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Abstract

Bit-rate scalability has been a useful feature in the multimedia communications. Without

the need to re-encode the original signal, it allows for improving/decreasing the quality of

a signal as more/less of a total bit stream becomes available. Using scalable coding, there

is no need to store multiple versions of a signal encoded at different bit-rates. Scalable

coding can also be used to provide users with different quality streaming when they have

different constraints or when there is a varying channel; i.e., the receivers with lower channel

capacities will be able to receive signals at lower bit-rates. It is especially useful in the client-

server applications where the network nodes are able to drop some enhancement layer bits

to satisfy link capacity constraints.

In this dissertation, we provide three contributions to practical scalable audio coding

systems. Our first contribution is the scalable audio coding using watermarking. The

proposed scheme uses watermarking to embed some of the information of each layer into

the previous layer. This approach leads to a saving in bitrate, so that it outperforms (in

terms of rate-distortion) the common scalable audio coding based on the reconstruction

error quantization (REQ) as used in MPEG-4 audio. Another contribution is for the

scalable coding based on bit-plane coding (BPC). Considering the properties of the residual

signal, core-based bit-plane probabilities are provided for MPEG-4 audio scalable to lossless

coding (SLS), which matches the quantization and coding performed in the core layer.

Simulations show that proper consideration of the core layer parameters improves the bit-

plane probabilities estimation compared to the existing method.

Perhaps the most important contribution is presented lastly, which is a very fine-grain

scalable coding approach by designing a scalable entropy coding using a trellis-based op-

timization. In the proposed scheme, by constructing an entropy coding tree where the

internal nodes can be mapped into the reconstruction points, the tree can be pruned at in-

ternal nodes to control the rate-distortion (RD) performance of the encoder in a fine-grain

manner. A set of metrics and a trellis-based approach is proposed so that an appropriate

path is generated on the RD plane. The results show the proposed method outperforms

the scalable audio coding performed based on reconstruction error quantization as used in

practical systems, e.g. in scalable advanced audio coding (S-AAC).
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Sommaire

Scalabilité du débit binaire a été une caractéristique efficace en communication multimédia.

Sans le besoin de ré-encoder le signal original, elle permet l’amélioration/la baisse de la

qualité d’un signal dès qu’un plus/moins flux numérique total est disponible. Grâce au

codage scalable, il n’est pas nécessaire de stocker de multiples versions d’un signal codé à

des débits binaires différents. Le codage scalable peut également être utilisé à offrir aux

utilisateurs différentes qualités de flux de bits lorsqu’ils ont des contraintes différentes ou

lorsqu’il y a un canal variable, c.-à-d., les récepteurs ayant des capacités de canal inférieures

seront capables de recevoir des signaux à des flux numériques plus bas. Ceci est partic-

ulièrement utile dans les applications client-serveur dans lesquelles les nœuds de réseaux

sont capables de réduire certaines bits de couches d’amélioration afin de satisfaire aux

contraintes de capacités de liaison.

Dans cette thèse, on fourni trois contributions pratiques au système de codage scalable.

Notre première contribution est le codage scalable à l’aide de filigrane numérique. Le

schéma proposé utilise le filigrane numérique afin d’intégrer les informations de chaque

couche à la couche précédente. Cette approche permet d’économiser des débits binaires

afin qu’elle puisse surpasser (en terme de taux de distorsion), le codage audio scalable

commun basé sur la reconstitution d’erreur de quantification (REQ), tel qu’utilisé en audio

MPEG-4. Une autre contribution est en codage scalable basé sur le codage par plan-de-

bits (BPC). En tenant compte des propriétés du signal résiduel, les probabilités basées sur

les noyaux de plans de bits sont fournies pour les audio MPEG-4 scalable aux codages

sans pertes (SLS), qui correspond à la quantification et codage réalisé dans la couche

centrale. Des simulations démontrent qu’une considération appropriée des paramètres de la

couche centrale améliore l’estimation de probabilités du plan binaire comparé à la méthode

existante. 9 Peut-être notre plus importante contribution est présentée en dernier lieu,

celle de l’approche de codage scalable à grains très fins en concevant un codage entropique

utilisant une optimisation à base de treillis. Dans le plan proposé, en construisant un arbre

de codage entropique, où les noeuds internes peuvent être définis en points reconstitués,

l’arbre peut être taillé en noeuds internes afin de contrôler la performance du taux de

distorsion (RD) de l’encodeur d’une manière de grains très fins. Un ensemble de métriques

et une approche à base de treillis sont proposés afin qu’un parcours adéquat est généré au

niveau du taux de distorsion. Les résultats démontrent que la méthode proposée surpasse
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le codage audio scalable réalisé basé sur la reconstitution d’erreur de quantification tel

qu’utilisée dans des systèmes pratiques, p. ex. dans le codage audio scalable avancé (S-

AAC).
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Chapter 1

Introduction

The utility of audio and video compression (coding) is well known. For instance, the MPEG

coding standards as efficient multimedia compression tools for use in personal computers

and portable devices. You barely find someone who has not heard the term ‘MP3’ (MPEG-

1 layer 3 [1]), which is one of the most popular audio compression standards available today.

Many of us listen to MP3 music files regularly. MPEG-4 Advanced Audio Coding (AAC) [2,

3], Dolby Digital AC3 [4], and ATRAC [5] are among the other common audio coding

standards. Other than the storage advantages, compression has a specific importance

in telecommunications and multimedia streaming where there are bandwidth constraints.

Compression provides low-bitrate coded version of an audio signal which can be used for

transmissions over low-bandwidth channels, to meet the network constraints in digital

streaming and etc.

By audio, we refer to all types of sounds around us. This can be human voice (speech),

music, sounds in the nature, etc. The audio compression techniques are normally cat-

egorized into two different groups: model-based and waveform-based methods. In the

model-based techniques the compression is performed based on the properties of the audio

source. For example, in the case of speech, the source can be modeled as two parts: The

vocal cords which generate periodic signals account for the pitch and intonation of a voice;

and the vocal tract which determines the spectral resonances (formants) of the phonemes.

If the information related to the first part is removed, the remaining part could be still

understandable. This removal can lead to a compression ratio around 1000 : 1. Note that,

in practice the first part is coded as well, but at a very low bitrate.
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Similarly there are model-based music coding techniques. The MIDI standard which

is basically a music control protocol can also be considered as a music coder. In this

standard, the three main parameters related to a musical note are stored which are: name

of the note (equivalent to its perceived pitch), the duration and the intensity. Therefore, the

information related to the musical instruments is removed. In fact, just the instrument’s

name is stored as a code. Again removing this high-rate information gives a great amount

of compression. The removed information is related to the harmonics which determine an

instrument’s timbre. The instrument’s sound is imitated by the MIDI decoder software or

device at the time of playing a MIDI file (General MIDI).

On the other hand, there are waveform-based compression techniques which are used

for all types of audio signals. In these techniques the compression is performed based on

the properties of the generated waveform. The goal here is to have a compressed audio

with an acceptable perceptual quality. In these methods, the properties of the human

auditory system (HAS) are considered. These coders which use these properties are called

perceptual coders. While most of the efficient speech coders are model-based, in general

audio coding is mainly waveform-based. This dissertation focuses on the general audio

coding techniques. This type of audio coding is also referred to as wide-band audio coding,

since it covers all types of audio from speech to music. Speech is a narrow-band signal

compared to the music which has a bandwidth more than 20 kHz. Although the human

ear is not able to hear the frequencies components above this limit and they are normally

discarded.

Not all audio coding techniques incur a loss of information of a digitized signal. In

fact, there are also two major categories for audio coding in this aspect: Lossy coding and

lossless coding. In lossy coding some of the information of the digitized audio signal is

discarded. This information is normally what is found redundant in terms of audibility.

A psychoacoustic model is used to determine to what degree the resulting distortion is

important perceptually. On the other hand, there is lossless audio coding in which there

is no loss and the original signal can be perfectly reconstructed at the decoder. Obviously,

there is a tradeoff between the reconstructed audio quality and the bitrate required for

these types of audio coding. The compression ratio is normally much higher in the lossy

techniques while the audio quality is sacrificed.



1 Introduction 3

1.1 Scalable Audio Coding

One specific type of audio coding which has become very useful during the past several

years is the scalable audio coding providing bit-rate scalability. Bit-rate scalability is a

desired feature in multimedia communications. Without the need to re-encode the original

signal, it allows for improving/decreasing the quality as more/less of a total bit stream

becomes available. This way there is no need to store multiple versions of a signal encoded

at different bit-rates. Scalable coding can also be used to provide users with different

quality streaming when they have different constraints or when there is a varying channel;

i.e. the receivers associated with lower channel capacities will be able to receive signals at

lower bit-rates.

Scalable coding is especially useful in client-server applications where the network nodes

are able to drop higher layer packets to satisfy link capacity constraints. It can also provide

robustness to packet loss for transmission over packet networks. In such systems, a very

robust channel coding is performed for the core bitstream so that all the receivers can

receive it almost without any loss, and the rest of the bitstream is sent using normal

channel coding. Therefore if the packets are lost from this part of the bitstream, the signal

can be still reconstructed from the core bitstream.

In scalable coding systems typically there is a base layer which gives the core bitstream,

and there are enhancement layers which form the rest of the bitstream [6]. The base layer

bitstream is used to reconstruct the original input audio with tolerable audible artifacts.

The enhancement layers on the other hand, can be used (if received) to enhance the quality

of the signal reconstructed from the base layer1.

Scalability can also be viewed in other ways. Signal-to-noise ratio (SNR), noise-to-

mask ratio2 (NMR), and the audio bandwidth are among the other measures considered in

a scalable coding system. In SNR scalability the signal-to-noise ratio of the reconstructed

signal is improved by decoding the enhancement layers bitstream, in NMR scalability there

is the same enhancement strategy for NMR instead of SNR and in bandwidth scalability the

base layer gives a minimum bandwidth of the signal and using the enhancement layers the

bandwidth can be increased. The latter is sometimes referred to as sample rate scalability

1Scalable coding is also sometimes refereed to as successive refinement or multi-layer coding in the
literature.

2The mask refers to the masking threshold obtained from a psychoacoustic model in the perceptual
coding systems. We will discuss it in detail in Chapter 3.
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since sampling frequency for a signal is directly related to its bandwidth. Using all the

above measures finally lead to the scalability in bitrate which is of the special interest in a

communication system.

There has been research going on in scalable coding of speech and audio signals. Scal-

able audio coding using wavelet transform [7], bit-plane based scalable coding [8–10] and

fine-grain scalable coding [11], [12] are among the important research topics in scalable

audio coding. Wavelet transform provides good means of scalability because it gives “ap-

proximation” and “detail” coefficients which form a scalable representation of the signal.

However, it has not found its way into standardized practical coders. Bit-plane scalable

coding systems work based on grouping the encoded quantized coefficients in order of the

bit importance (ranging form MSB to LSB) to form a scalable pattern. For example in

bit-sliced arithmetic coding (BSAC) technique [10] the quantized spectral coefficients are

grouped into slices of bit-planes and each of these bit slices are coded using arithmetic

coding3. Fine-grain scalability techniques try to enhance the quality of the base signal as

a series of small steps.

Scalable audio coding has been standardized by MPEG and there has been recent re-

search to improve upon the standard. Scalable coding of stereophonic audio [13], compander

domain approach to scalable coding [14], conditional enhancement layer quantization [15],

cross-layer rate-distortion optimization [16] and joint optimization of the perceptual core

and the enhancement layers [17, 18], are among these contributions.

In [13] predicting one channel from the other in both base layers and enhancement layers

leads to higher coding efficiency. In [14] it is shown that the typical scalable coding system

based on the reconstruction error quantization (REQ) is asymptotically optimal if the

coding is performed in the companding domain (for the compressed signal). The proposed

scheme in [15] exploits the statistical dependence of the enhancement-layer signal on the

base-layer quantization parameters. An optimization technique is proposed in [16] for the

advanced audio coding (AAC) framework wherein a cross-layer iterative optimization is

performed to select the encoding parameters for each layer with a conscious accounting of

rate and distortion costs in all layers, which allows for a trade-off between performances

at different layers. An encoding process is proposed in [17] in which by setting special

parameters a trade-off is provided between the perceptual quality of the AAC core and

3Arithmetic coding is one of the common variable-length coding methods. It is explained in detail in
Appendix B.
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the enhancement layers in MPEG-4 scalable AAC (S-AAC) and scalable-to-lossless coding

(SLS).

There have been also other research activities in most of which the above main ideas

have been adopted such as applying the compander domain approach to AAC [19], con-

ditional enhancement-layer quantizer applied to AAC [20], and efficient scalable coding of

stereophonic audio by conditional quantization where the ideas of stereophonic scalable

coding and conditional scalable coding is applied to a single coder at the same time [21].

In this dissertation, we present some contributions to scalable coding schemes which

improve upon the practical coders such as MPEG-4 audio. In the next section we will

summarize them.

1.2 Summary of Contributions

Among the existing scalable coders there is one particular scalable coding system which is

of practical interest and is the core of MPEG-4 scalable coding [22]. This coder is based

on reconstruction error quantization (REQ). In such a scalable coding system, the audio

signal is quantized by an optimal quantizer designed for a minimum average bitrate with

acceptable distortion (base layer) and there are additional layers which enhance the quality

of the base layer output signal by refining the quantization quality: The quantized signal

is subtracted from the original signal to form the reconstruction error signal and this error

signal (also referred to as the residual signal) again is quantized in the enhancement layer.

At the receiver side, the output of enhancement layer can be added to the base layer output

and hence an enhanced reconstruction of the original signal is achieved. This enhancement

process can be repeated by having successive enhancement layers.

There is a recent alternative to the scalable audio coding in MPEG-4 audio. This coding

system which has a different scheme is called Scalable-to-Lossless (SLS) coding. The system

uses a specific bit-plane coding (BPC) called bit-plane Golomb code (BPGC) [8,23]. BPGC

provides lower computational complexity compared to the REQ and can be considered as

another option for scalable coding in MPEG-4 audio.

It has been shown that, there is a considerable performance gap between MPEG-4

scalable coding schemes and a non-scalable AAC coder operating at the same bitrate [24].

This sub-optimality results in part from the fact that in this system the layers are coded

independently and the mutual information between them is not considered. This leads to
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a scalability penalty which becomes bigger as the number of layers increases.

In this dissertation we provide three different contributions to the practical scalable

audio coding systems mentioned above. Our first contribution is the scalable audio coding

using watermarking4. In this method we propose using a technique, Quantization Index

Modulation, borrowed from watermarking. Using this technique some of the information

of each layer output is embedded (watermarked) into the previous layer. This approach

leads to a saving in bitrate while keeping the distortion almost unchanged. This makes the

scalable coding system more efficient in terms of Rate-Distortion when more than one layer

is received most of the time. The results show that the proposed method outperforms the

scalable audio coding based on REQ.

The next contribution is for the BPC-based scalable coding used in MPEG-4 audio.

Considering the properties of the residual signal, core-based bit-plane probabilities are

provided for MPEG-4 Audio Scalable to Lossless Coding (SLS), which matches the quanti-

zation and coding performed in the core layer. Using the same strategy, new probabilities

are obtained to consider the clipping effect in bit-plane coding of an unbounded signal.

Simulations show that considering the core layer parameters improves the bit-plane prob-

abilities estimation.

Our last contribution which is perhaps the most important one is presented in Chapter 6,

which is a very fine-grain scalable coding approach by designing a scalable entropy coding

using a trellis-based optimization. The sub-optimality of a scalable coder compared to

a non-scalable coder results in part from the independent coding of the layers in these

systems. One of the aspects which plays a role in this sub-optimality is the entropy coding.

In practical audio coding systems including MPEG Advanced Audio Coding (AAC), the

transform domain coefficients are quantized using an entropy-constrained quantizer. In

MPEG-4 Scalable AAC (S-AAC), the quantization and coding is performed separately at

each layer. The entropy coding adds an overhead for each layer which is larger at lower

quantization resolutions in the case of Huffman coding. This overhead which becomes larger

as the number of layers increases, could result in a difference of tens of kbps in bitrate of

the overall coder. In fact, there is a trade off between the overall overhead and fine-grain

scalable coding in which more layers are required and the bitrate (hence the quantization

resolution) per layer is small.

In the proposed scheme, a scalable coding for audio signals is provided where the entropy

4Watermarking refers to embedding additional information into a signal. We will discuss it in Chapter 4.
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coding of a single quantizer is made scalable. By constructing a Huffman-like coding tree

where the internal nodes can be mapped to the reconstruction points, the tree can be pruned

at the internal nodes to control the rate-distortion (RD) performance of the encoder in a

fine-grain manner. A set of metrics and a trellis-based approach is proposed to create a

coding tree so that an appropriate path is generated on the RD plane. The results show the

proposed method outperforms the scalable audio coding performed based on reconstruction

error quantization as used in practical systems, e.g. in scalable advanced audio coding (S-

AAC).

The above contributions have been reported in the following papers:

• M. Movassagh, P. Kabal, “Fine-Grain Scalable Audio Coding by Trellis-Based Opti-

mized Scalable Entropy Coding”, Submitted to IEEE Trans. Audio, Speech and Language

Processing.

• M. Movassagh, P. Kabal, “New Bit-Plane Probability Calculations for Scalable to

Lossless Audio Coding”, Proc. IEEE ICASSP (Florence, Italy), pp. 3675-3679, May

2014 [25].

• M. Movassagh, P. Kabal, “Scalable Audio Coding Using Watermarking”, Proc. IEEE

Int. Conf. Multimedia and Expo (San Jose, CA), 5 pp., July 2013 [26].

• M. Movassagh, J. Thiemann, and P. Kabal, “Joint Entropy-Scalable Coding of Audio

Signals”, Proc. IEEE ICASSP (Kyoto, Japan), pp. 2691-2694, March 2012 [27].

1.3 Organization

This thesis is organized as follows. We will provide a background on audio coding tools,

techniques and scalability in Chapter 2. A review of the common audio coding tools is

given, optimal quantization issues is discussed, practical scalable audio coding systems

are explained and at the end of the chapter, MPEG-4 audio coding and scalability is

reviewed. Chapter 3 provides a brief introduction to psychoacoustic principles and reviews

two important psychoacoustic models. The first contribution, scalable audio coding using

watermarking is presented in Chapter 4. New bit-plane probability calculations for SLS

coding system is provided in Chapter 5 and finally a fine-grain scalable audio coding scheme

by trellis-based optimized entropy coding is provided in Chapter 6. Lastly, Chapter 7

concludes and summarizes the thesis.
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Chapter 2

Background on Audio Coding and

Scalability

The main goal in audio coding is to compress an audio signal by removing the redundant

or/and irrelevant information from it. The redundant information refers to the information

without which the original signal can be perfectly reconstructed after the coding process.

An example of a process which creates redundant information could be sampling a signal

in a rate higher than twice its bandwidth (the Nyquist rate). Also, an example of an

important process for removing redundant information could be the entropy coding which

we will discuss in detail in this chapter. The irrelevant information is unique information

which is required for reconstructing the original signal waveform, however is not perceptible.

For audio signals it is the information which is not audible. There are several common

techniques which are used to remove these types of information from an audio signal which

we will discuss briefly in the following sections.

In this chapter, first we will review briefly some of the common audio coding tools

which are used in most practical encoders. The first section is followed by some discussion

regarding the optimal quantization issues. The typical scalable audio coding systems are

discussed in Section 2.3 and the last section covers scalable/audio coding in the state of

the art MPEG-4 audio as one the most successful audio coding standards.
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2.1 Review of Common Audio Coding Tools

2.1.1 Quantization

Quantization is a process for obtaining the digital or binary representation of a signal. It can

be applied to the time-domain samples or the frequency coefficients1 of a signal during the

coding process. There are different types of quantizers with different properties. They are

typically different in being memoryless or with memory, the distribution of the quantization

intervals (uniform or non-uniform quantizers) and the dimensions of the quantization which

gives a scalar or vector quantizer. In the following we will briefly discuss these different

quantizers.

Uniform Quantization

In uniform quantization the range of the input is divided into equal-sized intervals where

the number of these intervals is given as M = 2B where B is the number of bits required for

the binary representation of the quantizer output (in fixed-length coding). All the input

values within an interval are quantized to a reconstruction point. This point can be in the

middle of the interval or not.

The main measure for evaluating the performance of a quantizer is the quantization

error which is defined as the mean square error (MSE) between the input and output:

MSE =

∫
x

(x−Q(x))2f(x) dx (2.1)

where x is the input, Q(x) is its quantized value (output) and f(x) is the PDF of the input.

This could also be expressed in the form of

MSE =
∑
i

piei, (2.2)

where pi is the probability of x ∈ Xi and ei is the conditional error variance in each interval

1In the rest of this dissertation we may refer to the time-domain samples and the frequency-domain
coefficients briefly as samples or coefficients, respectively.
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i:

ei = E[e2|Xi] =

∫
x∈Xi

(x− x̂i)2f(x)

pi
dx. (2.3)

where x̂i = Q(x)|x∈Xi .
In a specific case where the quantizer intervals are very small, the quantization error

can be well modelled as an independent noise with uniform pdf and variance of σ2
e = ∆2

2

where ∆ = 2Xmax
M

(Xmax and −Xmax being the quantizer limits). The SNR of the quantizer

in dB then becomes

SNRdB = 10 log10(
σ2
x

σ2
e

) = 10 log10(
12σ2

x2
2B

4X2
max

) (2.4)

Considering Xmax = 4σx which is a good practical choice (e.g. it leads to quantizing 99.6%

of speech without clipping), we get

SNRdB = 6B − 7.2 (2.5)

For instance, to get a 60 dB SNR for speech (good speech), 11 bits are required. This leads

to a bitrate of 88 kbps for 8 kHz sample rate. In general, the SNR of a uniform scalar

quantizer (USQ) can be approximated as [28]

SNRdB = 6.02B + α (2.6)

where the normal range of alpha is about α ∈ [−10, 10].

Non-Uniform Quantization

By looking at the MSE equation (2.1), it becomes intuitive that, if we make the quantization

more precise in the regions where the signal is more probable (by decreasing the interval

width) the average quantization error becomes smaller. For example, for the audio signals

which can be well modelled by a Laplacian source, the probability is larger for smaller

values. Therefore, by making the intervals smaller around zero the quantizer performance

increases. This is done in a non-uniform quantizer. In fact, for a given quantization

resolution (where the number of intervals is fixed), the optimal quantizer which gives the
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Fig. 2.1 Block diagram of a compander. At the encoder, the compressor
compresses the input to get a signal with uniform distribution. The new signal
is quantized by a uniform quantizer. At the decoder, the reverse function of
compression i.e. expansion undoes the compression.

smallest MSE, is a non-uniform quantizer for which the probability in each region is the

same [29]. This again implies that: the higher probability region, the smaller intervals.

In practice a non-uniform quantization is performed in two steps: 1) Non-linear scaling

2) Uniform quantization. The scaling process is performed by the so-called “Compander”

(Fig. 2.1) which comes from the words “Compression” and “Expansion”. At the encoder

side, a compressor compresses the input to get a signal with uniform distribution. Then

in the next step, the new signal is quantized by a uniform quantizer. At the decoder, the

reverse function of compression (expansion function) is applied to the reconstructed signal

to undo the compression. Two common companders for speech are the µ-Law and A-Law

companders which are used in the United States and Europe respectively. As another

example of companding for audio we can refer to the AAC compression function which is

given by

y = c(x) = x
3
4 . (2.7)

This compression applies a very slight modification to the input signal. Figure 2.2 shows a

plot of this function. In fact, this quantizer was basically designed to be a specific uniform

quantizer called uniform threshold quantizer (UTQ). We will talk about UTQ in more

detail in Section 2.2.

For audio in general, a Laplacian2 well modelles the signal’s sample statistics. The

companding functions can be calculated from the pdf of the input for the case of resolution-

constrained quantization and they are related by [30]

dc(x)

dx
= ∆Λ(x) (2.8)

2The Laplace distribution is a two-sided exponential distribution.
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Fig. 2.2 AAC compression function. The function applies a slight modifica-
tion to the input signal and is given by y = c(x) = x

3
4 .

where c(x) is the compression function, ∆ is the step size of the new uniform quantizer

and Λ(x) is the level density function of a non-uniform quantizer which is obtained from

its input pdf (see Section 2.2).

Adaptive Quantization

In practice an audio signal has a time-dependant pdf. Therefore, using even a non-uniform

quantizer may lead to a large quantization error. One solution to this problem is using

an adaptive quantizer. In such a quantizer the step sizes of the quantizer are adjusted

adaptively depending on the local statistics.

Vector Quantization (VQ)

When we quantize a sequence of samples/coefficients, there is correlation between them . If

they are quantized independently, this correlation is not considered. In a vector quantizer

(VQ) a set of samples are quantized at the same time in a multi-dimensional quantizer.

This way, the quantization performance improves considerably. In other words, for a given

quantization error, using a vector quantizer decreases the number of bits required or vice

versa. For an Nd-Dimensional VQ where there are Nv vectors in its codebook, the number
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of bits per sample is (fixed-length coding)

B =
1

Nd

log2Nv. (2.9)

In practice, the quantizer vectors and the indices assigned to them are stored in a table

called codebook and both the encoder and decoder have access to it. A Voronoi (nearest-

neighbor) search of the codebook is performed at the encoder and the index of the vector is

chosen from the codebook. The key issues in VQ are the design and search of the codebook

and there are several design techniques for them [31–34]. For a given rate, the memory and

the computational complexity grows exponentially with dimension Nd for an unstructured

VQ.

2.1.2 Entropy Coding

The simplest way to obtain the signal’s binary representation from the quantizer output,

is to assign the same number of bits to all the intervals in the quantizer. This is how

we obtain an B-bit representation for a quantizer with NI = 2B intervals (fixed-length

coding). However, this this may be inefficient. Shannon, in the mathematical theory of

communication shows that, the minimum average number of bits required to encode a

source (or a sequence of symbols), is the entropy of the source [35]. The entropy of source

X is normally denoted by H(X) and is defined as

H(X) = −
∑
i

pi log2 pi, (2.10)

where pi is the probability of the ith possible symbol that can be generated from the source.

When a base-2 logarithm is used as above, the entropy is specified in bits. Here, in audio

coding we always consider entropy in bits. It is clear from the above equation that entropy

is never negative because pi ∈ (0, 1].

The entropy is also sometimes referred to as a measure of uncertainty because it shows

the uncertainty of a random variable before observation. It can also be interpreted as the

amount of information a source has which is directly related to its uncertainty. In fact, zero

entropy indicates no uncertainty and high entropy shows strong uncertainty. As a specific

case, it is good to show the entropy of a source with uniform distribution. Assuming the
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source generates Ns different symbols with the same probability, from (2.10) we get

H(X) = −
∑
i

1

Ns

log2

1

Ns

= log2Ns. (2.11)

This is the entropy of a uniformly distributed source which has the maximum possible

entropy among all the sources with Ns symbols. This is because the pdf of this source does

not give any priority to any symbol in terms of probability and hence it has the maximum

uncertainty. The entropy of such a source increases with Ns.

The average codeword assigned to a source symbols in the general case of “variable-

length coding” is obtained by

Lc = E[l] =
∑
i

pili, (2.12)

where li is the codeword length assigned to the ith symbol. As mentioned above, the entropy

provides a bound on the average code length of a source. Comparing (2.10) and (2.12),

this statement can be also interpreted as: the best codeword length assigned to a symbol

with probability p is − log2 p. The closer a code is to this bound, the better code it is. In

general, it is the source-coding theorem which says [35,36]:

The uniquely decodable code that minimizes the average codeword length, Lc, satisfies

H(X) ≤ Lc < H(X) + 1. (2.13)

Now see (2.11) again. When we we assign the same number of bits to a quantizer output

(B = log2NI), we are assuming that there is no information about the pdf of the source

(uniform distribution with maximum entropy). That is why this is an inefficient way to

obtain the binary representation.

In entropy coding, the coding algorithm takes into account the unequal probabilities

of the source symbols. This means that, the goal in this coding is to generate codewords

for which the average code length is as close to the entropy as possible. Two commonly

used entropy coding algorithms in practical coding systems are the Huffman coding and

the arithmetic coding. In the next subsections we we will discuss them briefly.

It is useful to mention here that there are some code properties that are usually required

in the practical coding systems. For instance, the codes have to be uniquely decodable
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(each symbol has to be assigned a unique code) and prefix-free3. In a code stream there is

normally no boundaries between the successive codewords. Therefore, it is very important

that the codes are prefix-free. This means that, no code should be a prefix of another code.

The necessary condition for a code to be prefix-free is given by the Kraft inequality [36]:

KI =
∑
i

2−lili ≤ 1, (2.14)

where li is the codeword length of the ith symbol.

Huffman Coding

Huffman coding is a common entropy coding technique used in the practical systems. It

is known to give the shortest average codeword length for a set of finite-alphabet symbols

with known probabilities [37]. It also generates an optimal prefix code (having the prefix

property). It is widely used because of both its efficiency and simplicity.

The main idea in Huffman coding is to create a binary tree of the symbols. We start from

the two source symbols which have the minimum probabilities. These symbols represented

by some nodes (leaf nodes) are merged into a new symbol (new node) with a new probability

which is sum of the old probabilities. One of these two branches is assigned 0 and the other

one 1. This procedure is repeated until we get a full binary tree ending in the root node.

The codeword assigned to each leaf node (original symbols) is the binary sequence from

the root node to that leaf node. We will talk about Huffman coding in more detail in

Chapter 6.

Arithmetic Coding

While Huffman coding is optimal, it has some drawbacks. Huffman coding performs best

when the probabilities of the symbols are known in advance and the signal is stationary

for a certain amount of time. In cases where the statistics of the signal changes by time,

it is not easy to implement an adaptive Huffman coding. Arithmetic coding is another

commonly used entropy coding which is more efficient for coding long sequences of source

symbols [38, 39]. In Huffman coding, the encoding table grows exponentially with the

sequence length, while in arithmetic coding the computational effort is linear with the

3The prefix-free property requires that no code can be a prefix of another code.
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number of symbols in a sequence. Arithmetic coding has also the advantage of adaptivity

as the symbol probabilities change.

In arithmetic coding the interval [0, 1) is partitioned into cells. Each cell is associated

with a source symbol and the size of the cell is proportional to the probability of the symbol.

This partitioning is repeated for each cell according to the sequence of symbols. In the end,

the truncated binary representation of the last cell’s midpoint is considered the codeword

for the whole sequence. We talk about arithmetic coding in more detail in Appendix B

and we will use it in Chapter 5.

Run-Length Coding

Run-Length coding is useful when there are long sequences of identical symbols. Instead of

sending all these symbols, the number of identical symbols is sent. Usually, if this coding

(if used) acts as the first step of lossless coding. Then, the resulting stream of numbers is

coded using either Huffman or arithmetic coding.

Rate-distortion Theory

The entropy coding gives the most efficient i.e. the minimum average bitrate for a given

source with given distortion. However, in source coding we are interested in both bitrate

and the distortion. For instance in audio coding, we need to know what the audio quality

is for a specific bitrate. While the entropy coding is a lossless process, the preceding stages

in a practical coding system are usually lossy, e.g. the quantization.

The rate-distortion theory is about the trade-off between the distortion and the bitrate

in source coding by providing some bounds. It specifies the lowest rate possible for a given

distortion or the lowest distortion for a given rate. These bounds are expressed by the

rate-distortion function which is defined as

R(D) = miniRi(D) (2.15)

where D is the distortion, between the reconstructed and original signal, and the minimiza-

tion is over all coding possibilities i. As an example, we can refer to the rate-distortion

function for a Gaussian density source. If the distortion is defined as the mean squared
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error (MSE), the rate-distortion function becomes [40]

R(D) =
1

2
log(

σ2
x

D
) (2.16)

Here, we are interested in a rate-distortion function for quantization and entropy coding.

Since the entropy coding is performed after quantization, we would like to know what the

minimum quantization distortion is that we can get for a given quantization output entropy.

In other words, we would like to know the best quality we can get for a given bitrate. This

leads to a specific quantization called entropy-constrained quantization. In Section 2.2 we

will discuss this type of quantization as opposed to the resolution-constrained quantization.

In the first one, the number of quantization levels is not fixed since we just care about the

entropy. The resolution-based quantization is the case where we want to minimize the

quantization distortion for a given number of quantization intervals which is also referred

to as the quantization resolution.

Perceptual Entropy

As explained above, in information theory the entropy gives the minimum possible bitrate

to code a source with the ability of reconstructing it without any distortion. The distortion

considered here is normally defined as the MSE between the original and the reconstructed

signal. In perceptual coding of audio, another specific entropy is defined and used which

is called perceptual entropy. In this type of entropy, instead of MSE, the audibility of the

resulting distortion is considered. The perceptual entropy is defined as [41]

PE =
1

Nf

fh∑
fl

max(0, log2

|S(f)|
M(f)

) (2.17)

where fl is the lowest frequency in the desired frequency range (e.g. a band), fh is the

highest frequency in that range, S(f) is the magnitude of the frequency component f , and

M(f) is the masking threshold at f . Although there is not a complete theory about the

perceptual entropy yet, (2.17) is useful as a perceptual entropy measure.
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2.1.3 Prediction

There is correlation between audio signal samples/coefficients in both time and frequency

domain. This means we can have a good estimate of the current sample by predicting it

from the previous samples. By subtracting the estimated value from the original value we

get a signal referred to as the prediction error which has a much smaller dynamic range

compared to the original signal. This means that, for a given distortion, we can encode the

residual signal with fewer bits compared to encoding the original signal.

Note that, prediction in the time domain and coding in the frequency domain are directly

related. When there is correlation between the signal samples in the time domain, we get

a colored power spectrum of the signal in the frequency domain. Whereas, if there is no

correlation in the time domain, the spectrum will be flat or white. There is no advantage in

coding a white-spectrum signal in the frequency domain. However, coding in the frequency

domain has some other advantages. For instance, the perceptual coding can be performed

using the frequency masking thresholds given by a psychoacoustic model. We will talk

about the frequency-domain coding later.

The most commonly used prediction in speech and audio coding is the linear prediction

(LP) where a linear combination of the previous samples gives the predicted signal. The

residual signal in the z-transform domain can be expressed as

A(z) = 1−
L∑
i

aiz
−i (2.18)

where A(z) is called the LP analysis filter and L is the order of the predictor. The LP

coefficients are calculated by using a correlation matrix which is formed based on the

statistics of the signal. Two common techniques for obtaining the LP coefficients are the

so called “autocorrelation method” and the “covariance method’. For fast processing, the

iterative algorithms like the Levinson algorithm are used in practice.

The linear predictive (LP) coding is specially very popular for speech coding. In the

model-based speech coding where there is excitation and vocal tract modeling, LP can be

used to well model the vocal tract. By passing the speech signal through the LP analysis

filter we get the excitation signal. The LP coefficients and the excitation can be coded and

sent separately. This leads to a great amount of compression.

There is short-term prediction and long-term prediction. The short-term prediction is
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basically the one described above and is performed over blocks of samples. In long-term

prediction, the main goal is to capture the periodicity in an audio signal. In this type

of prediction there are normally two parameters: the delay and the gain parameter. The

analysis filter of long-term prediction can be expressed as

AL(z) = 1− aτz−τ (2.19)

where τ and aτ are the delay and the gain parameters respectively.

In the following we will briefly refer to two important and common coding systems with

the prediction core.

Differential PCM (DPCM)

As mentioned before there is a great amount of correlation between an audio signal samples.

For example for speech the normalized correlation coefficient is usually in the range of 0.8 to

0.9. This implies that, range of values for the difference between two successive samples is

much smaller than that of each individual sample. Therefore, if we quantize the difference

values instead of the individual values, we can save a lot in the bitrate. In differential

PCM, the difference between a current sample and a predicted estimate of the sample

is quantized. The prediction is normally based on the weighted average of the previous

samples i.e. a linear prediction. The prediction makes the range of quantizer input even

smaller compared to DPCM (which can also be considered as a one-step prediction). This

is because the estimated values are very close to the actual values and hence their difference

has a very small range, unless the prediction fails (impulsive error).

In DPCM there is a local decoder inside the encoder that generates the estimated signal

x̂(n). This is because the decoder has only access to the quantized error eq(n) and not the

actual error e(n). The prediction is performed on the previous estimated signal samples

and the predicted value is subtracted from the original signal x(n) to form the error signal

which is the quantizer input. At the decoder a similar prediction process is performed to

give the estimated signal.
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Fig. 2.3 Block diagram of DPCM codec. The prediction is performed on
the previous estimated signal samples x̂(n). There is a local decoder inside
the encoder which gives the estimated signal using the quantized error eq(n).

Adaptive Differential PCM (Adaptive DPCM)

We can take advantage of the adaptive coding again in a DPCM. The adaptiveness can be

for both the quantization and the prediction parts. In an adaptive DPCM, typically there

is a “scale factor generator” (for adaptive quantization) and an “adaptive predictor”.

2.1.4 Sinusoidal Coding

Sinusoidal coding is a parametric audio coding where the audio signal is modeled by a sum

of sinusoids called “partials” with time-varying amplitude, frequency and phase4. This

model is expressed as [42,43]

x(n) ≈
K∑
k=1

Ak(n) cos(ωk(n)n+ φk(n)), (2.20)

where Ak(n), ωk(n) and φk(n) are the magnitude, frequency and phase of the kth sinusoid

at time n. These parameters are typically obtained by either the peak picking technique in

the short time Fourier transform domain (STFT) [42, 44] or by MSE minimization of the

parameters using the analysis-by-synthesis technique [45–47].

Sinusoidal coding provides high quality audio coding at low rates. and has been incorpo-

4Sinusoidal coding is presented here briefly as part of a general review of the common audio coding
schemes. It is not dealt with in this dissertation.
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rated as part of the MPEG-4 parametric audio coding toolset. One of the other important

features provided by sinusoidal coding is that the decoder will be able to perform the pitch

and time-scale modifications by changing the parameters. For example, by changing the

pitch of a speech or vocal signal, a low-pitch (typically male) voice can be changed to a

high-pitch (typically female) voice or vice versa. Or by time-scale modifications, the speed

and duration of a musical/audio signal is changed without changing its pitch properties.

In MPEG-4 audio, sinusoidal coding is performed using the analysis/synthesis audio

codec (ASAC) which was proposed by Edler et al. [22]. ASAC uses an iterative analysis-

by-synthesis algorithm for the estimation of the kth partial. Then at each iteration, the

most perceptually significant sinusoid remaining in the synthesis residual is identified, which

is the component with the most unmasked energy. Therefore, the decoder will be able to

reconstruct the signal in a perceptual scalable manner. Although other than its common

uses, sinusoidal coding provides scalability as well, it has not been used as a scalable coder

in practice.

ASAC provides improved quality for coding nonharmonic tonal signals, but not for

pure speech compared to the standard speech coders [22, 48]. There is another sinusoidal

codec called which improved the performance of ASAC in some aspects. This coder is

called “harmonic and individual lines plus noise” (HILN) which is similar to the ASAC but

with some modifications. HILN has specifically improved performance for harmonic audio

signals. Also, it has been popular in low-rate internet audio streaming. HILN was accepted

in MPEG-4 audio as a low rate parametric audio coder [49].

2.1.5 Filter Banks and Subband Coding

Filter banks are a set of filters which decompose a signal into several frequency bands.

Since each filter output has a reduced bandwidth compared to the original signal, down-

sampling is applied to each output. When this is done for all the filters, it is called “critical

downsampling” where the total number of samples coming out of the filter bank is equal

to the number of samples going into it.

A filter bank can be categorized into a low frequency resolution or a high frequency

resolution type. In the first type the filter outputs are used directly. For example 32 filters

decomposing the signal into 32 frequency bands (as used in MP3). In the high frequency

resolution type, a frequency transform is applied to each filter output or to the original
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signal directly. For example, in MP3 audio coding, MDCT transform is applied to the

filter bank (for an audio frame of 1024 samples) and 512 frequency lines (coefficients) are

obtained. The coders which use the first type of filter banks are usually called “sub-band

coders” [50, 51] whereas the coders using the second type are called “transform coders”

which we will talk about in Section 2.1.6.

One important property for a filter bank is the so called “perfect reconstruction”. This

means that, after the signal is decomposed into the frequency bands using the “analysis

filters”, the original signal can be perfectly reconstructed using the “synthesis filters”. This

is when there is no other sources of coding noise (e.g. quantization noise). This is important

since this way analysis-synthesis process itself does not add distortion during the coding

process. Almost all the filter banks used in the practical systems have this property.

The analysis/synthesis filter bank has a baseband impulse response which is multiplied

by sinusoids with different frequencies to form the impulse response of the other filters.

The convolution process in practice consists of buffering and multiplication by this impulse

response which is equivalent to “windowing”. That is why the baseband impulse response

is also referred to as the “prototype window”.

The filter bank can also be designed in a way that the different frequency bands have

different bandwidths. In audio coding, usually the higher bandwidth is assigned to the

higher frequency bands. This is to match the critical band structure of the human auditory

system (HAS) which is more sensitive to the lower frequency components.

QMF Filter banks

One of the common filter banks used in audio coding is the one based on the quadrature

mirror filters (QMF) which are part of many coding systems [52,53]. These filters are often

used in a tree structure and the filtering process is performed in binary stages. At each

stage, the signal can be decomposed into a low frequency and a high frequency band. By

repeating this procedure the signal is decomposed exponentially in the frequency domain

(see Fig. 2.4). The QMF banks can also be realized as a polyphase factorization [54].

The QMF filter banks have some drawbacks. First of all, a perfect reconstruction (PR)

is not possible for them, although with anti-aliasing techniques the resulting noise can be

decreased to some extent. The aliasing effect can be canceled by designing the analysis and
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Fig. 2.4 A two-band QMF filterbank. The analysis and synthesis filters have
the mirror property: F0(z) = H1(−z) and F1(z) = −H0(−z).

synthesis filters that have the “mirror” properties:

F0(z) = H1(−z)

F1(z) = −H0(−z)
(2.21)

In addition to the PR problem, the QMF filter banks have also a large delay and high

computational complexity e.g. compared to DFT.

Polyphase Filter Banks

Polyphase filter banks for audio coding have been introduced in [55]. These filter banks

combine the filter design flexibility of the generalized QMF filters (GQMF) with low com-

putational complexity. In MP3 standard this filter bank is used. Using this polyphase filter

bank, the signal is decomposed into equal frequency bands. As mentioned before, in MP3

a prototype window is designed which is the core of the filter banks and is used in all the

analysis/synthesis filters. These filters have relatively low computational complexity. The

main drawback for them is that the signal can only be decomposed into equal frequency

bands.

Hybrid Filter Banks

When two or more different filter banks are used together to increase the performance

of the system, they are referred to as the hybrid filter banks [56]. For example in MP3,

after the polyphase filters, MDCT is applied to each filter output to increase the frequency
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resolution. The quantization and coding is then applied to the MDCT coefficients. This

way, different frequency resolution can be obtained from different frequency bands.

2.1.6 Transform Coding

In audio coding based on transform coding, one of the unitary transforms e.g. FFT, DFT,

DCT is used for time/frequency analysis of the audio signal. Applying the transforms to

a frame/block of the signal, gives a set of frequency coefficients. These coefficients are

then used in the other stages of the coder, mainly in the quantization/coding and the

psychoacoustic model. Usually, the transform coders perform higher-resolution frequency

analysis of the signals compared to the subband coders in which the signal is decomposed

into coarse frequency subbands. Although, there are overlaps between these two common

coding categories. Many transform coding schemes have been proposed so far and some of

them have been standards for a long time including the MPEG standards.

MDCT

One of the most common transforms used in the current practical audio coding systems

is the so called Modified Discrete Cosine Transform (MDCT). The MDCT is a lapped

orthogonal block transform which can be considered as a cosine-modulated filter bank [57,

58]. It has several important properties that made it very popular. MDCT has the perfect

reconstruction (PR), linear phase response, critical sampling, low complexity and several

other properties [59, 60]. Also, a single FIR filter can be used in MDCT for both analysis

and synthesis. One of the other important simplicity features for MDCT is that, it gives

real coefficients (as opposed to the complex numbers given by DFT).

The MDCT is defined as [61]

X(k) =
2N−1∑
n=0

x(n)hk(n) (2.22)

where N is the block size and hk(n) is the MDCT analysis/synthesis filter impulse response

given by

hk(n) =

√
2

N
cos[

π(2n+N + 1)(2k + 1)

4N
]. (2.23)

Note that the the number of coefficients obtained (N) is half the block size (2N). The block
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advance however, is N samples. This means, there is 50% overlap between the successive

blocks. The inverse MDCT is performed simply by applying the same analysis function to

the transform coefficients:

x(n) =
N−1∑
n=0

X(k)hk(n). (2.24)

When performing the inverse transform, N spectral coefficients give 2N time-domain sam-

ples. These samples are overlapped and added with the 2N samples obtained for the

previous block.

Typically a window function is applied to the block of signal before taking the transform.

Therefore, (2.22) cane be written as

X(k) =
2N−1∑
n=0

x(n)w(n)hk(n), (2.25)

where w(n) is the windowing function5. Several windowing functions have been proposed

and used for the block transforms including the MDCT. In general, for the orthogonal trans-

forms and to meet the time domain aliasing cancelation (TDAC) in the lapped transforms,

the two following conditions must be met:

w(2N − 1− n) = w(n), (2.26)

and

w(n)2 + w(n+N)2 = 1. (2.27)

One commonly used windows in audio coding is the “sine window”. The sine window for

a block of N samples is defined as

w(n) = sin[(n+
1

2
)
π

2M
] (2.28)

where M is the window size. The sine window has several important properties specifically

for MDCT. Using the sine window the DC energy is concentrated in a single transform

5In the practical coding systems the signal is processed block by block. This finite-block processing
corresponds to windowing a signal (a rectangular window in its simplest form) before applying the block
transforms such as DFT and DCT . Since the windowing affects the spectral properties of the signal,
windows with different properties are used in practice for different purposes.
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coefficient and the filter bank achieves 24 dB side lobe attenuation. Also, the sine window

makes MDCT asymptotically optimal in terms of coding gain for a lapped transform [57].

There is also another window which is not as commonly used as the sine window,

but is used in some important coders e.g. in AAC. The window is called the Kaiser-Bessel

Derived (KBD) window which was originally proposed by Dolby Laboratories. The window

is defined as

w(n) =

√√√√∑n
j=0 vj∑M
j=0 vj

(2.29)

where v(n) is the Kaiser-Bessel kernel. The KBD window trades off a better stop-band

attenuation (more than 40dB) for a wider pass-band compared to the sine window.

Integer MDCT

Integer MDCT (IntMDCT) provides an invertible integer-to-integer implementation of

MDCT [62, 63]. This means, given integer input samples, the IntMDCT coefficients will

have integer values as well. From these integer-valued coefficients, the original signal can

be reconstructed without any loss. IntMDCT provides an approximation of MDCT with

a high accuracy [64]. Figure 2.5 shows the difference between MDCT and IntMDCT spec-

trum values in dB (as Noise-to-Signal ratio NSR). The upper two curves are for the MDCT

and IntMDCT (and overlap) and the lower plot shows the difference. As can be seen,

the difference appears as a noise floor (around −120dB) which is much lower than the

error resulting from perceptual coding [64]. Therefore, IntMDCT can be efficiently used in

transform coding.

The MDCT can be performed by using DCT-IV, which is applied to a N -sample block

instead of 2N [62]. This is done by first applying the so called time domain aliasing (TDA)

to the original block in the time domain, which gives N new samples. The DCT-IV is then

applied to get the MDCT coefficients. For the symmetric windows meeting the conditions in

(2.26) and (2.27), the TDA matrix can be decomposed into “Givens rotations”. The Givens

rotations themselves can be decomposed into the “lifting” matrices. Using rounding in the

lifting matrices provides an integer-to-integer implementation which is fully invertible.

Since IntMDCT is a lossless transform process, it is specially very useful in lossless and

scalable-to-lossless audio coding (SLS) which we will discuss in Chapter 5. We will also
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Fig. 2.5 Comparing MDCT and IntMDCT (from [64]). The upper two
curves are for the MDCT and IntMDCT (and overlap) and the lower plot
shows the difference NSR all in dB. The noise floor is much lower than the
error resulting from perceptual coding.

talk about IntMDCT in more detail in that chapter.

Window/Block Switching

In transform coding including the schemes using MDCT and IntMDCT, different block sizes

are used to meet the tradeoff between the time and frequency resolutions. For instance, in

AAC there are the ‘Long’ and ‘Short’ blocks/windows and there are two transition windows

between these two which are called the ‘Start’ and the ‘Stop’ windows. The start window

is for transition from a long block to a short block and the stop window is for the opposite

case. Figure 2.6 shows the typical block switching in AAC with the transition from long

to short blocks and then back to the long blocks using these four types of windows [65].

Other than the block switching, there is also window switching where you can switch

from one window type another one. In AAC there is window switching between the sine

and the KBD windows. Consequently, there are two transition windows for this switching.
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Fig. 2.6 Block switching in AAC. Long, Start, Short and Stop windows are
respectively used in this figure.

2.1.7 Perceptual Audio Coding

Most practical audio coding systems use perceptual coding which gives much higher com-

pression ratio for a given audio quality, compared to a non-perceptual coder. This is because

in these systems, coding is performed based on the properties of the human auditory system

(HAS). Such coders attempt to remove as much perceptually irrelevant information as pos-

sible for a given bit budget. In fact, removing parts of the signal which is not audible may

introduce high distortion in terms of MSE, but it does not change its perceptual quality.

Figure 2.7 shows the simplified block diagram of a typical perceptual audio codec.

In such a system’s encoder, the signal is decomposed into several frequency bands. This

decomposition is normally based on the critical band structure of the HAS and is performed

using a filter bank including transforms. For instance in AAC when the sample rate is

48 kHz, the signal is decomposed into 49 non-overlapped subbands known as scale factor

bands. The subband structure is such that, narrower frequency bands are assigned to the

lower-frequency critical bands and vice versa.

For each frequency band, a masking threshold is calculated using a perceptual model

which is most often referred to as the psychoacoustic model. The psychoacoustic model is

the most important part of such a coder that makes it different from a non-perceptual coder.

The masking thresholds determine the maximum noise energy introduced by quantization

which will not be audible. Based on these limits on the quantization noise, it is decided
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Fig. 2.7 Simplified block diagram of a typical perceptual codec. Coding
is performed based on the properties of the HAS using a perceptual model
normally referred to as the psychoacoustic model. The decoder does not need
the psychoacoustic model for decoding the signal.

that how many bits can be assigned to each frequency band. The fewer the number of bits

used, the higher the quantization noise and vice versa. Then based on the available bits,

each frequency band is quantized and coded, normally using entropy coding. The coded

subbands then are put in a frame or packet and sent/stored.

The decoder on the other hand, does not need to have access to the psychoacoustic

model. It just receives the bit stream and decodes it to regenerate the quantized frequency

components. Then frequency-to-time domain process is applied to get the reconstructed

signal. If the coding is performed based on the subband coding, the filter outputs are just

added together to give the input signal, as done in MPEG-1 layers 1 and 2. Current state

of the art perceptual coders use transform coding. AAC for example uses the MDCT to

get the frequency coefficients. These coefficients are then grouped into the 49 subbands as

mentioned above.

2.1.8 Commonly-Used Audio Coding Standards and Formats

As mentioned before, audio coding techniques can be categorized into three major classes:

digitized audio, lossless coding and lossy coding. For each of these major categories there

have been several standards and formats. In the following, some of the most common audio
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standards and formats will be discussed.

Digitized Audio

Even if no compression is required, the original audio needs to be coded to be sent or stored.

The most common way to encode the original audio into the digitized audio is by using the

pulse code modulation (PCM). There is also linear pulse code modulation (LPCM) where

only a uniform quantizer is used, while in PCM in general, non-uniform quantization (e.g.

using the A−Law and µ−Law companders) can also be used. Audio files in ’.wav’, ’.au’

and ’.aiff’ formats are coded using PCM or LPCM.

Lossless Coding

As discussed before, in lossless coding the audio signal is compressed without loosing any

information. This means that the original digitized audio can be perfectly reconstructed.

Some of the most popular lossless coding formats are the “Free Lossless Audio Codec”

(FLAC), “Apple Lossless Audio Codec” (ALAC) and the Monkey’s Audio. FLAC and

Monkey’s audio file formats are “.flac” and “.ape”. ALAC is stored in MP4 (MPEG-

4) container with the file format of “.m4a”. Although with lossless coding there is the

advantage of reconstructing the original audio without any loss, its compression ratio is

much smaller than for lossy compression techniques. For example a Monkey’s Audio file is

about 35 times as large as a relatively high quality 192 kbit/s bitrate MP3 file.

Lossy Coding

Lossy compression of audio is performed using perceptual coding considering the properties

of the HAS, providing a much higher compression ratio compared to the lossless coding

techniques. A variety of techniques have been proposed and used sofar. Some of the most

popular lossy coding formats are the “.mp3” (MPEG-1 layer 3), “.aac” (MPEG-2/4 AAC),

“.3gp” from the Third Generation Partnership Project (3GPP) and ‘.wma” (Windows

Media Audio). State of the art MPEG-4 AAC is one the most successful audio coding

standards available today. We will talk about this standard in more detail in Section 2.4.



2 Background on Audio Coding and Scalability 31

2.2 Notes on Optimal Quantization

2.2.1 Resolution-Constrained Quantization

Constrained Resolution is a special case of quantization where we limit number of quanti-

zation levels to a specific number (say N) and find the best level density or reconstruction

point density function Λ(x) that minimizes the distortion. For this case it is shown that in

the high-rate case the minimum MSE distortion is achieved when the reconstruction point

density function is [66,67]:

Λ(x) = N
fX(x)

1
3∫

< fX(x)
1
3 dx

(2.30)

And if we consider R = log2(N) as the rate then the rate-distortion function is given by:

R =
1

2
log2(12D) +

3

2
log2(

∫
<
fX(x)

1
3 dx) (2.31)

In a special case where the input signal has a Gaussian pdf with a variance equal to unity

the rate-distortion function becomes:

R =
1

2
log2(

σ2

D
) +

1

2
log2(

2π3
3
2

12
) (2.32)

which is 1
2

log2(2π3
3
2

12
) ≈ 0.72 bits above the rate-distortion function given by Shannon

(see 2.16).

2.2.2 Entropy-Constrained Quantization

In most audio coding systems entropy coding is performed after quantization. Entropy

coding tries to encode the quantization outputs based on the entropy of the output. The

resulting average bitrate is bounded by that entropy, which means a practical coding system

can not achieve a bitrate lower than the entropy of the output signal. So it is obvious that

the desired quantizer in this case is what gives the minimum output entropy for a given

distortion. In other words, the optimization criterion becomes finding level density function

that minimizes the distortion for a given entropy constraint [68]. In high-rate theory, this
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optimization leads to the following function for reconstruction point density [68]:

Λ(x) = 2R−h(X) (2.33)

which means for entropy-constrained quantization the optimal quantizer is a uniform quan-

tizer (the reconstruction point density is constant) and the constant step size is:

∆ =
1

Λ(x)
= 2−R+h(X) (2.34)

The rate-distortion function for this quantizer is given by:

R = h(X)− 1

2
log2(12D) (2.35)

And for a Gaussian input signal with the variance equal to the unity it becomes:

R =
1

2
log2(

1

D
) +

1

2
log2(

2πe

12
) (2.36)

Which is 1
2

log2(2πe
12

) ≈ 0.25 bits above the rate-distortion function given by Shannon and

has a rate advantage of about 0.5 bit compared to the resolution-constrained quantizer.

2.2.3 Uniform Threshold Quantizer (UTQ)

Although it has been shown (mentioned in the previous section) that in high-rate theory for

the entropy-constrained quantization the optimal quantizer has a uniform distribution, the

reconstruction points within the intervals are shown not to be in the middle for the optimal

quantizer. Also there is a “dead zone” in the quantizer which means all the intervals in

the quantizer have the same width except the one including zero (the results are for a

symmetric zero-mean input). These results have been proved for exponential signals [69]

specially Laplacian signals which are good estimations for audio signal distributions. In

such a quantizer which is called Uniform-Threshold Quantizer with Dead-Zone or briefly

Uniform-Threshold Quantizer (UTQ), the reconstruction points are not in the middle of

the intervals and their positions are shown by an offset parameter which is the distance

between the reconstruction point and the beginning threshold of the intervals. The offset

is the same for all the intervals and for a zero mean Laplacian signal with scale parameter
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equal to unity it is obtained by:

α = 1− ∆e−∆

1− e−∆
(2.37)

where ∆ is the quantizer step size of the quantizer (except for the dead-zone area) which

in turn is obtained from some other calculations [69]. For the dead-zone the reconstruction

point is at zero.

2.3 Scalable Audio Coding

In general, the scalable audio coding schemes that are used in the practical coders can be

divided into two main categories. The first one, which is the most common scalable coding

technique is a multi-layer coding where the audio signal is coded in different layers. In

this scheme, each layer refines the coding error resulted from the preceding layers. This is

performed by re-quantizing the quantization reconstruction error from the previous layer.

This technique is also referred to as the reconstruction error quantization (REQ).The second

scalable coding scheme is called “bit-plane coding” (BPC). In the following we will discuss

these two techniques.

2.3.1 Scalable Coding Based on Reconstruction Error Quantization (REQ)

Introduction to REQ Scalable Coding System

Figure 2.8 shows the block diagram of a multi-layer salable audio coder based on REQ. In

the first layer of such a scalable coding system, the audio signal is quantized by a quantizer

set to give an acceptable distortion. The distortion should be tolerable by average listen-

ers. The quantizer is normally designed based on the entropy-constrained rate-distortion

optimization. This part of scalable coder is called the base layer because it produces the

core bit stream, a basic representation of the original signal with an acceptable amount of

distortion.

On the other hand there are enhancement layers which enhance the quality of the base

layer output signal by refining the quantization quality as follows. In the next step, the

quantized signal is subtracted from the original signal to form the reconstruction error

signal. This signal is quantized in another layer called enhancement layer. The output in

this layer gives the enhancement information, since by adding this quantized error signal
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Fig. 2.8 Block diagram of scalable audio coding based on REQ. The base
layer gives a minimum bit rate with acceptable distortion. The coded audio
is then subtracted from the original input using a local decoder. The residual
signal is passed to the next layer where it is encoded again and forms the first
enhancement layer. This enhancement procedure is repeated to as many as
layers required.
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to the base layer output we can have an enhanced reconstruction for the original signal.

Still we do not get perfect reconstruction but we can repeat the enhancement process by

using successive enhancement layers, each of which quantizing the error signal, i.e. the

difference between the overall reconstructed signal resulting from all the previous layers

and the original signal. The larger the number of enhancement layers we have, the better

the reconstructed signal.

Optimality Issues for REQ Scalable Coding

Consider again the simplified block diagram of the REQ system in Fig. 2.9. It has been

shown that in general scalable audio coding systems (including REQ based coders) which

minimize a non-MSE measure underperform compared to an equivalent non-scalable coder

in terms of rate-distortion performance. It is also possible that for the audio signals a

weighted mean square error (WMSE6) is used as the distortion metric for encoder opti-

mization:

D =

∫
x

(x−Q(x))2w(x)f(x) dx (2.38)

where w(x) is the weighting function.

For the special case of MSE, where there is no weighting, REQ based scalable coding

Q1 Q3Q2

Xb Xe2Xe1

EC ECEC

𝐵𝑒2 

X

𝐵𝑒1 𝐵𝑏  

Fig. 2.9 Simplified block diagram of salable audio coding based on REQ.

achieves the operational RD bound of an optimal entropy-constrained non-scalable quan-

tizer. In fact REQ is optimal when the optimal quantizers for both the base layer and

subsequent enhancement layers are uniform [30]. In general for an entropy-constrained

6One typical WMSE example for audio signals is the Noise-to-Mask ratio (NMR = N
M ) where 1

M can
be considered as the weight.
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quantization, where entropy coding is performed after quantization, the optimal high res-

olution scalar quantization (SQ) is given by the following formula in terms of the weight

function [70]:

Λ(x) =

√
w(x)

∆
(2.39)

where Λ(x) is the level density function or reconstruction point density function of the

quantizer and ∆ is obtained from the following equation:

log(∆) = h(X)−R +
1

2
E[log(w(x))] (2.40)

and the Rate-Distortion function for this quantizer is given by [70]:

D(R) =
1

12
22(h(X)−R)+E[log(w(x))] (2.41)

Given an optimal base layer, the high resolution RD performance of a scalable coder

employing REQ is strictly worse than the above operational distortion-rate function of a

non-scalable coder [30]. However, when our measure is MSE or equivalently the weighting

function equals to unity, the optimal quantizer becomes a uniform quantizer and in this

case REQ becomes optimal in terms of rate-distortion optimization.

REQ Scalable Coding for the Case of a Weighted MSE (WWMSE) Measure

The common measure used in audio coding is WMSE instead of MSE. Therefore we will

not get the best performance by performing REQ on the original signal. For an optimal

entropy coded SQ, the WMSE of the original signal is equivalent to MSE of the companded

signal [30], if the compander function is related to the quantization level density function

by:

ć(x) = ∆Λ(x) (2.42)

Note that, the the compander function here is not the same as typical compander function

used in non-uniform quantizers. In non-uniform quantizers this function is obtained from

pdf of the input signal. But here it is obtained from the weighting function of WMSE

measure.

The above statement means that if REQ is applied to the companded signal instead of



2 Background on Audio Coding and Scalability 37

the original signal we can achieve asymptotic optimality. Therefore, a uniform quantizer

can always be used for entropy-constrained quantization of a signal in the optimal way: if

the weighting function equals unity (MSE measure) uniform quantization is applied to the

original signal otherwise it is applied to the companded signal. In fact when the weighting

function equals unity the companding function is unity too. Following the above discussion

and conditions, it is shown in [30] that in general for REQ we can write:

Dns(R) = Ds(Rb +Re) (2.43)

where ns and s are subscripts for non-scalable and scalable, Rb and Re are the entropies

of the base layer and enhancement layer outputs in a scalable coder and R = Rb + Re is

the entropy of an equivalent non-scalable coder output. This says if we have a multi-layer

scalable coder of Figure 4.1 in which each layer has its own output entropy, the resulting

distortion of the overall coder can asymptotically reach the distortion of a non-scalable

coder in which entropy of the quantization output equals the sum of entropies of the layers

in the scalable coder.

To summarize our discussion we can say: The overall rate-distortion function of a REQ

scalable coder and a non-scalable coder are asymptotically the same, when uniform quan-

tizers are used for them or equivalently when the MSE measure is used for the distortion

minimization.

The optimization criteria considered in the whole above statements was the rate-distortion

relation. This function is the relation between the distortion and the entropy of quantizer

outputs in the coders. However because entropy coding is performed for output of each

quantizer we have an increase in rates. For example if we are using Huffman coding we

have the following relation between entropy and bitrate of each quantizer output:

R ≤ B ≤ R + 1 (2.44)

where B is the bitrate after Huffman coding.

Now consider the REQ scalable coder of 4.1. In such a coder, Huffman coding is

performed independently for quantizer output of each layer. The above relation holds for
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each of layer:

Rb ≤ Bb ≤ Rb + 1

Rei ≤ Bei ≤ Rei + 1 (2.45)

where the indices b and ei are used for base layer and ith enhancement layer.

So we can write the following relation for the overall coder:

Rb +Re1 +Re2 + ... ≤ Bb +Be1 +Be2 + · · · ≤ Rb +Re1 +Re2 + · · ·+N (2.46)

where N is the number of layers.

As it can be seen the bounds in the inequality is loosened by the number of layers N

compared to that of an equivalent non-scalable coder in which R = Rb +Re1 +Re2 + ... .

This means that although the overall rate of the scalable coder and the rate of non-scalable

coder are the same in terms of entropy, they are not the same in terms of bitrate which is

the final parameter we are interested in for scalable bitrate coding. This happens because

entropy coding of the layer outputs in scalable coding are done independently. This is

an important factor for the sub-optimality of a scalable coder compared to a non-scalable

coder.

2.3.2 Bit-Plane Coding (BPC)

In Bit-Plane coding (BPC), the binary representation of the input signal is sequentially

scanned and coded from the most significant bit (MSB) to the least one (LSB). The cod-

ing is performed for each bit-plane separately using an entropy coding technique. The kth

bit-plane refers to the kth bits of a sequence of signal samples/coefficients. BPC provides

lower computational complexity compared to the REQ technique since it only needs a

single scan of the coefficients in a frame. At the decoder, the signal can be fully or par-

tially reconstructed depending on how many bit-planes it receives. Thus, a scalable coding

scheme is provided by BPC: the more bit-planes decoded, the higher quality signal can be

reconstructed.

Coding schemes including the bit-sliced arithmetic coding (BSAC) [71] with the im-

proved performance using SPIHT7 [72,73], ESC [74], EZK [75] are examples of BPC tech-

7Set Partitioning in Hierarchial Trees. In SPIHT, the wavelet coefficients are organized in a hierarchial
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niques that can be used for scalable audio and image coding. Techniques like SPIHT are

mostly used in image coding. For scalable video coding, typically there are three types

of scalability: temporal, spatial and quality scalability and the current standards support

combinations of them [76–78]. Usually, the scalable image coding techniques, including

the BPC techniques, are also applied to the second and the third types of scalable video

coding [79].

For audio, we can refer to the Bit-Plane Golomb code (BPGC) [23, 80], as a specific

case of BPC. It has been shown that, the Golomb code is optimal for a sources with

geometrical distribution [81]. It was also shown that, BPGC provides a fair approximation

of an entropy-constrained scalar quantizer (ECSQ) for Laplacian sources. That is why it

has become a good replacement for the other BPC techniques for audio coding. BPGC is

now the BPC technique used in MPEG-4 audio scalable to lossless audio coding (SLS). In

Chapter 5 we will talk about the BPGC in more detail.

2.4 MPEG-4 Audio Coding and Scalability

2.4.1 A Brief Introduction to the Advanced Audio Coding (AAC)

Advanced Audio Coding (AAC) first was introduced in MPEG-2 Audio. The first MPEG-2

audio coding system was MPEG-2 BC/LSF [82] which worked very similar to MPEG-1 layer

3 (MP3) but employed multichannel bitstream format as well. This type of MPEG-2 coder

was compatible with the previous versions of MPEG audio coders. It also supported lower

sampling frequencies. BC in MPEG-2 BC/LSF corresponds to the backward compatibility

of MPEG-2 towards MPEG-1, and the extension of sampling frequencies to lower ranges

(16, 22.05, and 24 kHz) is denoted by LSF (lower sampling frequencies). However, because

of the backwards compatibility constraint of the MPEG-2 BC/LSF, it was not practical

for coding 5-channel audio at rates below 640 kb/s. MPEG started research on a more

advanced coding system but not necessarily backward-compatible. This led to the Non-

backward Compatible/Advanced Audio Coding NBC/AAC algorithm or briefly AAC [2].

This audio coding system could produce an acceptable quality at 320 kb/s for five full-

bandwidth channels.

tree structure where each parent is associated with a set of children. The coding efficiency is mainly
achieved by scanning the tree nodes in a specific order from the parents to the children.
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Fig. 2.10 Advanced Audio Coder (AAC) introduced in MPEG-2.

AAC (See figure 2.10) is similar to MP3 and MPEG-2 BC/LSF in that it uses a MDCT

filter bank which gives the spectral coefficients and a psychoacoustic model which is ba-

sically the same model used in MP3. It also supports multichannel coding of MPEG-2

BC/LSF. However, it incorporates new audio coding tools which were not used in the pre-

vious standards and make it a more efficient coder. These include window shape adaptation,

spectral coefficient prediction, temporal noise shaping (TNS), and sample-rate (bandwidth)

and bit-rate scalability [83]:

AAC allows for using two types of windows, a sine window and a Kaiser-Bessel designed

(KBD) window. The window shape adaptation is used to optimize filter-bank frequency

selectivity. For example when a narrow pass-band is more beneficial than strong stop-band

attenuation the sine window can be selected, but a Kaiser-Bessel designed (KBD) window is

selected in the opposite case. Spectral coefficient prediction (over time) is used in AAC for

the coefficients that are below 16 kHz. This improves the coding efficiency. A second-order

lattice predictor is used and updated on each frame using a backward adaptive least mean

square (LMS) algorithm. The TNS module is used to control the pre-echo effect8 and the

sample-rate scalability allows working with different sample-rates and hence coding audio

signals with different bandwidths.

8Pre-echo occurs in frame-based systems when the distortion increases prior to the onset of the signal.
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The bit-rate scalability which is of our special interest is discussed in a separate section

in this chapter.

2.4.2 Overview of the MPEG-4 Audio Coding System

The current MPEG-4 audio coding standard specifies coding of natural and synthetic

sources. Very low bit rates can be achieved through the use of synthetic speech and music

such as text-to-speech and MIDI, while for higher bitrates “natural audio coding” is used

providing integrated coding tools that make use of different signal models. Choosing the

coding tools depend on the desired bit rate, bandwidth, complexity and quality.

Natural audio coding include a set of tools for coding of natural sounds at bit rates

ranging from 200 b/s to 64 kb/s per channel and three distinct algorithms are integrated

for that purpose: Parametric Coding, Code Excited Linear Prediction (CELP) Coding and

Transform Coding.

The parametric coding is used for bit rates of 2–4 kb/s and 8kHz sampling rate together

with 4–16 kb/s and 8 or 16 kHz sampling rates. For higher quality narrow-band and wide-

band CELP can be used for 8 kHz and 16 kHz sampling rates respectively. And finally for

general audio coding at bit rates above 16 kb/s General Audio coder (GA coder) is used

which employs a time/frequency perceptual coder. This coder (GA) is basically MPEG-2

AAC coder with extensions for bit-rate scalability.

2.4.3 General Audio Coder

Figure 2.11 shows a block diagram of the General Audio Coder in MPEG-4 audio. As

mentioned above the coder is built based on MPEG-2 AAC with some extended features.

These features are highlighted in the figure and include: Perceptual Noise Substitution

(PNS), Long-Term Prediction (LTP), Twin VQ coding and Scalability.

Perceptual Noise Substitution (PNS) It is used to model transform-coefficients in

noise-like frequency subbands. Reduction in bitrate is achieved since only a paramet-

ric representation is required for each PNS subband rather than the full quantization

and coding of the transform coefficients [83,84].

Long-Term Prediction (LTP) Since the tonal signals are highly predictable LTP is used

to increase coding efficiency of that type of signals. Speech pitch prediction techniques
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Fig. 2.11 MPEG-4 General Audio coder.

are used for this purpose but the only main difference between the common techniques

in a speech coder and in MPEG-4 GA is that in the latter the LTP is performed

in frequency domain while in speech coders it is performed in time domain. The

complexity of MPEG-4 GA LTP scheme is considerably reduced compared to the

MPEG-2 AAC prediction scheme [83,85].

Twin VQ Twin VQ is an acronym of the Transform domain Weighted Interleave Vector

Quantization [83]. The Twin VQ performs vector quantization of the transform

coefficients based on perceptually weighted model. First the coefficients are flattened

and normalized using LPC and Bark-Scale envelope coding, then they are interleaved

to sub-vectors and finally they are quantized based on a perceptually weighted vector

quantization [86–88].The Twin VQ provides high coding efficiencies at very low bit

rates (6-8 kb/s) even for musical and tonal signals [83].

2.4.4 Rate-Distortion Loop in AAC

In AAC there is a nested loop which controls the bitrate and the distortion in each frame.

The “rate loop” which is the inner loop, increases the quantizer step size for each scale-
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factor band of the current frame (by decreasing the scalefactors9) and quantizes the input

coefficients until the output quantized coefficients can be coded with the available number

of bits for this frame. After completion of the inner loop, the “distortion loop” (the outer

loop) checks the distortion of each scalefactor band and if the allowed distortion is exceeded

(compared to the masking threshold calculated for that band), increases the scalefactor and

calls the inner loop again.

2.4.5 Scalable Coding in MPEG-4 Audio

Scalable Advanced Audio Coding (S-AAC)

As mentioned before there are different types of scalability. The bit-rate scalability is the

one used in MPEG-4 which is one of the main cores of that standard. Figure 2.12 shows

the MPEG-4 bit-rate scalability scheme. This scalable coding scheme is based on Recon-

struction Error Quantization (REQ). In such a scalable coder the first stage which is called

the core layer or base layer encodes the input audio based on a lossy compression scheme.

In the next stage which is called an enhancement layer an error signal is calculated by

subtracting the reconstructed signal from the input signal where the signal reconstruction

is performed by a local decoder. This error signal is encoded again to form the compressed

residual. The above sequence of steps can be repeated to form as many enhancement layers

as required. For example we can have a core layer which has 32 kb/s bitrate and we have

two enhancement layers which use 16 kb/s and 8 kb/s. At the receiver side we can have

reconstructed audio at 32 kbps, 48 kbps or 56 kbps.

The important thing to mention here is that the base layer bit stream should guar-

antee reconstruction of the original input audio with few audible artifacts which makes it

acceptable in case of no enhancement layers are used. Additional enhancement layers can

be added to increase the quality of the decoded audio.

Scalable-to-Lossless Coding (SLS)

There is another scalable coding scheme which is one of the extensions of the MPEG-4

scalable audio coding and is based on bit-plane coding [11]. In this technique, first the

9The scalefactor is a parameter in AAC quantization operation by changing of which, the quantization
step size changes in each scalefactor band. We will discuss it in more detail in Chapter 5.
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Fig. 2.12 MPEG-4 Scalable Coder.

quantized spectral coefficients are grouped into frequency groups. Then in each group bit

planes of the coefficients are grouped into bit slices, in each of these bit slices there can be

one or more bits of the coefficients. Then the bit slices are coded using arithmetic coding.

The coded slices then can be sent in order of their significance (MSBs first) and this way

a scalable coding pattern is created. By choosing appropriate number of bits for the slices

scalability with steps of even 1kbps/channel can be provided. That is why the technique

is called fine-grain scalability.

This scalable coding tool is called MPEG-4 scalable-to-lossless (SLS). It was released

as a standard audio coding tool in June 2006 [12, 89] and there has been research on

improving its performance [17,18,72,90]. The latest update to SLS picks the so called bit-

plane Golomb code (BPGC) as its BPC techniques. SLS has two modes: a perceptual-core

mode and a non-core mode. In both of these modes integer MDCT (IntMDCT) is used

instead of MDCT. We will discuss SLS in more detail in Chapter 5.
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Chapter 3

Psychoacoustics and Practical

Psychoacoustic Models

Psychoacoustics is a science that studies the way audio signals are perceived by Human

Auditory System (HAS). The masking effect which is evaluated in this science, is used in

audio compression as a very useful feature. Using this property, parts of an audio signal

that are not audible could be removed without changing the perceptual quality of the

original signal or creating audible artifacts. In the audio coding systems normally there

are psychoacoustic models which simulate the HAS. These models calculate the masking

thresholds for the different frequency bands of the input signal which are used by the other

stages of the encoder.

In this chapter we will briefly discuss some important properties of the HAS and con-

clude the chapter by talking about two important practical psychoacoustic models.

3.1 Human Auditory System (HAS)

The HAS converts an acoustic signal to a neural signal and then sends it to the brain where

it is perceived. The HAS consists of three main parts: The outer ear, the middle ear and

the inner ear. Each of these plays a different role in processing the received sound (see

Fig. 3.1).

The outer ear consists of the Pinna, Ear Canal, and the Eardrum. The main role of the

outer ear is to receive the air pressure variations caused by a sound source and transmit it
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24 3 Information Processing in the Auditory System

Fig. 3.1. Schematic drawing of the outer, middle and inner ear

What is generally referred to as the ear is, in fact, the outer ear shown
schematically in Fig. 3.1 together with the middle and inner ear. The outer
ear’s function is to collect sound energy and to transmit this energy through
the outer ear canal to the ear drum. The outer ear canal produces two ad-
vantages: firstly, it protects the ear drum and the middle ear from damage
and secondly, it enables the inner ear to be positioned very close to the brain,
thus reducing the length of the nerves and resulting in a short travel time for
the action potentials in the nerve.

The outer ear canal exerts a strong influence on the frequency response of
the hearing organ. It acts like an open pipe with a length of about 2 cm cor-
responding to a quarter of the wavelength of frequencies near 4 kHz. It is the
outer ear canal that is responsible for the high sensitivity of our hearing or-
gan in this frequency range, indicated by the dip of threshold in quiet around
4 kHz. This high sensitivity however, is also the reason for high susceptibility
to damage in the region around 4 kHz.

3.1.2 Middle Ear

The sound affecting the outer ear consists of oscillations of air particles.
The inner ear contains fluids that surround the sensory cells. In order to
excite these cells, it is necessary to produce oscillations in the fluids. The
oscillations of air particles with small forces, but large displacement, have to
be transferred into motions of the salt water-like fluids with large force, but

Fig. 3.1 Human Auditory System (HAS) (from [91]). The HAS consists of
three main parts: The outer ear, the middle ear and the inner ear. The air
pressure variation is received by the outer ear. The middle ear acts as an
impedance matcher between the outer and the inner ear, and the inner ear
converts the acoustic vibration to the neural information and sends it to the
brain where the sound is perceived.

to the middle ear. The pinna acts as an acoustic antenna. Also, its special shape helps in

recognizing the location and the direction of the sound source.

The ear canal conducts the received air pressure variations to the eardrum. The air

canal can be modeled by an acoustic tube with a resonance at 3 kHz. When the eardrum

receives these variations it starts to vibrate and the resulting vibrations are transferred to

the middle ear.

The middle ear consists of three small bones. The main role of the middle ear is to

transfer the sound vibrations from the outer ear to the inner ear. These vibrations are

received by a liquid inside the inner ear. Therefore, this transfer is performed by the

inner ear in an efficient way by matching the acoustic impedance of the air and the liquid

impedance inside the inner ear.

The main part of the inner ear is called the Cochlea. It is a spiral-shaped cavity which

makes 2.5 turns around its axis and is filled with a liquid. The cochlea has two ends. One

end which receives the vibrations from the middle ear (at the oval window) is called the
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base and the other end is called the apex. The length of the inner ear is about 3.5 cm and

it is wider at the base (about 2 cm) compared to the apex. Inside the Cochlea there is a

membrane which is called the Basilar Membrane and separates the two liquid-filled tubes

of the Cochlea.

The vibrations and the pressure difference of the liquid in these tubes stimulates the

Basilar Membrane so that it finds a peak of vibration at a specific point depending on

the sound frequency. For the higher frequencies this point is closer to the base, while for

the lower frequencies it is closer to the apex. This way a sound wave propagates through

the basilar membrane. The neural receptors are connected to the different locations of the

basilar membrane and are triggered by the physical movements on the membrane. There-

fore, they are tuned to different frequency bands. This is how the perception information

is sent to the brain for different frequencies.

The basilar membrane can be considered as a string with a decreasing tension moving

from the base to the apex [92]. This tension changes by about four orders of magnitude.

The wave propagation speed for a string is

c =

√
T

pL
, (3.1)

where T is the string’s tension and pL is its linear density. The wavelength for the frequency

component f is

c =
1

f

√
T

pL
=
c

f
(3.2)

The string impedance can be obtained by

z0 =
√
pLT , (3.3)

and the wave power by

Pw =
1

2
z0ω

2A2
w =

1

2

√
pLTω

2A2
w, (3.4)

where ω = 2πf and Aw is the wave amplitude.

When a wave component at frequency f propagates from the base to the apex, its wave-

length decreases because of the tension decrease. To satisfy the requirement of the power

constancy its amplitude increases. However, the propagation is lossy. The power dissipa-
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tion depends on the frequency and increases with the amplitude. Therefore, a frequency-

dependent peak of vibration occurs at a specific point of the basilar membrane.

The higher frequencies are more affected by the propagation loss and hence, their reso-

nance point is closer to the base. On the other hand, for the low frequencies there is less

power loss and therefore, they propagate more widely and peak at a point closer to the

apex. About two thirds of the Cochlea vibrates for the low frequencies (one fourth of the

audio bandwidth). This is why the spread of masking (as will be discussed later) toward

higher frequencies is wider.

3.2 Critical Bands

As explained in the previous section, depending on the input audio frequency, a specific

area along the basilar membrane has the maximum vibration. Therefore, the basilar mem-

brane can be considered a spectrum analyzer or a filter bank which decomposes the audio

signal into sub-bands of the frequency components. These bands are called the Critical

Bands (CBs). The bandwidth of a critical band can be defined as the smallest frequency

difference between two tones such that they can be heard as two different tones. The critical

bandwidth can be approximated for an average listener by [91]

BWc(f) = 25 + 75[1 + 1.4(
f

1000
)2]0.69 (3.5)

where f is the frequency in Hz. A CB represents a constant physical distance along the

basilar membrane. In fact, the width of a CB is corresponds to a distance along the basilar

membrane of about 1.3 mm. This distance is not constant if you consider the corresponding

filter bank bandwidths in Hz, but constant in another scale called Bark scale. A frequency

component which is one CB apart from another one, has a distance of one Bark from

another component. The relation between Bark and Hertz for a frequency component f

can be approximated as [91]

z(f) = 13 arctan(
0.76f

1000
) + 3.5 arctan((

f

7500
)2) (3.6)

where z(f) is the frequency in Bark. Table 3.1 shows the frequency ranges of the discretized

critical bands for the audio spectrum [91]. As mentioned before, the HAS acts as a filter
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bank with critical bands. The center frequency of each band is also shown in the table.

Although the frequency ranges follow a non-linear pattern in Hz, they are linear in the

Bark scale. In other words, the critical bandwidths and the distance between the center

frequencies is almost constant in Bark.

z (Bark) fl (Hz) fh (Hz) BW (Hz) fc (Hz)

0 0 100 100 50

1 100 200 100 150

2 200 300 100 250

3 300 400 100 350

4 400 510 110 450

5 510 630 120 570

6 630 770 140 700

7 770 520 150 840

8 520 1080 160 1000

9 1080 1270 190 1170

10 1270 1480 210 1370

11 1480 1720 240 1600

12 1720 2000 280 1850

13 2000 2320 320 2150

14 2320 2700 380 2500

15 2700 3150 450 2900

16 3150 3700 550 3400

17 3700 4400 700 4000

18 4400 5300 900 4800

19 5300 6400 1100 5800

20 6400 7700 1300 7000

21 7700 9500 1800 8500

22 9500 12000 2500 10500

23 12000 15500 3500 13500

24 15500-

Table 3.1 Frequency ranges and center frequencies for the discretized critical
bands as a filter bank covering the audio spectrum [91]. The critical band-
widths and the distance between the center frequencies is almost constant in
Bark.
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3.3 Sound Pressure Level (SPL)

The human ear perceives the sound as the air pressure variation. Sound is usually expressed

in terms of its intensity, i.e. the amount of energy which passes the surface unit in the time

unit. The sound pressure level (SPL) is a quantity which is obtained from this intensity

and is defined as [93]

SPL = 10 log10(
I

I0

) (3.7)

where I is the sound signal intensity and I0 is the reference sound intensity and is equal to

10−12(Watt/m2). Since the sound intensity is proportional to the squared air pressure, the

SPL can be also expressed in terms of the magnitude of the air pressure variations [93]:

SPL = 10 log10(
P

P0

)2, (3.8)

where P0 = 20µ Pa is the threshold of hearing a tone at 2 kHz.

The SPL range which can be perceived by HAS is between 10−5 Pa to 102 Pa [93]. The

SPL is expressed with a logarithmic scale and is in dB. Therefore, the dynamic range of

the sound perceived by HAS is between 0 dB and 120 dB. In fact, 120 dB is the threshold

of pain for the ear (on average, since it is different for different frequencies).

3.4 Absolute Threshold of Hearing

Absolute threshold of hearing or the threshold in quiet refers to the minimum power of a

pure sound tone which can be heard in a noise-free environment. This threshold is different

for different frequencies. This phenomena is related to the perception threshold of the

neurons in HAS. All the components that are below this threshold are masked and can not

be heard.

As can be seen in Fig. 3.2 the minimum threshold occurs at around 3 kHz. This is

because the ear canal acts as an acoustic tube approximately 2.8 cm long with resonance.

This tube exhibits a wide resonance peak for 2 − 5 kHz. Also, it can be seen that the

threshold goes relatively high for frequencies higher than 16 kHz and the frequencies above

the 20 kHz are not audible even having a very high power.
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Fig. 3.2 Absolute threshold of hearing or the threshold in quiet. The thresh-
old depends on the frequency and has a minimum around 3 kHz because of
the ear canal’s resonance. The threshold goes very high for high frequencies
so that above the 20 kHz the sound becomes inaudible for the human ear.

The threshold in quiet can be approximated by the following formula [94]:

Tq(f) = 3.64(
f

1000
)−0.8 − 6.5e−0.6( f

1000
−3.3)2

+ 10−3(
f

1000
)4, (3.9)

where f is the frequency in Hz and Tq is the SPL of the threshold in dB.

3.5 The Masking Effect

Human Auditory System has special characteristics. One of its most important character-

istics is the masking effect. In the masking effect one audio signal makes another signal

inaudible. There are typically two types of masking [91]:

– Temporal masking

– Frequency masking (also called simultaneous masking)
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3.5.1 Temporal Masking

In the temporal masking, one part of an audio signal (masker) makes the weaker parts

inaudible which are present in a small time interval after or before the masker. There are

also two types of temporal masking:

– Forward Masking

– Backward Masking

The forward masking occurs when the masker comes before the maskee in time, and in

the backward masking the maskee comes before the masker. The forward masking can last

about 300 to 500 ms, while in the backward masking the masker affects an interval of 1−20

ms before it. In both cases the masking interval depends on the intensity and the duration

of the masker.

3.5.2 Frequency Masking

In the frequency masking, an audio signal prevents a weaker signal (which is playing at

the same time) to be heard. In fact, in this type of masking, the threshold of quiet for

different frequencies changes in the presence of another signal. These signals can be a single

frequency component or a set of components. Frequency masking can be divided into two

main types of masking:

– A frequency component of the audio signal (called a tone) makes some weaker neigh-

boring components inaudible: Tone Masking Noise (TMN).

– A set of frequency components included in a critical band of the audio signal makes

some weaker neighboring components inaudible: Noise Masking Tone (NMT).

3.6 Spread of Masking

Spread of masking refers to the pattern a masker masks its neighboring frequencies. The

spread of masking is different for a masker with different frequencies or different SPL and

it depends directly on both of these parameters. Several functions have been proposed so

far which model the spread of masking. Normally, analyzing the spread of masking is much

easier in the Bark scale since this scale is very compatible with the auditory properties of
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the HAS specifically the basilar membrane. In fact, using the Bark scale the frequency

dependence of the spread of masking pattern and its modeling functions disappears.

The spread of masking can be modeled by an approximately triangular function with

the slopes of +25 and −10 dB per Bark. An analytical expression for this function was

given in as [95]

SF (x) = 15.81 + 7.5(x+ 0.474)− 17.5
√

1 + (x+ 0.474)2 (3.10)

where x is the frequency distance in Bark and SF (x) is the spread of masking in dB.

3.7 SMR and NMR

In audio coding based on the transform coding, typically a psychoacoustic model is used

which gives the masking thresholds for different frequency bands. This threshold means

that the signal components which have energies below this threshold are masked in that

band by the other parts of the signal. This fact could be thought of in another way: if a

noise is added to the signal and the noise energy is below the masking threshold, the noise

becomes inaudible. This is the main reason for using a psychoacoustic model in audio

coding which leads to a great amount of compression.

When the transform coefficients are quantized, the quantization error could be thought

of a noise added to the original signal. Typically, the signal to noise ratio (SNR) is used to

express the amount of noise compared to the signal energy:

SNR = 10 log10

ES
EN

dB, (3.11)

where ES and EN are the signal and noise energies respectively. In practical audio coders,

each band of the signal is quantized separately. For each band these energies can be

obtained by

ES(n) =
∑
l

c2
n[l], (3.12)

and

EN(n) =
∑
l

e2
n[l], (3.13)

where cn[l] is the lth quantized coefficient index in band n, and en[l] is the corresponding
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quantization error. If the quantization resolution is chosen such that the resulting noise is

smaller than the masking threshold, the noise can be inaudible. Therefore, together with

the SNR, another ratio is defined and normally is used in audio coding called signal-to-mask

ratio (SMR)

SMR = 10 log10

ES
EM

dB, (3.14)

where ES and EM are the signal and the mask energies respectively. This ratio could

be interpreted as a perceptual SNR. In an audio coder, these ratios are calculated by

the psychoacoustic model for each frequency band. Another commonly used ratio is the

noise-to-mask ratio (NMR) which is defined as

NMR = 10 log10

EN
EM

dB, (3.15)

which can also be obtained by

NMR = SMR− SNR dB. (3.16)

This ratio says how strong the noise is compared to the masking threshold and hence how

audible it is.

3.8 MPEG Psychoacoustic Models

A psychoacoustic model is a perceptual model based on HAS which gives the masking

thresholds for different frequency bands, typically the critical bands. An audio encoder

uses these thresholds during the coding process. In this section we will briefly discuss

the psychoacoustic models which have been used in MPEG Audio standards. Two main

psychoacoustic models have been developed and used in the MPEG Audio. In MPEG-

1 layers I and II the psychoacoustic model 1 was used. For MPEG-1 layer III (known

as MP3) a new psychoacoustic model was developed. This model is also the one used

later in MPEG-2 Advance Audio coding (AAC) and MPEG-4 AAC with slight possible

modifications.
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3.8.1 MPEG Psychoacoustic Model 1

In MPEG psychoacoustic model 1 [1], the simultaneous masking threshold for an NMT, is

calculated using the following spreading function:

vf(zi,zj) =


17dz − 0.4X(zj) + 11 −3 ≤ dz < −1

(0.4X(zj) + 6)dz −1 ≤ dz < 0

−17dz 0 ≤ dz < 1

−17dz + 0.15(dz − 1)X(zj) 1 ≤ dz < 8

(3.17)

where zj is the central frequency of the masker critical bank in Bark, zi is the maskee in

Bark and dz is the distance between the maskee and masker: dz = z(fmaskee)− z(fmasker).

X(zj) is the sound pressure level of the masker in dB and vf(zi,zj) is the spreading function

giving the masking effect of the critical band with central frequency of zj on tone zi. The

masking threshold for the maskee zi resulting from the masker zj is obtained by

M(zi, zj) = X(zj) + vs(zj) + vf (zi, zj) (3.18)

where

vs(zj) = −2.025− 0.175zj (3.19)

is the self masking level of the masker. Finally the total masking threshold in dB for maskee

zi from all effective maskers is obtained by

MT (zi) = 10 log10(10Tq(zi)/10 +
N∑
j=1

10M(zi,zj)/10)), (3.20)

where Tq(zi) is the threshold in quiet for zi. For maskers that are out of the specified

distance range from maskee, the individual masking threshold is assumed to be -8dB.

3.8.2 MPEG Psychoacoustic Model 2

MPEG psychoacoustic model 2 is a more advanced model compared to its preceding and

is the one used in MPEG-4 AAC. As noted in Section 3.5, there is a difference between

the behaviors of a noise masking a tone and a tone masking a tone/noise. In MPEG

psychoacoustic model 2 [1, 56], the tonality of a signal is estimated by a tonality index
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which is a function of time and frequency. Using this index in the calculations leads to

a generalized psychoacoustic model which integrates the two masking types into a single

model. For this, a simple polynomial predictor was proposed and used [56]. This prediction

is for the magnitude and phase of the frequency lines. Defining

r(t, ω) : magnitude at time t and frequency ω

φ(t, ω) : phase at time t and frequency ω,
(3.21)

The prediction is performed as

r̂(t, ω) = r(t− 1, ω) + (r(t− 1, ω)− r(t− 2, ω))

φ̂(t, ω) = φ(t− 1, ω) + (φ(t− 1, ω)− φ(t− 2, ω)),
, (3.22)

where r̂ and φ̂ are the predicted magnitude and phase respectively. Then a metric called the

unpredictability is calculated. This metric is the Euclidean distance between the predicted

and the actual values. It is also referred to as the ’chaos measure’ and is defined as

c(t, w) =
dist([r̂(t, ω), φ̂(t, ω)], [r(t, ω), φ(t, ω)])

r(t, ω) + abs[r̂(t, w)]
. (3.23)

Ideally, for a pure tone the prediction will be accurate and c(t, ω) becomes zero. On the

other hand, if the signal is a noise, c(t, ω) can take values up to unity with a mean of 0.5.

As a result, c(t, ω) can be limited to a range from a very small value like 0.05 (since a

completely pure tone is very rare) to 0.5 representing a fully tonal and a noise-like signal

respectively:

cl(t, ω) = max{0.05,min[0.5, c(t, ω)]} (3.24)

The chaos measure is mapped to the tonality measure using

v(t, ω) = −0.43 log10(cl(t, w))− 0.299, (3.25)

where v(t, ω) is the tonality index mentioned above and is used in the masking calculations

explained below.

The frequency coefficients of the signal are grouped into the partitions with 1/3 critical

band energy representation. For each of this partitions a different masking threshold is
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calculated. The energy of a the signal in a partition can be obtained by

sb =

ωh∑
ωl

r(ωi)
2 (3.26)

where b is the partition index and ωl and ωh are the lowest and highest frequency in

partition b. Then a weighted unpredictability cb is calculated for each partition using the

chaos measure described above as

cb =

ωh∑
ωl

r(ωi)
2c(ωi). (3.27)

In the next step both sb and cb are convolved with the masking spreading function. The

convolved cb is then mapped to the tonality index tb using (3.25). Then, the masking level

is calculated using the tonality index and the convolved spectrum sb. For this a signal to

noise ratio is calculated for each threshold band as

SNRb = max(minvalb, tb × TMNb + (1− tn)×NMTb) (3.28)

where NMTb and TMNb are estimates for the masking capabilities of tone masking noise

and noise masking tone and minvalb is a minimum value.

Now the threshold in quiet is taken into account and compared with the initial threshold

for adjustment. Note that, the threshold in quiet is dependent on the sound pressure level

of the audio output which is not known in advance. Therefore a normalization is required.

In both psychoacoustic models 1 and 2 this is done by assuming that the LSB of the signal

is audible. In other words, it is assumed that the LSB of a 4 kHz signal is associated with

an SPL near 0 dB. This is because for a normal listener the threshold in quiet at 4kHz

(which has approximately the minimum threshold) is about zero in SPL.

By doing the above adjustment, a preliminary threshold for each threshold band b of

the current audio block is obtained. Then final masking threshold is calculated as

thrb = max(thrpb, rpelev × throldb) (3.29)

where thrb is the final estimated masking threshold, thrpb is the preliminary threshold

calculated for the current block, throldb is the preliminary threshold of the last block
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(which is stored and used for the pre-echo control issues) and rpelev is a constant chosen

to be 2.

These masking thresholds are obtained for each threshold band representing approxi-

mately 1/3 of a critical band. In practice, the signal is decomposed into several subbands.

These subbands typically cover several threshold bands. In order to calculate the mask-

ing threshold for each subband, the thresholds obtained above are mapped to the spectral

densities and then calculating the energy per subband gives the masking threshold for that

band. The signal to mask ratio SMR is then obtained by

SMRn = 10 log10(
Sn
thrn

) (3.30)

where thrn is the final calculated masking threshold for subband n and Sn is the signal

energy in this subband.
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Chapter 4

Scalable Audio Coding using

Watermarking

4.1 Introduction

Figure 4.1 shows the simplified block diagram of the scalable audio coding based on REQ.

In this system the signal is quantized by a quantizer designed for a minimum bit rate

and acceptable distortion (the base layer). Enhancement layers improve the quality of the

base layer signal, refining the quantization by subtracting the quantized signal from the

original. This error signal is quantized, encoded and transmitted as the first enhancement

layer. This enhancement step can be repeated, to form an ordered set of layers. From the

base layer up, each additional layer that the receiver receives is used to refine the quality

of the decoded signal.

Q1 Q3Q2

Xb Xe2Xe1

EC ECEC

𝐵𝑒2 

X

𝐵𝑒1 𝐵𝑏  

Fig. 4.1 Salable Audio Coding based on REQ. EC is entropy coding.



4 Scalable Audio Coding using Watermarking 60

In terms of Rate-Distortion (RD) performance, REQ has been shown to be asymptot-

ically optimal for the Mean Square Error (MSE) criterion [30]. It asymptotically achieves

the performance of an equivalent non-scalable coding if the rate is measured by the en-

tropy of resulting output symbols. However, in practical coding systems symbols need to

be encoded in a bitstream using an entropy coding scheme, which adds an overhead for

each layer.

In this chapter we propose a method that improves the performance of the scalable audio

coding systems based on REQ. In this method we used the Quantization Index Modulation

(QIM) which is a technique borrowed form watermarking [96]. Using this technique some

of the information of each layer output is embedded (watermarked) in the previous layer.

We will show that using this approach, a saving in bit rate is achieved while the distortion

is not much affected. In the following section we will discuss AAC quantization and will

address an issue which we will take advantage of in our method to improve the performance

of the REQ system. Then we will give a brief introduction to QIM technique and finally

we will introduce our proposed method Scalable Audio Coding using Watermarking which

we will refer to by WSAC in the rest of the chapter.

The chapter is organized as follows. In the next section, we will discuss AAC quan-

tization and its entropy properties. The quantization index modulation (QIM) technique

is discussed in Section 4.3. Section 4.4 covers the proposed scalable audio coding using

watermarking, the results are presented in Section 4.5 and Section 4.6 summarizes the

chapter.

4.2 AAC and Uniform Threshold Quantization

The quantization formula which is used in AAC for quantizing the input MDCT coefficients

is given by [3]

ix = sgn(x)nint(
|x|0.75

∆
− 0.0946)

x̂ = sgn(x)(∆|ix|)
4
3 ,

(4.1)

where ∆ is the step size parameter, nint() and sgn() denote the nearest integer and signum

functions and 0.0946 is the offset value which is also referred to as the magic number.

This is a uniform threshold quantizer (UTQ) with a dead-zone around zero and with a
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slight compression involved. The UTQ with dead-zone has been shown to be the optimal

entropy-constrained quantizer for Laplacian sources in high rates [69]. In such a quantizer,

reconstruction points are not in the middle of the quantizer intervals and there is a constant

offset in each interval. However, the interval width (or the step size) of the quantizer is

constant (uniform threshold) except for the zero interval (the dead-zone) which is larger

than the other intervals.

In high-rate theory, for the case of constrained-entropy quantization the relation between

the optimal uniform quantizer step size and its entropy is [29]

∆ = 2−(R−h(X)), (4.2)

where ∆ is the quantizer step size, R is the quantizer output entropy and h(X) is the input

signal differential entropy. This equation implies that when you double the resolution of

the quantizer (by halving the step size), the output entropy will be increased by one bit.

The above relation holds only with the high-rate assumptions where 1) quantization cells

are small enough that the source density is constant within the cell 2) each re-construction

point is located at the center of the cell and 3) N →∞. However, in a REQ scalable coding

system a low resolution quantizer is used in each layer, e.g., a 4-layer system with 4-bit

resolution quantizers. In the following we will obtain a general relation for the entropy of

a UTQ and will show that the entropy increment becomes less than unity for the low-rate

quantization.

Consider a Laplacian source which is a good approximation for the MDCT coefficients

of an audio signal [97]. Our simulations also show that this is true, even for the slightly

compressed MDCT coefficients (used in the AAC quantization (4.1)). In the rest of this

chapter, by the input signal we mean the MDCT coefficients after this compression. For a

Laplacian signal the pdf is

fX(x) =
1

2
λe−λ|x|, (4.3)

where λ =
√

2
σ

and σ is the standard deviation of the signal.

Now consider a UTQ with dead-zone. The probability of the input signal to be in each

interval (for i > 0) is

pi =
1

2
(e−λti − e−λti+1), (4.4)
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where ti and ti+1 are the thresholds of the interval i and we have (except for the dead-zone)

ti+1 = ti + ∆ (4.5)

which gives

pi =
1

2
(1− e−λ∆)e−λti (4.6)

and the probability of the dead-zone becomes

p0 = (1− e−λT ), (4.7)

where T = ∆
2

+ to (to is the offset value of the UTQ).

The entropy of the quantizer output then can be written as

R = −
∑
i

pi log2(pi)

= −(1− e−λT ) log2(1− e−λT )

− 2
∑
i≥1

1

2
(1− e−λ∆)e−λti log2(

1

2
(1− e−λ∆)e−λti)

= (1− e−λT )− (1− e−λ∆)[
∑
i≥1

e−λti log2(e−λti)+

(log2(1− e−λ∆)− 1)
∑
i≥1

e−λti ].

(4.8)

Since t1 = T , we have∑
i≥1

e−λti log2(e−λti) = e−λT log2(e−λT )

+ e−λ(T+∆) log2(e−λ(T+∆))

+ e−λ(T+2∆) log2(e−λ(T+2∆))

+ . . .

= e−λT log2(e−λT )(1 + e−λ∆ + e−2λ∆ + . . . )

− λ∆ log2(e)e−λT (e−λ∆ + 2e−2λ∆ + . . . )

=
e−λT log2(e−λT )

1− e−λ∆
− λ∆ log2(e)e−λT e−λ∆

(1− e−λ∆)2

(4.9)
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and ∑
i≥1

e−λti = e−λT (e−λ∆ + e−2λ∆ + . . . ) =
e−λT

(1− e−λ∆)
, (4.10)

then

R = e−λT + λ log2(e)e−λT (T +
∆e−λ∆

1− e−λ∆
)

− e−λT log2(1− e−λ∆)

− (1− e−λT ) log2(1− e−λT ).

(4.11)

The quantization loading factor Lf is defined as Lf = xm/σ, where σ is the standard

deviation of the input signal and xm is the quantization limit which is for instance 213−1 in

AAC quantization. By properly choosing this loading factor, the probability of the signal

being beyond the quantization limit becomes negligible. That is why we used the infinite

summation formula for the above geometric series (in all resolutions the quantizer limit is

fixed and that probability remains the same for a given Lf ). Normally Lf ≥ 7 is chosen for

Laplacian signals to avoid the quantization overload [28]. In Fig. 4.2 the obtained entropy

versus the quantization resolution is plotted for the AAC quantizer and for three different

values of Lf . Note that changing the step size parameter ∆ in (2.10) changes the quantizer

resolution at the same time. For instance, if ∆ changes from ∆ = 1 to ∆ = 2, the resolution

of the quantizer is halved. In other words the resolution (number of levels) can be expressed

by: N = 2xm/∆. The horizontal axis in Fig. 4.2 is log2(N).

It can be seen that for high resolutions the slope of the curves ∆R
∆b

tends to unity (as

predicted by the high-rate equation), while for lower resolutions it is less than unity. This

fact that in low resolutions the entropy increment becomes less than unity for doubling

the resolution is the issue that we mentioned in the introduction section. We will take the

advantage of that in our proposed coding system.

4.3 Quantization Index Modulation (QIM)

QIM is one of the techniques used in watermarking. Consider for instance the AAC quan-

tizer in which the quantized values are integers (nint() function in (2.10)). The idea is

to quantize a signal to the nearest-even or nearest-odd integer rather than to the nearest
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Fig. 4.2 Entropy of a UTQ versus quantization resolution for three values
of input σ (Lf = 7, Lf = 10 and Lf = 15)

integer value. If the receiver receives an even value a 0 bit is decoded and otherwise a 1

bit is decoded. Therefore, QIM enables us to watermark one bit of data into the signal at

the cost of higher distortion. Figure 4.3 shows the QIM based on the nearest-even integer

quantization.

even even evenodd odd

∆  

2∆  

𝑥  

𝑥  

Fig. 4.3 Quantization Index Modulation and its rough equivalency to quan-
tization with half resolution.

However, the point (which is desired here) is that if we first double the resolution of

a quantizer and the use the QIM, that is approximately equivalent to using the original

quantizer in terms of rate-distortion. Figure 4.4 shows the rate distortion performance of

an AAC quantizer without and with using QIM denoted by UTQ and QIM respectively
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(Lf = 7). For each resolution, first the regular quantization was performed using UTQ, and

then the resolution was doubled and QIM was applied to the new quantizer for a randomly

generated binary watermark bitstream with 0.5− 0.5 probabilities.
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Fig. 4.4 Performance of UTQ and its equivalent QIM (Lf = 7)

As can be seen in the figure, the difference in performance of UTQ and its equivalent

QIM is not noticeable except for the very low resolution. Appendix A shows that the

probability of the watermarked bit directly affects the performance of the QIM. We will

see later that, the overall RD performance is better at low resolutions, when we use QIM

and consider the saving in bitrate.

Note that in performing QIM using the nearest even-integer function (NE-QIM) the

dead-zone covers one interval, whereas in the nearest odd-integer QIM (NO-QIM) two

adjacent intervals around zero are covered in the dead-zone. However, as can be seen in

Fig. 4.4, that does not much affect the performance. Equation (4.11) gives the entropy

of a UTQ in terms of the step size and offset values. When using the NE-QIM approach,

the same equation can be used for obtaining the entropy since the two quantizers are

exactly equivalent. When using the NO-QIM, since there are two dead-zones around zero,

the entropy equation for such a quantizer slightly differs from (4.11) (see Appendix A).
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Nevertheless, the same trend for the differences in entropy is observed. In fact, the weighted

average entropy of the two quantizers (in NE-QIM and NO-QIM) also follow the same

pattern of Fig. 4.2 if plotted.

4.4 Scalable Audio Coding using Watermarking

In a scalable audio coding based on REQ, after quantization in each layer entropy coding

is performed. The entropy coding used in AAC for this scalable coder is Huffman coding

which we use here as well. For each quantization resolution a Huffman codebook is built

which is used by both the coder and the decoder. In these codebooks there are codewords

corresponding to each quantizer reconstruction point which is found in the entropy coding

process and sent to the receiver. These codewords are variable length and their average

length determines the bitrate of each layer.

The main idea in our proposed method is that for each enhancement layer output we

embed one bit of each codeword in the previous layer using QIM. By this approach the

average bitrate of each layer is exactly decreased by unity (except the base layer which has

no preceding layer): ∑
i

pi(wi − 1) =
∑
i

piwi −
∑
i

pi = B − 1, (4.12)

where B is the average bitrate and wi is the codeword lengths.

On the other hand, since we are using QIM for the previous layer, to keep the distortion

unchanged we need to double the quantization resolution of that layer. This will be done for

all layers except the last one for which QIM is not performed (it has no succeeding layer).

However, as we showed in section 2, at low resolutions (which is typically the case for

each layer of REQ scalable coding), when we double the quantization resolution its output

entropy (hence the bitrate after entropy coding) is increased by less than one. Therefore,

we save one bit in bitrate of a layer by watermarking in the previous layer, and at the same

increase the bitrate of that layer by an amount less than one by doubling the quantization
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resolution which in total leads to a savings in bitrate:

B′ = (B1 + ∆B1) + (B2 + ∆B2 − 1) + (B3 + ∆B3 − 1)

+ · · ·+ (BM − 1)

= B − [(NL − 1)−∆B1 −∆B2 − · · · −∆BNL−1],

(4.13)

where B′ is the new total bitrate using WSAC (the proposed method), B is the total bitrate

using REQ, Bi is the bitrate of layer i before using QIM, NL is number of layers and ∆Bi

is the increment in its bitrate after using QIM which is less than unity. Assuming that the

same resolution is used for all layers and the bitrate increment for them equals to ∆B we

can write

B′ = B − (NL − 1)(1−∆B). (4.14)

This gives a clear equation for savings in bitrate which equals to (NL − 1)(1 − ∆B).

The more the number of layers, the more we save in bitrate.

As shown in Appendix A, the probability of the watermarked bit directly affects the

performance of QIM. We will see later that we use the first bit of Huffman codewords for

watermarking. In Fig. 4.5 we have plotted the probability of this bit being zero versus the

quantization resolution. As it can be seen, for very low resolutions the probability is very

close to 1, but as we go to high resolutions it tends to a value close to 0.4.

In fine-grain scalable coding, low-resolution quantization is performed in each layer. For

instance consider scalable AAC based on REQ. In 16 kbps/layer and 32 kbps/layer coding,

the resolution in each layer is between 1 to 4 bits/sample. In Fig. 4.6 we have compared the

UTQ and QIM systems when the watermarked bit’s probability to be zero was 0.7. From

Fig. 4.5 this value is the first-bit zero probability when the quantization resolution is close

to 3 bit/sample. For the QIM system we used a doubled-resolution UTQ, watermarked by

a 0.7-probability random bit. The bitrate for the QIM is the average Huffman codeword

length minus the one bit that we save from watermarking. As can be seen in Fig. 4.6, at

low resolutions the overall RD performance in WSAC is better.
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Fig. 4.5 Probability of the first bit of the Huffman codewords to be zero
versus the quantization resolution. For very low resolutions the probability is
very close to 1, as we go to high resolutions it tends to a value close to 0.4.

4.4.1 Coding

Consider the REQ scalable coding system (Fig. 4.1). First we perform coding based on

REQ from first layer to the last. However, instead of using regular quantizers we use

doubled-resolution quantizers and in each layer apply QIM to them based on nearest-even

integer rule (NE-QIM). In the next step, from the last layer to the first we perform the

following algorithm:

If the first bit of the output codeword for the current layer is ’1’, requantize the input of the

previous layer using QIM based on nearest-odd integer rule (NO-QIM)and obtain the new

codeword. Otherwise, keep the codeword obtained in the first step.

This algorithm is repeated for each layer. Figure 4.7 shows the block diagram of WSAC

for a 3-layer WSAC. Note that the last layer remains unchanged since it does not have any

succeeding layer.
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Fig. 4.6 Comparison of the UTQ and QIM systems when the watermarked
bit’s probability to be zero was 0.7. At low resolutions the overall RD perfor-
mance in WSAC is better.

4.4.2 Decoding

The receiver starts decoding from the base (first) layer to the last layer it receives. For

each layer, after decoding the variable length codeword, if the quantization index is even

the first bit of the next layer output codeword is considered to be ’0’. Otherwise it is ’1’.

This bit will be added to the beginning of the next layer’s output codeword (if received).

In the REQ system, we simply add the outputs of the layers to reconstruct the original

signal in a scalable manner. Here, however, a modification is required for the reconstruction

pattern. Consider a 2-layer WSAC. In the first step we use NE-QIM for the first layer. In

the next step, however the NO-QIM might be used for this layer depending on the second

layer output. Reconstruction of the original signal at the receiver is dependent on which

QIM is used for the first layer since the input of the second layer, which is the reconstruction

error of the first layer, was formed in the first step of QIM in which NE-QIM was used

for the layers, see Fig. 4.8. The reconstruction error resulting from NE-QIM is denoted

by ee in the figure. If the decoded quantizer index for the first layer is odd, which means

NO-QIM was applied to the first layer, for reconstructing the original signal there are two
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Fig. 4.7 Block diagram of a 3-layer WSAC EC is entropy coding.

possible cases: ee is positive or negative. If ee is positive the reconstruction formula is

x = x̂+ ee −∆, (4.15)

and for the negative case

x = x̂+ ee + ∆. (4.16)

𝑥  

even evenodd

 𝑒𝑒   

𝑥 = 𝑥 + 𝑒𝑒 − ∆  

 𝑒𝑒   

𝑥  

∆+𝑒𝑒  

𝑥  

𝑥 = 𝑥 + 𝑒𝑒 + ∆  

∆−𝑒𝑒  

Fig. 4.8 Reconstruction scenarios in WSAC

If the decoded quantizer index for the first layer is even, reconstruction is simply per-

formed by

x = x̂+ ee. (4.17)

Note that what receiver actually uses is the quantized version of ee which is the output
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of the next layer.

This is the reconstruction algorithm used for all layers in WSAC. Note that for each

layer the appropriate step size ∆ should be used which might be different from other layers.

4.5 Simulation and Results

Two common REQ cases were considered for our simulation. A 4-layer system with 4-bit

resolution quantizers in each layer and a 5-layer system with 3-bit quantizers. For WSAC,

since the resolutions are doubled, the corresponding quantizer resolutions used were 5-bit

and 4-bit respectively. The quantizations were performed using AAC quantization formula.

A set of Huffman coding tables were generated for different resolutions which were used

for entropy coding in both REQ and WSAC. Laplacian random variables were generated

as the input signal with the desired values of Lf parameter.
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Fig. 4.9 Comparison of 4-layer WSAC and REQ (Lf = 7). 4-bit resolution
quantizers used for REQ and 5-bit resolution quantizers for WSAC (except
the 4-bit resolution quantizer used for the last layer).

Figures 4.9 and 4.10 show the comparisons between WSAC and the REQ scalable coding

systems in terms of bitrate-distortion performance. In the first of the figures, the 4-layer
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Fig. 4.10 Comparison of 5-layer WSAC and REQ (Lf = 7). 3-bit resolution
quantizers used for REQ and 4-bit resolution quantizers for WSAC (except the
3-bit resolution quantizer used for the last layer).

systems were compared and in the second one the 5-layer systems. The points show the

possible rate-distortion pairs, that is for a 1-layer system, a 2-layer system and so on. As

can be seen in these two figures when the number of layers increases the performance of

WSAC becomes considerably better than REQ. The more the number of layers used, the

better WSAC performs compared to REQ. The only case where REQ works better is a

one layer system which is obvious since in that case a double-resolution quantizer is used

in the base layer while there are no more layers and hence no savings for the other layers

using QIM. In fact the proposed method starts to outperform when more than one layer

is sent. Also comparing the two figures reveals that in the 5-layer systems, the amount

of WSAC’s outperforming increases since ∆B in (4.14) is smaller for a 3-bit resolution

quantizer compared to the 4-bit one.

In Fig. 4.11 the performance of the 4-layer systems were compared for Lf = 10. It can

be seen that the performance difference between the two systems becomes larger for larger

Lf or equivalently smaller input variance.

Figure 4.12 shows comparison of 4-layer S-AAC and WSAC. The average noise-to-



4 Scalable Audio Coding using Watermarking 73

Bitrate (bit/sample)
1 2 3 4 5 6 7 8

D
is

to
rt

io
n 

(d
B

)

-5

0

5

10

15

20

25

30

REQ
WSAC

Fig. 4.11 Comparison of 4-layer WSAC and REQ (Lf = 10). 4-bit res-
olution quantizers used for REQ and 5-bit resolution quantizers for WSAC
(except the 4-bit resolution quantizer used for the last layer).

mask ratio (ANMR) values obtained for these systems were plotted vs. the bitrates in

bit/sample. The bitrates were matched to the (a) 16kbps per layer and (b) 32kbps per

layer in S-AAC. We will talk about this matching in more detail later in Chapter 6. Note

that, for WSAC it is not straightforward to reach an exact target bitrate because of the

feedback loop (Fig. 4.7) that is involved. However, the plots provide a fair comparison for

RD performance. It can be seen that WSAC starts to outperform the REQ system used

in S-AAC when more than one layer is used.

4.6 Summary

REQ scalable coding is a practical scalable coding scheme which is used in MPEG-4 audio

coding. We proposed a modified version of such a system in which a watermarking technique

known as QIM was used to embed some of the information of each layer in the previous

one. The proposed method considerably outperforms REQ scalable coding in terms of

rate-distortion and can be considered as a suitable replacement for practical scalable audio

coders.
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Fig. 4.12 Comparison of 4-layer S-AAC and WSAC. The ANMR values
were plotted vs. the bitrates in bit/sample. The bitrates were matched to the
(a) 16kbps/layer and (b) 32kbps/layer S-AAC. WSAC starts to outperform
the REQ system when more than one layer is used.
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Chapter 5

New Bit-Plane Probability

Calculations for Scalable to Lossless

Audio Coding

5.1 Introduction

The state of the art MPEG-4 Audio adopts two main scalable audio coding systems [98].

The first one, Scalable Advanced Audio Coding (S-AAC), is based on reconstruction error

quantization of AAC coder. The second system is called MPEG-4 scalable-to-lossless (SLS)

and was released as a standard audio coding tool in June 2006 [12,89]. This system has two

modes: a perceptual-core mode and a non-core mode. In both modes the input signal is

transformed into the frequency domain using the Integer MDCT (IntMDCT), and then the

resulting coefficients are encoded. In the perceptual-core mode the coefficients are encoded

using AAC perceptual coding which gives a base-quality signal. Then the residual of the

coefficients are coded using a specific bit-plane arithmetic coding called bit-plane Golomb

code (BPGC) [8,23]. In the non-core mode, the BPGC is applied directly to the IntMDCT

coefficients.

In this chapter we will investigate the statistical properties of the residual signal for the

perceptual-core mode of SLS coding and we will show that the bit-plane probabilities used

by BPGC are not well matched to the residual signal. We will then propose an alternative

approach which depends on the base signal and leads to better estimation of the bit-plane
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properties of the residual signal. The proposed approach can also be easily extended to

consider the clipping effect in bit-plane coding of an unbounded signal.

The chapter is organized as follows. In the next section, we will briefly discuss the

Integer MDCT. AAC and SLS coding schemes are explained in Sections 5.3. Section 5.4

discusses bit-plane coding. In Section 5.5 the BPGC using arithmetic coding is covered.

Section 5.6 derives the statistical properties of the residual signal in SLS. New bit-plane

probability calculations are presented in Section 5.7, the Lp parameter is calculated in

Section 5.8 and finally BPC using new probabilities is discussed in Section 5.9. The results

are presented in Section 5.10 and Section 5.11 summarizes this chapter.

5.2 Integer MDCT

5.2.1 Calculating MDCT by Using DCT-IV

The MDCT for a window of signal can be calculated by applying type-IV discrete cosine

transform (DCT-IV) to a Time Domain Aliased (TDA) version of the windowed signal [62,

63] which gives a new set of M coefficients where M = N/2 is the block size and N is the

window size (Fig. 5.1). For TDA a matrix is formed from the window coefficients. This

MDCT MDCT MDCT MDCT

DCT-IV DCT-IV DCT-IV DCT-IV

0-M M 2M 3MM/2 3M/2 5M/2-M/2

TDA TDA TDA TDA

Fig. 5.1 MDCT Using DCT-IV

matrix is multiplied by each block of signal to give its TDA’ed version. Note that, the

TDA’ed coefficients obtained from each block are related to the two overlapped parts of

the window for that block: half (M/2) of these coefficients are for the current window (the

window which have this block in its right part) the other half are for the next window (the
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window which have this block in its left part). The DCT-IV is applied to a block of M

TDA’ed coefficients in which the right-half coefficients come from the left-half of the second

block of the current window and the left-half coefficients come from the right-half of the

first block. The DCT-IV matrix is multiplied by a block of TDA’ed coefficients and gives

the final MDCT coefficients for the corresponding window.

5.2.2 Integer Implementation

Both the TDA and DCT-IV matrices can be decomposed into lifting matrices which are

used for the integer implementation. A 2× 2 lifting matrix looks like

L =

[
1 0

k 1

]
(5.1)

Depending on the position of the element k and the ones (which can be the diagonal or the

counter diagonal elements) there can be 4 types of lifting matrices. This type of matrix

enables us to use a rounding operation in the multiplication y = Lx, while making the

inverse process lossless. The rounding operation is performed as

y1 = x1

y2 = round(k × x1) + x2

(5.2)

and the inverse process as

x1 = y1

x2 = y2 − round(k × x1)
(5.3)

5.3 AAC and SLS Coding

In the perceptual-core mode of MPEG-4 SLS coding, the IntMDCT coefficients are quan-

tized in each scalefactor band (SFB) of a data frame using AAC quantization operation.

This operation is presented here again with more detail as [3]

in[l] = sgn(cn[l])nint(|2−s[n]/4cn[l]|3/4 − 0.0946), (5.4)
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where in[l] is the lth quantized coefficient index in band n, cn[l] is the corresponding Int-

MDCT coefficient, and s[n] is the scalefactor used for that band. The nint() and sgn()

operations denote the nearest integer and signum functions and 0.0946 is an offset value

which is also referred to as the magic number. The equation can also be expressed as

in[l] = Q(g[n] cn[l]3/4), (5.5)

where

Q(x) = sgn(x)× nint(|x| − 0.0946), (5.6)

and

g[n] = 2−s[n]/4. (5.7)

The integer scalefactors s[n] are obtained using a psychoacoustic model and control the

Noise-to-Mask ratios (NMR) in the scalefactor bands. In the next step, the residue of

the IntMDCT coefficients is calculated by forming the quantization error. The residual in

each SFB are then coded using BPGC. The subtraction process for obtaining the residual

is however different from a typical error mapping: Instead of subtracting the quantized

coefficients from the original ones, the difference between an input (IntMDCT) coefficient

and its corresponding quantization interval lower threshold is considered to be the error.

The thresholds are obtained using

thr(in[l]) =

{
sgn(in[l])(2s[n]/4|in[l]− 0.4054|4/3), in[l]) 6= 0

0, in[l]) = 0,
(5.8)

where thr(in[l]) is the interval lower threshold for the quantized coefficient index in[l] in

SFB n. The residual signal r[l] is then obtained as

rn[l] =

{
cn[l]− bthr(in[l])c, in[l] 6= 0

cn[l], in[l] = 0,
(5.9)

where b.c is the floor function. BPGC is then applied to this residual signal in each SFB

which forms a fine-grain SLS coding pattern.
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Fig. 5.2 Bit-plane coding of the residual signal. In each SFB, the bit-planes
are scanned from the Mnth plane to the LSB and are coded using arithmetic
coding plane by plane.

5.4 Bit-Plane Coding

Figure 5.2 shows the bit-plane coding for the residual signal. The figure shows the first

4 SFBs in each of which there are four residual coefficients to be encoded. The number

of coefficients per SFB is not constant and is larger in the higher frequency bands. The

magnitude of the residual coefficients in SFB n is expressed in a Mn-bit binary format as

|rn[l]| =
Mn∑
j=0

b[l, j]2j (5.10)

where Mn is the most significant bit-plane to be coded in SFB n (indicated by the bold

line in Fig. 5.2). The parameter Mn is calculated in the encoder based on the range of the

error in each SFB satisfying

2Mn−1 ≤ max{|rn[l]|} < 2Mn (5.11)
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In each SFB, the bit-planes are scanned from the Mnth plane to the LSB and are

entropy-coded using arithmetic coding plane by plane.

5.5 BPGC Using Arithmetic Coding

In BPGC, as explained in the previous section, each bit-plane of the coefficients is entropy-

coded using arithmetic coding [12]. The arithmetic coding uses a probability assignment

rule that is derived from the statistical properties of an exponentially distributed source [8].

Closed forms have been obtained in [8] for bit-plane probabilities of a Laplacian source

which were adopted in BPGC [23]. In [12] it was shown that the IntMDCT coefficients

can be well modelled from a Laplace distribution. Based on this assumption, it is assumed

that the magnitude of the residual signal can be approximately considered an exponential

source. Therefore, the probabilities obtained for Laplacian source are used for the residual

signal as well.

For each SFB the standard deviation (or λ parameter) of the residual signal is estimated

by the mean of the signal. The Lambda parameters are then used in the closed-forms

obtained in [8] to give the probabilities. The bit-planes are scanned from MSB to LSB

and coded using arithmetic coding. In the case of non-core SLS coding, where there is no

perceptual core, the bit-plane coding is applied directly to the input IntMDCT coefficients

instead of the residual signal. In both cases if all the bit-planes are received by the decoder,

lossless quality is achieved. However, by truncating the bit-planes a fine-grain scalable

lossy-to-lossless (SLS) coding is obtained.

In the next section we will discuss the properties of the residual signal and we will

address some issues regarding the bit-plane probabilities used in BPGC.

5.6 Statistical Properties of The Residual Signal

Consider Fig. 5.3. A specific quantization interval was shown for ti≤c<ti + 1, where ti is

the beginning threshold of that interval. The pdf of a Laplacian source is given by

fX(x) =
1

2
λe−λ|x|, (5.12)
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Fig. 5.3 pdf properties of the residual signal

where λ =
√

2/σ and σ is the standard deviation of the signal. In BPGC the absolute value

of the residual signal is coded and there is a sign bit which is sent separately. In fact, the

one sided non-negative signal is considered which has an exponential pdf in the form of

fX(x) =

{
λe−λx, x ≥ 0

0, x<0
(5.13)

The probability of such an exponential signal to be in a specific interval pi = p(ti≤x<ti+1)

can be obtained by

pi = (e−λti − e−λti+1). (5.14)

Considering ∆ = ti+1 − ti, we have

pi = e−λti(1− e−λ∆). (5.15)
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The residual for this interval is r = x− ti and we have

fX(x|ti≤x<ti+1) =
fX(x)

pi
=

λe−λx

e−λti(1− e−λ∆)
. (5.16)

The conditional pdf of the residual in this specific interval is

fR(r|ti≤x<ti+1) =
fX(x|ti≤x<ti+1)

r′(x)

∣∣∣∣
x=ti+r

=
λe−λr

1− e−λ∆
. (5.17)

If we use a uniform quantizer, the pdf of the residual for such a quantizer would be

fR(r) =
∑
i

pifR(r|ti≤x<ti+1) =
λe−λr

1− e−λ∆

∑
i

pi

=
λe−λr

1− e−λ∆
,

(5.18)

which is equal to the conditional pdf obtained for a specific interval due to the memoryless

property of the Laplace distribution. It is very important to note that this pdf is not in

the typical form of an exponential source (5.13). The reason is that the residual signal

is a signal bounded within the interval (0≤r<∆). Now, let us calculate the mean of the

residual signal. The mean can be obtained by

r̄ = E[r] =

∫ ∆

0

rfR(r) dr =
1

λ
− ∆

eλ∆ − 1
. (5.19)

which is also the same for the conditional expectation of an interval of width ∆. It can be

seen that the residual mean is different from that of an exponential signal (for which mean=

1/λ). In a special case where ∆→∞ (unbounded exponential), r̄ = 1/λ. From Equations

(5.18) and (5.19) it is clear that assuming an exponential source for the residual signal and

obtaining the pdf parameters using the statistics (mean) of the observed residual signal

leads to inaccurate bit-plane probabilities: In BPGC the λ (or equivalently L) parameter

for the residual is approximated by 1/r̄ in each SFB. On the other hand, the pdf of the

residual is directly dependent on the quantization step sizes. The other issue is that the

step sizes are not equal in AAC quantization. Having the interval thresholds from (5.8)
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the step sizes can be obtained by

∆n(i) = tn(i+ 1)− tn(i), (5.20)

where ∆n(i) is the step size of a quantization index i for SFB n and tn(i) and tn(i+ 1) are

the corresponding interval thresholds. It can be seen that the the step sizes are dependent

not only on the scalefactor parameter used in each SFB, but also on the quantization

interval index. Therefore the bit-plane probabilities should be a function of the input

(IntMDCT coefficients) statistics, together with the scalefactors and quantization indices.

In the following we will propose a straightforward approach for calculating the bit-plane

probabilities of an exponential source bounded within an arbitrary interval.

5.7 Bit-Plane Probability Calculations

Consider a signal bounded within the interval 0 ≤ x ≤ ∆ (see Fig. 5.4). We want to obtain

the N most significant non-zero bits of this signal. The MSB of this signal b1 (we index

the bit-planes from MSB to LSB ) can be considered to be zero if the signal is 0 ≤ x<∆/2,

and one if ∆/2 ≤ x<∆. The probability of b1 = 0 then can be obtained by

P1 =
p(0 ≤ x<∆/2)

p(0≤x<∆)
, (5.21)

and b1 = 1 with the probability of Q1 = 1 − P1. Now consider the second bit b2. The

probability of b2 = 0 can be written as (Fig. 5.4)

P2 =
p(0 ≤ x<∆/4)

p(0 ≤ x<∆/2)
p(0 ≤ x<∆/2)

+
p(∆/2 ≤ x<3×∆/4)

p(∆/2≤x<∆)
p(∆/2≤x<∆).

(5.22)

Due to the memoryless property of the Laplace distribution the two fractions in the above

equation are equal. Also, since p(0≤x<∆/2) + p(∆/2≤x<∆) = 1 we get

P2 =
p(0≤x<∆/4)

p(0≤x<∆/2)
. (5.23)
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Fig. 5.4 Obtaining the N most significant non-zero bits of a bounded signal

Using the same strategy the kth significant bit can be obtained by

Pk =
p(0≤x<∆/2k)

p(0≤x<∆/2k−1)
. (5.24)

Using (5.15) in (5.24) gives

Pk =
1− e

−λ∆

2k

1− e
−λ∆

2k−1

=
1

1 + e
−λ∆

2k

, (5.25)

and

Qk = 1− Pk =
1

1 + e
λ∆

2k

. (5.26)

Equations (5.25) and (5.26) give the bit-plane probabilities for an exponential signal bounded

in the interval ∆.

Now let us consider a case where we have an unbounded exponential signal. In general,

for a binary representation of such a signal an infinite number of bits are required. However,

in practice the signal is bounded before coding, which means clipping happens. Assume

the signal is bounded to be 0≤x≤Xm, and let us define Pe = p(x>Xm) = e−λXm . Using a

similar strategy used in (5.22) we can obtain

P c
k = P ′k(1− Pe),

Qc
k = Q′k(1− Pe) + Pe,

(5.27)
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where the superscript c stands for the clipping consideration and

P ′k =
1

1 + e− λXm
2k

,

Q′k =
1

1 + e
λXm

2k

.
(5.28)

5.8 Calculating the Lp Parameter

In the practical coder, a parameter Lp is calculated which makes the probability imple-

mentation easier. The frequency (probability) assignment rule used in the MPEG-4 SLS

standard is expressed in terms of Lp. Following the same strategy used in the standard,

here we can obtain a new Lp based on the new probabilities. In (5.25) the bit-plane index

k goes from MSB to LSB. Note that the binary representation for the residual in SLS is

obtained as if the residual is an unbounded signal. The way the we defined the bit-plane

indices from MSB to LSB here is based on the fact that the signal is bounded within an

interval which is more precise as seen above. This binary representation can be equivalently

obtained by a scaling followed by a typical representation which can be expressed as

rb = bin[r × (
2M

∆
)] (5.29)

where bin(.) is the binary representation function and

M = blog2 ∆c+ 1, (5.30)

r is a vector of binary symbols and 1 ≤ 2M

∆
< 2 depending on the ∆ value. If we want a

reversed order for the bit-plane indices to be consistent with the standard (going from LSB

to MSB), the new probabilities can be expressed as

Pk =
1

1 + e
−λ∆

2M−k
=

1

1 + e−(λ∆
2M

)2k
(5.31)

Now let us define the new Lp as

Lp = blog2

2M

λ∆
c = blog2

1

λ∆
+Mc. (5.32)
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Fig. 5.5 AAC quantizer step size vs. quantization index for three different
scalefactor values. Increasing the scalefactor increases the step sizes. Also,
due to the companding used in the quantization, for each specific scalefactor
the step sizes increase by going to the higher indices.

5.9 Bit-Plane Coding Using the New Probabilities

We saw in the previous section that, bit-plane coding of the residual signal should be

performed considering the quantization parameters used in the core layer. In other words

the probabilities are a function of the scalefactors and quantization indices. Figure 5.5

shows step sizes of the AAC quantizer versus quantization indices (which are in the range

of (0≤|i|≤8191) for three different scalefactor values. It can be seen that increasing the

scalefactor increases the step sizes. Also, due to the compression used in the quantization,

for each specific scalefactor the step sizes increase by going to the higher indices. Therefore,

the bit-plane probabilities obtained in (5.25) can be expressed by

Pk(s, i) =
1

1 + e− λ∆(s,i)
2k

, (5.33)

where s and i stand for the scalefactor and quantization index respectively. ∆(s, i) can be

obtained from (5.20) and (5.8). Having this set of probabilities, the bit-plane coding can
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be performed using arithmetic coding based on Algorithm 1. This is a modified version of

the algorithm proposed in [8], where 1) instead of the residual we use the input (IntMDCT)

coefficients to approximate the λ parameter, 2) the new set of core-based probabilities are

used instead. A similar algorithm can be used for non-core bit-plane coding of the input

(IntMDCT) coefficients, considering the clipping effect. In this case the line regarding the

core parameters should be omitted and equations in (5.27) should be used for bit-plane

probabilities.

Algorithm 1: Core-based Residual Bit-plane Coding

• Take input IntMDCT coefficients cn[l].
• Calculate the λ parameter for each scalefactor band n using
1
λ

= |c̄n| = (
∑

l |cn[l]|)/Lp(n).
• Take the scalefactors and quantization indices from the core layer.
• Calculate the bit-plane probabilities using (5.33).
• Scan from MSB plane to LSB plane and perform arithmetic coding for bit-plane
symbols using the obtained probabilities).

5.10 Simulation and Results

We compare our proposed core-based method for obtaining the residual signal bit-plane

probabilities (referred to as CoreBPP) with the method proposed in [8], which is used for

BPGC in SLS coding. We took the IntMDCT coefficients of the same 15 audio files used

in [12] as input signal. These coefficients were quantized using (5.7) for different step sizes.

The bit-plane probabilities of the residual signals were computed using the two methods

and were compared with what obtained experimentally (ExpBPP). Experiments showed

that for λ∆ =
√

2∆/σ < 10 the new method leads to clearly better results. In fact, for

smaller λ∆ values the difference between the methods becomes greater. Such a comparison

is shown in Fig. 5.6 for a sample case of λ∆ = 2.56. Note that, when a Laplacian source is

considered as input, the CoreBPP and ExpBPP probabilities become much closer.

Also, Fig. 5.7 shows a comparison of bit-plane probabilities of the input signal (Int-

MDCT coefficients) for λXm = 3 when 1) clipping is considered using (5.27) and referred

to as ClipBPP, 2) without considering clipping [8]. The experiments showed that for
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Fig. 5.6 Bit-Plane probability vs. bit-plane index for the residual signal
(λ∆ = 2.56). The bit-plane probabilities of the residual signals were com-
puted using BPGC and CoreBPP and were compared with what obtained
experimentally. For smaller λ∆ values the difference between the methods
becomes greater.

λXm≤4 the difference between the two methods become considerable.

The new bit-plane probabilities were applied to the SLS reference software. The Lp

calculation procedure was modified according to the new probabilities. Figure 5.8 com-

pares SLS and the modified SLS (shown as MSLS in the figure) in terms of the Objective

Difference Grade (ODG) given by PEAQ (Perceptual Evaluation of Audio Quality [99]) as

implemented in [100]. PEAQ is a standardized algorithm for objectively measuring per-

ceived audio quality. The ODG ranges from -4 (very annoying noise) to 0 (imperceptible

distortion). The comparison here is for a commonly used case where the core is AAC

working at 64 kbps and the SLS (enhancement) layers are coded at 32 kbps steps. As can

be seen, MSLS leads to better ODG values compared to SLS. The performance difference

is higher at lower bitrates and as we go to the higher bitrates the two systems tend to the

transparent quality of ODG = 0.

Note that, the maximum performance difference is about the difference we get by adding

an extra layer to SLS at high rates and about half of that at lower rates. Although the

difference in ODG is small at some rates, the overall comparison shows that using MSLS
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Fig. 5.7 Comparison of bit-plane probabilities of the input IntMDCT coef-
ficients for λXm = 3 when 1) clipping is considered (ClipBPP) and 2) with-
out considering clipping (BPGC). For λXm≤4 the difference between the two
methods becomes considerable.
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Fig. 5.8 Comparison of SLS and the modified SLS (MSLS). The comparison
is for a commonly used case where the core is AAC working at 64 kbps and
the SLS layers are coded at 32 kbps steps. MSLS leads to better ODG values
compared to SLS.

is beneficial, specially when no additional complexity is introduced.
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5.11 Summary

An alternative approach was proposed for calculating the bit-plane probabilities of the resid-

ual signal for perceptual-core mode of MPEG-4 SLS coding. The new approach matches

the quantization performed in the core layer. Therefore, the probabilities are estimated

considerably better for the residual signal compared to what used in BPGC. Also, the

clipping effect can be easily considered in the proposed method, which is useful for coding

an un-bounded exponential.
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Chapter 6

Fine-Grain Scalable Audio Coding by

Trellis-Based Optimized Scalable

Entropy Coding

6.1 Introduction

It has been shown that there is a considerable performance gap between MPEG-4 scalable

coding schemes and a non-scalable AAC coder operating at the same bitrate [24]. This sub-

optimality results from the fact that in scalable AAC the layers are coded independently.

This leads to a scalability penalty which becomes bigger at higher bitrates. One of the key

facts behind the sub-optimality of S-AAC, which has not been dealt with previously is the

entropy coding which is performed separately for each layer (Fig. 6.1). In practical cod-

ing systems, including S-AAC, the coefficients are quantized using an entropy-constrained

quantizer. The quantized coefficients are then encoded in a bitstream using an entropy

coding scheme. This entropy coding has an overhead for each layer. In S-AAC, where

Huffman coding is performed as entropy coding, the upper bound of the bitrate for each

layer is the entropy of the symbols plus one bit; thus the upper bound of the combined

layers is the entropy of all symbols combined plus N bits, where N is the number of layers.

For instance, if the sample rate is 48kHz and a 4-layer S-AAC is used, this overhead leads

to up to 192 kbps difference in the total bitrate.
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Fig. 6.1 Salable Audio Coding in S-AAC. The base layer performs AAC and
gives a minimum bit rate with acceptable distortion. The coded audio is then
subtracted from the original input using a local decoder. The residual signal
is passed to the next layer where it is encoded using AAC again and forms the
first enhancement layer. This enhancement procedure is repeated to as many
as layers required.
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Fig. 6.2 Block diagram of the proposed scalable coding approach. Instead
of performing separate and independent quantization and entropy coding at
each layer, there is only one single full quantizer and the entropy coding is
performed in a scalable manner.

In this chapter we propose a fine-grain scalable coding system where, the entropy coding

is performed in a scalable manner for a single full quantizer with the highest resolution (Fig.

6.2). In the proposed method, a Huffman-like coding tree is created where internal nodes

are mapped to the quantization reconstruction points. The tree can be pruned at any

internal node to control the rate-distortion performance of the encoder. The proposed

approach was partly presented in [25], where we introduced joint entropy-scalable coding

of signals improving [101] and established an infrastructure for such a coding system for a

general quantizer with arbitrary intervals and reconstruction points distribution. In that

work, a simple and memoryless merging criterion was used for forming the coding tree. It

is shown here that, although even that simple measure leads to performance improvement

over S-AAC, there is still a significant performance gap compared to a non-scalable coding

system. Here, we propose new set of measures and a trellis-based approach to keep track of

merges in creating the coding tree. The proposed approach seeks to create the best possible

set of pruned trees.

This chapter is organized as follows. In the next two sections, we will briefly discuss the

Huffman coding and its redundancy issues. Bases of the proposed approach for creating

the scalable coding tree are presented in Sections 6.4, 6.5 and 6.6. Section 6.7 discusses

the proper measures for the proposed approach. In Section 6.8 the trellis-based approach is

explained and Section 6.9 implements the approach by defining a function of the proposed

measures as the cost function. The results are presented in Section 6.10 and Section 6.11

summarizes the chapter.
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6.2 A Quick Review of Huffman Coding

Huffman coding is one of the most commonly used entropy coding techniques. The code-

book is generated by assigning symbols to leaves in an unbalanced binary tree. To build

the coding tree, nodes are created by merging either leaves or nodes until all leaves are part

of a single tree. In the Huffman coding process (See Figure 6.3), we start merging with

the two nodes which have the smallest probabilities in the set and keep on merging with

the same pattern to the end. After creating the Huffman tree what we finally use is the

end nodes of the tree for each of which a codeword has been assigned. There is no use of

the internal nodes because of the ”Unique Prefix Property” of the coding. The property

requires that: no code is a prefix to any other code.
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Fig. 6.3 Huffman coding tree

6.3 Comments on Huffman Coding Redundancy

In general it is well known that the Huffman coding redundancy is less than the unity.

However, there have been publications on finding tight bounds for this redundancy in-

cluding [102]. Clearly, the bounds obtained from any approaches always depend on the

statistics of the source.

In Fig. 6.4 we have plotted these bounds for a Laplacian source based on the formulation

presented in [102]. In this figure, the horizontal axis shows the quantization resolution

which changes in the steps of 1.5 dB (0.25 bits/sample). The plots include a UTQ quantizer

output entropy for a Laplacian source, the average codeword length of the quantizer output

after Huffman coding, the upper and lower redundancy bounds from [102], and the actual
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Fig. 6.4 Huffman coding and its redundancy bounds. The plots include a
UTQ quantizer output entropy for a Laplacian source, the average codeword
length of the quantizer output after Huffman coding, the upper and lower
redundancy bounds from [102], and the actual redundancy. The redundancy
becomes smaller as the resolution increases.

redundancy. Finally, the actual redundancy is shown in green. This was obtained by

subtracting the blue line from the red. Note that, these plots are only for a Laplacian

source and the specific UTQ quantizer which is used in AAC.

It can be seen that the redundancy is bigger at low resolutions and as we go to the

higher resolutions it tends to zero. In fine-grain scalable coding we are interested in the

low resolutions. Even these tight bounds implies that this could result in a difference of

tens of kbps in bitrate of the overall scalable coding.

6.4 The Scalable Entropy Coding

As mentioned before, there is no use of the internal nodes in a Huffman tree. However, if

we prune the tree at a specific internal node so that parts of the tree between that internal
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node and the end nodes are discarded, we can create a new tree with a new set of end

nodes which has again the unique prefix property. This way we can reduce the bitrate

of the symbols. For example at node s(5, 6) in Fig. 6.5, with a new codeword 111 in the

resulting bitstream. However, in the context of the original system, this codeword has no

meaning as it cannot be mapped to a symbol.

6.5 Relating the Internal Nodes of a Huffman Tree to the

Quantization Reconstruction Points

Consider the case where symbols represent the outputs of a scalar quantizer. In the con-

struction of the coding tree if we constraint the merging so that the leaves being merged

represent quantizer outputs that are neighboring Voronoi regions, the resulting node can be

assigned a new reconstruction point and be treated as a leaf which means we can effectively

get a new quantizer if the tree is pruned at that node. Such a set of quantizers is shown in

Fig. 6.6, where the tree describes a set of quantizers (Q1, Q2, ...) resulting from pruning a

quantizer-encoding tree from the bottom up.

As the tree gets pruned, each new quantizer has a smaller entropy and larger distortion

compared to the previous one. The reduction of the average bit rate of the quantizer is

obtained by

∆B = p1b+ p2b− (p1 + p2)(b− 1) = p1 + p2 (6.1)

where b is the number of bits assigned to two nodes before merging and p1 and p2 are the

probabilities of the nodes or leaves. By pruning the tree at different possible nodes, we

can create a large set of quantizers and hence obtain fine grain bit rate scalability. We

note that the receiver needs to know which tree to use to decode a given bitstream; thus

an index indicating the pruning level (that is, the quantizer labels, Q1, Q2, . . .) needs to be

sent as side information. In fact, this label information replaces side information used in

the practical scalable coders (including S-AAC) where a scale factor is sent for each layer

so that the receiver knows which quantization resolution is used for each of them.
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Fig. 6.5 Huffman coding tree and pruning. If the internal nodes are used,
the tree can be pruned at any internal node to change the bitrate in a fine-grain
manner.

6.6 Merging Quantizer Regions to Build the Coding Tree

The construction of the scalable entropy coding tree is determined not only by the proba-

bility density function (pdf) of the signal to be encoded, but also the distortion metric we

wish to optimize. For a signal x with pdf given by f(x), consider the scalar quantizer Q(x)

with distortion

D = E[e2]

=

∫
x

(x−Q(x))2f(x) dx

=
∑
i

PiDi,

(6.2)

where Di is the conditional distortion in interval i of the quantizer. Pi is the probability

of x ∈ Xi, so if we write x̂i = Q(x)|x∈Xi ,

Di = E[e2|Xi] =

∫
x∈Xi

(x− x̂i)2f(x)

Pi
dx. (6.3)

Consider merging the adjacent quantizer regions Xk and Xk+1. Now, we have a new
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Fig. 6.6 Creating new quantizers by merging the nodes. The internal nodes
are mapped to reconstruction points and a Huffman-Like tree is created. By
pruning the tree at the internal nodes a set of quantizers with different RD
performance is created.

x

𝑋𝑘+1 , 

𝑃𝑘+1 ,  

𝐷𝑘+1 

𝑥 𝑘+1 𝑥 𝑘  

𝑥 𝑘 ′  

𝑋𝑘 ′ , 𝑃𝑘 ′ , 𝐷𝑘 ′  

𝑋𝑘 , 

𝑃𝑘 ,  

𝐷𝑘  

Fig. 6.7 Merging two reconstruction points in a quantizer. Intervals Xk

and Xk+1 are merged to a new interval X ′k with new reconstruction point,
probability and distortion.

quantizer with slightly higher distortion, with distortion given by

D′ =
∑

i 6=k,k+1

PiDi + Pk′Dk′

= D − (PkDk + Pk+1Dk+1) + Pk′Dk′ .

(6.4)

The difference in distortion between the old and new quantizers can now be written as

∆D = D′ −D or

∆D = Pk′Dk′ − (PkDk + Pk+1Dk+1). (6.5)

Now suppose we want to merge two quantization regions to form a new interval (See Fig.
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6.7). Changing the reconstruction point of one interval does not change the distortions of

other intervals, so the best reconstruction point for the new node is obtained by minimizing

the conditional distortion in the new node’s interval,

Dk′ = E[(x− x̂k′)2 | X ′k]

=

∫
x∈X′k

(x− x̂k′)2f(x)

Pk′
dx, (6.6)

giving

dDk′

dx̂k′
= −2

∫
x∈X′k

(x− x̂k′)
f(x)

Pk′
dx = 0

⇒ x̂k′ =

∫
x∈X′k

x
f(x)

Pk′
dx

= E[x | X ′k].

(6.7)

The new distortion Dk′ can be expressed in terms of the conditional expectations of the

two merging nodes in their own intervals. Thus,

Pk′Dk′ = Pk′E[e2 | X ′k]

= PkE[e2 | Xk] + Pk+1E[e2 | Xk+1],
(6.8)

where

E[e2 | Xk] =

∫
x∈Xk

(x− x̂k′)2f(x)

Pk
dx

=

∫
x∈Xk

[(x− x̂k)2 + (x̂k − x̂k′)2

+ 2(x− x̂k)(x̂k − x̂k′)]
f(x)

Pk
dx

= Dk + (x̂k − x̂k′)2

+ 2(x̂k − x̂k′)(E[x | Xk]− x̂k),

(6.9)
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and

E[e2 | Xk+1] = Dk+1 + (x̂k+1 − x̂k′)2

+ 2(x̂k+1 − x̂k′)(E[x | Xk+1]− x̂k+1).
(6.10)

Consequently,

Pk′Dk′ = PkE[e2 | Xk] + Pk+1E[e2 | Xk+1]

= PkDk + Pk+1Dk+1

+ Pk(x̂k − x̂k′)2 + Pk+1(x̂k+1 − x̂k′)2

+ 2Pk(x̂k − x̂k′)(E[x | Xk]− x̂k)

+ 2Pk+1(x̂k+1 − x̂k′)(E[x | Xk+1]− x̂k+1),

(6.11)

which gives us the distortion of the new interval in terms of the new and old reconstruction

points and the weights and conditional expectations of the old nodes.

Finally, using (6.5) we get

∆D = Pk(x̂k − x̂k′)2 + Pk+1(x̂k+1 − x̂k′)2

+ 2Pk(x̂k − x̂k′)(x̄k − x̂k)

+ 2Pk+1(x̂k+1 − x̂k′)(x̄k+1 − x̂k+1),

(6.12)

where the conditional expectations have been replaced by x̄k and x̄k+1.

Equation (6.5) gives the distortion increase for a general case where the reconstruction

points can be at arbitrary positions within quantizer intervals. The new reconstruction

point x̂ in this equation can be obtained as

x̂k′ = E[x | X ′k] =
Pk
Pk′

x̄k +
Pk+1

Pk′
x̄k+1. (6.13)

6.7 Obtaining an Appropriate Metric

Now that we have equations giving the distortion increase and the bit rate decrease resulting

from merging, we need a metric for finding the best choice of nodes for merging at each

step. In Huffman coding we pick the two nodes which have the smallest probabilities. For

our case we need a metric which considers both the bitrate decrease and the distortion
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increase resulted from merging and we only merge the neighboring nodes. One might think

of the Lagrange multiplier method that first comes into the mind. However, the problem

here is a bit different from regular constrained distortion and bitrate minimization. First

of all, during the intermediate merges, the resulting bitrates are not known. Similar to

Huffman coding, the codewords are assigned to the leaf and intermediate nodes only after

the full tree is formed. In fact, what we have here is the bitrate difference values from

Eq. (6.1). The problem here is choosing an overall path among the specific paths that

can be created on the RD plane by different possible merging combinations. While one of

these paths may result in the minimum distortion at a specific intermediate point (bitrate),

there is no guarantee that it does the same at other points. It will become clearer in the

following paragraphs. Consider a candidate metric which is a linear combination of the

squared value of the distortion and bitrate changes defined as

M = α∆D2 + β∆B2. (6.14)

This is a simple metric which was used in [25] and [101]. If α = β, the metric is equivalent

to the squared length of the difference vector on the rate-distortion plane. Figure 6.8 shows

two successive merges using two different metrics. Consider the first merge. By choosing

(6.14) as the metric, we get to the point b1, whereas using another metric defined as

M =
∆D

∆B
. (6.15)

we get to b2. It can be seen that, although for the path with metric M2 the difference

vector has a larger length, the final point is closer to the bitrate axis. This means that the

distortion increase is smaller for the same rate decrease. This implies that, choosing the

vector’s slope may be a better metric choice. Now consider the destination point after the

two merges. Suppose that we choose the overall difference vector’s slope as the metric. It

can be seen that, although the path M1 leads to the point c1 with smaller overall slope,

the area confined between the path and the bitrate axis is larger compared to the path M2

with the final point c2.

To have an appropriate metric for scalable coding, not only the overall changes in the

distortion and bitrate are important, but also the intermediate points should be considered.

Recall from Section 6.6 that, the proposed fine-grain scalable coding is achieved by pruning
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the tree at intermediate nodes, resulted from the successive merges. Figure 6.8 shows that

path M1 is better than path M2, as far as the final point is considered. However, since the

first merge leads to a larger distortion increase, the overall path of M1 is not necessarily

better than M2. These observations imply that, choosing the area between the overall path

and the bitrate axis at each merge is a better metric than (6.14) and (6.15).

The above discussion suggests that the appropriate way to form the coding tree is to

keep track of all the merges while the tree is formed, as opposed to the greedy method

used in [101] and [25]. In other words, all the possible overall paths should be compared

and the path minimizing a metric be chosen as the best path. Consider an N -bit quantizer

with 2N intervals. There are 2N − 1 possibilities for the fist merge, 2N − 2 for the second

one and so on. Therefore , to form the whole tree (2N − 1)! possible paths have to be

considered. Comparing all these paths leads to a huge complexity. For example, for an

7-bit quantizer with 128 intervals the number of possibilities is about 3 × 10213, which

makes the implementation impractical. Note that, in practice we may need to consider a

quantizer with even higher resolutions e.g. a 16-bit quantizer. In this paper we propose

a trellis-based approach for finding the best RD path. For the trellis-based optimization

using the Viterbi algorithm1, we need a metric that is additive.

In our method, we pick the area as the merging metric for two reasons. First, because of

the above facts regarding the ability for taking care of the intermediate points (comparing

with M1 and M2) and second, because of the additive property which is required in the

trellis-based optimization. In the following, we will obtain a relation for this metric which

gives the area for a path after n merges.

Consider Fig. 6.9. We want to obtain the area between the path and the horizontal

line drawn from the beginning point. Note that, the area between this line and the bitrate

axis is the same for all paths starting from the same point and it will appear in the metric

equation for all these paths. Therefore, since we are looking for a path with minimum

metric, that area can be ignored.

1The Viterbi algorithm is a dynamic programming algorithm for finding the most likely sequence of
states in a trellis [103].
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Fig. 6.8 Two successive merges using two different metrics. Choosing the
difference vector’s slope is a better metric compared to its length for the first
merge, whereas, it is not a good metric for the overall path.
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.  .  .

∆𝐵1 ∆𝐵2 ∆𝐵3 

Fig. 6.9 The area between the path and the horizontal line drawn from the
beginning point is considered as a metric for merging decision. The first 3
merges were shown in the figure.

After each merge i the area added to the path is

ai =
1

2
∆Bi∆Di + ∆Bi

i−1∑
j=1

∆Dj, (6.16)

where ai, ∆Di and ∆Bi are the area, the distortion increase and the bitrate decrease after

merging i respectively. The area for the overall path after n merges, An, can be obtained
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by

An =
n∑
1

ai

=
n∑
1

∆Bi∆Di

2
+

n∑
i=2

∆Bi

i−1∑
j=1

∆Dj

=
n∑
1

∆Bi∆Di

2
+

n∑
i=2

i−1∑
j=1

∆Bi∆Dj,

(6.17)

This equation can also be expressed as a matrix multiplication form

An = bTnCndn, (6.18)

where

bn =


∆B1

∆B2

...

∆Bn

 , (6.19)

dn =


∆D1

∆D2

...

∆Dn

 , (6.20)

and

Cn =



1
2

0 0 · · · 0

1 1
2

0 · · · 0

1 1 1
2

0
...

. . .
...

1 1 1 · · · 1
2


. (6.21)

In the above relation, Cn is a n× n lower triangular matrix with all the non-zero elements

equal to one, except the diagonal elements which are equal to 1
2
.

In our approach, the overall area from the beginning is considered as the metric. In

other words, if we start from a quantizer with L intervals, the path which minimizes the
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Fig. 6.10 Copying strategy to keep the number of nodes constant. Nodes
nk and nk+1 are merged to a new node with Xk

′ and Pk
′. This node is copied

and two new nodes with the same label are created.

metric after the L− 1 merges

M = AL−1 = bTL−1CL−1dL−1. (6.22)

is considered as the best path.

6.8 Trellis-Based Optimization for Creating the Coding Tree

In this section we present a trellis-based algorithm to find the best path for creating the

coding/decoding tree discussed in Section 6.6. Consider again an N -bit resolution quan-

tizer. There are 2N intervals in such a quantizer. In practical coders typically the absolute

value of the quantizer indices are coded and there is a sign bit which is sent separately.

We use the same method here. This means, we consider a one-sided positive signal to be

quantized by a N − 1 bit quantizer. The goal is here then to create a scalable coding tree

for such a quantizer.

Let us define L = 2N−1. We have L − 1 possibilities for the first merge. After each

merge, the number of possibilities decreases by one. We create a trellis consisting of states

and stages and we define a cost function. At each stage we want to find the best incoming

path to each state which minimizes the cost function. We define the states to be the

L− 1 merging possibilities. Note that, the number of possibilities decreases when we go to

subsequent stages. To maintain a trellis with the same number of states at stages, at each

merging, instead of replacing the two merging nodes with the new node, we copy the new

node so that the number of nodes remain constant at each stage. These two new nodes
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will be neighboring nodes with the same new reconstruction point and probability labels.

Note that, the physical position of the nodes are not important here, since we are dealing

only with the labels. Figure 6.10 shows such a copying strategy. In this figure nodes nk

and nk+1 are merged into a new node with Xk
′ and Pk

′. This node is copied and two new

nodes with the same label are created.

Now we define the states to be the possibilities of merging at each stage. For instance,

for the first merging the possibilities we have are: merging n1 and n2, n2 and n3 and so on.

Accordingly, the states are defined to be (1, 2), (2, 3), · · · , (L− 1, L). At the second stage,

we have L nodes but L − 1 actual possibilities because nodes k and k + 1 are the same.

However, we keep the number of states to be constant (L− 1) at all the stages by keeping

the number of nodes to be constant (L). To explain the reason, see Fig. 6.11. We have

L − 1 stages and at each stage we have L − 1 states. Suppose we go from state (1, 2) to

state (3, 4) from stage 1 to stage 2. This means that at the first stage we merge nodes n1

and n2 and at the second stage we merge nodes n3 and n4. However, consider now we go

from state (1, 2) to state (2, 3). Since after the first merge the new node is copied to form

a new pair of similar nodes n1 and n2, merging n2 and n3 at the next stage means that the

resulting new node is going to be merged with node n3. In brief, the new node obtained

from these two successive merges is a node resulting from merging nodes n1, n2 and n3.

This new node is copied and replaces all these three nodes. In general, after each merge,

the new node replaces all the children nodes that formed this node during the previous

merges.

It is also important to note that, there is no path going from one state to a similar one

at any of the following stages. For instance, no path goes from (1, 2) to (1, 2) since two

nodes can be merged only once. In other words, the overall path will not pass the same

state twice.

Now we define the cost to be a function of the distortion and the bitrate vectors:

cost = f(d,b) (6.23)

In order for the Viterbi algorithm to guarantee finding the best path, the cost function

should be additive. As mentioned in the previous section, we consider the area as a metric
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Fig. 6.11 Trellis-based approach for finding the best path on the RD plane.
There are L−1 stages and L−1 states at each stage. Each state represents the
the nodes being merged at the current stage. The initial quantizer is shown
by a single sate at the beginning of the trellis where the merging starts.

for finding the goal path. Equation (6.22) can also be expressed in a recursive relation:

An = An−1 + an = An−1 + ∆Bn(
n−1∑
i=1

∆Di +
∆Dn

2
)

= An−1 + ∆Bncndn,

(6.24)

where cn is the nth (and last) row in the matrix Cn. The new area at stage n, an, has two

components: arn (rectangular part) and atn (triangular part). With a good approximation

atn can be considered fixed for a specific transition from state i at stage n− 1 to the state j

at stage n, since ∆Bn and ∆Dn are the same (strictly so if the previous states in the path

are not neighbors to the state j). However, arn depends not only on ∆Dn, but also on the

overall distortion for the previous merges, sum(dn−1). To satisfy the additive property of

the cost function, we consider the cost function to be the overall area for the current merge

plus a prediction of ar for the next merge. To show this, consider the first merge at state
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1. From (6.1) the average ∆B resulting from this merge can be obtained by

E[∆B1] =

∑i=L−1
i=1 (Pi + Pi+1)

L− 1
=

∑i=L−1
i=1 Pi +

∑i=L
i=2 Pi

L− 1

=
(1− PL) + (1− P1)

L− 1

=
2− (P1 + PL)

L− 1

(6.25)

At the next stages, although the number of (different) nodes decreases, the summation

in the numerator of above relation remains the same (except for the marginal nodes).

However, the number of merging possibilities decreases at each stage. Therefore, E[∆B]

at stage n can be estimated by

Ẽ[∆Bn] =
2− (P1 + PL)

L− n
(6.26)

which is a function of stage index n. Therefore, ar at stage n+ 1 can be predicted by

ãrn+1 = Ẽ[∆Bn+1]S(dn) (6.27)

where S(dn) =
∑n

i=1 ∆Di. We define

r(n) = kẼ[∆Bn+1] = k
2− (P1 + PL)

L− n− 1

=
K

L− n− 1

(6.28)

where K is a constant that can be adjusted based on the statistics of the input signal and

the experiments. The decision rule for finding the best path arriving at state j at stage n

is expressed by

I(j)
n = argmin

i

{
A

(i)
n−1 + a(i→j)

n

+r(n) (S(i)(dn−1) + ∆D(i→j)
n )

} (6.29)

where I
(j)
n is the index of the state from stage n− 1 giving the best path arriving at state

j at stage n, A
(i)
n−1 is the minimum area stored for state i at stage n− 1, a

(i→j)
n is the new
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area to be added for going from state i to j, S(i)(dn−1) is sum of the distortion stored for

state i and ∆D
(i→j)
n is the new distortion for going from state i to j at stage n. Since ∆Bs

and ∆Ds are stored for the kept paths, the overall area in the above relation can also be

calculated using (6.18).

Having formed the trellis and defined the cost function, we have the following algorithm

from stage 1 to stage L− 1:

Algorithm 2: Trellis-Based Algorithm for Finding the best RD Path

• For each state find all the possible incoming paths. Only paths that have not
passed this state before are acceptable.
• Calculate the cost for all these paths. Keep the path resulting in the minimum
cost and discard the rest.
• Go to the next stage.

At the last stage, a maximum of L − 1 paths are obtained using the above algorithm,

one for each state . It is said maximum because, it is possible that one state is discarded

during the above process. It could happen when all the possible paths have already passed

that state at intermediate stages. These remaining paths are compared and the one with

the minimum cost is picked as the best path in the trellis. From this path, the successive

merges are identified which are used for creating the coding tree.

6.9 Applying the Proposed Approach to a Practical Quantizer

To create a test environment, we apply the proposed scalable coding scheme to a practical

quantizer which is used in AAC. In AAC and S-AAC, the MDCT coefficients are quantized

in each scalefactor band (SFB) of a data frame using AAC-UTQ mentioned before and

given again as [3]:

in[l] = sgn(cn[l])nint(|2−s[n]/4cn[l]|3/4 − 0.0946), (6.30)

At the decoder the coefficients are reconstructed as

ĉn[l] = sgn(in[l])
(
2s[n]/4

∣∣in[l]
∣∣4/3), (6.31)
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where ĉn[l] is the lth reconstructed coefficient in band n.

It can be noticed from the above equations that the quantizer resolution is changed

by changing the scalefactor. In other words, instead of changing the quantizer intervals,

there is a full quantizer with fixed intervals and the input signal (consisting of the MDCT

coefficients) is scaled. The inverse scalefactor is applied at the decoder and the whole

process is equivalent to changing the quantizer resolution. It is useful to note that in

AAC quantization the ratio of the offset to the step size of the quantizer remains the same

(0.0946) as the scalefactor s (equivalently the step size) changes. For a Laplacian source,

the relationship between this ratio r and the step size parameter ∆ can be obtained by

r = k∆− 1

e
1
k∆ − 1

, (6.32)

where k is the ratio of the scale parameter of a Laplacian source with zero mean to the

quantizer step size ∆. This relation was plotted in Fig. 6.12 for k = 1. It can be seen

that the ratio r is neither constant nor has a linear relation with ∆. Equation (6.12)

provides a proper general distortion increase relation for all types of quantizers where the

reconstruction points can take any positions within the intervals and may not exactly match

the statistics of the input signal.

0 2 4 6 8 10
0

0.2

0.4

0.6

∆

r ∆

Fig. 6.12 Offset to step size ratio r versus step size parameter ∆ (k = 1)
for AAC quantizer.

We apply the scalable coding systems to an N -bit AAC quantizer with loading factor

Lf = 7. The quantization loading factor Lf is defined as Lf = xm/σ, where σ is the

standard deviation of the input signal (MDCT coefficients) and xm is the quantization

limit which is for instance 213 − 1 in AAC quantization. Normally Lf ≥ 7 is chosen for

Laplacian signals to avoid quantization overload. For faster simulations, we set the limit to
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be 2N−1− 1 which means an N -bit quantizer was used, and then adjust the input statistics

to match the loading factor. Note that, changing the quantizer resolution (Lf = 2xm/∆)

in S-AAC and NS-AAC, to go for resolutions less than N bits, is still performed by scaling

the input signal ((MDCT coefficients)) by changing the scalefactor. In AAC quantizer, the

step size for the quantization index i in SFB n can be obtained by

∆(in) = thr(in + 1)− thr(in), (6.33)

where thr(in) and thr(in + 1) are the corresponding interval thresholds and are given by

thr(in) =

{
sgn(in)(2s[n]/4|in − 0.4054|4/3), i 6= 0

0, i = 0,
(6.34)

We start merging from the N -bit initial quantizer mentioned above with distinct interval

thresholds and reconstruction points. The reconstruction points are mapped to the nodes

discussed in Sections 6.6 and 6.7. Using the trellis-based approach we find the best path on

the RD plane for the defined cost function. Using this path we can form all the intermediate

quantizers which can be obtained by pruning the coding tree at arbitrary intermediate nodes

(Fig. 6.6).

6.10 Simulation and Results

6.10.1 Methodology

In this section we present the theoretical and practical results from applying the competing

systems to a Laplacian source and to the real audio. For practical results, objective and

subjective measurements have been performed for evaluating the output audio quality. Ten

audio files were taken as input signals for the simulations that includes speech, vocal music,

solo instrumental music, and orchestral music. These audio files were selected from two

common databases for audio quality assessment [104] and [105]. The files are all mono

with sampling frequency of 48kHz. The MDCT coefficients are calculated for these files

and grouped into scalefactor bands (SFBs). In AAC the input signal is coded frame by

frame. The frame size is 2048 which gives 1024 MDCT coefficients. The MDCT coefficients

are then grouped into 49 SFBs (for 48 kHz sample rate). In each SFB, the coefficients

are quantized independently based on the masking thresholds obtained from the AAC
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psychoacoustic model for that SFB. The quantization indices for the quantized coefficients

are then entropy-coded using Huffman Tables. In S-AAC the MDCT coefficients in each

SFB are quantized using REQ.

In our simulations, we obtain the MDCT coefficients and apply TrelSEC and S-AAC to

them in each SFB. In S-AAC we apply a 4-layer REQ system. The bitrates in bit/sample

for the four layers are matched to the practical bitrate steps in kbps used in S-AAC. The

MPEG-4 reference software supports three bitrate steps: 16 kbps, 32 kbps and 48 kbps. Al-

though different combination of theses rates are allowed, in our simulations we consider the

bitrate per layer to be constant in each system. Note that, the final bitrate in kbps includes

all the information required for decoding an audio frame including the encoded quantized

coefficients together with the side information including the scalefactor and the Huffman

table index used for each SFB. What we want to compare here is the quantization distortion

versus the bitrate resulting from the entropy coding in the two coding systems. Therefore,

we just consider the bitrate of the entropy-coded quantized coefficients in bits/sample. To

match these bitrates to the total bitrates mentioned above, the quantization in each layer is

performed so that, the Average Noise-to-Mask Ratio (ANMR) becomes the same as what

obtained for the above total bitrates from the reference software. The ANMR for an audio

file is defined as

ANMR =
1

NfNs

Nf∑
f=1

Ns∑
s=1

d(f, s)

m(f, s)
, (6.35)

where d(f, s) is the squared error in band s of frame f , m(f, s) is the masking threshold

obtained for that band from the psychoacoustic model (here we use the masking thresholds

from the AAC reference software), Nf is the number of frames in the audio file, and Ns is

the number of bands which is 49 here (for 48 kHz sample rate used in our simulations). To

obtain the corresponding bitrates in bits/sample, rate-distortion (RD) loops were created.

The first RD loop is for S-AAC which calculates the quantization and entropy coding rate

(in bits/sample) required to achieve specified distortions in ANMR. These ANMR values

were calculated for the audio signals encoded using AAC/S-AAC reference software for

each bitrate (16 kbps/layer, 32 kbps/layer,...). For TrelSEC, another RD loop adjusts the

rate in each layer of TrelSEC coding to match the above bitrates. Then, the resulting

distortion in ANMR is calculated for TrelSEC. Therefore, in our comparison, the bitrate

for the above systems are assumed to be almost the same and the resulting distortions are
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compared.

For subjective measurements, we performed the test Multiple Stimuli with Hidden Ref-

erence and Anchor (MUSHRA) [106] on the coded audio files to evaluate the subjective

quality. To avoid listener fatigue only the 2-layer systems were compared. We had 10 audio

files and for each file 3 coded audio files and one reference (the original uncompressed file).

These files were presented to 10 relatively experienced listeners and scored on a scale of 0

to 100 where 0 means bad and 100 means excellent quality which is given to the reference.

6.10.2 Results

Figure 6.13 shows a comparison of three coding systems: S-AAC, non-scalable AAC (NS-

AAC or simply AAC2) and the proposed coding system denoted by Trellis-Based Scalable

Entropy Coding (TrelSEC) in terms of SNR(dB) versus bitrate (bits/sample). For the test,

a Laplacian source was generated and was applied to the quantizers. A set of Huffman

coding tables were generated corresponding to the various quantization resolutions and

were used for entropy coding in both S-AAC and NS-AAC. In Scalable AAC a 4-layer

REQ system was used with a 3-bit quantizer at each layer.

Note that, in practice the quantization resolution required at each layer rarely exceeds 3

bits for fine-grain scalable bitrate increment steps such as 16 kbps and 32 kbps. Also, there

is a theoretical abound in the plot which is the SNR for an optimal entropy-constrained

quantizer for a Laplacian source3 from [107]. The SNR for the NS-AAC can also be con-

sidered as a bound for MPEG-4 scalable coding. In this system (NS-AAC) the bitrate of

the AAC quantizer is changed gradually in the steps of 0.25 bit by changing the scalefac-

tor. The corresponding SNRs (in approximately 1.5 dB steps) are obtained for the applied

Laplacian input. Figure 6.13(a) shows the results for the case where a 7-bit resolution full

quantizer was used. It can be seen that the proposed method performs clearly better than

S-AAC. There is a gap between the TrelSEC and NS-AAC as expected. However, it can

be seen that at low rates, TrelSEC is performing even better than NS-AAC. The reason

is that UTQ is not the optimal entropy-constrained quantizer at low resolutions [69]. It

is an optimal entropy-constrained quantizer for exponential sources only at high rates. In

our approach, we start merging quantizer regions from a UTQ. However, as we go through

2We use NS-AAC in the rest of chapter to emphasize the non-scalability.
3Note that, there is no explicit closed-form RD function (with MSE distortion criterion) for non-Gaussian

memoryless sources [28].
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merges the new quantizers are created by minimizing the cost function and are not uniform

any more.

Figure 6.13(b) shows a comparison of the above systems when a 10-bit resolution full

quantizer was used and for two different cases: when no prediction for the ar is involved in

the decision rule (mode 1) and when the decision rule in (6.29) was used (mode 2). It can

be seen that even in mode 1 the proposed scheme performs better than S-AAC. However,

in mode 2 the gap between TrelSEC and NS-AAC decreases considerably.

Now we present the objective and subjective evaluation results for the proposed scalable

coding approach and compare it with what obtained from Scalable AAC. Figure 6.14 shows

the comparison of 4-layer S-AAC, TrelSEC and NS-AAC. The distortion of these systems in

ANMR were plotted for the bitrates matched to the 16 kbps, 32 kbps and 48 kbps per layer.

For example in Fig. 6.14(a) a single layer bitrate is matched to 16 kbps, two layers matched

to 16 kbps+16 kbps and so on. It can be seen that there is a considerable difference in

performance of S-AAC and TrelSEC. In TrelSEC the ANMR reaches negative values much

faster than in S-AAC. This means that in TrelSEC the distortion tends to inaudibility much

faster than in S-AAC. In the case of 16 kbps/layer which is a fine-grain scalable coding,

TrelSEC performs even better than NS-AAC for the first two layers because of the fact

mentioned above regarding the non-optimality of UTQ at low resolutions. Figure 6.14(b)

shows such a comparison when the bitrates are matched to 32 kbps/layer. It is seen that, as

the bitrate in each layer increases, the performances of S-AAC and TrelSEC become closer.

It is obvious since the higher bitrate of layers in S-AAC means being closer to NS-AAC.

At 48 kbps/layer (Fig. 6.14(c)) it becomes even closer. In this case the performance of a

1-layer TrelSEC and S-AAC is almost the same.

Figure 6.15 shows the results of another objective test for using PEAQ. The ODG values

obtained for these systems in were plotted for the bitrates matched to the 16 kbps, 32 kbps

and 48 kbps per layer. Again, it can be seen that there is a considerable difference in

performance of S-AAC and TrelSEC. In fact, the ODG results for TrelSEC are extremely

close to that of the non-scalable AAC.

In addition to these objective tests, we also performed MUSHRA test on the coded audio

files to evaluate the subjective quality. The subjective test results are presented together

with the ANMR objective results in Tables 6.1 and 6.2 for the 2-layer S-AAC, NS-AAC and

TrelSEC for bitrates matched to 16 kbps/layer and 32 kbps/layer respectively. For each
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Fig. 6.13 Performance of TrelSEC vs. S-AAC and NS-AAC for a Laplacian
source. The SNR for an optimal entropy-constrained quantizer for a Lapla-
cian source from [107] was also plotted as a theoretical bound. A Laplacian
source was applied to the systems and the quantization was performed using
AAC quantizer (Lf = 7). In Scalable AAC a 4-layer REQ system was used
with a 3-bit quantizer at each layer. For TrelSEC all the resulting RD pairs
were plotted. In NS-AAC the bitrate was changed in 0.25 bit steps by chang-
ing the scalefactor. 7-bit and 10-bit full quantizers were used in (a) and (b)
respectively.
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audio file, the result is provided. In the last row, the average results from all audio files are

indicated. It can be seen that TrelSEC has the highest average score, being very close to

NS-AAC. While NS-AAC has the highest average score as expected, TrelSEC stands well

above S-AAC.

In the end we compare the performance of the WSAC (Scalable Audio Coding Using

Watermarking) system with the above systems. Figure 6.16 shows comparison of 4-layer

S-AAC, WSAC, TrelSEC, and NS-AAC scalable coding systems. In this case the ANMR

values obtained for these systems were plotted vs. the bitrates in bit/sample but again

matched to (a) 16 kbps per layer and (b) 32 kbps per layer. Note that, for WSAC it is

not straightforward to reach an exact target bitrate as in the other systems, because of

the feedback loop that is involved. It can be seen that although WSAC starts to outper-

form the REQ system used in S-AAC when more than one layer is used, it considerably

underperforms the TrelSEC.

6.11 Summary

[!h] Scalable audio coding based on REQ is used in practical systems such as MPEG-4 S-

AAC. In such a coder, quantization and coding is performed separately for each layer and

the coder becomes more suboptimal as the number of layers increases. We have proposed

a scalable coding method for a single quantizer in which entropy coding is performed in a

fine-grain scalable manner. This approach using the proposed metrics and a trellis-based

optimization algorithm seeks to make a coding tree corresponding to a path on the RD

plane. By pruning the tree at the internal nodes of the coding tree, a variety of quantizers

can be created with different RD performance, corresponding to the generated RD path.

Objective and subjective tests were run to evaluate the proposed system’s performance.

The results show that it considerably outperforms S-AAC scalable coding system. In fact,

it performs very close to an equivalent non-scalable system and can be considered as a

suitable retrofit with improved performance for practical scalable audio coders.
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Fig. 6.14 Comparison of 4-layer S-AAC, TrelSEC and NS-AAC scalable
coding systems in ANMR. The distortion of the three systems in Average
Noise-to-Mask Ratio (ANMR) were plotted vs. the matched total bitrates in
kbits/second (kbps) and for three cases: (a) 16 kbps per layer, (b) 32 kbps
per layer, and (c) 48 kbps per layer. The masking thresholds came from the
MPEG-4 audio reference software psychoacoustic model and the quantization
was performed using AAC quantizer in all the systems (Lf = 7).
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Fig. 6.15 Comparison of 4-layer S-AAC, TrelSEC and NS-AAC scalable
coding systems. The ODG values obtained from the objective test using PEAQ
were plotted vs. the matched total bitrates in kbits/second (kbps) and for
three cases: (a) 16 kbps per layer, (b) 32 kbps per layer, and (c) 48 kbps per
layer.
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Table 6.1 Objective and subjective quality measurements for 2-layer S-
AAC, TrelSEC and NS-AAC for bitrates matched to 16 kbps/layer. The
objective measure is Average Noise-to-Mask Ratio (ANMR) in dB and the
MUSHRA test was performed as the subjective test. The results for 10 differ-
ent audio files are shown, together with the average.

ANMR Subjective Test

S-AAC TrelSEC NS-AAC S-AAC TrelSEC NS-AAC

Male Speech 5.68 0.63 1.91 32.1 56.1 50.6

Female Speech 5.82 0.85 2.17 16.6 42.4 38.8

Vocal (Bass) 5.51 0.57 2.12 34.8 53.2 46.7

Vocal (Soprano) 5.63 0.66 2.15 43.6 52.8 51.0

Violin 5.64 0.65 2.62 28.5 45.9 43.5

Trumpet 5.51 -0.38 2.05 28.5 51.7 46.0

Quartet 5.58 0.68 2.08 37.9 48.3 50.1

Drums 5.81 0.90 2.11 21.9 31.4 23.3

Harpsichord 5.69 0.93 2.73 20.6 35.2 37.6

Orchestra 5.32 0.46 1.66 29.8 35.5 36.7

Average 5.62 0.59 2.16 29.4 45.8 42.4

Table 6.2 Objective and subjective quality measurements for 2-layer S-
AAC, TrelSEC and NS-AAC for bitrates matched to 32 kbps/layer. The
objective measure is Average Noise-to-Mask Ratio (ANMR) in dB and the
MUSHRA test was performed as the subjective test. The results for 10 differ-
ent audio files are shown, together with the average.

ANMR Subjective Test

S-AAC TrelSEC NS-AAC S-AAC TrelSEC NS-AAC

Male Speech 1.04 -3.57 -3.74 50.8 55.4 67.8

Female Speech 1.26 -3.12 -3.24 33.9 55.2 56.1

Vocal (Bass) 0.77 -3.48 -3.86 52.1 65.9 65.0

Vocal (Soprano) 0.75 -3.70 -4.16 73.7 74.9 77.6

Violin 0.73 -3.22 -3.94 58.2 71.7 81.9

Trumpet -0.02 -5.55 -6.21 51.6 72.4 68.6

Quartet 0.85 -3.27 -3.62 62.9 77.6 76.7

Drums 1.29 -3.14 -3.22 51.0 55.8 55.1

Harpsichord 0.91 -2.89 -3.41 33.2 49.0 50.8

Orchestra 0.73 -3.53 -3.77 69.0 65.1 65.8

Average 0.83 -3.55 -3.92 53.6 64.3 66.5
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Fig. 6.16 Comparison of 4-layer S-AAC, WSAC, TrelSEC, and NS-AAC
scalable coding systems. The ANMR values obtained for these systems were
plotted vs. the matched total bitrates in bits/sample and for two cases
matched to (a) 16 kbps per layer and (b) 32 kbps per layer.
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Chapter 7

Conclusion

7.1 Summary of the Research

In this dissertation we have three different contributions to practical scalable audio coding

systems with the latest one presented in Chapter 6. The proposed methods are specifically

useful for fine-grain scalable coding where bitrate increment is provided in small steps which

is a desired feature for many applications.

In Chapter 4 we presented the first contribution, scalable audio coding using watermark-

ing. We proposed using a watermarking technique called Quantization Index Modulation

in scalable coding. Using this technique some of the information of each layer output is

watermarked in the previous layer. This approach leads to a saving in bitrate while keeping

the distortion almost unchanged. This makes the proposed scalable coding system more

efficient in terms of Rate-Distortion when more than one layer is received. The results

showed that the proposed method outperforms scalable audio coding based on REQ.

In Chapter 5 the next contribution was provided which was a technique to augment the

BPC-based scalable coding used in MPEG-4 audio. Considering the properties of the resid-

ual signal, core-based bit-plane probabilities were provided for MPEG-4 Audio Scalable to

Lossless Coding (SLS), which better matches the quantization and coding performed in the

core layer. Using the same strategy, new probabilities are obtained to consider the clipping

effect in bit-plane coding of an unbounded signal. Simulations showed that considering

the core layer parameters improves the bit-plane probabilities estimation compared to the

existing method.

Perhaps the most important contribution has been presented in Chapter 6. A very fine-
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grain scalable coding approach was proposed by designing a scalable entropy coding using

a trellis-based optimization. In the proposed scheme, the entropy coding procedure of a

single quantizer was made scalable. By constructing a Huffman-like coding tree where the

internal nodes can be mapped to the reconstruction points, the tree can be pruned at any

internal node to control the rate-distortion (RD) performance of the encoder in a fine-grain

manner. A set of metrics and a trellis-based approach were proposed to create a coding

tree so that an appropriate path is generated on the RD plane. The results showed the

proposed method outperforms the scalable audio coding performed based on reconstruction

error quantization as used in practical systems, e.g. in S-AAC.

Among the proposed methods, the latter showed a great improvement on the prior

scalable audio coding systems. The results showed that using this technique we can get

close to an equivalent non-scalable coder in terms of the RD performance, yet having

scalability. The proposed scheme also provides very fine granularity of bitrate increments.

In fact the proposed coding/decoding tree provides a bit-by-bit scalability.

7.2 Future Work Suggestions

In Chapter 4 we used the QIM technique to watermark a single bit of a codeword from

each layer into the previous layer. This was performed using a modulo-2 QIM. This idea

can be extended for using higher modulus. For instance, we can watermark two bits at the

same using modulo-4 QIM. It would be interesting to evaluate the performance of such a

system and compare it with the one presented here.

As seen in the thesis, there are different factors that play important roles in the perfor-

mance of the proposed system such as the quantization resolutions and the statistics of the

watermarked bits. Higher-modulo QIM tends to be applied to higher resolutions, while the

bit sequence form codewords might have statistics which contribute to the performance of

the system compared to a single bit watermarking. Another extension to this work could

be applying the idea to a vector quantizer where a different moduli needs to be defined for

the quantizer cells. The two suggested extensions could be also mixed. This requires using

two different modulus at the same time, one for the watermarked bits and the other one

for the quantizer.

We proposed a very fine-grain scalable audio coding by designing a scalable entropy

coding scheme which was presented in Chapter 6. We applied the idea to a scalar quantizer.
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Based on the proposed metrics, the neighboring intervals in the scalar quantizer are merged

into a new interval and the process is repeated. A very interesting future work is to see

if this idea could be applied to a vector quantizer. In a vector quantizer, instead of the

intervals we deal with the cells. Can the neighboring intervals be easily replaced by the

neighboring Voronoi regions? Can the same RD metrics proposed here be used to find the

best candidates at each merge? A research on this topic can answer the questions. What

is clear is that, the tree generation process in this case will be more time-consuming and

complex compared to that of a scalar quantizer. However, this is just a one-time and off-line

process. The tree and the corresponding codebook are generated and the coding/decoding

process can be performed as fast as required by working with a set of tables.



124

Appendix A

Entropy Calculations for WSAC

In the Watermark-Based Scalable Audio Coding (WSAC) system, the even and odd quan-

tizers follow a UTQ quantizer which is used in AAC. Using the QIM technique either of

these quantizers are used representing the watermarked bit. We have two quantizers Qe

and Qo with entropies Ee and Eo. Except the difference in the quantization indices which

is even in Ee and odd in Eo, the quantizers are also different in that Qe has a dead-zone

around zero while Qo has two dead-zones around 1 and −1. The overall quantizer Q which

is a combination of these two quantizers has a single entropy which we will show is a

function of these entropies. We have

p′i =

{
P0pi i : even

P1pi i : odd
(A.1)

where p′i is the probability of interval i in Q, pi is the probability of that interval in either

Qe or Qo if i is even or odd respectively. We define

E ′e = −
∑

i=even
p′i log2(p′i)

= −
∑

i=even
P0pi log2(P0pi)

= −P0

∑
i=even

pi log2(pi)− P0 log2(P0)
∑

i=even
pi

= P0Ee − P0 log2 P0

(A.2)
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where Ee is the entropy of Qe and P0 is the probability of the watermarked bit being 0.

Similarly for E ′o we get

E ′o = −
∑

i=odd

p′i log2(p′i) = P1Eo − P1 log2(P1) (A.3)

where Eo is the entropy of Qo and P1 is the probability of the watermarked bit being 1.

Note that the probabilities pi correspond to the interval widths in Qe and Qo, each of which

covers the whole source range. That is why in the above equations
∑

i=even pi = 1 and∑
i=odd pi = 1.

The entropy of the overall quantizer Q can be obtained as

E = −
∑
i

p′i log2(p′i)

= E ′e + E ′o

= [P0Ee + P1Eo]− [P0 log2(P0) + P1 log2(P1)]

= Ē + Eb

(A.4)

where Ē is the average entropy of Qe and Qo and Eb is the entropy of the watermarked

bit. The entropy increase resulted from doubling the resolution is

E − Ee = Ē + Eb − Ee (A.5)

which depends on Ee, Eo and entropy of the watermarked bit.

There is one dead-zone in Qe and two in Qo. The corresponding dead-zone thresholds

Te and To are

Te =
∆

2
+ sh

To = ∆ + sh
(A.6)

where sh is the shifting or offset value. For the dead-zone probabilities p0 and p−1 = p1 we
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have

p0 = 1− e−λTe

p1 = p−1 =
1

2
(1− e−λTo)

(A.7)

The entropies Ee and Eo are calculated following the same procedure presented in Chapter 4

which give

Ee = λ log2(e)e−λTe(Te +
∆e−λ∆

1− e−λ∆
) + e−λTe

− e−λTe log2(1− e−λ∆)− (1− e−λTe) log2(1− e−λTe)
(A.8)

and

Eo = λ log2(e)e−λTo(To +
∆e−λ∆

1− e−λ∆
) + e−λTo

− e−λTo log2(1− e−λ∆)− (1− e−λTo)[log2(1− e−λTo)− 1]

(A.9)
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Appendix B

Arithmetic Coding

Consider a source represented by a discrete random variableX, associated with probabilities

pX(i). In arithmetic coding of a sequence of such a source, first the interval [0, 1) is

partitioned into cells. Each cell is associated with a source symbol and the size of the

cell is proportional to the probability of the symbol. Figure B.1 shows such a partitioning

for a 4-symbol source with s1, s2, s3 and s4 being the symbols. This partitioning can be

repeated for each cell according to the sequence of the symbols.

1.00.60.30.0 0.1

s1 s4s3s2

Fig. B.1 Partitioning the interval [1, 0) for the source symbols s1,s2,s3 and
s4.

Figure B.2 shows the repeated portioning for a sequence of 4 symbols: s2, s4, s3 and

s2. In the end, the truncated binary representation of the last cell’s midpoint is considered

the codeword for the whole sequence. Consider the cumulative distribution function of the

source associated with the cell thresholds x which can be defined as

FX(x) =
n∑
i

pX(i), (B.1)
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Fig. B.2 Arithmetic Coding for a 4-symbol source. The partitioning is re-
peated for each cell according to the sequence of the symbols, here s2, s4, s3
and s2.

where pX(i) is the probability associated with the ith cell (and its corresponding symbol),

n is the nth cell that has the upper threshold x and FX(0) = 0. We truncate the binary

representation of the midpoint of a cell to get a l-bit representation. In order for this

truncated value not to move to the lower cell, we should have

l = min{m : 2−m < (Fx(x)− Fx(x− 1))/2}. (B.2)

This gives

l = min{m : m > − log2((Fx(x)− Fx(x− 1))/2)}

= b− log2(Fx(x)− Fx(x− 1))c+ 1

= b− log2(pX(n))c+ 1.

(B.3)

where b.c is the floor function. As a sequence of symbols is coded, the new cells are

generated with new thresholds (Fig. B.2). It can be easily shown again that to have a l-bit
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binary representation of the last cell’s midpoint,

l = b− log2(pX(S))c+ 1, (B.4)

where pX(S) is the probability of the sequence S associated with that cell. For the above

example, we have

pX(S) = pX{s2, s4, s3, s2} = pX(2).pX(4).pX(3).pX(2). (B.5)

Therefore

l = b− log2(pX(2).pX(4).pX(3).pX(2))c+ 1, (B.6)

To decode the sequence, the decoder simply tracks the l-bit number it receives, from the

original interval [0, 1) to the last. For our example, the decoder receives a binary number

which is within the interval [0.2464, 0.2512). Comparing this number with the original

interval [0, 1), the decoder sees that this number is in the second cell associated with s2.

Comparing with the second interval [0.1, 0.3), s4 is decoded and so on.
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