The DCT of Step 6 also involves potential loss of spectral

envelope information depending on whether MFCC vectors are truncated. Performing in-

terpolation in the mel-scale log-spectral domain indirectly through a high-resolution inverse

DCT of highband MFCCs attempts to recover the information loss most detrimental to re-

constructed highband speech quality—that resulting from the mel-scale binning. We note

that no inversion is needed for the midband-equalized narrowband MFCCs; these are calcu-

lated from the available narrowband speech input only to be used for the MMSE estimation

of highband parameters through the GMM tuple, (GXC,GXG).
In performing MFCC parameterization of the highband content as described in Sec-

tion 4.2.2, we used K = 7 mel-scale filters in the 4–8kHz range.99 Thus, given an untrun-

99See Step 6 and Figure 4.1 in Section 4.2.2.
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cated set of MFCCs representing the highband content of a single frame and which also

includes c0, i.e., {cn}n∈{0,...,K−1}, the highband mel-scale log-energies, {loge εk}k∈{0,...,K−1}, can
be perfectly reconstructed by the conventional inverse of the Type-II DCT—the Type-III

DCT—given by

loge εk = a
K−1

∑
n=0

cn cos(n(k + 1

2
) π
K
) , where a =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

1
K
, for k = 0,√

2
K
, for k = 1, . . . ,K − 1.

(5.1)

Since c0 exclusively contains only information about the total energy of the signal, i.e., en-

velope gain, the shape of the spectral envelope—as represented by the values of mel-scale

log-energies relative to each other—can still be perfectly reconstructed through Eq. (5.1)

using only the coefficients {cn}n∈{1,...,K−1}. In other words, discarding c0 in Eq. (5.1) only

results in shifting the reconstructed highband log-energies, {loge εk}k∈{0,...,K−1}, by a con-

stant value, such that the overall highband spectral envelope shape is unaffected. This

was partially the motivation for specifically using K = 7 mel-scale filters to represent the 4–

8kHz high band in Section 4.2.2, since this value allows us to use the highband {cn}n∈{1,...,6}
MFCCs as described in Section 5.2.3 above, thereby ensuring consistency with the dimen-

sionality choice we made earlier in Section 3.2.7 for our LSF representation of highband

spectral envelope shapes—where 6 LSFs were used. We further note that, by discarding c0

from our MFCC highband parameterization, we are also ensuring the best use of the di-

mensionalities available for highband envelope representation since redundancy with g—the

highband excitation gain—is thus eliminated.

Given a highband MFCC feature vector, cy, obtained by MMSE estimation using GXC,

the IDCT of Eq. (5.1) thus provides an estimate of the corresponding highband envelope,

consisting of 7 mel-scale log-energy values. Viewed as scaled samples of the log power

spectrum at the centre frequencies of the mel-scale filters, it is clear that these few log-

energy values are insufficient to recreate a smooth spectrum. Finer spectral detail can

be obtained from these log-energies, however, by interpolating them indirectly through

increasing the resolution of the IDCT of Eq. (5.1), per

loge εk′ = a
K−1

∑
n=0

cn cos(n(k′ + 1

2
) π

KI
) , where a =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

1
K
, for k′ = 0,√

2
K
, for k′ = 1, . . . ,KI − 1,

(5.2)
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where an interpolation factor, I, was introduced in the denominator of the cosine frequen-

cies. In essence, the high-resolution IDCT of Eq. (5.2) interpolates between the K mel-scale

filterbank centres using the DCT basis functions themselves as the interpolating functions.

Corresponding to a mel-scale filterbank of KI overlapping filters rather than K, the

interpolation factor, I, results in KI mel-scale log-spectral samples in the 4–8kHz range,

thus providing a fine and smooth representation of the highband power spectrum. Since the

assumed interpolated KI filters partition the fHzl
= 4 to fHzh

= 8kHz highband range into

KI+1 intervals of equal length on the mel scale, then, using the linear-to-mel-scale frequency

conversion of Eq. (4.1), the interpolation factor, I, can be calculated for a particular desired

mel-scale resolution, δfmel, through

I = ⌈ 1
K
(fmelh

− fmell

δfmel

− 1)⌉ . (5.3)

For a desired resolution of 1mel, for example, Eq. (5.3) results in I = 99, with a total of

KI = 693 mel-scale log-spectral points in the 4–8kHz range. Based on BWE dLSD results,

we found empirically that best reconstruction performance is achieved with a mel-scale

resolution of δfmel ≊ 4mel, accompanied by an FFT length of 4096 for our 320-sample

speech frames.100,101 Per Eq. (5.3), this resolution translates into an interpolation factor of

I = 25—i.e., KI = 175 equally-spaced mel-scale samples of the highband 4–8kHz spectrum.

Finally, we note that, in practice, the high-resolution IDCT of Eq. (5.2) is applied

through a pre-computed matrix with KI rows and K columns, and where the (i, j)th
matrix element corresponds to the (k′, n)th a cos(⋅) term in Eq. (5.2).

5.2.5 Highband speech synthesis

By exponentiation of the interpolated mel-scale log-energies obtained by high-resolution

IDCT, i.e., {loge εk′}k′∈{0,...,KI−1}, we obtain single-sided highband power spectra consisting

of KI samples that are equally spaced on the mel scale as well as being scaled by the areas

under the mel-scale triangular filters. Thus, to obtain linear-frequency spectra, P (ω), we
100As described in Sections 3.2.8 and 3.2.1, we employ 20ms windowing and a sampling rate conversion

from 8 to 16kHz applied during preprocessing.
101As noted in Section 5.2.3 above, in addition to performing highband speech reconstruction in the

extension stage by inverting MFCCs through high-resolution IDCT, we apply a similar MFCC-based re-
construction during the training stage in order to generate the excitation gain, g, values to be used for the
maximum-likelihood training of the GXG GMM.
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first apply mel-to-linear frequency scale conversion using the inverse of Eq. (4.1),102 followed

by scaling by the inverse of the mel-filterbank areas to equalize the mel-scale spectral tilt.

Per the Wiener-Khintchine theorem, computing the inverse Fourier transform of the

two-sided power spectra—obtained by reflecting the single-sided spectra—results in the au-

tocorrelation coefficients {ryy(l)}l∈{0,...,NIFFT−1}, where NIFFT is the inverse fast Fourier trans-

form (IFFT) length [47, Section 4.3.2]. As described in Section 2.3.1 for the source-filter

speech production model, the p + 1 highband autocorrelation coefficients {ryy(l)}l∈{0,...,p}
can then be used to solve the corresponding p + 1 Yule-Walker equations by means of the

Levinson-Durbin recursion, resulting in p highband LPCs, {ay(k)}k∈{1,...,p}, and an estimate

for the minimum mean-square forward prediction error. The LPCs minimizing the forward

predictor MSE represent the coefficients of the all-pole vocal tract filter corresponding to

the shape of the KI-sample MFCC-based highband power spectrum, while the average

power of the spectral envelope is determined either directly using ryy(0) or indirectly via

the prediction error variance in conjunction with the LPCs. Consistent with the prediction

order used in Section 3.2.7 for our LSF-based dual-mode BWE system, we use p = 6th-

order linear prediction for our MFCC-based spectra. Adapted from the work in [151] and

[152], both of which were concerned rather with DSR-backend speech reconstruction, our

technique for the conversion of highband MFCCs to LPCs for the purpose of BWE is

summarized in Figure 5.1(d).

Figure 5.2 illustrates the high quality of our MFCC-based highband power spectral LP

approximations by comparing two such approximations to those of the conventional LP

spectra of the same order—where autocorrelation coefficients are calculated directly from

the input speech samples. Superimposed on the original non-smoothed FFT power spectra,

the MFCC-based and conventional LP spectral approximations are shown for a vowel, /e/,

and a fricative, /s/, in Figures 5.2(a) and 5.2(b), respectively.103 It can be seen that our

MFCC-based spectra closely match the true LP approximations, particularly so for the

more important fricative highband spectra. Figure 5.2 also shows, however, that, despite

the success of our interpolation-based approach in generating generally accurate spectral

envelope reconstructions, the reconstructed envelopes nevertheless still exhibit some errors

due to the non-invertibility of mel-scale filterbank binning. The most notable of these errors

102Mel-to-linear frequency scale conversion is given by fHz = 700[10 fmel
2595 − 1].

103In obtaining the MFCC-based LP approximations of Figure 5.2, the gains of the pre-LP interpolated
spectra where determined using the 0th coefficient, c0, rather than the excitation gain, g.
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are those in the spectral valley near 6.5 kHz of the vowel spectrum in Figure 5.2(a), and in

the formant near 5.7 kHz for the fricative spectrum in 5.2(b). The effects of such errors on

the overall objective BWE performance are discussed in Section 5.2.6 below.
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Fig. 5.2: Comparing MFCC-based LP approximations of highband power spectra—obtained
through MFCC inversion with interpolation via high-resolution IDCT—to those of conventional
LP spectra for two non-windowed 20ms highband speech frames corresponding to the mid-regions
of a vowel, /e/, and a fricative, /s/. The non-smoothed FFT-based power spectra are shown as
the reference for the approximations. Power spectra are mapped to sound pressure level (SPL)
on the ordinate using an SPL value of 90.3dB for the maximum attainable value of the 16-bit
linear PCM-coded speech frames.

With the MFCC-based LP spectral estimates obtained as described above, highband

speech can be reconstructed using an appropriate excitation signal. In the DSR approaches

of [151–153], the excitation signal is generated using voicing-based models which require

an estimate of the pitch. A pitch parameter is thus added to MFCC feature vectors as

side-information in these techniques. In the context of BWE, however, a superior highband

excitation signal can be generated using the narrowband signal readily available as BWE

input. As previously described for the LSF-based dual-model BWE system in Section 3.2.4,

modulating white Gaussian noise with the 3–4kHz midband-equalized narrowband signal,

in particular, provides such a superior excitation signal. This EBP-MGN excitation mirrors

the narrowband harmonic structure into the high band, resulting in pitch harmonics for

vowel-like voiced sounds, noise for unvoiced sounds, and a mixture of both for mixed sounds.
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Furthermore, due to its phase-coherence with the narrowband signal in the 3–4kHz range,

the EBP-MGN excitation partially mitigates the loss of phase information in Step 3 of

MFCC parameterization, noting that a more accurate—and consequently more complex—

estimation of phase is unwarranted due to the relative unimportance of phase for speech

intelligibility [162].

5.2.6 Memoryless baseline performance

Through the spectral interpolation performed via high-resolution IDCT and the coherence

of the EBP-MGN excitation signal phase with that of the narrow band, we have addressed

the loss of spectral envelope and phase information associated with Steps 4 and 3 of MFCC

parameterization, respectively. By further aligning the number of mel-scale filters in the

4–8kHz range with our baseline highband MFCC feature vector dimensionality, we have

also precluded the loss of spectral information as a result of MFCC truncation. As such, we

were able to reconstruct high-quality highband speech from MFCCs, thereby enabling us

to adapt our LSF-based dual-mode BWE system to MFCCs, as summarized in Figure 5.1.

This, in turn, allows us to potentially exploit the superior highband certainty properties of

MFCCs—shown in Sections 4.3.4 and 4.4.3.2—to improve BWE performance. Table 5.1 be-

low lists our MFCC-based memoryless BWE baseline performance obtained for the TIMIT

core test set with Nf ≊ 58 × 103 frames.104,105

Table 5.1: Speaker-independent memoryless BWE baseline performance using full-covariance

GMMs with M = 128, and MFCC parameterization with Dim ([X
Cy
]) = 16 and Dim ([X

G
]) = 11.

dLSD [dB] dLSD(RMS) [dB] Q
PESQ

d∗
IS
[dB] d∗

I
[dB]

5.17 5.89 3.01 12.32 0.5820

By comparing the MFCC-based performance figures of Table 5.1 to those of the LSF-

based baseline performance in Table 3.1, we can conclude that our attempts at mitigat-

ing the spectral envelope information losses associated with MFCC parameterization were

largely successful, resulting in an overall highband speech reconstruction quality that is

comparable to that obtained using LSFs. In particular, the dLSD, dLSD(RMS), and Q
PESQ

104See Footnote 77 regarding GMM-derived results.
105See Section 3.2.10 for description of the training and test data.
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measures—measuring distortions in both the shape and gain of reconstructed spectral

envelopes—show a relative decrease in performance of less than 2% using MFCCs, while

the gain-independent d∗
I
measure shows nearly identical performance for the reconstruction

of envelope shapes using both LSFs and MFCCs. This indicates that, in the context of our

dual-model BWE implementation, MFCC-based BWE marginally lags that based on LSFs

only in terms of spectral envelope gain estimation.

We note, however, that the superior certainty properties of MFCCs in the memoryless

case—shown in Table 4.1 for the reference Dim(X,Y) = (10,7) LSF- and MFCC-based

memoryless spaces—did not translate into corresponding BWE performance gains com-

pared to our baseline LSF-based performance. Since our dual-model BWE implementation

shares the same full-covariance GMM-based statistical modelling as well as the same pa-

rameterization type and dimensionality with our cross-band correlation modelling of Chap-

ter 4, we conclude that the underlying MFCC-based certainty gains observed in Table 4.1

were offset by errors in reconstructing spectral envelopes through the MFCC-based spec-

tral interpolation described above, rather than through LSFs. Using the performance lower

bound of ↓ dLSD(RMS) = 4.62dB for the Dim(X,Y,Yref) = (10,7,7) baseline MFCC space in

Table 4.2, we can in fact quantify the inoptimality of our MFCC-based dual-mode BWE

system—including interpolation-based envelope reconstruction errors—as the equivalent to

a distortion of dLSD(RMS) = 1.27dB.

Despite its inoptimality, our success in achieving a baseline MFCC-based BWE perfor-

mance comparable to that based on LSFs motivates us to exploit the superior certainty

advantages of memory inclusion based on MFCCs, rather than LSFs, for the purpose of

improving BWE performance. In particular, we showed in Section 4.4.3.2 that including

memory through delta features based on MFCCs results in considerably higher certainties

about the high band than achieved by LSF-based memory inclusion. While reference high-

band certainties for the memoryless LSF- and MFCC-based baselines differ by only ≈ 4.6%

(15.9% compared to 20.5% for LSFs and MFCCs, respectively, per Table 4.1), the difference

between LSF- and MFCC-based certainties in the case of memory inclusion can potentially

reach 19.5%–23.6% in favour of MFCCs, as shown in Table 4.4. More importantly, in the

case of memory inclusion under fixed-dimensionality constraints (Case S-2 in Table 4.4),

the focus of our work described below, MFCC-based cross-band correlation modelling was

shown to be much less susceptible than its LSF-based counterpart to the adverse effects

of the time-frequency information tradeoff; including memory as described for Case S-2
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increases MFCC-based certainty by a relative 77.5%, compared to only 9.8% using LSFs.

Based on these observations, we will henceforth exclusively consider MFCC-based pa-

rameterization for the implementation of memory inclusion.

5.3 BWE with Frontend-Based Memory Inclusion

In this section, we present our first attempt to translate the highband certainty gains

obtained in Section 4.4.3 as a result of memory inclusion—i.e., the inclusion of speech

dynamics—into measurable MFCC-based dual-mode BWE performance improvements.

As discussed in the preamble of Section 4.4, transforming temporal sequences of con-

ventional static feature vectors through a dimensionality-reducing transform represents the

most compact and efficient—albeit lossy—means of memory inclusion, thereby providing

the motivation for having employed delta features for the information-theoretic investiga-

tion of Section 4.4.3. For the purpose of improving BWE performance by exploiting the

high cross-band correlations of speech dynamics, it follows that we similarly investigate

memory inclusion through the use of delta features, although, as discussed in Section 4.4.2,

such a frontend-based approach is by no means optimal by virtue of the non-invertibility

of lossy dimensionality-reducing transforms in general. As such, we begin by reviewing the

application of frontend-based memory inclusion in the literature.

5.3.1 Review of previous works on frontend-based memory inclusion

As described earlier in Section 1.4, previous attempts to exploit the information in speech

dynamics for the purpose of improving BWE performance have primarily taken a modelling-

based approach where the cross-band correlations of speech dynamics are modelled through

HMMs. In contrast, exploiting memory through its inclusion into the parameterization

frontend has been quite limited, not only in terms of use, but also in terms of scope

where it has indeed been applied. In particular, except for the work of [132] discussed

below, frontend-based memory inclusion has exclusively been applied merely as a secondary

means for improved narrowband feature space parameterization, rather than as a means of

capturing the important cross-band information about speech dynamics.

To the best of our knowledge, the use of frontend-based memory inclusion has only

been applied in [87, 129, 132, 163]. In [129], where a neural network is used to model the

cross-correlations between narrowband features and four mel-scale subband energies in the
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4–8kHz range, the ratio of signal energy in a speech frame to that in the previous frame—

representing short-term narrowband speech dynamics—is included as a single parameter in

narrowband feature vectors. Similarly, delta as well as delta-delta (second-order regression)

features have been used in [87, 163] to incorporate dynamic information. To model the

cross-band correlation of speech dynamics, however, both these approaches rely instead on

the first-order HMM state transition probabilities as previously described in Section 2.3.3.4,

with the latter technique to be further detailed in Section 5.4.1.3. In fact, the BWE

technique of [87] incorporates dynamic features only for the narrow band, thereby including

memory per Scenario 1 of our investigation in Section 4.4.3. As was shown therein, the

inclusion of memory in such a scenario provides minimal to no benefits in terms of certainty

about the high band.

Finally, we note the work of [132] where GMM-estimated short-term temporal envelopes

of the 4–7kHz band are used directly to reconstruct highband speech. First proposed in

[164] as an alternative to the source-filter speech production model, Kim et alia subjec-

tively show that the temporal envelope of the highband signal is an important perceptual

cue of highband content while rapidly varying components—i.e., fine structure—in the

temporal domain are not as important. Mimicking the temporal masking properties of

speech, highband components in each 5ms frame are represented by the shapes and gains

of the temporal envelopes of four subband signals, with the assumption that these highband

temporal envelopes are related to the temporal envelope in the intermediate 3–4kHz band—

obtained through a Hilbert transform—through a linear transformation. Using GMMs to

estimate highband content (represented by the gains and transform filter coefficients of

the four subband signals) using that of the narrow band (represented by LFCCs—linear-

frequency cepstral coefficients), highband speech is then reconstructed per frame through

a time-domain multiplication of the MMSE-estimated temporal envelopes with fine struc-

ture signals—obtained by full-wave rectification of the narrowband signal followed by a

Hilbert transform—and, finally, summing the four time-domain products corresponding to

the subband signals.

Although the speech production model of [132, 164] is based on a temporal repre-

sentation of the signal, this BWE technique only considers temporal dynamics within

frame-based intervals no longer than 5ms. As such, it can not be considered as applying

frontend-based memory inclusion, per se. Furthermore, while this temporal envelope-based

technique is similar to the dual-mode BWE technique in that it relies on mapping the voic-
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ing and noisiness characteristics of the signal in the intermediate 3–4kHz range into the high

band,106 it assumes that speech content in that intermediate range is readily available in

narrowband input. Since this assumption is not normally valid for conventional telephony,

however, the conclusions and subjective results of [132, 164] must be correspondingly qual-

ified; i.e., they don’t account for highband temporal envelope distortions linearly mapped

from an imperfectly reconstructed envelope in the 3.4–4kHz subband. To conclude, we

note that the BWE performance using the temporal envelope model in [132] was evaluated

by comparing it to the performance of the conventional GMM- and source-filter model-

based BWE system of [82]. Using the subjective MUSHRA [165] and ABX preference [166]

tests, results in [132] show a slight preference for the wideband speech obtained using the

proposed temporal-based technique.107

5.3.2 Fixed-dimensionality constraint

To render the comparisons of memory-inclusive and memoryless BWE performances—and

any improvements achieved—as practical and fair as possible while also ensuring consis-

tency with the information-theoretic investigation of Section 4.4.3, we restrict our work

herein by imposing a fixed-dimensionality constraint; the inclusion of memory through

delta features should not result in an increase of dimensionality for the dual-mode system’s

GMM with maximum dimensionality—GXC
108. This constraint guarantees that the same

amount of data previously used to train the GMM tuple of the memoryless MFCC-based

dual-mode BWE system can be used without increase with the memory-inclusive modifi-

cations. Furthermore, while only a slight increase in computational costs will be required

during parameterization as a result of the additional processing needed for delta feature

calculation, the fixed-dimensionality constraint ensures that all certainty and BWE per-

106The dual-mode BWE system of [55] generates voicing and noisiness characteristics for the high band
indirectly by equalizing the 3.4–4kHz range before using the 3–4kHz subband to generate the EBP-MGN
excitation signal; see Section 3.2.4, while the temporal envelope-based approach of [132] maps these char-
acteristics from the temporal envelope in the 3–4kHz range directly into the temporal envelope of the high
band through a linear transform.

107In multiple-stimuli-with-hidden-reference-and-anchor (MUSHRA) tests, listeners assess the quality of
multiple test stimuli—including a hidden reference and one or more hidden anchors—by assigning a score to
each stimulus. In [132], the stimuli consist of two anchors, a hidden reference, and undistorted narrowband
speech samples as well as the corresponding samples from the proposed temporal-envelope model-based
and reference source-filter model-based BWE algorithms. In ABX tests, listeners determine which of the
two test stimuli, A and B, is more identical to the reference stimulus, X.

108See Section 5.2.3.
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formance improvements achieved are exclusively due to the substitution of static features

by delta ones, rather than to any improvements in GMM training resulting from higher

degrees of freedom for feature-space modelling or from the use of additional training data.

5.3.3 Exploiting the cross-correlation between narrowband and highband

spectral envelope dynamics

5.3.3.1 Re-examining information-theoretic findings in the context of BWE

for illustrative purposes

Using information-theoretic measures to quantify cross-band correlation, we showed in Sec-

tion 4.4.3 that incorporating memory—in the form of delta features—into the parameteri-

zations of both narrowband and highband spectral envelopes can increase such cross-band

correlation considerably. For MFCCs with a fixed-dimensionality constraint, in particular,

we showed that memory inclusion per Case S-2 increases certainty about the high band

to 36.5% when represented by the dynamic vectors
△

Y = [ Y

∆Y
], up from 20.5% with only

the conventional static representation, Y, corresponding to a potential 0.82dB reduction

in RMS-LSD BWE distortion.109

Translating these highband certainty gains obtained through the use of delta features

into practical BWE performance improvements requires, however, that we re-examine the

relevant conclusions of Section 4.4.3.2 in the context of BWE implementation, as follows:

(a) As shown by the results of Scenario 1, narrowband spectral dynamics represented by

the delta features, ∆X, provide minimal information about static highband spectra,

Y, and vice versa, i.e.; I(∆X;Y)≪ H(Y) and I(X;∆Y)≪ H(X). To simplify the

analysis to follow as well as emphasize that these findings were made: (a) based on

GMM-based estimates of MI,110 and (b) using a joint-band GMM that only models

the joint distribution of
△

X and Y (or X and
△

Y),111 we write

Î(∆X;Y∣G▵XY
) ≊ 0 and Î(X;∆Y ∣GX

▵

Y
) ≊ 0. (5.4)

The assumption that these quantities equal zero implies that modifying the dual-

mode BWE system—represented by the GG = (GXC,GXG) GMM tuple—by using
△

X,

109See Table 4.4.
110See Eq. (4.7).
111See Section 4.4.3.2.
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rather than X, as the representation of the narrow band while continuing to use

only the static Y representation for the high band, will result in no improvement in

performance.

(b) The results of Scenario 2 showed that appending delta features to the static feature

vectors of both bands—i.e., Case A-2—increases cross-band correlation by up to 99%

for MFCCs when all available delta features are used without truncation. Using

delta features to replace some of the static features in both bands—i.e., Case S-2—

also results in an overall increase in cross-band correlation, albeit lower than that of

Case A-2 as a result of a time-frequency information tradeoff.

To illustrate the relations between the information content of the four feature vector

spaces considered in Scenario 2—i.e., X, Y, ∆X, and ∆Y—in a manner similar to

that of Figure 4.4, we extend the assumption of Eq. (5.4) to the case of Scenario 2 as

well where a joint-band GMM, G▵
X
▵

Y
, modelling the joint distribution of

△

X and
△

Y, is

used, rather than G▵
XY

as in Scenario 1. In other words,

assume:
Î(∆X;Y∣G▵X▵Y) = Î(∆X;Y∣G▵XY

) ≊ 0,
Î(X;∆Y ∣G▵

X
▵

Y
) = Î(X;∆Y ∣G

X
▵

Y
) ≊ 0, (5.5)

then, the relations between the information content of the four feature vector spaces

can be visualized through the Venn-like diagram112 in Figure 5.3 below, which shows

that

Î( △X;
△

Y∣G▵
X
▵

Y
) ≜ Î(X,∆X;Y,∆Y ∣G▵X▵Y) ≊ R1 ∪R2

= Î(X;Y∣G▵
X
▵

Y
) + Î(∆X;∆Y ∣G▵

X
▵

Y
). (5.6)

(c) Similar to most speech processing techniques, BWE operates on a frame-by-frame

basis such that a time-domain highband signal can be reconstructed using quasi-

stationary spectral envelope estimates obtained from the available narrowband in-

put. Thus, without fundamental changes involving the source-filter speech production

model and/or GMM-based statistical modelling, making use of information gained

about the dynamics of highband spectral envelopes requires translating such infor-

mation into corresponding information about static envelopes. Consequently, in the

112See Footnote 91.
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H(X∣Y,∆X) H(Y∣X,∆Y)

H(∆X∣X,∆Y) H(∆Y∣Y,∆X)

H(X) H(Y)

H(∆X) H(∆Y)

R1

R2

R3

Fig. 5.3: Venn-like diagram representing the relations between the information content of
the X, Y, ∆X and ∆Y spaces, under the assumption that Î(∆X;Y∣G▵

X
▵

Y
) = Î(∆X;Y∣G▵

XY
) ≊

0 and Î(X;∆Y ∣G▵
X
▵

Y
) = Î(X;∆Y ∣G

X
▵

Y
) ≊ 0.

context of BWE, the increase in highband certainty we achieved by memory inclu-

sion using delta features can only be useful if the improved cross-band correlation

between the
△

X and
△

Y representations is mapped into higher certainty about static Y

feature vectors—more specifically, if the gained information about ∆Y feature vectors

is mapped into improved Y vectors.

(d) As described in Sections 4.4.1 and 4.4.2, delta features are obtained by non-causal FIR

filtering of static features with zeroes on the unit circle, and hence, are not practically

invertible as the inverse filter is only marginally stable. Delta features can not thus be

deterministically used for LP-based reconstruction of static envelopes. Accordingly,

statistical mapping is the only means to convert the information attained about ∆Y

features using the narrowband
△

X dynamic representation into additional information

about the static Y spectral envelope representation.

(e) The information that can be used for obtaining better estimates for Y given ∆Y—

i.e., the information that is mutual to both Y and ∆Y—is represented in Figure 5.3

by the region R3. This region, in addition to that denoted by R1, represents the

information content that can be used to reconstruct Y in a practical frame-based

BWE implementation as described in point (c) above. As a result of the assump-

tions made in Eq. (5.5), however, it is clear from Figure 5.3 that region R3 does not
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overlap with either H(X) or H(∆X)—the information available via the narrowband

input. In other words, neither X nor ∆X provides information about ∆Y that can, in

turn, be used to improve estimates of Y. Stated more formally, Eq. (5.6)—resulting

from the assumptions of Eq. (5.5)—shows that the certainty gains measured in Sce-

nario 2 are exclusively due to the additional Î(∆X;∆Y ∣G▵
X
▵

Y
) term represented by the

region R2. Since Î(∆X;Y∣G▵X▵Y) ≊ 0 per our assumptions, then, by the data-processing

inequality113, Y is also conditionally independent of any estimate, ∆̂Y, that is prob-

abilistically a function of only ∆X—i.e., Y, ∆X, and ∆̂Y form the Markov chain

Y →∆X → ∆̂Y—and hence,

Î(∆̂Y;Y∣G▵X▵Y) ≤ Î(∆X;Y∣G▵X▵Y) = Î(∆X;Y∣G▵XY
) ≊ 0, (5.7)

showing that the certainty advantages measured in Scenario 2 as a result of memory

inclusion can not—under the simplifying assumptions of Eq. (5.5)—be translated into

practical BWE performance if such inclusion is applied using non-invertible delta

features.

5.3.3.2 Exploiting highband dynamics to improve joint-band modelling

By facilitating the analysis above, the assumptions of Eq. (5.5) allowed us to gain a better

understanding of the effect of memory inclusion using delta features on potential BWE

performance. These assumptions, however, do not take into account an important advan-

tage of G▵
X
▵

Y
over G▵

XY
—the ability to exploit the ∆Y training data to obtain a better model

of the underlying acoustic classes. This, in turn, should result in improved estimates for

the true I( △X;Y)—the information actually made use of in a practical BWE system as

discussed in point (c) above. As such, a BWE system based on G▵
X
▵

Y
, rather than G▵

XY
,

will then generate better estimates for Y using the
△

X = [ X

∆X
] inputs—despite the fact that

the ∆Y subspace model is, in fact, discarded during the extension stage—provided that

the true I(∆X;Y) is, in fact, higher than our Î(∆X;Y∣G▵
XY
) estimates. Indeed, although

the results of Scenario 1 show only a modest correlation between the ∆X and Y feature

113The random variables X , Y , and Z, are said to form a Markov chain—denoted by X → Y → Z—if the
conditional distribution of Z depends only on Y and is conditionally independent ofX . The data-processing
inequality states that, if X → Y → Z—which also implies Z → Y → X—then, I(X ;Y ) ≥ I(X ;Z). See [64,
Section 2.8] for proof and corollaries.
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spaces—i.e., in contrast to our simplifying assumptions, I(∆X;Y) � 0—the properties of

speech discussed in Sections 1.1.3.1 and 1.2 suggest that the correlation between the two

spaces should be higher. For tense and stressed vowels, for example, static features of the

low-energy highband envelopes should exhibit a close relationship with the delta features

of the narrow band as these vowels are characterized by relatively constant properties over

longer durations—up to an average 130ms for stressed vowels—compared to other manners

of articulation.

As described in Section 2.3.3.4, the foremost motivation for using GMMs to model

speech in general is their ability to model underlying sets of acoustic classes with an intuitive

correspondence between such classes and the Gaussian component densities. As such, the

components of the memoryless joint-band GMM GXY that is trained only on the static

features of both bands—and with M = 128 as described in Section 3.5.3—will tend to model

underlying classes corresponding to the fine spectral detail of quasi-stationary allophonic

variations of phonemes.114 Without an accompanying increase in the number of GMM

components, the introduction of temporal features—e.g., delta features—in addition to

their existing static counterparts during training will influence the iterative maximum-

likelihood (ML) estimation of the mixture model towards salient properties along temporal

axes, such that the underlying classes represented by the M components acquire temporal

resolution at the cost of decreased spectral resolution. In a joint-band GMM, such asG
XY

, G▵
XY

, or G▵
X
▵

Y
, the two feature subspaces corresponding to the two frequency bands

are modelled jointly and are assumed to share the same underlying acoustic classes—the

basis of BWE. Thus, introducing temporal features into the representations of both bands

ensures that the two corresponding ML- and jointly-trained subspace models are influenced

uniformly in the same manner by temporal properties, thereby generating a better model

of the underlying classes shared by the two feature subspaces. This, in turn, should result

in more accurate estimates of the true correlation between temporal features in one band

and static ones in the other than can be obtained by incorporating temporal features into

the parameterization of only one band.

To summarize, we argue that the superior cross-band correlation between the dynamic
△

X and
△

Y vectors improves the overall ability of the dynamic GMM, G▵
X
▵

Y
, to model,

and subsequently estimate, the cross-band correlation between
△

X and Y—represented by

114See the discussion in Section 3.3.4 on the correspondence of the number of Gaussian components and
type of acoustic features used in a GMM to the underlying classes modelled by the GMM.
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Î( △X;Y∣G▵
X
▵

Y
)—since training for G▵

X
▵

Y
is performed using the static highband features, Y,

jointly with their X, ∆X, and ∆Y counterparts, thereby making use of the correlations

between all four quantities—particularly the strong correlations between ∆X, and ∆Y—

rather than just those between
△

X and Y. In other words,

Î( △X;Y∣G▵
XY
) ≤ Î( △X;Y∣G▵

X
▵

Y
) ≤ I( △X;Y), (5.8)

where I( △X;Y) is the true mutual information. This indirect effect of using ∆Y data jointly

with their X, Y, and ∆X counterparts to improve the overall Gaussian mixture model

during training is similar in principle to the effect of training diagonal-covariance GMMs

on any set of joint vectors; despite their lack of cross-covariances, diagonal-covariance

GMMs still capture the underlying correlation between the modelled subspaces as a result

of training on joint vectors.

To verify these arguments summed up by Eq. (5.8)—as well as assess the validity of

our simplifying assumptions in Eq. (5.5)—we compare the certainty C(Y∣ △X,G▵
X
▵

Y
), i.e., the

certainty obtained for static Y highband features given the dynamic
△

X = [ X

∆X
] narrowband

representation and a joint-band G▵
X
▵

Y
GMM trained on joint [ △XT ,

△

YT ]T feature vectors,

to the corresponding certainty C(Y∣ △X,G▵
XY
), obtained using G▵

XY
, for the same MFCC

dimensionalities used in Section 4.4.3.1. As described in Section 4.3, certainties—rather

than mutual information figures—are more relevant to BWE. Representing upper bounds on

BWE performance, certainties take the self-information of highband features into account,

as well as account for the effects of differences in highband dimensionality.

Reusing our earlier Dim(X,∆X,Y,∆Y,Yref) representation of acoustic space dimen-

sionalities introduced in Sections 4.3.4 and 4.4.3.1, we evaluate certainties relative to

our memoryless MFCC-based (10,0,7,0,7) baseline of Section 4.3.4 with the certainty

and RMS-LSD lower bound performances shown in Table 4.2. To preserve dimensional-

ity as described in Section 5.3.2, we only consider the inclusion of delta features under

Context S115 with the feature dimensionalities given by (5,5,4,0,7) and (5,5,4,4,7) for
C(Y∣ △X,G▵

XY
) and C(Y∣ △X,G▵

X
▵

Y
), respectively. Except for the difference in Dim(Yref), we

estimate C(Y∣ △X,G▵
XY
) for the (5,5,4,0,7) MFCC dimensionalities in the same manner as

115See Section 4.4.3.1.



5.3 BWE with Frontend-Based Memory Inclusion 169

previously performed for the evaluation of memory inclusion per Case S-1;116 i.e., for N

feature vectors,

C(Y∣ △X,G▵
XY
) = Î( △X;Y∣G▵

XY
)

H(Y)∣
dLSD=1dB

, with Î( △X;Y∣G▵
XY
) = 1

N

N

∑
n=1

log2
⎛⎝ G

▵

XY
(△xn,yn)G▵

X
(△xn)G

Y
(yn)

⎞⎠ . (5.9)

In contrast, we estimate C(Y∣ △X,G▵
X
▵

Y
) by marginalizing G▵

X
▵

Y
(△x, △y) over the ∆Y subspace

to obtain G▵
X
▵

Y
(△x,y), such that

C(Y∣ △X,G▵
X
▵

Y
) = Î( △X;Y∣G▵

X
▵

Y
)

H(Y)∣
dLSD=1dB

and Î( △X;Y∣G▵
X
▵

Y
) = 1

N

N

∑
n=1

log2
⎛⎝ G

▵

X
▵

Y
(△xn,yn)G▵

X
(△xn)G

Y
(yn)

⎞⎠ . (5.10)

Illustrating the results obtained for both C(Y∣ △X,G▵
XY
) and C(Y∣ △X,G▵

X
▵

Y
), Figure 5.4

shows the latter to be consistently higher. We also find that the difference increases as

a function of the amount of memory incorporated into the delta features—represented by

the number of neighbouring frames, L, used to calculate the delta features in Eq. (4.34)—

reaching saturation at roughly T = 200ms, i.e., at the syllabic rate. Since Eqs. (5.9) and

(5.10) differ only in terms of the joint-band GMM used to estimate Î( △X;Y)—i.e., the in-

clusion of ∆Y is restricted to only that term—we are certain that the superior results for

C(Y∣ △X,G▵
X
▵

Y
) compared to C(Y∣ △X,G▵

XY
) in Figure 5.4 are exclusively due to the aforemen-

tioned influence of the ∆Y training data in shaping the overall joint-band model during

maximum-likelihood training.

Despite the superior results for C(Y∣ △X,G▵
X
▵

Y
) compared to C(Y∣ △X,G▵

XY
), however,

Figure 5.4 also shows that C(Y∣ △X,G▵
X
▵

Y
) is nevertheless still lower than the certainty

C(Y∣X,GXY) of the reference memoryless (10,0,7,0,7) baseline with equivalent GXC/GXΩ

dimensionality. In other words, the net time-frequency information tradeoff imposed by the

chosen delta feature dimensionalities is, in fact, negative. Consequently, the performance

of a practical GMM-based BWE system—e.g., our MFCC-based dual-mode BWE system

of Section 5.2—that incorporates memory by replacing static spectral envelope features by

delta ones per these dimensionalities will not improve. An optimization is thus required

to find the optimal allocation of the available feature vector dimensionalities in each of the

two frequency bands among static and delta features.

116See Table 4.3.
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Fig. 5.4: Comparing the effects of memory inclusion using the G▵
XY

and G▵
X
▵

Y
joint-band

GMMs on the MFCC-based static highband certainty, C(Y∣ △X), relative to the memoryless
Dim(X,∆X,Y,∆Y,Yref) = (10,0,7,0,7) and (5,0,4,0,7) baselines.
5.3.4 Optimization of the time-frequency information tradeoff

As discussed in Section 1.2, temporal information in speech has been shown to comple-

ment memoryless spectral information. In fact, the works of [167] and [168] on the role of

temporal cues—briefly described in Sections A.1 and A.3, respectively—have shown tem-

poral information to be even sufficient to maintain accurate word intelligibility and effective

communication when spectral information is missing or severely degraded. However, the

tradeoff between information in the time and frequency axes in the context of BWE where

perceived quality—rather than intelligibility—is the measure of performance, is much more

subtle, particularly at reduced dimensionalities. A case in point is the contrast between

voiced and unvoiced fricatives in terms of the importance of frequency and temporal prop-

erties relative to each other. Since unvoiced fricatives, e.g., /s/ and /f/, are characterized by

nearly flat highband spectra, including long-term memory through narrowband and high-

band delta features at the cost of reducing the corresponding static spectral features to only
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a few parameters, allows the joint-band model to incorporate memory for improved fricative

separation during model training. This, in turn, improves their identification during recon-

struction while still retaining sufficient spectral information for the accurate reconstruction

of their flat spectra. In contrast, a similar reduction in memoryless spectral information

for phonemes with finer spectral detail, e.g., voiced fricatives with harmonics imposed on

frication noise, may be higher than can be compensated by temporal information.

The objective, then, for a BWE system employing frontend-based memory inclusion

through non-invertible features, is to operate at the optimal point of the time-frequency

information tradeoff associated with the particular dimensionalities of that system. This

optimal point corresponds to the maximum achievable certainty about static highband fea-

tures, C(Y∣ △X,G▵
X
▵

Y
), resulting in the minimum achievable reconstructed highband spectral

distortion as represented by ↓ dLSD(RMS)—the RMS-LSD lower bound obtained by replacing

C(Y∣X,GXY) in Eq. (4.32) by C(Y∣ △X,G▵
X
▵

Y
). The domain of this optimization problem

is the three-dimensional (p, q,L) space of static narrowband and highband feature vector

dimensionalities, p and q, respectively, and the length L of the window used to calculate

delta features, with the optimized function being that of C(Y∣ △X,G▵
X
▵

Y
) or ↓ dLSD(RMS). Using

C(Y∣ △X,G▵
X
▵

Y
), we can thus write the optimal point as the tuple

( ∗p, ∗q, ∗L) = arg max
p,q,L

C(Y∣ △X,G▵
X
▵

Y
), subject to:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 ≤ p ≤ pmax,

1 ≤ q ≤ qmax,

L ≥ 0,

p, q,L ∈ Z,

(5.11)

where the upper limits of the constraints imposed on p, q, and L, are determined as

described below.

Since Figure 5.4 indicates that C(Y∣ △X,G▵
X
▵

Y
) is not convex at least as a function of

L—with two separate maxima at T ≊ 320 and 560ms—we perform the optimization of

Eq. (5.11) empirically. In particular, we estimate C(Y∣ △X,G▵
X
▵

Y
) using marginalization ofG▵

X
▵

Y
in the same manner as performed in Section 5.3.3.2 above, at (p, q,L) values spanning

the constraint ranges of Eq. (5.11). The upper constraint limits are determined such that

the fixed-dimensionality constraint of Section 5.3.2 is satisfied while ensuring consistency

with our previous approach for the inclusion of delta features. Specifically:

• pmax = 9.
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As described in Section 4.3.4, the dimensionality of the memoryless baseline GXY

GMM used for highband certainty estimation was determined as Dim(X,Y) = (10,7)
in order to coincide with the baseline dual-mode BWE GMM tuple dimensionalities

given by Dim([XΩy
]) = [10

6
] for GXΩy

(or Dim([XCy
]) = [10

6
] for GXCy

in the MFCC case)

and Dim([X
G
]) = [10

1
] for GXG—i.e., 10 narrowband features shared by both GXΩy

(orGXCy
) and GXG, and 7 highband features divided into 6 envelope shape parameters inGXΩy
(or GXCy

) and 1 envelope gain parameter in GXG.

With the inclusion of delta features and focusing only on the MFCC-based param-

eterization, we represent the dual-mode system’s GMM tuple by
△GG ≜ (G▵

X
▵

C
,G▵

X
▵

G
),

with both GMMs sharing the same
△

X narrowband representation and G▵
X
▵

C
having

the maximum dimensionality of 16 per our fixed-dimensionality constraint. Thus,

in order for G▵
X
▵

Y
—the single GMM used in our highband certainty investigation—to

coincide with the (G▵
X
▵

C
,G▵

X
▵

G
) tuple in the same manner as described above for the

memoryless baseline, a dynamic
△

X narrowband dimensionality of 10 is used. To fur-

ther conform with our earlier approach for incorporating delta features where priority

was given to static envelope gain parameters and their delta features,117 the minimal

inclusion of delta features in each band should consist of a single log-energy delta

feature—i.e., δcx0 and δcy0 for the narrow and high bands, respectively. As such, the

maximum dimensionality of static narrowband features with the inclusion of delta

features is given by pmax = 9, in which case the overall dynamic narrowband feature

vectors consist of [cx1
, . . . , cx8

, cx0
, δcx0 ]T . For p < pmax, higher-order static envelope

shape parameters—i.e., cxi
where i > 0—are replaced by the delta features of shape

parameters with increasing order, i.e., for p = 7, for example, cx7
and cx8

are replaced

by δc1 and δc2 , respectively.

• qmax = 7.

Conforming with the memoryless case, highband modelling in the dynamic BWE

case is divided among the two G▵
X
▵

C
and G▵

X
▵

G
GMMs; envelope shape parameters inG▵

X
▵

C
while those of the gain in G▵

X
▵

G
. Given the priority of both static and delta

gain parameters as noted above, we include both g and δg in the G▵
X
▵

G
model, such

that the overall dimensionality of the joint-band space modelled by G▵
X
▵

G
is given by

117See Section 4.4.3.1.
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Dim([△X
△

G

]) = [10
2
]. Since this dimensionality is still lower than that of G▵

X
▵

C
, the increase

relative to the dimensionality of the memoryless GXG involves no additional training

data requirements.

With the additional highband gain delta feature, the overall dimensionality of the

dynamic highband space to be modelled by G▵
X
▵

Y
for certainty estimation increases by

1, i.e., Dim( △Y) = 8. This results in a maximum static highband feature dimensionality

of qmax = 7, in which case highband feature vectors consist of [cy1 , . . . , cy6 , cy0 , δcy0 ]T .
As for p, higher-order static envelope shape parameters of the high band are replaced

by lower-order shape delta features when q < qmax.

Figure 5.5 illustrates the results obtained by empirically optimizing Eq. (5.11) over

the 5 ≤ p ≤ 9, 4 ≤ q ≤ 7, and 0 ≤ L ≤ 30 ranges, relative to our memoryless baseline

with Dim(X,∆X,Y,∆Y,Yref) = (10,0,7,0,7).118 Inspecting the C(Y∣ △X) certainty results

in Figures 5.5(a)–5.5(e) as a function of L confirms our earlier finding in Section 4.4.3.2

that the effects of memory inclusion on cross-band correlation saturate roughly around

T ≊ 200ms—corresponding to the syllabic rate—regardless of feature vector dimensionali-

ties. Conversely, the effects of the static p and q dimensionalities on highband certainty—

i.e., the time-frequency information tradeoff—are evident by comparing the results in Fig-

ures 5.5(a)–5.5(e) independently of L. In particular, we conclude that certainty is generally

maximized at
∗
p = 8 and

∗
q = 6, i.e., when only one spectral shape delta feature, δc1 , is in-

cluded in each band’s features in addition to the minimal spectral gain delta feature, δc0 ,

with saturation reached at L ≊ 8 corresponding to 160ms of two-sided memory. The cor-

responding effect on ↓ dLSD(RMS), the RMS-LSD lower distortion bound on achievable BWE

performance, is shown in Figure 5.5(f). Table 5.2 further summarizes the results obtained

using frontend-based memory inclusion at the optimal ( ∗p, ∗q, ∗L) tuple.
Although the results of Figure 5.5 and Table 5.2 confirm that the substitution of static

features by delta ones can indeed improve the highband certainty C(Y∣ △X) even with a fixed-

dimensionality constraint, the improvements attained relative to the memoryless baseline

represent only a small fraction of the significant C( △Y∣ △X) certainty gains observed in Sec-

tion 4.4.3.2. While the MFCC-based (5,5,4,4,7) model of Case S-2 achieves a certainty

increase of 77.5% relative to the (10,0,7,0,7) baseline when all information about the high

118See Footnote 77 regarding GMM-derived results.
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(a) C(Y∣ △X) at p = 5
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(b) C(Y∣ △X) at p = 6
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(c) C(Y∣ △X) at p = 7

0
0

5
100

10
200

15
300

20
400

25
500

30
600

18

19

20

21

22

23

L [frames]
T [ms]

C
(Y∣

△ X
)[%

]

(d) C(Y∣ △X) at p = 8
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(e) C(Y∣ △X) at p = 9
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Fig. 5.5: Empirical optimization over the frontend-based memory inclusion’s (p, q,L) variable
space, relative to the memoryless Dim(X,∆X,Y,∆Y,Yref) = (10,0,7,0,7) baseline. Subfig-

ures (a)–(e) show C(Y∣ △X) performance for 5 ≤ p ≤ 9, 4 ≤ q ≤ 7, and 0 ≤ L ≤ 30, with the
result that

∗
p = 8 and

∗
q = 6. Subfigure (f) shows ↓ dLSD(RMS) performance against L at

∗
p and

∗
q.
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Table 5.2: Effect of frontend-based memory inclusion at the optimal (∗p, ∗q, ∗L) value on highband
certainty and RMS-LSD lower bound. The ∆C and ∆↓ dLSD(RMS)

differences are estimated relative

to the results of the memoryless (10,0,7,0,7) baseline shown in Table 4.2.

∗
p

∗
q

∗
L max [C(Y∣ △X)] max [ ∆C

C(Y∣X)] min [↓ dLSD(RMS)] max [∆↓ dLSD(RMS)
]

8 6 16 22.5% 9.6% 4.51dB 0.11dB

band—delta as well as static—is taken into account,119 the optimized (8,2,6,2,7) model

achieves a maximum relative increase of only 9.6% when certainty is estimated based on

only static highband features. In terms of the RMS-LSD lower bound on BWE performance,

the maximum absolute improvement for the optimized model is only 0.11dB, compared to

0.82dB for the model of Case S-2.

Thus, despite their advantages, the non-invertibility of delta features—restricting us to

the use of statistical mapping for the implementation of frontend-based memory inclusion—

has considerably hampered our ability to convert the information attained about the tem-

poral properties of the high band—represented by ∆Y—given the dynamic narrowband

representation
△

X, into static envelope information that can, in practice, be used for the

LP-based reconstruction of highband content. This, in turn, suggests that the BWE perfor-

mance gains to be obtained as a result of frontend-based memory inclusion—investigated

in the following section—are expected to be modest.

In conclusion, we note that as the overall joint-band model dimensionalities change, the

optimal ( ∗p, ∗q, ∗L) tuple changes as well. However, the time-frequency information tradeoff

becomes much less of a concern at higher dimensionalities—corresponding to increasingly

finer spectral detail—since the advantages gained by the inclusion of temporal information

increasingly outweigh the accompanying reductions in static spectral envelope information.

5.3.5 BWE performance with optimized frontend-based memory inclusion

5.3.5.1 System description

With the delta feature inclusion scheme and the subsequent certainty results discussed

above, we can now propose an optimized memory-inclusive BWE technique that requires

119See Table 4.4.
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only minor modifications to our memoryless MFCC-based dual-mode baseline system of

Section 5.2. Figure 5.6 illustrates these modifications, namely:

• the integration of delta feature calculation into the parameterization frontend,120 and,

• the substitution of the memoryless GG = (GXCy
,GXG) GMM tuple by the dynamic

△GG = (G▵
X
▵

Cy
(△x,cy),G▵

X
▵

G
(△x, g)) tuple, where G▵

X
▵

Cy
(△x,cy) and G▵

X
▵

G
(△x, g) represent the

GMMs obtained by marginalizing G▵
X
▵

Cy
(△x, △cy) and G▵X▵G(△x, △g) over the ∆Cy

and ∆G

subspaces, respectively.

With these minor modifications, the MMSE-based reconstruction of highband speech can

then be performed using the same formulae previously detailed in Section 3.3.1—namely,

Eqs (3.12), (3.16), and (3.17).

MFCC
Parameter-
ization

L-Frame
Delay

2L + 1
Frame
Buffer

Delta
Feature
Calc.

[ ..]
G▵

X

▵
G
(△x, g)

Mapping

G▵
X

▵
Cy
(△x,cy)

Mapping
cy(t −L)

g(t −L)
s↑MBE(n) cx(t)

cx(t −L)

δcx(t −L)

△
x(t −L)

Fig. 5.6: Frontend-based memory inclusion modifications to the baseline MFCC-based dual-
model BWE system of Figure 5.1. The modifications are applied to the upper-most path of
the main processing block in Figure 5.1(b) and to the GMM-based MMSE estimation block in
Figure 5.1(c). With n and t representing the sample and frame time indices, respectively, the input
signal, s↑MBE(n), is that of the midband-equalized and interpolated narrowband speech, while L

is the number of neighbouring frames—on each side of the tth static frame being processed—used
to calculate delta features.

For the optimized Dim(X,∆X,Y,∆Y,Yref) = (8,2,6,2,7) dimensionalities, the dy-

namic
△GG GMM tuple has the joint-band dimensionalities of Dim(X,∆X,Cy) = (8,2,5)

and Dim(X,∆X,G) = (8,2,1) for the marginal G▵
X
▵

Cy
(△x,cy) and G▵

X
▵

G
(△x, g) GMMs, respec-

tively. Using Eqs. (4.34), (4.2), and (3.34), the per-frame computational cost of integrating

frontend-based memory inclusion during the extension stage as shown Figure 5.6 can, thus,

be calculated as—relative to the (10,0,7,0,7) baseline:
• an additional L ⋅Dim(∆X) multiplication and L ⋅Dim(∆X) subtraction operations for

the calculation of delta features per Eq. (4.34), for a total of 4L additional FLOPs;

120See Eq. (4.34).
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• a decrease of 58FLOPs for the calculation of 8 narrowband MFCCs per Eq. (4.2),

rather than 10,121; and,

• a decrease of M full[21]+1FLOPs for the MMSE estimation of 5 highband MFCCs per

Eq. (3.34), rather than 6—a total decrease of 2689FLOPs for M full = 128 component

densities per GMM as selected in Section 3.5.3.

Thus, for all practical and reasonable values of L—the radius of the delta calculation

window—including the full L ∈ [0,30] range considered in our previous investigations, the

inclusion of memory into BWE using delta features with our fixed-dimensionality constraint

of Section 5.3.2 results, in fact, in slightly lower run-time computational cost, compared to

the memoryless dual-mode baseline system.

More importantly, however, the inclusion of memory via the non-causal delta features

as shown in Figure 5.6 imposes an overall algorithmic delay of L frames—corresponding to

10Lms given our 10ms parameterization step discussed in Section 3.2.8. Since real-time

two-way speech communication typically requires a maximum 150ms end-to-end transmis-

sion delay, the algorithmic delay due to speech processing should not exceed 20–30ms in

order to guarantee acceptable interactive speech communication when all other sources

of latency—namely computational and network delays—are taken into account [169, Sec-

tion 18.4]. For our modified MFCC-based dual-mode BWE system in Figures 5.1 and 5.6,

this corresponds to L ≤ 3, considerably lower than L ≊ 8—the point at which the certainty

saturation plateau is reached for the optimal (8,2,6,2,7) model, as shown in Figure 5.5(d).

Thus, provided that BWE performance—to be measured in the section below—does, in-

deed, coincide with our highband certainty results in terms of the effect of L, the ability to

realize the full performance improvement potential of our optimal frontend-based memory

inclusion scheme would, nevertheless, be limited by network channel and hardware fac-

tors. In other words, only under favourable channel and computational hardware latency

conditions—allowing a higher algorithmic delay of L ≊ 8, i.e., 80ms—can the maximum

BWE performance improvements be attained. Finally, it is worth noting that this delay

associated with delta feature calculation is, in fact, the only source of algorithmic delay

introduced by our memory inclusion modifications discussed above.

121In practice, the a cos(n(k + 1
2
) π
K
) terms in Eq. (4.2) are pre-calculated and applied directly during

extension-stage run time, while the loge εk terms are calculated once per frame during run time. Thus,
for K = 15 mel-scale filters in the midband-equalized 0–4kHz narrowband range (see Step 4 of MFCC
parameterization in Section 4.2.2), the calculation of each cepstral parameter in Eq. (4.2) requires 15
multiplication and 14 addition operations, for a total of 29FLOPs.
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5.3.5.2 Performance and analysis

Figure 5.7 illustrates the BWE performance obtained for our MFCC-based dual-mode BWE

system with frontend-based memory inclusion at the empirically-optimized (8,2,6,2,7)
dimensionalities, as a function of the delta feature calculation window radius, L.122
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Fig. 5.7: MFCC-based dual-mode BWE performance with optimized frontend-based mem-
ory inclusion, i.e., with Dim(X,∆X,Y,∆Y,Yref) = (8,2,6,2,7), relative to the memoryless(10,0,7,0,7) baseline.

122See Footnote 77 regarding GMM-derived results.
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Based on the results of Figure 5.7, we can itemize our findings and conclusions as follows:

• Conforming with our earlier information-theoretic findings in Figure 5.5(d), the in-

clusion of memory using delta features at the optimal dimensionalities does, indeed,

result in an overall BWE performance improvement relative to the memoryless base-

line, across all performance evaluation measures, and regardless of the extent of mem-

ory used, i.e., L. Since the reconstruction of highband content is based on a lower

static highband feature dimensionality as imposed by the fixed-dimensionality con-

straint, the ability of memory inclusion to provide an overall-beneficial time-frequency

information tradeoff in terms of measurable BWE performance is, thus, confirmed.

• As a function of L, the dLSD, QPESQ
, and d∗

I
BWE performances generally mirror the

C(Y∣ △X) certainty and ↓ dLSD(RMS) lower bound performances at the optimal
∗
p and

∗
q

static feature dimensionalities in Figures 5.5(d) and 5.5(f), respectively, with the dLSD

performance, in particular, being a near-perfect match.

• As suggested by the certainty results in Table 5.2 for our empirically-optimized model,

the BWE performance improvements achieved by frontend-based memory inclusion

are generally modest, reaching their best at
∗
L = 8—the point at which highband

certainty reaches saturation in Figure 5.5(d) for
∗
p = 8 and

∗
q = 6. Table 5.3 lists these

improvements.

Table 5.3: Highest BWE performance improvements achieved using frontend-based mem-

ory inclusion with
∗
L = 8—corresponding to 160ms of two-sided memory and 80ms al-

gorithmic delay—and the optimal MFCC-based Dim(X,∆X,Y,∆Y,Yref) = (8,2,6,2,7)
dimensionalities, relative to the memoryless (10,0,7,0,7) baseline of Table 5.1.

dLSD [dB] Q
PESQ

d∗
IS

[dB] d∗
I
[dB]

(10,0,7,0,7) baseline 5.17 3.01 12.32 0.5820(8,2,6,2,7) model 5.06 3.07 10.37 0.5588

Improvement 0.11 (2.2%) 0.06 (2.1%) 1.95 (15.9%) 0.0232 (4.0%)

• Using the knowledge described in Section 3.4 about the perceptual principles under-

lying the formulation and calculation of all four performance evaluation measures,

we can further interpret the results of Figure 5.7 to obtain a more detailed under-
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standing of the effect of memory inclusion on the reconstruction accuracy of highband

envelopes, as follows:

– As described in Section 3.4.1, the dLSD measures weight all deviations in log spec-

tra equally. The Q
PESQ

measure, on the other hand, is asymmetric in the sense

that it focuses on over-estimation disturbances rather than under-estimations,

explicitly employing an asymmetry factor in its calculation of perceptual dis-

turbances as described in Section B.1. From the observation that the dLSD and

Q
PESQ

performances in Figures 5.7(a) and 5.7(b), respectively, generally coincide

as a function of L, we can then conclude that the extent to which the duration of

included memory mitigates over- and under-estimations in highband envelopes is

consistent for both types of disturbances across L. In other words, at each par-

ticular value for L, memory inclusion mitigates over- and under-estimations by

the same relative extent, with the duration of included memory having no effect

in terms of favouring the alleviation of one type over the other. Furthermore,

the nearly-identical relative dLSD and Q
PESQ

improvements at
∗
L = 8, as shown

in Table 5.3, indicate that, in fact, frontend-based memory inclusion improves

envelope over- and under-estimations equally.

– Secondly, as described in Section 3.4.2, the symmetrized d∗
IS

and d∗
I
measures

weight larger deviations in log spectra more heavily than does the dLSD mea-

sure. As such, the observation that the gain-independent d∗
I
performance in

Figure 5.7(d) matches that of dLSD in Figure 5.7(a) as a function of L, indi-

cates that frontend-based memory inclusion mitigates all degrees of deviations

in envelope shapes in a consistent manner across L. In other words, at each

particular value for L, memory inclusion mitigates all deviations by the same

relative extent, with the duration of included memory again having no effect in

terms of favouring the alleviation of one type over the other. The larger rel-

ative d∗
I
improvement at

∗
L = 8, relative to that of dLSD, further indicates that

frontend-based memory inclusion is, in fact, more successful in mitigating the

more perceptually-relevant larger envelope shape deviations.

– In contrast, the d∗
IS
performance in Figure 5.7(c)—taking into account envelope

gain deviations as well as those of the shape—exhibits rapidly-falling perfor-

mance improvements for L > 8. Since, as discussed immediately above, the
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similarly-derived but gain-independent d∗
I
measure shows envelope shape recon-

struction to be rather consistent as a function of L, we can conclude that the

decline in d∗
IS
performance for L > 8 is attributed solely to the decreased ability

of the joint-band MMSE estimation using {G▵
X
▵

G
(△x, g)}

∀L>8
to mitigate large de-

viations in the reconstruction of the highband envelope gain. We note that this

conclusion is independent of those made above regarding the consistency of the

dLSD and Q
PESQ

performances as a function of L since, as mentioned above, both

d∗
IS
and d∗

I
measures weight envelope deviations rather differently from both dLSD

and Q
PESQ

. We should also note that this unexpected inconsistency in addressing

large deviations in envelope gain estimation could not be observed through our

highband certainty investigation since:

1. As described in Section 4.3.1, the estimation of the mutual information, e.g.,

I( △X;Y), is performed using GMM-based likelihoods where feature vector

deviations are weighted equally by the relevant GMM inverse covariance,

regardless of the extent or direction of the deviation.

2. As described in Section 4.3.2, the estimation of the discrete highband en-

tropy H(Y)∣
dLSD=1dB

using vector quantization treats all deviations of data

points from their respective Voronoi centroids equally.

3. While highband envelope gains are modelled in both G▵
X
▵

Y
and G▵

X
▵

G
joint-band

GMMs used for certainty estimation and dual-mode BWE, respectively, the

excitation gain g—used in G▵
X
▵

G
—represents highband energy rather indi-

rectly through a ratio that depends on the gain in the equalized 3–4kHz

midband range as well as that of the 4–8kHz high band, whereas cy0—used

in G▵
X
▵

Y
—only models the latter.123 As such, the d∗

IS
performance of Fig-

ure 5.7(c) is particularly sensitive to errors in midband equalization while

the certainty evaluations of Figure 5.5 are not.

• As shown in Table 5.4 below, the BWE performance improvements achieved at

L = 4—corresponding to an algorithmic delay of 40ms—represent 78–91% of the high-

est improvements achieved at
∗
L = 8. As such, despite their modest values, most of

123As described in Section 5.2.3, the excitation gain, g, is obtained by artificially synthesizing the high-
band signal using the EBP-MGN excitation derived from the 3–4kHz band and the LPCs obtained by
high-resolution IDCT of the true 4–8kHz highband MFCCs.
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the improvements obtained using our frontend-based memory inclusion scheme can

still be attained in strict or unfavourable conditions of network and computational

latencies.

Table 5.4: BWE performance improvements achieved using frontend-based memory inclu-
sion with L = 4—corresponding to an algorithmic delay of 40ms—as a percentage of the

maximum improvements of Table 5.3 achieved at
∗
L = 8.

dLSD [dB] Q
PESQ

d∗
IS

[dB] d∗
I
[dB]

84.1% 78.1% 91.4% 85.4%

We have thus proposed a BWE system implementing frontend-based memory inclusion

for the purpose of improving BWE performance. Although the presented scheme attains

only a fraction of the potential improvements achievable by fully converting the information

about highband dynamics—shown in Chapter 4 to be highly-correlated with those of the

narrow band—into static envelope information, the modest improvements achieved are

obtained with minimal changes to the baseline memoryless BWE system, with no additional

run-time computational cost, and with no increase in training data requirements, thereby

providing an easy and convenient means for exploiting speech dynamics to improve BWE

performance.

5.3.5.3 Comparisons to relevant approaches

As discussed in Section 5.3.1, the inclusion of memory exclusively into the frontend—as

implemented in our scheme above—for the purpose of improving BWE performance has

been quite limited in both scope and application in the literature. Nevertheless, we at-

tempt to review and interpret the results of the relevant works previously discussed in

Section 5.3.1 within the context at hand. To simplify the comparison of performances

against our frontend-based memory inclusion approach, we will assume that the test sets

used by the cited techniques are sufficiently diverse—phonetically as well as in terms of

speaker gender and dialects—such that the results reported therein can be considered gen-

eral enough for direct comparison against our results in Tables 5.3 and 5.4. In other words,

we preclude any effects that the differences in testing data—relative to the TIMIT core

test described in Section 3.2.10—may have on the generality, and hence the comparability,

of reported performances.
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In [129] where a single parameter was used to model the ratio of narrowband signal

energy in immediately successive frames, a subjective performance improvement was shown

relative to the reference BWE system of [43] employing a spectral folding technique for

highband spectral envelope reconstruction. No absolute subjective or objective evaluations

were performed in [129]. However, on a customized 7-point absolute superiority scale

derived from CMOS results, a relative improvement of approximately 0.48points was shown

for the BWE technique of [129] over that of [43].124 With the latter system showing an

improvement of 0.6points on the same scale over narrowband speech, combined with a

corresponding Q
PESQ

score increase of 0.2 over narrowband speech as reported in [43], we

estimate the 0.48-point improvement of the BWE technique of [129] to correspond to 0.16

Q
PESQ

points. While this estimated improvement is higher than the 0.06 Q
PESQ

points

shown in Table 5.3 for our technique, it is not exclusively attributed to the aforementioned

temporal energy ratio. The estimated improvement of the BWE system of [129] is rather

attributed primarily to several structural modifications implemented in order to improve

upon the system of [43], most notably the use of neural networks to model cross-band

spectral envelope correlations rather than spectral folding, with four mel-scale subband

energies representing the 4–8kHz band. In contrast, our Q
PESQ

improvement reported in

Table 5.3 is, in fact, exclusively attributed to the use of delta features.

Similarly, while both approaches proposed in [87] and [163] employ delta—as well

as delta-delta—narrowband features, they rely primarily on first-order HMMs to exploit

speech dynamics for improved cross-band correlation modelling. In fact, the delta and

delta-delta window radii—i.e., L—used in both works are not even reported, presumably

due to the minor role of these feature vector derivatives in the BWE approaches presented

therein. Nevertheless, an average 0.28-point Q
PESQ

improvement is reported in [87] for the

proposed HMM-based BWE system—described in detail in Section 2.3.3.4—relative to the

baseline system of [60]—also discussed in Section 2.3.3.1—which uses a much-less sophis-

ticated piecewise-linear mapping technique for the estimation of highband envelopes. For

the relatively more advanced multi-stream HMM-based system of [163], described in more

124An implementation of the comparison category rating (CCR) standard in [30], the comparison mean
opinion score (CMOS) involves listener ratings of a processed test sample relative to an unprocessed sample
on a range from −3 (much worse) to 3 (much better), with 0 representing similar quality (about the same).
The testing procedure differs from that of DCR—see Footnote 17—in that the order of presentation of the
two test samples being compared is randomized in CCR, whereas the reference undegraded signal is always
presented first to the listeners in DCR.
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detail in Section 5.4.1.3 below, larger Q
PESQ

improvements ranging ≈0.6–0.8 points—as well

as dLSD improvements ranging ≈1.2–1.8dB—are reported relative to a rather simple BWE

system that is based on the single-codebook mapping technique described in Section 2.3.3.2.

In conclusion, we note that, although the performance improvement figures discussed

above are superior to those obtained through our technique, these figures result from the

joint evaluation of multiple significant system enhancements, rather than from the ex-

clusive evaluation of frontend-based memory inclusion. Furthermore, it is notable that

all works cited above use clearly inferior approaches to provide benchmark BWE perfor-

mances. In contrast, the GMM-based system proposed in [132] is compared against a

truly-comparable system, that of [82], with the comparison limited to a single proposed

system enhancement—namely, the use of temporal-envelope modelling rather than the

ubiquitous source-filter model. Subjective evaluations reported in [132] indicate only a

slight preference for its proposed technique over that of [82], rather than dramatic, as put

by the authors. In addition to limiting its modelling of temporal properties to frame-based

intervals no longer than 5ms, however, no objective results were reported in [132], thereby

making a comparison to our technique for frontend-based memory inclusion rather difficult.

5.4 BWE with Model-Based Memory Inclusion

In this section, we investigate model-based alternatives to frontend-based memory inclu-

sion. We showed in Section 5.3 above that employing delta features in a practical BWE

context is suboptimal in the sense that it only succeeds in translating a modest proportion

of the certainty gains achievable by memory inclusion into tangible BWE performance im-

provements. This followed as a result of the time-frequency information tradeoff imposed

by the non-invertibility of delta features. Moreover, as delta features are, by conventional

definition, non-causal, they result in an algorithmic delay that limits their usefulness in

real-time BWE implementations.

These drawbacks provide the motivation to pursue memory inclusion through a different

avenue. In particular, we seek a technique that preserves highband dimensionality, mini-

mizes increases in training data requirements, and further considers only causal memory

for the benefit of real-time implementation. Such a technique should also provide flexibility

in regards to the extent of memory modelled—the primary advantage of delta features and

simultaneously the deficiency of first-order HMM-based methods.
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5.4.1 Review of previous works on model-based memory inclusion

5.4.1.1 GMM-based memory inclusion

Among the spectral envelope modelling techniques described in Section 2.3.3, GMMs have

been the most successful in BWE due to their superior ability to represent the complex

nonlinear cross-band correlations in speech. Aside from the secondary use of GMMs for

state-conditional pdf modelling in HMM-based BWE implementations, however, the suc-

cess of GMMs has been restricted to memoryless implementations of BWE. This follows

from both computational and algorithmic complications associated with the Expectation-

Maximization (EM) GMM training algorithm when used in high-dimensional settings where

speech memory is incorporated directly into GMMs by modelling supervectors composed

of temporal sequences of feature vectors—rather than just the conventional memoryless

vectors corresponding to 10–30ms frames. In Section 5.4.2.1 below, we discuss these GMM

limitations in more detail to provide the insight behind our proposed temporal extension

approach to the GMM framework.

5.4.1.2 Neural network-based memory inclusion

As noted in Section 2.3.3.3, neural networks, on the other hand, theoretically allow for such

a straightforward means of memory inclusion where narrowband supervectors can be used

directly as model inputs, although this particular application of neural networks has not

been investigated in the literature. This ability of neural networks to model data with higher

dimensionalities follows from their relatively lower computational requirements compared

to GMMs.125 As indicated in our review in Section 2.3.3.3, however, implementations of

neural networks in the context of BWE—namely those of [41, 56, 70]—have only resulted

in mixed and inconclusive performances relative to other techniques. Although the more

recent work of [129] shows modest BWE performance improvements, these improvements

are not exclusively attributed to the use of neural networks as discussed in Section 5.3.5.3

above, and secondly, they result from a comparison to the rather simple non-model-based

spectral folding technique of Section 2.2.1. Finally, we note that the application of neural

125The back-propagation algorithm typically used for neural network training is computationally cheaper
than the maximum likelihood-based EM algorithm used for GMMs. Similarly, the run-time feed-forward
operation of neural networks during the extension stage is rather simple compared to the MMSE estimation
used with GMMs.
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networks in all cited techniques has been rather restricted to memoryless BWE.

5.4.1.3 HMM-based memory inclusion

In contrast to approaches based on GMMs and neural networks, approaches applying

model-based memory inclusion where modelling is based on hidden Markov models (HMMs),

have relatively been more successful. In addition to the detailed review in Section 2.3.3.4,

these HMM-based approaches have hitherto been discussed with varying detail throughout

the thesis. To our knowledge, all HMM-based approaches proposed in the literature—save

the more recent work of [163], described below, as well as the earlier computationally-

demanding approach of [84], detailed in Section 2.3.3.4—share the same idea underlying

the work in [39] and [87]. To recapitulate the said idea, temporal sequences of narrowband

feature vectors are used to train first-order HMMs where states comprise GMMs statis-

tically modelling the narrowband envelopes. Cross-band correlation with highband—or

wideband—envelopes is modelled indirectly within the HMM state transition probabilities

by tying a VQ codebook of highband—or wideband—feature vectors to the narrowband-

specific HMM states. BWE is then performed at run time via an iterative MMSE estimation

of highband—or wideband—feature vectors as a function of the state posterior probabil-

ities given the observed sequences of narrowband feature vectors in conjunction with the

highband—or wideband—VQ codevectors associated with the HMM states.

Although the performance comparisons reported in [39] and [87] relative to other tech-

niques are rather limited, the 0.28-pointQ
PESQ

objective performance improvement reported

in [87]—relative to the piecewise-linear mapping technique of [60]—is nevertheless higher

than the improvements reported for non-HMM-based approaches. The more recent HMM-

based approach of [163] results in even higher performance improvements. This approach

performs temporal clustering of narrowband feature vectors by training a multi-stream set

of parallel single-state HMMs on joint narrowband-wideband feature vectors in an unsu-

pervised manner. Using diagonal-covariance GMMs, the trained HMM states can then

be split into separate narrowband and wideband models sharing the same state transition

probabilities. At run time, sequences of input narrowband feature vectors are temporally

segmented using Viterbi decoding [86] on the narrowband model to extract the most likely

state sequence. Given the obtained narrowband state sequences, wideband features are

then estimated by performing linear prediction on a dimensionality-reduced version of the
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time-indexed narrowband features assigned by segmentation into each particular state, with

the state-specific wideband feature means—derived from the most likely wideband state se-

quence corresponding to the narrowband sequence obtained by Viterbi decoding—used as

additive bias terms in the linear prediction formulae.

While the approach of [163] improves on those of [39] and [87] by employing joint

narrowband-wideband feature vectors for HMM training as well as by employing linear

prediction rather than codebook mapping for the estimation of wideband features from the

decoded state sequences, it still effectively incorporates memory using first-order HMMs.

Thus, it is similar to the earlier HMM-based techniques in that it only accounts for short-

term memory—ranging 20–40ms of memory—through state-to-state and self transitions.

Furthermore, using the Viterbi algorithm for state sequence decoding—rather than the

real-time MMSE estimation of [39] and [87]—imposes algorithmic delays which limit its

effectiveness for real-time BWE tasks. In particular, the Viterbi algorithm requires seg-

menting speech into blocks within each of which the whole observation trellis must first be

accumulated before tracing back in order to determine the optimal state sequence for that

particular speech segment.

Notwithstanding the algorithmic delay limitations, the aforementioned modelling im-

provements proposed in this approach make it more successful in translating the theoreti-

cal certainty gains corresponding to such short-term memory into measurable performance

gains. In particular, objective Q
PESQ

and dLSD improvements ranging ≈0.6–0.8 points and

≈1.2–1.8dB, respectively, are reported in [163] relative to a memoryless BWE system based

on the single-codebook mapping technique described in Section 2.3.3.2.

5.4.1.4 Codebook-based memory inclusion

As described in Section 2.3.3.2, BWE techniques based on codebook mapping are generally

quite simpler and much less computationally-demanding than HMM-based approaches in

both the training and extension stages. Because of the limitations of codebook mapping

in terms of temporal modelling, however, its application has been mostly restricted to

memoryless BWE implementations. Two notable exceptions where the dynamics of speech

are incorporated into the codebook-based mapping are the works of [130] and [131].

In the relatively early approach of [130], codebook-based classification is performed

in three steps. Starting with an N -sized wideband feature vector codebook tied to a
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similarly-sized shadow narrowband codebook as explained in Section 2.3.3.2, M wideband

codevectors—where 1 <M < N—corresponding to the M narrowband codevectors nearest

to the narrowband input vector are selected. In the second step, the M potential wideband

codevectors are further reduced to L—where 1 < L < M—based on the cepstral distances

of the M codevectors from the final wideband feature vector estimate obtained for the

preceding frame. Finally, implementing the codevector interpolation technique described

in Section 2.3.3.2, the L codevectors are linearly combined with weights based on the sums

of the distances calculated for each of the L wideband codevectors in the two earlier classi-

fication steps. This approach thus improves upon conventional codebook-based techniques

by incorporating memory—albeit only at the limited interframe level—into its estimation

of wideband envelopes. Informal subjective evaluations reported in [130] show improved

wideband signal quality due to the inclusion of memory in the second classification step.

No formal subjective or objective results were presented, however.

Rather than incorporate interframe memory in the classification stage as described

above, the approach of [131] incorporates such memory directly into codebook design and

training using an extension of predictive VQ—a special case of memory VQ126 [37]. In

particular, a codebook is trained on a linear combination of two quantities calculated

at each speech frame: (a) the difference between the current narrowband feature vector

and a weighted version of the quantized or unquantized narrowband vector of the preced-

ing frame—corresponding to closed-loop or open-loop prediction, respectively, and (b) the

quantized or unquantized highband feature vector of the preceding frame. Despite the inclu-

sion of memory only at the interframe level, it is reported in [131] that the use of predictive

VQ results in an objective dLSD performance improvement of 0.45dB for the reconstructed

highband signal, relative to conventional memoryless VQ with the same codebook size.

5.4.1.5 Non-HMM state space-based memory inclusion

To conclude this review, we note the insightful approach of [133] where a linear state

space model treats narrowband feature vectors as the linear observations resulting from

linearly-evolving hidden states representing the unknown wideband feature vectors. How-

ever, because of the assumption that narrowband and wideband feature vectors are linearly

related, and since speech dynamics can not be all modelled by a single linear model, this

126See Footnote 23.
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state space approach requires a large number of modes—where each mode is a different

set of values for the linear model’s parameters—with the model changing its mode every

L frames. Parameters of the state space model are estimated at every L-frame mode using

the forward recursion of the Kalman filter algorithm [170, Chapter 10]. With a frame step

of 10ms, values of L ∈ [10, . . . ,50]—corresponding to 100–500ms of memory—were investi-

gated in [133]. This approach, thus, accounts for considerably longer-term speech memory

than any of the other techniques discussed thus far. Moreover, as a result of the sequential

nature of the Kalman forward recursion, it introduces no algorithmic delays.

With speech processed in blocks of L = 30 frames, i.e., modelling up to 300ms of mem-

ory, this state space approach is reported in [133] to achieve objective dLSD performance

improvements of ≈ 0.06, 0.36 and 0.69dB, relative to HMM-, GMM-, and codebook-based

systems based on those of [171], [82], and [59], respectively. Thus, despite the consider-

ably higher complexity of this approach relative to that of HMM-based systems as well as

the longer-term memory it incorporates, it only succeeds in achieving modest performance

improvements. Furthermore, in contrast to HMM-based approaches, it suffers from discon-

tinuity effects resulting from the abrupt transitions between modes across the boundaries

of the L-frame blocks.

5.4.2 Temporal-based extension of the GMM framework

5.4.2.1 On the limitations of GMMs in high-dimensional settings

For the purpose of incorporating memory into BWE speech modelling, a straightforward

extension to the successful memoryless joint-band GMM-based approach is to directly ex-

pand the modelled feature vector space along temporal axes, whereby the conventional

memoryless narrowband—and, optionally, highband or wideband—feature vectors used for

model training and extension are replaced by supervectors consisting rather of temporal

sequences of such memoryless feature vectors. As discussed in Section 5.4.1.1, however, the

multiple-fold increase in dimensionality associated with using such supervectors—assuming

that spectral resolution, i.e., memoryless feature vector dimensionality, is to be preserved—

not only prohibitively increases the computational as well as data requirements associated

with GMM training via the EM algorithm, but also results in severely degraded estimates

for GMM parameters.

This curse of dimensionality follows as a direct result of the increase in parameters
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required to model each mode of the temporally-extended multi-modal feature vector dis-

tribution (or pdf ), as well as indirectly as more Gaussian kernels become required in or-

der to adequately model the increase in the number of modes—the underlying acoustic

classes.127,128,129 Specifically, the exponential increase in the degrees of freedom of the

GMM-based model, relative to the increase in dimensionality,130 leads to the problems

of oversmoothing and overfitting, which have been investigated in the fields of machine

learning and speaker conversion in particular.

Oversmoothing refers to the effect where the spectral characteristics of the MMSE target

data estimated via Eqs. (3.12), (3.16), and (3.17)—i.e., the MMSE estimates, {E [Y∣x]},
of the highband feature vectors given those of the narrow band and the joint-band GXY

model—are excessively smoothed due to the near-elimination of the source-data contribu-

tion given by the second term in Eq. (3.17), resulting, in turn, in low-quality highband

speech signals. The near-elimination of the narrowband source-data contribution itself

follows as a result of the tendency of the Cyx

i Cxx−1

i covariance ratios to decrease—in de-

terminant or norm—with increasing dimensionality, with the result that, nearly regardless

of the source data, X, the variation in MMSE-estimated Y target vectors is minimal with

the vectors scarcely differing from the µ
y

i means in Eq. (3.17).131

Also typically associated with increases in dimensionality, overfitting results from the

disproportionate increase in the degrees of freedom allowed by a GMM-based model relative

to the available amounts of training data. As dimensionality increases, the volume of

the underlying space increases exponentially such that the available data becomes sparse.

Such sparsity undermines the statistical reliability of the EM algorithm since it will often

converge to a significantly suboptimal local maximum for the data’s likelihood, which, in

127The term curse of dimensionality was coined by Bellman in [172].
128As discussed in Section 3.3.4, the increase in number of underlying acoustic classes itself follows from

the additional degrees of freedom introduced along temporal axes.
129While the increase in feature vector dimensionalities also adversely affects runtime computational

complexity, the effect is much less pronounced than that on training-stage complexity. In particular, we
have shown in Section 3.5.1 that most of the computationally-demanding matrix operations associated
with MMSE estimation can be performed offline, such that runtime complexity is reduced from O(p3) for
full-covariance GMMs and narrowband dimensionality p, to O(p2), per Eq. (3.34).

130As shown in the right-hand-side denominator of Eq. (3.18), the number of parameters, Np, of a
full-covariance GMM, is related to the dimensionality, D, by Np ∝D2.

131In the context of speaker conversion, Chen et alia showed in [159], for example, that—for a 40-

dimensional Cyx
i Cxx

−1

i square correlation matrix obtained for log spectrum features transformed via mel-

scale DCT—more than 90% of the Cyx
i Cxx

−1

i matrix elements are smaller than 0.1, and more than 40%
are smaller than 0.01.
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turn, voids the model of its generalization capability. The challenge then becomes finding

the optimal balance between restricting a highly-dimensional GMM’s degrees of freedom

to avoid overfitting, while simultaneously ensuring the availability of sufficient degrees of

freedom to adequately model the underlying modes, or classes, of the pdf being modelled.

As described in Section 4.4.2, an approach proposed and applied in [126] and [149]

to circumvent the high-dimensionality limitation of GMMs is to employ dimensionality-

reducing transforms in the frontend rather than to incorporate memory within GMMs

themselves. Most notable of these transforms are those of linear discriminant analysis

(LDA) and the Karhunen-Loève transform (KLT)—although LDA was only applied in [126]

to reduce static feature vector dimensionalities, rather than to reduce those of temporal-

based supervectors. Despite their well-known advantages in the context of classification,

however, these transforms suffer the same time-frequency information tradeoff of delta

features, thereby limiting their usefulness for practical memory-inclusive BWE.

Alternatively, several approaches have been proposed in the speaker conversion and

machine learning literature to address the oversmoothing and overfitting problems. The

common idea underlying these approaches is to impose some constraints on the parameters

of a high-dimensional GMM in order to reduce the allowed degrees of freedom, to impose

minimum thresholds on variances, or both. Approaches intended for the speaker conversion

task address both problems by constraining the source-data contribution weights—i.e.,{Cyx

i Cxx−1

i }
i∈{1,...,M}—themselves, as in [159] and [160],132 for example, or by constraining

the target-data covariances—i.e., {Cyy
i }i∈{1,...,M}—alone, as in [161].

In the context of machine learning where GMMs—referred to as Gaussian graphical

models in the graphical model subcontext [173]—have been by far the most popular means

of mixture model-based density estimation and clustering [174, Section 6.8], no source-

target Gaussian-based transformations are involved. Thus, approaches concerned with

GMM-based clustering in high-dimensional settings have only focused on addressing the

problem of overfitting through constraining—or regularizing—GMM mean vectors [154],

covariances [155]—{Cz

i }i∈{1,...,M}, where Z = [X
Y
], in our source-target context—or inverse

covariance matrices [156]. Generally, the constraints imposed by regularization on an ill-

posed problem are equivalent to incorporating or introducing prior information in order

to achieve well-posedness, thereby allowing finding accurate approximate solutions to the

132In [159], the Cyx
i Cxx

−1

i covariance ratios are assumed to be diagonal identity matrices, whereas in
[160], they are tied to a global diagonal covariance.
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problem.133 In [156], for example, where sparsity is induced into the GMM through ℓ1—or

lasso—regularization [157], the introduced information is that the L1-norm of the solution

does not exceed a particular threshold. Thus, the regularization approaches cited above

also modify the conventional implementation of the EM algorithm for GMMs in order to

incorporate the added constraints.

Finally, we note that GMMs have also been used for the related task of subspace clus-

tering where the objective is to localize the search for clusters in the high-dimensional

space to lower-dimensionality subspaces along the most relevant dimensions, thereby cir-

cumventing many of the problems associated with the curse of dimensionality.134 In this

context, prior information is introduced through various means of regularization such that

the parameters of the Gaussian kernels representing the subspace clusters are controlled by

the dimensionalities of the potential latent factor spaces to be searched. In [158], for exam-

ple, regularization is applied by tying subspace orientations—as defined by the Eigen space

of the GMM covariances—or by tying the covariances themselves. Similar to the GMM

regularization approaches described above for clustering in general, GMM-based subspace

clustering techniques involve adapting the EM algorithm.

5.4.2.2 Integrating memory into GMMs through a state space approach

In the discussion above, we have identified the foremost flaw precluding the practical-

ity and value of the aforementioned approach to incorporating memory into GMMs using

simple extensions of the GMM modelling space along temporal axes—i.e., by simply mod-

elling supervectors composed of temporal sequences of static feature vectors. In particular,

it is practically impossible using such an approach to compile sufficiently large yet di-

verse amounts of training data in order to compensate for the continuous increases in the

model’s degrees of freedom associated with the attempt to model increasingly higher or-

ders of feature vector memory—i.e., the attempt to model higher-dimensional supervectors

corresponding to longer sequences of feature vectors.

133As defined by Hadamard in [175], the problem of solving the mapping A∶X → Y for A is well-posed
if: (a) a solution exists for every y, i.e., ∀y ∈ Y , ∃x ∈X such that Ax = y, (b) the solution is unique, i.e., if
Ax1 = Ax2, then x1 = x2, and (c) the solution is stable, i.e., A−1 is continuous.

134As described in [176], subspace clustering is motivated by the fact that many of the dimensions for
high-dimensional data are often irrelevant. These irrelevant dimensions confuse conventional clustering
algorithms by hiding the underlying clusters in noisy data. In very high dimensions, it further becomes
common for all the objects in a data set to be nearly equidistant from each other, thereby completely
masking the clusters.
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In comparison, however, we have also shown above how several approaches in the speaker

conversion and machine learning domains have successfully addressed the dimensionality-

related problems of Gaussian mixture modelling—namely through incorporating prior in-

formation into the modelling paradigm in the form of constraints or regularization. From

this perspective, we can then characterize the flaw of the aforementioned GMM temporal

extension approach more accurately as the attempt to model high-dimensional feature vec-

tor distributions—in all dimensions simultaneously—without exploiting any prior knowledge

about the properties of speech underlying these distributions. Specifically, this GMM exten-

sion approach makes no use of the structure inherent in speech beyond the conventional

quasi-stationary 10–30ms frame durations. By quantifying the temporal information in

speech in Chapter 4, we showed, however, that the structure of speech does, in fact, exhibit

considerable predictability that extends to much longer durations. Consequently, if such

considerable information about the structure of speech—in the form of temporal sequences

of feature vectors of quasi-stationary segments—were to be properly exploited to constrain

the degrees of freedom in the high-dimensional GMMs to be learned, the complications

described in Section 5.4.2.1 above—namely those of oversmoothing and overfitting—could

then be successfully mitigated.

Based on this analysis and inspired by the speaker conversion and machine learning

techniques previously described, we have developed a novel temporal-based GMM exten-

sion approach that exploits the information and predictability in the structure of speech in

a progressive manner in order to arrive at a model for the target high-order distributions at

the desired temporal depth—i.e., the desired extent of memory inclusion. First proposed

in [177], our approach essentially transforms the temporally-extended high-dimensional

GMM-based modelling problem into a time-frequency state space modelling task with in-

terpretations in the contexts of subspace and hierarchical clustering, [178] and [174, Sec-

tion 14.3.12], respectively, as well as graphical model inference [179]. The crux of the

approach is to effectively utilize and combine two previously-discussed and well-known

properties of speech and GMMs:

The correspondence of GMM component densities to underlying acoustic classes

In Sections 2.3.3.4 and 3.3.4, we addressed the correspondence of the kernels—or com-

ponent densities—of multi-modal Gaussian mixture models to the acoustic classes

underlying the feature vector distributions being modelled. Indeed, as described in
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Section 5.4.2.1 above, it is this very correspondence that provides the motivation for

the use of GMMs as a generative approach to clustering as well as subspace cluster-

ing. In Section 5.3.3.2, we made use of this correspondence—in conjunction with the

temporal information incorporated by delta features—to improve the ability of joint-

band GMMs to model extensions of the original memoryless acoustic classes along

temporal axes. In our model-based approach presented here, we exploit this corre-

spondence as a means by which to partition or cluster training data into data subsets

with varying degrees of overlap corresponding to the underlying complex and overlap-

ping acoustic classes, with the data in each subset further assumed to be independent

and identically distributed (i.i.d.). Stated alternatively, we use the aforementioned

correspondence to fuzzily quantize the memoryless and temporally-extended feature

vector spaces into overlapping frequency—in reference to the spectral characteristics

specific to each acoustic class—and time-frequency regions, respectively. This, in com-

bination with the strong correlation properties of neighbouring speech frames, allows

us to break down the infeasible task of estimating increasingly higher-dimensional

pdf s—where, for each particular order of temporal extension, a single multi-modal

pdf modelled by a GMM spans the entire temporally-extended feature vector space—

into a series of time-frequency-localized pdf estimation operations with considerably

lower complexity and fewer degrees of freedom.

The strong correlation between neighbouring speech frames

As a result of the slow vocal tract movements relative to typical speech sampling

rates, neighbouring speech frames exhibit a strong correlation. Indeed, as noted in

Section 1.2, typical phonetic events last more than 50ms, with rapid spectral changes

being limited to stop onsets and releases or to phone boundaries involving a change

in manner of articulation. This redundancy or predictability in speech has been ex-

ploited extensively for the purpose of coding speech at rates much lower than those of

standard PCM.135 We also indirectly made use of this property in our earlier frontend-

based approach to memory inclusion; as shown in Eq. (4.34), delta features attempt to

maximize their information content by increasingly emphasizing spectral differences

at larger temporal separation. In our approach presented here, we employ the strong

135See [10, Table 7.2] for a comparison between a wide range of speech coders in terms of quality, bit
rate, complexity, and frequency of use.
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correlation between neighbouring frames in two ways. First, we exploit the correla-

tion of the data with their past frames by carrying over time-frequency localization

information obtained at a particular order of memory inclusion as described above

into the process of pdf estimation at higher orders. As such, we progressively make

use of and build upon the information obtained about the underlying time-frequency

classes with increasing orders of memory inclusion, in order to better estimate the

more difficult higher-dimensional pdf s at higher orders of memory inclusion. Sec-

ondly, as described below, we make use of the redundancy in feature vectors across

time in order to limit the number of Gaussian kernels needed to model the pdf of each

time-frequency state following the application of temporal extension. Conceptually,

this is similar to the removal of speech redundancies in speech coding in order to

maximize the information content of the available coding bits.

Depicting our application of these two properties, Figure 5.8 illustrates a state space

representation of our proposed approach. Using the previous X and Y notations for the

static—i.e., memoryless—narrowband and highband feature vectors, respectively, we tem-

porally extend the spectral information in both bands by defining the feature vector se-

quences X(τ,l)t = [XT
t ,X

T
t−τ , . . . ,X

T
t−lτ ]T and Y(τ,l)t = [YT

t ,Y
T
t−τ , . . . ,Y

T
t−lτ ]T , with τ repre-

senting the memory inclusion step—the step, in number of frames, between the static

frames included in a sequence—and l representing the memory inclusion index, or order—

the number of past frames incorporated into a sequence in addition to the reference frame.

With no temporal extension, i.e., l = 0, the feature vector sequences X(τ,0) and Y(τ,0)
correspond to the conventional memoryless static vectors.136

Starting with the memoryless joint-band GMM, GXY, which we now rewrite as GX(τ,0)Y,
we progressively incorporate narrowband as well as highband memory—by extending the

feature vector sequences X(τ,l) and Y(τ,l) using past frames at steps of τ—into the es-

timation of the Gaussian-based model of the now-temporally-extended feature vector pdf

in steps, with each step corresponding to an increment of the index l. After each such

step, the end result is a new GMM, GX(τ,l)Y ∶= G(x(τ,l),y;M (l)
,A
(l)
,Λ
(l)), modelling the

temporally-extended X(τ,l) feature vector space jointly with the reference memoryless Y

136In the sequel, we model time-frequency spaces of features vector sequences where each sequence is
considered in isolation independently of its absolute temporal location within a speech signal. As such,
we drop the time subscript t from all representations to follow unless otherwise needed for clarifying or
disambiguating the temporal properties of one representation relative to another.
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Fig. 5.8: A state space representation of our approach to the inclusion of memory into the GMM

framework. Temporally-extended GMMs, given by GX(τ,l)Y ∶= G(x(τ,l),y;M (l)
,A
(l)
,Λ
(l)), where

l = 0, . . . ,L, model sequences of l + 1 narrowband feature vectors—with step τ—jointly with their
non-extended highband counterparts. The time-frequency states {S(l)i }i∈{1,...,M(l)}—corresponding

to the GMM kernels given by the tuples {(α(l)i , λ
(l)
i )}i∈{1,...,M(l)}—are viewed as parent states at

memory inclusion index l, with each of which extended into one or more child states at index l+1
through the transformation T .
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space. At the extension stage, the X(τ,l) features—to be used as the MMSE estimation

input to GX(τ,l)Y—are readily available from the BWE system’s causal narrowband speech

input. Thus, unlike the non-causal ∆X features, the computation ofX(τ,l) features involves
no algorithmic delay.

As previously described, incorporating memory into the GMM-based model merely

through the temporal extension of feature vectors into sequences of time-indexed vec-

tors followed by conventional stand-alone GMM training—i.e., independently of any pre-

vious information already incorporated into the GMMs trained for lower orders of memory

inclusion—is computationally unsustainable, as well as practically flawed, at increasing

orders of memory inclusion. Instead, we exploit the information previously incorporated

into each GMM at a particular memory inclusion index to facilitate the temporal exten-

sion of the model into a new GMM at the immediately higher order of memory inclu-

sion, while simultaneously ensuring the reliability, accuracy, and generalization capability

of the extended GMMs. To that end, we employ the correspondence of GMM Gaussian

components to underlying acoustics classes to identify time-frequency regions—or states—

characterized by distinct static and/or dynamic acoustic properties. In particular, as illus-

trated in Figure 5.8, Gaussian kernels of a temporally-extended GMM GX(τ,l)Y—given by

the tuples {(α(l)i , λ
(l)
i )}i∈{1,...,M(l)}—are treated as distinct uni-modal time-frequency states{S(l)i }i∈{1,...,M(l)}. We represent this correspondence by {S(l)i ≙ (α(l)i , λ

(l)
i )}i∈{1,...,M(l)}. Given

the strong correlation we previously demonstrated between neighbouring speech frames,

these distinct states, derived at a particular memory inclusion index l, can then be viewed

as parent states from which the localized time-frequency information can be used to infer

finer children states at the higher (l + 1)th index. In this manner, the overall GMM-based

pdf at index l + 1, i.e., GX(τ,l+1)Y, can then be estimated by linearly combining all child

state pdf s obtained at index l + 1, rather than estimating it anew independently from the

lower-order GMM, GX(τ,l)Y .

This time-frequency state-specific extension or growth approach illustrated in Figure 5.8,

becomes intuitive when the underlying classes are viewed from the multi-dimensional spatial

perspective of the temporally-extended feature vector space. Since the underlying classes

represented by the states {S(l+1)i }
i∈{1,...,M(l+1)} at memory inclusion index l+1 can be viewed

as finer realizations of the lth-order temporally-extended acoustic representation of speech

along a new additional temporal axis, these classes at index l + 1 are, in fact, subclasses of

those at l. Conversely, the lth-order classes represented by {S(l)i }i∈{1,...,M(l)} can be viewed as
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the lower-resolution subspace projections of the (l+1)th-order classes onto the temporally-

extended subspace at memory inclusion index l. This incremental approach for partitioning

increasingly high-dimensional feature vector spaces by building upon partitions in their

lower-dimensional subspaces is further motivated by the observation that real-world high-

dimensional data tend to concentrate in subspace manifolds with dimensionalities lower

than that of the original space [158]. We also note that, conceptually, this hierarchy of

temporally-extended classes/states across time is similar to that described in Section 3.3.4

for memoryless acoustic classes, except that the hierarchy for the latter is rather a function

of the number of memoryless GMM components; classes corresponding to phonemes can

be viewed as subclasses of those representing place of articulation, which, in turn, are

subclasses of those representing manner of articulation.137

Another intuitive interpretation of our approach is that obtained from the perspective

of top-down—or divisive—hierarchical clustering [174, Section 14.3.12]. In particular, Fig-

ure 5.8 can be viewed as a top-down dendrogram where the root nodes at memory inclusion

index l = 0 represent rough clusters of the fully-extended [X(τ,L)
Y
] joint-band data with the

clustering performed by applying a distance metric only to the [X(τ,0)
Y
] data. By further

considering the new X(τ,l) data available with each increment of l, the [X(τ,l−1)
Y
] clusters are

split into finer and more accurate daughter clusters.138 Depending on the linkage criterion

used to measure the similarity—or lack thereof—of the new incremental features within

each parent cluster, the variability of the incremental data may not warrant splitting, in

which case the dendrogram branch is extended by simply augmenting the data samples

assigned to the parent cluster with their respective incremental features. As described in

the following section, we use GMM-based measures for the distance metric as well as for

the linkage criterion.

To summarize, we grow our model in steps across time in a tree-like fashion—starting

from the memoryless GX(τ,0)Y—until the desired level of memory inclusion—denoted by L,

the maximum value for l—is achieved. The exact means by which parent states are ex-

tended into child states—represented by the transformation T in Figure 5.8—is detailed

137See Table 1.1.
138As detailed in Section 5.4.2.3, we, in fact, use bothX(τ,l) andY(τ,l) features to split a parent [X(τ,l−1)

Y
]

cluster into daughter clusters at order l. After estimating the localized [X(τ,l)Y(τ,l)] pdf s corresponding to the

daughter clusters in an intermediate step, the marginal [X(τ,l)
Y
] pdf s are then extracted.
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in the following section. We note here, however, that the validity and the success of such

a transformation relies on the aforementioned correlation between neighbouring frames.

Our second use of the redundancy in speech frames is also depicted in Figure 5.8 by the

variability in number of child states per parent state. Detailed in the following sections,

incorporating such variability in our tree-like modelling approach is intended to model the

variations in the range of spectral changes across time for different classes, while simulta-

neously taking advantage of redundancies across time to simplify our temporal Gaussian-

based model and maximize its information content.139 Thus, in a manner akin to the GMM

regularization approaches described in Section 5.4.2.1, we use the information already in-

corporated into lower-order GMMs—namely, the information between neighbouring speech

frames as well as that represented by the correspondence of Gaussian kernels to underlying

classes—to constrain the complexity and parameter space of the higher-order GMMs.

As noted in Section 5.4.2.1 above, GMMs have long represented the most popular means

for mixture model-based clustering [174, Section 6.8], with the vast majority of techniques

employing the correspondence of Gaussian components to underlying classes in order to

perform a hard-decision Bayesian classification of data. This hard-decision discretization

approach of the feature vector space discards the degree of overlap between the classes mod-

elled by the mixture model, and hence, its classification performance depends heavily on the

actual amount of overlap between the underlying classes. As described above and further

detailed in Section 5.4.2.3 below, we exploit the same idea underlying GMM-based cluster-

ing to group training data at each memory inclusion index l into M
(l)

time-frequency data

subsets corresponding to the states {S(l)i }i∈{1,...,M(l)} shown in Figure 5.8. Viewing these

subsets as realizations of the distinct time-frequency classes in the space of the temporally-

extended joint-band random feature vector at index l, we can then use such subsets—after

extending them temporally—to estimate a transformation T in order to temporally ex-

tend the parent state uni-modal pdf s—representing time-frequency classes at index l—into

multi-modal children pdf s that represent new finer states and subclasses at index l+1, with
the transformation performed for each parent state independently of all other states at the

same memory inclusion index l. Since the speech time-frequency classes underlying these

parent states do, in fact, overlap considerably, with the extent of overlap further increasing

139Temporally-extended classes corresponding to vowels, for example, exhibit much less spectral variabil-
ity throughout the durations of the vowels, while plosives, on the other hand, are characterized by short
intervals of rapid spectral change preceded and followed by longer intervals of considerably lower spectral
variation across time.
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with dimensionality per the empty space phenomenon,140 using the aforementioned con-

ventional hard-decision approach would result in data subsets that are increasingly limited

in terms of their representation of the underlying overlapping classes, and hence, increas-

ingly insufficient for the reliable estimation of child subclasses—i.e., leading to a higher

risk of overfitting. This follows from the increasing importance of Gaussian tails in higher

dimensional spaces as densities become more spread out, combined with the fact that the

zero-one loss function underpinning Bayes’ decision rule discards information in such tails

regarding the extent of class overlap.141 We illustrate this effect through a simple example

in Section 5.4.2.3 below.

Instead of the conventional hard-decision Bayesian classification, we thus propose and

employ a novel fuzzy approach to GMM-based clustering. While the idea of fuzzy, or soft,

mixture-based clustering is itself not new,142 our proposed algorithm is novel in that it in-

troduces a fuzziness factor to selectively control GMM-based classification fuzziness, with

the soft membership weights associated to input data by clustering normalized in a manner

that ensures the probabilistic consistency of the resulting partitioned subsets regardless of

the value used for the fuzziness factor. In effect, our proposed algorithm thus improves

upon the blanket fuzziness employed by the Expectation-Maximization (EM) GMM train-

ing algorithm—where all classes in the mixture partly share the membership of all data

points—by incorporating the selectiveness of the well-known non-GMM-based fuzzy K-

means approach of [183]. More specifically, we relax the conventional conditions defining

the class membership of data points to include data from K neighbouring clusters—rather

than from all clusters—in a qualitative manner. Careful choices for the fuzziness factor,

K, allow us to partially alleviate the adverse effects of class overlap in higher-dimensional

spaces while still allowing us to break down the estimation of the temporal extension trans-

formation into localized time-frequency regions centred near the high-density means of the

subspace parent classes. The selective fuzziness of our classification approach—partly in-

spired by the relative success of the notion of fuzzy pattern classification in general—thus

represents a compromise between: (a) minimizing the risk of overfitting, and (b) maximizing

140Aptly illustrated in [180], the empty space phenomenon refers to the fact that high-dimensional spaces
are inherently sparse. As dimensionality increases, distances between points in the space tend to be more
uniform, with the result that densities become more spread out, and hence, increasingly overlapping.

141See [71, Sections 2.2–2.4] for a detailed description of Bayesian decision theory.
142See [181] for a wide and detailed literature review of fuzzy pattern recognition techniques in general,

as well as [182] for a review including fuzzy mixture-based clustering in particular.
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the ability to compartmentalize, and hence simplify, the task of modelling high-dimensional

distributions by reducing the size of the data subsets to be used for estimating child state

pdf s. Introducing greater overlap in data subsets increases the training computational cost

as well as the size of the resulting temporally-extended GMMs, while discarding the un-

derlying overlap altogether will likely result in overfitting. Despite the data subset overlap

introduced by our fuzzy clustering approach, we show in Section 5.4.2.3 that the qualitative

technique by which we expand the time-frequency data subsets does not, in fact, increase

the risk of oversmoothing.

To incorporate the soft data classification resulting from our proposed fuzzy clustering

approach into the aforementioned estimation of child state pdf s, we also propose and derive

in Section 5.4.2.3 a weighted implementation of the conventional EM algorithm used for

GMM training. In particular, we derive iterative update formulae taking account of the

soft membership weights such that a weighted log-likelihood function is maximized, and

further prove the convergence of our iterative weighted algorithm. Similar to the idea

underlying our fuzzy GMM-based clustering algorithm proposed above, however, the idea

underlying our weighted EM implementation—namely, incorporating weights that quantify

the importance of training data points relative to each other—is itself not novel. Indeed,

several weighted implementations of the EM algorithm have previously been proposed in

the literature to address training data limitations in terms of number or unevenness, e.g.,

[184], or, among others, to improve the speed of EM convergence, e.g., [185]. As motivated

and detailed in Operation (c) of Section 5.4.2.3 below, however, our proposed weighted EM

implementation differs from previous EM approaches in introducing a two-stage training

approach that allows us to target, or localize, the density estimation power of the EM

algorithm towards any particular subspace of interest—e.g., those subspaces underlying

highband feature vectors that, relative to an arbitrary time-indexed reference point, occur

at varying instances, or indices, in the past. In contrast, conventional and weighted EM

implementations encountered in the literature treat all dimensions of the spaces underlying

the input training data equally in terms of density estimation.

By implementing our weighted EM-based density estimation independently for each of

the fuzzily clustered parent data subsets, its computational complexity is significantly re-

duced compared to the infeasible approach of performing stand-alone conventional EM as

previously described; first, the EM training procedure inherits the time-frequency localiza-

tion inherent in the corresponding parent data subsets, thereby considerably restricting the
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number of Gaussian components—representing child states—needed to model the localized

variability of training data, and secondly, the update formulae themselves can be applied to

potentially much smaller amounts of training data. In Section 5.4.2.4, we examine the per-

formance of our fuzzy GMM-based clustering approach combined with weighted EM-based

density estimation by assessing the reliability of the final obtained temporally-extended

GMMs, {GX(τ,l)Y}, in terms of both oversmoothing and overfitting.

To conclude, we note that, in addition to the correspondence of the idea underlying

our tree-like growth approach to those of subspace clustering techniques, the state space

representation of Figure 5.8 closely resembles that of a directed graphical model [179].

In particular, we demonstrate in Section 5.4.2.3 below that the states {S(l)i }∀i,l can be

viewed as graphical model nodes, each of which representing a variable in a linear vector

subspace of [X(τ,l)
Y
], the global temporally-extended joint-band feature vector space, with

the subspace variable’s pdf given by (α(l)i , λ
(l)
i ). Moreover, we show that the conditional

independence properties of these variables follow the definition of Markov blankets.143

5.4.2.3 Implementation

Having presented above a conceptual description of our state space tree-like GMM extension

approach, we now describe the details of its implementation.

As described above, we incorporate memory into the joint-band Gaussian mixture

model incrementally starting with the memoryless GMM, GX(τ,0)Y, resulting in the set{GX(τ,l)Y}l∈{0,...,L} where GX(τ,l)Y represents the temporally-extended GMM obtained at the

lth step and τ represents the frame step used in the construction of data in X(τ,l) andY(τ,l)—the temporally-extended narrowband and highband feature vector spaces, respec-

tively. Through quantitatively measuring the effect of memory inclusion on highband cer-

tainty in Section 4.4.3, we showed, however, that incorporating the spectral dynamics

of both bands into joint-band modelling clearly outperforms incorporating the dynam-

ics of only the narrow band in terms of the certainty gains achievable about the target

static highband spectra. Concisely stated in Eq. (5.8), it is, indeed, such joint-band in-

clusion of memory that represented the basis of our frontend-based approach to improving

BWE. Reiterating our conclusion from Section 5.3.3.2, the objective then in the context

herein is to achieve the best possible estimates of the underlying temporally-extended joint-

143See Footnote 161 for the definition of Markov blankets.
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band distributions where the temporal extension is applied to the representations of both

bands. Accordingly, we implement our state space approach in the joint-band spaces of{[X(τ,l)Y(τ,l)]}l∈{0,...,L}, rather than those of {[X(τ,l)
Y
]}

l∈{0,...,L}
, with the subspace models to be

used for BWE—i.e., {GX(τ,l)Y}l∈{0,...,L}—extracted by marginalization in a post-processing

step. As such, we define Z(τ,l), representing the lth-order temporally-extended joint-band

feature vector space with step τ , i.e., Z(τ,l) = [ZT
t ,Z

T
t−τ , . . . ,Z

T
t−lτ ]T where Zt = [Xt

Yt
].

At each extension step, we perform five main operations. In order to simplify the

presentation, we first detail these operations individually before describing how we apply

and integrate them together:

(a) Fuzzy GMM-based clustering of training data

As described in Section 5.4.2.2 above, we break down the difficult GMM temporal

extension task at each memory inclusion step into simpler time-frequency-localized

extension operations by exploiting the correspondence of Gaussian kernels to under-

lying time-frequency classes. This is achieved by progressively clustering temporally-

extended joint-band training data—representing realizations in theZ(τ,l) vector spaces
for l ∈ {0, . . . ,L}—into overlapping subsets with the clustering performed as a func-

tion of joint-band GMM components, thereby taking advantage of the considerable

cross-band correlation of temporal information shown earlier in Section 4.4.3.

Let GZ(τ,l)i represent a localized GMM modelling the pdf underlying a subset

Vz(τ,l)i ⊆ Vz(τ,l), (5.12)

where Vz(τ,l) represents the set of all training data in the Z(τ,l) space, and i ∈ I(l)—an

integer index set given by I(l) = {1, . . . , ∣I(l)∣}. Per our GMM notation introduced

in Eq. (2.13), GZ(τ,l)i is given by GZ(τ,l) i = G(z(τ,l);Mz(τ,l)
i ,Az(τ,l)i ,Λz(τ,l)i ). To simplify

notation in the sequel, however, we drop the memory inclusion step τ from notation—

unless required for clarity—since τ is assumed to be fixed in the presentation below,

thus rewriting Vz(τ,l)i as Vz(l)i , for example. In addition, we rewrite the GMM GZ(τ,l) i
as G(l)Zi to make the notation below consistent in the sense that l can be viewed as

denoting an incremental index of temporal extension applicable to the underlying

feature vector space as well as to the quantities being estimated. As such, we writeG(l)Zi ∶= GZ(τ,l) i = G(z(l);Mz(l)
i ,Az(l)i ,Λz(l)i ), where Λz(l)i = {λz(l)ij ∶= (µz(l)ij ,Czz(l)ij )}

j∈J
(l)
i

,



204 BWE with Memory Inclusion

Az(l)i = {αz(l)ij ∶= P (λz(l)ij )}j∈J (l)
i

, and J (l)i = {1, . . . ,Mz(l)
i }.144

Given the correspondence of the Λz(l)i kernels of G(l)Zi to localized classes in the time-

frequency Z(l) space, we further localize the temporal extension task by partitioning

the data in the parent subset Vz(l)i into ∣J (l)i ∣ =Mz(l)
i child subsets, {Vz(l)ij }j∈J (l)

i

, cor-

responding to the kernels {λz(l)ij }j∈J (l)
i

. As described in Section 5.4.2.2 above, GMM-

based clustering approaches—e.g, [154–156]—typically follow Bayesian decision the-

ory to determine the class membership of data, where classification is performed in a

hard-decision manner using the maximum a posteriori probabilities of the underlying

classes—represented by the {λz(l)ij }j∈J (l)
i

component Gaussians—given the data; i.e.,

∀m ∈ J (l)i ∶ Vz(l)im =

⎧⎪⎪⎪⎨⎪⎪⎪⎩z(l)n ∈ Vz(l)i ∶ arg max
λ
z(l)
ij
∈Λz(l)

i

P (λz(l)ij ∣z(l)n ) = λz(l)im

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (5.13)

where n ∈ {1, . . . , ∣Vz(l) ∣} indexes all training data points available in the Z(l) space.
As shown in Section 3.3.1, applying Bayes’ rule per Eq. (3.13) for GMMs results in

the posterior probabilities given by Eq. (3.16)—rewritten for the variables herein as

P (λz(l)ij ∣z(l)n ) = αz(l)ij N(z(l)n ;µz(l)ij ,Czz(l)ij )
M
z(l)
i

∑
k=1

αz(l)ik N(z(l)n ;µz(l)ik ,Czz(l)ik )
. (5.14)

Classifying data as such results in pairwise-disjoint {Vz(l)ij }j∈J (l)
i

subsets, where

⋃
j∈J

(l)
i

Vz(l)ij = Vz(l)i , (5.15a)

∀j, k ∈ J (l)i and j ≠ k∶ Vz(l)ij ∩ Vz(l)ik = φ. (5.15b)

As previously discussed, however, the classification error—or Bayes risk—associated

with Bayes’ decision rule of Eq. (5.13) increases with greater overlap in the underlying

144As detailed in Operations (c) and (d) below, the subscript i in J (l)i is intended to denote the depen-
dence of the number of Gaussian kernels—∣J (l)i ∣—in the GMM G(l)zi on the particular index of the GMM;
i.e., ∣J (l)i ∣ is not a fixed value for all i.
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classes, and is particularly exacerbated with increasing dimensionality as a result of

the accompanying increase in data sparsity. More importantly for our task, the hard-

decision classification increases the risk of overfitting in higher-dimensional spaces

since it results in subsets that are increasingly insufficient to reliably estimate the

child subclasses of the parent underlying classes corresponding to Λz(l)i . Thus, to

mitigate this dimensionality effect, we relax the hard-decision classification rule of

Eq. (5.13) by qualitatively including all data points for which the likelihood of the

class in question—i.e., P (λz(l)im ∣z(l)n )—is, not only the highest as in Eq. (5.13), but also

among the top K, where 1 ≤K ≤Mz(l)
i .

Let
∗
λ
z(l)
ijk,n

, where jk ∈ J (l)i and k ∈ {1, . . . ,K}, denote the kth most-likely class for the

nth data point, z(l)n ; i.e.,

∗
λ
z(l)
ijk,n

∶=
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

arg max
λ
z(l)
ij
∈Λz(l)

i

P (λz(l)ij ∣z(l)n ), for k = 1,

arg max
λ
z(l)
ij
∈Λz(l)

i
−{∗λz(l)

ij1,n
,...,

∗

λ
z(l)
ijk−1,n

}
P (λz(l)ij ∣z(l)n ), for 1 < k ≤K ≤Mz(l)

i .
(5.16)

Then, rather than partition data based on only
∗
λ
z(l)
ij1,n

, for each z(l)n ∈ Vz(l)i , as in

Eq. (5.13), which we now simplify as

∀m ∈ J (l)i ∶ Vz(l)im = {z(l)n ∈ Vz(l)i ∶ ∗λz(l)ij1,n
= λz(l)im } , (5.17)

we relax the conditions for class membership by considering the top K most-likely

classes; i.e.,

∀m ∈ J (l)i ∶ Vz(l)im =
K

⋃
k=1

{z(l)n ∈ Vz(l)i ∶ ∗λz(l)ijk,n
= λz(l)im } . (5.18)

This expands the resulting {Vz(l)ij }j∈J (l)
i

subsets quantitatively, or spatially, and intro-

duces overlap as each training data point is now assigned to K different subsets—i.e.,

Eq. (5.15b) no longer holds while Eq. (5.15a) still does. Hence, we will refer to K as

the fuzziness factor.

Since the class memberships of data are now non-unique, a set of K soft continuous

membership weights must also be attached to each data point as measures of the

degree by which the data point belongs to each of the K underlying classes; points
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near the boundaries of a class belong to that class to a lesser degree than those near its

centre. This notion of soft membership contrasts with the hard binary memberships

underlying the conventional Bayesian decision rule of Eqs. (5.13) and (5.17). Given

the intuitive probabilistic nature of such membership weights [186, Section 6.2.2], we

use the posterior probabilities of Eq. (5.14) as membership weights after adequate

normalization. In particular, let w(l)ijk,n represent the membership weight associated

with
∗
λ
z(l)
ijk,n

, the kth most-likely class in the ith time-frequency region represented by

the GMM G(l)Zi , given the nth data point, z(l)n .145 Then, we define w(l)ijk,n as

w(l)ijk,n =
P (∗λz(l)ijk,n

∣z(l)n )
K

∑
m=1

P (∗λz(l)ijm,n∣z(l)n ) , (5.19)

where k ∈ {1, . . . ,K}. In addition to ensuring that membership weights for any

particular data point always sum to 1, we note that, for K = 1 where our fuzzy

clustering approach reduces to that based on Bayes’ decision rule, Eq. (5.19) results

in the desired binary membership weights. We also note that, as shown by the

illustrative example of Figure 5.9 below, incorporating the weights of Eq. (5.19) into

child density estimation enables us to balance mitigating the risk of overfitting against

increased computational cost through the fuzziness factor, K.

Weighting class memberships per Eq. (5.19) renders the subset quantitative expansion

of Eq. (5.18) a qualitative one as well. This is necessary in order to preserve distinc-

tions between the expanded subsets—i.e., prevent them from being similar—as well

as to reduce overall classification error rate rather than increase it if quantitative

expansion through Eq. (5.18) alone is applied. Indeed, the illustrative example de-

scribed below shows that introducing subset overlap—and hence multiple class mem-

berships for data—without accounting for a degree of membership lobotomizes—or

oversmoothes—the resulting subsets.

We have thus partitioned the base lth-order parent subset, Vz(l)i , into M
z(l)
i over-

145We note that the z superscript is dropped from the notation for membership weights since, as described

in Operation (c) below, z(l)n , x(l)n , y(l)n , xn,t, yn,t−lτ , et cetera, are all time-frequency representations
referenced to the same nth wideband speech data point with reference time t, and hence, should share the
same weight for membership in any particular underlying time-frequency class.
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lapping child subsets, {Vz(l)ij }j∈J (l)
i

, with corresponding sets of membership weights

{Vw(l)ij }j∈J (l)
i

given by

∀m ∈ J (l)i ∶ Vw(l)im =
K

⋃
k=1

{w(l)ijk,n∶ ∗λz(l)ijk,n
= λz(l)im , ∀z(l)n ∈ Vz(l)i } . (5.20)

For easier reference in the sequel, we will often combine the pairs of corresponding Vz(l)ij

and Vw(l)ij sets—given by Eqs. (5.18) and (5.20), respectively—through the pairwise-

disjoint sets of unique (z(l)n ,w(l)ijk,n) tuples, given by

∀m ∈ J (l)i ∶ Vz(l),w(l)im =
K

⋃
k=1

{(z(l)n ,w
(l)

ijk,n
) ∈ (Vz(l)i , (0,1] )∶ ∗λz(l)ijk,n

= λz(l)im } . (5.21)

The net result of this fuzzy classification approach is that the child time-frequency

state pdf s to be estimated at index l + 1—i.e., in the Z(l+1) space—based on the{Vz(l),w(l)ij }
j∈J

(l)
i

subsets, will better account for the overlap between the underlying

time-frequency classes in the Z(l) subspace when K > 1, and hence, ultimately re-

sult in a better model for the ith time-frequency-localized region of the Z(l+1) space
represented by the data in Vz(l+1)i , at the cost of increased computations.

To conclude, we also note that, in the development presented above, we did not

explicitly incorporate the previously-obtained localization information—i.e., the in-

formation represented by the (l −1)th-order membership weights in the {Vw(l−1)i }
i∈I
(l)

subsets, associated with the {Vz(l)i }i∈I(l) parent subsets—into the construction of the

new lth-order {Vz(l),w(l)ij }
∀i,j

child subsets. In particular, the (l − 1)th-order member-

ship weight information does not explicitly appear in Eqs. (5.19) or (5.21). As will be

discussed below in Operations (c) and (d), however, this (l − 1)th-order information

is incorporated, rather implicitly, through the maximum weighted log-likelihood esti-

mation of the ∣J (l)i ∣ =Mz(l)
i component Gaussians—i.e., {λz(l)ij }j∈J (l)

i

, themselves—of

each G(l)Zi model used to obtain {Vz(l),w(l)ij }
j∈J

(l)
i

as shown above.
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The advantage of fuzzy clustering: An illustrative example

To demonstrate the soft-decision advantage of our fuzzy clustering technique in terms

of improving child state pdf estimation, we consider a simple single-child density es-

timation problem. Let X represent a scalar random variable with a true underlying

distribution given by the highly-overlapping 7-component GMM, GX =∑7
i=1 αip(x∣λi),

shown in Figure 5.9, with Vx representing a training data set spanning the space ofX ,

generated randomly per GX . Viewing the Gaussian components of GX as parent states

or classes defined by the tuples {(αi, λi)}i∈{1,...,7}, we assume, for the purpose of this

example, that the child pdf s to be estimated—{(αij , λij)} where i ∈ {1, . . . ,7} and,
∀i, j ∈ Ji—are related to their respective parent states via an identity transformation,

i.e., T ∶X → X , rather than the transformation intended to incorporate incremental

memory described in Section 5.4.2.2 and detailed in this section. Since the iden-

tity transformation translates to single child states—i.e., ∀i ∈ {1, . . . ,7}, Ji = {1},
thereby making the index j redundant—with true pdf s identical to those of their

respective parent states, we denote estimated child state pdf s by the simpler tuples{(α̂i, λ̂i)}i∈{1,...,7}.
Focusing only on the i = 4th parent class represented in Figure 5.9 by the Gaussian

component tuple (α4, λ4), we illustrate the effect of fuzzily determining the subsetVx,w4 on the estimation of the child state pdf given by (α̂4, λ̂4). To estimate the param-

eters of this child density—namely, α̂4 and λ̂4 ∶= (µ̂4, σ̂4)—at a particular fuzziness

factor, K, we first determine Vx,w4 per:

Vx4 = K

⋃
k=1

{xn ∈ Vx∶ ∗λik,n = λ4} , (5.22a)

∀xn ∈ Vx4 ∶ w4,n =
P (λ4∣xn)

K

∑
k=1

P (∗λik ∣xn)
. (5.22b)

Then, based on Eqs. (5.66) and (5.67) derived and detailed in Operations (d) and (e)

below, respectively, we estimate α̂4, µ̂4, and σ̂4 as

α̂4 = α4 ⋅ 1 = α4, (5.23a)
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p(x) given the estimated child density, i.e., α̂4p(x∣λ̂4), for:
2 K = 1 # K = 2 △ K = 3 ◊ K = 7

The true underlying pdf, GX = ∑7
i=1 αip(x∣λi), where:

i ≠ 4 i = 4

x1 x2 x3 x4 x5 x6

X

p
(x)

(a) Fuzzy clustering with membership weights

x1 x2 x3 x4 x5 x6

X

p
(x)

(b) Fuzzy clustering without membership weights

Fig. 5.9: Illustrating the advantage of fuzzy clustering in terms of improving pdf estimation, as
well as the effect of membership weights, using a scalar random variable, X, with a randomly-
determined highly-overlapping underlying pdf, GX = ∑7

i=1 αip(x∣λi). With child densities assumed
to be related to parent densities through an identity transformation, i.e., T ∶X → X, we estimate
the (α̂4, λ̂4)th child pdf from GX using Eqs. (5.22) and (5.23), based on ∣Vx∣ = 106 training samples
spanning the range of X and generated randomly per GX .
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µ̂4 =

∑
{n∶ xn∈V

x
4
}
w4,nxn

∑
{n∶ xn∈V

x
4 }
w4,n

, (5.23b)

σ̂4 =

∑
{n∶ xn∈V

x
4
}
w4,n (xn − µ̂4)2
∑

{n∶ xn∈V
x
4
}
w4,n

. (5.23c)

Figures 5.9(a) and 5.9(b) illustrate the effect of performing fuzzing clustering per

Eqs. (5.22) and (5.23) at varying values of K on the (α̂4, λ̂4) estimates, with and

without the use of membership weights, respectively. At K = 1 where only the

training data in the [x3, x4] range are included in Vx4 , i.e., where Eq. (5.22a) reduces toVx4 = {x ∈ Vx∶ x ∈ [x3, x4]}, our fuzzy clustering technique reduces to the conventional

hard-decision approach based on Bayes’ rule with binary membership weights, thereby

resulting in identical (α̂4, λ̂4) child pdf estimates regardless of the use of membership

weights, as shown in Figures 5.9(a) and 5.9(b).

More importantly, Figure 5.9(a) clearly illustrates the adverse effects of the high

overlap between the parent classes on the quality of the estimated child pdf ; at K = 1,(α̂4, λ̂4) is significantly overfitted. By increasing the value of the fuzziness factor, K,

Figure 5.9(a) shows our soft-decision technique to be quite successful in alleviating the

problem of overfitting, albeit at increased computational costs due to the expansion

of Vx4 . In fact, we observe that, at the low value of K = 3 where 1 ≤ K ≤ 7, a highly

accurate (α̂4, λ̂4) estimate is achieved, demonstrating the power of fuzzy clustering

in mitigating overfitting. This follows as a result of the quantitative expansion of Vx4
in conjunction with qualitative measures of membership, i.e., membership weights,

as the range of training data considered for inclusion into Vx4 is increasingly extended

at K = 2 and 3 to x ∈ [x2, x5] and x ∈ [x1, x6], respectively.
At K = 7, all available training data is included in Vx4 , resulting in a nearly-perfect

estimate for the child density (α̂4, λ̂4) as shown in Figure 5.9(a). This, however, is

achieved at the cost of eliminating data localization for child pdf estimation alto-

gether, translating into increased computational costs. Although data localization

itself does not affect the time-frequency state localization described in Section 5.4.2.2
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as a cornerstone of our tree-like memory inclusion technique, the importance of data

localization in terms of limiting computational cost increases will become quite appar-

ent in Section 5.4.3; with each incremental increase of the memory inclusion index,

l, the higher cardinalities of Ji result in an exponential increase in the number ofG(l)Z Gaussian components. Given the highly accurate child pdf estimate obtained at

K = 3 as observed above, this illustrative example thus demonstrates that excellent

estimates for child state pdf s can, indeed, be achieved at low values for K, i.e., for

1 <K ≪M where M denotes the maximum number of parent states that can be con-

sidered for fuzzy clustering, thereby also largely preserving data localization ability,

and accordingly, limiting increases in computational cost.

Finally, Figure 5.9(b) emphasizes the importance of the qualitative contribution of

membership weights. In the absence of such weights, the inclusion of training data

outside the [x3, x4] range leads to oversmoothed (α̂4, λ̂4) pdf estimates, with the

oversmoothing increasing as more data is considered with higher values for K. In

particular, we point to the lower quality of the child state pdf estimate at K = 3

in Figure 5.9(b), compared to the corresponding estimate shown in Figure 5.9(a).

At K = 7, the lack of the qualitative membership weights leads to a nearly flat, or

lobotomized, estimate for (α̂4, λ̂4).
(b) Incremental temporal extension of training data

Partitioning the Vz(l) training data spanning the entire Z(l) space into the child sub-

sets {Vz(l),w(l)ij }—where i ∈ I(l) and, ∀i, j ∈ J (l)i —per the fuzzy clustering technique

described above represents the first of two steps in preparation for modelling the dis-

tribution in the Z(l+1) space. In that first step, all information about the distribution

of the data in the Z(l) space has been incorporated into {Vz(l),w(l)ij }
∀i,j

; this informa-

tion implicitly includes all previously-obtained information about distributions in the{Z(m)}
m∈{0,...,l−1} subspaces as well. Viewing {Vz(l),w(l)ij }

∀i,j
as the subspace projections

of the (l+1)th-order parent subsets in the Z(l+1) space onto the Z(l) space, the second
step consists of temporally extending these lth-order subsets into their corresponding(l + 1)th-order versions.
Prior to extending the {Vz(l),w(l)ij }

∀i,j
subsets, however, we note that the ancestry

information represented by the I(l) and {J (l)i }i∈I(l) parent and child integer index sets
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is no longer needed. Thus, in order to make the notation tractable as we progressively

incorporate more memory, we replace I(l) and {J (l)i }i∈I(l) with a single integer index

set, K(l) where k ∈ K(l) = {1, . . . , ∣K(l)∣}, with the mapping given by

∀i ∈ I(l), j ∈ J (l)i ∶
k = j + ∑

m<i

∣J (l)m ∣, (5.24a)

Vz(l),w(l)k
=
←Ð Vz(l),w(l)ij . (5.24b)

Noting that the child states and subsets obtained at index l also become the parents

at index l + 1, we have I(l+1) =
←Ð K(l). (5.25)

Given the subsets {Vz(l),w(l)k }
k∈K

(l) defined by Eqs. (5.21), (5.19), and (5.24), we now

temporally extend the training data by simply augmenting the lth-order joint-band

feature vector sequences in each subset with their corresponding static joint-band

feature vectors at a relative temporal delay of (l + 1)τ frames. In particular, for

each lth-order sequence, z(τ,l)n,t = [zTn,t,zTn,t−τ , . . . ,zTn,t−lτ ]T , where we have reintroduced

the memory inclusion step τ in z(τ,l)n,t for clarity as well as introduced t to provide a

local temporal frame of reference between the concatenated frames, we construct the

(l + 1)th-order sequence, z(τ,l+1)n,t = [ z(τ,l)n,t

zn,t−(l+1)τ
] = [zTn,t,zTn,t−τ , . . . ,zTn,t−(l+1)τ ]T . Dropping

the τ and t from z(τ,l)n,t and noting the equivalence of I(l+1) and K(l), we can thus

express the incrementally extended data subsets as

∀k ∈ K(l)⇔ i ∈ I(l+1)∶
Vz(l+1)i

Eq.(5.25)
←ÐÐÐÐÐ Vz(l+1)k = {z(l+1)n ∶ z(l)n ∈ Vz(l)k ∧ ∃zn,t−(l+1)τ} , (5.26)

where the last condition accounts for edge cases at the boundaries of training audio

samples.

To conclude, we note that, at this step, the Z(l) Eq.(5.26)
ÐÐÐÐÐ→ Z(l+1) extension is applied

only to the training data. The association of the now-(l + 1)-order data points in the

subsets {Vz(l+1)i }
i∈I
(l+1)

Eq.(5.26)
←ÐÐÐÐÐ {Vz(l)k }k∈K(l) with the lth-order membership weights

in the sets {Vw(l)i }
i∈I
(l+1)

Eq.(5.25)
←ÐÐÐÐÐ {Vw(l)k }

k∈K
(l) is unchanged since: (a) the degree

of membership of the (l + 1)th-order representations of data points to the lth-order
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subspace projections of the underlying classes is the same as that of the corresponding

lth-order representations of the same data points, and (b) the child state pdf s in theZ(l+1) space, required to update the membership weights per Eq. (5.19), are yet to be

estimated. The operation of temporally extending the data can thus be summarized

as

∀k ∈ K(l)⇔ i ∈ I(l+1)∶
Vz(l+1),w(l)i

=
←Ð Vz(l+1),w(l)

k
= {(z(l+1)n ,w(l)i,n)∶ (z(l)n ,w(l)

k,n
) ∈ Vz(l),w(l)

k
∧ ∃zn,t−(l+1)τ} . (5.27)

As discussed in Section 5.4.2.2, Eq. (5.27) effectively carries over the localization

of the time-frequency information obtained at memory inclusion index l into the

higher l + 1 step as well as future ones. As such, we have implicitly made use of the

strong correlation of speech characteristics across time by inferring the localization

represented by the child Gaussian components to be estimated in the Z(l+1) space
based on the localization already obtained in the Z(l) subspace.

(c) Extending parent states using weighted Expectation-Maximization

With l representing the memory inclusion index of the temporal extension step at

hand, i.e., replacing l + 1 in the discussion above by l for notational convenience and

equation compactness below, we now describe our technique for estimating uni-modal

child state pdf s at index l, based on the information obtained at the previous memory

inclusion index, l − 1.

In addition to comprising all previously-obtained information about the distribution

of data in the {Z(m)}
m∈{0,...,l−1} subspaces as noted in Operation (b) above, the pair-

wise-disjoint time-frequency-localized {Vz(l),w(l−1)i }
i∈I
(l)

Eq.(5.27)
←ÐÐÐÐÐ {Vz(l−1),w(l−1)

k
}
k∈K

(l−1)

subsets also incorporate partial information about the distribution of the new static

data in the time-dependent Zt−lτ static subspace by virtue of the incremental temporal
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extension performed via Eq. (5.27).146 Specifically, this partial information consists

of the frequency-only localization information carried over from the parent states,{S(l−1)k ≙ (αz(l−1)k , λ
z(l−1)
k )}

k∈K
(l−1), through the subsets {Vz(l−1),w(l−1)k }

k∈K
(l−1). Exploiting

this partial localization information, we estimate finer child densities spanning the

entire Z(l) space in two steps:

(a) We first model the distribution of the new incremental data in the static Yt−lτ

highband subspace, rather than in the entire joint-band Zt−lτ subspace, as mo-

tivated below. By applying a pruning condition to reduce potential modelling

redundancies prior to estimating the new child state densities in the Yt−lτ sub-

space, pdf estimation is performed only for a subset of the localized frequency

regions defined by the subsets {Vz(l),w(l−1)i }
i∈I
(l), with the estimation further per-

formed individually for each region, i.e., independently of the others.

(b) In a second step, we extrapolate the new child densities thus obtained—represent-

ing projections of the underlying lth-order time-frequency classes onto the time-

dependent Yt−lτ subspace—into the Z(l) space by integrating them with the

corresponding parent localized densities spanning theZ(l−1) subspace. An equiv-

alent extension into the Z(l) space is also applied as a separate step to those(l − 1)th-order parent states skipped by pruning in the first stage.

This latter integration—which also captures the cross-band correlation between spec-

tral envelope representations in the Xt−lτ and Yt−lτ subspaces, as shown below—is

achieved by simply taking account of the information that has already been incorpo-

rated into the parent {Vz(l),w(l−1)i }
i∈I
(l) subsets in prior extension steps.

The partial localization information carried over from parent states, thus, represents

regularization information that allows us to break down the intractable task of esti-

146In the context described here, the time-dependency of a static subspace follows from directly or
indirectly using the temporal information represented by neighbouring time-shifted static feature vectors
in modelling the variability of training data along the frequency-only axis corresponding to that particular
static subspace. Extracting models in the Zt−lτ subspace by marginalizing models of the distribution of lth-

order temporally-extended Z(l) feature vectors, for example, involves the introduction of time-dependency
through the direct use of temporal information. In contrast, estimating independent models for localized
regions in the static Zt−lτ subspace by modelling variability within disjoint subsets obtained by time-
frequency localization along lower-order temporal axes, as implemented in our algorithm discussed here,
represents an example of introducing time-dependency through the indirect use of temporal information.
Without the use of temporal information as such, we consider the static spaces underlying our models to
be time-independent, as is the case for the weighted EM initialization model described later in this section.
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mating G(l)Z , a single global high-dimensional pdf for training data in the Z(l) space,
into ∣I(l)∣ independent and localized G(l)Zi pdf estimation tasks. For each of these

pdf s to be estimated, i.e., ∀i ∈ I(l), let j ∈ J (l)i = {1, . . . , ∣J (l)i ∣} represent the in-

dices of the component Gaussian densities. Then, with the ∣I(l)∣ pdf s representing

finer ∣J (l)i ∣-modal models of the distribution of the lth-order data in the corresponding{Vz(l),w(l−1)i }
i∈I
(l) subsets, the ∣J (l)i ∣ component densities of each ith pdf, G(l)Zi , constitute

the lth-order uni-modal child states, {S(l)ij ≙ (αz(l)i ⋅ αz(l)ij , λ
z(l)
ij )}j∈J (l)

i

, descended from

the corresponding kth (l − 1)th-order uni-modal child state, S
(l−1)
k ≙ (αz(l−1)k , λ

z(l−1)
k ),

where αz(l)i
=
←Ð αz(l−1)k per Eq. (5.25), for all i ∈ I(l) ⇔ k ∈ K(l−1), as illustrated in

Figure 5.8.147

i. Two-stage child density estimation

To estimate the new lth-order ∣I(l)∣ pdf s, {G(l)Zi}i∈I(l), we employ the Expectation-

Maximization (EM) algorithm. Our implementation of EM, however, differs from

the conventional algorithm ubiquitously used for GMM training in the following (for

notational consistency and brevity, we denote the time-dependent Xt−lτ , Yt−lτ , and

Zt−lτ static subspaces by X
(l)
, Y

(l)
, and Z

(l)
, respectively):

1. We perform EM in two distinct stages corresponding to the two modelling steps

listed above. In the first and primary stage, we model the distribution of the

localized incremental data in the static Y
(l)

highband subspace. Combined

with the child states obtained via the aforementioned pruning, the first stage

effectively generates the ∣J (l)i ∣-modal pdf s {G(l)Yi
∶= G(y(l); ∣J (l)i ∣,Ay(l)

i ,Λy(l)

i )}i∈I(l),
where ∀i ∈ I(l), Λy(l)

i = {λy(l)

ij ∶= (µy(l)

ij ,Cy(l)

ij )}j∈J (l)
i

, Ay(l)

i = {αy(l)

ij ∶=P (λy(l)

ij )}j∈J (l)
i

,

and J (l)i = {1, . . . , ∣J (l)i ∣. The motivation for constraining our focus to highband

data is to increase the influence of the variability of localized static data in the

147As discussed in Operation (e), we weight the {αz(l)ij }j∈J (l)
i

priors of the ∣J (l)i ∣ Gaussian components of

each localized G(l)zi model before consolidating all {G(l)zi}i∈I(l) models into a single global G(l)z pdf. Since it is

these final weighted components of the global G(l)z which, in fact, correspond to the lth-order states in our

state space-based interpretation as illustrated in Figure 5.8, we can simplify our S
(l)
ij state notation here

and elsewhere by representing the correspondence with Gaussian component densities through the simpler{S(l)ij ≙ (αz(l)ij , λ
z(l)
ij )}j∈J (l)

i

, rather than the more accurate but elaborate {S(l)ij ≙ (αz(l)i ⋅ αz(l)ij , λ
z(l)
ij )}j∈J (l)

i

indicated by Eq. (5.67b).
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high band on the number as well as the shape of the child state densities ulti-

mately achieved. In other words, our objective in this first EM stage is to rather

model the variability in the target frequency band of BWE—the 4–8kHz high

band—as accurately and finely as possible. The influence of variability in the

static X
(l)

narrowband subspace and its cross-correlation with that of the high

band are modelled in the second extrapolation stage discussed in Item 3 below.

Moreover, as shown in the EM formulae derived below, the influence of vari-

ability in the temporally-extended Z(l−1) joint-band subspace is accounted for

directly in this first EM stage through incorporating the (l − 1)th-order parent
membership weights, {Vw(l−1)i }

i∈I
(l), in the iterative update equations for esti-

mating {(Ay(l)

i ,Λy(l)

i )}i∈I(l).
The focus on modelling variability in the Y

(l)
highband subspace, rather than in

the Z
(l)

joint-band subspace, follows from the lower intra- and inter-frame vari-

ability of highband spectral envelopes, relative to those of the narrow band.148

Given that narrowband variability and cross-band correlation are accounted for

in the second extrapolation modelling stage described below, such lower high-

band variability motivates us to reduce the influence of narrowband variability

on EM-based density estimation in this first modelling stage for the benefit of

ultimately obtaining lth-order joint-band child states, {S(l)ij }∀i,j , that are more

attuned to the distributions of the underlying classes in the target high fre-

quency band, albeit at the cost of lower modelling accuracy for variability in the

X
(l)

narrowband subspace. Estimating such band-attuned joint-band pdf s by

constraining the modelled feature space in an intermediate EM step, is the recip-

148As discussed in Sections 1.1.3 and 3.2.7, the 4–8kHz range is dominated by unvoiced sounds with
flat spectra, with the high-frequency formants of voiced sounds further characterized by wide bandwidths.
In contrast, spectral envelopes in the 0.3–3.4 kHz narrow band typically exhibit a much larger intra-frame
variability since the first three formants, for example, generally occur in the 250–3300Hz range with larger
variations in frequency, energy, and bandwidth, across the different sound classes, compared to highband
formants [10, Section 3.4]. Indeed, it is this low intra-frame variability for highband spectral envelopes,
compared to those in the narrow band, that allows the parameterization of these highband envelopes using
fewer parameters.
Similarly, the low inter-frame variability of highband envelopes, compared to the narrow band, follows from
the fact that distinctions between different sound classes in the high band tend to be more restricted to
variability in overall energy level across the entire 4–8kHz band rather than to variability of energy as a
function of frequency, as illustrated, for example, by the difference between the alveolar /s/ and labial /f/
fricatives in Figure 1.2. Furthermore, as noted above, such energy variations between and within different
sounds classes are generally lower in the high band than in the narrow band.
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rocal to the idea exploited in Section 5.3.3.2 to improve frontend-based memory

inclusion—namely, expanding the modelled feature space by the inclusion of the

highband delta feature space, ∆Y, in order to capture the influence of highband

dynamics to ultimately obtain an improved model of the underlying classes in

the [△X
Y
] joint-band subspace, as summarized in Eq. (5.8).

2. In the conventional EM algorithm derived for GMM-based density estimation,

and for mixture models in general, the objective is to find the set of model param-

eters with maximum likelihood—or typically, log-likelihood—given the training

data.149 In our context, this corresponds to maximizing the log-likelihood of lo-

calized model parameters given the parent data subsets constrained to the Y
(l)

subspace; i.e.,

∀i ∈ I(l)∶ ∗
Θy(l)

i ∶= ( ∗Ay(l)

i ,
∗
Λy(l)

i ) = argmax
Θy(l)

log [L(Θy(l) ∣Vy(l)i )] , (5.28)

where ∀i ∈ I(l), Θy(l)

i ≙ G(l)Yi
and,

∀i ∈ I(l)∶ Vy(l)i = {yn,t−lτ ∶z(l)n ∈ Vz(l)i } , (5.29)

with the model parameters {Ay(l)

i }i∈I(l) and {Λy(l)

i }i∈I(l) defined as in Item 1

above. Estimating localized model parameters as such does not, however, ac-

count for the fuzzy qualitative expansion of training data subsets described in

Operation (a), and hence, will ultimately result in oversmoothed localized pdf s as

shown in the illustrative example of Figure 5.9(b). Consequently, the maximiza-

tion of model parameter log-likelihoods through EM should incorporate the qual-

itative membership of data in the localized {Vy(l)i }i∈I(l) parent subsets. Since the
static incremental data in the {Vy(l)i }i∈I(l) subsets are merely the projections of

the corresponding temporally-extended lth-order data in the {Vz(l)i }i∈I(l) parent
subsets onto the Y

(l)
subspace, i.e., static highband data points are referenced

in time to the same wideband training frames used to construct the correspond-

ing lth-order points, the fuzzy membership of these static data points to the{Vy(l)i }
i∈I
(l) subsets is defined by the same weights associated with {Vz(l)i }i∈I(l)

149Since log(⋅) is a strictly increasing function, the value X = ∗x that maximizes log[f(X)] also maximizes
f(X). Most implementations of EM use log-likelihood—rather than likelihood—since it typically makes
the maximum-likelihood estimation of density parameters more tractable.
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per Eqs. (5.27) and (5.21). Thus, to account for membership weights, we modify

Eq. (5.28) such that

∀i ∈ I(l)∶ ∗
Θy(l)

i = argmax
Θy(l)

f (Vw(l−1)i , log [L(Θy(l) ∣Vy(l)i )]) , (5.30)

where the cost function, f (Vw(l−1)i , log [L(Θy(l) ∣Vy(l)i )]), is a weighted version of

the log-likelihood function that guarantees the convergence of the derived iter-

ative EM algorithm, similar to the convergence obtained using the conventional

non-weighted log-likelihoods. By solving Eq. (5.30) through minor modifica-

tions to the conventional derivation of the EM algorithm for GMMs, we intro-

duce below a weighted implementation of EM where the derived iterative update

equations explicitly incorporate membership weights.

3. In the second EM stage, we exploit the information previously incorporated

into the {Vz(l),w(l−1)i }
i∈I
(l) subsets about the distribution of temporally-extended

data in the parent Z(l−1) subspace in order to extrapolate the ∣I(l)∣ localized
Y
(l)

subspace densities, {( ∗Ay(l)

i ,
∗
Λy(l)

i )}i∈I(l), obtained through Eq. (5.30), into

the ∣J (l)i ∣-modal densities, {( ∗Az(l)i ,
∗
Λz(l)i )}i∈I(l), spanning the entire Z(l) space.

In particular, we perform a single EM iteration to estimate the maximum-

likelihood {( ∗Az(l)i ,
∗
Λz(l)i )}i∈I(l) parameters given the lth-order joint-band data and

their membership weights, {Vz(l),w(l−1)i }
i∈I
(l), but with the posterior probabilities

of the Z(l) child densities determined in the Expectation step based entirely

on the Y
(l)

subspace densities previously estimated in the first EM stage of

Item 1. With the new information about the distribution of data in the Y
(l)

subspace now incorporated into the Z(l) child density posterior probabilities,

we can then—through a final Maximization step—easily extend the information

readily available in the {Vz(l),w(l−1)i }
i∈I
(l) subsets about the distribution of data in

the Z(l−1) subspace in order to obtain the maximum-likelihood estimates for the

sought-after lth-order joint-band child states/densities, {S(l)ij ≙ (αz(l)ij , λ
z(l)
ij )}∀i,j.

Worthy of note is that, since the latter final Maximization step is applied us-

ing lth-order joint-band data in the Z(l) space, the extension of the Z(l−1)
subspace densities—or, alternatively, the extrapolation of the Y

(l)
subspace

densities—implicitly incorporates the cross-correlation between data distribu-

tions in the static X
(l)

and Y
(l)

subspaces—as well the cross-correlation between
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all {X(m)}
m∈{0,...,l−1} and {Y(m)}

m∈{0,...,l−1} subspaces—into the final model at

memory inclusion index l represented by the {S(l)ij }∀i,j states.
The focus on modelling the incremental variability in the static Y

(l)
subspace when

estimating child state densities, as described for our two-stage EM approach above, is

similar in concept to the shadowing of the variability in one band into the other as em-

ployed in both codebook- and HMM-based BWE techniques. In the more-advanced

class of codebook-based mapping techniques discussed in Section 2.3.3.2, variability

of training data is first quantized in the narrow band before constructing a shadow

highband—or wideband—codebook. Similarly, in the second class of HMM-based ap-

proaches discussed in Section 2.3.3.4, a VQ codebook of highband spectral envelopes

is associated to HMM states modelling the corresponding envelopes of narrowband

spectra. We note, in particular, the parallelism of our two-stage EM technique to the

HMM-based approach of [39], where highband variability is first modelled through a

highband VQ codebook before estimating narrowband mixture models in each HMM

state based on the correspondence of the training narrowband envelopes to those of

the quantized highband spectra.

ii. Deriving the weighted Expectation-Maximization formulae

To derive our weighted EM procedure and prove its convergence, we use the EM

tutorials of Bilmes and Borman, in [187] and [188], respectively, as references. Rather

than repeat the complete EM derivation detailed in [187], however, we focus only on

detailing those steps and formulae impacted by the inclusion of membership weights

per Eq. (5.30).

For generality, let X = {xn}n={1,...,N} represent data observations of the random vector,

X, whose underlying multi-variate pdf we wish to model using an M-modal mixture

model given by Θ = {(αm, λm)}m∈{1,...,M}, such that

p(x∣Θ) = M

∑
m=1

αmp(x∣λm), (5.31)

where λm and αm ∶= P (λm) denote, respectively, the parameters and the mixing

weight of the Mth component density. The EM algorithm attempts to find the

set of parameters,
∗
Θ, which maximize the log-likelihood function log[L(Θ∣X )] ∶=
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log[p(X ∣Θ)]. Assuming the observations X to be drawn from p(x∣Θ) are i.i.d., the

log-likelihood function can then be written as

log[L(Θ∣X )] ∶= log[p(X ∣Θ)] = log N

∏
n=1

p(xn∣Θ) = N

∑
n=1

log( M

∑
m=1

αmp(xn∣λm)) . (5.32)

The log-likelihood given as thus, however, is difficult to optimize due to the right-

hand-side logarithm-of-sums term. To make the maximum-likelihood estimation of Θ

tractable, a hidden variable, Y where y ∈ {1, . . . ,M}, is introduced, with each of the

unobserved realizations Y = {yn}n∈{1,...,N} of Y representing the index of the generative

mixture-model’s component density underlying a corresponding observation among

X . By introducing Y , the incomplete-data log-likelihood of Eq. (5.32), to be optimized

through EM, can be replaced by the complete-data log-likelihood,

log[L(Θ∣X ,Y)] ∶= log[p(X ,Y ∣Θ)] = log N

∏
n=1

p(xn, yn∣Θ)
=

N

∑
n=1

log[p(xn, yn∣Θ)] = N

∑
n=1

log[p(xn∣yn,Θ)p(yn∣Θ)] = N

∑
n=1

log[αynp(xn∣λyn)]. (5.33)

Now, let y = [y1, . . . , yN ] represent a realization of the random vector Y whose

space Ωy comprises all the possible values that the N unobserved i.i.d. data in the

subset Y can jointly take. The conventional EM algorithm solves the problem of

finding
∗
Θ = argmaxΘ log[L(Θ∣X )] by iteratively maximizing an equivalent function,

Q(Θ,Θ
(k)), where Θ

(k)
represents the model estimates obtained at the kth EM iter-

ation. In particular, using Eq. (5.33), the EM algorithm can be summarized as

Θ
(k+1)

= argmax
Θ

Q(Θ,Θ
(k))

= argmax
Θ

E [log[L(Θ∣X ,Y)]∣X ,Θ
(k)]

= argmax
Θ

∑
y∈Ωy

log[p(X ,y∣Θ)]P (y∣X ,Θ
(k))

= argmax
Θ

∑
y∈Ωy

N

∑
n=1

log[αynp(xn∣λyn)] N

∏
l=1

P (yl∣xl,Θ
(k))

= argmax
Θ

M

∑
y1=1

⋯
M

∑
yN=1

N

∑
n=1

log[αynp(xn∣λyn)] N

∏
l=1

P (yl∣xl,Θ
(k)), (5.34)
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where we have made use of the fact that maximizing the incomplete-data log-likelihood,

log[L(Θ∣X )], is equivalent to maximizing the expectation of the complete-data log-

likelihood, log[L(Θ∣X ,Y)], given the observed data and the previous model esti-

mates, as shown in the development leading up to and including Eq. (15) in [188],

and further proven for our weighted EM algorithm in Eq. (5.51) below.

Let wn represent a prior membership weight associated with xn, the nth observation

in X , independent of p(x∣Θ). To incorporate the effects of all such weights, i.e.,{wn}n∈{1,...,N}, into the EM algorithm, we maximize the expectation of a weighted

log-likelihood function, rather than the expectation of the conventional non-weighted

log-likelihood as in Eq. (5.34). In particular, we replace Q(Θ,Θ
(k)) in Eq. (5.34) by

Q
w(Θ,Θ

(k)), where
Q

w(Θ,Θ
(k)) = M

∑
y1=1

⋯
M

∑
yN=1

N

∑
n=1

wn log[αynp(xn∣λyn)] N

∏
l=1

P (yl∣xl,Θ
(k)). (5.35)

By manipulating the right-hand-side of Eq. (5.35) in the same manner shown in

Eqs. (3) and (4) of [187], Qw(Θ,Θ
(k)) can be rewritten as

Qw(Θ,Θ
(k)) = M

∑
m=1

N

∑
n=1

wn log[αmp(xn∣λm)]P (m∣xn,Θ
(k))

=
M

∑
m=1

N

∑
n=1

wn log(αm)P (m∣xn,Θ
(k))

+
M

∑
m=1

N

∑
n=1

wn log[p(xn∣λm)]P (m∣xn,Θ
(k)), (5.36)

from which it is clear that the Expectation step—in both the conventional EM and our

weighted EM algorithms—reduces to evaluating P (m∣xn,Θ
(k)), for all combinations

of n ∈ {1, . . . ,N} and m ∈ {1, . . . ,M}.
Through independently maximizing the first and second terms of Eq. (5.36) relative to

each of the {αm} and {λm} parameters, respectively, the expressions for the optimal(k + 1)th-iteration model parameters, i.e., Θ
(k+1)

= {(α(k+1)m , λ
(k+1)
m )}

m∈{1,...,M}, can

then be obtained. In particular, the component density priors, {α(k+1)m }
m∈{1,...,M},

are obtained using Lagrange optimization150 of the first term, as shown in [187].

150See [71, Section A.3] for details regarding Lagrange optimization.
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Introducing the scalar Lagrange multiplier γ151 with the constraint that ∑m αm = 1

and taking the derivative with respect to αm, we obtain the following Lagrangian

function for each of the M priors:

∂

∂αm

[ M

∑
m=1

N

∑
n=1

wn log(αm)P (m∣xn,Θ
(k)) + γ ( M

∑
m=1

αm − 1)] = 0, (5.37)

which reduces to
N

∑
n=1

1

αm

wnP (m∣xn,Θ
(k)) + γ = 0. (5.38)

Given that ∑M
m=1P (m∣xn,Θ

(k)) = 1, summing Eq. (5.38) over m results in the solution

that γ = −∑N
n=1wn, and hence,

α
(k+1)
m

=
←Ð αm =

N

∑
n=1

wnP (m∣xn,Θ
(k))

N

∑
n=1

wn

. (5.39)

Up to this point, we made no assumptions in the development above about the

shape of the kernel density, p(x∣λm), representing the modes of the mixture model in

Eq. (5.31). To obtain the optimal {λ(k+1)
m
}
m∈{1,...,M} density parameters, however, we

now substitute the generic p(x∣λm) in the second term of Eq. (5.36) by the Gaussian

pdf denoted by N (x;λm ∶= (µm,Cm)) and given as shown in Eq. (2.13). In particular,

we rewrite the second term of Eq. (5.36) as

M

∑
m=1

N

∑
n=1

wn log[p(xn∣λm)]P (m∣xn,Θ
(k))

=
M

∑
m=1

N

∑
n=1

wn (1
2
log(∣C−1m ∣) − 1

2
(xn −µm)TC−1m (xn −µm))P (m∣xn,Θ

(k)), (5.40)

where we have dropped the constant −Dim(X)
2 log(2π) term since it disappears after

taking derivatives, and made use of the determinant property that ∣A−1∣ = 1/∣A∣. By
now taking the derivative with respect to µm, for all m ∈ {1, . . . ,M}, and setting it

151 The Lagrange multiplier is typically denoted by λ. To avoid confusion with our λ notation for
component density parameters, however, we denote the multiplier here by γ.
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to zero, we obtain
N

∑
n=1

wnC
−1
m (xn −µm)P (m∣xn,Θ

(k)) = 0, (5.41)

which is easily solved for µm to obtain

µ
(k+1)
m

=
←Ð µm =

N

∑
n=1

wnP (m∣xn,Θ
(k))xn

N

∑
n=1

wnP (m∣xn,Θ
(k)) . (5.42)

Finally, as detailed in [187], making use of the matrix properties of the square and

symmetric {Cm}m∈{1,...,M} covariance matrices allows us to reduce the derivative of

Eq. (5.40) with respect to C−1m , for all m ∈ {1, . . . ,M}, to
N

∑
n=1

wnP (m∣xn,Θ
(k)) (Cm − [xn −µm][xn −µm]T ) = 0, (5.43)

from which we obtain

C
(k+1)
m

=
←Ð Cm =

N

∑
n=1

wnP (m∣xn,Θ
(k)) [xn −µm][xn −µm]T

N

∑
n=1

wnP (m∣xn,Θ
(k)) . (5.44)

Eqs. (5.39), (5.42), and (5.44) represent the Maximization step.

iii. Convergence of the weighted Expectation-Maximization algorithm

Following [188], we prove the convergence of our weighted EM algorithm by showing

that the weighted log-likelihood function to be maximized is a non-decreasing function

of the iteration index k. As described above, the objective of the conventional EM

algorithm is to find the model parameters,
∗
Θ, that maximize the log-likelihood of

the observations, X . For mixture models and i.i.d. realizations, this log-likelihood

function—which we now denote by L(Θ∣X ) for notational convenience—was shown

in Eq. (5.32) to be

L(Θ∣X ) ≜ log[L(Θ∣X )] = N

∑
n=1

log[p(xn∣Θ)] = N

∑
n=1

log( M

∑
m=1

p(λm∣Θ)p(xn∣λm,Θ)) , (5.45)
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where we have rewritten αm and p(xn∣λm) in Eq. (5.32) as p(λm∣Θ) and p(xn∣λm,Θ),
respectively.

In comparison, by introducing the weights {wn} into the EM cost function as shown

in Eqs. (5.35) and (5.36), our modified EM algorithm maximizes, rather, a weighted

version of the observation log-likelihoods. Compared to the log-likelihood function of

Eq. (5.45) above, our weighted modification of the log-likelihood, shown in Eq. (5.35),

can be written as

Lw(Θ∣X ) ≜ N

∑
n=1

wn log[p(xn∣Θ)] = N

∑
n=1

wn log( M

∑
m=1

p(λm∣Θ)p(xn∣λm,Θ)) . (5.46)

As an iterative procedure, the conventional EM algorithm translates the problem

of finding
∗
Θ = argmaxΘ L(Θ∣X ) into the equivalent problem of finding

∗
Θ in steps—

indexed on k to generate Θ
(k)

estimates, with the initial Θ
(0)

estimate given a priori—

such that, ∀k ≥ 0, L(Θ(k+1)∣X ) ≥ L(Θ(k)∣X ), or, alternatively, such that the difference

in log-likelihoods is maximized, i.e., Θ
(k+1)

= argmaxΘ L(Θ∣X ) − L(Θ(k)∣X ). For our
weighted log-likelihood function, Lw(Θ∣X ), this corresponds to

Θ
(k+1)

= argmax
Θ

Lw(Θ∣X ) − Lw(Θ(k)∣X ). (5.47)

Thus, to prove the convergence of our weighted algorithm, we need only show that,

∀k ≥ 0, Lw(Θ(k+1)∣X ) − Lw(Θ(k)∣X ) ≥ 0. Making use of the weighted log-likelihood

definition in Eq. (5.46), as well as Jensen’s inequality combined with the facts that,

∀m,n, P (λm∣xn,Θ
(k)) ≥ 0 and ∑mP (λm∣xn,Θ

(k)) = 1,152 we have, ∀k ≥ 0,

Lw(Θ∣X ) − Lw(Θ(k)∣X )
=

N

∑
n=1

wn log
M

∑
m=1

p(λm∣Θ)p(xn∣λm,Θ) − N

∑
n=1

wnP (xn∣Θ(k))

152Jensen’s inequality states that, for the constants {ci}i∈{1,...,I} satisfying ci ≥ 0 ∀i, and ∑i ci = 1,

log( I∑
i=1

cixi) ≥ I∑
i=1

ci log(xi).
See [188, Section 2] for a detailed proof.
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=
N

∑
n=1

wn log
M

∑
m=1

P (λm∣xn,Θ
(k))⎛⎝p(λm∣Θ)p(xn∣λm,Θ)

P (λm∣xn,Θ
(k))

⎞⎠ −
N

∑
n=1

wnP (xn∣Θ(k))
≥

N

∑
n=1

wn

M

∑
m=1

P (λm∣xn,Θ
(k)) log⎛⎝p(λm∣Θ)p(xn∣λm,Θ)

P (λm∣xn,Θ
(k))

⎞⎠ −
N

∑
n=1

wnP (xn∣Θ(k))
=

N

∑
n=1

wn

M

∑
m=1

P (λm∣xn,Θ
(k)) log⎛⎝ p(λm∣Θ)p(xn∣λm,Θ)

P (λm∣xn,Θ
(k))P (xn∣Θ(k))

⎞⎠
=

N

∑
n=1

wn

M

∑
m=1

P (λm∣xn,Θ
(k)) log⎛⎝ p(xn, λm∣Θ)

P (xn, λm∣Θ(k))
⎞⎠

≜ ∆(Θ∣Θ(k)). (5.48)

Equivalently, by defining

l(Θ∣Θ(k)) ≜ Lw(Θ(k)∣X ) +∆(Θ∣Θ(k)), (5.49)

Eq. (5.48) can be stated as

Lw(Θ∣X ) ≥ l(Θ∣Θ(k)), (5.50)

i.e., ∀k ≥ 0, l(Θ∣Θ(k)) is bounded from above by Lw(Θ∣X ). Secondly, we note that

the log ( p(xn,λm∣Θ)
P (xn,λm∣Θ(k))) term in the expression for ∆(Θ∣Θ(k)) in Eq. (5.48) reduces

to zero for Θ = Θ
(k)

; i.e., the two functions, l(Θ∣Θ(k)) and Lw(Θ∣X ), are equal at

Θ = Θ
(k)

. Based on both these properties of the relationship between l(Θ∣Θ(k)) and
Lw(Θ∣X ),153 we can then conclude that any value for Θ that increases l(Θ∣Θ(k)), also
increases Lw(Θ∣X ), and hence, maximizing Lw(Θ∣X )—the objective of our weight-

ed EM algorithm—is equivalent to maximizing l(Θ∣Θ(k)). In turn, given that the

weighted log-likelihood maximized in the previous EM iteration, i.e., Lw(Θ(k)∣X ), is
constant with respect to Θ, then, as indicated by Eq. (5.49), maximizing l(Θ∣Θ(k))
itself reduces to maximizing ∆(Θ∣Θ(k)), thereby proving our earlier statement regard-

ing the equivalence of maximizing the weighted log-likelihood difference—as shown

in Eq. (5.47)—to the original objective of maximizing the weighted log-likelihood

153See [188, Figure 2] for an illustration of the relationship between l(Θ∣Θ(k)) and L(Θ∣X ).
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function per se. Thus, the weighted EM algorithm can be formally expressed as

Θ
(k+1)

= argmax
Θ

N

∑
n=1

wn

M

∑
m=1

P (λm∣xn,Θ
(k)) log⎛⎝ p(xn, λm∣Θ)

P (xn, λm∣Θ(k))
⎞⎠

= argmax
Θ

M

∑
m=1

N

∑
n=1

wn log[p(xn, λm∣Θ)]P (λm∣xn,Θ
(k))

≡ argmax
Θ

E [ N

∑
n=1

wn log p(xn, Y ∣Θ) ∣X ,Θ
(k)] , (5.51)

where the second step is obtained by dropping all the additive terms that are constant

with respect to Θ, and where we have rewritten the random variable λm in the final

step as Y to obtain an expression similar to that used in Eqs. (5.34) and (5.35) to

derive Q
w(Θ,Θ

(k)).
Since Θ

(k+1)
is chosen to maximize the weighted log-likelihood difference ∆(Θ∣Θ(k)),

then, given that ∆(Θ(k)∣Θ(k)) = 0 as noted above, we have, ∀k ≥ 0,

∆(Θ(k+1)∣Θ(k)) ≥ ∆(Θ(k)∣Θ(k)) = 0; (5.52)

i.e., the weighted log-likelihood function, Lw(Θ∣X ), is consistently non-decreasing,

thereby proving the convergence our weighted EM algorithm.

iv. Estimating child state densities through two-stage localized weighted EM

Using the weighted EM iterative update formulae derived above, we can now di-

rectly exploit the fuzzy membership and localization information captured in the{Vz(l),w(l−1)i }
i∈I
(l) subsets to estimate the maximum weighted log-likelihood estimates of

G(l)Zi—or, more specifically, of the ∣J (l)i ∣ child state densities, {S(l)ij ≙ (αz(l)ij , λz(l)ij )}j∈J (l)
i

—

modelling each ith region of the Z(l) space. With the EM density estimation per-

formed independently for each i ∈ I(l), we proceed as follows:

(1) Initialization

As described above, we perform weighted EM in two stages, first modelling the vari-

ability of the incremental highband data in the static Y
(l)

subspace, followed by

extrapolating the obtained finer child subclasses into the entire Z(l) space. Using k

to denote the weighted EM iteration index spanning the two stages, we extend the
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notation for the child state densities to be iteratively estimated at the lth memory

inclusion index in the first and second weighted EM stages to {(αy(l,k)

ij , λ
y(l,k)

ij )}
∀i,j

and{(αz(l,k)ij , λ
z(l,k)
ij )}

∀i,j
, respectively. To initialize the first EM stage, we independently

train a single J-modal GMM covering the entire time-independent static highband

space, Y ≡Y
(0)

.154 Given the extended notation above where the 2-tuple superscript(⋅ , ⋅) denotes order of memory inclusion and iteration index, respectively, while the

non-extended 1-tuple ( ⋅ ) denotes memory inclusion index only,155 we denote the

initialization GMM by G(0)Y ∶= G(y;J,Ay(0) ,Λy(0)), where Ay(0) = {αy(0)

j }
j∈{1,...,J} and

Λy(0) = {λy(0)

j }
j∈{1,...,J}. This GMM represents the single 0th-iteration model to be

used to initialize our localized weighted EM in all ∣I(l)∣ regions of the Y
(l)

subspace,

at all values for the memory inclusion index l, rather than perform K-means cluster-

ing independently on each of the {Vy(l)

i
Eq.(5.29)
←ÐÐÐÐÐ Vz(l)i }i∈I(l) subsets, as would typically

be done to initialize EM training.156 Since J , the number of Gaussian components

in G(0)Y , thus also determines the number of uni-modal child states to be derived from

each uni-modal parent state, we will often refer to it as the splitting factor.

The motivation for initializing the weighted EM training using G(0)Y covering the

entire Y space, rather than frequency-localized regions corresponding to each of

the {Vz(l)i }i∈I(l) subsets, is detailed in Operation (d) below. As described in Sec-

tion 5.4.2.2, however, we note here that initializing our localized EM training through

G(0)Y is intended to simultaneously capture the degree of variability in spectral char-

acteristics across time for different sounds while also exploiting this variability to

reduce redundancy in our overall tree-like model prior to performing weighted EM,

and thereby, maximizing the model’s information content. As described in Opera-

tion (d), reducing redundancies as such is equivalent to pruning ∣J (l)i ∣—the number

of the Gaussian components of G(l)Yi
needed to model the variability of localized data

in the Y
(l)

subspace—for a particular subset of the I(l) indices. In addition to this

redundancy-reducing pruning performed prior to applying EM, we also apply a data-

sufficiency pruning test—also detailed in Operation (d)—after weighted EM training

has been applied at the current lth-order of memory inclusion, in order to ensure suf-

154See Footnote 146 regarding the time-dependency of static subspaces.
155As noted in Operation (a), the memory inclusion step, τ , was dropped from our initial superscript

notation introduced in Section 5.4.2.2 to simplify notation.
156See Footnote 60.
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ficient data is available to reliably estimate child state densities at the future (l+1)th
order. Since this latter post-EM pruning condition can only be tested after weighted

EM has already been applied, however, we need only consider the aforementioned

pre-EM redundancy-reducing condition in the initialization step discussed here.

As summarized in Eq. (5.63), the net result of the pre-EM test for child Gaussian

component pruning is that, ∀i ∈ I(l), ∣J (l)i ∣ is reduced to one of only two possible

values, specifically ∣J (l)i ∣ ∈ {1, J}, depending on the value of a distribution flatness

measure, ρi, calculated based on all incremental data in the Vy(l)

i subset. Thus, given

G(0)Y , the initialization of our weighted EM algorithm can be summarized as follows:

1. For all i ∈ I(l), we estimate ρi using Eqs. (5.60)–(5.62) as detailed in Operation (d)

below.

2. Given a minimum distribution flatness threshold, ρmin, we apply the pruning

condition in Eq. (5.63) to determine {i ∈ I(l)∶ ρi ≥ ρmin}—the subset of parent

state indices for each of which the incremental Y
(l)

data is deemed sufficiently flat

to warrant the splitting of the corresponding ith parent state into J child states,

whose uni-modal pdf s are to be jointly estimated as the Gaussian components of

G(l)Yi
via weighted EM.

3. Finally, for each of the J-modal {G(l)Yi
} GMMs corresponding to the subset of

indices obtained above, we use the parameters of G(0)Y as the initial 0th-iteration

input to our weighted EM algorithm, i.e.,

∀i ∈ I(l)∣ρi ≥ ρmin, j ∈ J (l)i = {1, . . . , J}∶
α
y(l,0)

ij
=
←Ð α

y(0)

j , (5.53a)

µ
y(l,0)

ij
=
←Ð µ

y(0)

j , (5.53b)

Cyy(l,0)

ij
=
←ÐCyy(0)

j . (5.53c)

(2) E-step

Using the {(αy(l,0)

ij , λ
y(l,0)

ij ∶= (µy(l,0)

ij ,Cyy(l,0)

ij ))} estimates of Eq. (5.53) above as initial{G(l,0)Yi
}
∀i∣ρi≥ρmin

model estimates, we now proceed with the first stage of weighted EM

training. Replacing the general random vector, X, used in our derivation of weighted

EM, by the incremental highband random feature vector, Y
(l)
, and the Gaussian

component index, m, by ij, the E-step deduced from Eq. (5.36) reduces to estimating

P (λy(l,k)

ij ∣y(l)n ) ≙
←Ð P (m∣xn,Θ

(k)), for all n∣ z(l)n ∈ Vz(l)i and all ij∣ρi ≥ ρmin—the indices

remaining after the application of pre-EM pruning as described above. Thus, using
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Bayes’ rule, we have,

∀i ∈ I(l)∣ρi ≥ ρmin, j ∈ J (l)i = {1, . . . , J}, n∣ z(l)n ∈ Vz(l)i ∶

P (λy(l,k)

ij ∣y(l)n ) = α
y(l,k)

ij P (y(l)n ∣λy(l,k)

ij )
∑

m∈J
(l)
i

α
y(l,k)

im P (y(l)n ∣λy(l,k)

im ) . (5.54)

(3) M-step

Similarly, by applying the same parameter substitutions noted above to Eqs. (5.39),

(5.42), and (5.44), the first-stage M-step is given by

∀i ∈ I(l)∣ρi ≥ ρmin, j ∈ J (l)i = {1, . . . , J}∶

α
y(l,k+1)

ij =

∑
{n∶ z(l)n ∈V

z(l)
i
}

w(l−1)i,n P (λy(l,k)

ij ∣y(l)n )
∑

{n∶ z(l)n ∈V
z(l)
i
}

w(l−1)i,n

, (5.55a)

µ
y(l,k+1)

ij =

∑
{n∶ z(l)n ∈V

z(l)
i
}

w
(l−1)

i,n P (λy(l,k)

ij ∣y(l)n )y(l)n
∑

{n∶ z(l)n ∈V
z(l)
i
}

w(l−1)i,n P (λy(l,k)

ij ∣y(l)n ) , (5.55b)

Cyy(l,k+1)

ij =

∑
{n∶ z(l)n ∈V

z(l)
i
}

w
(l−1)

i,n P (λy(l,k)

ij ∣y(l)n ) [y(l)n −µ
y(l,k+1)

ij ][y(l)n −µ
y(l,k+1)

ij ]T
∑

{n∶ z(l)n ∈V
z(l)
i
}

w(l−1)i,n P (λy(l,k)

ij ∣y(l)n ) . (5.55c)

Applied individually over all i ∈ I(l)∣ρi ≥ ρmin, Eqs. (5.54) and (5.55) are iteratively

repeated for each G(l)Yi
GMM using the corresponding Vy(l)

i subset until the relative

change in weighted log-likelihood for that ith subset, i.e.,

∆Lw ≜
Lw(Θ(k+1)∣Vy(l),w(l−1)

i ) − Lw(Θ(k)∣Vy(l),w(l−1)

i )
Lw(Θ(k)∣Vy(l),w(l−1)

i ) (5.56)

where

Lw(Θ(k)∣Vy(l),w(l−1)

i ) = ∑
{n∶ z(l)n ∈V

z(l)
i
}

w(l−1)i,n log∑
j∈J

(l)
i

α
y(l,k)

ij P (y(l)n ∣λy(l,k)

ij ), (5.57)
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falls below a particular threshold, ∆Lw
max, thereupon concluding the first stage of our

weighted EM-based child state pdf estimation.

(4) Final E-step

Finally, through a single weighted EM iteration, we extrapolate the finer child sub-

classes obtained above in the Y
(l)

subspace into the joint-band Z(l) space. As previ-
ously discussed, this extrapolation is achieved by extending the (l − 1)th-order time-

frequency information available in the joint-band {Vz(l),w(l−1)i } subsets using the new

finer Y
(l)
-subspace localization information captured into the {G(l)Yi

} GMMs corre-

sponding to the non-pruned I(l) indices. In particular, we first determine the child

subclass membership probabilities of the fully-extended lth-order joint-band data in

the {Vz(l),w(l−1)i }∀i∣ρi≥ρmin
subsets based entirely on the new membership information

captured into the {G(l)Yi
}
∀i∣ρi≥ρmin

GMMs. This effectively augments the information in-

corporated previously during the construction of the {Vy(l),w(l−1)

i ← Vz(l),w(l−1)i }∀i∣ρi≥ρmin

subsets—the subsets used to estimate {G(l)Yi
}
∀i∣ρi≥ρmin

in the first EM stage above—

about time-frequency localization in the lower-order Z(l−1) subspace using the new

finer localization information learned through modelling variability in the incremental

Y
(l)

subspace. Then, in a second step, we estimate the parameters of the joint-band{G(l)Zi}∀i∣ρi≥ρmin

GMMs as those maximizing the weighted log-likelihoods of the corre-

sponding {Vz(l),w(l−1)i }∀i∣ρi≥ρmin
subsets given those child subclass memberships deter-

mined as described above. These J-modal {G(l)Zi}∀i∣ρi≥ρmin

GMMs, together with the

uni-modal {G(l)Zi}∀i∣ρi<ρmin

densities estimated in Operation (d) below, represent the

densities to be used for future fuzzy clustering in order to obtain the (l + 1)th-order{Vz(l+1),w(l)i }
i∈I
(l+1) subsets, as described in Operations (a) and (b).

The first step—namely the estimation of child subclass membership probabilities for

data in the {Vz(l),w(l−1)i }∀i∣ρi≥ρmin
subsets—is simply implemented through an additional

E-step using {Vy(l),w(l−1)

i }∀i∣ρi≥ρmin
and the {(αy(l,k)

ij , λ
y(l,k)

ij )} parameters maximized in

the first EM stage; i.e.,

∀i ∈ I(l)∣ρi ≥ ρmin, j ∈ J (l)i = {1, . . . , J}, n∣ z(l)n ∈ Vz(l)i ∶

P (λz(l,k)ij ∣z(l)n ) =
←Ð P (λy(l,k)

ij ∣y(l)n ) = α
y(l,k)

ij P (y(l)n ∣λy(l,k)

ij )
∑

m∈J
(l)
i

α
y(l,k)

im P (y(l)n ∣λy(l,k)

im ) . (5.58)
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(5) Final M-step

Similarly, the second step—namely the estimation of the maximum weighted log-

likelihood values for the {G(l)Zi}∀i∣ρi≥ρmin

model parameters given the {P (λz(l,k)ij ∣z(l)n )}
posterior probabilities obtained in Eq. (5.58) above—is implemented through a final

M-step using the joint-band lth-order data in the {Vz(l),w(l−1)i }∀i∣ρi≥ρmin
subsets; i.e.,

∀i ∈ I(l)∣ρi ≥ ρmin, j ∈ J (l)i = {1, . . . , J}∶

αz(l,k+1)ij =

∑
{n∶ z(l)n ∈V

z(l)
i
}

w
(l−1)

i,n P (λz(l,k)ij ∣z(l)n )
∑

{n∶ z(l)n ∈V
z(l)
i
}

w(l−1)i,n

, (5.59a)

µz(l,k+1)ij =

∑
{n∶ z(l)n ∈V

z(l)
i
}

w(l−1)i,n P (λz(l,k)ij ∣z(l)n )z(l)n
∑

{n∶ z(l)n ∈V
z(l)
i
}

w
(l−1)

i,n P (λz(l,k)ij ∣z(l)n ) , (5.59b)

Czz(l,k+1)ij =

∑
{n∶ z(l)n ∈V

z(l)
i
}

w(l−1)i,n P (λz(l,k)ij ∣z(l)n ) [z(l)n −µz(l,k+1)ij ][z(l)n −µz(l,k+1)ij ]T
∑

{n∶ z(l)n ∈V
z(l)
i
}

w
(l−1)

i,n P (λz(l,k)ij ∣z(l)n ) . (5.59c)

As previously noted, since the {Vz(l),w(l−1)i }∀i∣ρi≥ρmin
subsets also include partial in-

formation about the localization of incremental static narrowband data in the X
(l)

subspace, maximizing the weighted log-likelihood of these joint-band subsets using

the finer Y
(l)

highband -subspace localization information per Eqs. (5.58) and (5.59)

implicitly incorporates the important cross-correlation information between data dis-

tributions in the X
(l)

and Y
(l)

subspaces into our lth-order joint-band {G(l)Zi}∀i∣ρi≥ρmin

models of child state densities.

v. On the effect of time-frequency localization on computational complexity

To conclude this description of our approach to pdf estimation, we note that the over-

all computational complexity associated with estimating lth-order joint-band densi-

ties through our localizing tree-like approach is significantly lower than that required
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for global estimation using the conventional EM algorithm whose computational lim-

itations were detailed in Section 5.4.2.1. The reduction in complexity follows directly

from localization across time and frequency. In particular:

1. The localization of training data effectively constrains variability across the in-

cremental subspace. Modelling such constrained variability individually within

each localized region, in turn, considerably reduces J—the number of Gaussian

components needed for mixture modelling, or alternatively, the splitting factor—

below what would typically be required to model unconstrained variability across

the entire incremental subspace. Indeed, as shown by the results to be detailed

in Section 5.4.3.2 based on an initial G(0)Z global GMM with I ∶= ∣J (0)1 ∣ = 128,

BWE performance saturates at a splitting factor of J ≃ 4–6, compared to the

∼ 128 components needed for performance saturation when modelling an entire

static space.157

2. The localization of training data through GMM-based clustering further results

in smaller subsets of data. Such reduced subset cardinalities, in turn, translate

to fewer operations to be performed at each weighted EM iteration. As detailed

in Operation (d) below, we impose an post-EM pruning condition to ensure that

the amount of data available for EM training does not fall after fuzzy clustering

below the previously-determined threshold of Nf/p ≊ 10.158

3. Finally, the localization of training data allows us to estimate the pdf s of joint-

band data with higher orders of memory inclusion incrementally. This, in

turn, allows us to progressively extend our model temporally by modelling vari-

ability primarily along the incremental static highband subspaces, {Y(l)}∀l≥0,
rather than along the fully-extended joint-band spaces, {Z(l)}∀l≥0, thereby sig-

nificantly reducing modelling complexity as a direct result of the difference in

dimensionalities—which, in fact, consistently grows with the increase in order

of memory inclusion, l.

157See Section 3.5.1 and Figure 3.4, in particular, which illustrates static BWE dLSD performance as a
function of M , the number of Gaussian components in the global GMM.

158See Section 3.5.2 and Figure 3.7, in particular, which illustrates static BWE dLSD and Q
PESQ

per-
formances as a function of Nf/p, the number of data points (frames) available for training per GMM
parameter.
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(d) Addressing redundancies and potential overfitting by pruning

In introducing our tree-like approach for memory inclusion in Section 5.4.2.2, we em-

phasized that exploiting the temporal characteristics of speech to achieve a hierarchi-

cal time-frequency model represents one of our primary objectives. As detailed in the

previous steps, making use of the strong correlation properties between neighbouring

frames to carry over time-frequency localization information, from modelling at one

memory inclusion index to the next, represents the first means by which temporal

characteristics were incorporated in our modelling algorithm. To further incorporate

speech temporal characteristics into our model while simultaneously reducing model

complexity, we attempt to capture and exploit the redundancies in spectral char-

acteristics that may be present at different temporal sections of the various speech

classes underlying our localized time-frequency regions.159 In particular, similar in

concept to maximizing the entropy or information content of a coded speech signal

through exploiting the well-known redundancies in speech signals, we measure the

extent of spectral variability for the new incremental static highband data in each of

the {Vy(l)

i ← Vz(l)i }i∈I(l) subsets. Then, prior to performing weighted EM, we decide

accordingly whether such variability warrants splitting the ith parent cluster, sub-

class, or state, for all i ∈ I(l), into ∣J (l)i ∣ = J child or daughter states, where J is a

splitting factor determined in practice as the number of Gaussian components in the

EM initialization GMM, G(0)Y , as opposed to pruning the number of child states to

only one, i.e., ∣J (l)i ∣ = 1. Our implementation of such pre-EM redundancy-reducing

pruning is detailed below.

As discussed in Section 5.4.2.2 and further detailed in Operation (a) above, one of

the motivations for our fuzzy clustering approach was to alleviate the risk of over-

fitting. However, the non-decreasing growth illustrated in Figure 5.8 for the number

of the time-frequency states obtained through our tree-like modelling approach mo-

tivates us to ensure that sufficient data is always available to reliably estimate those

child state densities to be obtained at the future (l + 1)th-order of memory inclu-

sion based on the lth-order states. As such, we also impose a post-EM pruning

condition that directly compares the cardinality of each of the ∣I(l+1) =
←Ð K(l)∣ data

159See Footnote 139 for examples of the variation in spectral redundancies across time for different sound
classes.
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subsets, {Vz(l+1)i }
i∈I
(l+1)

Eq.(5.26)
←ÐÐÐÐÐ {Vz(l)k }k∈K(l), to a particular threshold determined as

a function of the Y
(l+1)

subspace dimensionality as well as the number of uni-modal

child state densities, J , to be estimated for each parent data subset. We apply this

data-sufficiency check after, rather than before, weighted EM training—and thus,

potentially pruning some lth-order child state densities despite having been already

trained using EM—in order to account for the decrease in (l + 1)th-order subset

cardinalities associated with the edge cases at training audio sample boundaries.160

i. Pre-EM pruning

As described in Operation (c), the {Vy(l)

i }i∈I(l) ← {Vz(l)i }i∈I(l) ← {Vz(l−1)k }
k∈K

(l−1) subsets

comprise all previously-obtained information about the distribution of the data in

the {Z(m)}
m∈{0,...,l−1} subspaces, including that of time-frequency localization. Hence,

these subsets are considered to be reliably and highly localized in time-frequency along

the lower-order {Z(m)}
m∈{0,...,l−1} subspaces. In contrast, the {Vy(l)

i }i∈I(l) subsets con-
tain only partial information about frequency-only localization in the incremental

Y
(l)
← Z

(l)
static subspaces added by temporal extension as described in Opera-

tion (b). The extent of the correlation of such partial localization information to that

in the lower-order subspaces depends entirely on the correlation between the time-

dependent Z
(l) ∶= Zt−lτ spectra to those of their neighbouring past {Zt−mτ}m∈{0,...,l−1}

spectra; higher cross-time spectral correlation translates to equally-high frequency

localization, and vice versa. Since static Zt−lτ spectra that correlate highly with their

neighbouring past counterparts add little new information to that already existing in

the lower-order {Vz(m)i }
i∈I
(m) ∣

∀m<l
subsets, splitting parent {Vy(l)

i }i∈I(l) subsets where

the Yt−lτ ← Zt−lτ data exhibits limited variability in the entire Yt−lτ subspace un-

necessarily increases our tree-like model’s complexity as well as increase the risk of

overfitting. Instead, we attempt to maximize the information content of our model by

focusing only on those data subsets where the distribution of the incremental Yt−lτ

data exhibits higher entropy, i.e., where the distribution of the Yt−lτ data is flatter,

rather than peakier or more localized, over the entire span of the Yt−lτ subspace.

To that end, we define a distribution flatness measure to quantify the variability of

the incremental {Vy(l)

i }i∈I(l) data in the static Y
(l)

subspace, with the flatness esti-

160See Eqs. (5.26) and (5.27) for the effect of edge cases on reducing the size of temporally-extended data
subsets.
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mated based on the variation in the posterior probabilities of the individual Gaussian

components of a GMM trained independently to model the entire time-independent

Y ≡Y
(0)

static subspace, given the {Vy(l)

i }i∈I(l) data. Such a GMM had already been

introduced as the reference J-modal G(0)Y used for EM initialization.

Similar in concept to the spectral flatness measure, introduced in [189] to quan-

tify the tonality, or conversely, the noisiness, of audio spectra, i.e., their variabil-

ity across frequency, our distribution flatness measure quantifies the peakiness, or

conversely, the whiteness, of the distribution of incremental static highband data

across the frequency-only axis of the Y
(l)

subspace. This measure is individually es-

timated for each of the {Vy(l)

i }i∈I(l) subsets, based on per-child-state weighted Bayesian

occupancies—denoted by {Oy(l)

ij }, for all i ∈ I(l) and j ∈ {1, . . . , J}—which, in turn, are

estimated based on the aforementioned posterior probabilities of the J components

of G(0)Y given the static highband data in each Vy(l)

i subset.

To estimate {Oy(l)

ij }, we first define o(l)ij,n representing the hard-decision Bayesian occu-

pancy of the jth initial Gaussian component of G(0)Y , (αy(0)

j , λ
y(0)

j ), given the nth data

point, y
(l)
n , belonging to the ith static highband subset, Vy(l)

i . Then, by adapting our
∗
λ
z(l)
ijk,n

notation defined in Eq. (5.16) for the kth most-likely Gaussian component, the

per-data-point hard-decision occupancies, {o(l)ij,n}∀i,j,n, can be written as

∀i ∈ I(l), j ∈ {1, . . . , J}, n∣y(l)n ∈ Vy(l)

i ∶ o(l)ij,n =

⎧⎪⎪⎨⎪⎪⎩
1, if

∗
λy(0)

j1,n
= λy(0)

j ,

0, otherwise.
(5.60)

Given {o(l)ij,n}∀i,j,n, we then estimate the per-child-state weighted Bayesian occupancies

per

∀i ∈ I(l), j ∈ {1, . . . , J}∶ Oy(l)

ij =

∑
{n∶ z(l)n ∈V

z(l)
i
}

w(l−1)i,n o(l)ij,n

∑
{n∶ z(l)n ∈V

z(l)
i
}

w
(l−1)

i,n

, (5.61)

using which the distribution flatness, ρi, in the Y
(l)

subspace, for each of the ∣I(l)∣{Vy(l)

i }i∈I(l) subsets, is obtained as the ratio of the geometric mean of the per-child-



236 BWE with Memory Inclusion

state {Oy(l)

ij }j∈{1,...,J} occupancies to their arithmetic mean; i.e.,

∀i ∈ I(l)∶ ρi =

( J

∏
j=1

Oy(l)

ij )
1
J

1

J

J

∑
j=1

Oy(l)

ij

≤ 1, (5.62)

where lower ρi values correspond to peakier, and hence more localized, variability of

data in the Y
(l)

subspace, and vice versa.

Given a minimum distribution flatness threshold, ρmin, the redundancy-reducing pre-

EM pruning test can then be summarized as

∀i ∈ I(l)∶ (ρi < ρmin)⇒ ∣J (l)i ∣ = 1 ∧ ¬(ρi < ρmin)⇒ ∣J (l)i ∣ = J. (5.63)

ii. Post-EM pruning

In addition to the pre-EM redundancy-reducing pruning described above, we also

apply a post-EM pruning check to guarantee that the number of data points in the(l + 1)th-order data subsets to be determined based on the EM-trained lth-order

child states—{S(l)ij ≙ (αz(l)ij , λ
z(l)
ij )}, for all i ∈ I(l)∣ρi ≥ ρmin and all j ∈ {1, . . . , J}—is

sufficient to reliably estimate finer descendent densities at the future (l+1)th-order of
memory inclusion. Ensuring a minimum cardinality as such for all subsets obtained

through weighted EM is motivated by the progressive decrease in subset cardinalities

with increasing memory inclusion index. In particular:

(a) as described in Operation (a), partitioning an arbitrary subset, Vz(l)i , into J over-

lapping subsets, {Vz(l)ij }j∈{1,...,J}, based on the K highest soft class memberships

of each constituent data point into the J classes underlying a mixture model of

the Vz(l)i data, results in lower Vz(l)ij child subset cardinalities—compared to that

of the parent Vz(l)i subset—for any value of the fuzziness factor satisfying K < J ;

(b) as suggested by the existence condition for incremental Zt−(l+1)τ data in Eq. (5.26),

extending an lth-order Vz(l)k
Eq.(5.24)
←ÐÐÐÐÐ Vz(l)ij child data subset into its (l + 1)th-

order Vz(l+1)
k

Eq. (5.26)
←ÐÐÐÐÐ Vz(l)

k
counterpart—by augmenting the Z(l) feature vectors

in Vz(l)k with their corresponding incremental Z
(l+1)

data—may result in reduced
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cardinality, i.e., ∣Vz(l+1)k ∣ < ∣Vz(l)k ∣, as a result of the elimination of edge cases at

training audio sample boundaries where no Zt−(l+1)τ frames exist for the Z
(l)

data in Vz(l)k .

Let Nmin denote the minimum subset cardinality to be ensured for all child subsets de-

rived from weighted EM-based child states. Then, at the conclusion of each (l < L)th
memory inclusion iteration and for all i ∈ I(l)∣ρi ≥ ρmin and all j ∈ J (l)i = {1, . . . , J}, we
compare the cardinality of each Vz(l+1)k

Eq.(5.26)
←ÐÐÐÐÐ Vz(l)k

Eq.(5.24)
←ÐÐÐÐÐ Vz(l)ij child subset—i.e.,

all (l+1)th-order subsets obtained after weighted EM has been applied at order l, fol-

lowed by fuzzy clustering and the subsequent Z(l) Eq.(5.26)
ÐÐÐÐÐ→Z(l+1) temporal extension

steps—against Nmin; if the cardinality of one or more of the J (l + 1)th-order child

subsets derived from any particular lth-order G(l)Zi model falls below Nmin, the underly-

ing lth-order children states—whose pdf s have already been jointly estimated as G(l)Zi
using weighted EM—are pruned into a single lth-order child state whose uni-modal

density is to be re-estimated as shown below.

As shown in Section 3.5.2, the reliable estimation of pdf s using full-covariance GMMs

is achieved with a minimum of 10 training data points per GMM parameter; i.e.,

Nf/p ≥ 10. Thus, using the formula given in Eq. (3.18) for the relation between the

number of Gaussian components in a GMM to the number of training data points

available per GMM parameter, the minimum cardinality, Nmin, of a child subset can

then be obtained by expressing the cardinality, N , as a function of: (a) J , the number

of future Gaussian components—or child states—to be derived from that subset;

(b) Nf/p, the number of training data points needed per GMM parameter to ensure

reliable parameter estimation; and (c) q ∶= Dim(Y(l)) = Dim(Y), the static highband
feature vector dimensionality, thus focusing only on highband dimensionality since

pdf estimation via weighted EM is performed primarily in the incremental highband

subspace. In particular,

N = Nf/pJ (1 + q + q(q + 1)
2
)

≥ 10J (1 + q + q(q + 1)
2
) ≜ Nmin.

(5.64)

Using Nmin determined as such and making use of the child subset ij → k index

mapping of Eq. (5.24), the post-EM data-sufficiency pruning condition can then be
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summarized as

∀i ∈ I(l)∣ρi ≥ ρmin∶

∣J (l)i ∣ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if ∃k = j + ∑
m<i

∣J (l)m ∣∶ ∣Vz(l+1)k ∣ < Nmin, ∀j ∈ J (l)i = {1, . . . , J},
J, otherwise,

(5.65)

where, as described above, each (l+1)th-order Vz(l+1)k subset is obtained from a corre-

sponding lth-order Vz(l)i parent subset by performing fuzzy clustering based on G(l)Zi fol-
lowed by temporal extension; i.e., Vz(l+1)k

Eq.(5.26)
←ÐÐÐÐÐ Vz(l)k

Eq.(5.24)
←ÐÐÐÐÐ Vz(l)ij

Eq.(5.18)
←ÐÐÐÐÐ Vz(l)i .

iii. Estimating the parameters of pruned child densities

Finally, the uni-modal densities of those lth-order single-child, or single-component,{G(l)Zi}∀i∣J (l)
i
={1} models—i.e., the models corresponding to the pruned I(l) indices in

Eqs. (5.63) and (5.65)—can be straightforwardly estimated by finding the Gaus-

sian pdf parameters—i.e., {(µz(l)i1 ,Czz(l)i1 )}
∀i∣J (l)

i
={1}, with the {αz(l)i1 }∀i∣J (l)

i
={1} priors

all reducing to unity—which maximize the weighted log-likelihoods of the corre-

sponding lth-order {Vz(l)i }∀i∣J (l)
i
={1} parent subsets. In particular, since, for these{G(l)Zi}∀i∣J (l)

i
={1} models, J (l)i = {1}, the child subclass memberships of the correspond-

ing data—i.e., the posterior probabilities of the ∣J (l)i ∣ Gaussian components given

the data in {Vz(l)i }∀i∣J (l)
i
={1}, or {Vy(l)

i }∀i∣J (l)
i
={1}—simply reduce to unity, for all data

points. This, in turn, reduces the four weighted EM steps detailed in Operation (c)

above for the estimation of G(l)Zi models to a single weighted Maximization step similar

to the final M-step of Eq. (5.59). As such, the estimation of the pruned child densities

is given by

∀i ∈ I(l)∣J (l)i = {1}∶
P (λz(l)ij ∣z(l)n ) = P (λy(l)

ij ∣y(l)n ) = 1, ∀z(l)n ∈ Vz(l)i ,y
(l)
n ∈ Vy(l)

i , (5.66a)

⇒ αz(l)i1 = 1, (5.66b)
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µz(l)i1 =

∑
{n∶ z(l)n ∈V

z(l)
i
}

w(l−1)i,n z(l)n
∑

{n∶ z(l)n ∈V
z(l)
i
}

w(l−1)i,n

, (5.66c)

Czz(l)i1 =

∑
{n∶ z(l)n ∈V

z(l)
i
}

w(l−1)i,n [z(l)n −µz(l)i1 ][z(l)n −µz(l)i1 ]T
∑

{n∶ z(l)n ∈V
z(l)
i
}

w(l−1)i,n

. (5.66d)

At this point, it is worth noting that, for the pruned uni-modal {G(l)Zi}∀i∣J (l)
i
={1} models

estimated as such, performing fuzzy clustering per Operation (a) on the corresponding{Vz(l)i }∀i∣J (l)
i
={1} parent data subsets reduces to simply updating the {Vw(l−1)

i }
∀i∣J (l)

i
={1}

parent membership weight subset counterparts into the {Vw(l)

i1 }∀i∣J (l)
i
={1} child subsets

with unity lth-order membership weights—per Eqs. (5.19) and (5.20).

(e) Constructing global GMMs

i. Consolidating children pdfs

Given all the ∣K(l)∣ lth-order uni-modal child state densities derived as described

above from their respective ∣I(l)∣ lth-order parent states—which are simultaneously

the ∣K(l−1)∣ (l−1)th-order children states as indicated by Eq. (5.25)—via weighted EM

and pruning in Operations (c) and (d), respectively, we conclude the lth increment of

our tree-like modelling algorithm by constructing a global GMM, G(l)Z , modelling the

pdf over the entire lth-order temporally-extended joint-band space, Z(l). In order to

consolidate all localized {G(l)Zi}i∈I(l) models into a single G(l)Z GMM as such, however,

the component priors of {G(l)Zi}i∈I(l) must be adjusted. This follows as a result of our

approach of breaking down the estimation of a single global pdf covering the entireZ(l) space into the estimation of ∣I(l)∣ localized and independent G(l)Zi pdf s, for each of

which the {αz(l)ij }j∈J (l)
i

component priors sum to unity. Since the priors do not thus

sum to unity when considering all {G(l)Zi}i∈I(l) pdf s, i.e., ∑j α
z(l)
ij = 1 for all i ∈ I(l)

but ∑i,j α
z(l)
ij ≠ 1, combining all the uni-modal child component densities of {G(l)Zi}i∈I(l)

into one global G(l)Z model requires weighting the ∣J (l)i ∣ child densities of each G(l)Zi
model in a manner representing the prior probabilities of the corresponding localized

time-frequency regions modelled by {G(l)Zi}i∈I(l).



240 BWE with Memory Inclusion

To that end, we model the entire static joint-bandZ(0) space in the first 0th step of our

algorithm using a single global GMM, G(0)Z , with I components; i.e., we do not localize

the pdf estimation for the initial Z(0) ≡ Z = [X
Y
] space. Per our previous development

and indexing notation, this corresponds to modelling a single parent subset, Vz(0)i

where i ∈ I(0) = {1}, comprising all static joint-band data available for training,

using an (I ∶= ∣J (0)1 ∣)-modal GMM. By treating the {(αz(0)1j , λz(0)1j )}j∈{1,...,I} components

of G(0)Z as I root nodes for all the children states to be estimated in subsequent

increments of l, the {αz(0)1j }j∈{1,...,I} priors—corresponding to the prior probabilities

of the localized {Vz(0)1j }j∈{1,...,I} time-frequency subsets obtained based on G(0)Z —can

then be progressively updated and passed on to the child states generated along

each (j ∈ {1, . . . , I})th branch of the model tree. By using the passed down priors

as multiplicative weights to the corresponding descendent G(l)Zi component priors, as

shown in Eq. (5.67b) below, we succeed in properly normalizing the {αz(l)ij }∀i,j priors
of the uni-modal child state densities, obtained at any particular lth order of memory

inclusion, such that the relative weights inherited and updated along all I branches

from the root states to the child states are taken into account, thereby simultaneously

ensuring that ∑i,j α
z(l)
ij = 1.

Finally, in a manner similar to that described in Operation (b), we update notation by

discarding the ancestry information of the lth-order children subclasses. In particular,

we replace the I(l) and {J (l)i }i∈I(l) parent and child index sets enumerating all lth-

order Gaussian components—namely, {(αz(l)ij , λ
z(l)
ij )} where i ∈ I(l) and, ∀i, j ∈ J (l)i —

by the single integer index set, K(l) = {1, . . . , ∣K(l)∣}. Indexed on K(l), the parameters

of G(l)Z can then be easily written as

∀i ∈ I(l), j ∈ J (l)i ∶

k = j + ∑
m<i

∣J (l)m ∣, (5.67a)

αz(l)k
=
←Ð αz(l)i ⋅ αz(l)ij , (5.67b)

µz(l)k
=
←Ð µz(l)ij , (5.67c)

Czz(l)k
=
←ÐCzz(l)ij , (5.67d)

with each lth-order αz(l)k prior obtained via Eq. (5.67b) passed down for the next(l + 1)th iteration of the algorithm as αz(l+1)i
Eq.(5.25)
←ÐÐÐÐÐ αz(l)

k
. With Mz(l) ∶= ∣K(l)∣,

Eq. (5.67) completely defines all parameters of G(l)Z = G(z(l);Mz(l)
,Az(l),Λz(l)), the global
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joint-band GMM with lth-order memory inclusion. We note, however, that, for l < L,

the identification of the G(l)Z components using the parent-child ancestry informa-

tion is required for the fuzzy partitioning of training data in the Z(l) space as de-

scribed in Operation (a)—to generate the pairwise-disjoint time-frequency-localized{Vz(l),w(l)k }
k∈K

(l) subsets in preparation for lth-order post-EM pruning as well as for

the next (l + 1)th modelling iteration. Hence, for l < L, we first make use of the I(l)
and {J (l)i }i∈I(l) indices in Eqs. (5.21), (5.24), (5.27), and (5.65), prior to discarding

that information while constructing G(l)Z per Eq. (5.67).

ii. On Markov blankets and the conditional independence properties of the

states derived from global GMMs

Given a global G(l)Z pdf modelling the distribution of training data in entire Z(l) space
as described above, we can now show, as noted in Section 5.4.2.2, that the condi-

tional independence properties of the states represented by the individual Gaussian

components of G(l)Z —i.e., {S(l)k ≙ (αz(l)k , λ
z(l)
k )}k∈K(l)—follow the definition of Markov

blankets.161 In particular, since each kth state corresponds to a uni-modal model

of variability in a time-frequency-localized region of the Z(l) space, the global Z(l)
space can be reduced—from the perspective of that kth state—to a linear vector

subspace, Z(l)k , in which the variability of the Z(l) data is defined by the uni-modal

pdf, p(z(l)k ) = αz(l)k p(z(l)k ∣λz(l)k ). As such, it is clear from Eq. (5.67) that the likelihood

of any realization in Z(l)k depends only on the prior probability of the corresponding

parent state, as well as that of the kth underlying state itself, but not on any of

the pdf parameters of the {Z(l)m }∀m≠k vector subspaces underlying the other states of

G(l)Z . Hence, given the parent state, random vector realizations drawn from p(z(l)k )
are conditionally independent of all other realizations drawn from {p(z(l)m )}∀m≠k, for
all k ∈ K(l), thereby satisfying the directed local Markov property of directed acyclic

graphs. Although we do not make use of this interpretation in our work presented

here, it demonstrates the generalization advantage of our tree-like GMM extension

approach to other modelling problems.

161As defined by Pearl [179], the Markov blanket for a node A in a Bayesian network is the set of nodes
MB(A) composed of A’s parents, its children, and its children’s other parents. The Markov blanket MB(A)
shields A from the rest of the network; i.e., no other node in the network outside MB(A) can influence A.
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iii. Marginalization

As described in Section 5.4.2.2, performing BWE using our tree-like temporally-

extended GMMs requires only the subspace joint-band {GX(τ,l)Y}l∈{0,...,L} models. As

such, we conclude each (0 < l ≤ L)th iteration of our training algorithm by marginal-

izing the global GZ(τ,l) ∶= G(τ,l)Z obtained above to GX(τ,l)Y, noting that GX(τ,0)Y = GZ(τ,0).
Table 5.5: Algorithm for model-based memory inclusion through our tree-like approach to tem-
porally extending GMMs.

inputs: Vx and Vy, the sets of all static narrowband and highband training data, resp.;
τ , memory inclusion step (see definition in Section 5.4.2.2);
L, maximum value for memory inclusion index, l (see definition in Section 5.4.2.2);
I, modality of 0th-order joint-band GMM, G(0)Z (see definition in Operation (e));
J , splitting factor, or equivalently, the modality of G(0)Y , the weighted EM

initialization GMM (see definition in Operation (c));
K, fuzziness factor (see definition in Operation (a));
ρmin, distribution flatness threshold (see definition in Operation (d));
Nmin, child subset cardinality threshold (see definition in Operation (d));
∆Lwmax, weighted log-likelihood relative change threshold (see definition in

Operation (c)).
outputs: {GX(τ,l)Y}l∈{0,...,L}, the temporally-extended joint-band GMMs to be used for BWE

(see illustration in Figure 5.8).

(1) given Vy and J , construct G(0)Y by conventional EM;

(2) given Vx and Vy, construct Vz(0)1 , the global 0th-order joint-band parent set, by feature

vector concatenation; i.e., Vz(0)1 = Vz = {zn = [xn

yn
],∀xn ∈ Vx, yn ∈ Vy};

(3) given Vz(0)1 , construct the I-modal GX(τ,0)Y = G(0)Z ∶= G(0)Z1 by conventional EM with

non-weighted log-likelihood relative change as stopping criterion and ∆Lwmax as threshold;

for j = 1 to I do (noting that, with l = 0, i ∈ I(0) = {1} and j ∈ J (0)1 = {1, . . . , I})
(4) given Vz(0)1 , K, and G(0)Z1 , perform fuzzy clustering:

construct Vz(0),w(0)1j via Eqs. (5.18), (5.19), and (5.21);

(5) given Vz(0),w(0)1j and τ , perform incremental temporal extension:

construct Vz(1),w(0)
k

Eq.(5.27)
←ÐÐÐÐÐ Vz(0),w(0)

k
Eq.(5.24)
←ÐÐÐÐÐ Vz(0),w(0)1j , where k ∈ K(0);

(6) perform K(0) =
Ð→ I(1) index mapping in preparation for next iteration:

Vz(1),w(0)i
Eq.(5.25)
←ÐÐÐÐÐ Vz(1),w(0)

k
; αz(1)i

Eq.(5.25)
←ÐÐÐÐÐ αz(0)k

Eq.(5.24a)
←ÐÐÐÐÐÐ αz(0)1j ;
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(7) construct {G(l)Z }l∈{1,...,L} by iterating over Operations (a)–(e), starting with G(1)Z given the

parent {Vz(1),w(0)i }
i∈I
(1) subsets and {αz(1)i }

i∈I
(1) priors obtained in Step (6):

for l = 1 to L do

for i = 1 to ∣I(l)∣ do
(a) check pre-EM pruning condition:

construct Vy(l),w(l−1)i
Eq.(5.29)
←ÐÐÐÐÐ Vz(l),w(l−1)i ;

given G(0)Y and Vy(l),w(l−1)i , estimate ρi per Eqs. (5.60), (5.61), and (5.62);

given ρi and ρmin, determine ∣J (l)i ∣ per Eq. (5.63);
(b) given Vy(l),w(l−1)i , ∆Lwmax, and G(0)Y , estimate G(l)Zi via weighted EM per

Operations (c) or (d), depending on ∣J (l)i ∣:
if ∣J (l)i ∣ = J then

initialize G(l)Yi
as G(l,0)Yi

Eq.(5.53)
←ÐÐÐÐÐ G(0)Y ;

repeat k
=
←Ð k + 1

estimate G(l,k+1)Yi

Eqs.(5.54),(5.55)
←ÐÐÐÐÐÐÐÐÐ G(l,k)Yi

in first stage of weighted EM;

calculate ∆Lw via Eqs. (5.56) and (5.57);

until (∆Lw <∆Lwmax)⇒ G(l)Zi ∶=
←Ð G(l,k)Zi ;

extrapolate G(l)Zi Eqs.(5.58),(5.59)
←ÐÐÐÐÐÐÐÐÐ G(l)Yi

in second stage of weighted EM;

else ∣J (l)i ∣ = 1
estimate uni-modal G(l)Zi via reduced weighted EM per Eq. (5.66);

(c) if l = L then skip Steps (d)–(g) below ⇒ go to next i;

for j = 1 to ∣J (l)i ∣ do
(d) given Vz(l)i , K, and G(l)Zi , perform fuzzy clustering:

construct Vz(l),w(l)ij via Eqs. (5.18), (5.19), and (5.21);

(e) given Vz(l),w(l)ij and τ , perform incremental temporal extension:

construct Vz(l+1),w(l)
k

Eq.(5.27)
←ÐÐÐÐÐVz(l),w(l)

k
Eq.(5.24)
←ÐÐÐÐÐVz(l),w(l)ij , where k ∈ K(l);

(f) check post-EM pruning condition for k Eq.(5.24a)
←ÐÐÐÐÐÐ ij:

if (∣J (l)i ∣ > 1) ∧ (∣Vz(l+1)k
∣ < Nmin) then ∣J (l)i ∣ =←Ð 1; redo Steps (b)–(e);

(g) performK(l) =Ð→ I(l+1) index mapping to prepare for (l+1)th iteration:

Vz(l+1),w(l)i
Eq.(5.25)
←ÐÐÐÐÐ Vz(l+1),w(l)

k
; αz(l+1)i

Eq.(5.25)
←ÐÐÐÐÐ αz(l)k

Eq.(5.24a)
←ÐÐÐÐÐÐ αz(l)ij ;

(h) given {αz(l)i }
i∈I
(l) and {G(l)Zi}i∈I(l), consolidate all ∣K(l)∣ localized child Gaussian

components to construct the lth-order global G(l)Z Eq.(5.67)
←ÐÐÐÐÐ {G(l)Zi}i∈I(l);

(i) marginalize all Mz(l) ∶= ∣K(l)∣ component densities of GZ(τ,l) ∶= G(l)Z to obtainGX(τ,l)Y, the lth-order joint-band subspace GMM to be used for BWE;
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Steps (g), (h), and (i)

Az(l−1)i ∶={αz(l−1)i }i∈I(l−1)
Az(l−1)

k
∶={αz(l−1)k }

k∈K
(l−1)

Az(l)i ∶={αz(l)i }i∈I(l)
Step (a)

Step (b)

C1∶ ∣J (l)i ∣ = J
V1 ∶={Vz(l),w(l−1)i }∀i∶ ∣J (l)

i
∣=1V2 ∶={Vz(l),w(l−1)i }∀i∶ ∣J (l)

i
∣=J

V1 V2

Step (c)
C2∶ l = L

Step (d)

Step (e)

Step (f)

C3∶ ∃ i∈ I(l), j ∈ J (l)i , s.t.,

(∣J (l)i ∣ >1)∧ (∣Vz(l+1)k←ij
∣ < Nmin)

Steps (g), (h), and (i)

Az(l)
k
∶={αz(l)k }k∈K(l)

Az(l+1)i ∶={αz(l+1)i }i∈I(l+1)

pre-EM
pruning

C1? y

y

n

C2?

n

n

C3?y n

Az(l)i

T

Gx(τ,l−1)Y

Gx(τ,l)Y

G(l−1)z
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Fig. 5.10: Block diagram of a single (l > 0)th-order iteration of our tree-like GMM temporal
extension algorithm, with correspondences to the steps of Table 5.5 indicated on the left.



5.4 BWE with Model-Based Memory Inclusion 245

Having detailed the five main operations involved in the implementation of our tree-like

GMM extension algorithm, we now summarize the integration of these steps into a complete

training procedure. Table 5.5 and Figure 5.10 below provide such a formal synopsis of

our model-based memory inclusion algorithm. In particular, Steps (1)–(6) of Table 5.5

describe the operations performed at the (l = 0)th iteration to obtain GX(τ,0)Y, as well as the
G(0)Y initialization GMM and the first-order {Vz(1),w(0)i }

i∈I
(1) and {αz(1)i }

i∈I
(1) parent subsets

and priors, respectively, representing the inputs to subsequent (l > 0)th iterations. The

sequence and the integration of operations representing the core of our training algorithm—

summarized by the GX(τ,l−1)Y T
Ð→ GX(τ,l)Y transformation—are then detailed in Step (7) of

Table 5.5, and further illustrated in Figure 5.10.

5.4.2.4 Reliability of temporally-extended GMMs

As described in Section 5.4.2.2, the principles underlying the incremental tree-like design of

our GMM temporal extension approach followed from our desire to exploit the information

and predictability in speech frames, as well as in the correspondence of GMM-based speech

models to underlying acoustic classes, in order to constrain the high degrees of freedom

associated with GMM-based modelling of the high-dimensional temporally-extended joint-

band spaces. Implemented through time-frequency localization, our approach to constrain-

ing the modelling task as such thus aimed to specifically alleviate the detrimental effects of

the oversmoothing and overfitting problems comprising the curse of dimensionality in the

context of high-dimensional GMM-based modelling. Accordingly, in this section, we assess

the reliability of our temporally-extended GMMs in terms of the extent of oversmoothing

and overfitting, or lack thereof.

i. Assessing extent of oversmoothing

Oversmoothing was defined and described in Section 5.4.2.1 as the excessive smoothing of

MMSE-derived highband spectral characteristics, corresponding to a coarse coverage of the

highband spectral space, rather than a continuous one with sufficient spectral variability.

It follows from lower source-data contributions in Eq. (3.17) as a result of the tendency

of the inter- to intra-band cross-covariance ratios162—i.e., {Cyx
i Cxx−1

i }
i∈{1,...,M} where M is

the GMM modality—to decrease with increasing dimensionality. In Section 3.5.1, we made

162See Footnote 66.
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use of the matrix Frobenius and Lp-norms163 of these cross-covariance ratios—explicitly

representing a joint-band GMM’s ability to model information mutual to the disjoint speech

frequency bands, rather than band-specific information—to demonstrate the increasing

superiority of full-covariance GMMs over diagonal-covariance ones in terms of capturing

the sought-after cross-band correlations as GMM modality increases. In a similar manner,

we now assess the extent of oversmoothing in our temporally-extended {GX(τ,l)Y}l∈{0,...,L}
GMMs by measuring the change in the average Frobenius norms of the corresponding cross-

covariance ratios as a function of the memory inclusion index, l, which itself corresponds

to the [X(τ,l)
Y
] joint-band subspace dimensionality.

As detailed below in Section 5.4.3.1, we temporally extend our static MFCC-based

BWE baseline models of Section 5.2.3—represented by the GG = (GXCy
,GXG) GMM tuple—

using our tree-like extension algorithm of Table 5.5, resulting in the memory-inclusive{GG(τ,l) ∶= (GX(τ,l)Cy
,GX(τ,l)G)}l∈{0,...,L} models. Thus, for the static MFCC-based dimension-

alities of Dim(X) = 10, Dim(Cy) = 6, and Dim(G) = 1, selected as such per the discussion

in Section 5.2.3, the relationship between the lth order of memory inclusion and the di-

mensionalities of the lth-order temporally-extended GX(τ,l)Cy
and GX(τ,l)G GMMs is given by

Dim([X(τ,l)
Cy

]) = 10(l + 1) + 6 (5.68a)

Dim ([X(τ,l)
G
]) = 10(l + 1) + 1. (5.68b)

Dropping the fixed memory inclusion step, τ , from superscripts, and focusing only on

the higher-dimensional {GX(l)Cy
} GMMs, we evaluate the average Frobenius norms of

the cross-covariance ratios, i.e., {∥Ccyx(l)
i [Cx(l)x(l)i ]−1∥

F
}
i∈{1,...,Mx(l)cy}, as a function of all

l ∈ {0, . . . ,L}.164 We consider only the Frobenius norm rather than also the Lp-norms—

where p ∈ {1,2,∞}—previously evaluated in Section 3.5.1, and illustrated in Figure 3.6 in

particular, since, per the matrix norm properties detailed in [108, Sections 2.3 and 2.5.3]:

(a) the L1- and L∞-norms, ∥A∥1 and ∥A∥∞, correspond to the maximum absolute col-

umn and row sums of the matrix A, respectively, and hence, are not suitable for

comparing norms of matrices with varying dimensionalities—as is the case here for

163See Footnote 67 for details on the Frobenius and Lp-norms.
164Since the cross-covariance ratio matrices are non-square matrices where determinants are inapplicable,

the weights represented by such matrices can only be quantified through matrix norms.
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the {Ccyx(l)
i [Cx(l)x(l)i ]−1} cross-covariance ratio matrices whose dimensionalities vary

with l; and

(b) while both ∥A∥2 and ∥A∥F correspond to weights along underlying basis vectors by

virtue of their relationship with the singular values of A,165 the Frobenius norm

considers all singular values rather than just the largest as is the case for the L2-

norm, and hence, ∥Ccyx(l)
i [Cx(l)x(l)i ]−1∥

F
accounts for the scaling applied by the cross-

covariance ratios to the source-data contribution along all underlying basis vectors,

rather than only along that with the largest scaling.

Figure 5.11(a) illustrates the average Frobenius norm performance obtained, as a func-

tion of dimensionality, for several GX(l)Cy
GMMs trained at various values for J , K, τ ,

and ρmin, using the (I = 128)-modal GXCy
GMM of our static MFCC-based baseline of

Sections 5.2.3 and 5.2.6 as the 0th-iteration model.166 Except for the temporary slight dip

in average norm at initial values of l, the increasing Frobenius norms of Figure 5.11(a)

not only indicate the success of our tree-like algorithm in alleviating the oversmoothing

concerns associated with GMM-based modelling at high dimensionalities, but they also

demonstrate the ability of our algorithm to capture the increasingly-important cross-band

correlations as the extent of included memory increases, i.e., as the algorithm incorporates

more temporal information from longer causal windows of past narrowband and highband

frames, despite the linearly-increasing dimensionality.

ii. Assessing extent of overfitting

As described in Sections 5.4.2.1 and 5.4.2.2, overfitting is the property whereby the higher

sparsity of data associated with modelling distributions in increasingly high-dimensional

spaces leads to increasingly suboptimal GMMs with reduced generalization capability.

More specifically in our context, as the dimensionality of the Z(τ,l) space underlying our

temporally-extended GMMs increases with higher orders of memory inclusion, the empty

space phenomenon167 results in increasingly sparse and overlapping densities which, in

turn, increases the risk that the available joint-band training data becomes insufficient to

reliably estimate the parameters of the temporally-extended GMMs through Expectation-

165Per [108, Eqs. (2.5.7) and (2.5.8)], the L2- and Frobenius norms for a matrix A ∈ Rm×n are related

to the singular values of A—σ1 ≥ σ2 ≥ ⋯ ≥ σp, where p = min{m,n}—by ∥A∥2 = σ1 and ∥A∥F =√∑p
i=1 σ

2
i ,

respectively.
166See description of tree-like algorithm inputs in Table 5.5.
167See Footnote 140.
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Memoryless 0th-order baseline, with I = 128
With L = 10, ∆Lwmax = 10−5, and Nmin

Eq.(5.64)
←ÐÐÐÐÐÐ {J, q} where q ∶= Dim(Y) = 6;

2 {G◽}: I = 128, J = 4 (⇒Nmin = 1120), K = 2, τ = 4, ρmin = 0.4
# {G○}: I = 128, J = 4 (⇒Nmin = 1120), K = 2, τ = 2, ρmin = 0.8△ {G▵}: I = 128, J = 4 (⇒ Nmin = 1120), K = 1, τ = 4, ρmin = 0.8◊ {G◊}: I = 128, J = 8 (⇒ Nmin = 2240), K = 2, τ = 4, ρmin = 0.8
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Fig. 5.11: Assessing oversmoothing and overfitting in the temporally-extended {GX(l)Cy
}
l∈{0,...,L}

GMMs. Assessed as functions of the memory inclusion index l ∈ {0, . . . ,L} and the associated
dimensionality, D ∶= Dim ([X(τ,l)

Cy
]) as given by Eq. (5.68a), oversmoothing and overfitting are

assessed, respectively, through the average Frobenius norms of the inter-band to intra-band cross-

covariance ratios—i.e., {∥Ccyx(l)
i [Cx(l)x(l)i ]−1∥

F
}
i∈{1,...,Mx(l)cy}—and the ratios of the normalized

cepstral distance of the test data to that of the training data—i.e.,
d̃(Vcy

test,V
ĉy
test)

d̃(Vcy

train
,V

ĉy

train
) .
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Maximization. Such a decrease in EM reliability translates to overfitted models that ulti-

mately lead to poor MMSE-based source-target transformation for test data unseen dur-

ing training. Accordingly, in order to specifically address the risk of overfitting in our

high-dimensional temporally-extended GMMs, we proposed and incorporated the fuzzy

GMM-based clustering and the pruning steps of Operations (a) and (d) in Section 5.4.2.3,

respectively, into our tree-like GMM construction approach.

To assess the performance of our tree-like algorithm in alleviating the risk of overfitting,

we devise a measure to quantify such risk inspired by a cepstral measure proposed in [160].

In order to evaluate the overfitting associated with joint-speaker source-target GMMs ob-

tained through various speaker conversion algorithms, Mesbahi el alia use a normalized

cepstral distance in [160] defined as the mean Euclidean distance between the target and

converted MFCC feature vectors, with the distance between each pair of vectors normal-

ized by the distance between the target and the corresponding source feature vector. The

normalization thus corresponds to weighting the distortion in each converted vector based

on the difficulty of converting the source speaker vector—conversion distortions for difficult

source vectors are given lower weights relative to those obtained for easier-to-convert source

speaker vectors. By comparing the mean normalized cepstral distance obtained for a par-

ticular test set against that obtained for the corresponding set used to train the conversion

GMMs, the generalization capabilities of the GMMs trained using various speaker conver-

sion algorithms can then be quantified. Since conversion distortions for equally-difficult test

and training source data are weighted equally, the aforementioned normalization thus en-

sures that the comparison of performance on the test and training data focuses on GMMs’

generalization capabilities, rather than simply the quality of source-target conversion as

would be the case by comparing non-normalized mean cepstral distances.

In a similar manner, we quantify the risk of overfitting in our source-target BWE task

using normalized cepstral distances between reference highband MFCC feature vectors and

their MMSE-based reconstructed counterparts, but with the normalization performed dif-

ferently from that of [160]. In the speaker conversion task, the source and target feature

vectors have the same dimensionality, thus allowing the estimation of cepstral distances

between source and target vectors to be then used as normalization as described above. In

our BWE task, however, the source and target MFCC-based feature vectors—represented

by the temporally-extended narrowband X(τ,l) vectors and the static highband Y vec-

tors, respectively—differ in dimensionality, and hence, estimating source-target cepstral
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distances to normalize distortions in reconstructed highband vectors is not feasible. Since

the normalization is, in principle, intended to simply weight distortions in a manner ac-

counting for the source-target conversion difficulty, we employ, instead, the likelihood of

the source narrowband vectors given our temporally-extended GMMs. As source-data like-

lihoods represent a measure of GMM-based source-target conversion difficulty, using such

likelihoods as multiplicative normalization weights for distortions in the reconstructed tar-

get highband vectors enables us to compare distortions in testing and training data in the

context of generalization capability; cepstral errors in the reconstructed highband data of

equally-likely testing and training source data are weighted equally, with higher emphasis

on those errors corresponding to source data with higher likelihoods.

For a particular set of temporally-extended source narrowband data, Vx(τ,l), and its

corresponding set of reference target highband MFCC vectors, Vy, let V ŷ = {ŷn}—where

n ∈ {n∶ x(τ,l)n ∈ Vx(τ,l)}—represent the set of highband feature vectors reconstructed using

the joint-band temporally-extended GMM, GX(τ,l)Y, through MMSE-based estimation as

detailed in Section 5.4.3.1 below. Then, with the cepstral distances between reference and

corresponding MMSE-estimated target highband vectors given by Euclidean distances, i.e.,

d2
MFCC
(y, ŷ) ≜ ∥y − ŷ∥2, (5.69)

we define the source-data likelihood-based normalized cepstral distance as

d̃(Vy
,V ŷ) =

∑
{n∶x(τ,l)n ∈Vx(τ,l)}P (x(τ,l)n ∣GX(τ,l))dMFCC(yn, ŷn)

∑
{n∶x(τ,l)n ∈Vx(τ,l)}P (x(τ,l)n ∣GX(τ,l)) , (5.70)

where GX(τ,l) ∶= G(x(τ,l);Mx(τ,l),Ax(τ,l),Λx(τ,l)) is obtained from the joint-band GX(τ,l)Y by mar-

ginalization, and, per Eq. (5.31), the likelihood P (x(τ,l)n ∣GX(τ,l)) is given by

P (x(τ,l)n ∣GX(τ,l)) =Mx(τ,l)
∑
m=1

αx(τ,l)m P (x(τ,l)n ∣λx(τ,l)m ). (5.71)

Thus, as shown in Eq. (5.70), the cepstral distances between reference and MMSE-estimated

highband vectors for a particular Vy set are normalized by weighting the distance for each



5.4 BWE with Model-Based Memory Inclusion 251

(yn, ŷn) pair in proportion to the difficulty of converting the corresponding source x(τ,l)n

vector, relative to all other vectors in the Vx(τ,l) set—where, as described above, conver-

sion difficulty is represented by source-data likelihoods. Cepstral distortions in the target

MMSE-estimated highband vectors corresponding to source vectors with higher relative

likelihoods are weighted proportionally higher than those target vector distortions of less-

likely—i.e., more difficult—source vectors, and vice versa. By normalizing distortions in

reconstructed target vectors based on individual data-point likelihoods in relation to the

likelihood sum for the whole set, rather than on absolute likelihoods, we ensure that our

estimates of overfitting and generalization capability are not biased by the overall likelihood

of that particular set.168 We should also note that, by incorporating the cepstral distances

between reference and MMSE-estimated target highband vectors into our d̃ overfitting

measure, rather than considering source-data likelihoods alone, we are also accounting for

the effect of the cross-band correlation information captured into the joint-band {GX(τ,l)Y}
GMMs on generalization capability, rather than only account for the narrowband-only in-

formation in the marginal {GX(τ,l)} GMMs.

Derived from the TIMIT training and core test sets described in Section 3.2.10, let Vx(τ,l)train

and Vx(τ,l)test represent the training and testing sets of lth-order temporally-extended source

narrowband data, respectively, with corresponding Vcy
train, V ĉy

train, Vcy
test, and V ĉy

test sets of MFCC

vectors representing the spectral shape of target highband data. Then, by calculating the

ratio of the normalized cepstral distance of testing data to that of the training data—

i.e.,
d̃(Vcy

test,V
ĉy
test)

d̃(Vcy

train
,V

ĉy

train
)—as a function of the memory inclusion index, l, for all l ∈ {0, . . . ,L}, we

obtain a measure of potential overfitting in the {GX(τ,l)Cy
}
l∈{0,...,L} GMMs as a function of

dimensionality. Given the normalization of per-sample likelihoods by the likelihood sums

of the overall testing and training sets as described above, values for
d̃(Vcy

test,V
ĉy
test)

d̃(Vcy

train
,V

ĉy

train
) greater

than the memoryless baseline at l = 0 indicate an increase in likelihood-weighted cepstral

168With increasing dimensionalities, source-data likelihoods will typically have a much larger dynamic
range than that of the Euclidean dMFCC(yn, ŷn) cepstral distances. Consequently, estimates for d̃ can
potentially be biased by the overall likelihood sum in the denominator of Eq. (5.70) if this normalizing
denominator were to be removed or replaced by a term independent of the source-data likelihoods. Consider,
for example, the scenario where we wish to estimate overfitting for a particular set, Vy, with consistently

high Vx(τ,l) source-data likelihoods, and generally low per-sample dMFCC(yn, ŷn) cepstral distortions—which

should translate to a generally low value for the normalized cepstral distance, d̃. Replacing the normalizing

denominator in Eq. (5.70) by the cardinality of the data—i.e., ∣Vx(τ,l) ∣, effectively transforming d̃ into a

mean of likelihood-weighted cepstral distances—would result in a misleadingly high value for d̃(Vy
,V ŷ),

despite the low dMFCC(yn, ŷn) cepstral distances.
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distances corresponding to decreased generalization capability for the temporally-extended{GX(τ,l)Cy
}
l>0

GMMs and, consequently, increased overfitting risk, while lower values for the

normalized cepstral distance ratio indicate improved generalization capability.

Figure 5.11(b) illustrates the GMM generalization performance obtained for the exam-

ple {GX(τ,l)Cy
} GMMs investigated previously in the context of oversmoothing assessment,

with the generalization performance measured in terms of
d̃(Vcy

test,V
ĉy
test)

d̃(Vcy

train
,V

ĉy

train
)—our overfitting mea-

sure. With the memoryless l = 0 baseline performance nearly at unity, Figure 5.11(b) shows

generalization performance to be decreasing to various extents for the different GMMs in

the l = 2–6 range, before improving consistently for all GMMs. More specifically, the set{G◊} exhibits only a slight 7% increase in overfitting at l = 3, {G○} and {G▵} exhibit in-

creased overfitting for l ∈ {3, . . . ,6} with the highest increases reaching ∼ 20% at l = 3 and

4, respectively, while {G◽} exhibits the largest degradation in terms of overfitting, reach-

ing ∼ 34% at l = 4. Compared to the multiple-fold increases in dimensionality—reaching

up to 116
16 = 7.25-fold increase at l = L = 10—and noting the fact that no additional data

was used for the EM-based training of our temporally-extended GMMs, these performance

figures indicate that we have succeeded to a fair extent in avoiding the detrimental ef-

fects of increased dimensionality on the generalization capabilities of our high-dimensional

temporally-extended GMMs for l ≊ 3–4, being successful to a much larger extent elsewhere.

Reviewing the results of Figure 5.11(b) more closely, we observe that our ability to

address the risk of overfitting is closely tied to the effectiveness of our pruning and fuzzy

clustering algorithms, as determined by the choices for the distribution flatness threshold

and fuzziness parameters, ρmin and K, respectively. For {G◽} where degradation in gener-

alization performance is highest, ρmin is lower relative to the value used in constructing the

other GMMs. As described in Operation (d) of Section 5.4.2.3, ρmin, corresponding to a

threshold on the minimum whiteness for the distribution of incremental data, is intended

to limit the expansion of the temporally-extended GMM to those localized time-frequency

regions where information content is highest. As such, lower ρmin values translate to less-

restrictive distribution flatness thresholds and, consequently, a higher number of Gaussian

components in the resulting temporally-extended GMMs. This higher complexity, discussed

and illustrated in Section 5.4.3.1 below, naturally increases the risks of overfitting.

To a similar extent, the generalization performances illustrated in Figure 5.11(b) for{G▵} and {G◊} demonstrate the importance of the fuzziness factor, K, in reducing the

risk of overfitting. Despite the two-fold increase in the splitting factor, J (the number of
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child states that can potentially be derived at each temporal increment for each parent

state), in {G◊} compared to {G▵}, the proportional increase in K for {G◊}, relative to{G▵}, completely alleviates any risk of increased overfitting in {G◊} as a result of the higher

splitting factor. Without such a proportional increase in K, the increased splitting factor

would translate into roughly a two-fold reduction in the cardinality of the training data

subsets used for the weighted EM-based estimation of child state pdf s, and correspondingly,

into an equivalent two-fold increase in overfitting risk.

5.4.3 BWE performance using temporally-extended GMMs

Through our tree-like GMM extension algorithm for model-based memory inclusion, we

have addressed the drawbacks of our frontend-based approach of Section 5.3—namely,

the time-frequency information tradeoff and the non-causality, and associated algorithmic

delay, imposed by delta features—while preserving its advantage in terms of the flexibility

it provides for the inclusion of memory to varying extents—the primary advantage of delta

features and simultaneously the deficiency of first-order HMM-based methods.

In this section, we first describe the modifications to be applied to our static MFCC-

based dual-mode BWE system of Section 5.2.2—and illustrated in Figure 5.1—in order for

the dual-mode system to be able to exploit the superior cross-band correlation properties of

temporally-extend GMMs for improved highband speech reconstruction. Then, we evaluate

the memory-inclusive BWE performance obtained using our temporally-extended GMMs,

with the static MFCC-based GG = (GXCy
,GXG) tuple and results of Section 5.2.6 used as the

0th-iteration model and performance baseline, respectively, for all performance evaluations

except those investigating the effect of I—the modality of the 0th-order GMM tuple.

5.4.3.1 System description

As described in Section 5.2, our MFCC-based dual-mode BWE system makes use of two

GMMs, represented by the GG = (GXCy
,GXG) tuple, to model the joint distributions of the

MFCC-parameterized narrowband spectral envelopes with those of the high band, with the

shape and gain of the latter modelled independently through GXCy
and GXG, respectively.

More specifically, the narrowband space modelled in both GMMs is represented by the

static MFCC feature vector parameterization given by x ∶= cx ≜ [cx1
, . . . , cx9

, cx0
]T for each

frame of the midband-equalized narrowband signal spanning the 0–4kHz range, while the
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highband space in the 4–8kHz range is represented in GXCy
by the static cy ≜ [cy1 , . . . , cy6]T

MFCC feature vectors and in GXG by the excitation gain, g. As such, the joint-band di-

mensionalities for GXCy
and GXG are 16 and 11, respectively, with Dim([XCy

]) = [10
6
] and

Dim([X
G
]) = [10

1
]. Using these static parameterizations and dimensionalities, we construct

the lth-order temporally-extended narrowband, highband, and joint-band supervectors—

represented by the random feature vector representations X(τ,l), C(τ,l)y and G(τ,l), and

[X(τ,l)C(τ,l)y

] and [X(τ,l)G(τ,l)], respectively—by causal concatenation with a frame step of τ as de-

scribed in Section 5.4.2 above. By constructing lth-order temporally-extended versions of

our training data set of Section 3.2.10 as such for all l ∈ {0, . . . ,L}, we then proceed to tem-

porally extend the static GG = (GXCy
,GXG) GMM tuple of the dual-mode BWE system into

the memory-inclusive {GG(τ,l) ∶= (GX(τ,l)Cy
,GX(τ,l)G)}l∈{0,...,L} tuples using our tree-like memory

inclusion algorithm implemented per Table 5.5.

In addition to a causal concatenation of input static narrowband vectors similar to

that discussed above, substituting the static GG tuple in the baseline dual-mode system of

Figure 5.1 by the memory-inclusive {GG(τ,l) ∶= (GX(τ,l)Cy
,GX(τ,l)G)}l∈{0,...,L} tuples represents

the only modification needed to transform our static BWE system into one that exploits

model-based memory inclusion to improve the quality of reconstructed highband speech. In

particular, these minor modifications, illustrated in Figure 5.12 below, allow us to perform

MMSE-based estimation of highband speech using the same memoryless formulae derived

in Section 3.3.1, namely Eqs. (3.12), (3.16) and (3.17), but with the X input and GXY GMM

parameters replaced by X(τ,l) and the parameters of GX(τ,l)Y, respectively.
Figure 5.12 also shows the transient processing required during the initial durations

of input speech. For a particular desired memory inclusion index, l, the effective time-

dependent order, ℓ, is determined during extension based on the duration of the observed

input; for initial speech input where the observed number of input frames at a particular

tth frame is insufficient to construct the desired lth-order causal supervectors, the effective

order ℓ is determined as ℓ = ⌊ tτ ⌋, and set to the desired ℓ = l otherwise. Since ℓ < l only

transiently, namely when t < lτ , the vast majority of our TIMIT test frames are extended at

the desired lth memory inclusion index, even at the maximum values of l = L = 10 and τ = 8

(corresponding to 800ms) used in our performance analysis in Section 5.4.3.2 below.169,170

169See Section 3.2.10 for details on our training and testing data sets derived from the TIMIT corpus.
170As described in Section 3.2.8, we parameterize the time-domain speech signal in 20ms frames with an

overlap of 10ms.
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Fig. 5.12: Model-based memory inclusion modifications to the baseline MFCC-based dual-model
BWE system of Figure 5.1 to incorporate temporally-extended GMMs. The modifications are ap-
plied to the upper-most path of the main processing block in Figure 5.1(b) and to the MMSE
estimation block in Figure 5.1(c). With n and t representing the sample and frame time in-
dices, respectively, the input signal, s↑MBE(n), is that of the midband-equalized and interpolated
narrowband speech, while τ and l represent the memory inclusion step and order, respectively.

Given the negligible cost associated with the causal concatenation and GMM substi-

tution modifications described above, the additional computational complexity involved

with performing BWE using our temporally-extended GG(τ,l) ∶= (GX(τ,l)Cy
,GX(τ,l)G) GMM

tuples—relative to the cost of performing BWE using memoryless GG = (GXCy
,GXG) tuples

as described in Section 5.2—is, thus, limited only to the additional cost of performing

MMSE-based reconstruction of highband MFCCs using temporally-extended GMMs with

higher joint-band dimensionalities and higher modalities compared to the baseline mem-

oryless GMMs. As such, the computational cost of our model-based memory inclusion

technique can be easily expressed in terms of the total number of per-frame computations,

NFLOPs/f , associated with MMSE estimation per Eqs. (3.12), (3.16) and (3.17), in the same

manner previously detailed in Section 3.5.1 for the evaluation of the effect of GMM co-

variance type on BWE performance and computational complexity. More specifically, for
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each of the lth-order GX(τ,l)Cy
and GX(τ,l)G GMMs with the modalities M

x(τ,l)cy and Mx(τ,l)g,
respectively, we perform the following matrix operations offline prior to extension for all

i ∈ {1, . . . ,Mx(τ,l)cy} and all j ∈ {1, . . . ,Mx(τ,l)g}:
(a) −1

2 [Cx(τ,l)x(τ,l)i ]−1 and −1
2 [Cx(τ,l)x(τ,l)j ]−1;

(b) C
cyx(τ,l)
i [Cx(τ,l)x(τ,l)i ]−1 and Cgx(τ,l)

j [Cx(τ,l)x(τ,l)j ]−1; and,
(c) α

x(τ,l)cy
i (2π)−p/2∣Cx(τ,l)x(τ,l)i ∣−1/2 and α

x(τ,l)g
j (2π)−p/2∣Cx(τ,l)x(τ,l)j ∣−1/2;

where p ∶= Dim (X(τ,l)) = 10(l+1). Using these pre-computed quantities in the application

of the MMSE estimation of Eq. (3.12) for both GX(τ,l)Cy
and GX(τ,l)G, the total number of

the per-frame extension-stage computations—previously given in Eq. (3.34) for a single

GMM—can now be calculated for the (GX(τ,l)Cy
,GX(τ,l)G) pair as

NFLOPs/f =M
x(τ,l)cy(2p2 + 14p + 27) + 5

+M
x(τ,l)g(2p2 + 4p + 22)

=M
x(τ,l)cy(200(l + 1)2 + 140(l + 1) + 27) + 5

+Mx(τ,l)g(200(l + 1)2 + 40(l + 1) + 22), (5.72)

where we have substituted the highband parameter dimensionality, q, in Eq. (3.34) by

Dim(Cy) = 6 and Dim(G) = 1 for GX(τ,l)Cy
and GX(τ,l)G, respectively.

Calculated using Eq. (5.72), the extension-stage computational cost—for the four GG(τ,l)
GMM tuples with the same parameters as those GX(τ,l)Cy

GMMs previously considered in

Figure 5.11—is shown in Figure 5.13 below as a function of the memory inclusion index, l,

as well as of the combined tuple modality, M
x(τ,l)cy +Mx(τ,l)g. As a result of the increase

in both the dimensionalities and modalities of the joint-band GG(τ,l) GMMs relative to those

of our memoryless baseline of Section 5.2, Figure 5.13 shows a corresponding increase

in extension-stage computational cost, with the increase at the higher orders of memory

inclusion reaching ∼ 2–4 orders of magnitude above the cost for our memoryless baseline

GMMs. In comparison, previous results in Figure 3.5(b) show an NFLOPs/f increase of

∼2 orders of magnitude when the modality of each of the memoryless GXCy
and GXG GMMs

is increased from M full = 2 to 256.

To further put the results of Figure 5.13 into context, we compare them against the

typical computational capabilities of current personal computers, and more importantly,



5.4 BWE with Model-Based Memory Inclusion 257

Memoryless 0th-order baseline, with I = 128
2 Typical processing power of personal computers in 2012
# Typical processing power of smart mobile devices in 2012

With L = 10, ∆Lwmax = 10−5, and Nmin
Eq.(5.64)
←ÐÐÐÐÐÐ {J, q} where q =max(Dim(Y),Dim(G)) = 6;

2 {GG◽}: I = 128, J = 4 (⇒ Nmin = 1120), K = 2, τ = 4, ρmin = 0.4
# {GG○}: I = 128, J = 4 (⇒Nmin = 1120), K = 2, τ = 2, ρmin = 0.8△ {GG▵}: I = 128, J = 4 (⇒Nmin = 1120), K = 1, τ = 4, ρmin = 0.8◊ {GG◊}: I = 128, J = 8 (⇒Nmin = 2240), K = 2, τ = 4, ρmin = 0.8
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Fig. 5.13: Computational cost of performing MMSE-based estimation of highband MFCCs
using temporally-extended GMM tuples. Using Eq. (5.72), the per-frame computational
cost represented by NFLOPs/f is plotted as a function of the memory inclusion index, l ∈{0, . . . ,L}, with the total number of Gaussian components for each lth-order temporally-extended

GG(τ,l) ∶= (GX(τ,l)Cy
,GX(τ,l)G) GMM tuple—i.e., M

x(τ,l)cy+Mx(τ,l)g—labelled next to the correspond-
ing data point. Providing a frame of reference for the purpose of practical real-time implemen-
tation, the computational capabilities of typical personal computers and smart mobile devices in
2012—calculated in terms of NFLOPs/f based on figures from [190]—are also shown.

current modern communication devices—e.g., tablets and smart phones. Given the non-

causality advantage of our model-based memory inclusion technique, gauging the compu-

tational requirements of our BWE technique against the processing capabilities of modern

communication devices is important to assess its practicality in terms of real-time imple-

mentation. As recently discussed in [190], a standard 2012 laptop has a typical performance

of 50GFLOPs per second, while a typical 2012 tablet or smart phone performs at around
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5GFLOPs per second. Given our 100 frame/s processing rate of the input narrowband

speech,171 these figures correspond to NFLOPs/f = 5×108 and 5×107 for computers and smart

mobile devices, respectively. Based on these latter numbers, Figure 5.13 shows the compu-

tational requirements of our model-based memory inclusion technique to be well within the

capabilities of laptops and personal computers for all GMMs considered. Relative to the

processing power of typical smart mobile devices, however, Figure 5.13 shows that the com-

putational cost of our technique can potentially be too high for real-time implementation

at higher orders of memory inclusion, depending on the values chosen for the parameters

of our tree-like GMM training algorithm. While the BWE cost using the {GG▵} and {GG◊}
GMM sets is within the processing power of smart mobile devices up to 400ms of causal

memory inclusion, the cost for {GG◽} and {GG○} reaches the limit of smart mobile device

real-time capabilities at 160 and 180ms of memory inclusion, respectively.

In addition to the observations made in Section 5.4.2.4 regarding the role of the pruning

steps of our tree-like GMM extension algorithm in reducing GMM overfitting, the observa-

tions above further emphasize the importance of these pruning steps proposed in Opera-

tion (d) as an integral component of our algorithm. In particular, we note that, among the{GG} sets considered in Figure 5.13, the {GG◽} set characterized by having the lowest—and

hence, most permissive—value for the distribution flatness threshold, ρmin, is found to be

the most computationally demanding, thereby demonstrating the importance of pre-EM

pruning in Eq. (5.63) via ρmin. Similarly, the lower computational cost associated with{GG◊} relative to that associated with {GG○}—noting that both sets share similar values for

ρmin and K, the fuzziness factor, but differ in J , the splitting factor, and consequently differ

in Nmin, the child subset cardinality threshold—demonstrates the effectiveness of post-EM

pruning in Eq. (5.65) via Nmin.

To conclude, we note that the {GG▵} set, characterized from the other sets in Figure 5.13

by its lower value for the fuzziness factor, K, involves the least computational cost. Per

our discussion in Operation (a) regarding our fuzzy clustering approach, this observation

is indeed expected since a lower value for K translates into lower cardinalities for the time-

frequency-localized child subsets obtained at each iteration of the tree-like algorithm.172

Per Eq. (5.65), these lower cardinalities result, in turn, in higher likelihoods for post-EM

pruning of states in our tree-like training algorithm as a result of theNmin threshold imposed

171See Footnote 170.
172See Eq. (5.21).
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on each child subset’s cardinality as a condition for splitting an associated parent state into

multiple children states. At the same time, however, we showed through the illustrative

example of Figure 5.9, as well as through the overfitting results of Figure 5.11(b), that

lower values for K—or, more specifically, lower K/J ratios—correspond to higher overfit-

ting risks in our high-dimensional temporally-extended GMMs. Connecting these various

observations together thus emphasizes the importance of choosing a value for K to obtain

the compromise—between GMM complexity and generalization capabilities—that is most

suitable for the domain in which our model-based BWE technique is implemented. For

real-time implementations on smart mobile devices where reducing complexity takes prece-

dence, lower values for the K/J ratio are more suitable. Conversely, for offline BWE imple-

mentations where reconstruction quality—and hence, GMM generalization performance—

outweighs computational costs, higher values for K/J are more appropriate.

Given the relatively large variability shown above by our model-based approach for

memory-inclusive BWE in terms of computational cost, and the practical importance of

such cost in general, we include the per-frame computational complexity, NFLOPs/f, as part

of the analysis presented below for the BWE performance of our approach.

5.4.3.2 Performance and analysis

Compared to our frontend-based approach of Section 5.3, our algorithm for memory in-

clusion through the construction of temporally-extended GMMs involves a relatively large

number of variables as summarized in the preamble of Table 5.5. As such, performing an ex-

haustive joint-variable optimization for our temporally-extended {GG(τ,l) = (GX(τ,l)Cy
,GX(τ,l)G)}

GMM tuples in the manner applied for the dynamic {△GG = (G▵
X
▵

Cy
(△x,cy),G▵X▵G(△x, g)) } tuples

in Section 5.3.4, is rather prohibitive computationally. Instead, we evaluate and demon-

strate the effect of each of our model-based algorithm’s parameters on BWE performance

individually in order to deduce the parameter ranges corresponding to the best performance

achievable within the typical computational capabilities of recent smart mobile devices.

Using the LSD, Itakura-based, and PESQ measures detailed in Section 3.4, we evaluate

the performance of our model-based memory-inclusive BWE technique in Figures 5.14–5.18

below, as a function of: ρmin, the distribution flatness threshold; J , the splitting factor; K,

the fuzziness factor; τ , the memory inclusion step; and I, the 0th-order GMM modality;

respectively. The performance of the memoryless MFCC-based dual-mode BWE system of
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Table 5.1—with a modality of 128 for both the static GXCy
and GXG GMMs—represents the

memoryless 0th-order baseline for those performances obtained using temporally-extended

GMMs in Figures 5.14–5.18. Corresponding to a GG(τ,l) temporally-extended GMM tuple

with l = 0 and I = 128, we denote the memoryless baseline model by GG(0). For the purpose of
further comparing the BWE performance of our model-based memory inclusion technique

against that of frontend-based memory inclusion, we also illustrate the performance of

our optimized model of Figure 5.7—with Dim(X,∆X,Y,∆Y,Yref) = (8,2,6,2,7)—as a

memory-inclusive reference in Figures 5.14–5.18, denoting the optimized frontend-based

tuples simply as {△GG}.
To illustrate the effect of memory inclusion on BWE performance, we use the duration of

included memory, T , as the abscissa in Figures 5.14–5.18, rather than the memory inclusion

index, l, previously used in Figures 5.11 and 5.13.173 This allows us to: (a) compare

performances using the model-based {GG(τ,l)} tuples to those of the frontend-based {△GG}
where, per Eq. (4.34), the duration of included memory depends rather on the radius

of the delta feature calculation window, Lδ;174 and (b) make a fair comparison of the

performances of various {GG(τ,l)} tuples with different time scales—for tuples with varying

values for the memory inclusion step, τ , similar values of l correspond to different extents

of memory inclusion. Given our 10ms frame step,175 the duration of included memory for{GG(τ,l)} and {△GG} is given by T = 10 ⋅ l ⋅ τ and T = 2 ⋅10 ⋅Lδ, respectively, noting the causality

of memory inclusion in the case of {GG(τ,l)} versus its non-causality for {△GG}.
Based on the performances shown in Figures 5.14–5.18, we can itemize our findings and

conclusions into, first, conclusions based on global performance across all parameters—and

their associated ranges—of temporally-extended GMMs, and, second, conclusions based on

individual performances as a function of the primary parameters and operations underlying

our tree-like GMM extension algorithm—namely those of pruning, splitting factor, fuzzy

clustering, memory inclusion step, and initial 0th-order GMM complexity.

173To limit the computational complexity associated with our GMM extension algorithm of Table 5.5,
training is stopped after completing the lth iteration at which the modality of either of the temporally-
extended GX(τ,l)Cy

and GX(τ,l)G GMMs exceeds 104.
174To differentiate the notation for the radius of the delta feature calculation window in Eq. (4.34) from

that of the maximum value of the memory inclusion index used in our tree-like training algorithm in
Table 5.5, we denote the former in this section by Lδ.

175See Footnote 170.
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GG(0): Memoryless 0th-order baseline, with I = 128
2 {△GG}: Optimized (8,2,6,2,7) frontend-based model

With L = 10, ∆Lwmax = 10−5, and Nmin
Eq.(5.64)
←ÐÐÐÐÐÐ {J, q} where q =max(Dim(Y),Dim(G)) = 6;

2 {GG◽}ρmin=0.2
: I = 128, J = 4 (⇒Nmin = 1120), K = 2, τ = 4, ρmin = 0.2

# {GG○}ρmin=0.6
: I = 128, J = 4 (⇒ Nmin = 1120), K = 2, τ = 4, ρmin = 0.6△ {GG▵}ρmin=0.7
: I = 128, J = 4 (⇒ Nmin = 1120), K = 2, τ = 4, ρmin = 0.7◊ {GG◊}ρmin=0.8
: I = 128, J = 4 (⇒ Nmin = 1120), K = 2, τ = 4, ρmin = 0.8

▽ {GG▿}ρmin=0.9
: I = 128, J = 4 (⇒ Nmin = 1120), K = 2, τ = 4, ρmin = 0.9
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Fig. 5.14: Effect of the distribution flatness threshold, ρmin, on the performance of our model-
based memory-inclusive BWE technique. Performances using: (a) the memoryless 0th-order
baseline GMM tuple, GG(0) ∶= (GXCy ,GXG); and (b) the optimized frontend-based GMM tuples,

{△GG = (G▵
X
▵

Cy
(△x,cy),G▵

X
▵

G
(△x, g)) }, where Dim(X,∆X,Y,∆Y ,Yref) = (8,2,6,2,7); are shown as ref-

erences for the performances using temporally-extended {GG(τ,l)} tuples. Performances are plotted
as a function of the duration of included memory, T , rather than the memory inclusion index, l, to
allow comparison against frontend-based models. In addition to dLSD performance, Subfigure (a)
also shows the total per-frame computational cost, NFLOPs/f , for various GMM tuples.
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GG(0): Memoryless 0th-order baseline, with I = 128
2 {△GG}: Optimized (8,2,6,2,7) frontend-based model

With L = 10, ∆Lwmax = 10−5, and Nmin
Eq.(5.64)
←ÐÐÐÐÐÐ {J, q} where q =max(Dim(Y),Dim(G)) = 6;

2 {GG◽}J=2: I = 128, J = 2 (⇒Nmin = 560), K = 2, τ = 4, ρmin = 0.8
# {GG○}J=4: I = 128, J = 4 (⇒ Nmin = 1120), K = 2, τ = 4, ρmin = 0.8△ {GG▵}J=6: I = 128, J = 6 (⇒ Nmin = 1680), K = 2, τ = 4, ρmin = 0.8◊ {GG◊}J=8: I = 128, J = 8 (⇒ Nmin = 2240), K = 2, τ = 4, ρmin = 0.8
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Fig. 5.15: Effect of the splitting factor, J , on the performance of our model-based memory-
inclusive BWE technique. Performances using: (a) the memoryless 0th-order baseline GMM

tuple, GG(0); and (b) the optimized (8,2,6,2,7) frontend-based GMM tuples, {△GG}; are shown

as references for the performances using temporally-extended {GG(τ,l)} tuples. Performances are
plotted as a function of the duration of included memory, T , rather than the memory inclusion
index, l, to allow comparison against frontend-based models. In addition to dLSD performance,
Subfigure (a) also shows the total per-frame computational cost, NFLOPs/f , for various GMM tuples.
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GG(0): Memoryless 0th-order baseline, with I = 128
2 {△GG}: Optimized (8,2,6,2,7) frontend-based model

With L = 10, ∆Lwmax = 10−5, and Nmin
Eq.(5.64)
←ÐÐÐÐÐÐ {J, q} where q =max(Dim(Y),Dim(G)) = 6;

2 {GG◽}K=1: I = 128, J = 6 (⇒Nmin = 1680), K = 1, τ = 4, ρmin = 0.8
# {GG○}K=2: I = 128, J = 6 (⇒ Nmin = 1680), K = 2, τ = 4, ρmin = 0.8△ {GG▵}K=3: I = 128, J = 6 (⇒ Nmin = 1680), K = 3, τ = 4, ρmin = 0.8◊ {GG◊}K=4: I = 128, J = 6 (⇒ Nmin = 1680), K = 4, τ = 4, ρmin = 0.8
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Fig. 5.16: Effect of the fuzziness factor, K, on the performance of our model-based memory-
inclusive BWE technique. Performances using: (a) the memoryless 0th-order baseline GMM tuple,

GG(0); and (b) the optimized (8,2,6,2,7) frontend-based GMM tuples, {△GG}; are shown as references

for the performances using temporally-extended {GG(τ,l)} tuples. Performances are plotted as a
function of the duration of included memory, T , rather than the memory inclusion index, l, to
allow comparison against frontend-based models. In addition to dLSD performance, Subfigure (a)
also shows the total per-frame computational cost, NFLOPs/f , for various GMM tuples.
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GG(0): Memoryless 0th-order baseline, with I = 128
2 {△GG}: Optimized (8,2,6,2,7) frontend-based model

With L = 10, ∆Lwmax = 10
−5, and Nmin

Eq.(5.64)
←ÐÐÐÐÐÐ {J, q} where q =max(Dim(Y),Dim(G)) = 6;

2 {GG◽}τ=2: I = 128, J = 4 (⇒ Nmin = 1120), K = 2, τ = 2, ρmin = 0.8
# {GG○}τ=4: I = 128, J = 4 (⇒ Nmin = 1120), K = 2, τ = 4, ρmin = 0.8△ {GG▵}τ=6: I = 128, J = 4 (⇒ Nmin = 1120), K = 2, τ = 6, ρmin = 0.8◊ {GG◊}τ=8: I = 128, J = 4 (⇒Nmin = 1120), K = 2, τ = 8, ρmin = 0.8
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Fig. 5.17: Effect of the memory inclusion step, τ , on the performance of our model-based memory-
inclusive BWE technique. Performances using: (a) the memoryless 0th-order baseline GMM tuple,

GG(0); and (b) the optimized (8,2,6,2,7) frontend-based GMM tuples, {△GG}; are shown as references

for the performances using temporally-extended {GG(τ,l)} tuples. Performances are plotted as a
function of the duration of included memory, T , rather than the memory inclusion index, l, to:
(a) allow comparison against frontend-based models, and (b) account for the time-scale differences
resulting at similar values of l for the different GG(τ,l) tuples due to the varying value of τ . In
addition to dLSD performance, Subfigure (a) also shows the total per-frame computational cost,
NFLOPs/f , for various GMM tuples.
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GG(0): Memoryless 0th-order baseline, with I = 128
2 {△GG}: Optimized (8,2,6,2,7) frontend-based model

With L = 10, ∆Lwmax = 10−5, and Nmin
Eq.(5.64)
←ÐÐÐÐÐÐ {J, q} where q =max(Dim(Y),Dim(G)) = 6;

2 {GG◽}I=16 : I = 16, J = 4 (⇒Nmin = 1120), K = 2, τ = 4, ρmin = 0.8
# {GG○}I=32 : I = 32, J = 4 (⇒ Nmin = 1120), K = 2, τ = 4, ρmin = 0.8△ {GG▵}I=64 : I = 64, J = 4 (⇒ Nmin = 1120), K = 2, τ = 4, ρmin = 0.8◊ {GG◊}I=128: I = 128, J = 4 (⇒Nmin = 1120), K = 2, τ = 4, ρmin = 0.8
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Fig. 5.18: Effect of the 0th-order GMM modality, I, on the performance of our model-based
memory-inclusive BWE technique. Performances using: (a) the memoryless 0th-order baseline

GMM tuple, GG(0); and (b) the optimized (8,2,6,2,7) frontend-based GMM tuples, {△GG}; are shown
as references for the performances using temporally-extended {GG(τ,l)} tuples. Performances are
plotted as a function of the duration of included memory, T , rather than the memory inclusion
index, l, to allow comparison against frontend-based models. In addition to dLSD performance,
Subfigure (a) also shows the total per-frame computational cost, NFLOPs/f , for various GMM tuples.
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i. Global performance

• Except for the outlier performance of the excessively-overfitted {GG◽}K=1 tuples of

Figure 5.16 discussed below in more detail, the BWE performances of all temporally-

extended GMM tuples with a 0th-order modality of I = 128—being thereby compara-

ble to the (I = 128)-modal memoryless baseline—are clearly superior to the memory-

less performance baseline, across all performance measures, all parameter ranges, and

all memory inclusion durations considered—namely, up to 400ms. This confirms the

success of our technique in achieving its basic objective—exploiting the previously-

quantified cross-band correlation information in long-term speech to improve BWE

performance beyond that achievable by conventional memoryless techniques.

• Except for the excessively-overfitted {GG◽}K=1 tuples of Figure 5.16 and the excessively-

simplified {GG◽}I=16 tuples of Figure 5.18, all temporally-extended GMM tuples clearly

outperform the optimized frontend-based tuples in terms of dLSD, Q
PESQ

, and d∗
IS
,

across all parameter ranges and all memory inclusion durations considered, in some

cases by a considerable multiple-fold margin. In terms of the gain-independent d∗
I
per-

formance, however, the improvements obtained via temporally-extended tuples over

the frontend-based baseline performance are much less pronounced, and furthermore,

are achieved only for particular subsets of the extension algorithm’s parameter ranges

and memory inclusion durations. Nonetheless, the considerable overall superiority

of our model-based approach to memory inclusion is clear from Figures 5.14–5.18,

thereby confirming our success in addressing the drawbacks of our frontend-based ap-

proach of Section 5.3, and consequently succeeding in translating significantly more of

the previously-quantified information-theoretic gains of memory inclusion into mea-

surable BWE performance improvements. A more detailed analysis of the results

obtained for the different performance measures, and the implications of these re-

sults, is discussed below.

• The BWE performances of all temporally-extended tuples considered reach saturation

at various memory inclusion durations of T ≤ 200ms, with the majority saturating at

∼ 120–160ms. In other words, the inclusion of causal memory beyond T = 200ms is

consistently found to add no further improvements, regardless of the parameter values

used in our GMM temporal extension algorithm. This result thus coincides with our

previous information-theoretic findings of Section 4.4.3 regarding the saturation of
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acoustic-only memory contributions to highband certainty at the syllabic rate.

• By comparing BWE performances against the associated computational costs across

T for the {GG○}J=4 and {GG▵}J=6 tuples in Figure 5.15(a), as well as for all tuples in

Figures 5.17(a) and 5.18(a), we can conclude that higher GMM complexity does not

necessarily translate into higher BWE performance. Indeed, among all the perfor-

mances considered, the absolute best is achieved with the GG◊∣K=4 tuple—shown in

Figure 5.16—at T = 160ms with NFLOPs/f = 2 × 108, despite having also considered

more complex tuples—such as those with higher memory inclusion in Figure 5.18,

for example.176 This emphasizes the value of the several parameters employed in our

GMM extension algorithm in terms of the control and flexibility they provide.

• In terms of the memory inclusion duration at which it is achieved, the highest per-

formance improvement obtained using our model-based memory inclusion approach

is consistent with that of our optimized frontend-based approach in Figure 5.7 and

Table 5.3. Both approaches achieve the highest improvements at T = 160ms.

• As described in Section 5.4.3.1, recent smart mobile devices have a typical processing

power equivalent toNFLOPs/f ≊ 5×107. Thus, taking practical real-time implementation

into account, the best BWE performance achieved by temporally-extended GMM

tuples within the computational capabilities of smart mobile devices is that obtained

with NFLOPs/f ≊ 3.5 × 107 using GG◊∣K=4 at T = 120ms—shown in Figure 5.16. Nearly

identical performance is also achieved at T = 120ms using GG▵∣K=3, at the slightly lower

computational cost of NFLOPs/f ≊ 2.5 × 107.

• Table 5.6 details the best performance improvements—absolute as well as compu-

tationally-constrained—obtained using temporally-extended tuples. Relative to the

memoryless baseline performance of Table 5.1, the improvements achieved using our

proposed model-based memory inclusion technique range from ≈ 2.3 times the im-

provements previously summarized in Table 5.3 using our frontend-based approach

for d∗
I
performance, to ≈ 5.5 times for dLSD performance. For Q

PESQ
, the measure most

176As shown in Table 5.6, the performances of {GG◊}K=4 at T = 120 and 160ms are virtually identical,
with the Q

PESQ
performance at T = 160ms marginally better. Since PESQ is the measure most subjectively

correlated—with an average correlation of 0.935 with subjective MOS scores as described in Section 3.4.3—
among the four measures considered, we favour the performance of GG◊∣K=4 at T = 160ms as the higher one.
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subjectively correlated among the four performance measures considered, the perfor-

mance improvement resulting from including memory via temporally-extended tuples

exceeds that obtained by using dynamic delta coefficient-based tuples by ≈ 4.4 times.

As shown in Table 5.6, these significant improvements are achieved at an increase of

nearly four orders of magnitude in computational cost.

Table 5.6: Highest BWE performance improvements achieved using model-based memory
inclusion via the temporally-extended GG◊∣K=4 GMM tuple, in comparison to that achieved

using the optimal frontend-based
△GG tuple of Table 5.3 with Dim(X,∆X,Y,∆Y,Yref) =(8,2,6,2,7). Improvements are measured relative to the memoryless MFCC-based dual-

mode baseline results of GG(0) in Table 5.1.

T [ms] NFLOPs/f dLSD [dB] Q
PESQ

d∗
IS
[dB] d∗

I
[dB]

GG(0) 0 8.1e4 5.17 3.01 12.32 0.5820

△GG 160 7.8e4 5.06 3.07 10.37 0.5588

Improvement — — 0.11 ( 2.2%) 0.06 (2.1%) 1.95 (15.9%) 0.0232 (4.0%)

GG◊∣K=4 160 2.0e8 4.55 3.29 5.33 0.5305

Improvement — — 0.62 (12.0%) 0.28 (9.2%) 6.99 (56.8%) 0.0515 (8.9%)

GG◊∣K=4 120 3.5e7 4.55 3.28 5.42 0.5293

Improvement — — 0.62 (12.0%) 0.27 (9.1%) 6.90 (56.1%) 0.0527 (9.1%)

• Similar to the analysis performed in Section 5.3.5.2 by making use of the knowledge

about the perceptual principles underlying the four performance measures consid-

ered above, we can further analyze the results of Figures 5.14–5.18 and Table 5.6 to

better understand the effect of model-based memory inclusion on highband envelope

reconstruction accuracy, as follows:

– Since the dLSD measures weight all deviations in log spectra equally while Q
PESQ

focuses on over-estimations,177 then, based on the observation that the dLSD and

Q
PESQ

performances in Figures 5.14–5.18 generally coincide as a function of T , we

can conclude that the extent to which the duration of included memory mitigates

over- and under-estimations in highband envelopes is consistent for the two types

of disturbances across T . In other words, at each particular duration, T , memory

inclusion mitigates over- and under-estimations by the same relative extent,

177See Sections 3.4.1 and B.1 for details of the dLSD and Q
PESQ

measures, respectively.
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with the duration of included memory having no effect in terms of favouring

the alleviation of one type over the other. Coinciding with our previous finding

to the same effect in Section 5.3.5.2, this observation confirms the generality

of this memory inclusion result. A result in contrast to that of our frontend-

based approach, however, is the lower Q
PESQ

improvement, relative to that of

dLSD, as shown in Table 5.6 for performances using temporally-extended GMMs.

This indicates that our model-based technique is less successful in mitigating

over-estimation disturbances in comparison to under-estimations. Nevertheless,

as noted above, our model-based approach still outperforms the frontend-based

one in terms of overall Q
PESQ

performance by ≈ 4.4 times.

– In a similar manner, since the symmetrized d∗
IS
and d∗

I
measures weight larger

deviations in log spectra more heavily than does the dLSD measure,178, then,

based on the observation that the gain-independent d∗
I
performances generally

coincide with those of dLSD in Figures 5.14–5.18 as a function of T , we can con-

clude that our model-based memory inclusion technique mitigates all degrees of

deviations in spectral envelope shapes in a consistent manner across T . In other

words, at each particular duration, T , memory inclusion mitigates all deviations

by the same relative extent, with the duration of included memory again hav-

ing no effect in terms of favouring the alleviation of one type over the other.

Coinciding with our previous finding to the same effect in Section 5.3.5.2, this

observation confirms the generality of this memory inclusion result as well. In

an argument similar to that made above for Q
PESQ

, we also note, however, the

lower d∗
I
improvement relative to that of dLSD, as shown in Table 5.6 for perfor-

mances using temporally-extended GMMs. This indicates that our model-based

technique contrasts with our frontend-based one in that it mitigates the more

perceptually-relevant large deviations in highband envelope shape reconstruc-

tion less successfully than it does small deviations. In spite of this result, our

model-based approach is nevertheless shown to outperform the frontend-based

one in terms of overall d∗
I
performance by ≈ 2.3 times.

– For both frontend- and model-based approaches, Figures 5.14–5.18 and Table 5.6

show that improvements in the gain-dependent d∗
IS

performance are relatively

178See Section 3.4.2 for details of the d∗
IS

and d∗
I
measures.
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higher than those in the similarly-derived but gain-independent d∗
I
performance,

with the discrepancy in performance improvements being higher for our model-

based technique. As such, we conclude that our approaches to memory inclusion

are generally more successful in translating gain-specific cross-band correlation

into measurable BWE performance improvements than they are with cross-band

correlations of spectral envelope shapes. More specifically, the d∗
IS
and d∗

I
results

for GG◊∣K=4 at T = 160ms in Table 5.6 suggest that improvements in the recon-

struction of envelope shapes and gains represent ∼ 16% and 84%, respectively, of

the overall improvement achieved in the reconstruction of highband envelopes as

a result of model-based memory inclusion. For inclusion through the optimized

frontend-based
△GG tuples at T = 160ms, the improvements in envelope shape and

gain reconstruction represent ∼ 25% and 75%, respectively. This observation

emphasizes the importance of accurately capturing the cross-band correlations

specific to envelope energies, which, in turn, justifies the modelling of energies

through: a dedicated GMM, as in our dual-mode BWE system based on that of

[55]; through a subband HMM, as in the HMM-based system of [84]; or, through

more elaborate schemes, as in the technique of [57] incorporating an asymmetric

cost function into the GMM-based MMSE estimation of highband energies.

– To conclude this global performance analysis, we note that the d∗
IS
performances

shown in Figures 5.14–5.18 indicate that our model-based approach further suc-

ceeds in alleviating the steep decline suffered with frontend-based tuples for

Lδ > 8—corresponding to T > 160ms. This confirms the superiority of joint-band

MMSE estimation using temporally-extended {GX(τ,l)G} GMMs, rather than

the delta coefficient-based {G▵
X
▵

G
(△x, g)}, in terms of preventing the potentially-

detrimental large deviations in highband envelope gain reconstruction.

ii. Individual performance: Effects of pruning

• Figure 5.14 illustrates the effects of the parameters underlying the pre- and post-

EM pruning operations on BWE performance. As described in Operation (d) of our

tree-like growth algorithm, the purpose of these pruning steps is to reduce model

complexity and minimize the risk of overfitting in a manner that maximizes informa-

tion content in the remaining child pdf s generated at each temporal extension step.

Indeed, Figure 5.14 demonstrates the direct correlation achieved between the child
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distribution flatness threshold, ρmin, and the overall complexity of the resulting GMM

tuples, as represented by NFLOPs/f; more restrictive values for ρmin directly result in

lower NFLOPs/f complexity, and vice versa.

• At the same time, Figure 5.14 also demonstrates the role of the post-EM pruning

applied via Nmin in ensuring the sufficiency of data points to reliably estimate the

pdf s of the child states obtained by splitting at each temporal extension step. More

specifically, Figure 5.14 shows that the reduction obtained in terms of computational

complexity is achieved with minimal overfitting; even with the considerable pre-EM

pruning imposed via ρmin = 0.9,179 the Nmin threshold precludes overfitting to the

extent that the BWE performance of {GG▿}ρmin=0.9
still outperforms that of the mem-

oryless baseline as well as that of the optimized frontend-based tuples.

• Moreover, the observation that performances vary only marginally within the wide

ρmin = 0.2–0.7 range indicates that our distribution entropy-based pruning approach

does indeed succeed in reducing complexity while preserving most of the information

content captured in the tuple with least pruning, {GG◽}ρmin=0.2
.

• Finally, the lack of rapid decay in performance after reaching saturation for the ma-

jority of the temporally-extended tuples considered in Figures 5.14–5.18 indicates

the success of our pre- and post-EM pruning steps in constraining the {GX(τ,l)Y}
GMM modality increases associated with progressively-higher memory inclusion in-

dices beyond what is justified by the information content and cardinalities of the

time-frequency-localized data subsets.

iii. Individual performance: Effects of the splitting factor

• As introduced in Operation (c), the splitting factor, J , represents the number of the

child subclasses that can potentially be inferred from each parent state at any memory

inclusion step, based on the cardinalities and distribution flatness—or lack thereof—

of the time-frequency-localized data associated by fuzzy clustering with these parent

states. In essence, this factor thus corresponds to an extent by which we quantize

the variability of data within each of the time-frequency-localized subspace regions

179The computational costs associated with {GG▿}ρmin=0.9
for T = 120–160ms are ∼ 4.5–6.5 times lower

than those of the {GG◽}ρmin=0.2
tuples where BWE performance improvements are highest.
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represented by parent states. As such, higher values for J should translate into

higher resolutions for subspace quantization, and consequently, higher performance

improvements, up to a point where J disproportionately exceeds the variability of

the per-parent time-frequency-localized data, potentially leading to inferior subspace

pdf modelling and, in turn, degradation in performance. Figure 5.15 indeed confirms

this effect of the splitting factor, showing performance improvements saturating for

J ≃ 4–6, as demonstrated by the d∗
IS
results, in particular, for {GG○}J=4 and {GG▵}J=6,

with the performances for J outside this range noticeably inferior, as demonstrated

by the results for {GG◽}J=2 and {GG◊}J=8.
iv. Individual performance: Effects of fuzzy clustering

• As first discussed in Section 5.4.2.2, the role of our proposed fuzzy GMM-based clus-

tering approach is to alleviate the adverse effects of the empty-space phenomenon

associated with pdf modelling in high dimensions. By favouring such a soft-decision

approach over the conventional hard-decision Bayesian technique to cluster data into

time-frequency-localized subsets, and subsequently combining it with a qualitatively-

weighted Expectation-Maximization algorithm, we demonstrated—through the il-

lustrative example of Figure 5.9, as well as through the detailed analysis in Sec-

tion 5.4.2.4—our success in generating excellent time-frequency pdf estimates at

increasingly-higher dimensionalities, all the while minimizing the risks of both overfit-

ting and oversmoothing. A further examination of the effects of the fuzziness factor,

K, on BWE performances in Figure 5.16 confirms our previous findings as follows.

• As described in Operation (a), the fuzziness factor, K, where 1 ≤K ≤ J , corresponds

to a qualitative expansion of the localized child data subsets obtained by cluster-

ing based on GMM-derived parent states, with the resulting subset cardinalities—as

well as overlap—increasing with higher K values. Since higher subset cardinali-

ties translate to lower post-EM pruning likelihoods per Eq. (5.65) when the child

subset cardinality threshold, Nmin, is fixed, higher values of K will thus result in

more complex temporally-extended GMMs with higher modalities—i.e., more Gaus-

sian components—at all orders of memory inclusion. This, in turn, results in higher

extension-stage computational costs. Figure 5.16 indeed confirms this correlation

between K and the NFLOPs/f complexity.
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• On the other hand, as demonstrated by the illustrative example of Figure 5.9, the

increased qualitative subset overlap associated with higher K values results in bet-

ter modelling of the overlap between the underlying time-frequency classes. This, in

turn, results in improved time-frequency-localized pdf estimates, and consequently,

higher-quality global temporally-extended GMMs. This correlation between K and

pdf estimate quality is indeed confirmed by the higher BWE performance improve-

ments achieved in Figure 5.16 using tuples with higher values for K.

• Moreover, as concluded in the discussion of the aforementioned illustrative example’s

results, Figure 5.16 further shows that excellent pdf estimates can be achieved via our

soft-decision approach at relatively low values for K, i.e., where 1 < K ≪ J . Indeed,

although J = 6, Figure 5.16 shows performances saturating for {GG▵}K=3 and {GG◊}K=4,
i.e., at K ≃ 3–4, with the corresponding performance improvements representing the

highest among all those achieved in Figures 5.14–5.18.

• Finally, the performances shown in Figure 5.16 for the {GG◽}K=1 tuples make the mod-

elling advantages of our fuzzy clustering approach quite evident. In particular, these

tuples are trained with a fuzziness factor of K = 1 where our soft-decision approach

reduces to that of conventional hard-decision Bayesian classification. As such, the

training of {GG◽}K=1 using our tree-like algorithm of Table 5.5 takes no advantage of

the aforementioned localized subset expansion intended to account for class overlap in

high-dimensional spaces. Consequently, the obtained {GG◽}K=1 tuples exhibit excessive
overfitting as clearly indicated by their BWE performances. Further emphasizing the

advantages of our fuzzy clustering approach is the observation that, by introducing

the slightest possible fuzziness via K = 2, significantly superior performances were

obtained in Figure 5.16. To conclude, we note that these findings confirm those

previously made to the same effect in the illustrative example of Figure 5.9.

v. Individual performance: Effects of the memory inclusion step

• Figure 5.17 illustrates the BWE performances obtained using temporally-extended

GMM tuples as a function of the memory inclusion step, τ . As described in Sec-

tion 5.4.2.3, τ represents the step—in number of frames—between the l + 1 static

frames used to construct the sequences comprising the lth-order temporally-extended

supervectors, such thatX(τ,l)t = [XT
t ,X

T
t−τ , . . . ,X

T
t−lτ ]T for the narrow band, for exam-
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ple. Effectively, the step, τ , thus allows us to reduce the well-known redundancies be-

tween immediately-neighbouring static frames—or, more accurately, to leapfrog such

redundancies—when constructing each of our temporally-extended feature vectors,

thereby increasing the information content of our temporally-extended data sets as a

whole. In essence, this simple memory inclusion step thus mimics the dimensionality-

reducing LDA and KLT transforms—previously discussed in Section 4.4.2—in terms

of their attempt to maximize the information content of feature vectors.

• The performances shown in Figure 5.17 do indeed reflect the redundancy-reducing

effect of τ described above. In particular, the dLSD and d∗
I
performances indicate

that overall performance improvements across the range of T generally increase

and become more consistent with larger values of τ where feature vectors comprise

increasingly-lower redundancies, and hence, increasingly-higher information content.

The least improvements, in terms of both value and consistency, are those obtained

for {GG◽}τ=2—the tuples with the lowest value for τ among all those considered.

• Secondly, we note that, as τ increases, the differences in performances in Figure 5.17

become increasingly smaller, with the improvements in performance reaching satura-

tion for τ ≊ 6. Given our 10ms frame step, these observations coincide with expec-

tations based on the knowledge discussed in Section 1.2 and Appendix A regarding

the durations of sounds and phonetic events. More specifically, as the duration of

the frame step approaches the average duration of typical phonetic events, roughly

around 70ms, the cross-frame intra-phonetic redundancies that can potentially be re-

duced through the leapfrogging step become progressively less, until finally reaching

saturation when the step equals ∼ 70ms.

• As previously noted, BWE performances are plotted in Figures 5.14–5.18 against T ,

the duration of included memory, to allow comparison against frontend-based tuples

as well as the comparison of model-based tuple performances obtained at different

values for τ , the memory inclusion step. Except for the tuples considered in Fig-

ure 5.17, however, all temporally-extended tuples in Figures 5.14–5.18 use a fixed

value for τ . Noting that T = 10 ⋅ l ⋅ τ , Figures 5.14–5.16 and 5.18 thus also illustrate

performance as a function of l, the memory inclusion index. As such, we observe that,

for τ = 4, the performances achieved by temporally-extended tuples consistently reach
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saturation for l ≊ 2–3. This optimal range for l is further confirmed for other values

of τ by noting that the performances in Figure 5.17 evolve in a consistent manner

when viewed as a function of l, rather than T , with the 2, #, △, and ◊ markers

denoting performance data points at increasing values of l. Thus, we conclude that it

is the extent of memory as represented by inclusion indices, rather than by absolute

inclusion durations, that correlates directly with the ability of our tree-like GMM ex-

tension algorithm to successfully exploit memory for improved cross-band correlation

modelling, and accordingly, improved BWE performances.

• Given that saturation in performance improvements is achieved at τ ≊ 6 as noted

above, the optimal l ≊ 2–3 range translates to T ≊ 120–180ms, which coincides with

the optimal range for memory inclusion duration previously identified in the context

of global performance. The observations made above regarding the effects of τ and

l thus provide us with a more detailed understanding of how our tree-like GMM

extension algorithm achieves its best performance in terms of memory inclusion.

vi. Individual performance: Effects of the initial 0th-order GMM modality

• Per the state space- and subspace clustering-based interpretations introduced in Sec-

tion 5.4.2.2 for our tree-like extension algorithm, the I component densities of the

initial 0th-order GMMs extended via our tree-like algorithm correspond to the ini-

tial states or classes—representing projections of L-order temporally-extended classes

in the [X(τ,L)
Y
] space onto the static [X(τ,0)

Y
] subspace—from which all the finer and

higher-order time-frequency states, or subclasses, in the {[X(τ,l)
Y
]}

l∈{1,...,L}
subspaces

progressively descend. For a fixed splitting factor, J , applied to all such I initial

states, this results in a close correlation between the 0th-order modality, I, and the to-

tal number, M
(l)
, of child states obtained at low orders of memory inclusion. In other

words, higher initial I modalities are more likely to translate into higher modalities

for the (l << L)th-order temporally-extended {GX(τ,l)Y} GMMs, which, in turn, trans-

late into finer time-frequency localization, and hence, improved temporally-extended

joint-band modelling. This correlation between I and M
(l)

is expected for low or-

ders of memory inclusion up to the point where the variability and/or cardinality of

the time-frequency-localized data subsets obtained via fuzzy clustering become suffi-

ciently low such that no further localization is allowed by pre- and post-EM pruning.
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• Illustrating the effects of I on the performance of temporally-extended tuples, Fig-

ure 5.18 indeed confirms the behaviour described above. In particular, the perfor-

mance improvements achieved at any particular memory inclusion duration are shown

to directly correlate with the initial 0th-order modality. This correlation is observed

not only for low orders of memory inclusion, but also for higher orders of l.

• Since the correlation of I with improved performances is observed across all orders of

memory inclusion, Figure 5.18 thus indicates that the 0th-order modality, I, also di-

rectly affects the ability of our tree-like algorithm in achieving reliable time-frequency

localization at higher orders of memory inclusion as well. To elaborate, we note that,

despite differences in initial 0th-order modality, all tuples will converge to compa-

rable complexities at higher orders of memory inclusion. This follows as a result

of: (a) applying a fixed threshold, Nmin, for subset cardinalities throughout, and

(b) using the same amount of training data to train each of the tuples considered

in Figure 5.18. More specifically, although the temporal extension of tuples with

lower 0th-order modalities results in tuples with (0 < l << L)th-order modalities that

are lower compared to those obtained for tuples with higher 0th-order modalities,

these differences in modalities continue as a function of T , or l, only until the ef-

fects of pruning lead to the convergence of modalities for both sets of tuples. Indeed,

Figure 5.18 illustrates this behaviour via the NFLOPs/f complexity; tuples with lower

0th-order modalities have lower complexities—relative to those with higher initial

modalities—for the same values of l for 0 < l << L, until all sets of tuples eventually

converge to comparable complexities as l increases.

Despite the convergence in complexity, and thereby, in the extent of time-frequency

localization as well, the performances of tuples with lower 0th-order modalities do not

eventually catch up with those of the tuples with higher initial modalities. Rather,

the performances for all tuples saturate at roughly the same order of memory in-

clusion regardless of initial modalities. This indicates that the information content

and quality of the time-frequency-localized pdf s estimated at all (l ∈ {1, . . . ,L})th
orders of memory inclusion correlate strongly with the initial 0th-order modality, to

the extent that any two sets of equally-complex tuples—and hence, with similar de-

grees of time-frequency localization—can vary considerably in terms of quality and

the associated BWE performance as a result of performing temporal extension using
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0th-order GMMs with different modalities. In other words, the lower quality of static

pdf estimates associated with coarser 0th-order frequency localization is, in fact, in-

herited by the descendent temporally-extended GMMs obtained at all (l > 0)th orders

of memory inclusion, with these lower modelling qualities not being compensated by

subsequent increases in time-frequency localization.

5.4.3.3 Comparisons to relevant model-based memory inclusion approaches

Through the detailed analysis presented in Sections 5.4.3.1 and 5.4.3.2 above, we have

shown that our model-based approach to memory inclusion clearly outperforms that of

Section 5.3 based on incorporating delta features. Although this superior performance is

achieved at an increase of ∼ 3–4 orders of magnitude in extension-stage computational cost,

we have shown that such costs are within the typical computational capabilities of modern

smart mobile devices. In addition to thus translating the previously-shown cross-band

correlation into tangible BWE performance improvements more successfully, our tree-like

temporal extension technique also outperforms the delta coefficient-based approach in that

involves no algorithmic delay, all the while preserving the latter’s advantage in terms of the

ability to incorporate varying extents of long-term memory—up to and exceeding syllabic

durations—into the joint-band model. Having thus compared our two techniques in detail,

we now compare our tree-like memory inclusion approach to relevant works in the literature,

focusing specifically on the model-based techniques reviewed in Section 5.4.1.

As discussed in Section 5.4.1, the use of GMMs as the primary means to statistically

model joint-band correlations for the purpose of BWE has been restricted to memoryless

implementations due to the dimensionality-related limitations detailed in Section 5.4.2.1.

Similarly, the use of neural networks in BWE has also been restricted to memoryless im-

plementations, and even then achieving only mixed and inconclusive performances. As

such, among the five general model-based approaches discussed in Section 5.4.1, only those

incorporating memory through codebook mapping, HMMs, and non-HMM state space tech-

niques, can in practice be compared against our model-based memory inclusion technique.

As in Section 5.3.5.3, we simplify this comparison by assuming that the test sets used by

the cited techniques are sufficiently diverse such that the results reported therein can be

considered general enough for direct comparison against each other, as well as against our

results in Table 5.6. In other words, we preclude any effects that the test set differences—
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relative to the TIMIT core test set described in Section 3.2.10—may have on the generality,

and hence the comparability, of performances.

In the context of codebook mapping, we noted in Section 5.4.1.4 that the works of

[130] and [131] represent the exceptions to the generally memoryless implementations of

codebook-based BWE. Having then described both of these techniques in detail, we noted

that the three-step quantization technique of [130] is quite limited in its use of memory in

that it only incorporates information from immediately preceding frames into codevector

interpolation.180 More importantly for the purpose of comparison at hand, however, is

that only informal subjective results are reported in [130]. In contrast, the 256-codeword

predictive VQ181-based BWE approach of [131] is reported to achieve a highband dLSD

improvement of 0.45dB relative to conventional memoryless VQ of equal codebook size,

while also incorporating memory at the limited interframe level as in [130]. To put these

results into the same frame of reference as the dLSD improvements of Table 5.6 achieved by

our model-based state space approach to memory inclusion, we note that:

1. The 0.62dB dLSD improvement reported for GG◊∣K=4 in Table 5.6 is calculated relative

to the performance of GG(0), our MFCC-based memoryless baseline implementation of

the dual-mode BWE system, detailed in Section 5.2.

2. As shown in Section 5.2.6 by comparing the results of Table 5.1 to those of 3.1, our

MFCC-based implementation of the memoryless dual-mode BWE system achieves a

BWE performance that is nearly similar—lower by a dLSD difference of 0.06dB, to be

exact—to that obtained using the LSF-based system detailed in Section 3.2, which,

in turn, is itself based on the reference system of [55].

3. The dual-model system of [55] is, in fact, an improvement over the earlier system

of [54] employing GMM-based statistical modelling only, with no midband equal-

ization.182 This latter system itself achieves a dLSD improvement of 0.96dB over the

split VQ-based technique of [69] which uses three separate 32-word codebooks to map

voiced, unvoiced, and mixed narrowband sounds into their highband counterparts.

180See Section 2.3.3.2 for details on codebook mapping with interpolation, or fuzzy VQ.
181See Footnote 23.
182As discussed in Sections 2.3.2.4, 3.2.3, and 3.2.4, the dual-mode system of [55] improves upon the

GMM-only system of [54] by using midband equalization to extend the narrowband signal into the 3.4–
4kHz range, which in turn allows the use of the signal across the 3–4kHz range—rather than in the 2–3kHz
range—to generate the 4–8kHz highband excitation signal by full-wave rectification.
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4. The voicing-based three-way split codebook mapping technique of [69], using a total

of 96 codewords, is quite similar to the two-way split codebook approach of [63].

With a total of 128 voicing-based codewords, this latter technique is shown in [63]

to marginally outperform similarly-size conventional codebook-based mapping by a

dLSD difference of 0.07dB.

Thus, notwithstanding the relatively minor effects of differences in reference codebook

sizes or in the frequency ranges of the highband content reconstructed by BWE,183 aggre-

gating the dLSD improvements listed above for our dual-model BWE system with model-

based memory inclusion results in an overall improvement of ≈ 1.59dB, corresponding to

∼ 3.5 times that achieved by the predictive VQ-based approach of [131], relative to con-

ventional memoryless codebook-based baselines. This demonstrates the clear superiority

of our model-based approach to memory inclusion over that of [131]. For illustration, the

differences among the performances of the BWE techniques listed above, as well as those

to be further discussed below, are shown in Figure 5.19. With the performance differences

plotted to scale, Figure 5.19 thus puts the BWE performances cited throughout this section

into an informative relative perspective.

Focusing next on the more successful HMM-based memory inclusion techniques for

BWE, we noted in Section 5.4.1.3 that, except for the more recent work of [163] and the

early approach of [84], all HMM-based approaches proposed in the literature share the same

idea underlying the work in [39] and [87]. In our detailed description of these four first-

order HMM-based techniques in Sections 2.3.3.4 and 5.4.1.3, we also noted, however, that

no comparisons are reported in either [39] or [84] for the performances of their techniques

relative to those of other BWE techniques. In contrast, the HMM-based techniques of [87]

and [163] are compared, respectively, to the piecewise-linear and codebook-based mapping

techniques, described in Sections 2.3.3.1 and 2.3.3.2, respectively, in terms of dLSD and

Q
PESQ

performances. Before comparing the performances achieved by these two HMM-

based techniques to those in Table 5.6 for our temporally-extended GMM-based approach,

however, we further note that, in addition to incorporating memory through first-order

HMMs, the techniques of [87] and [163] also use delta and delta-delta features as a secondary

183The 0.45dB dLSD improvement reported in [131] is calculated over the 4–7kHz range, while the perfor-
mances reported for the GMM-only BWE system in [54] are calculated for the 3.5–7kHz range. As discussed
in Section 3.4.1, however, the dLSD performances calculated throughout our work presented herein are esti-
mated over the wider 4–8kHz range. This latter range is also used in [63] to compare the dLSD performances
of several linear- and codebook-based mapping techniques.
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Piecewise-linear
mapping, per [60, 63]

Conventional VQ-based

mapping, per [63, 131, 133, 163]

Split VQ-based

mapping, per [63, 69]

Dual-mode GMM-based mapping
using MFCCs, per Section 5.2

Dual-mode GMM-based mapping

using LSFs, per Section 3.2 and [55]

Temporally-extended GMM-based
mapping, per Section 5.4.2

Predictive VQ-based

mapping, per [131]

HMM-based
mapping, per [87]

HMM-based mapping with
temporal clustering, per [163]

Linear state
space-based

mapping, per [133]

∆dLSD ≊
0.07dB

∆dLSD ≊
0.27dB

∆dLSD ≊
0.96dB

∆dLSD ≊
0.06dB

∆dLSD ≊
0.62dB,

∆QPESQ ≊

0.28

∆dLSD ≊
0.45dB ∆QPESQ ≊

0.28

∆dLSD ≊
1.36dB,

∆QPESQ ≊

0.66

∆dLSD ≊
0.69dB

Fig. 5.19: Illustrating differences among the performances of the relevant model-based BWE
techniques cited throughout this section. Although we discard minor differences between the
performances of those techniques using the same model-based approach (several works use con-
ventional VQ-based mapping as a performance baseline, for example), all distances are plotted
to scale based on the results reported in the cited techniques, with higher levels corresponding to
better BWE performances. As suggested by the dLSD and QPESQ results of Table 5.6 and [163], a
linear relation between the two measures can be assumed for the purpose of this illustration, with
the relationship’s parameters estimated based on those results.
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means for the inclusion of memory. Incorporating longer-term memory into joint-band

modelling as such, the BWE techniques of [87] and [163] thus also contrast with other

HMM-based techniques by attempting to mitigate the 20–40ms limitations imposed on the

extent of memory that can be incorporated by the use of first-order HMMs.

As previously discussed in Sections 2.3.3.4, 5.3.5.3, and 5.4.1.3, the 64-state HMM-

based BWE technique of [87] achieves only a Q
PESQ

improvement of 0.28 relative to the

quite-unsophisticated 4-partition piecewise-linear mapping technique of [60]. While the

comparative performance illustration in Figure 5.19 shows that this oft-cited HMM-based

approach—of both [87] and [39]—thus outperforms those techniques based on conventional

and split codebook mapping, it also shows it to be quite inferior to almost all the other

advanced model-based approaches considered in this section.184 Our proposed temporally-

extended GMM-based BWE technique, in particular, is shown to outperform this HMM-

based approach by ∼ 1.24dB, corresponding to ∼ 2 times the improvement achieved relative

to the baseline based on piecewise-linear mapping.

In the supervised HMM-based approach of [39] and [87] evaluated above, HMM chains

statistically model the spectra of narrowband-only features as well as their first-order dy-

namics, with the cross-band correlations with highband envelopes modelled through a tied

codebook. In contrast, the more recent technique of [163] trains joint-band HMMs in an

unsupervised manner, effectively clustering—or segmenting—joint-band data into separate

neighbourhoods, each of which comprising a set of joint-band data with high spectral and

first-order temporal correlations. Using sequences of such temporally-clustered data, wide-

band spectral envelopes are then estimated in the extension stage by linear prediction,

rather than by codebook mapping as in [39] and [87]. Having already discussed this BWE

technique in Section 5.4.1.3 with detail, we repeat its underlying idea here in order to note

the similarities with our proposed temporally-extended GMM-based technique in terms of

the time-frequency localization used to improve the modelling of joint-band dynamics. De-

spite these similarities, Figure 5.19 shows that our model-based approach also outperforms

this first-order HMM-based technique, albeit by a much smaller margin—∆dLSD ≃ 0.23dB—

184Given the approximations assumed in illustrating Figure 5.19, namely: (a) the linear relationship
between dLSD and Q

PESQ
, (b) equating performances for different techniques based on the same model-

based approach, (c) discarding the effects of differences among the various techniques in terms of training
and testing conditions as well as in terms of the ranges of the highband frequency content reconstructed
by BWE, the ∼ 0.1dB difference between the dLSD performances of the HMM-based technique of [87] and
the predictive VQ-based one of [131] is too close to clearly favour one technique over the other.
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than those obtained relative to the other comparable techniques. More specifically, a dLSD

improvement of ≈ 1.36dB is reported in [163] for the proposed HMM-based technique rel-

ative to conventional 128-codeword VQ. In comparison, our temporally-extended GG◊∣K=4
tuples of Table 5.6 achieve a cumulative dLSD improvement of ≈ 1.59dB, relative to a simi-

lar VQ-based baseline. In addition to thus achieving a superior performance, our proposed

technique also contrasts with that of [163] in that in involves no algorithmic delay—as

incurred by delta features and the Viterbi algorithm employed in [163] for HMM state

sequence decoding during extension.

Reiterating our arguments from previous sections, we attribute this lower success of

first-order HMM-based techniques in general, relative to our temporally-extended GMM-

based approach, to the 20–40ms limitation imposed on the extent of cross-band information

that can be incorporated by first-order-only HMMs. As shown in Section 4.4.3, such short-

term information represents only a minor portion of the maximum mutual information

achievable at syllabic durations. We also note that, for the approach of [87] in particular,

the delta and delta-delta features are incorporated only for the narrow band. As such,

dynamic cross-band correlations are captured in the manner modelled by Scenario 1 in

Section 4.4.3, for which we showed the information gains achievable to be rather minimal

in comparison to those achievable by the inclusion of delta features in the parameterizations

of both frequency bands, as modelled by Scenario 2. In contrast, the technique of [163]

incorporates delta and delta-delta features per Scenario 2, which partially contributes to

the superior performance achieved by this technique relative to that of [87].

Finally, Figure 5.19 compares the performance achieved by the dynamic linear state

space approach of [133] to that of our model-based technique, as well as to those of the

techniques discussed above. As described in Section 5.4.1.5, this approach achieves its best

BWE performance with ≈ 300ms of memory inclusion. Except for the HMM-based tech-

nique of [163] using temporal clustering, this state space technique outperforms all HMM-

and codebook-based BWE techniques reviewed above, albeit it at a higher computational

cost. It does possess an advantage over the technique of [163], however, in that it in-

volves no algorithmic delay. In addition to the similarity it thus has with our model-based

technique in terms of real-time processing capability, this approach shares the state space

concept underlying the time-frequency localization central to our technique—illustrated in

Figure 5.8. On the other hand, this approach of [133] models temporal and spectral joint-

band correlations through a dynamic linear model, rather than through GMMs. Despite
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using a large number of linear modes, the linear assumption expectedly limits the ability

to model complex joint-band correlations. As such, our temporally-extended GMM-based

techniques is found to outperform this linear state space-based approach by a consider-

able ∆dLSD ≃ 0.9dB, corresponding to a performance improvement difference of ∼ 2.3 times

relative to conventional VQ-based performance.

5.5 Summary

Since an extended summary of our work in this chapter is presented next in Section 6.1.5,

we conclude here by providing a rather brief summary.

Building upon our information-theoretic findings of Chapter 4, this chapter detailed

our proposed approaches for improving BWE performance via memory inclusion. First,

an MFCC-implementation of our baseline LSF-based dual-mode memoryless BWE sys-

tem was proposed. Despite the non-invertible partial loss of information associated with

MFCC parameterization, we showed that high-quality highband speech can indeed be re-

constructed from GMM-based MMSE estimates of highband MFCCs. We then presented

two novel memory-inclusive BWE techniques. The first mimics the methodology used in

Chapter 4 by using delta features to extend the acoustic classes underlying the GMM-

based joint-band models along long-term temporal axes. Although this frontend-based

approach to memory inclusion succeeds in achieving only modest BWE performance im-

provements, it requires minimal modifications to the baseline memoryless system, involves

no increases in extension-stage computational cost nor in training data requirements, and

hence, provides an easy and convenient means for exploiting memory to improve BWE

performance. In our second approach, we focus instead on modelling the high-dimensional

distributions underlying sequences of joint-band feature vectors. In particular, we made use

of the correspondence of GMM component densities to underlying classes and the strong

correlation between neighbouring frames in order to devise a GMM training algorithm

that effectively breaks down the infeasible task of modelling high-dimensional pdf s into a

series of progressive tree-like time-frequency-localized estimation operations. Incorporat-

ing the temporally-extended GMMs obtained as such into our dual-mode BWE system

results in substantial performance improvements that exceed not only those of our first

delta coefficient-based approach, but also other comparable model-based memory-inclusive

BWE techniques, notably those based on HMMs.
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Chapter 6

Conclusion

For the purposes of a quick review, we conclude this thesis by first presenting an extended

summary of all content presented throughout the thesis, with particular emphasis on our

findings and contributions. Representing future work, we then discuss the potential avenues

for improving the techniques and approaches presented herein, followed by a brief discussion

of their applicability to BWE in general, as well as to contexts other than that of BWE.

6.1 Extended Summary

6.1.1 Motivation

This thesis presents our work on improving the artificial bandwidth extension (BWE) of

narrowband speech—the bandlimited speech of traditional telephony. To introduce BWE

and show its relevance, we started in Chapter 1 by providing a historical background

of traditional telephony. We noted, in particular, that, while traditional telephony has

undergone many advances since its inception in 1876, the bandwidth of telephony speech

has always been rather limited relative to the full spectrum of speech. This followed

as a result of technological limitations as well as the necessity to balance quality and

intelligibility with economic viability. During the early twentieth century, for example,

telephony speech was bandlimited to as low as 2.5 kHz [5]. Subsequently standardized in

the 1960s, the bandwidth of telephony speech has been limited ever since to the 0.3–3.4 kHz

narrowband range [8, 9]. As illustrated in Figure 5.2, however, the frequency spectra of

speech can extend to over 20kHz. More importantly, many of the distinctive acoustic

features of several classes of sounds—mainly, fricatives, stops, and affricates—were shown
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in Section 1.1.3.1 to lie outside the narrowband range. As such, narrowband speech exhibits

not only a toll quality that is noticeably inferior to its wideband counterpart extending up

to 7–8kHz, but also reduced intelligibility especially for consonant sounds.

As an alternative to the costly-prohibitive complete wideband digitization of the now-

ubiquitous traditional telephone network, wideband speech reconstruction through BWE

attempts to regenerate the highband frequency content above 3.4 kHz—and, optionally, the

lowband content below 300Hz—lost during the filtering processes employed in traditional

networks. Applied in the receiving end, BWE thus provides backward compatibility with

existing networks. Based on the assumption that the missing highband spectral content to

be reconstructed is sufficiently correlated with that of the available narrowband input, BWE

has been the subject of considerable research where the objective is to learn as much of such

cross-band correlation as possible in a training stage. The work in [109, 124, 125] presented

evidence, however, that this cross-band correlation is, in fact, rather low when the joint-

band information being modelled is limited to only that of conventionally-parameterized

speech signals—i.e., when only the information from quasi-stationary 10–30ms segments of

narrowband and highband speech is considered. Despite this low cross-band dependence,

the majority of BWE techniques proposed in the literature have relied—and continue to

rely—on memoryless mapping between the spectra of both bands, thereby making no use

of the significant information carried by the dynamic spectral and temporal events in long-

term speech segments. Quantifying and exploiting such information—referred to herein as

speechmemory—for the purpose of improving BWE performance represents the focus of our

work presented here. To illustrate their scope and importance for perception, the spectral

and temporal characteristics comprising speech memory were discussed in Section 1.2 and

are further detailed in Appendix A. Among the observations made in these discussions,

the most notable is that phoneme perception is likely accomplished by analyzing dynamic

acoustic patterns over segments corresponding roughly to syllables, and hence, to improve

the perceived quality of extended speech, BWE systems should in turn exploit long-term

information extending up to syllabic durations.

6.1.2 Reviewing BWE techniques and principles

To allow for a detailed and comprehensive description of the joint-band modelling ap-

proaches used in Chapters 3–5 as well as to put our BWE techniques proposed therein into
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perspective, we followed up on the introduction of Chapter 1 above by presenting a broad

review of previous BWE work and underlying principles in Chapter 2. In particular, the

early non-model-based approaches to BWE were first discussed in brief, focusing thereafter

on the prevalent state-of-the-art model-based approaches. Using primarily the source-filter

speech model, these latter approaches reduce the BWE problem of highband speech recon-

struction to two separate tasks—generating a highband excitation signal and a highband

spectral envelope [49, 50]. These two elements of the highband signal can then be combined

in a linear prediction (LP) synthesis filter to reconstruct highband speech, which, in turn,

is added to the narrowband input in order to generate wideband speech.

Since it is the quality of reconstructed highband envelopes, rather than that of the

excitation signal, that was shown—in, e.g., [39, 58, 88]—to be far more important for the

subjective quality of extended speech, we devoted the greater part of our review in Chap-

ter 2 to those approaches concerned with modelling the cross-band correlations of spectral

envelopes. Ranging in complexity from simple linear mapping to the advanced statistical

modelling approaches based on Gaussian mixture models (GMMs) where highband speech

is reconstructed by minimum mean-square error (MMSE) estimation given the narrowband

input, the surveyed techniques were shown to vary greatly in their ability to model the com-

plex and non-linear cross-band correlations. With hidden Markov models (HMMs) being

the basis of memory-inclusive exceptions to the mostly-memoryless approach to BWE in

the literature, the advantages and drawbacks of HMM-based BWE techniques were also

discussed. We noted, in particular, that, while HMMs exploit interframe dependencies

for joint-band modelling, their use of speech memory is rather limited to the short-term

20–40ms durations. This follows as a result of typically using first-order-only HMMs to

mitigate the higher complexity and data requirements associated with more general HMMs.

By using an illustrative example in Section 2.3.3.5, we then showed that GMMs, in par-

ticular, represent the tool most suited to our purpose—investigating the role of speech mem-

ory in improving BWE performance through apt cross-band correlation modelling. More

specifically, not only do GMM-based BWE techniques outperform those based on the com-

mon codebook mapping approach at comparable or slightly higher complexity, but they also

contrast with other techniques in that GMMs—as multi-modal density representations—

have an intuitive correspondence with the acoustic classes underlying the joint-band feature

vector distributions being modelled. Since these classes are shared to varying extents by

the representations of both frequency bands, joint-band GMMs inherently learn their cross-
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band statistical properties, thereby improving the ability of MMSE estimation to generate

perceptually-relevant highband spectral envelopes. Indeed, it is this very correspondence

that inspires the two approaches we propose in Chapter 5 for the inclusion of memory into

the joint-band modelling paradigm.

6.1.3 Dual-mode BWE and the GMM framework

Having discussed the principles underlying BWE in Chapter 2, we then continued our pre-

sentation in Chapter 3 by describing the details of our GMM-based BWE technique. Based

on the system proposed in [55], our BWE implementation—illustrated in Figure 3.1—is a

dual-mode technique that exploits equalization in addition to GMM-based statistical mod-

elling. Equalization is used to extend the bandwidth of narrowband speech up to approxi-

mately 4kHz at the high end. The 0.3–4kHz midband-equalized narrowband signal is then

used for the GMM-based MMSE estimation of the complementary highband spectrum in

the 4–8kHz range, with the equalized signal in the 3–4kHz range further processed to

generate an enhanced excitation signal.

Briefly discussed in [55], the motivation for parameterizing spectral envelopes in the

dual-mode BWE system using line spectral frequencies (LSFs) was also discussed in detail

in Section 3.2.2. We showed, in particular, that LSFs guarantee LP synthesis filter stability,

improve the robustness of BWE to estimation errors, and improve the ability of GMMs to

capture perceptually-significant events in spectral envelopes.

Given the central role of GMMs in our work presented in Chapters 4 and 5 on the

inclusion of speech memory, as well as in BWE in general, the GMM framework was

studied further in more detail in Section 3.3. First, the derivation of the MMSE esti-

mation of target features given those of the source and using joint-density GMMs was

presented. Then, by using the obtained formulae to derive the exact per-frame extension-

stage computational and memory costs of performing MMSE estimation using full- as well

as diagonal-covariance GMMs, we showed that full-covariance GMM are, in fact, more

computationally efficient than those with diagonal covariances for the purpose of achieving

similar BWE performances. By investigating the finer cross- and auto-covariance matrix

properties of the joint-band GMM components, we further illustrated a tight correlation be-

tween source-target conversion performance and full-covariance GMMs. Representing one

of the contributions in this thesis, this analysis and subsequent conclusion challenge the
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assumption commonly stated and used in the source-target conversion literature in general,

e.g., in [40], whereby the performance obtained using a GMM with a particular number

of full-covariance Gaussians can be obtained by a corresponding GMM with a larger set

of diagonal-covariance Gaussians in a manner that nevertheless preserves, or even reduces,

overall computational or memory costs, or both. Indeed, this very assumption has led

to the predominant use of diagonal-covariance GMMs in GMM-based BWE research and

implementation, despite the fact that, with the continuous advances in offline processing

capabilities, the computational cost of the offline maximum likelihood (ML) GMM training

stage has become rather less important than the cost of online real-time MMSE estimation.

Based on this analysis, we thenceforth focused only on the use of full-covariance GMMs in

the remainder of our work.

After describing the measures used to evaluate the BWE performances discussed through-

out our work, the memoryless LSF-based dual-mode BWE performance baseline was then

presented. Unlike previous BWE works where only a single performance measure is typi-

cally used, we chose an ensemble of objective measures that collectively ensure our reported

results are: (a) comparable to those of previous works (via log-spectral distortion, or dLSD),

(b) strongly correlated with subjective measures (via the perceptual evaluation measure

of speech quality, or Q
PESQ

), and (c) sufficiently detailed to allow the individual evalua-

tion of gain-related and spectral shape-related BWE performance improvements (via the

symmetrized Itakura-Saito and Itakura distortion measures, or d∗
IS
and d∗

I
, respectively).

6.1.4 Modelling speech memory and quantifying its role in improving

cross-band correlation

Although the few memory-inclusive BWE techniques proposed in the literature report

performances that are superior to those of the conventional memoryless approach, none of

these works has explicitly quantified the cross-band correlation gains associated with the

use of speech memory. In fact, as noted in Section 6.1.1 above, only a handful of works

have even attempted to verify and quantify the cross-band correlation assumption itself.

As such, Chapter 4 was devoted to modelling speech memory and quantifying its effect to

determine the value and potential of the inclusion of such memory in terms of improving

BWE performance.

Building on the work of [109] where the certainty about the high band given the narrow
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band was quantified as the ratio of the mutual information (MI) between the two bands to

the discrete entropy of the high band, we estimated and compared highband certainties in

both the memoryless and memory-inclusive conditions. With the MI estimated numerically

as in [109] using stochastic integration of test features vectors over the marginal and joint

narrowband and highband pdf s modelled by GMMs, our contributions in terms of highband

certainty estimation are four-fold:

(a) First, we estimate discrete highband entropies through resolution-constrained vector

quantization (VQ) in steps of increasing resolution such that the spectral distortion

associated with our entropy estimates is guaranteed to fall below the 1dB dLSD spec-

tral transparency threshold proposed in [115]. By using VQ as such rather than

first estimating differential highband entropy followed by entropy-constrained scalar

quantization (SQ) as proposed in [109], we make use of the space filling, shape, and

memory advantages of VQ to obtain superior estimates for the discrete highband

entropy, which, in turn, lead to more accurate highband certainty estimates.

(b) Secondly, unlike the SQ-based approach of [109], our proposed VQ-based technique

does not require any correspondence between the quantization mean-square error

and dLSD spectral error. This allows the estimation of highband certainties for any

form of spectral envelope parameterization as long as dLSD can be calculated from the

quantized feature vectors.

(c) Thirdly and most importantly, we quantify the cross-band correlation gains attain-

able by memory inclusion by explicitly incorporating speech memory into the feature

vector spaces used for highband certainty estimation. The ability to estimate high-

band certainty with memory incorporated in the parameterization frontend as such

follows as a result of the ability provided by our proposed technique to estimate the

spectral error associated with quantization over any arbitrary subspace of the entire

vector-quantized highband feature vector space.

(d) Finally, our last contribution, detailed in Sections 4.3.5 and 4.4.3.2, is the adaptation

of the dLSD(RMS) lower bound proposed in [125] to our context of quantifying the role of

memory inclusion. Derived as a function of the aforementioned information-theoretic

measures, this bound effectively translates highband certainty estimates into an upper

bound on achievable BWE performance.

Taking advantage of the parameterization-independence property of our VQ-based tech-

nique discussed above, we compared two different parameterizations in terms of their ability
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to retain the mutual cross-band information relevant to BWE. In addition to the LSFs used

by our dual-mode BWE system, we also chose mel-frequency cepstral coefficients (MFCCs)

for our information-theoretic investigation specifically for their superior MI and class sepa-

rability properties relative to several common speech parameterizations. These properties,

demonstrated in [126, 135], suggest the superior aptitude of MFCCs for the particular task

of capturing the cross-band correlation information crucial for BWE.

To incorporate memory into our information-theoretic investigation of cross-band cor-

relation, we used delta features as a means by which to explicitly parameterize long-term

speech dynamics in each of the two frequency bands. Detailed in Sections 4.4.1 and 4.4.2,

delta features can be calculated for any form of conventional static parametrization, and,

more importantly, allow us to to model long-term information in speech segments extending

up to 600ms.

Having detailed our methodology for highband certainty estimation as well as our

frontend-based approach to modelling speech memory as summarized above, we then pro-

ceeded to quantify the role of speech memory in Section 4.4.3 by estimating highband

certainties in the multiple scenarios and contexts in which the dynamic (static+delta) rep-
resentation of one or both frequency bands can be applied. This investigation led us to

several conclusions which can be itemized as follows:

(a) Incorporating the long-term speech dynamics of only one of the two frequency bands

into the joint-band model achieves marginal cross-band correlation gains. We showed,

in particular, that narrowband spectral dynamics provide minimal information about

the properties of static highband spectra; appending delta features to the static nar-

rowband parameterization—without any truncation in the dimensionalities of the

static or delta features—resulted in, roughly, a mere 2% relative increase in highband

certainty when using MFCCs, 5% when using LSFs.

(b) In contrast, the inclusion of memory via delta features into the parameterizations

of both frequency bands was shown to result in considerable cross-band correlation

gains, and hence, considerably higher certainty about the dynamic representation of

highband spectra. More specifically, the addition of delta features to the static nar-

rowband and highband MFCC-based parameterizations resulted, roughly, in a relative

increase of 99% in terms of dynamic highband certainty, 115% for LSF-based param-

eterizations. Under the constraint of fixed dimensionality where the reference per-

band dimensionalities are preserved by substituting—rather than appending—delta
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features in lieu of high-order static features, the relative gains in dynamic highband

certainty are reduced to ∼ 78% and ∼ 10% for MFCCs and LSFs, respectively.

(c) Incorporating memory into the modelling frontend via delta features involves a time-

frequency information tradeoff. Resulting from the non-invertibility of delta features,

this tradeoff was demonstrated by comparing the highband certainties achieved when

delta features are appended to their static counterparts relative to those certainties

achieved in the substitution scenario. As noted in Item (b) above, the net effect of

such tradeoff on highband certainty is a maximum relative increase of, roughly, 78%

rather than 99% for MFCCs, or only ∼ 10% rather than ∼ 115% for LSFs. These

figures were summarized in Table 4.4.

(d) The information-theoretic gains achieved by memory inclusion reach saturation at

long-term durations of ∼ 200ms. Corresponding to the syllabic 4–5Hz rate, our

results were thus found to coincide with earlier findings regarding the acoustic-only

information content in the long-term speech signal.

(e) MFCCs were found to consistently outperform LSFs in capturing the cross-band

correlation information central to BWE. The considerable difference in performance

is reflected in the highband certainties measured in both the memoryless and memory-

inclusive conditions summarized in Tables 4.2 and 4.4, respectively. With the MFCC-

based highband certainties reaching double those based on LSFs in many cases, we

note in particular the certainties measured in the memory-inclusive scenario where

the delta features of low-order static features replace an equal number of high-order

parameters in the reference memoryless static feature vectors—36.5% for MFCCs

compared to 17.5% for LSFs. These performance differences were attributed to the

improved class separability associated with MFCCs, as well as the lower spectral error

associated with vector-quantizing truncated MFCC feature vectors. By being less

susceptible as such to the adverse effects of the time-frequency information tradeoff,

MFCC-based implementations of BWE were concluded to be potentially superior to

those based on LSFs, particularly under constraints of fixed dimensionality.

Finally, we note that the practical significance of these information-theoretic gains was fur-

ther demonstrated by making use of the aforementioned bounding relation between achiev-

able MFCC-based dLSD(RMS) performance and the estimated information-theoretic measures.

In particular, we showed that the ∼ 99% and ∼ 78% relative highband certainty gains mea-

sured, respectively, in the appending and substitution scenarios, correspond, respectively,
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to 1.66 and 0.82dB decreases in the best achievable dLSD(RMS) performance of BWE. By

comparing these potential improvements to those reported in earlier BWE works, we con-

firmed that memory inclusion can indeed result in BWE performance improvements that

are, at least, comparable to those of oft-cited BWE techniques.

6.1.5 Incorporating speech memory into the BWE paradigm

Using the conclusions of Chapter 4 as the basis for subsequent work, we then focused in

Chapter 5 on converting the information-theoretical gains quantified as discussed above

into tangible BWE performance improvements.

First, we started by investigating the reconstruction of speech from MFCCs in order

to exploit the superior highband certainties demonstrated in Chapter 4 for the inclusion

of memory using MFCCs, rather than LSFs. Such reconstruction has been quite limited

in the speech processing literature, in general, due to the non-invertibility of several steps

employed in MFCC parameterization—namely, using the magnitude of the complex spec-

trum, the mel-scale filterbank binning, and the possible higher-order cepstral coefficient

truncation. Indeed, this difficulty of synthesizing speech from MFCCs has effectively pre-

cluded their use in the context of BWE, despite their superior MI and class separability

properties previously demonstrated in [126, 135]. Using high-resolution inverse discrete

cosine transform (DCT) per [151], followed by LP analysis on the resulting high-resolution

power spectra, we showed, however, that fine spectral detail can be obtained from the

GMM-based MMSE estimates of highband MFCCs, with the DCT cosine functions acting

as interpolation functions. As shown in Figure 5.1 and Tables 3.1 and 5.1, incorporating

this MFCC inversion scheme into our memoryless dual-model BWE system enabled us to

reconstruct highband speech with a quality that is nearly identical to that obtained using

LSFs, despite the partial loss of information associated with MFCC parameterization.

Given the ability provided by our proposed MFCC-based BWE system to potentially

exploit the superior certainty advantages associated with MFCC-based memory inclusion,

we then proceeded by presenting the first of two distinct and novel approaches for memory-

inclusive BWE. In particular, we followed the same methodology used to quantify the

information-theoretic effects of memory in Chapter 4 by incorporating such memory exclu-

sively into the MFCC parameterization frontend in the form of delta features. Despite the

fact that, in practice, only the MMSE-estimated static highband features can be used for
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the reconstruction of highband spectral envelopes, we showed that the certainty achievable

for static-only highband MFCCs can nevertheless be improved by the inclusion of highband

delta features—in addition to those of the narrow band—into the joint-band GMM-based

model. Illustrated in Figure 5.4, this finding was confirmed by demonstrating the effect of

the strong correlation between the delta parameterizations of both bands in improving the

ability of the overall dynamic joint-band GMM to model the underlying phonemic classes,

specifically in the static highband subspace that is, in fact, the only highband space actually

needed for extension.

Given the aforementioned time-frequency information tradeoff imposed by the non-

invertibility of delta features, we then performed an empirical optimization of dimension-

alities in order to determine the optimal allocation of the available degrees of freedom

among the static and delta features of both frequency bands such that static highband

certainty is maximized. Integrating frontend-based memory inclusion optimized as such

into our MFCC-based BWE system, as shown in Figure 5.6, resulted in relative perfor-

mance improvements ranging from 2.1% in terms of Q
PESQ

to 15.9% for d∗
IS
, with a BWE

algorithmic delay of 80ms resulting from the non-causality of delta feature calculation.

Although modest, these improvements were shown to coincide with the highband certainty

gains measured when only the static highband subspace is considered. Moreover, they were

achieved with no increases in run-time computational cost nor in training data require-

ments, and required only minimal modifications to the memoryless BWE system. As such,

our proposed frontend-based memory inclusion approach provides a simple, inexpensive,

and convenient means by which to realize some of the BWE performance improvements

achievable by the inclusion of memory.

As an alternative to using a frontend dimensionality-reducing transform as the means

for incorporating memory into the joint-band BWE model as discussed above, we focused

instead in our second proposed approach on modelling the high-dimensional distributions

underlying sequences of joint-band feature vectors. In addition to addressing the delta fea-

ture drawback of non-causality as well as the time-frequency information tradeoff associated

with frontend dimensionality-reducing transforms in general, transferring the memory in-

clusion task from the frontend to the modelling space allows us to exploit prior knowledge

about the properties of GMMs and speech to improve our models of the underlying classes

along spectral and temporal axes. Indeed, by using: (a) the correspondence of GMM com-

ponent densities to underlying classes, and (b) the strong correlations between neighbouring
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speech frames, we showed that the problem of modelling high-dimensional GMM-based pdf s

can be transformed into a time-frequency state space modelling task where the complex-

ities associated with high-dimensional GMM parameter estimation can be circumvented.

More specifically, we used sequences of past frames to grow high-dimensional GMMs in

a progressive tree-like fashion, with the GMM component densities treated as states, or

classes, corresponding individually to time-frequency-localized regions—regions that collec-

tively span the full space underlying the modelled feature vector sequences. At each step

of this tree-like progression, previously-estimated component densities are viewed as par-

ent states from which finer child states can be estimated by incorporating the incremental

information obtained by causally extending the input training data sequences—i.e., extend-

ing the sequences of static feature vectors further into the past. Illustrated in Figure 5.8,

this progressive tree-like approach to the inclusion of memory into joint-band GMMs thus

effectively breaks down the infeasible task of modelling such high-dimensional temporally-

extended GMMs into a series of localized modelling operations with considerably lower

complexity and fewer degrees of freedom.

In formulating our tree-like model-based approach to memory inclusion, we further pre-

sented two novel techniques intended to to ensure the robustness of the obtained temporally-

extended GMMs to the oversmoothing and overfitting risks associated with GMM param-

eter estimation in high-dimensional settings in general:

(a) Since dimensionalities increase progressively with each step of our tree-like mod-

elling technique, the overlap between the classes underlying the temporally-extended

GMMs under training also increases progressively. This, in turn, increases the risk

of overfitting. In contrast to the conventional Bayesian clustering approach where

the risk of overfitting is compounded by hard-decision classification, our proposed

fuzzy GMM-based clustering technique uses soft decisions to partition training data

into fuzzy time-frequency child clusters, which are then used to estimate the param-

eters of the densities underlying the aforementioned time-frequency-localized regions

as discussed below. Through an illustrative example, we showed this approach to

be quite successful in alleviating the risk of overfitting, while simultaneously pre-

cluding any oversmoothing that can potentially result from relaxing the conventional

hard-decision classification of training data.

(b) To incorporate the soft membership weights of the data subsets obtained by fuzzy

clustering into the aforementioned estimation of localized pdf s, we also proposed and



296 Conclusion

derived a weighted implementation of the conventional Expectation-Maximization

(EM) GMM-training algorithm. In particular, new iterative EM update formulae

were derived such that a weighted log-likelihood function that takes account of the

soft membership weights is maximized. The convergence of our iterative weighted

algorithm was then proved.

In addition to these two algorithms, a third fundamental component of our tree-like GMM

temporal extension algorithm was also formulated in order to maximize the information

content of the resulting GMMs. Similar in concept to maximizing the entropy of a coded

speech signal by exploiting the well-known redundancies in speech signals, this proposed

pruning algorithm first measures the spectral variability of the incrementally-localized child

data subsets—obtained by fuzzy clustering then used to train child state pdf s—using a

distribution flatness measure in order to decide if the variability is sufficiently high to

warrant splitting the parent state into multiple children states, prior to performing weighted

EM. In a second post-EM step, we also apply a cardinality test to ensure that descendent

child states—to be estimated in the future increment of the tree-like algorithm—can be

reliably estimated without the risk of overfitting. Summarizing the overall tree-like GMM

training algorithm, Table 5.5 and Figure 5.10 concisely illustrate how these component

techniques are all melded together.

By formulating novel measures based on covariance matrix norms and normalized cep-

stral distances, respectively, we were then able to demonstrate the reliability of our high-

dimensional temporally-extended GMMs in terms of robustness to both oversmoothing

and overfitting. We thereafter described the modifications to be applied to our memoryless

MFCC-based BWE system such that the dual-mode system can exploit the superior cross-

band correlation properties of temporally-extend GMMs for improved highband speech

reconstruction. Illustrated in Figure 5.12, these model-based modifications address the

drawbacks of our frontend-based approach—namely, the time-frequency information trade-

off and the non-causality, and associated algorithmic delay, imposed by delta features—

while preserving its advantage in terms of the flexibility it provides for the inclusion of

memory to varying extents—the primary advantage of delta features and simultaneously

the deficiency of the oft-cited first-order HMM-based methods.

Our temporally-extended GMM-based BWE technique was then evaluated extensively

in terms of both BWE performance and extension-stage computational costs. Relative to

the memoryless baseline, results showed that our model-based approach to memory in-
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clusion achieves considerable performance improvements across all performance measures,

with the best improvements ranging from a relative 9.1% in terms of Q
PESQ

to 56.1% for

d∗
IS
, at a causal memory inclusion of 120ms. Compared to the performance results achieved

using our delta coefficient-based BWE technique, these results also showed that our sec-

ond proposed technique significantly outperforms the frontend-based approach in terms

of successfully translating the previously-quantified information-theoretic gains of memory

inclusion into measurable BWE performance improvements. Although the advantages of

model-based memory inclusion in terms of performance and real-time practicality were

achieved at a run-time computational cost increase of nearly four orders of magnitude,

relative to the memoryless baseline as well as to the computationally equally-inexpensive

frontend-based approach, we nonetheless showed that these computational costs are within

the typical capabilities of modern communication devices—e.g., tablets and smart phones.

Finally, through a detailed performance comparison, our temporally-extended GMM-

based BWE technique was also shown to outperform comparable techniques incorporating

model-based memory inclusion, in some cases by a wide margin. The techniques compared

ranged from those based on predictive VQ, e.g., [131], to the HMM-based techniques often

cited as being more successful, e.g., [87]. By illustrating this comparison, Figure 5.19

provides a rather informative and concise perspective of the relative success of current

state-of-the-art BWE landscape.

6.2 Potential Avenues of Improvement and Future Work

In addition to ideas that can potentially improve the performance and generalization of our

proposed BWE techniques, we now discuss relevant research avenues unaddressed in this

thesis due to scope, time, and space limitations. These ideas and topics of interest can be

categorized by context as follows.

6.2.1 Dual-mode BWE and statistical modelling

(a) As detailed in Section 3.2.3, the dual-mode technique of [55] upon which our BWE im-

plementation is based uses equalization to recover—rather than reconstruct by GMM-

based statistical mapping—the lowband and midband content in the 100–300Hz and

3.4–4kHz ranges, respectively. This approach followed from the higher likelihood

for improved speech reconstruction with equalization given the knowledge available
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about the filter response characteristics of the G.712 telephone channel. Although our

focus in this thesis has been the reconstruction of content above 4kHz, the percep-

tual importance of the lowband and midband ranges presents a motivation for further

research. We noted in Section 1.1.3.1 that the lowband content adds naturalness to

the speech signal as well as improve the perception of nasals and voicing in fricatives,

stops, and affricates. Similarly, we showed in Section 1.1.3.3 that the 0.8bark 3400–

3889Hz subband was found in [27] to be more perceptually important than many

other subbands outside the 300–3400Hz range. Among the ideas to be investigated

to improve the recovery of speech in both these ranges, augmenting equalization with

statistical modelling is of particular interest. More specifically, by statistically mod-

elling narrowband speech jointly with the true gain in the bands to be equalized, the

reconstruction of lowband and midband speech can be separated into signal shape

recovery via equalization in conjunction with signal gain reconstruction via GMMs.

Alternatively, the statistical estimation of equalization gain can be performed as a

corrective post-equalization step where a gain ratio—rather than absolute gain—is

estimated via GMMs. This latter approach would, in essence, be similar to that used

for the estimation of the highband excitation gain—calculated per Eq. (3.3) as the

square root of the ratio of energy in the original highband signal to the energy in the

reconstructed signal—as described in Section 3.2.5.

(b) Throughout our work, our approach to statistical modelling has been exclusively

speaker-independent. Notwithstanding the additional training and testing data re-

quirements in terms of size and labelling, performing joint-band modelling in a

speaker-dependent manner, however, has the potential to considerably improve the

MMSE-based estimation of highband speech. Indeed, as noted in Section 4.4.3.2, the

speaker-dependent HMM-based BWE technique of [39], for example, was shown to

outperform the corresponding speaker-independent implementation by an average of

dLSD(RMS) ≃ 1dB. Given the observation that dLSD(RMS) performance improvements are,

in general, only slightly higher than the corresponding dLSD improvements, similar

improvements achievable by introducing speaker dependence would thus potentially

be comparable to those achieved by the best performing BWE techniques. This pro-

jection follows directly from a comparison to the ranges illustrated in Figure 5.19 for

the dLSD performance improvements achieved by state-of-the-art BWE techniques.
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6.2.2 Frontend-based memory inclusion

(a) In contrast to our frontend-based approach to memory inclusion where only the first-

order regression of long-term dynamics was captured via delta features, the HMM-

based techniques of [87] and [163] additionally use delta-delta features to parame-

terize the second-order regression. As discussed in Section 5.3.5.3, however, these

techniques rely primarily on the first-order HMM state transition probabilities to

model the cross-band correlation of speech dynamics. This minor role of dynamic pa-

rameterization in these techniques is emphasized by the absence of any information

regarding: (a) the durations used to calculate the first- and second-order delta fea-

tures, and more importantly, (b) the contribution of such features to the overall BWE

performance improvements reported therein. Although the improvements achieved

by our delta coefficient-based BWE technique were rather modest, the improvements

achieved by the additional inclusion of delta-delta features in the field of automatic

speech recognition (ASR) motivates us to investigate their benefits, or lack thereof, in

the context of BWE. Worthy of note in this context is that, in addition to their effect

in capturing speech dynamics, first- and second-order delta features applied in the

spectral domain—rather than in the typical cepstral domain—were recently shown

to improve robustness to additive noise and reverberation [191].

(b) As discussed in Section 4.4.2, the differential transform used to generate delta features

can be viewed as as a special case of dimensionality-reducing transforms that com-

pact the temporal information from sequences of static feature vectors into a single

vector of dynamic features. From this perspective, we noted that other transforms

can then be equally applied for the purpose of memory inclusion, most notably those

of linear discriminant analysis (LDA) and the Karhunen-Loève transform (KLT). In

comparison to the differential transform of Eq. (4.34), LDA is characterized by its

superior discriminative ability of the underlying classes while the KLT is known for

its superior decorrelating properties. As a result of their advantages, LDA and the

KLT were both shown in [149] to outperform delta features in terms of encoding

temporal information from sequences of static feature vectors. Since that compar-

ison was performed in the context of a digit recognition task, however, it does not

account for the BWE-specific effects of time-frequency information tradeoff imposed

by the non-invertibility of all three transforms. Nevertheless, the superior temporal
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compaction demonstrated in [149] for LDA and the KLT suggests a time-frequency

information tradeoff that is potentially more favourable for the purpose of cross-band

correlation modelling than that associated with delta features. As such, the inclusion

of memory via the addition of LDA- or KLT-based dynamic features to the static

features necessary for speech reconstruction represents a research topic of interest.

6.2.3 Tree-like GMM temporal extension

Despite the superior BWE performance achieved using our tree-like memory inclusion al-

gorithm, we believe that the generalization and modelling performance of our algorithm

can be further improved through some modifications. Indeed, comparing the best results

associated with the GG◊∣K=4 tuple in Table 5.6, to the information-theoretic gains reported in

Table 4.4 for the memory-inclusive scenario, suggests that there are additional performance

gains to be yet achieved. More specifically, Table 4.4 indicates that the highband certainty

gains associated with memory inclusion translate to a range of 0.82–1.62dB of absolute

improvement in terms of the aforementioned lower bound of BWE dLSD(RMS) performance.

In comparison, the maximum 0.62dB dLSD improvement reported in Table 5.6 corresponds

to only 0.73dB in terms of dLSD(RMS). Hence, the improvements attained by our model-based

memory inclusion approach can theoretically be doubled. To realize these potential gains,

we list the following modifications to our algorithm as future avenues of research:

(a) As described in Operation (c) of Section 5.4.2.3, the splitting factor, J , controls the

branching complexity of our tree-like training algorithm by defining the number of

child states to be derived from each lth-order parent state. To minimize overfitting

while maximizing the information content of these lth-order child state pdf s, the

branching complexity was subsequently moderated by the pruning described in Op-

eration (d), with the result that the effective number of child states to be derived

for each lth-order parent state is a binary number given by ∣J (l)i ∣ ∈ {1, J}. Rather

than constrain the progressive generation of time-frequency states in such a binary

hard-decision manner, however, a gradual pruning approach may be more beneficial.

In particular, the pre-EM pruning condition of Eq. (5.63) can be relaxed such that the

distribution flatness, ρi, of each (i ∈ I(l))th time-frequency-localized data subset is

repeatedly estimated based on G(0)Y initialization GMMs with decreasing complexity—

in terms of the number of Gaussian components, J—until the distribution flatness
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exceeds the specified flatness threshold, ρmin, or the minimum number of child states,

i.e., ∣J (l)i ∣ = 1, is reached. In other words, Eqs. (5.60), (5.61), (5.62) are repeated

with descending values for J until the maximum value for 1 ≤ ∣J (l)i ∣ ≤ J is found such

that the right-hand side condition of Eq. (5.63) is satisfied. As a result of the higher

resolution used as such to model the lth-order time-frequency-localized distributions,

this gradual pruning approach should, in theory, result in an improved global model

for the entire temporally-extended joint-band space at memory inclusion order l.

(b) As described in Operation (a) of Section 5.4.2.3, our fuzzy clustering algorithm was

proposed in order to account for the overlap between the lth-order child classes when

partitioning the associated lth-order parent data into corresponding time-frequency-

localized child subsets (which, in turn, become the (l + 1)th-order parent subsets).

To control the softness of this classification, the fuzziness factor, K, was introduced.

The extent of the expansion of the partitioned child subsets is determined by using

normalized posterior probabilities in Eq. (5.19) to calculate K membership weights—

and hence, K different destination child subsets—for each data point in the parent

subset. In subsequently implementing this fuzzy clustering approach within our tree-

like GMM training algorithm, a fixed value for K was used.

Although the normalization used in Eq. (5.19) allows subset expansion to account for

the actual extent of class overlap (represented by overlap in the tails of the Gaus-

sian pdf s corresponding to the underlying time-frequency classes), using a fixed value

for K for all classes spanning the entire lth-order time-frequency space results in

the same expansion complexity for all classes, regardless of differences in terms of

the extent of overlap. However, time-frequency regions where there is minimal class

overlap do not require the same high values for K otherwise needed in regions with

high overlap in order to achieve the same modelling accuracy. Accordingly, using

dynamic overlap-dependent values for K—rather than quantitatively expand all sub-

sets equally through a uniform value—allows us to make more efficient use of the

available training resources, and hence, achieve a potentially better overall (l + 1)th-
order GMM-based model. To that end, K can be optimized dynamically during the

training algorithm of Table 5.5 as a function of the areas under the overlapping tails

of the Gaussian densities representing lth-order child classes. Alternatively, fuzzy

clustering can be performed in an iterative manner—independently for each parent
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data subset—with the value of K incrementally increased at each iteration until a

stopping criterion associated with the change in child subset mean and/or variance

is reached. Similar in concept to the stopping criteria used in iterative EM or VQ

training (where the change in training data likelihood, or mean-square error in the

case of VQ, is compared to a particular threshold after each EM iteration), a stop-

ping criterion based on the change in the parameters of child subset distributions

corresponds to the convergence of the iterative fuzzy clustering towards a particular

classification accuracy.

(c) As detailed in Operation (e) of Section 5.4.2.3, the time-frequency-localized states

obtained via our tree-like GMM growth algorithm have the conditional independence

properties of Markov blankets as defined in [179].185 For the localized subsets ob-

tained by fuzzy clustering, in particular, these conditional independence properties

are rather evident for all memory inclusion orders of l > 0. For each lth-order time-

frequency-localized parent data subset, Vz(l),w(l)i , our fuzzy clustering algorithm exclu-

sively uses the corresponding ∣J (l)i ∣-modal pdf given by the GMM, G(l)Zi , to cluster the

data into ∣J (l)i ∣ lth-order child subsets, {Vz(l),w(l)ij }
j∈J

(l)
i

, per Eqs. (5.18)–(5.21). Since

G(l)Zi is itself estimated exclusively for the Vz(l),w(l)i parent subset using weighted EM,

it is clear that the {Vz(l),w(l)ij }
j∈J

(l)
i

child subsets are thus conditionally independent

of all other lth-order parent subsets, {Vz(l),w(l)m }
∀m≠i

, and hence, are also condition-

ally independent of all lth-order child subsets descending from these parent subsets,

i.e., {{Vz(l),w(l)mj }
j∈J

(l)
m

}
∀m≠i

. Using the arguments given in Operation (e) regarding the

correspondence of Eq. (5.67b) to the conditional independence of all child states de-

scending from the same parent state, the {Vz(l),w(l)ij }
j∈J

(l)
i

child subsets can then be

shown to be conditionally independent themselves.

Although these conditional independence properties considerably simplify the overall

training algorithm in Table 5.5 as well as improve its interpretation intuitively, in

reality the time-frequency-localized states underlying all subsets—parent as well as

child subsets—do overlap, and hence, conditional independence among states is, in

fact, rather unlikely. As discussed in Item (b) above, our fuzzy clustering approach

accounts for such overlap via the soft membership weights. However, per Eqs. (5.16)

185See Footnote 161 for the formal definition of Markov blankets.



6.2 Potential Avenues of Improvement and Future Work 303

and (5.19), it only does so for sibling states—states descended from the same parent

state and which correspond to the component densities of one particular GMM mod-

elling a unique parent data subset. In other words, our current implementation of

fuzzy clustering restricts the modelling of class overlap to only that between sibling

classes for all l > 0. Accordingly, it follows that extending the input domain of fuzzy

clustering to all lth-order child states should result in higher-quality localized subsets

as a result of modelling class overlap across the entire lth-order temporally-extended

joint-band space.

Corresponding to a more realistic relaxation of the aforementioned conditional in-

dependence properties, this modification to fuzzy clustering can be implemented by

substituting all references to the priors, Az(l)i = {αz(l)ij ∶= P (λz(l)ij )}j∈J (l)
i

, and densities,

Λz(l)i = {λz(l)ij ∶= (µz(l)ij ,Czz(l)ij )}
j∈J

(l)
i

, of G(l)Zi , ∀i ∈ I(l), in Eqs. (5.16)–(5.21), by the cor-

responding priors and densities of the global lth-order temporally-extended GMM,

G(l)Z , given by Eq. (5.67). In the context of the overall algorithm of Table 5.5, the

modification can be implemented by moving steps (d)–(g) to succeed, rather than

precede, step (h).

(d) In a manner similar to that performed above for the splitting and fuzziness factors, J

andK, respectively, the memory inclusion step, τ , can also be modified to be dynamic,

rather than fixed as illustrated in Figure 5.8. As discussed in Item v of Section 5.4.3.2,

τ indirectly allows us to increase the information content of the temporally-extended

data by leapfrogging redundancies between immediately-neighbouring static frames

when constructing temporally-extended feature vectors. Setting τ dynamically in

a manner dependent on the information content of the concatenated static feature

vectors should thus further increase the overall information content of our tree-like

algorithm. To that end, we could make use of the distribution flatness measure al-

ready introduced in Operation (d) of Section 5.4.2.3 as a means by which to measure

the self-information of the child data subsets obtained by fuzzy clustering. More

specifically, the self-information of child data subsets obtained at a particular mem-

ory inclusion index, l, can be estimated as a function of τ prior to the application of

pre-EM pruning, then used to optimize τ accordingly. It should be noted, however,

that, since the same value of τ must be used for all child subsets at the same lth

order of memory inclusion, such a dynamic information-dependent optimization of
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τ can only be performed globally at each step of our tree-like GMM training algo-

rithm. In other words, the previously-fixed τ now becomes the order-dependent τ(l).
This modification thus contrasts with those discussed above for J and K which can

be dynamically modified on a per-parent-state basis, rather than globally at each

lth order. This modification, to be applied during the temporally-extended GMM

training stage, requires a corresponding—but rather straightforward—change in the

reconstruction of temporally-extended supervectors during the extension stage—more

specifically, replacing nτ in Figure 5.12 by ∑n
m=1 τ(m), for all n ∈ {1, . . . , l}.

(e) As first described in Section 5.4.2.2 then later detailed in Operation (d) of Sec-

tion 5.4.2.3, the variability obtained by pruning in terms of the number of child

states that can potentially be estimated for each parent state, not only increases

the model’s information content, but is also intended to model the large variability

among different speech classes—as well as among different realizations of the same

classes—in terms of the rate of change of spectral properties across time.186 It is this

particular time-dependent variability that HMMs are known to model well through

intra- and inter-state transitions. While using a dynamic information-dependent

memory inclusion step, τ(l), during training and extension-stage mapping—as de-

scribed in Item (d) above—should alone improve the ability of our tree-like algo-

rithm to model such variability, employing a more sophisticated dynamic approach

for the reconstruction of temporally-extended supervectors during the mapping stage

should further improve our ability to account for temporal variations in long-term

dynamics. One such approach is to use dynamic time warping (DTW) [10, Sec-

tion 10.6.2] to dynamically determine the optimal sequence of l + 1 input narrow-

band feature vectors—among all the paths by which l + 1 frames can be chosen

from the lτ + 1 consecutive input vectors resulting from the static frontend at order

l—such that the likelihood of the lth-order sequence constructed by concatenating

these vectors, given the lth-order temporally-extended narrowband GMM obtained

by marginalizing its joint-band counterpart, is maximized. In other words, rather

than construct temporally-extended narrowband supervectors from input static fea-

ture vectors via X(τ,l)t = [XT
t ,X

T
t−τ , . . . ,X

T
t−lτ ]T when using a fixed τ , or via X(τ,l)t =

186See Footnote 139 for a clarifying example of the differences among classes in terms of spectral variability
as a function of time.
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[XT
t ,X

T
t−τ(1),X

T
t−τ(1)−τ(2), . . . ,X

T

t−∑l
n=1 τ(n)]T when using an order-dependent τ(l), we

instead construct X(τ,l)t as X(τ,l)t = [XT
t ,X

T
t−τ+ε(1),X

T
t−2τ+ε(2), . . . ,X

T
t−lτ+ε(l)]T , or asX(τ,l)t = [XT

t ,X
T
t−τ(1)+ε(1),X

T
t−τ(1)−τ(2)+ε(2), . . . ,X

T

t−∑l
n=1 τ(n)+ε(l)]T , respectively, with the

additive time index deviations, {ε(n)}n∈{1,...,l}, determined online during mapping by

DTW such that the likelihood P (x(τ,l)t ∣GX(τ,l)) = ∑M
m=1 α

x(τ,l)
m P (x(τ,l)t ∣λx(τ,l)m ) is maxi-

mized individually for each input x(τ,l)t supervector. As typically done in the appli-

cation of DTW, constraints on the maximum values {ε(n)}n∈{1,...,l} can attain should

be imposed to limit increases in computational complexity as well as to ensure that

a reasonable degree of local spectral continuity is preserved.

6.3 Applicability of our Research and Contributions

As repeatedly noted throughout the thesis, we have attempted to present our research as

generally as possible to emphasize and widen the potential for its application. As such, we

now conclude by briefly discussing the applicability of our work to BWE in general, as well

as to non-BWE contexts.

Despite exclusively using the dual-mode BWE technique of [55] as the vehicle for our

research, it is clear that the approaches proposed in Chapter 5 for the purpose of improving

BWE are easily transferable to other BWE techniques based on the statistical modelling

of cross-band correlation via GMMs. Our frontend- and model-based techniques for the

inclusion of memory can indeed be applied to any BWE technique using the GMM-based

mapping approach of [82], regardless of the type of features used to parameterize speech in

the narrow and high frequency bands. Similarly, we have shown that our GMM- and VQ-

based information-theoretic approach proposed in Chapter 4 for the purpose of quantifying

long-term speech dynamics can be applied to any form of parameterization, as long as

spectral errors can be calculated from that parameterization.

Although these approaches noted above were proposed for the purpose of quantifying

and exploiting speech memory in the context of BWE, they are, in fact, also equally applica-

ble to other contexts where source-target transformation is performed via GMMs. Among

such contexts, the field of speaker conversion, e.g., [40, 159–161], is most notable. Indeed,

many of the similarities between BWE and speaker conversion were discussed through-

out the thesis. Other examples of related GMM-based fields that were not previously

discussed, however, include conversion in the context of text-to-speech (TTS) synthesis,



306 Conclusion

e.g., [78], speaker de-identification, e.g., [192], and articulatory-to-acoustic—and the cor-

responding acoustic-to-articulatory inverse—mapping, e.g., [193]. Since the majority of

these works typically use diagonal-covariance GMMs for source-target transformation, our

investigation and subsequent conclusions in Chapter 3 on the role of GMM covariance

type—where common assumptions about the effects of covariance type on the performance

and computational costs of MMSE-based transformation were challenged—also gain par-

ticular importance.

In addition to these domains, we note that our work on quantifying the information

content of long-term speech can also be beneficial to those of speech coding and enhance-

ment. In particular, our proposed information-theoretic approach can be used to quantify

the relative importance of long-term speech in arbitrary frequency bands—rather than only

in the 0.3–4 and 4–8kHz bands of midband-equalized narrowband and highband speech,

respectively—for the purposes of determining the optimal allocation of coding or robustness

resources. In essence, this application would be similar in concept to the work of [27] where

subjective—rather than objective—evaluations were used to determine the relative impor-

tance of memoryless—rather than long-term—content in several frequency bands within

the 50–7000Hz range. In addition to quantifying the relative importance of different fre-

quency bands, our information-theoretic technique can similarly be used to also evaluate

the long-term information retention capabilities of different speech parameterizations.

Last but not least, we note the relevance of our tree-like GMM training technique to

the machine learning contexts of mixture model-based density estimation and clustering.

As discussed in Section 5.4.2.1, addressing the oversmoothing and overfitting problems as-

sociated with modelling in high-dimensional settings is among the topics these fields are

most concerned with, e.g., [154–158, 174]. Given the success of our tree-like algorithm in

mitigating such dimensionality-related problems in the context of long-term speech mod-

elling, we can project a comparable success for its application—as a whole algorithm as

well as in terms of its individual fuzzy clustering and weighted EM algorithms—to the

general machine learning contexts of density estimation or clustering. This success is, how-

ever, conditional on the requirement that the high-dimensional data to be modelled, or

clustered, has the same properties of long-term speech that made our time-frequency lo-

calization approach possible—namely, (a) a strong correlation across the dimensions of the

feature vectors of the data, and (b) an underlying multi-modal distribution where densities

can intuitively converge to model individual generative classes.
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Appendix A

Dynamic and Temporal Properties of Speech

A.1 Temporal Cues

In addition to the short-term spectral characteristics of Section 1.1.3.1 which act as cues

to voicing, manner and place of articulation (and their longer-term dynamic variants dis-

cussed in Section A.2 below), the perception of speech also exploits many temporal cues

that complement and, in many cases, supersede spectral cues. Indeed, temporal cues have

been shown sufficient to achieve 90% correct identification of words when spectral detail is

severely degraded through substitution by only three broad bands of noise [167]. Moreover,

some languages, e.g., Swedish and Japanese, use duration directly as a phonemic cue, in

the sense that some phonemes differ only by duration and not spectrally [10, Section 5.6.1].

Generally, however, duration is a secondary phonemic cue utilized when a primary cue is

ambiguous; e.g., the /b/ closure duration in the word rabid is normally short; if the closure

is prolonged, rapid is heard. Thus, cues for voicing may be found in the durational balance

between a stop and a preceding vowel. Another example where duration influences percep-

tion is in fricative+sonorant clusters; normally, a short interval (about 10ms) intervenes

between the cessation of frication and the onset of voicing, when this duration exceeds

about 70ms, listeners tend to perceive a stop phoneme in the interval despite the lack of

the burst associated with stops. Place of articulation in stops is also affected by closure

duration in some cases; stop closures tend to be longer for labials than for alveolars and

velars. As such, longer stops bias perception towards labials.

Other temporal cues include voice onset time (VOT) in stop+sonorant clusters—the

time from stop release (the start of the resulting sound burst) to the start of vocal fold
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periodicity—and the timing and duration of pitch and formant transitions before and after

sonorants. These temporal cues are particularly dependent on context as described next.

A.2 Coarticulation and the Inherent Variability in Speech

While short-term spectral features, such as those described in Section 1.1.3.1, provide dis-

tinctive cues for most phones (the physical sounds produced when a phoneme is articulated),

speech does not simply consist of a concatenation of discrete phones with ideal steady-state

characteristics. Rather, vocal tract articulators move gradually from one phoneme’s artic-

ulatory gestures to those corresponding to the next—a property called coarticulation187.

Thus, through coarticulation, phonemes’ acoustic features affect those of several preced-

ing and ensuing phones, often across syllable and syntactic boundaries. For example, lip

rounding for a vowel usually commences during preceding nonlabial consonants by lower-

ing their formants in anticipation of the rounded vowel. While such formant lowering does

not cause the consonants to be perceived differently when spoken in context, it does affect

their spectral properties. Coarticulation thus results in diffusing perceptually-important

phonemic information across time at the expense of phonemic spectral distinctiveness. In

fact, classical steady-state positions and formant frequency targets for many phonemes are

rarely achieved in natural coarticulated speech.

In addition to coarticulation, speech exhibits inherent variability. Repeated pronuncia-

tions of the same phoneme by a single speaker differ from one another, with versions from

different speakers differing to an even higher extent. Comparing segments in identical pho-

netic contexts, a speaker produces standard deviation variations on the order of 5–10ms in

phone durations and 50–100Hz in F1–F3 [10, Section 3.7.1]. Variations in different contexts

beyond these amounts are attributed to coarticulation. Consequently, coarticulation and

the inherent variability of speech result in phonemes with infinite variations of phones that

are rather viewed as consisting of transient and highly context-dependent initial and final

segments, with a steady-state segment in between that is less affected by phonetic context.

A detailed description of the dynamic effects of coarticulation on the spectral and tem-

poral cues of speech is beyond the scope of this work.188 In the following, however, we

187See Footnote 19.
188A detailed and thorough review of coarticulation and its effects on speech perception is provided in

[10, Section 3.7 and Chapter 5].
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demonstrate the significance of such dynamic coarticulation effects on perception:

Vowel identification

When vowels are produced in contexts, i.e., not in isolation, formants undershoot

their targets. Perception of such vowels depends on a complex auditory analysis of

formant movements before, during, and after the vowel. In CVC (consonant-vowel-

consonant) syllables, listeners perform worse in vowel identification when the middle

50–65% of the vowel is excised and played to listeners in isolation, than if the CV

and VC transitions (containing the other 35–50% of the vowel) are heard instead [10,

Section 5.4.3]. Short portions of the CV and VC transitions often permit identification

of the vowel when a large part of the vowel is removed, indicating the importance of

dynamic spectral transitions for vowel intelligibility.

While spectra dominate in regards to vowel perception, temporal coarticulation fac-

tors affect phone identification; e.g., lax and tense vowels tend to be heard when

formant transitions are slow and fast, respectively.

Perception of consonant voicing

As many syllable-final voiced obstruents have weak vocal cord vibrations, the primary

cues may be durational [10, Section 5.5.3.1]: voicing is perceived more often when the

prior vowel is long and has a higher durational proportion of formant steady state to

final formant transition. In French vowel+stop sequences, the duration of the closure,

the duration and intensity of voicing, and the intensity of the release burst, as well as

the preceding vowel duration, all interact to affect voicing perception. In English VC

contexts, the glottal vibration in the vowel usually continues into the initial part of

a voiced stop, whereas voicing terminates abruptly with oral tract close in unvoiced

stops. This difference appears to be the primary cue to voicing perception in final

English stops.

For voicing in syllable-initial stops, VOT seems to be the primary cue [10, Sec-

tion 5.5.3.2]; a rapid voicing onset after stop release leads to voiced stop perception,

while a long VOT cues an unvoiced stop. A secondary cue is the value of F1 at

voicing onset, where lower values cue voiced stops. This follows from the fact that

F1 rises in CV transitions as the oral cavity opens from stop constriction to vowel

articulation. The duration and extent of the F1 rising transition significantly affects

stop voicing perception.
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In consonant clusters within a syllable, only certain sequences of consonants are

permissible. English, for example, requires that obstruents within a cluster have

common voicing, i.e., all voiced or all unvoiced (e.g.,steps, texts, dogs).

Perception of consonant manner of articulation

The timing of transitions to and from vocal tract constrictions associated with conso-

nants influences perception of the consonants; e.g., when steady formants are preceded

by linearly rising formants, /b/ is heard if the transition is short and /w/ if more

than 40ms. With very long transitions (> 100ms), a sequence of vowels beginning

with /u/ is heard instead. In contrast, if falling formants are used, /g/, /j/, and /i/

are successively heard as the transition duration increases [10, Section 5.5.1.1].

Perception of consonant place of articulation

Weak continuant consonants (continuant consonants are all consonants except for

stops) are primarily distinguished by spectral transitions at phoneme boundaries.

Spectral transitions are also more reliable for the perception of consonant place

than steady-state spectra for stops and forward fricatives [10, Section 5.5.2]. In

stop+sonorant sequences, for example, transitions are more important than burst

amplitude for the perception of /b/ than for /d/. Similarly, transitions are more

reliable place cues before nonfront vowels. In the case of unreleased plosives in VC

syllables, spectral transitions provide the sole place cues. For CV stimuli from nat-

ural speech, stop bursts and ensuing formant transitions have equivalent perceptual

weights. In stressed CV contexts and synthetic CV stimuli, however, VOT and am-

plitude also play a role when formant transitions give ambiguous cues; VOT duration

distinguishes labial from alveolar stops (labial stops have the shortest VOTs, while

velars have the longest, with bigger differences for unvoiced stops), and spectrum

amplitude changes at high frequencies (F4 and higher formants) can also reliably

separate labial and alveolar stops: when high-frequency amplitude is lower at stop

release than in the ensuing vowel, labials are perceived [10, Section 5.5.2.1].

Among the phonological constraints of syllable contexts is that consonants in final

nasal+unvoiced stop clusters must have the same place of articulation (e.g., limp, lint,

link).
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A.3 Prosody: Suprasegmental and Syntactic Information

The analysis above illustrates the importance of the dynamic properties of speech as cues

integral to speech perception, but only at the segmental phonological level (i.e., at the

segmental level of sequences of one to three phones at most, and without the aid of lin-

guistic or syntactic information). In particular, we observe that the mapping from phones

(with their varied acoustic correlates) to individual phonemes is likely accomplished by

analyzing dynamic acoustic patterns—both spectral and temporal—over sections of speech

corresponding roughly to syllables [10, Section 5.4.2]. Meaningful speech, however, also

incorporates language-dependent prosody—suprasegmental and syntactic information that

extends beyond phone boundaries into syllables, words, phrases, and sentences. Prosody

concerns the relationships of duration, amplitude, and F0 of sound sequences. A such,

suprasegmental and syntactic information manifests into recognizable long-term acoustic

patterns of rhythm and intonation that assist in recognizing and identifying speech units

smaller than the entire sentence. Prosody, for example, assists in word recognition, es-

pecially in tonal languages, e.g., Japanese, where different F0 patterns superimposed on

identical segment sequences cue different words [10, Section 3.8]. In fact, prosody contains

sufficient information such that speech communication can still be achieved with severely

degraded spectra; Blesser shows in [168] that subjects can converse by exploiting F0, du-

ration, and amplitude, with spectral segmental information effectively destroyed through

spectral rotation at 4kHz (replacing low-frequency content by that at high frequency and

vice versa).

Lexical (word) stress is an example of suprasegmental intonation features that is as

important to the identification of a spoken word as the use of the proper sequence of

phonemes [10, Section 5.7.1]. In English, F0 is the most important acoustic correlate of

stress, duration secondary, and amplitude least important. At a higher level, prosody shifts

from the syllable- and word-highlighting effects of stress to highlighting syntactic features.

The primary function is to aid in segmenting utterances into small phrasal groups and

syntactic structures in order to facilitate the transfer of information; monotonic speech, i.e.,

speech lacking F0 variation, without pauses usually contains enough segmental information

for message intelligibility, but it is also fatiguing to listen to.
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Appendix B

The PESQ Algorithm

B.1 Description

As noted in Section 3.4.3, the calculation of the PESQ score is rather complex as it in-

volves many time- and frequency-domain processing steps over the length of a test speech

signal—assumed to be a few seconds long.189 Indeed, as stated in [120, Section 10], a de-

scription of the PESQ algorithm—illustrated in Figure B.1—can not be easily expressed in

mathematical formulae, but is rather textual in nature. As such, based on [119–122], we

describe the algorithm as follows:
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Fig. B.1: The PESQ algorithm. See [121, Figures 2, 3; 122, Figure 1].

Level alignment The reference and test signals are first aligned to a standard listening

level.
189Most of the experiments used in calibrating and validating PESQ contained recordings of 2–4 sentences

separated by silence, totalling 8–12 s in duration [120, Section 8.1.2].
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Input filtering Signals are filtered (using an FFT) with an input filter to model the

narrowband characteristic of a standard telephone handset in the case of P.862—

extended later in P.862.2 to allow PESQ evaluation for wideband (50–7000Hz) speech

signals.

Time alignment Assuming piecewise constant delays between the reference and test sig-

nals, both signals are time-aligned through a series of steps:

• envelope-based delay estimation using the entire original and degraded signals,

• dividing both signals into utterances,

• envelope-based delay estimation per utterance,

• fine correlation/histogram-based identification of delay per utterance,

• utterance splitting and realignment to test for delay changes during speech.

These steps provide a delay estimate for each utterance, which is then used to find a

per-frame delay for use in the auditory transform.

Auditory transform A psychoacoustic model maps the signals into a representation of

perceived loudness in time and frequency as follows:

• Perceptual frequency warping: FFT coefficients in each 32ms frame (with

50% overlap) are grouped into 42 bins that are equally spaced on a modified

Bark scale.190

• Frequency equalization: Since severe filtering is disturbing to listeners while

mild filtering effects have minimal influence on overall perceived quality (espe-

cially when no reference is available to the subject), partial compensation is

used to provide PESQ score robustness to such imperceptible filtering effects in

the test signal. The mean Bark spectrum for active speech frames is calculated

using only the time-frequency cells whose power is more than 30dB above the

absolute hearing threshold. Per modified Bark bin, a partial compensation fac-

tor is calculated from the ratio of the test signal spectrum to that of the original

signal, bounded to 20dB, and then used to equalize the reference signal to the

test signal. Compensation is applied to the original signal since the degraded

test signal is the one judged by subjects in an ACR experiment.

190See Section 4.2.1 for more details on perceptual frequency mapping.
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• Equalization of gain variations: Imperceptible short-term gain variations

are partially compensated by processing per-frame Bark spectra. The ratio

between the audible powers—i.e., where spectra exceed the absolute hearing

threshold—of the reference and test signals in each frame is used to identify

gain variations. This ratio is filtered with a first-order lowpass filter and then

used to equalize the degraded signal to the reference.

• Loudness mapping: The equalized Bark spectrum is then mapped to a Sone

loudness scale, resulting in loudness densities—the perceived loudness in each

time-frequency cell.

Disturbance processing Disturbances are computed as the signed difference between

the test and reference loudness in each time-frequency cell. Positive disturbances

indicate noise addition while negative ones indicate signal attenuation. Reference

and test frames where time alignment results in negative delays longer than half a

frame, are discarded.

Cognitive modelling In addition to the perceptual processing described above, two im-

portant cognitive effects are modelled into the per-time-frequency cell disturbances:

• Masking: Masking is the perceptual property where small intensity differ-

ences are inaudible in the presence of stronger intensities within—as well as

in neighbouring—time-frequency cells. Within-cell masking is applied in the

PESQ model by generating a deadzone in each time-frequency cell using a sim-

ple threshold below which disturbances are inaudible. The threshold is set to

the lesser of the loudness of the reference and test signals, divided by four. The

threshold is then subtracted from the absolute loudness difference, and values less

than zero are set to zero. The net effect is that disturbances are pulled towards

zero, thereby generating the masking deadzone where only those time-frequency

cells with disturbance values outside the zone are perceived as distorted. Meth-

ods for applying masking across time-frequency cells were examined with earlier

perceptual models but did not improve overall performance, and thus, were not

used in PESQ.

• Asymmetry in disturbance perception: The perception of disturbances is

generally asymmetric in the sense that a reference signal distorted additively can

be decomposed into two different percepts—the original signal and the additive
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distortion—with such distortions being clearly audible. In contrast, an attenu-

ated or omitted time-frequency component can not be similarly decomposed and

the distortion is less objectionable to listeners. This effect is modelled in PESQ

by calculating an asymmetrical disturbance per time-frequency cell by multiply-

ing the cell disturbance with an asymmetry factor. The PESQ asymmetry factor

is calculated as the ratio of the Bark spectral densities of the test and reference

signals in each time-frequency cell, raised to the power of 1.2, and bounded with

an upper limit of 12. Values smaller than 3 are set to zero such that only those

time-frequency cells for which the distorted Bark spectral density exceeds that

of the reference by the corresponding amount, remain as nonzero values.

Identifying and realigning bad intervals The time alignment pre-processing described

above may fail to correctly identify delays, resulting in intervals of consecutive frames

with disturbances above a trained threshold. Bad intervals identified as thus are re-

aligned; new delay values are estimated by locating the maximum cross-correlations

between the absolute reference and test signals pre-compensated with the delays ob-

served during pre-processing. Disturbances for the bad intervals are recomputed and,

if smaller, replace the original disturbances.

Disturbance aggregation In the last processing step of the PESQ algorithm, symmetric

and asymmetric per-cell disturbances are aggregated separately in time and frequency

and then linearly combined to calculate the perceived overall speech quality for the

entire test speech file:

• Aggregation in frequency: Symmetric and asymmetric disturbances are first

integrated along the frequency axis using two different Lp-norms, giving a per-

frame measure of perceived distortion. A series of constants proportional to the

width of the modified Bark bins are used such that a bin’s disturbance is weighted

in the Lp-norm by the bin’s width on the perceptual modified Bark scale. The

two weighted Lp-norms—symmetric and asymmetric—thus obtained are then

multiplied by a factor inversely proportional to the power of the reference signal

frame such that disturbances for low-intensity reference frames are emphasized.

• Aggregation in time: To model the property whereby temporally localized

errors dominate perception, the symmetric and asymmetric frame disturbances

obtained above are aggregated in time on two different time scales. First, frame
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disturbances are aggregated over split-second intervals of approximately 320ms

using L6-norms. The obtained split-second disturbances are then aggregated

over the active interval of the speech file using L2-norms. The value of p is higher

for aggregation over the shorter split-second intervals to give higher weight to

localized distortions.

• PESQ score calculation: Finally, the average symmetric and asymmetric dis-

turbance values are linearly combined to calculate a PESQ score whose range is

−0.5 to 4.5.

A reference ANSI-C implementation for the PESQ algorithm above is provided in An-

nex A of the ITU-T P.862 Recommendation [120].

B.2 Training and Optimization

The various PESQ model parameters employed in the auditory transform and disturbance

processing were optimized on a large set of subjective experiments such that the highest

average correlation coefficient is achieved with subjective MOS scores. In particular, as

described in [121, Section 4; 122, Section 2.7], 30 subjective tests covering a wide range

of conditions were used in the final training of the model. Starting with a large number

of symmetric and asymmetric disturbance parameters calculated for each of the subjective

test conditions, training was performed in an iterative manner in order to jointly optimize

the various components of the model—i.e., maximize the correlation of the final PESQ

scores with subjective quality—while minimizing the risk of over-training associated with

training using a large set of separate parameters.

As noted in [120], the PESQ model parameters obtained by optimization as such lead

to MOS-like PESQ scores between 1.0 (bad) and 4.5 (no distortion) in most cases. With

extremely high distortions, however, PESQ scores may fall below 1.0, although this is very

uncommon [121, 122].
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[84] M. Hosoki, T. Nagai, and A. Kurematsu, “Speech signal band width extension and
noise removal using subband HMM,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., ICASSP, Orlando, FL, USA, pp. I 245–248, May 2002. [Cited on pages 48,
49, 51, 55, 100, 186, 270, and 279]

[85] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximization technique occurring
in the statistical analysis of probabilistic functions of Markov chains,” Ann. Math.
Stat., vol. 41, no. 1, pp. 164–171, February 1970. [Cited on page 48]

[86] A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm,” IEEE Trans. Inform. Theory, vol. 13, no. 2, pp. 260–269, April
1967. [Cited on pages 49 and 186]

[87] G. Chen and V. Parsa, “HMM-based frequency bandwidth extension for speech en-
hancement using line spectral frequencies,” in Proc. IEEE Int. Conf. Acoust., Speech,
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